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FOREWORD
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program sponsored by the Air Force Avionics Laboratory, Air Force
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accuracy requirements for the planar near-field scanning of airborne
phased-array antennas.

The forthcoming Part II of the error study emphasizes antennas
with beams which steer electronically. The initial computer simula-
tion was reported in the NBS Internal Report 74-380. The extension
, of the error analysis to broadbeam antennas is described in the NBS
Internal Report 75-815. A summary of the major results and conclu-
sions of this report can be found in Section IV.
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1. Introduction

The planar near-field scanning method has been used to measure

ey Y m

with high accuracy the electromagnetic fields of microwave antennas.
High accuracy is pussible primarily Lecause so few restrictive
approximations are involved in the formulation and application of

the near-field techniques. Moreover, the far-field errors associated
with each approximation can be estimated because the approximations
themselves can be expressed in convenient mathematical form. This
report essentially derives and evaluates some of these mathematical
expressions under the given laboratory conditions to deturmine guan-
titatively the accuracy with which the far-field of antcnnas can be
measured by the planar near-field scanning method.

The error analysis was undertaken for two main reasons. One,
it was desired to find general upper-bound expressions for the
limits of accuracy in computing far-fields from planar near-field
measurements without resorting to direct far-field comparisons. It
has long been the feeling of those involved with the near-field
measurement techniques at the NBS that these techniques were often
more accurate than measurements taken on conventional '"far-field"
ranges with a standard antenna. Thus comparisons with patterns
measured on conventional far-field ranges would not give a re-
liable evaluation of the near-field techniques which do not have to
cope with proximity corrections, ground reflections, or the cali-
bration of standard far-field antennas. Two, the upper-bound ex-
pressions could be used to stipulate design criteria for the con-
struction of new near-field scanning facilities. This meant that
the upper-bounds for the accuracy in a given far-field parametcr
should be expressed in terms of measured near-field data and/or the
computed far-field, the frequency and dimensions of the antenna-probe
system, the variation in the positioning of the scanncr, and the
precision of the instrumentation which measures the probe output.
The design engineer could then compute from the upper-bound ex-
pressions the near-field tolerances required to insurz a given far-
field accuracy for the range in size and frequency of the antennas
he was considering.

There have been two major computer studies performed in the
past to estimate the errors involved with planar near-field scanning

1
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measurements [11,16]. Rodrigue, Joy and Burns [16] have introduced
position and instrumentation errors into a hypothetical near-field
distribution in order to compute their effects on the far-field.
Newell and Crawford [11,17] performed a similar analysis with mea-
sured near-field data which included an estimate of errors involved
with truncating the scan plane. A major drawback of the computer
studies, as well as direct far-field comparisons, is that they
apply to particular ante:anas and their results do not necessarily
represent upper-bounds to errors which will hold for large general
classes of antennas. It should be emphasized, however, that the
computer studies are an extremely useful aid in giving direction to
the general analysis and checking its results.

This report does not attempt to estimate the accuracy of the
extrapolation technique for measuring the gain of antennas [22].

An error analysis involving the extrapolation technique has been
performed recently b» Kanda [23].

If we assume that the antennas under consideration are lineer,
of finite extent, and operatiny in a single mode at fixed frequency
and amplitude, and that Maxwell's equations for free space describe
the region in which the antenna is situated, the only approxima-
tions involved in formulating and applying the planar scanning
method are:

1) The fields outside the finite scan area are zero.

2) The scanner is aligned and positioned with infinite

precision.

3) The instrumentation introduces no distortion and measures
the amplitude and phase of the probe output with perfect
accuracy.

4) Multiple reflections between the test antenna and "probe"
antenna are zero.

5) Computation errors in ''deconvoluting'" the measured near-
field data to get the far-field are nil.

Errors caused by uncertainties in the receiving characteristics of

the probe, and errors involved with measuring the input power to the
test antenna are discussed in Section IV, which, incidently, contains
a summary of the major results and conclusions of this report.




The far-field errors introduced by the computations (approxima-
tion %) are so much smaller than the combined errors in the far-
field caused by a finite scan area, positioning, instrumentation,
and multiple reflections (approximations 1-4) that they are of
little consequence. With the help of the sampling theorem, Fast
Fourier Transform, and computers accurate to many places, the
necessary deconvolution of the measured data can be performed with
insignificant error.1

The amplitude of the near-field multiple reflections (approxi-
mation 4) can be estimated in practice by changing the distance be-
tween the probe and test antennas. Any periodic variations in the
amplitude of the received signal repeating about every A/2 (A =
wavelength) would be caused pfimarily by the multiple reflections.

In Section III.C the effects on the far-field of multiple reflections
are discussed and estimated analytically. Although they cannot be
eliminated completely, multiple reflections can be reduced by using
efficient absorber material, by decreasing the size of the probe, or
by increasing the distance between the probe and test antenna.

Also, it is likely that the effect of multiple reflections on the
far-field can be reduced by averaging the far-field patterns ob-
tained by scanning on a number of near-field planes which are
separated by a small fraction of a wavelength.

Far-field errors caused by the errors in the scanner position-
ing and instrumentation (approximations 2 and 3) are determined from
a common set of equations. These equations are derived and eval-
uated in Section III.B for both systematic and random near-field

1Without the advantage of the FFT, typically the computer would add
20,000 terms to calculate the variable which yields the far-field.
Even if we make the absurd hypothesis that every round-off error
adds in the same direction, a computer of 10-place accuracy adding
20,000 numbers would retain more than S5-place accuracy (.001%) for
the sum, Of course, in practice the FFT algorithm vastly reduces
the number of necessary computations.

There is also the approximation associated with applying the samp-
ling theorem, which assumes that the output of the probe is the
Fourier transform of a band-limited function. For a separation dis-
tance between test antenna and probe of more than a few wavelengths,
this can be shown to be an extremely good approximation which intro-
duces negligible errors into the far-field.
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errors. "Position errors" may be reduced by scanning along both
vertical and horizontal lines and avppropriately averaging the two
sets of measurements. "Instrumentation errors" can be reduced if
the distortion and nonlinearities of the receivers can be determined
and included as part of the computer program that deconvolutes the
near-field data.

The first portion of the error analysis (Section III.A) is
devoted to determining the maximum far-field errors introduced by
neglecting the fields outside the scan area. As part of the analy-
sis, asymptotic expressions are derived for the near-field in front
of large aperture radiators.

All errors are assumed small enough so that the individual con-
tribution to the far-field error from each source of near-field
error can be estimated independently and then combined to give the
total far-field error. We shall find that all the individual errors
in the far-field combine linearly except for the on-axis sum pattern,
position and instrumentation phase errors which combine quadratic-
ally (see footnote 12).

II. Relationship of Errors in Gain Functinn, Sidelobe Level,

Polarization Ratio, and Beamwidth to the Far-Field Error in
Electric Field

Let E(Tr) denote the electric field (to within the limits of
error) of an antenna radiating into free-space and t AE(?) the
limits of error involved with the measurement of E(T) (e-lmt time
dependence has been suppressed). The magnitude of the fractional
error n(r) in the electric field amplitude can be defined for small

errors as,

|E£AE| - |E|

\E|

CLE@] -

n(r) = =
|E(T) |

(Henceforth, the < sign will be omitted when eq. (1) or similar ex-
pressions are used.) The Hermitian amplitude |E| = /E<E* (the
asterisk * denotes the complex conjugate) is related tc the power S
radiated per unit area in the far-field or any other locally
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plane-wave field in free-space by S = /E;7ﬁ;|fl’. From the values
of n(T) as r approaches infinity and the approximate amplitude of
the far-field IE(?)Ir*w, all other errors in far-field quantities
can be found. Four such quantities of interest are the gain func-
tion, the sidelobe level, the polarization ratio, and the half-power
beamwidth. Of course, these four are not always the only far-field
quantities of interest, but they will be used ¢s typical examples
tc demonstrate how the crror in any far-field quantity can be re-
lated easily to n(T) and |f(?)|r+m. (In eqs. (2)-(5) below, where
the error in these four quantities is derived, the subscript "ro="
is understood, but not shown explicitly.)

The error g in the gain function G(Tr), which is proportional
to th. square of the far-field amplitude, may be written immediately
as (for small |AE|/|E|, so that |AE|? terms can be neglected)

_ {1;1: AE|? - IFI{} g = +2 18El (2a)
|E|2 |E|
= iz'ﬂ(F)G(F)s

g

or in decibels

ndB < 1 log[liiga;EELi] = 20 log(1tn(D)). (2b)

For small errors, n << 1, and

nS = + 8.7 n(). (2¢)

The sidelobe level, when meaningful, is usually stated in deci-
bels and is defined as th¢ ratio of the maximum far-field inteasity
of the largest sidelobe to the maximum far-field intensity of the
main beam [1]. The error ng in sidelobe level SL is

o 2 - 2
= IEside * AEsideI . IEsideI
s - = 2 E 2
IEpax * A ax| |Epax|
For SL = IEsideIZ/IEﬁaxlz’ and sma’l' n(T),
ng = t2[n(ry) + n(r,)ISL, (3a)




with n(FS) and n(Fo) denoting the values of n at the sidelobe maxi-
mum and main beam maximum respectively. In most cases n(?é) will
be much larger than n(?;) so that

ng * iZn(?s)SL. (3b)
In decibels
|E._. t AE . ._| |E ... |
ngB = 20|10g ;1de Es1de - log ;}de ,
l max t 4 maxl l maxl

or for small n, and n(?s) >> n(?b),

n‘SIB = £ 8.7 n(f), (3¢)

i.e., as we might expect, simply the error in the gain of the side-
lobe itself.

The polarization ratio of the electric field is defined as the
ratio of the minor to major axis of its polarization ellipse [1].
The maximum error in the polarization ratio at a point in the far-
field occurs when the error AE is linearly polarized in phase with
the component of E along the minor axis. Thus the maximum error np
in polarization ratio is simply

nzi_—l—é._E—_L_

P
IEhajorI

Since the smallest possible value of lEﬁajorl is v1/Z |E| (circular
polarization), the maximum possible error “p may be written as

p

= +/7 1|§—T-|- = +/In(T). (4)

For antennas which have small cross polarization, the factor of V2
in eq. (4) is removed. Also footnote 11 should be remembered when
applying eq. (4) to instrumentation amplitude errors.

The half-power beamwidth is defined for a plane containing the
line along the maximum intensity of the beam. It is simply "the
angle between the two directions in which the radiation intensity
is one half the maximum value of the beam" [1]. If we know E(T)
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and AE(T) in the far-field we can determine the maximum errors in
measuring the beamwidth. In figure 1, |E|? and |[E ¢ AE|?

|E|2 ¢+ 2|E{{AE| (neglecting |AE|?2 terms, as usual) are plotted for
the main beam of an arbitrary test antenna. The beamwidth is 6,46,-
From figure 1, we see that the error in 61 is

¢ »E(0)|1E(8;)] = jaE(8){IE(8y)] #n(643|E(8;)]|
Ael = + : 1 1 = 1 1 = 1 1 radians.

tan o dlf(e ) dlf(el)l
|ECe)) | —g5t— —w

Similarly the error in Aez is

% n(ez) |E(ez) I

Aez = - radians.
d|E(8,)]
- d8
The total fractional error Ny in beamwidth may be written
A, + AB
1 2 .

Ng ® & —3—75— (5a)
B 61 + 92 :

or, for symmetrical beams (6 = 61 = 62), simply

ng = ige - #n(8) [E(8)] (5b)
d|'L-°g9)|

For large circular or square apertures of uniform amplitude and
phase distribution, |E(6)|/ e-iaé—l
equal 1, and g becomes simply,

ng = in(6) (5¢)

As expected, eqs. (2)-(5) verify that a knowledge of |E(T)]|
and n(r) as r + » (as mentioned above, the '"r » «" is suppressed in

L can be shown to approximately

eqs. (2)-(5)) is all that is required to determine the errors in the
gain function, sidelobe level, polarization ratio, and beamwidth.

