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INTRODUCTION

Analysis of missile and satellite tirajectories and tracking datx
involves transformstions of position, velocity and acceleration time
points from one system to sncther—systems which may be fixed or mov-
ing relative to each other. This discussion will attempt to give
explicit transformation equations for the most conmon situations
which arise and suffiocient detail so that the reader can develop

any cases not covered explicitly here, In all cases the reference
syster is that in whioh the coordinate of a point are known, The
new or transient system is that in which the coordinates of the

same point are to be determined, Originally the transient system

is considered to be coincident with or superimposed upon the refer-
ence system, Then by a series of translations, rotations about its
own axes and reflections of its own axes the transient system wussumes
the desired configuration in space, A translation is only a transfer
of the origin of tha transient system from (0,0,0) as expressed in

the reference system to (X,, Y,, Z,) as expressed in the reference

system, In this prcliminary discussion X, Y, Z will be used to
represent the coordinates of the point in the reference X, Y, 2
systen, x, y, & will be used to represent the coordinates of the
point in the transient x, y, = system., In a rotation the origin

of the x, ¥, s system and one of the x, ¥y, = coordinate axes about
which the rotation takes place are unchanged, Rotations are
defined as clookwise or counter clockwise and apply to an obmerver
at the positive end of the axis of rotation looking toward the
origin, A reflection is a reversal of positive and negative ends of
a coordinate axis, A single reflection changes a coordinate system }
from right to lelt handed or vice versa, }

I. Position Transformations in Rectanguisr Coordinate Systems )

Translation is accomplished as follows! H

¥ X [x X, X - X,
L 3N (1) y| = ly| - Y| = | Y=Y,
L= Lz Z, Z - 3,

. A reflaction of an axis is hccomplilhed by changing the sign of the
23 row in the identity matrix corresponding to that axis, For
: B example, to reflect y:

, x 1 0 0 X
1 T z 0 0 1 Z

L W4
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Now conmider the righf handed coordinate systems in Figure 1, The
X y z synsten has been translated from coincidence with X Y Z system
to X, Y, zd and then rotated about the = axis in a counterclockwise

direction tunrough:.an «ngle 6. The point

X, ¥y 8
is of course stationary throughout these transfoxmitions.
L
0 (X, X, 8)
Figure 1, o’ "o’ "o
0 X

It is easy to show from simple trigonometry or vector analysis that:

X = (X = xo) cos 6 + (Y - Yo) sin o
(3) y = (X = xo) in 6 + (Y - Yb) cos O
£ = (Z - zo)
Equations (3) apply for right hanced systems with rotation about 2z

in a counterclockwise direction through an angle 8, Equations (J)
may be expressed in matrix form: _

x cos 6 sin 6 O X - X,
(4) y| = |-sin9 comy O Y - ¥,
2 0 0 . 1 AR

b



The matrix of trigonometric elements is called a transfer or trans- .,
formation matrix, Clearly transfer matrix (4) applies also for left -
handed systems in which the rotation about = is in a clockwise -
direction through an angle 6,

Tho transfer matrix by definition is used to pre-mu) tiply the
column matrix of the coordinates to be transforwed,

Now consider Figure 2 in which the direction of rotation ims clock- .
vise ahout z for two right handed systems,

Y

X, ¥, % B

P X, ¥, % .
\ # Figure 2,

]

& The transfer matrix is the same as (4) except for a substitution of ﬂﬂ
; - A for 4, Thus ¢
x cos A -sin g 0 X - X, f

¢ | (8) y - sin 9 cos 8 O Y - ¥, ]
5 I ] 0 0 1 Z -2,

) Therofore to reverse the direction of rotation in a given transfer :
- matrix reverse the signs before sines, -

So far only z axis has been taken as the axis of rotation, Consider
the following more general summary:

k b Counterclockwise rotation about x for two right handed systems

x 1 0 0 X = X, }' L
(8) y - 0 com g min 6 Y- Y, !
z 0 -8in # cos 6 Z - Zo
. , IR
i
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.
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Counterclockwise rotation about

j—

b co8 ¢
(7) y - 0
] sin 8

¥

Copntorélﬁckwiao}rotq&ion about

o X cos 0
(8) ly]| = |=sino
' ) 0

Counterclockwine rotation about

x 1 0
(9) y - 0 cos
z 0 s=min
Counterclockwise rotation about
x- aoa §
2 =gin 6

Counterclockwiss rotation about

- -
X cos O
(11) y - sin 0
z 0
-

y for two right handed systems

0 =-min @ X - xo
1l 0 Y- Yo
0 cos 6 Z2 - zo

z for two right handed systems

sin 6 0 X =X
com g O Y Yo
0 1 Z -2,

x for two left handed systems

0 X = xo
6 =sin o Y - Yo
e cos 6 Z - Zo
y for two left handed systems
0 wmin 6 X - *o
0 cos 0 Z - zo.

2 for two left handed systems

-sin 8 0 X - xo
cos 8 0 Y - Yo
0} 1 Z - zo

Transfer matrices 6, 7, 8, 9, 10, 11 and the rules previously
discussed and now summarized will permit any transformation in

rectangular ccordinates:

(a) Given X, Y, 24 coordinatos of a point P in a left handed
or right handed coordinato system, Given also an x, y, 2
coordinate systen defined relative to the reference X Y %

system, Required:

the x, y, =z coordinates of the point P,

Py i

T v et % e S e

- —— e




(b) Locate the x y z coordinate msystem first tc be coincident with
the reference 3 Y Z ayatem, Then work out a series of trans-

lations, rotations, and reflections so that finally it will '

be located 'n the proper place relative to the original
reference system,

" (¢) Perform the required transformations in proper sequence.

(d) 8ince the refarence system is different for each successive
tranaformation, trouble is easily encountered in translation,
The coordinates for the translation are usually known either
before all the rotation transformations or after all the ro-

tation transformations and the translation should be performed Gf

_when the coordinates are known.
Illultration:

It has been found that a certain transformation involving a left
handed reference lyltom recuires

(1), translation to X Y, Z,

- (2) counterclockwise rotation about x through a
(3) oclockwiso rotation about x through p

(4) reflection of =,

The complete transformation equation may be written as follows:

3 1 0 0 1 0 0 cok a =sina 0 ||X - xo
(12) yIl=|l0 1 0 0O cosmp sin B Bina c¢osa 0 ]|Y = Y,
2z 0 0 =1 0 -sin 3 com B 0 0 l 2 - Zo

Note that the sequenco of the transfer matrices goes from right to
left, A more practical example im given under the subsequent
treatment of Euler angles,

Treatment so far has been only for rectangular coordinates, Spherical
coordinate systems are generally first transformed to rectangular
systems and then after necessary transformations back to spherical,

Several illustrations of the technique are given in a later section
treating specific actual coordinate systoms,

11, Velocity Tranaformations in Rectangular Coordinate Systoms

Equations for velocity transformations are derived directly from
the corremsponding position transformations by differentiation,

A simple 1llustration should be sufficient, A common velocity
tranaformation 18 hetween geocentric equatorial inertial and geo-
contric equatorial rotating, both right handed rectangular systumu,
In this case Z and » axes coincide always and rotation is
counterclockwise,

F TV DU T )




We may differentiate equation (8) with X = Y = Z = O since the
origins of the two systems coincide., By the usual rules for

differentiating: _ @
— — . o 1 N —t ‘ " - — . T b
%%T cos 9 wsin 6 O %%.W -tin 6 cos 0‘ 0 'K%% a4
(13) %% = |=sin 6. cos 8 © %% #|=cos 0.-8in 6 O Y%% V
dz ) ‘ dz L
0 )] 1 0 o 0 z .