If desired, errors in other far-field parameters can equally well

be expressed in terms of |E(T)| and n(r). The far-field IEIr+°°
be computed from the measured near-field data or estimated analyti-
cally. Thus, the problem of finding the far-field errors reduces
to the problem of evaluating n(r) of eq. (1) in the far-field.

may
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ITII. Error Analysis

A. Finite Scan Errors

The purpose of the present section is to estimate the maximum
errors in the far-field introduced by scanning in the near-field
over a plane of finite area. "Finite" is the key word. In prin-
ciple, the planar scan method requires that the output of the probe
be recorded over an infinite plane in front of the test antenna.

In practice, of course, only a finite area of the plane is sczuned
and the fields outside that finite area are set equal to zero. The
scan area is vsually, but not necessarily, rectangular with the
boundaries commonly chcsen where the output of the probe antenna is
down 30 or 40 dB or more from its maximum. For many microwave an-
tennas such a scan area turns out to be about two or three times
the aperture area of the antenna. The present analysis will be re-
stricted to electrically large (average width/wavelength > 10 will
do) aperture-type antennas, usually but not necessarily operating
at microwave frequencies. The phase will be assumed fairly uniform
across the aperture with the amplitude of the field either uniform
or reaching a maximum near the center of the aperture and convexly
tapered toward the edge to reduce the sidelobe radiation [2].2
Near-field, centerline, amplitude and phase data for the sum pattern
of a typical antenna measured at NBS can be seen in figure 9d. Re-
flectors, large horns, and broadside arrays are probably the most
common examples of the test antennas under consideration. The re-
sults of this finite scan part of the error analysis apply to
antennas with their boresight direction steered at an arbitrary
angle with respect to the scan plane.

2Initially we are assuming the antenna is operating in a sum mode or
pattern. For finite scan errors it will be shown that difference
patterns need not be considered separately since they are formed by
the superposition of two sum patterns with wavefronts slightly
skewed to create a '"null" in the boresight direction. For

position and instrumentation errors, however, Section III.B along
with Appendix B shows that sum and difference patterns must be con-
sidered separately, at least when determining far-field errors near
the boresight direction.




The approach which is used to estimate the finite scan errors
involves finding an upper-bound to the appropriate integral of the
fields outside the finite scan area. Physical optics and the geo-
metrical theory of diffraction are used to show that the fields out-
side the scan area are determined chiefly by edge diffracted fields
of the antenna. For each antenna these edge diffracted fields are
different. However, they all can be expressed in a general form
(eq. (19)) which allows upper-bound expressions (eqs. (32) and (36))
to be found by evaluating the integral outside the scan area in terms
of the probe output on the edge of the scan area. Outside the
"solid angle" formed by the edge of the aperture and edge of the
scan area, the evaluation of the integral can be done by the method
as stationary phase to show that in this region the far-fields com-
puted from the near-field data cannot be relied upon with any con-
fidence. Well within the solid angle the integral evaluation can
be performed through integration by parts to yield an upper-bound
expressicn for finite scan errors from both centerline data scans
(eq. (32)) and full scans (eq. (36) or (32)).

1. Mathematical Formulation of the Problem

Suppose we want to determine the radiation pattern of a given
antenna of aperture area A bounded by the curve C, as in figure 2.
The task is accomplished experimentally by recording the output of
an arbitrary but known probe antenna (for two orientations, in
general) as the probe scans in front of the radiating test antenna
on a plane of area A' bounded by C'. The z-axis will always be
chosen perpendicular to the scan plane with origin 0 in the antenna
aperture. The scan plane, however, may not always be chosen parallel
to the aperture plane. For beams steered off-axis, larger scan areas
may be required if the scan plane does not lie perpendicular (approx-
imately)to the boresight direction.

After taking a double Fourier transform of the probe output in
each orientation, the radiating characteristics (§10(K)) of the test
antenna are found simply by solving simultaneously the two resulting
linear equations. In particular, if the probe were a perfect dipole,
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the output of the probe would be proportional to the electric field
at the dipole in the direction of the dipole moment. The expression
for §i°(K) (defined with respect 1o the reference plane z=0, and

the transverse part of the prcpagation vector denoted by K) then
becomes [3]

5, () = __:__. sivd £'§t(F,d)e'iK.P dp, (6)

m
4 a,

(e ™t time dependence)

where Ei(?}d) is the electric field, i.e., the output of the dipole
probe in two mutually perpendicular orientations, transverse to the
z-axis at the point (P,d) in the scan plane A'. (The equation of
the A' plane is z = d.) The amplitude of the input mode to the test
antenna is designated by ay, and the variable y is defined by

L]

y = (kz-Kz)%(k = w/c Z%), where the radical is chosen to keep Yy
positive real or imaginary.sa’b
For the sake of simplifying the theory we will assume a perfect
electric dipole as the probe. The dipole gives information about
the electric field only at a point. All physically realizable probes
respond to a weighted average of the field near the probe. Thus it
is expected that the errors in the computed far-field introduced by
omitting a part of the infinite scan plane are as great or greater
for a perfect dipole than for any other probe antenna, and that the
following ccnclusions and resulting upper bound expressions (32) and

(36) hold for arbitrary probes. Also, at this point in the error

35The sampling theorem shows that to obtain the far-field pattern
the double integral in eq. (t) can essentially be replaced by a
double summation over points in A' separated by about A/2 or less.
Thus, in practice, data need be taken only at a finite number of
discrcte points for eq. (6) to be evaluated. However, for most of
the error analysis we prefer (somewhat arbitrarily) the integral
representation of §1o to the summation.

3bStrictly speaking, the Fourier transform in eq. (6) and eqs. (7),
(10), and (11) below may not converge to a unique value as the scan
area approaches infinity because Et(F,d) has a 1/P dependence in a
lossless medium as P+», and thus gives rise to a rapidly oscillating
part in the transform as P»~, Usually this oscillatory term can be
ignored with impunity because it vanishes upon integration when
taking the iaverzo transform. However, it does determine the limit-
ing value of the finite scan errors (see footnote 9).

10
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analysis any uncertainty in the receiving characteristics (Sél) of
the measuring probe are ignored.

For eq. (6) to represent §10(K§ exactly, the pree scan and
subsequent integration would have to be performed over the infinite
plane. Thus the error (A§io) produced in gio by a scan of finite
area may be written formally as

a5, = —i— "1V Etclf,d)e‘ﬁ(‘Iy dp, (7

2
47 a, Aé

where Aé is the infinite area outside or compiementary to A'. The
far-fields can be found from §10(K) by taking the inverse double
Fourier transform of eq. (6) and evaluating the resulting expression
by the method of stationary phase for double integrals. So doing
yields [3]

ik,

T Ty = . N s - e
Et(r) = Zﬂaolk coso Slo(kR/r) = (8)
T »> ©
and from eq. (8)
- - . _ _ o1k
AEt(r) = -Znaolk cosBASlo(kR/r) — (9)

T + (cose = z/r, z>0)

Substitution of §1° and ASlo from eqs. (6) and (7) into eqs. (8) and
(9), respectively, produces expressions for the far-electric-field
and its error in terms of the near-field data:

-k
: o -i=R-P
Et(?) - ik cosc_elk(r-d cose)f fi(p,d)e T dF (10
2mr Al
T + ®
ik cosd _ik(r-d cos® -i3R-P
0B, (7) = -, €080 Ik(r-d cos®) r g (paje T 4P, (1)
Ac
T > ®

(For a dipole probe, ft(F,d) and the output of the probe are identi-
cal.) Equations (10) and (11) express mathematically the well-known
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"Fourier optics'" result that the far-field amplitude is propertional
to the spatial Fourier transferm of the near-field times cos®.
Division of eq. (10) by eq. (11) results in the fractional error ym
in the transverse part of the far-electric-field
-i5R.p
_ / Et(F,d)e dP
_ |AE£(r)| Aé
n({) = ——— = : (12a)
'Et(r)l _ -i.l;TﬁoF
i Et(F,d)e dP
or simply
_ ik RP
cosd || E (P,d)e dp
Al
n, (T) = < .
t — (12b)
AT|EL (D) | e
Of course, the fractional error n in the total far-electric-

field is not necessarily n, except on the z-axis. However we can
find n in terms of n, by a simple argument. In the far-field lﬁi(?)l
] differs from |E(r)| at most by a factor cos@, i.e.

[E(T) |cosd < Iﬁt(?)l < [EM|. (12¢)

Similarly,
[AE|cos8 < |A§t| < |AE]. (124d)

. 1
Consequently n is greater than Ne by at most a factor cosh? and from
eqs. (12) we can express the maximum possible n in the far-field as

ik R.F
[ B, (P,d)e T ar|
3 — A'
E (?) = IAEL = C
.- T wED | (13

For the denominator of eq. (13) we can use the far-field estimated
analytically or computed from the measured near-field data. Thus,
the problem of finding n reduces to that of estimating ﬁi(?,d) on Aé,
M i.e., un the area outside the finite scan plane.

12
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2. The Fields of Electrically Large Aperture Antennas

R FETERPE S

If the behavior of the electric field Ei(?,d) were known in the
area Aé, the integral of eq. (13),

T=[ E(F,Ne T dp, (14)

could be evaluated and the far-field errors could be found immediately
from eqs. (1)-(5). Even asymptotic methods cannot be applied to eq.
(14) until the behavior of Et(F,d) is determined. Fortunately, the
electric field outside the aperture of electrically large aperture
antennas can be determined analytically from the electric field dis-
tribution across the aperture. In fact, it will be shown shortly
that just the electric field at the edge of the aperture distribution
is required.

As a first step in finding the electric field Fi(F,d) to use in
eq. (14), consider t‘he aperture antenna drawn schematically in
figure 3. (The boundary or rim of the antenna is assumed to lie
in a plane with gz here chosen perpendicular to the plane. These
restrictions are relaxed later.) It is well-known [4] that the
electric field everywhere to the right of the infinite plane A_ can

00

be expressed in terms of an integral of the electric field over A

oo ?

T - - %1—”[\ [e,xE, (R')] x VG(F,K') dR, (15)

where

so s seng

ik|T- .|
=&

|T-R"|

and Ft(i') is the transverse electric field on the plane A emanat-

; ing from sources to the left of A  (e.g., electric fields from a

' feed located to the right of A  would not be included in Ft(ﬁ'),

except, of course, indirectly as reflected fields from the antenna).
For an aperture antenna, whether it be a reflector, large horn,

or broadside array, the components of the electric field Ft(ﬁ') are

13




slowly varying in Dhase4 and amplitude across the aperture, except

possibly right near the edge. The amplitude often tapers toward the
edge of the aperture and drcops abruptly (in a distance less than a
wavelength) to zero or near zero beyond the edge. Thus the limits
of integration in eq. (15) reduces to the aperture area A or at most
a couple of wavelengths beyond A. Also, since eq. (14) requires
only the transverse component of Et(?), we can ignore the z-
components of eq. (15) and write

E (T) = - = %7 £ E, (R")G(T,R") dR'. (16)

For electrically large apertures, eq. (16) can be evaluated asymp-
totically. Before doing this a couple of remarks are in order.

The first has to do with neglecting the fields outside the
aperture area A when in reality there may be scattering from the
edge of the antenna aperture. In those cases it may seem unreasonable
to neglect, initially, the fields beyond the aperture area A as part
of the procedure to calculate the fields beyond the scan area A'.
The '"canonical" problems that can be solved exactly, such as scatter-
ing by an infinite wedge or elliptical disk, indicate, however, that
at shcrt wavelengths the scattered fields are caused predomincontly
by uLigh intensity fields within a wavelength or so ¢f the edge, and
inc2ed the fields more than this distance bevond the edge may be
neglected [5]. Of course, this assumption has been confirmed by
experiment and constitutes the basic postulate of the geometrical
theory of 1iffraction [6]. In terms of the radiation from large
aperture antennas, it means simply that the fieids everywhere to
the right of the aperture plane depend solely upon the fields within
and near the edge of the aperture, even when appreciable scattering
from the edges is present.

The second remark concerns antennas that have part of their
feeding mechanism mounted to the right of the aperture plane--as
in the case of reflector antennas. As mentioned above, the direct
radiation from the feed must not be included as part of Ei(ﬁ') for
eq. (16) to be correct. However, scattering from feed mounts

4For electrically steered arrays the planes of "uniform" phase may
be skewed with respect to the aperture plane. This situation is
considered at the end of the section.

14
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(including the feed itself) of the fields reflected by the antenna
are not taken into account by eq. (16). Although the mount scattered
fields can be ignored if they are small compared to the fields
scattered from the aperture edge, there is no reason to beslieve this
will always bec the case even in the region Aé. Fortunately, the
results of the geometrical the»dry of diffraction (GTD) can also be
used to determine the behavior of the fields diffracted from the

mounting in front of the aperture as well as from any sharp edges
at the boundary of the aperture [6]. Moreover, we shall find that
the final expression (eqs. (32) and (36)) for the far-field error
does not require an explicit estimation of either the mount or edge
diffracted fields. Of course, for many antennas such as horns and
arrays there are no obstructions in front of the aperture.

For the moment we shall ignore the problems of the exact nature
of the edge diffraction and diffraction from feed mounts and return
to evaluate eq. (16) for a smoothly tapered amplitude within A and
zero outside A. For apertures which are many wavelengths across,
the double integral (16) can be expanded in an asymptotic series.
The first three terms in the series for integrals like eq. (16) have
been derived by Van Kampen [7]. Keller, Lewis and Seckler [8] apply
Van Kampen's results to eq. (16) specifically. The final expressiop
has been confirmed by the present author using an approach different
from Van Kampen's. In the shadow region, i.e., the entire half space
z > 0 excluding the cylindrical volume formed by the projection of
the aperture area A along the z-axis, the electr.ic field in eq. (16)
is approximated by

—
>

a % cos®_ E i[kD +£]
[ m } m “tm R m4 ] (17)

+ ino
am Dm sin®

Et(r) i % ZmY Dm sin®
m
The variables in eq. (17) are defined with the help of figure 4.
The distance from the point T to the edge of ap aperture with
a smooth boundary has at least one relative maximum and one relative
minimum. The subscript m simply refers to the mth relative extremum
point on the edge of the aperture. Dm is the distance from T to the

mth relative extremum, a_ is the radius of curvature of the edge (in

m
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the plane of the aperture) at the mth relative E;Eremum, em is the

angle between Dm and the z-direction, and EEm is the value of the

transverse electric field at the edge of the aperture excluding the
fields diffracted from the edge. The radius of curvature a is taken

positive if the dGistance D“1 is a relative minimum and negative if a
Y
a ']1/2
relative maximum. The radical m_
am+Dm51n6m

is taken positive if

real and negative if imaginary. Of course, all subscripted quanti-
ties are, in general, functions of position T.

Actually, in order for expression (17) to remain valid, em must
aVe (p8V® = /R), and D, no closer than a
couple of wavelengths A from the edge. This latter restriction says
simply that e¢q. (17) does not describe the reactive fields. The

restriction can be understood physically by dividing the

aperture into Fresnel zeones for the direction em. For em greater
than a few 2/2°7° there are enough Fresnel zones (even for the far-
field) to assure that the main contribution to the fields in the
shndow region are from the fields near the edge of the aperture

be greater than a few A/S%

o

rather than from the fields well within the aperture.b
ssion (17) does not necessarily account correctly for
m c¢dges that may be present on the boundary or rim of
e antenna. The necessary modification of eq. (17), for example,
when scattering from sharp conducting edges occurs can be extracted
GTD [6]. Kouyoumjian [9a] has written Keller's results
in a form siwmilar to eq. (17). The GTD expression differs from eq.
(17) only in that the factor cosemﬁ

cr

is replaced by
pl £t

' =T T TT-L . . .
where £, and B are the transverse components of the incident

ik it

tm

1
giluctric field parallel and perpendicular to the edge of the aper-

“H .
or !9a}, but it is not necessary to know them explicitly for our

ture. The facters and g, can be found from either reference [6a]

nurposes.  Moresover, scattering from other than sharp conducting
odges can :1so ho handled by changing appropriztely the factors
and o, in oea. (18).

BT i

wa

SUote that in o3 similar manner it can he argued that the far-fields
- . ‘ ,nax max i . .
Cop o loees than a couple AR (2777 = maximum width of aperture)
e~ darervsipel moinly by the near-fields well within the boundary
o ':‘r' B ;‘."_',f'f'?"

16

&2ST AVAILABLE COPY



{
.

T

Thus it is seen from eqs. (17) and (18) that regardless of the
nature of the scattering from the edges, the fields in the shadow
zone appear to emanate from points along the edge of the aperture.
For our purposes it proves convenient to write simply the one equa-
tion valid for the scattered field in the shadow zone

_ ikDm

E (1) = % Fim(F)e . (19)
Ffm is defined by comparing eq. (19) with eqs. (17) and (18). The
essential property of ?im(F),.which allows the asymptotic evaluation
of eq. (14), is that unlike ei¥Dy it varies slowly with r. In fact,
for the error analysis it turns out that this is the only property
of F£m(F) that is required. Never is it necessary to evaluate ?tm(F)
explicitly, although for reasons of general interest it has been
evaluated in Appendix A for the circular aperture of uniform dis-
tribution. Results from Apperdix A are also used in Section III.B.l.

Before carrying out the integration of eq. (14) it should be
mentioned that eqs. (17) and (18) are not valid for large Dm if the
radius of curvature a, approaches infinity. For example, the ex-
pressions would be modified if the aperture were rﬁctangulax. How-
ever, the mclifications occur in F (r) but not e m. Thus, eq.
(19) remains valid for all shaped apertures even when part of the
edge is a straight line or has infinite radius of curvature.

Also if the edge of the aperture has points where the radius
of curvature is much smaller than a wavelength (e.g., the corners
of a rectangular aperture), these corners and tips contribute to
the field. For large apertures at least it can be shown [5-9] that
their contribution is usually much smaller (higher order in A/287€)
than the edge fields of eq. (19), and thus can usually be neglected
for the purpose of evaluating eq. (14). Hnwever, even if they can-
not be neglected, the fields from corners and tips can be expressed
in the same form as eq. (19).

Electronically steered aperture antennas (broadside phased
arrays) are also covered by eq. (19) with the appropriate modifica-
tions of F (see, for example, reference [8] which deals with an
arbitrary pha,e of the rield across the aperture). When the axis

of the main beam is steered away from the perpendicular to the aper-
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ture, the region of validity of eq. (19) changes to the entire half
space in the direction of the new axis, excluding the projection of
the aperture along that axis, i.e., eq. (19) is still valid in the
shadow zone rezardless of wtat direction the beam is steered.

Fq. (19) also applies to antennas operating in a difference
nattern where the on-axis field drops to a sharp minimum. As in the
cave of the sum pattern, the fields in the shadow zone are determined
t. whatever value of electric field impinges upon the edge of the
aperture. And again the variation in electric field separates into
a ra;idly oscillating part e1 Dm and a <lowly varying part th.

Eq. (17) (or (17) modified by (18)) represents the first temm
in an asvmptotic expansion of the electric field. The higher order
terms are assumed so much smaller than the first that they are neg-
lected. However, if the electric field at the edge of the aperture
beoemes too small, the second term in the asymptotic expansion must
oo ,anluded.6 Even then, for reasonably smooth aperture distribu-
tions, this second term also has the form of eq. (19) but with Ffm
deperding on the derivative of the electric field at the edge rather
tren the field itself., This "slope diffraction coefficient” has been
izrived for the GTD by Hwang and Kouyoumjian [9b].

[n brief, eq. (19) describes the electric field in the shadow
one of nearly all large aperture antennas including electronically
«teerced arrays, antennas excited in a difference pattern, and an-
tornas with aperture distributions that taper to zerc at the edge.

3. Evaluation of n(r)

The evaluation of the integral in eq. (14) and subsequently
~ir; in eq. (13) is accomplished by first substituting the electric
{field from eq. (19) into eq. (14),

ik [D_-p sinecos(¢-¢p)]

i

O b

. - _ r‘ @ _ _
§ 1 = é é' th(P,d)e p dp d¢p. (20)
m

e vectors P and T have been written in cylindrical (p,¢p) and
spherical coordinates (r,9,¢), respectively, defined explicitly in

“ilie fields at the edge of the aperture would have to be quite small
{ary the second term to be significant. For example, an expansion of
. (16) for a cosine distribution on a circular aperture of radius
o shows that the second term would be required only after the edge
taper bhecawe less than about 20 log A/4a (e.g., if a/x = 10, 20 log
Yida o= =32 dB).

3
3
i A G0 a7

I
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figure 5. (The z-axis is chosen to intersect the scan area perjuen-
dicularly at a point somewhat centrally located.) Dk denotes the
distance D, when P is on the boundary C' of the scan avea, which is
always assumed to be outside the aperture boundary C.

Eq. (20) is amenable to the method of stationary phase for
double integrals. The critical points of the first kind of
[Dm - p siné cos(¢-¢p)] occur at

3Dm

55 - P sin® sin(¢-¢p) £ 11u)
P

BDm

'a—p'— = sin6 COS(¢‘¢p) . Cot

aD
Consider the derivative Sﬁm’ which can be interpreted ph.~icall b
referring to figure 5. Let the vector ?ﬁ be the perpendicular pro

jection of the line Dm such that

b = FTTEE,
Then
c)fl,m
aDm _ BDm Bpm } p‘lm —-—aj cosy
op Bpm ap P m
where y_is the angle between P and D . Ordinarily, the scan s e

are appreciably larger than the aperture area so that

o8

and (21b) may be written

cosy = sin6 cos(¢-¢p). (22
BDm
Similarly, it can be argued that FT 1s much less than p lor scan
P

areas appreciably larger than the aperture area. Thus for ¢ not * o
small eq. (2la) implies the critical point must he near ¢p B oc L R

cosy, has a minimum value greater than zero because Y, never IR

90°. The minimum value of cosy, occurs at the maximum value of
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Yp * Ymax °F O0 the boundary of the scan area near ¢. This maximum
value is important because eq. (22) reveals that there are no
critical points near the angle 4 for 8 < 90 - ymax(¢).

For 6 > 90 - v critical points exist at

¢ = ¢p
6 = 90 - Yo " 0

max

m’

and eq. (20) can be evaluated immediately by the method of station-
ary phase for double integrals [10]. Such a procedure yislds after
some rearrangement

F__AD_  ik(d cosekasine)

. tn” m
T-1lgmse © (23)
Actually, eq. (23) was derived using the approximation Dm = /(pixm)2+d!
9X
and %-53§ << 1, where X, and d are defined in figure 5. The above
j

{ approximations simplify the mathematics but do not alter by a great
amount the amplitude of the final expression (nor the following
conclusions).