%% "in this equation corresponds to the angular velocity of earth

rotation about its polar axis. Equation 13 applies for a trans-

~ formation from inertia) to rotating system because 5 increases
tounterclockwise relative to reference system, For transformation
l#oﬁ‘rotlting to inertial system, 6 increases clockwise relative
t5 the reference syster, Thus the signs before the sines in (8)
should be reversed before diffsrentiating,

- ~ .

Tg% cos @ -lin e 0 %x? -gin 0 =cos & O x%% ]
(14) %% = | sin 6 cos 8 O %% +| com 9 -sin 9 0 Y%% i;}

L 0 o 1 || 0 o ol

] L JLU Jd L JL A 3
For a point P fixed in X Y Z syotem, put 'ﬁ

dx _ 4y _ dZ _ ]
T2 [ L

I11. _Acceleration Tiansformations in Rectangular Codordinate Systems

A single illustration should be sufficient, “imply differentiate
equations (13) and (14) to get acceleration transformations from
(1) geocentric inertial to geocentric rotating and (2) geccentr.
rotating to geocentric inertial respectively, Remember that

a2s
at?

- 0.
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For a point P fixed in X Y Z system simply put

gﬁ - 23; - 0
dat dt

2. .
g! - d w 0
2 "o
.9!‘.- dzz -
at  at?

IV. Euler's Angles (g, w, 1)

Consider inertial axes X Y 2 in which there is a moving coordinate
system X, vy, 8, We want to determine the coordinates of a point
in the x vy & system based upon the Euler angles defining the
relative position of the X Y 2 and x y 2 systems,

¥irat let x y =2 and X Y Z axes coincide, Both are right handed
systema. Looking downward from Z axis rotate x y 2 axes countgr-‘ ,
clockwise about = through an angle ), Let the new system be x" y 2",

The transfer matrix is given in Equation (8),

71 .
b cos O smin Q X
(17) v’ | = |-<min n cos (o O Y
g’ 0 0 ] 2

-

We now rotato about the x’ axis through the angle i where i is
measured positively above the X Y plane, Transfer matrix (6) spplies,

j ey [~ - -
x’’ 1 0 0 rx'
(18) vy’ |=| 0 cos 1 sin i y’
e’ | 0 -mini cos i e’

s -d b - L- -

Finally rotate about the z’’ axis through the angle w.

positions in this final system hy x, y, =,

(19)

e oy Pl
x cos oy sin w 0
y = login w cos w 0
z ] 0 h |
L— - L- -d

Sukatituting (17) and (18) into (19)

(4

y

v

-

q
C

-
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The components of o along the x", y", and z" axes are as follows

AU $0 semm—— a “ i
o 0 + 0 + ¢

au o [P8IN1 4 0 ¢ 0

COgu Gcos i ¢+ w + 0

. These componants were arrived at by inspection of Figure 3,

Now apply the transfer matrix from Equation (8) to rotate from x* y* z"
- system to x y z system,

r"x T [ cosw sinw Oq ] Gy )
(23) oy |* sinu cosw O Ay
o 0 0 11
L z-J - - - Uzl.:

Expanding Equation (23)

a, » asind sinuw ¢+ 1§ cosw

X
(24) a asind cosw -~ 1sinu
a, "= (:.*c.lcos'l

Having three equations in three unknowns we may solve for (fa. J». i )
if we wish

. L
n ey (°x sin uw + ay cos w)

Uy = fﬁ—‘-(ux tin w + o cos w)

f . axcmw-ayl'lna

€ o
| |

(26)

N
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Vi. Transformations Between Twn Rectangular Coordinste Systems
When Cosines of Angles Betwsen Respective Axes are Known

Many coordinate systems are stationary relative to each other. Thus
it is pointless to go through a series of transformations every time
data in one system is to be related to another mystem, For transfor-
mations of this type computer prograas customarily accept the
direction cosines gt the axes of one system re¢lative to the axes

of the other, The Azuga system® and the gecocentric rotating systam form such
a stationary pair. . . .

Congzider two systems x y £ and X ¥ Z, Let the direction cosines of
the x axis be 31 my n1 referred to the ¥ Y Z system, Let the
direction cosines of the y axis be dg My Ng referred to the X Y Z
system, Let: the direction cosines of the z axis ke da my 0y referred
to the X Y Z system, Then it can be shown that

X -11 m1 n1 X
(36) vy =] 83 mg ng Y
33 ny na 4

where X Y Z refer to the coordinates of the point P in the X Y Z
system and x y = refer to the coordinates of the same point in the
xy v aystem, Only thres of nine direction cosines are independent,

It should furthermore be noted that the original computation of
these direction cosines follows the exact series of transformations
1llustrated by numerous examples given previously, For example,

in Equation (21), the term

(cos w cos 0 ~ sin w cos 1 sin Q) = 8y

where by is the cosine of the angle between the x axis and the X
axis, Also ng = cos i, and so forth,

Vil., Definitions of V!rious Coordinlt.|B!ItONI-

It i8 not practical to develop direct transformation equations
between any coordinate system and every other coordinate system.

As an expediency all coordinate systems are related to one of three
master systems,

Then the three master systems themselves are inter-related, We
may develop what might be called a flow chart which will be followed
for position transformations,

“Huw obsolutu
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The three master systems are (1) geocen.. -: earth rotating B
equatorial, (2) geocentric inertial equet.ia:l and (3) heliocentric
inertial squatorial, ' \ :

There is always a problem in symbols wher : large number of
coordinate systems are being discussed, !: was discovered that

- adherence to the standard ETR symbols for 'he common coordinate
systenn created awkward problems in other important coordinate
systens, Consequently a logiocal system developed by Krait Ehricke

- for the various geocentric and heliocentric inertial coordinate
systens was adopted and the common ETR symbols were then modified
as little as necessary to avoid duplioation of aymbols, For exsuple,

. the ¢ommon X y & aystem in use at the »ange im called U V W in this
write=up, since x y £ in used for the geocentrioc, inertial,
equatorial, right handed syaten, ‘

P N I R T

et o o

T T

R’ A. A} xl Y' /
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Any or uwll systems in Fig. 4 can be used to define the position of
& point P in space,

A second category of transformations will be velocity transformations. ﬂi)
The following flow chart is descoriptive of the plan to be followsd
for velocity and also acceleration: ;

X', Y, é'

‘A final category will be those involving orbital elements and gﬁu- '

combined position and velcaily

a, o, 4, N, wy, u X y = !
squatorial o Xy =
8 o, 4, 8, w u S/
~ equatorial © X ¢ 2
[ .
8, 6, 1, 9, v, u X' Y'Y 2 . )

ecliptic @ r'—H X' vy 2

These categories will apparently satisfy most present problems in
coordinate transformations involving space vehicles., The systems
and nomenclature will now be defined.

E, F, Gt (Sea Figure 5)

Geocentric, earth rotntinc'. equatorial, riyht handed, G ia
coinoident with polar axis and extends in a positive direction

gorthv:r:. B extends positively so as to pierce the meridian of
reenwioh,

Xy Yy 8% (See Ngure 6)

Geocernitric, inertial, equatorial, right handed. =z is coinocident
with polar axis and extunds in a positive direction northward, x W
extends positively toward the vernal equinox,

* pParadoxically, the words "earth rotating' and "earth fixed" ave
used interchangeably in the literature, Both refer to a system
firxed with respect to the earth but rotating in inertial space,

14
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Bquatorial
Plane

FIWRES B, P, O COORDINATE SYsTEM (OEOCENTRIC)

A Earth's Polar Axis

y ! ¥

|

EqQuatorial ; )

Plane ; %

.

x i

o Lo
»~ i
L vVernal Equinox ; } :
FIGURE 6 X, ¥, & COORDINATE SYSTEM (GEOCENTRIC) '
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X, Y, Z: (See Figure 7)

Heliocentric, inertial, equatorial, right handed, Z ia parallel
to polar axin of earth and extends in a positive direction north-
vard, X extends positively toward vernal equinox,

Uy V. Wi * (See Figure 8)

Common ETR system, earth rdtuting. right handed. Origin somewhere

near surface of spharoid at lo. l‘o. Go. W extends in a positive

direction vertically in a geodetic sense, U extends downrange at
some aximuth ¥ measured east of north,

B¢ 8, 0t " (See Figuwe 9)

Common radar system, earth rotating, right handed, Origin somewhere

near surface of spheroid at no. ro, oo and ¢°. Yo Through the

origin and perpendicular to the geodetic vertical from the origin
is an imaginary reference plane, A reference axis lies in the
reference plane and originates at the origin, The reference axis
points at some axzimuth Y east of north, Aximuth a is measured in
the refersnce plane from the reference axis in a clockwise sense
as seen by an observer above the origin, The radius p connects
the origin with the point P, The elevation @ is the amaller angle
between p and the reference plans, e is positive for points
sbove reference plane and negative for points be.ow reference
plane, In x y = radar, with ¥ = zero: x-——seast,

y—north,

z-=ps vortical,

0° < a « 380°; p is alwaysm positive; -90° < e < + 90°

@ Ya B (See Fipure 10)

Common geodetic earth rotating system, ¢ is geodetic latitude

positive in northern hemisphere and negativs in southern hemisphere,

v is longitude measured eastward from Greenwich, h is height above

g:ogofto spheroid, h is positive if above npheroid and negative
elow,

-00° ¢ ¢ < + 90°; 0 < vy < 360°

The latitude and longitude of a point above the earth are determined
by the intersection at the mpharoidal surface of a line from the
point P perpendicular to the spheroidal surface, It is convenient
to disregard west longitude and consider 360° of east longitude

a8 measured from the meridian of Greenwich,

‘Ses note page 2¢ .-
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Parallel to
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Y -3
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to Earth's A
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s -
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7 vernal Bquinox 4
FIGURE 7 X, ¥, Z COORDINATE SYSTEM (HELIOCENTRIC)
iarth's Polar Axis g

N

Reference Ellipsoid Normal
/

Y B |
3 Launch Site Tangent
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v

Burth's Polar Axis

Reference EKllipsoid
Normal

Radar 8ite

~ Radar Site Tangent
Plane

FIGURE O n,0,p COORDINATE SYSTEM (TOPOCENTRIC)

o L

*Iuth'l Polar Axis

Greenwich
Neridian

Equatorial
Plane N

FIGURE 10 b, ¢y COORDINATE SYSTEM (GHODEYIC)
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by Yy r: (Sea Figure L1)

Common geccentric earth rotating, equatorial system, 1r is the
radius connecting the center of the earih with the point P, ¢
is the smaller angle between » and the equatorial plane, ¢ is
positive for northern hemimsphere and negative for southern
hemisphere, <y is longitude measured eastward from Greenwich
meridian, »r ic always positive,

-80° < & < + 90° 0° < vy < 360°

42 m p1" (See Figure 12)

Cumon direcuion cosine systemt®, carth rotating. Origin scmewhere

near surface of earth ut.no. ro, Go and ¢°. Yo Originating at

the origin and perpendicular to the goodeotic vertical from the
origin are two reference axes in‘ersecting at right angles, The
origin is connected to the point P by a vector p, Direction

‘cosines of this veotor p with respect to the reference axes are

called s and m, The clockwise angle from the § reference axis
to the m reference axis as seen by an observer above the origin
is 90°. The 4 reference axis points at some asimuth ¥ east of
north, p is always positive.

“-l<s<¢+1, =lanm<+ 1,

r, b, & (Sea Figure 13)

Geocentric, inertial, equatorial, The reference auxis extends

from the origin toward the vernal equinox. r connects the origin
to the point P, Let r' be the vector projected upon the equatorial
plane from r. Tha counterclockwise angle (as seen by an observer
at the north celestial pole) from the reference axis to r' is the
right ascension a, Tho smaller angle between the equatorial

plane and r is called the declination 8§, 8 is positive in the
northexrn hemisphere and negative in the southern hemisphers, r is
always positive,

0 <a«< 380° -80 < b < 90°

x', y', #z't (Lee Pigure 14)

Geocentric, inertial, eocliptic, right handed, x' extends positively

toward the vernal equinox, z' extsnds positively perpandicular
to the ecliptic plane and toward the north pole of the ecliptic,

*See note page 26 .

WNow oluolete,
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\* arth's Polar Axis
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Equatorial
Plane
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Heridian
Vanai7
Equinox
FIGURE 13 r, 8, o COORDINATE SYSTEM (GEOCENTRIC)
O
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Toward North Pole
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Plane
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Y
Vernal
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et

ke



A L 5
o, MDA a2 T TN

.“,‘

.

AL
e eV g T

orid Gk AT L et T e T

- Geocentric, inartial, ecliptic. The reference axis extends from the or191g
e

ra By At (See Figure 15)

toward the vernal equinox. r connects the origin to the point P. Let r

the vector projected upon the ecliptic g1ano from r. The counterclockwise angle
(as seen hy an observer at the north ecliptic pole) from the reference axis to
r' {s the longitude A. The smaller angle between the ecliptic and r is called
the latitude 8. o 1s positive for points on thea observer's side of the
-ecliptic and negative on the other side of the ecliptic, the observer again
being at the north ecliptic pole. r is always positive.

0 < ¢ 360° =90 < 8 < 90°

& o, 4, 8, w, u (equatoria) geocentric): (See Figure 16)*

The common orbital elemants. a is somi-maior axis of orbit. e 1s eccentricity
of the orbit, 1 is inclination of the orbit. 0 1s longitude of ascending node.
w s longitude of perfapsis measured from ascending node. u 1s argument of
Jatituda.** The geocenter 1s at the principal focus of the orbit. The
«guatorial plane s reference plane.

R, 4, A: (See Figure 17)

Helioscentric, inertial, equatorial, The reference axis extends from the origin
toward the vernal equinox. R connects tha origin to the point P. The reference
plane 1s.Fara1]ei to the equatorial plane of the earth and extends through the
origin. Let R' be the vector projected upon the reference plane from R, The
counterclockwise angle (as seen by an observer at the north celestia) pole)} from
the reference axis to R' is the angle A, The smaller angle between the referencé
plane and R is the angle A. 4 s positive for points on the observer's side of
the raference plane and negative on the other side of the raference plane; the
observer baing at the north celectial pole. R {s always positive,

0<A<360°  -90°a ¢+ 90°

X', 2': (See Figure 18)

Helfocentric, inertial, ncliptic, ractangular. X' extends positively from tne

ori?in toward the vernai equinox. Z' extends perpandicular to the ecliptic and :
positively toward the north pole of the ecliptic. ;

* A duplication of symbols has been found necessary here. When an a or e 1is

used, the text will make clear whether an orbital elemant or a radar coordinate ;*
is intended. 3

“* [t {5 quite common to see the mean anomaly M or the time of perifocal passage
T used instead of u.
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FIGURE 16 r, 8, A COORDINATE SYSTEM (GEOCENTRIO)
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Polar Axis

/;
e O '”

Orieantation of Orbit

’

Minor

Major
Axis

Orbit Plane

Body is at B going in direction of arrow
P P is Feriapsis '