The implications of eq. (23) prove to be quite significant be-
cause it shows that for 6 > 90 - Ymax(¢) the magnitude of the inte-
gral T is of the same order as the amplitude of the electric field
itself with each term multiplied by A Dm/éose. By referring back to
eqs. (12) and (13) we see that this result implies the following:

In the region outside ¢f the envelope, which is formed by

the rays running from the edge of the aperture through the
boundary of the scan area, the fractional error n(Tr) is on
the order of unity. Thus, outside the envelope the far-
fields computed from a planar scan in the near-field

cannot be relied upon with any confidence.

Moreover, diffraction from feed mounts, if present, does not affect
the above conclusion, because the radiation scattered by the feed
mounts grazes the boundary of the scan area at a wider angle than
the radiation from the edge of the aperture.

The conclusion says, essentially, that the planar scan tech-

nique does not give information about the fields outside the solid
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angle formed by the edge of the aperture antenna and the boundary
of the scan area. (We use the term '"solid angle'" loosely since it
will not be a solid angle in the strict mathematical sense unless
the extension of its sides meet at a single point.) As an example
consider a circular reflector antenna of radius "a'" scanned in the
near-field on a larger concentric circular area of radius av2.
Suppose the scan area were a distance d = a in front of the aper-
ture. Then, as shown in figure 6, the above results rcveal imme-
diately that the data from the near-fi~lé scan would not contain
reliable information about the fields outside the angle em = 22.5°.

Newell and Crawford [11] reached the same conclusion from ex-
perimental data taken on scar planes at different distances in front
of the same microwave antenna. It appears from the above analysis
that their conclusion is a general result which holds for all elec-
trically large aperture radiators.

It should be emphasized that the above results were derived for
the sum and difference pattern of electrically large aperture an-

tennas and for a scan area that extends well teyond the main near-
field beam region. Aiso the main near-field beam has been assumed
to be characterized by planes of fairly uniform phase. The above
conclusion would not necessarily apply, for instance, to broadbeam
horns with dimensions on the order of a wavelength or less, to beams

steered nearly to the edge of the scan area and scan areas just

§ covering the main near-field beam, to apertures on & finite ground
! plane, to defocussed antennas, or o electrically large aperture
antennas with a diverging or converging lens placed within or
directly in front of the aperture. Fortunately, special situations
and classes of antennas such as these can often be analyzed sep-
arately within the framework of the preceding analvsis and results.
The special cases mentioned above are discussed in the following
paragraph.

Specifically, an analysis similar to the preceding shows that

f the encircled conclusion applies to the latter three classes of

[ antennas (the defocussed antennas and antennas with a ground plane

: or iens), provided the scan area extends well beyond the edge of

the antenna, the ,-™d plane or lens, and provided the edge of the ground
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plane or lens is used as the base perimeter for the solid angle
when the edge of the ground plane or iens extends appreciably
beyond the edge of the aperture and significant scattering occurs
at these edges. Also, it can be shown [20] that the encircled con-
clusion applies to broadbeam horns if the center of the horn is
taken as the base of the solid angle instead of the perimeter of the
horn. (For scan areas much larger than the aperture of the horn,
there is little difference in size between these two solid angles.)
Similarly, for antennas with their mainbeam steered close to the
edge of the scan area it may be more accurate to choose a point
nearer the center of the aperture rather than the edge to determine
the side of the solid angle near the direction of the main beam.
Again it makes little difference for large scan areas. In general,
when the scan area is close to the boundary of the main beam, the
base of the solid angle outside of which the computed far-field
pattern is unreliable tends to shift from the perimeter of the
aperture (ground plane or lens) toward the center. Often the in-
crease in solid angle is slight, however.

In brief, the above encircled conclusion (in its stated or
slightly modified forms just explained) applies to a very large
variety of antennas, including electrically large aperture antennas
operating in a sum or difference pattern (with or without beam steer-
ing, defocussing, a finite ground plane, or modifying lens) and
broadbeam horns.

Next we want to evaluate I of eq. (20) for points within the
solid angle formed by the edges of the antenna and scan area. Within
this solid angle the integrand contains no critical points of the
first kind. Consequently, the p integration can be done by parts
to yield

ik[D!'-p'sinb cos($-9_)]
mF_(p',9 )p' e m p

2
i . f tm P do_, (24)
2T o [Cos‘yl;l-sine COS(¢'¢p)] P

oD’
where again cosy' has replaced —2% , and the primes refer to points
8 m op

on the boundary of the scan area. It should be noted that eq. (24)
represents the first term in an asymptotic expansion of eq. (20),




and when cosyi gets too small eq. (24) no longer represents a good
approximation to eq. (20). We can get an idea of the largest per-

missible Y& by realizing that the result (24), if valid, must be much

smaller in amplitude than the amplitude of the integrand of eq. (20
multiplied by the change in distance p as Dm changes from D& to

D& + A/2. A little mathematics shows that this condition is always
satisfied if cosyﬁ is greater than about /gzh, where d' is the per-

)

pendicular distance from the edge of the aperture to the scan plane.

However, when used to find an upper bound expression for |T| (see
eq. (28) below), eq. (24) remains valid for Y& right up to 90°.
Eq. (24) has been derived under the condition that the fields

emanate or at least appear to emanate from points on the c¢dge of the

antenna aperture. If the fields are also scattered from the feed
mounts, eq. (24) must include these fields as well. The cosy&
associated with these mount scattered fields will always be equal
to or greater than that of the edge diffracted fields--since the
fields scattered by feed mounts make larger angles with the piane
of the scan area at its boundary than the edge diffracted fields.
Thus, the integration by parts remains valid (as an upper bound ex-
pression within the solid angle formed by the edges of the aperture
and scan area), and eq. (24) holds even when there exists appreciab
radiation scattered from feed mounts in front of the antenna.

For angles near the z-axis (sinf << cosym) eq. (24) becomes

ikDr;ll
_ 2m F, e -ikp' sin® cos(¢-¢_)
T=oie [ ] 22 —pe P" 4o . (25)
) m cosya P
Upon taking the amplitude of eq. (25) we find
ikD!
y 2T ?tme m
1Tl <51 |L p' do,. (26)
o |m cosy&

For scan areas whose boundary is well outside the edge of the aper-
ture, cosya = 1. For scan areas with boundaries somewhat close to
the edge of the aperture, the term (in the summation over m) which
coriesponds to the minimum Dé (maximum Y&) predominates fassuming
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fairly uniform illumination around the edge of the aperture), so
that
ikD’
F,Le M

Ztm - 1 Zp-e

3 |
1kDm
tm '

1 o~
m  cosyp CoOSYp,, M

In either case, we sev from eq. (19) that
3 ]
e1kDm
tm
L
cosy

B 0]

cosYmax L

m

where Et(p',¢p) is the electric field at the boundary of the scan
area. Eq. (26) can now be written

- A Zm
ITI < [ 1E(p'50,)Ip' do, (27)
2T COSYp .y ©
or
IT| < A Loax Iﬁ'max (28)
~ 2 cosy t ’
max

—' - 3 -
with lEtmaxl denoting the maximum amplitude of the transverse elec-
max

tric field found on the boundary C' of the scan area, and L is
the maximum width of the scan area. If the output of the measuring
probe at the limits of the scan area is down at least X dB from its
maximum output, then eq. (28) may be rewritten
%
max 0
- ]
T c AL 20 ¢
2 cosy

to? (29)

max

where Eto represents the highest amplitude of the transverse electric
field found on the scan area.7’8 Equation (29) combines with eqs.
(13} and (14) to yield an upper bound expression for the error n in

"For an arbitrary probe (i.e., not necessarily a dipole prove) E¢q
represents the highest output amplitude of the probe on the scan area
and X the largest output amplitude of the probe at the edge of the
scan area measured in dB down.

8The maximum electric field on the scan area in the near-field
(z << A/)) of an electrically large aperture is very nearly equal to
the maximum electric field on the aperture itself.
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the far-field produced by neglecting the fields outside the finite
scan area:

g(r) , (302)

where g(r) is the ratio of the amplitude of the maximum far-electric-
field to the far-electric-field in the given direction r. In other
words, itisthe inverse of the normalized far-field pattern. Use has
been made of eq. (10) which shows that for sum patterns

AT|E | Lo = | f E, ‘al, (50b)
A
0
where |E§|r*w is the amplitude of the maximum fav-field, and the

integration is merformed in the near-field over the area Ays that
part of the beam which has nearly uniform phase. Since we are in
the near-field, AO = A coseo, where A is the aperture areca. (The
factor coseo accounts for the reduction in effective aperture aiea
for beams which are steered off-axis electronically through an
angle 60.)

Because |E |/E, < 1, where E  is che highest amplitude of elec-
tric field on the scan area, and Eto > EO coseo, we can write

1
E
f EE— da
Ao to

= 0 cosBo/A0 = a/A, (o1

where the factor o is greater than its minimum valuc of 1.0 (fov
apertures of uniferm amplitude and phase) but less than 5 for must
tapered aperture distributions found in practice. For example, th
tapered distributions found in Table IX of [13] havc a maxiaum o of
4.0. Newell [17] has found that the factor we have called a has nos
been greater than about 2 A/Ae for any microwave antenna he has
measured. Since the effective area Ae (see [12] for a definition
of effective area) is less than the aperture area A and greater
than .5A for most aperture antennas [13], the expericnce of Newell
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also indicates that a is less than 4 or S5 for nearly all electrically
large aperture antennas found in practice.

Equatior [31) combines with eq. (30a) to give the final expres-
sion for n(T)

X
o A LE8X 19 20 2(T)

]

2 A cosy

(32)

n(r) <

max

area of the antenna aperture.

wavelength.

maximum width of the scan area.

maximum acute angle between the plane of the scan area and
any line connecting the edges of the aperture and scan area.
the largest amplitude of the probe output at the edge of the
scan area, measured in dR down from the maximum amplitude of
probe output in the scan plane.

a "taper" factor--equal to a minimum of 1.0 (for apertures of
uniform amplitude and phase) and less than 5 for most tapered
distributions found in practice. (See eq. (31) for the pre-
cise definition of o.)

ratio of the amplitude of the maximum far-electric-field to
the far-electric-field at the given directiorn T, i.e., the
inverse of the normalized far-field pattern. (g(r) = 1 for
the center of the main beam, or beams if a difference pattern.)

(If desired the errors in the gain function sidelobe level, polariza-
tion ratio, and beamwidth may be calculated from eqs. (2)-(5) once n
and the far-field pattern is known.)

Equation (32) has been derived for antennas operating in a sum
pattern. But since a difference pattern can be divided into two,
approximately equal, sum patterns with wavefronts slightly skewed,
eq. (32) holds for difference patterns as well. (For a difference
pattern one should still use the taper factor o of the constituent
sum patterns.)

In summary, eq. (32) applies to either sum or difference pat-
terns of all electrically large aperture antennas (including antennas
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with their boresight direction steered away from the axis perpendicu-
lar to the scan area) within a solid angle (sin® << cosymax) about
the axis perpendicular to the scan area. Again, it has been assumed
that the scan area extends well beyond a main near-field beam which
is characterized by planes of fairly uniform phase. It can be shown
that eq. (32) and eq. (36) below apply even to defocussed antennas,
apertures in a finite ground plane, and to antennas with a diverging
or converging lens, provided the angle Tnax is chosen in accord with
the second paragraph preceding that of eq. (24). The condition
(sind << costax) can be made more specific by returning to egqs.
(24) and (25). For all practical purposes, eq. (25) follows from
eq. (24) if

e b W B

sin@ < % COSY ax = % Sinemax (33)
(6 = 90

max " Ypax)
For example, if Ypax Were 45°, condition (33) becomes 6 < 2C°, which
is a large enough angle to include many side lobes of most microwave
antennas (assuming their boresight direction at 6 = 0). Roughly
speaking, eq. (32) represents a valid upper bound within the region
= % emax'

As an upper bound, eq. (32) remains valid for ¥rnax right up to
90°. However, from the discussion immediately following eq. (24),
it is unlikely that eq. (32) wouvld remain small enough to be very

useful when

A

cosy < /H__’ (34,
Ras min

where dmin refers to the minimum perpendicular distance from the

edge of the aperture to the scan plane.