[ n is ‘I'rue Anomaly

. P.¥, is Principal Pocus

T is Vernul liquinox

AN. is Ascending Node

b is Semiminor Axls

a,e,1,0 w,u are Orhbital Llements

FIGURE 16  CLASSICAL ORBITAL ELEMENTS
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] FIGURE 18 X, Y, 2* COORDINATE SYSTEM (HELIOCENTRIC) {
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R, B, At (Sce Figure 19)

Heliocentric, inertial, ecliptic., The refcorencc axis extends from
the origin toward the vernal equinox. R connects the origin to
the point P, Lot R' be the vector projected upon the ecliptic
plane from R, Thn counterclockwise angle (as seen by an observer
at the north ocliptic pole) from the reference nxis to R' im the
longitude A, The smaller angle between thu ecliptic and R ims
called the latitude B, B is positive for points on the observer's
sido of the ecliptic and negative on the other side of the
cecliptic; the obsorver ‘being at the north ccliptic pole, R is
always pomitive,

0 < A < 60° -90° < B < + 90°

a, 0, 1, ), », u oguutorlll heliocentiric): (See Figure 18)

The common orbital elements previously described, The sun is at
principal focus, The plane through center of the sun parallecl to
equatorial plane of earth is the reference planc,

a, 0, 4, 0, w u (ecliptic heliocentric): (8ce Figure 16)

The common orpvital elements stil] roferenced to vernal oquinox, 3
The sun is st principal foocus, The ecliptic plane is the 1
reference plane, 14

Note on Roforence Vertical: aCJ

The previous explanation refors to the geodetic vortical as a
rofurence line for UVW, nep, imp coordinate systems, the goodetic
vortical heing by definition normal to some spocificd spheroid.
Actunlly, it im customary for practical reasons to set up these
systems using as roferonco tho astronomic vertical determined by
plumb bob or hubble level, the astronomic vortical being normal 1
to the geoid, The astronomic and geodetic verticals usually }
diffor at a given sito by scvoral seconds of arc and in extrome
conditions up to 20 seconds of arc, The difforence hetween the
vorticals at a given location is called the deflection of the
vertical and dopends of coursu upon the sphoroid uscd, Measures
ments takon in an amtronomic system may be corrected for dofloction .
of the vortical before rotation to another coordinate systom, The '
sul:sequent dismcussion of tranaformations (Scvction VIII) assumos 1
mepsurements have been corrected for defloction of the vertical,

Seo Appondix B for methods of making these corrections nnd for 4
alternative traneformations,
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FIGURE 19 R , B, A COORDINATE SYSTEM (HELIOCENTRIC)
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IX. Basic Epoch Transformations

East Longitude of Vernal Equinox .
For transformations between earth rotating and inertial systems
the east longitude of the vernal equinox has been used in this
note. The following relation is convenient for computing the
mean value of the geodetic east longitude of the vernal equinox
at epoch T: ’

(68)  mean y,, (T) = 380293445740 - 09886473460 d
-(329018) 10713 o7 . ot
0 3 vy () < 360°

where d is number of wean solar days elapsed from 0h January 1,
1980, Universal Time to o“ Universal Time of epoch day; t is
number of mean molar seconds elapsed from oh Universal Time of
epoch day to epoch; «w,is earth rotation rate relative to moving
mean vernal equinox. By definition d is an integer., t im not
necessarily an integer, An average value for w, 18

(68) uy= 0,004178074623 deg/mean solar sec.

The mean value of course doen not include nutation effects,
The true value which includes nutation effects ie

(70)  true vy (T) ™ mean y,, (T) - &a

where Aa is oalled the "nutation in right ascension" or "equation of
the equinuxes", Oomputation of Aa is desoribed in subsequent equa-
tiona, and Aa 1¢ tabulated in the Amerioan Ephemeris, Universal
Time in Eq. 63 represents UTI, and w, represents rotation rate of
date (see Appendix J), but normally in earth satellite computations
UTC and an average we are used, When orbvital information involving
the vernal equinox is transmitted between test ranges, 1t is im-
portant to verify consistency in method of computation.
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(73)

(.9 )

-(4728037

+0? 8800
-01378
+0;0894

4070344

4020128
+023800
+0J0138
=075688
=020980
-030738
+0;0317
+020161
+070158
«050144
=0:0122
+0.1878
+020078
+070414
+0.0187
=070089

+ 0°0483T) x 10”

10~4
104
104
104
10~4
10°4
10~4
10~4
104
10"4
104
10~4
10~4
10™4
104
10-4
10~4
1074
104
10~4

qlinﬂ

sin 20 -338361 x 107Y a0 2 L
sin (3L - T)

ain (L + ")

sin (2L - Q)

sin (3 - )

sin (L - 1)

sin (3L - 2I*)

sin 2 ¢

sin (2 € - Q)

sin (3£ -T")

sin ({ + ')

sin (( - T' + Q)

sin (€ =1 - Q)

sin (3 € +1' - 2L)

sin (3 C =1 = Q) .
sin (€ - T")

sin (34~ 3rY)

sin (€ I'' - 2L)

sin (34 -321L)

sin (4 - 2L)
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(714)  ac = 2828844 x 10™* cos 0 - 032811 x 1074 cos 2 0 L

+128338 x 10°4 cos 2L + 020866 x 10”4 cos (31 - T) ,,
C 020808 x 10~ cos (L ¢ I') .
«020183 x 104 cos (8L - Q)
030087 x 10”4 cos (ar' - )
4072486 x 10™% cos 3¢+ 020808 x 10~ cos (3¢ - B) A
" 4020309 x 1074 cos (3C - ) |

| ‘ 020139 x 10°% cos (C & I'")
- 020088 x 10™4 cos (¢ ="T' + 1)
| +020083 x 10™4 cos (¢« T' = )
+020061 x 10°* com (3(+ I'' - 2L) | _.:'L.,-.,
/ . +020064 x 10™* cos(3 L= T' = Q) e

y
(78) T = 9314457887 = 01013094047 | k-
. - -030088 x 10™4 7 4 020080 x 1074 1 y
v (T08) o = T4 ac¢ ;
(70) Aa = A)\ ocos § (ses squation 70)

The wvarious functions usod in equations (73) und (74) may be defined
as followss

N = 1301137908 - 0°0539379233d + 20°793 x 10~%
+20°81 x 10”4 12 4 ctog x 10" 13

€ = 64°37545167 + 13°1763065368d - 1131878 x 1074 7
«11°3018 x 10~% 72 4 02019 x 20°* 18

I'' « 320878430877 + 011114040803d - 07010334 T
020102343 T2 - 0012 x 1074 73

L = 280°08121000 + 0'9856473384d + 3%03 x 10~ 1
+3203 x 104 1 ,
' = 282°03083028 + 0470884 x lO"d'-O- 4%8828 x 10”4 7 j
+4°878% 10~ 72 4 0%03 x 1074 18 ]

‘."’"
.