The error n given by eq. (32) can be compared with the results
of the empirical error analysis performed by Newell and Crawford [11].
They took "centerline" data on a rear-field scan plane 25 cm in front
of a circular, fixed-beam "constrained lens" array, which was 80 cm
in diameter (see figure 9). The centerline was 213 cm long.

Assuming a rectangularly separable field pattern, they first
used the 213 cm centerline data to compute the far-field pattern.
Successively, more and more of the 213 cm distance was deleted and
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the corresponding far-field pattern computed. In that way they
could get an idea of the errors involved in scanning on a near-field
plane of finite area.

The envelope of their near-field centerline amplitude is repro-
duced in figure 7a. The on-axis gain change computed by Newell and
Crawford by deleting distances from the scan line is reproduced by
the dashed line in figure 8a. The solid lines in figure 8a represent
the maximum envelope of on-axis gain change calculated from eqs. (32)

and (2c) of the present report. The values of X and pmax

(see eq.
(32)) were taken from figure 7a. The value of o was estimated from
eq. (31) and figure 7a to be about 3. The remaining parameters

needed to calculate n from eq. (32) are contained in reference [11}]:

Ymax = tan : Lmai
—5— -a
A =3.26 cm
A = ma?
a =40 cm
d = 25 ¢m
g(r) = 1.

Figure 8a confirms the result that the fractional error n of
eq. (32) represents a reasonable upper bound. In the region
LM% 2a > 1.7 (Ypay < 42°) the upper-bound error from eq. (32) is
no more than double the error estimated by computer 'deconvolution"
of the near-ficld data. The upper btound error grows inordinately

large, however, for L™X/2a much less than about 1.2 (v > 75°),

max
as eq. (34) predicts.

Figure 8b shows the same comparison as that made in figure 8a
but for a 46 cm (18 in) reflector antenna operating at 60 GHz (A =
.5 cm). (The envelope of the amplitude for a centerline scan of this
antenna is shown in figure 7b. The value of o is about 2.) The
dashed line in figure 8b represents the on-axis gain change which
Newell [17] computed by deleting distances from the centerline scan
length taken 43.18 cm in front of the aperture. The agreement be-
tween his computations and the upper bound solid curve calculated

from eq. (32) is even closer than for that of the constrained lens




antenna (figure 8a). The upper bound error is no more than double
the computed error for L™X/2a > 1.05 (Ypax < 88°) which is very
close to the value of Ypax © 84° predicted for the range of useful-
ness by eq. (34).

It appears from this somewhat limited experimental evidence with
centerline data that the simple formula (32) provides_a useful upper
bound error at least for scan areas with COSYp .« > a—%—. It should
be noted, however, that centerline data do not accoun® Zor change: in
phase of the field around the perimeter of the scan area, and thus
would predict larger finite scan errors in most cases than the com-
plete 2-dimensional scan data. An upper bound expression of smaller
magnitude generally than eq. (32) that takes the phase changes into
account can be derived by returning to eq. (24). Under the condition
of eq. (33), eq. (24) becomes

-ikp'sin®é cos(¢-¢p)

2 _
({ E (p's0,)e . (35)

T' < A — '

T < ooy Pt dé,

Again Ei(p',¢p) refers to the transverse electric field, i.e., output

of the dipole probe, at the boundary of the scan area. Substitution

of eq. (35) into eq. (13) yields the fractional error n(r) in the

far-field for 6 § 3 0 = 7(90 - v ),

m -ikp'sin® cos(¢-¢p)

lf E (p',0 )e p' dé

- o ¢ P P

n(r) < == . (36)

2rr |E(T)| COSY .

max max

>0

The far-field pattern r|f(?)|r+& in eq. (36) can be approximated
to

arg(T) _
fieid data. The field Et(p',¢p) at the boundary of the scan area

can be taken from the measured near-field data. Thus, in practice

analytically by or found by deconvoluting the measured near-

both the numerator and denominator of eq. (36) can be determined
straightforwardly. Although eq. (36) involves more computations than
eq. (32) even for the on-axis value for which 6=0, it could be com-
puted by a simple routine added to the program whici deconvolutes the
near-field data, since Ei(p‘,¢p) represents merely the output of the
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probe on the perimeter of the scan area. In cases whrere the antenna
pattern is assumed separable in xy coordinates and only centerline
data is taken, eq. (36) cannot be applied but eq. (32) still can.9

In Table 1 are listed the errors calculated from eq. (32) for
some of the far-field parameters of a typical X-band antenna operat-
ing in a sum and difference pattern. The finite scan errors are
proportional to wavelength, so changing the wavelength while holding
the other antenna dimension the same merely changes the values in
Table 2 proportionately. Of course, such an isolated change is
rather unrealistic.

B. Position and Instrumentation Errors

To determine the radiating fields of an unknown antenna by
scanning on a near-field plane with a given probe, the output bé(?)
2f the probe must be reccrded throughout the scan area A' (see foo*-
note 3a). In principle, the data points should lie in a plane and
the position of the probe should be recorded exactly as it scans
frem point to point. And, ideally, the instrumentation used to
measure the phasc and amplitude of bé should do so with perfect
accuracy.

Obviously, in practice, neither the position of the probe nor
the phase and amplitude of the probe output bé can be measured
exactly. Regardless of how small the uncertainties in the measure-
ment of bé(?) they will introduce errors into the calculated far-
field. It is the purpose of this section to derive general expres-
sions which estimate the magnitude of the errors in the far-field
produced by the inaccuracies in measuring the position and output
of the probe in the near-field.

Specifically, we want to evaluate AE in the far-field so that
the fractional error n(r) of eg. (1) can be determined. (In Section

91t is interesting to note that n in botn eqs. (3?) and (36) does not
approach zero but simply an insignificantly small number as the scan
boundary approaches infinity. This limiting value of n represents

the contribution of the oscillatory part of the Fourier transform men-
tioned in tootnote 3b. Consequently, once the edges of the scan area
rcach the region where the fields behave as 1/p', there may be no
advantage to scanning on a larger area at least if only the pattern
ncar tne boresight dircction is rognired,

It is shown in veference [20] that «3¢. 32} and {36) slightly
modlifiel epoly te broadbesar hocen anten os s well as electrically
lovee op e ture antenras. TFor these brovwrean aniennas the limiting

voe lue of ¢ o he significant.
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II the errors in gain function, sidelobe level, polarization ratio,
and beamwidth are derived in terms of n(T) and the far-field pat-
tern.) In order to simplify the theoretical analysis, the errors
will be evaluated as if the probe were a perfect electric dipole.
The justification for choosing a perfect dipole in the analysis is
similar to that stated in Section III.A. The dipole measures the
electric field components at a point. All physically rezlizable
probes respond to a weighted average of the fields near the probe.
Thus any small error in position would be expected to change the
output of a perfect dipole by as much or more than any other probe.
As for instrumentation errors, they remain essentially independent
of the particular measurement probe. Also, as in the previous sec-
tions, any uncertainty in probe receiving characteristics (561) will
be ignored for this part of the error analysis.

Under the above conditions the far-field error in Afi may be
found with the help of eq. (10):

.k
. . -i=R.P
AE, (r) = -2k 0S8 oik(r-d cos) ; g (F,aje T  4F. (37
2nr Al

T + ®

Aﬁt(F,d) is the difference between the actual electric fieid at the
point (P,d) and the measured output of the hypothetical dipole probe
(for two orientaticns in general) at the point (F,d). For errors near

the z-axis (8 < ZA/Lgax, see footnote 5) eq. (37) becomes
. k=
. . ~-i=R.P
AE(T) = - RGPy e T ar, (38)
T 2T A0

where A0 designates that part of the scan area over which the major
variations in phase are relatively small. (For the position and
instrumentation error analysis the scan plane is assumed to lie
nearly parallel to the near-field planes of "uniform" phase, i.e.,
perpendicular to the center of the main beam of sum patterns or to
the null axis of difference patterns.) For scan planes in the very
near-field, Ao is approximately equal to A coseo, i.e., the projected
area of the antenna aperture. (Only electrically large aperture
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antennas are being considered.) eo is tae anglg between the perpen-
dicular to the aperture and the perpendicular (ez) to the scan plane.
8, = 0 for beams which are not steered off-axis electronically.

The scan area outside Ao can be neglected for this part of the
error analysis because the rapidly changing phase in the region out-
side AO contributes little when integrated to find the far-field and
the errors in the far-field near the z-axis. It follows from foot-
note 5, or more rigorously from an asymptotic analysis like the one
performed in Appendix A for a circular aperture of uniform distribu-
tion, that eq. (38) can be used as an upper bound expression for AE
in the region given approximately by 6 < ZA/L':ax where Lgax is the
maximum breadth of the partial scan area Ao. This region is large
enough to include the first sidelobe maximum of many electrically
large aperture radiators. For example, a circular aperture of uniform
distribution and radius a = L?ax/Z has its first sidelobe maximum at
an angle 6 = 1.7;\/Lg‘ax radians.

Physically this ZA/LIgax condition says that for most electrically
large aperture antennas, the part of the near-field (Ao) over which
the phase is fairly uniform strongly influences the far-field withkin
the angle ZA/Lgax. Beyond this angle the edge diffracted fields
dominate the far-fields to a greater and greater extent until in the
far sidelobes the fields are determined essentially by the edge dif-
fracted fields alone.

To find either the position or instrumentation errors, the integr
T = AE (F,d) e dP (39)

in eq. (38) must be evaluated. Of course, the integration can be
performed only after AE (P,d) is found. In Section 1 below, AE£,
Ta, and thus n(r) arc evaluated for position errors, and in Section
2 for instrumentation errors.

The approach that is taken is quite straightforward. For posi-
tion errors AEt is expanded in a Taylor series about (P,d) assuming
the deviation in the position of the scanner is small compared to a
wavelength. The Taylor series and the integral (39) into which it
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is substituted divides naturally into a longitudinal or z-position
part and a transverse or xy-position part. The upper-bound for
each integral and thus for the z- and xy-position errors are then
determined as a function of the measured near-field data and the
computed far-field pattern.

For instrumentation errors, AEt is expressed in terms of the
amplitude and phase errors introduced by the nonlinearities in the
receivers which measure these quantities as the probe traverses the
scan area. Mathematically, the integrals involving the receiver
phase errors are handled in the same way as z-position errors, and
thus the final upper-bound expressions have the same form. The
integrals involving the amplitude errors have their upper-bound
determined by characterizing the receiver noniinearity in measuring
amplitude in dB of error per dB down from the maximum amplitude of
the probe output on the scan area.

1. Position Errors

Consider the scanner which moves the probe throughout the near-
field scan area. Typically the scanner covers the area by travers-
ing a grid or raster of lines while the probe output is recorded at
given points along each line. Ideally, all the scan lines lie per-
fectly straight and parallel in a single plane, and the position of
the data points along each line is recorded exactly. In reality,
of course, none of these idealizations hold, basically because the
scan lines will never be perfectly straight and the data must always
be recorded over an interval rather than at a point.

Regardless of the reason for the position errors, they all
effect the near-field data simply by positioning the probe at point:
(P+AP, d+Az) rather than (P,d). In other words, the difference
Aﬁi(F,d) in eq. (39) can be written for position errors as

A'F?t(‘ﬁ,d) = Et(F+A15,d+Az) - 'E’t(F,d), (40)
where, as usual, Ei(?,z) is the electric field at the point (P,z) in
the near-field. In general, AP and Az, which will be referred to as

displacement errors, are functions of the transverse position P.
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Before continuing with the analysis it should be pointed out
that displacement errors caused by a small initial translation of
the entire scanner with respect to the test antenna will not cause
a change in the computed far-field amplitude, as eqs. (6) and (8)
indicate. Also, an initial rotation of the entire scanner through
a small angle will have no effect on the far-field pattern other
than to rotate the entire pattern through that same angle.

Since the displacement errors must be much smaller in magnitude
than a wavelength, the right hand side of eq. (40) can be expanded
in a three dimensional Taylor series. By letting AT = AF+Az€z and
keeping only the first two terms in the series, eq. (40) becomes

AE, (F,d) = AT-AE,(F,d} + § AT« [AT-VVE, (F,d)], (41)

1]

where VVE = (VVE,)e, + (VVE )e,

and VEt (VEx)ex + (VEy)ey.

Substitution of eq. (41) into eq. (39) yields a useful expression
for Ts,

1 -iRF
T = £ AT [VE +50r+VVE ] e dP. (42)
()

Again it is emphasized that AT is, in general, a function of P, the
transverse coordinates over which eq. (42) is integrated. Also, as
we shall see shortly, it is necessary to retain the second term in
the integrand of eq. (42) when on-axis errors for sum patterns are
considered. As a check on eq. (42) let R = 0 (on-axis) and AT be
constant over A  so that AT can be taken outside the integral. The
terms containing the transverse part of the gradient operator con-
vert to line integrals around the boundary of Ao. These line inte-
grals must equal zero because in effect eq. (42) assumes negligible
fields outside Ao' Only the '"z" derivatives, which can also be
taken outside the integral, are left, and eq. (42) may be written
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With the aid of eq. (10), eq. (43) converts to
T = -(Az+ikAzz)2wre-1k(r'd) E (7). (44)
T + ®

Equations (38), (39), (42) and (44) combine to show that
— b — a—
EEED e = [1 + E2 1ED I,

i.e., the error in the far field amplitude calculated from eq. (42)
is of higher order than (l%zl)z, i.e., it is negligible when AT is
constant -- a result which must hold if eq. (42) is a valid expres-
sion for Tg, because, as mentioned above, a translation of the entire
scanner has a negligible effect on the far-field pattern. Equation
(42) also checks in a similar way for R # 0, but the proof is more
involved.

In order to evaluate Ib of eq. (42) exactly, both AT and f&(?)
in the near-field would have to be known. Fortunately, an upper
bound approximation can be found for TB without detailed information
about AT or ft(?).

Consider one component, say Ex’ of the integrand of eq. (42).
For an electrically large aperture antenna, we can express Ex within

the area Ao as

i(kz+o, *+80. (F,2))
E (P,z) = (1+8A (P,2))E_(P) e ox X , (45

where ¢ox is a real arbitrary phase constant, and AAX, A¢x and on
are real functions of the indicated near-field coordinates. The
functions AAX(?,Z) and A¢X(F) typically oscillate over a distance
equal to or greater than a wavelength, each with a magnitude usually
much less than one. on(?) is the smoothly tapered amplitude func-
tion. In other words, eq. (45) simply states that the near-field
across the area A, of an electrically large aperture antenna has a
phase equal essentially to kz and a smoothly tapered amplitude except

for small variations which oscillate over distances equal to or
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greater than a wavelength. (Recall that for the position and instru-
mentation error analysis we are assuming that the perpendicular to
the scan area is approximately aligned with the boresight direction
of the antenna.)

In Appendix A eq. (45) is verified for @ circular aperture of
radius '"a' and uniform aperture dlstrlbutlon (E = E ) In that
case AA_ and A¢, are on the order of = /T75 or less. Rusch and
Potter report 51mllar results for the circular aperture [14]. Equa-
tion (45) has been verified experimentally by the substantial near-
field scan and extrapolation data taken at the NBS. The measured
amplitude and phase on a near-field plane of a typical microwave
antenna are plotted in figures 9a,b,d. This particular scan was
taken 25 cm in front of the circular "constrained lens array' (see
figure 9c) of radius 40 cm operating at 9.2 GHz (A = 3.26 cm). This
antenna is the same one described in the paragraph following eq. (34)
and whose centerline amplitude envelope is plotted in figure 7a.

When eq. (45) is substituted into the integrand of eq. (42) and
all terms high:r than either second order in |Ar|/A or first order
in IAF|//K; are discarded, the following expression for the x
component of Io remains:

3 k= =
. - 1{2nAz)? . (2maz 1¢, -igReP
Tox = £ [[Ar v|Ex| } 7[_7__] Fox * 1['7—_1on]e € dP,

0
o, (46)
where E_ = |Ex|e , or from eq. (45)
|E | = (1+8A )E
¢x = kd + ¢ox * A¢x'

It has been assumed that the transverse (P) and longitudinal (z)

displacement errors are of the same ordcr gf magnitude. Eq. (46) can
. i¢, 1(kd+¢ox) o

be simplified further by writing e as e (cosA¢x+1 s1nA¢x),

to put on in the form
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1(kd+o,.)

o =, 1 ;2 )
I =€ { (aT-V|E_| - 5 §%E__ + i8E )
)
-15R.p
* (cos 8¢ + i sin 8¢ e dp. (47)
(8§ = 2mAz/))

First consider on-axis errors for antennas operating in a sum
mode, that is kﬁ;F << 1 or 8 less than about A/ (10 Lgax). Then the
exponential in eq. (47) can be approximated by unitv. The arbitrary
phase constant ¢ox can be chosen so that A¢x varies about zero
throughout the area Ao. Furthermore, since the variations in A¢x

are small, oscillate many times across the area Ao, and remain com-
pletely independent of the variations in the displacement errors AT
of the scanner, to a high probability, ¢ox can be chosen such that
the integration in eq. (47) which is multiplied by sinAcbx can be
neglected compared to the maximum possible value of the cosAcbx inte-
gration. In addition, since E . COosA¢ remains positive throughout
Ao for a sum pattern, the reference plane (z=d) for § can be chosen

to make

£ 8E,y COSA, dP = 0. (48)
o
Thus, under the above conditions the i§ term of eq. (47) is elimi-
nated entirely and eq. (47) simplifies to

i(kd+¢_.)
~ 0oXx e - l 2 =
Ix =€ £ (AP-V.E . - 7 6°E , Jcos A  dP.
° (49)
= . 3
(8 = A e, 337)

E,, in the first term of eq. (49) has replaced !Exl =(1+8A)) E , of
eq. (47) because the many oscillations of AAx would also (to a high
probability) eliminate upon integration all but higher order con-
tributions from the V(AAX) term.

It is interesting that eq. (48) expresses the same condition
chosen by Ruze [15] in his well-known work on "antenna tolerance

theory." Of course, in his work § represented a small "arbitrary
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phase error or aberration" (what we call a¢, ) rather than the dis-
placement errors of a near-field scannmer. It would be desirable that
the reference planes of Ax and Ay (AP = Axe +Ayey) be chosen such

that f AP"VtEOx cos A dP became zero also. Unfortunately, such a

Ao, X . .
choice is impossible (in general) because neither derivative, —325

or Al stay the same sign throughout A,
From eqs. (38) and (39) it is seen that the fractional error n
of eq. (1) can be written as

- 1 /1
n(T) T | [t

12+ |1,,1%. (50)

oy
The amplitude of on is found from eq. (49) to be

= ] - 1 2 P
B N |£ (8PeV.E . - 7 §%E  Jcos 4o  dP|
[+)

(51)
Prax I |VtonldF * 7 “;ax [ Eox dF,
Ay o
A8
where APmax and —7%35 are the maximum magnitudes of the transverse

(P) and longitudinal (z) displacement errors, respectively, intro-
duced by the near-field scanner.

The last integral in eq. (51) can be related to the maximum
far-field |E o i.e. from eq. (10) or (30b)

e e T e S

xolrs

£ Eyy 4F = AT|E | 0 - (52)

The remaining integral,

[ 1VE,| dF, (53)
AO

e 'i_ i

is a bit more troublesome. However, it can also be estimated by
expressing the integral in polar coordinates (p,¢) as follows:

oo E

T __ox
£ 17¢Eox = /( P 3¢
o

2
pdpdé. (54)




e e

If we assume that the amplitude of the aperture distribution tapers

with much greater slope in the radial direction (p) than in the azi-
muthal direction (¢), the second term under the radical sign of eq.

(54) can be reglected, leaving

3E
-[ =5 pdpds. (55a)
A

()
anx
The negative sign is present in eq. (55a) because 7D is negative

for amplitude distributions which taper toward the boundary of A,
(We are assuming p = 0 at the maximum of on.) Integration of eq.
(55a) by parts with respect to p yields

3E
- 0X - - T max
/ 5 pdpd¢ £ E, dpd¢ = 3 E_ L7, (55b)
(o] (o]

where Exo and Lgax denote the maximum amplitude of on and the maxi-
mum breadth of the partial scan area Ao’ respectively. With the aid
of eq. (55b), eq. (54) becomes
= _ T .max

[ IV.E__| dP < 3 Ly Eio (56)
Since the area Ao is in the very near-field of the aperture antenna,
the maximum amplitude Exo on Ao is approximately equal to the maxi-
mum amplitude on the aperture itself. Thus E is related to the

)
maximum far-field by (see eqs. (30b) and (31))

aAr|E_ | .
E - Xo0'r~+ ’ (57)
A
and eq. (56) becomes
max
moArL, T |E. Lo
[ |9,E__|dF < 9 -
0
Substitution of eqs. (52) and (58) into eq. (51) yields
max
ToAP L
max-o 1 ., e
Ion! .s. Arlﬁxol'r.y.gg; 2 A + '2' Gmax . (ug)
L
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A corresponding inequality holds for Ionl with lEyo|r+w re-

; placing lExo|r+w' At first sight, one may raise the objection that
i the reference plane for § cannot necessarily be chosen so that both
eq. (48) and the corresponding equation with Eoy are satisfied
simultaneously. It should be noted, however, that the two equations
need not be satisfied simultaneously. It is only necessary that one
reference plane can be found that allows eq. (48) to hold, and that
a second reference plane can be found that allows the corresponding
equation with Eoy to hold. If the two reference planes are a slight
distance apart, the relative phase of the x and y components of the
far-electric-field will be in slight error but not the Hermitian
amplitude of the far-electric-field, i.e., the far-field pattern
will remain unchanged even though the far-field polarization ratio
will be shifted slightly.

Eq. (59) and the corresponding equation for |on| combine with
eq. (50) to give an expression for the maximum position error n in
the far-field:

(r) < WGAPmangax + 1 82 6 < . (sum patterns)
g = 2 A 2 “max 1oLMax p ’

° (60a)
Equation (60a) was derived assuming the antenna was operating

in a sum pattern and does not apply to difference patterns since eq.
(48) may not be satisfiable for difference patterns. However, in

© s e 3 ARt s e bmm a4 n mo e

Appendix B it is shown that an error expression similar to eq. (60a)
may be derived near the boresight direction (null axis) of difference
patterns as well. Specifically,

- "aAPmangax = A (difference
n(r) < 2 A + ARGy (8(T), 8 < IBEEEE pattern)
° (60b)
where AF and g(r) are defined below after eq. (61).

max
)
(see eqs. (37) and (38)), we can derive an upper bound

Finally for the angular region 6 > A/10 L , but stiil less

than ZA/Lglax
expression similar to eq. (60a). Specifically, the magnitude of on

in eq. (47) may be written
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= = 1 =
[T | < [ IAT~VIE || dP + 5 [ [SE | dP.
A A
o o
The term second order in & has been ignored since now the first order
term in 6§ is the major contributor to the z-displacement errvor. When
we carry the analysis through in a way similar to that described
between eqs. (51) to (59), the following expression for the frac-
tional error for both sum and difference patterns results:

waAP Lmax =
n(?) < max o , 8 g(r) A <8 < 2A (60¢)
- max max max
2 1OLo Lo

Although eq. (60c) was derived for 8 < DX/Lgax, it remains valid as
an upper-bound expression all the way to 6 = w/2. This result
follows from the fact, which will not be proven here, that the con-
tribution from the integration in eq. (37) outside the area A0 is
negligible compared to the upper-bound contribution nbtained from
inside Ao and expressed by eq. (60c). (It is interesting to note
that the maximum possible errors in even the far sidelobes are
determined by the displacement errors across Ao’ whereas the field
itself in the far sidelobe region is determined by the near-field
outside Ao.)