45




EatiRiT o fo-If

LT eI L e

T is the number of Julian cemturiesgof 36525 days past the epoch oh
January 1, 1080, E, T,, while d is the number of duys past the same
epoch, Note that the transfer matrix in (72) may be inverted for

A A A - :
transformations from (x y 8) to (xy ®»),

Precession Transformations

A commdn transformation required is that between the mean equator
and equinox of 1950,0 and the mean equator and equinox of date, 'Che
firat is a very useful inertinl system, while the seocond is not an
inertial system in the true sense, Let (x y =) represent the
geocentric equatorial coordinate system based upon the mean equator
and equinox of date, :

r 1 ad iy ] —
™ x M1 Mg My %1980
Y| ™ | %31 %ag %33 Y1080
" 831 B33 M35 E1950

e e -l e -

Using the standard nomenclature of the ephemeris for bo! ® and @i

(78) Ryy = =sin {  win = + cos {, com & cos 6

12 = wcos t_ sin 2 - win { cos = cos 6

%13 = wcom 2 #in 6

fgy = sin co CON ¥ + 008 co sin 2 com 8
8gq = oOOS co cos ¥ -llin &o sin 2 coms 6
83 = ~8in = sin 6

fgy = cos{ sin o

By, = =8in { _ #in A

'33 = gos O
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where »
(79) ¢, = 2304v9977T 4+ 0v30277 4 0101797°

8 = 2304U997T + 190031% 4 0:01921°
9 =  20047298T - 0943677 - 0v04161°

where T is the number of Julian centuriss of 36525 days past the
epoch 1980.0. This epoch corresponds to Jan 0% ,923 U.T, of the
year 1980,

Equation (70) may be substituted into (78) and the resulting
functions may be expanded in power series of { , s and 6:
(80) 8, = 1 = 0.000206977% - 0.000000137°
My = =g, = - 0,02234988T - 0,000006767" + 0,000002317°
Ay = =iy = = 0.009717117 + 0,00000307T% + 0,000000061°
g9 = 1 = 0,000249767% - 0.000000187°
Agg = =~0.00010889T? - 0,000000037”
agg = =0.0001088977 + 0,000000017°
ayy = 1 = 0,000047211% & 0,000000027° .

The transfer matrix represented in (77) ocan of course be inverted
for transformations froam "date" to 1950.0,

To sunmarise, let (x,y,s) represent geocentric equatorial coordinates
of a goinﬁ in a systom definud by mean equator and equinox of 1930.0,
let (x,y,8) represent geocentric equatorial coordinates of the same

point in a systex defined by true equator and equinox of date. ‘Then

00’1
(8Cn)

= NP y
|

.
where N 1; the trnn'ro; matrix in Equation (71) and P is the truns-
fer matrix in Equation (77).

%)< X
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For precision space probe or high altitude satellite computa-
tions it is customary to operate in a system defined by mean
equator and equinox of 1950.0., Equations of this section pro-
vide tha necessary trunsformations. For low altitude satellites
or missiles it is commecn to operats in a system characterized by
"trus equator of date and mean equinox of epoch.” This uses
Equation 68 and involves no nutation or precession computations.
It is an inertial ‘system in that a fixed vernal equinox is used.
Sometimes, particularly in missile trajectory computations, equa-
tions of motion are expresssd in a non=-inertial earth rotating
oocordinate system with centrifugal and Coriolis terms added. This
system is equivalent to "trus equator of date and mean equinox of
epoch® in regard to its basic acocuracy and application., Finally
it may be pointed out that any geocentric system involves accel-
eration of the geooenter itself. This acceleration becomes rela-
tively significant at very large distances from the earth, at
which time it is necessary to change over to a heliocentric
systen,

NOTES

For many purposes it may be satisfactory to dimcard all terms
with amplitude less than 0°3 x 10™% in EBquations (73) and (74).

The (x y 3) coordinate system discussed in this section (IX) s the
conmon geocentric inertial equatorial right-handed system. 3 is
coincident with polar axis and extends in a positive direction
northward., x extends positively toward the vernal equinox.

Transformatiors similax to those given in this section (IX) can
be given for the ecliptic coordinate system but at this writing
no need is fcreseen for these tranaformations.

|
If greater precision is needed in Equations 73 and 74, many

additionzl terms developed by Woolard are available in the
Explanatory Supplement to the American Ephemeris.
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_ happen to be orthogonal; and hence when an inversion is called

X. Orthogonal Matrices (Real)

A simple rotation of coordinate systems which does not result in
n change in length of the voctor im called an orthogonal trans-
formation, The corresponding transfer matrix is an orthogonnl
matrix, By definition, 1f R is orthogonal, RT = ™! und hence
RRT -'RTR = I, where | represents the identity matrix,

Most of the transformation matricex discussed in this report

for, the simpler operation of transposing can be substituted,
The necessary and sufficient conditions that a given n by n
matrix be orthogonal can be derived by expanding RRT = 1. We
ohtain

n
L R._R - B

su1 P8 a8 Pq

which must hold for every nombination of values of p and q, where

lspsn
1l sq

[ 73

n

6pq is the Kronecker delta, which is unity wheh p = q and is
zero when p 4 q,

Orthogonality can frequently bhe verified by inspection for
matrices of low order, As an example, consider the transfer
matrix in Equation 4:

cos 6 ®in 6 0 ,
~s8in O cos 6 0 ?
0 0 1 '
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g Applying our criterion:

oyl
lsl "os "qs :

cos? 0 + sin® o = 1 : |3
=008 9 sin 0 + sin 0 008 0 = 0 ‘
0=0

2

sind o + cos” 0= ]

|

. I

0m=0 I
|

W W N W N £

l=]

8inca the elements of this matrix can be multiplied commuvtatively,
it is not necessary to consider other combinations like (p=s2, gwl).
Clearly the matrix is orthogonal.

.- Checking for orthogonality is not only useful in aveiding inver~
~ .sion but is also useful in detecting erxors. Applying our crite= . .
- rion to ths more complicated matrix (Equation 78) shows that it L) E{;
48 is indeed orthogonal as should be axpected. It may be of interest
fﬁ' to apply the criterion to the approximation given in Equation 80. :
'§ We must of necessity discard terms with powers of ' greater than 3 i3

1 n 3
.El RP' qu |

b -]

1.00000000 + .00000000T + .00000000’1‘2 .00000000'1‘3 }3

q

1 +

2 + ,000000007 + ,00000000T% + ,00000000T3 |
3 + ,00000000T + ,000000007% + ,00000000T> .
2 + '
3 +
3 +

1.00000000 + ,00000000T + .00000000'1‘2 .00000000T3

2 , ,000000007° ;

.000000007> ;

+ .00000000T + .00000000T
1.00000000 + ,00000000T + .0000000072

w NN e e

Clearly to this degree of approximation the matrix is orthogonal.

In general, it can be stated and easily proven that:

80 ‘ﬂ
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(1)
(2)

(3)
(4)
(5)

(8)

The product of orthogonal matricea is orthogonal,

The inverse of an orthogonal matrix is orthogonal and 1is
also the transpose,

The transpose -of an orthogonal matrix is orthogonal and
is also the inverse.

Orthogonal matrices are square, have inverses and may

be of any size,

The determinant of an orthogonal matrix is t 1, It 1e

+ 1 1f there 18 no reflection of the axes or if there

18 an even number of reflections of the axes, It 1s -1
if there is an odd .number of reflections of the axes,

In an orthogonal transformation, the trace and
determinant remain invariant,
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X1, Error Analysis for Coordinate Transformations

This section deals with the propagation of erroxs from one coordi-

nate system at time t, to another coordinate system at time t,, or
. from one ooordinate system at time to to the same or another

ocoordinats system at time t., Errors are expressed in terms of

variances and covariances. Tho results are valid without depen-

dence upon normality of the distribution.

the cdovariance matrix of i peair of veotors y = (y1 Yo eee yq)r '
8o (85 8y oo z,)’ is definand as

- -
ch'l 0,'2.‘ ¢ o 0 Cyzgr
cy’r - [ ] [ ] ]
-] - | e 0o 0o O
i Y31 Yq%2 Yqdr

The generalized law of covariance propagation states that if the T

élements of y and 3 are functions of the vector x = (xX; X, «es X,)
which has the covariance OyxT ¢ the covariance matrix of y and 2

is ¢iven by
7T
(cy.r) « (y,) (0, (s,)
where
(1 )T = ) 0T, 3T e () (T

in which (%;) is the vector of partial differentiation operators

) ) ] ) T
(ﬁ') - (WIWZ- vee ‘-x-’-‘-)