Thus, if we combine eqs. (60a), (60b), and (60c); insert the

approximat%ons, prax . zmax’ A = (Qmax)2 into eqs. (60); and let

max . . .
Bpax = % an upper-bound expression for n valid over the entire
far-field hemisphere emerges
— A T .
n(r) < _gﬁii Bpax * Mz £z (61)
28 2
2
amax (sum patterns) \
g < max
n, = 8AF 8 nax (difference patterns) 1087
8 (sum and difference A <p< I
X patterns) 10gMax 2
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A = wavelength.

= maximum width of the antenna aperture.

A = ZuAPmax/A, where AP is the maximum amplitude of the trans-
verse displacement errors within the partial scan area Ao'
(Ao is that part of the scan area over which the phase is
fairly uniform. For near-field scans parallel to the aper-
ture Ao * A, the aperture zrea.)

Spax = ZnAzmax/A, where Az is the maximum amplitude of the
longitudinal displacement errors within the partial scan
area Ao.

AF = fractional difference between the amplitude of the twn main
far-field lobes of the difference pattern (see Appendix B).
a = a "taper" factor -- equal to a minimum of 1.0 (for apertures
of uniform amplitude and phase) and less than 5 for most
tapered distributions found in practice. (See eq. (31) for
the precise definition of a; for a difference pattern one
should still use the taper factor of the constituent sum
patterns.)
ratio of the amplitude of the maximum far-electric-field to
the far-electric-field at the given direction T, i.e., the
inverse of the normalized far-field pattern. (g(r) =1 for
: the center of the main beam, or beams if a difference pattern.)
i (If desired, the errors in the gain function, sidelobe level, polari-
: zation ratio, and beamwidth may be calculated from eqs. (2)-(5) once
n and the far-field pattern are known.)

The expression (61) represents an upper bound to the far-field
error n caused by inaccuracies in the position of the near-field
scanner. It applies to both sum and difference patterns in the
entire forward hemisphere of all electrically large aperture
antennas. Equation (61) was derived under the assumption that the
scan plane is parallel or nearly parallel to the near-field planes
of "uniform" phase, i.e., the plane perpendicular to the electrical
boresight direction.

g(T)

oo ek e e S o MRS

In addition, eq. (61) holds for arbitrary (random as well as
systematic) errors in the positioning of the scanner, since only the
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maximum magnitude of displacement errors B ax and smax are required
to evaluate eq. (61). However, it proves useful to derive an ex-
pression similar to eq. (61) which separates the effects of the
systematic and randcm errors in position.

To do this and also clarify what is meant by systematic and
random errors, consider the motion of the scanner as it takes mea-
surements along lines in the near-field plane. As the scanner moves
along each line it will deviate from a perfectly straight-line by a
gently varying curve that will contain at most a few oscillations
from one end of the scan line to the otuher. These curves, which may
also change gently from scan line to scan line, represent the sys-
tematic frrors in poc ition of the scanner. For example, a slight
warp or deformation of the scanner frame would create a systematic
error.

Superimposed upon the systematic deviations from the straight-
line would be position errors which changed randomly (within limits)
from measurement point to measurement point. These random errors in
position have zero or nearly zero mean and could result, for example,
from vibrations of the entire scanner or from a slight play in the
drive mechanisms. The maximum magnitude of the random errors are
often smaller than that of the systematic errors. However, it is
possible that the scanner is aligned so precisely, that essentially
all but the random errors are eliminated.

Return to eq. (47) and separate AP and § into systematic and
random displacement errors, i.e.,

AP = APS+ AP™TM (63a)
§ = &5 + g™, (63b)

All the integrals in eq. (47) which contain linear terms in AP™ or
§™™ can be dropped. Since APT™ ang s™ change randomly from measure-
ment point to measurement point (over distances less than A/2), the
integrals actually summations -- see footnote 3a) containing these
linear terms will be extremely small compared to the largest possible
errors produced by the remaining integrals (summations). Thus, sub-
stituting eqs. (63) into eq. (47) and nroceeding as we did before
with eq. (47), yields the desired expression for n separated into
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systematic and random errors,

(1) < Zzgax Ariax ¥ "i’r" glil' (64)
ﬁiax)2+(6;2X)2 (sum patterns) \

ni,rn= 8AF Giax (difference patterns) o IEIEE;
Giax (sum ;thgiﬁggrence IB&EE; <p< % .

All symbols have the same definitions found after eq. (61). The
superscripts "s'" and "rn" refer to "systematic'" and "random" errors
respectively.

Note from eq. (64) that to the given order of approximation the
longitudinal random errors (Grn), but rot the transverse random
errors (Arn), cause an error in the on-axis far-field of sum pat-
terns (provided, of course, that A™ is of the same order of magni-
tude or less than Grn). In addition, eqs. (64) and (61) above show
that the maximum possible transverse (xy) position errors do not

depend upon wavelength for a given g(r) since Am . behaves as 1/A.

Also note that in expressions (64) and (61) abovi, the z-position
error is not continuous across the angle 6 = A/102™3%  There 1lies
no contradiction in this fact since the expressions remain valid as
inequalities. The jump between the two regions merely indicates
that the upper-bound was determine? by a different method in each
region. Obviously expressions (61) and (64) do not represent a

least upper-bound throughout the region 6 > r/102Ma%,

This region
will be discussed further at the end of the section.

One can get an idea of the magnitude of the position errors by
rlotting the on-axis gain from eqs. (64) and (2c) for the fixed-beam
constrained lens array described in the paragraph following eq. (34)

and shown in figure 9. In that case,

A/2m3X = 04

glr) = 1,
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and with a equal to 3, eq. (64) combines with eq. (2¢) to give

% dB s 1,05 y2 . l.rn (2

; ng £* 8'7{‘03 Brax * 70nax)” * 7080ay) )' (65)

: m_ _ &S o AS

g If we assume Gmax = 0 and let 60 = Gmax = Amax’ eq. (65) may be

{ written

i

nSB < £8.7 5, (.03 + 3 6.). (66)
The solid curve in figure 10 depicts the maximum value of ngB in

. (66) versus § 0’ i.e. when the random errors are neg11g1b1e The

dashed line represents the maximum error ngB when the A° nax - 83 - = 0

and 50 = Gigx’ i.e., when the systematic errors are negligible.

To insure that the on-axis gain is less than .01 dB for this
particular antenna, 60 must be less than about .027. That is, each
component of systematic displacement error of the scanner must be
less than .027 A/2m, or less than about .004X. For this constrained
lens antenna A = 3.26 cm, so the errors in each component of dis-
placement must be less than about .14 mm for better than .01 dB
accuracy in the on-axis far-field.

For random errors only (the dashed line) the z-displacement
errors must be less than about .26 mm for .01 dB accuracy in the
on-axis far-field for this particular wavelength. As a matter of
fact, when the systematic errors are negligible, eq. (64) shows that

dB

the "random" error in gain NG rn for the sum-patterr. main-beam of an
’

arbitrary (electrically large aperture) antenna can be written

simply as
dB 8.7 ™ .,
nG,rn Lt 2 (Gmax) '
(67)
rn _ ™n
(8pax = 2“Azmax/x)

dB

For nG n <t .01, '™  nust be less than about .05 radians or Az IR

max max
less than .008 of a wavelength (3 degrees). That is, the random
errors in z-position should be no greater than about * .0lX to insure
a .01 dB accuracy in the gain of the main beam. Equation (67) re-
veals that the random error in the o, -axis far-field gain of sum

patterns increases as the square of the random error in the
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z-position of the near-field scanner. For example, a position error
of + .025A = 10° (¢ 3.125 x .008)) leads to a maximum nl>_ of about
+ .1 dB (@(3.125)2 x .01) fer the center of the main beaﬁ.

To date, little experimental data are available with which to
compare the results of eqs. (61), (64) or (67). However, a compari-
son can be made between eq. (67) and the computations performed by
Rodgrigue, Joy, and Burns [16]. They introduced errors into a
hypechetical near-field distribr:zion in order to compute the effects
of the errors on the far-field. The results of their computations
for the effect of random phase errors (or equivalently z-position
errors} on on-axis gain are plotted in figure 3-14 or A-Z1i of [16],
and are reproduced here by the dashed line in figure 11 below. The
g?rn plotted from eq. (67). One can see from figure
11 that the two curves are in close agreement. The solid line lies
slightly above the computed dashed line as indeed it shculd if eq.
(67) represents an upper bound.

s0lid line is n

Figure 12, which will be explained in greater detail below
under instrumentation errors, shows a comparison becween the effects
on the on-axis gain of a sum pattern from systematic (quadratic in
this case) phase errors introduced into actual near-field data by
Newell [17,21] and the corresponding upper-bound results calculated
from cq. (64). Again agreement is close, with the upper-bound
curve lving just above the actual curve for small deviations in

Next, let's calculate the effect of systematic z-displacement
errors on the depth ot the nuil for an antenna operaing in a dif-
ference pattern. From eq. (64)

dB S -
qG,s < t 35 AF Gmax g(r),

where g(¥) is no longer equal to unity because T is in the direction
0of the beoresight null. Typically, AF is about .01 and the depth of
“he null is 25 dB down from the main beams of the difference pat-

tern, Thus

g(f) = 10974 = 18,
=nd

dB 5

.r(:,i; 2 i 6.3 émax




for the null depth. For example, if Az;:x = 01X (which would cor-

respond to an accuracy of about .27 dB for the main beams) eq. (68)
insures that the null depth would be accurate to within .40 dB.
This surprisingly high insensitivity of the null depth to z-
displacement errors (or, equivalently, phase errors) has been ob-
served by Newell [21] upon introducing phase errors into the measured
near-field data of a number of antennas operating in the difference
mode. To understand the reasons for this high accuracy in null
depth, one must refer to the derivation in Appendix B. There
appears to be no simple way to explain this result heuristically.

It is also found in Appendix B that the maximum shift O nhift
in the direction of the far-field null of a difference pattern
caused by z-position errors is given by the simple expression which
is not a function of wavelength:

4Az;ax 2 3 .
eshift < gmax = 7qMax 6max radians. (68)

In general, the shift in the null caused by all other sources of
error are negligible compared to this shift caused by the z-pcsition
error or, equivalently, the phase errors.

Table 2 lists the upper-bound position errors in a number of
far-field parameters for a typical X-band and K-band antenna. The
vaiues in the table were calculated from expressions (61) and (68).
As eqs. (61) and (64) show, the maximum possible transverse (xy)
position errors do not depend upon frequency for a given g(r).

Table 2 also shows quite dramatically that the z-position or phase
errors everywhere except in the boresight direction can be extremely
large compared to all other representative sources of error -- com-
pare Tables 1-4. (This is also true of the shift in the difference
pattern null.) Especially note that the error in a -25 dB sidelobe

can be several dB for phase errors (2mAz /2) of just a few degrees.

Whether or not these maximum possible fa$?§ield errors are actually
experienced in practice depend strongly upon the shape of the near-
field z-position or phase error throughout the scan area. For

example, we shall find in the next section that receiver phase dis-

tortion usually has a functional dependence which introduces
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negligible errors into the sidelobe fields. It is important to
know exactly what effect various distributions of near-field phase
errors have on the far-field in order to avoid experimentally, if
possible, the distributions which produce large far-field errors

in the directions of interest. Such a detailed study of the depen-
dence of the far-field errors on the functional form of the near-
field z-position or phase errors will not be included as part of
this report but will be contained in a forthcoming report by

Newell {21].

2. Instrumentation Errors

The amplitude and phase of the probe output are measured at
discrete points as the probe moves back and forth across the near-
field scan area. The receivers are capable of sampling and recording
the amplitude and nhase to within a certain accuracy only. The
errors in the near-field data, caused by the inaccuracies in the
receivers or instrumentation used to measure the probe output, pro-
duce errors in the computed far-field. This section estimates the
far-field errors under given limits of accuracy of the instrumenta-
tion which measures the amplitude and phase of the probe output. It
is emphasized that the errors produced by the imperfect positioning
of the scanner were determined in the previous section and are not
considered as part of the instrumentation error analysis of this
section. Also the instrumentation errors associated with convert-
ing analogue to digital information is assumed negligible.

Under the conditions explained in Section III.B, the far-field
errors can be found in the region

6 < A/(102M%%)
by evaluating the integral (39)
I }f\ AE, (P,d) dP.
(o]

Here, Aﬁi(F,d) represents the difference between the measured (
and "actual" (Et) output of the probe at the point (P,d), i.e.

wieas
Epce®)
AE, (P,d) = By °(F,d) - E (P,d). (69)

t
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If we look at just the x-component first, the integral Tb and eq.
(69) combine to give

- meas _ 5
I« { (E, E) dP. (70)
o
By writing
i¢x
E, = |Ex|e (71a)
and
meas 1 i(¢x+A¢i)
E, = [IEXI + DA e , (71b)
where AAi and A¢i are the errors in amplitude and phase respectively

introduced by the measuring instrumentation, eq. (70) becomes
o b £ [(|Ex|+AAx)e -|Ex|]e dp. (72)
0

In general, both AAi and A¢i are functions of the transverse coordi-

nates P. For small errors A¢i << 1, so that

iA¢£ N (A¢§)2
(] -1+1A¢x- = PR
and
|E_| i,
Iox = i [AAi + i(|Ex|+AAi)A¢§ - "7£“(A¢§)2]e X 4p. i)

(o)

All terms higher than second order have been neglected in eq. (73).
1
If a sum pattern is assumed and the exponential e X is written as
in eq. (47),
i¢ 1(kd+¢ )
e X =¢ 0X (cosAd_ + i sind¢ ),
X x
with the arbitrary phase constant ¢ox chosen as in eq. (47), then to
a high probability, the integration in eq. (73) which is multiplied
by the oscillating quantity sinAcpX can be neglected compared to the
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maximum possible value of the cosA¢ integration. (Note the dis-
tinction between A¢ and A¢ A¢ is the actual variation in phase
of the x-component of e1ectr1c f1e1d within A , Whereas A¢ is the
error in phase introduced by the phase measurlng 1nstruments )} In
addition, since (|Ex|+AA)Ic)cosA¢x is always greater than zero for sum
patterns, the reference phase for the instrumentation phase error
A¢i can be chosen to make

{ (|Ex|+AAi)A¢§ coshp, = 0, (74)
)

which again expresses essentially the same condition as that chosen
by Ruze [15] in his work on antenna tolerance theory. Under the
above conditions, the imaginary term within the brackets of eq. (73)
is eliminated and the magnitude of on reduces to

|E

LN
|15l = |£ [6A, - wgi—(A¢x)2]cosA¢x dp|
° (75)
=) 2 )
S |aAL] P + Taol ) [ 1Bl @P.
0 o
A¢imax is the maximum value (in absolute value) of the instrumentation

phase error within the partial scan area A 10
Since it can be shown that (see eq. (10), (30b) or (52))

(76)

o|r+oo

£ IEXI dP = ArIEx
)
where IExo|r+w is the magnitude of the maximum x-component of far-
field, |on| may be rewritten

10Because the errors in measuring phase are usually greatest at points
in the scan area where the amplitude is least, it is desirable to
choose the partial scan area A, as small as possible when estimating

8L . The far-field within 8 <21/2"®% is hardly effected by the

near-field outside that part of the scan area where the amplitude of
electric field is equal to the edge taper down from the maximum
amplitude. Thus for the sake of designating maximum errors in phase
measurement cn a near-field scau plane, the area Ay need be chosen
no larger than this effective "edge taper' scan area.
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I 1oaal
) 5_£ [aA | dF + >(a¢, 0 I*AT|E, | e (77)
o]

It is usually possible to express the errors in amplitude in dB
per dB change of amplitude. That is, the receivers are assumed to
read the correct (zero error) amplitude of the probe output at its
maximum value point on the area Ao‘ At all other points the ampli-
tude lies a certain number of dB down from its maximum value.
Typically the dB errors in measuring the amplitude are linearly
related to this number of dB down from the maximum amplitude, and
thus the errors can be expressed in dB per dB down. Even if the
actual amplitude error curve is not linear, for the sake of the
upper bound expression (77), it can be replaced by a straight line
(1inear curvz) which is equal to or greater than the actual error
curve.

Specifically, if NéB designates the amplitude error in the
number of dB per dB down, and AdB the amplitude in dB down from the
maximum amplitude, AAi can be expressed as (for small errors)

I, _ I
|A_| = |E | Njp Agp/8.7 . (78)
By definition
E E
A, = 20 log —X2 < 8.7 |22 -1, (79)
dB =
|E, | |E|

where E__ denotes the maximum of IExl on the scan area. Substitu-
tion of eq. (79) into eq. (78) and the result into eq. (77) yields

I _ 1 I 2
|on| hl NdB £ (Exo lEx|) P + 7(A¢xmax) Ar|Exo|r+w' (80a)
0
With the help of eqs. (57) and (76), eq. (80a) becomes

)

oh, 1., 1 s
=~ 1* 7(80xpay) Ar|Exo|r+w' (80b)

I
|on' < [NdB
By combining eq. (80b) and the corresponding unation for !onl with

eq. (50),assuming Eyo:Exo’ and approximating'—% by 1, the upper-bound
expression for the fractional far-field error n caused by the
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instrumentation 1is obtained:11

n(F) < INga-1) + Sael )] 0 < —> ___ (sum patterns). (81)

102M8X
Equation (81), which is analagous to the position error equation
(60a), helds only for sum patterns within an angle A/(1ozmax) of the
boresight direction. For difference patterns as well, and for
6 > A/(1ozmax), the following upper bound expression analagous to
the position error equation (61) applies:

n(® < [28i58T) + nl) B (82)
(Acplflax)2 (sum patterns) A
0 < ——e
ni = { 8AF A¢£ax (difference patterns) 104M3%
I (sum and A ui
Bémax difference patterns) max SHs
108 2
r(a-l) (sum patterns) A
2/g(r) (difference patterns) 102X
1
BT =< A 2\
(a-1)/2 <6<
(sum and difference 104Max gmax
patterns)
aAL"X 100 (p¢ T
L 3A gmax 2
where
A = wavelength.
NéB = the maximum instrumentation errors involved in measuring

the amplitude of the probe output -- NéB is expressed in dB
error per dB amplitude down from the maximum amplitude on
the scan area. (For the present purposes, the amplitude
error is designated as zero at the maximum amplitude.)

11When the maximum value of the probe output on the scan area for the
x-orientation is very different from that of the y-orientation

(Eyo # Exo)’ it can be shown that eq. (81) remains valid as an upper
bound for the errors in magnitude of the far-field. But for errors
in polarization ratio an extra term, Nélep|/8.7,must be added to

eq. (81), where x, is the difference between the maximum probe out-
puts measured in 8B for the two orientations.
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A¢max ¥ *ne maximum instrumentation errors (expressed in radians)
involved in measuring the phase of the probe output on the
effective scan area Ao (see footnotes 10 and 13).

R

AF = fractional difference betwecen the amplitude of the two main
far-field lobes of the difference pattern (see Appendix B).

a = a '"taper" factor -- equal to a minimum of 1.0 (for apertures
of uniform amplitude and phase) and less than 5 for most
tapered distributions found in practice. (See eq. (31) for
the precise definition of a; for a difference pattern one
should still use the taper factor of the constituent sum
patterns.)

g(T) ratio of the amplitude of the maximum far-electri- -field to

the far-electric-field at the given direction T, i.e., the
inverse of the normalized far-field pattern. (g(r) = 1 for

the center of the main beam, or beams if a difference pattern.)

£™X o paximum width of the antenna aperture.

L™X - paximum width of scan area.
A = area of antenna aperture.
The derivation of ni is identical to that done for z-position errors

in Section III.B.1. The derivation of BI for gax <0< 2 is

102 ghax
accomplished by the same procedure used above for 6 < A/(lOlmax).

In the far sidelobe region, 6 > 101/2max, the far-field errors be-
come approximately equal to the corresponding errors in the near-
field amplitude, and after using eqs. (30b), (31), and (79) BI in
this region can be written as shown in eq. (82). Between 8 equal to
22/ ™% and IOA/lmax the value of BI can be estimated by connecting

MaX +o its value at 10x/&™@X,
max

a straight line from its value at 2)A/%
BI near the boresight direction 6 < A/ (108
is derived in Appendix B. (Note that the error facter BI is generally

) of difference patterns

much smaller near the boresight direction or null axis of difference
patterns than near the center of the main beam of sum patterns. This
result occurs, as Appendix B shows, because the instrumentation dis-
torts the amplitude on the "positive" and '"negative" sides of a dif-
ference pattern by approximately the same amount.) Appendix B also
shows that we can write an upper-bound expression for the null shift
of difference patterns caused by the instrumentation errors:
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zmﬁmx

eShift < W radians. (83)

Equation (83) is identical to eq. (68) with the instrumentation phase
error replacing the z-position error.

Equation (82) represents an upper bound to the far-field errors
produced by the instrumentation which measures the amplitude and
phase of the probe output. It applies to either sum or difference
patterns in the forward hemisphere of all electrically large aper-
ture antennas. As with eq. (61), eq. (82) was derived for scan
planes which are parallel or nearly parallel to the plane perpendicular
to the electrical boresight direction. (If desired, the errors in
the gain function, sidelobe level, polarization ratio, and beamwidth
may be calculated from eqs. (2)-(5) once n and the far-field pattern
are known.)

A comparison of eq. (82) with eq. (61) shows that the instrumen-
tation phase error A¢£ in eq. (82) has taken the place of § in

ax max

eq. (61). This result acts as a check on eqs. (61) and (82) because
Gmax simply represents a phase error caused by a z-displacement

error in the position of the scanner.12 Also, A¢I can be separated

max
into a random and systematic part to get a result analagous to eq.

(64). However, the random phase errors introduced by the instrumen-
tation are usually much smaller than the systematic phase errors,
and thus can usually be neglected.

Figure 11 reveals that the phase (A¢£ax) part of eq. (82) for
the on-axis gain of a sum pattern is in good agreement (as an upper
bound) with the computer error analysis performed by Rodrigue, Joy
and Burns [16] c¢n a hypothetical near-field distribution with random
phase errors. Newell [17,21] has introduced phase errors which are
quadratic with respect to the xy coordinates, into the actual near-

field data of the 60 GHz, 46 cm (18 inch) reflector antenna whose

l2Note that the ""phase error terms'" in eqs. (61) and (82) for sum
patterns and 6 < A/ (10&M3X) depend on the square of §ax and Adpax

respectively. Thus, these two squared terms should not be added
directly when estima<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>