NCTE: The notation Yx i8 not,_equivalent to (gﬁ-) a8 normally deo=

T

fined but rather'(g¥-> o Yy has the form of the Jacobimn,
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Alternatively, if the inverses exist,

0, T = () (0. (2, "HT
or .
IygT = [(a.)' (om'l‘)’1 (x,)] -
where ‘
)T = Gp W @pT - Gp T

in which (%y) and (%;) are vectors analogous to (g!) already

defined,
In the vast majority of practical applications, y = ¢ and the re-
sulting symmetric matrix is referred to as the covariance matrix

of the vector z. The covariance matrix is always not only symmetric
but also positive semi-definite, . '

It may hlpgon that because of redundant instrumentation a set of
independent column vectors (V], Ve coe Vh). each veotor having

an associsted covariance matrix (zl. :3 vee :n). may be obtained
as estimates of the true vector at sowe particular tt!ohpolnt.
These estinates may be combined into & single estimate V and its
corresponding covariance matrix L:

A Al -l -1 1
V =« ¢ [”1 Vi + L7 Vg 4 4 B, vn]

where

-~

-]
-l -l -1
z L J [21 + :z + s e :n ] o

Instead of, or prior to,combining two vector estimates V1 and V2
and associated estimated covariance matrices 81 and :3.1t nay be

desirable to test the hypothesis that they represent the same
population. This has direct application, for example in detec-
tion of satellite maneuvers by comparison of two sets of orbital
elements. In the application cited, the tracking data usually
provide large sample sizes (greater than 30) and hence we nay
use the simple relation:

v, - vlf (g, + 5] (V3 - v,] >3

where 12 is obtained from statimtical tables at mome probability

LIV K T et IR AN T, A V2™ T ) i3 vl




level, e.g. 1% or 8%, at degrees of freedom equal to number of
olemonts making up the vector, e.g. 6 or 7.

The test is more involved for small sample sizes, PFirst of all L/ E
we must define sample sizse n for this test., Let N be the total
number of independent measuremsnts—in the case of radar track
at one per five seconds* it would be the sum of the number of all :
the asinuth weasurerents plus the number of all the elevation i
: measurenents plus the pumber of all the range measurements, .
! Suppose there are p elewmonts in each of the vectors being com- R
5 pared and there are no other parameters being estimated., Then B
, - e L
i o p L
Therefore unit sample sisze in this case is the necessary and non |
|
|

redundant number of measurements required to define the vector,
Now let the sample simes for V1 and V2 respectively be ny and n,.

Compute
- "-.-IT:;:,—— [nl(ﬂl-l) :1 + I‘Iz (l‘lz-l) na] , 3
Now it v -1 ( . "
'. - - n1+n2 . .1+.2- p :
i . [Vz V;] c [Vg'vl] b4 W r, L ny*nyepel, () |

K the hypothesis that VQ-V1 must be redebted. F 18 the ¥ statistio :| ‘&
with p degrees of freedom for greater mean square and (n1+na-p-1) o ;*
degrees of freedom for lesser mean square,

NOTE: If we take the squaxe root of each of the diagonal elements !
in a symmetric covariance matrix, we obtain a set of GDOPs
or standard deviations in the computed parameters, GDOP is
an acronym for Geometric Dilution of Precision, a term in
common usage in the aerospace industry, The term is usually
restricted to the computed parameters, and is not applied to
3 the fundamental observations, GDOPs are sometimes misleading
because they ignore the covariance or off-diagonal terms,
3 See Appendix Q,

TR LTI T e

*This interval size is sufficient to justify amsumption of
independence,
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22, 22 X% 22, 12, X2
izap X%p X1p oss |Z30 BEy XKy oste
ey, 15, 1%, ZX, 1%, I,
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Considering a mare general case, define the matrices A and B as

e followet
. ‘CD ~ 3 : o
O %%y % %k Ixy Txz Txx Ixy un
) % %' Oy Tk % v vk O Y
ex sy 2" ek sy ek Owk Ony ri
%k Tky Tkm %% Ok Sk Uik YW Ok
N - 9%x %9y %9z Yy T TN TY 29" LI

. . N 'y N ’ 3 ) XY (XY L)
Ox a2y %z Tax %zy a °|: gy ux
%% Ixy Txz  Y%x Ixy 9% ‘% 9%y  xe

" ) M ™ " " e n’ YY)
9%x %9y %z %yx Yyy %s %yx %y Iy

0" ) 0 we w e 0w "2
[ %x  TFy %= TEx iy Oz “ax ¢ %
PR \ \
O‘ exv sz ﬂxx \"xy ze (. Oﬁ Uxi T
2 4 g []
(:) UYx UY Uvg va O;Y ﬂ'z OY* C?% Ovﬁ
% "2y Y2 °

% kv Y%z %% Ykt Kt Ok k¢ Oxd

: - [] [} [ ‘e . ’ [ s 0 (3 (AL
; B v oy %w %vx % “vg %W %y ‘vz
..‘i 3 . * ¢ L [ .I » ' .
i 9x %zy Y2z Tz @ %% i “ay Y
J " " . .t " "y "2
; o%x % %% % %kt xz %%  ‘ty Oxs
;f. (1] ”" (X} "o " e [ ) 2
% % vz %k v wi ‘WM %y w
4 " v ¢ 0 (3 "un [TY1] u2
| Gix gy %% YUk %Ry B2 %% 9%y 9%
Then
,‘ r "1 - - T
R M 0 0 N 0 ¢
¥ [ A :] - | 0o M o [ B ] 0
i 0 0 M 0 0 M
i - - L "
’ . where all four matrices are 9 x 9 and M is the same 3 x 3 previously
y .., defined., We reiterate that the two coordinate systems axe assumed
to be fixed relative to each other in this particular example.
b' !




Te 11lustrate a transformation both in time and coordinate systems,
we compute the covariance matrix i1a latitude ¢ and longitude ;' at

impact resulting from & covariunue matrix in X y 2 at micaile burn- \_J
out. Assume the following partials have been cbtained numerically:

“w o ] T . L
L% 33- 1) ~,003  +,008  =,002 3
% " ok ié
. - ‘ - ls
N N L #0017 4,001 4,000 o
(13 dy ] Sl
vhere units are in dagrees and fest par second. i}w
Assume the following covariance matrix is givea: \}é
| .
- -

ol opy gl [* #92 =01 g

o X o3 X . I o
a Bo “[%x 9y Oyg| = |*:02 *.5 +.03 | Lo ig
X 'Y . 3 - | B
-d“ ﬂ.; O; J L 0l +.03 +.5 _ | I::
" where units are in (:e./--a.)’. . : kﬁ)‘gﬁ
) g
1 Therefore the covariance matrix at impact is E

) )
o o +,00002218 =.00005314
:' - ‘ ‘T » a t) BT - . ‘

e 0
Y

!
‘Y‘ 0 -,00006314 +.00031994_] i
|
!

where units are 1n degrees squared,

By standard procedures Ly can be further transformed if desired '
! into & 96% confidence ellipse, See Appendix Q. |
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As a final example it may be of interest to estimate the errors in the
orbital elaments at time ¢ mumn? from arrors in the orbital elements at
time L The time from ¢t to t, would represant a coasting phase. The errors

~at t can of course subsequantly be transformed to errors in rectangular co-
- ordinates or look angles {f desired. From the Yaw of covariance propagation

("‘Tl)t 6 (), W

Thn form of the Ep matrix involved in the equation above 13 shown below:

%4 ) ) 3 .
1= 4 =4 4 3 3
0 ] 0 0 0 ()
¢ %e je Je 9 e
“o ,”o ] 0 ano Buo Wo
31 31 o 3 39 EA
“0 30° o ° Sﬂo Mo auo
EP ] 983 f
3 an ] N i
Blo 300 N 0 5“0 auo iuo
Ju dw dw dw dw dw
300 BQO aio Bﬂo Dwo auo
au ] 9 U u pll]
L_ .O 3'0 3%0 ano Buo auo |

1} 3




B R O S S TS PR ST RS )
%' The form of op T is %
pes 2 — o ;"
: %a % %al a  %aw  Cau & !
AN 2 ’ ; n
1 %ca Y% %9 %  “ew  Ceu
" 2
.; 2 ) %2 %Yo % “ia . “u
2 a  ‘ne %1 “9 %  “nu -
2 i
Tua Tue %t Tun %% %
‘ 2
v “we  ‘ui % w
- _
. The derivation of the partials in EP is beyond the scope of this report,
but for an ellipse
B 0 0 0 0 0 ]
0 ] 0 0 0 0
0 0 1 0 0 0 !
EF - N f
- 0 0 0 1 0 0 N
0 0 0 0 1 0 .
a a 8 0 0 Y ) | R
- S where
B . a = t " B/ .
287 % ° 18
: 1, Ry’ R, 8, 1
g = sinnt(——z- +r—)-31nn°(—2——""2-+“"2'—) R
3 1-e, t Ry (1-e,%) Ry 18
3 2 1
4 R ,
4 v'[l-(np")] 1
3 t 4
“ 2 it
R R |
) = (R‘E’") ' ;o
K 1is gravitational constant of central body ]
l R 1s distance from principal focus to orbiting body oy
n 1s true anomaly g
Other terms are orbital elements previously defined (page 22). ‘ ‘
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Error analyses are most efficiently performed by direct trans-
formations of the ¢ Just discussed, However, ocoasionally
such mnethods are not applicadble, and Mente Carlo or simulation
techniques are used, se latter types frequently require
sampling from a normal distribution, If only a single independent
parameter is involved or if the covariance matrix of « multi-
garamotev problem is diagonal, there is of course no difficulty,

ch problems permit straightforward use of & table of univariate
standard normal deviates. Let us consider a more complicated
situation of n paramelers and associated covariance matrix con-
taining non-zero off-diagonal elements, We have the problem of
sampling from & known multi-variate normal distribution described
by & mean column vector m and a covariance matrix £, The pro-
cedure 18 as follows:

By standard matrix algebra, compute an orthogonel transformation
matrix A such that [A ) A"‘] 1s a diagonal matrix, Seleot a
column vector gy = [’1‘ By eeo zn]T leaoh of whose elements 1is

simply a number taken from a table of univariate standard normal
deviates. Then the required vector of parameters is

™ 3k
x1 = m+ A lA s A ] zi.

Additional vectors x, may be obtained simply by substituting
different Zye

‘s vant 5 e
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APPENDIX A

A SELBCTION OF KEPLERIAX RELATIONSHIPS FOR BLLIPTICAL ORBITS

ta

lar Position and Velocit

-

1,0 Inertial Mass Centered Rec
Components to Orbital

b L \/;2 ¢+ yz L 32

vs \/Ez_i 92 + 52

By definition

Duxktyye i

P oa %
The flight path angle 0 is the angle between tha velosity vector

and the local geocentric horizontal and always lies between +90°
and =90°,

ein 0 = g " gv

Then
' ..%
2K = pv

The parameter p of an orbit is defined to be one half the latus
reactum,

2,.2 Y
p s re(v r)
K
By definition
N = rv2 - K
K

A=l

AT .t e
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3‘:,

Then

¢ \/"2 + (1 - N?) sin? @
The true ancmaly at epoch is found from

tan n = (N + 1) sin @ cos 6
N cdlz 0= nin2 0

Examination of the signe of numerator and denominator separately
will reveal which of the four quadrants n is in, For a perfectly
circular orbit both numerator and denominator will bs zero, in
Wwhich case n is set equal to zero by convention,

Recall that Kepler's constant C is equal to twice the rate at
which area is besing swept out by the radius vactor frow central
body to space vehicle,

lels 1¥ x ¥ « VK

Moreover
Co® ¥z = 2y c, ZX = X2z c, ® Xy = ¥y
Now c
' 008 1 B e 0° < 4 < 180°
'7;? - -
Cy
tan 0 = X 0° < fi < 380°
0

where tha signs of numera=c¢: ar |\ denc. ..4:or must be considered
separately to determine which of four quadrants Q is in. When
both C, and Cy are precisely zero the orbit is equatorial and @
is defined to be zero.

(.)

_m__~m_“jﬂ.
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tan usz ~.%x0in @ cos i + y cos @ cos i + 2z sin { ]
x cog ¥ ¢+ y sin 8 4
0° < y < 360 g
\ M
whare again the sipns of numerator and denominator must be . g
considered saeparately to determine gquadrant of . )
W= uw~n 0 <w< 360°
13
2,0 Additional Relationships within the Orbit Plane 5
Semi-major axis, n = £$
Kr Ta 3
2Kerv2 I+6 b
Somi-minor axis, b = L
n{1-o5
( 0) r 1/” 1
rv cos ---—-!-) 3
,rArP . 2K = rv . f

Eccontric anomaly, £ =

-1 - | 1= 5
Bin (_E_‘ sin r‘) 2 tan [ %:‘% tan (1]/2)] . 1,

I
- -r ) .
cos™! (!15-) Noto: K/2 and /2 lie -
' in same quadrant ‘
Fecentricity, e - .
J-bz |
;2 /1 - r2 v? cos? 6 (2K @ r vz)
¥, =1r xj“r r
A P
Ta* Tp ]

A e Ry T e L P PN
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Mean anomnly, M =

n (i-t”) 4
K=0 sin K (Keplor's Kauation) (8ce Appondix 1) It

Radinl distance {rom goocontoer to satellite, r =

2 y
a_(1=e M a (l-=0 cos E) ';

Radinl distance from ygeoccontor to apogee, s -
2 (l+0)

le+@
( y=5 )
b2/ r ‘p -

Radial distance from geocenter to peripoe, r, =

2 (1-e) b*/r,

]l =0
vy e

True anomaly, - E

o S

2 ]
con™} ['_Q;Q...L'ﬁ] ' 2 tan™! [’ 1—1:2 tan (E/Z)]

er Note: E/? snd n/2 lie in .
same quadrant 4

[P

Flight path angle, 0 ,;

=1 fo sin o o
tan (T-ﬁ_co_;Lﬁ) ’ cvaluated 6 = 0” + 90

Path velocity, v =

I

r©a

K (




L e,
S —————————_ s it <0 s e Ly . . ,

RTINS, -

; |
Mcan motion, .n ™ if
J -; !K é

—

|
Oorbital perind:

Kepler, TK - 2wlf 5K—

3C, oam,° 9
*Anomalistic, T, = Ty 1 4 "1;“11"' (1=3 sin“t)
’e r

]

i
i
",‘.

: 2 (p_ B gyp?
3C, ¢ g (2- § 8in 1)]
2 (1-e0)?

G ke

*Nodal, T“ - TL*TK [

Derivatives:

|
!
|
1
: X |
r = o sin 7 BV sin © ) .
.’r L] —51 e COn 1| = ﬁ%& - 0 ;‘ cOB_ 1] ’ —B— ll

o RNl B 5

TR  Y

r

i

. j
?

i

\'@

*These cxpreossions are included here for convenience, Since
they dopend upon oblateness of the earth, they are not Keplerian,
f AuS
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Tho parameter p of the orbit is equnl to a(l-oz).

Sco Appendix N for derivatives of mean «¢lements,

Sories expansions: | 3

N o= M+(2o-%-o‘ +gge ¢+

3 e

*

*

+

+

e S g o S | T B
IR S T s e amg i el |l

3 5 .5 107 07) sin M g

(%o’-,}-}o'H{%,o“)nnzu 3
({‘%03--3%054-%%54:7) sin 3 M

303 o4 _ 451 8y 4y g
(%ggl .6 - %g%% 07) sin 8 M ‘ E:

%o‘ntneu+%o7nn7u R

e’ + % e4 - %U ee]cos 2 M ' ;
4

By o - 38T '71 B

2 ' Y
T*["*%'d‘rg'!"a*W{FJ]c“M |4
\ 3
2

cog I M

%- es] cos 4 M




- l 3 1 5 1 7
S, E = M+ [0 - 0 4 e - e ] sin M
b . B 192 BITe
8 1 .2 1 14 1 e]
B +* e" ~zxeC + gme sin 2 M
‘% ‘.! g
P v

+ g0 - f% ee] ain 4 M

125 B _ 31128 o7] ain 5 M

+ 7" sin 6 M + %%gg% 07 Bin 7 M,

3,0 Explanation of Motation

C ia Kopler's constant vcctor,
cx.cy.cz are components of C in xyz coordinate system,

Co 0 is soconad zonnl coefficiont in gravitational expression
i

D is defined in text,

F i eccentric mnomaly, ‘

. K , im central gravitational parameter,
E M is mean anomaly,

B N is defined in text,

a Ty is Keplerian period,

i g
¥ n, i8 anomalistic period, .

TN is nodal period, ﬁ

'§ n is semi-major nxis of erbit, ; %

3 ", im earth equatorinl radius, | 4
4 b is semi=minor axis of orbit, .
3 ¢ is ovccentricity, ‘ ¥
: i is inclination, .
1 n is mean motion, ]
4 p ig parameter of the orbit, i.,e,, half the latum rectum, )
] r is radinl distance from geocenter to satellite, !

! Ta is rndiel distance from geocenter to apogee, -




4.0 Explanation of Notation (cont'd)

X,y R

€ D oo

is radinl distanco [rom gooconlor to perigec,

in timo,
is timo of porigoo pamsaye,

is argument of tho latitudo,
in path velocity,,

arc coordinates in geocontric reoctangular inertial
nystom,

is truc anomnly,

is flight path angle,

is longitude ol ascending node,
is argumont of perigoe,

S el 0
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APPENDIX B
Deflection of Vertical

The prohlem here 18 to convert coordinates from an astronomiocally
oriented system to a geodetiocally oriented systom,

Consider a point P near the surface of the earth, From this
point P there may be ereocted a geodetio vertical which 1is
perpendicular to some ilinaginary spheroid fitted to the geoid,

The geoid 18 a rea) aquipotentiml surface, A plumb bob at P
ropfenontn a vertical pérpondioular to the geoid surface and
defines what 18 called astronomic vertical, The angular separa-
tion between the geodetic vertiocal and the astronomic vertical 1is
called déflection of the vertical, Similarly the latitude
(positive north) and longitude (positive eust) of the point P may
be determined by triangulation to obtain geodetic coordinates o
anad UG the latitude and longltude of the point P may be
determined astronomiocally to obtain astronomic coordinates °A and
Ype The deflection of the vertical at the point P is then defined
by the two components (¢, - ¢G) and (v, - yq). In present nota-
tion £ 1s upbed to reprepent (¢A - ¢G), the deviation in the
meridian; and B 1s used to represent (yA - yo). the deviation 1in
longlitude, x

Two rectangular coordinate systems with coincldent origins both at
P will now be established, DBesides the point P and the upward
vertical, one other reference must be established., This 1s a line
from P pointing toward true north as defined by the stars, This
1ine (eall 1t N) from the point P toward true north is parallel to
the axis of rotation of the earth and 1s not dependent upon whether
the pystem i geodetic or astronomioc., In addition, each coordinsnte
yystem haw 8 horizontal reference plane through P perpendicular (o
1to respective upward vertical,

Define the right-handed coordinute axes of the astronomic system
hy (xA, yA, zA) and the right-handed coordinate axes of the

*“Not. to be confused with deviation in prime vertiecal defined by

noe (v, - 'yo) cou b4, B

e T




S a

geodetic aystem by (xg, Yoo zG). Z, is the astronomic vertical
with positive upward and z. is geodetic vertical with positive
upward, L and yA.lic in the astronomic horizontal plane with
Ya lying along the intersection of that plane with the plane de-
fined by 3, and N. y, thus points northward and x, points east-
ward in the astronomic plane. xq and y. lie in the geodetic
horisontal plane with y. lying along the intersection of that
plane with the plane defined by 3 and No yg thus points north-
ward and xg points aastward in the geodetic plane.

For present purposss it is not necessary to define the position
of P more completely, but in general a third coordinate (height)
is needed to define P, In the astronomic system this is uesually
height above mean sea level and in the geodstic system it is
height above the spheroid.

Now consider socme point P’ different from P and assume that its
coordinates are (“A' Yt zA) in the astronomic system. Given
the deflection of the vertical, it is desired to wompute its
coordinates (xu, yg» ze) in the corresponding geodstic system.
The complete derivation will not be developed here but follows
along tha same lines as discussed in the body of this report,
According to Equation (26) in body of this report!

po T p- T pos
xG zl m1 n1 xAT
Yo | * [ %2 M M YA
s by my N, LzA

e - -y [ —t

where direction cosines of Xq axis in (”A’ Yas zA) dystem are
£y m1 ny b direction cosines of Yg axis in (xA. 7% zA> system are

L, m, ny direction cosines of 2q axis in (xA. Yar 2p)
system are L, my Ny . The following direction cosines are exact:

p-2 !




by ® t cos p
m s =« sin ¢, sin g | | i
ny s +cos ¢ 8inp -

12 . ¢ lin_.e sin n i

my ® + cos § = sin ¢, sin ¢g(l - cos p) ?t
'“2 =+ ain § + ain 9 cos ;A(l - cos B) 5
L, v - cos ¢g sin B
my ® = 2dn £ + ain ¢, cos ¢4(1 « cos P) ?;
ny & + cos § - cos ¢, cos d5(l = cos PB) | =§

The latitudes and longitudes occurring in these direction cosines
represent the common orlgin of the two rectangular coordinate systems, k
If the latitude and longitude is known in one system and if the
deflection of the vertical is known, then the latitude and longitude
in the other coordinate system is known, or if the latitude and
longitude are known in both systems, then ths deflection of the
vertical is also knowr, As soon as (xG. Vg zG) have been obtained,
it is poasible to transform to any other system by the squations
given in the body of this report.

In case there is a reason for obtaining astronomie coordinates . B
from peodetic coordinates, i

e e
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whcrc the slements in the transformation matrix are the same as
defined sarlier,

The following approximations are accurate to first degree in
% small angles, (angles in radians). ¢ may be either ¢, or o,
without further impairment of accuracy. In the alternative
formulation n represernts deviation in prime vertical.

ll « 4l
_l.} ml - -ﬁ .1“ ¢ - -n tan Q
| “wsfcos ¢ = +N

L, = ¢+B win o = 4N tan ¢

The following relations are accurate to first degree in small angles:

3 82 » g, «0; = + nsin a + § cos 2

~§ 8a = 3p=4 @ + 1 tan ¢ =~ n ten e cos a + ¢ tan e sin a

! where 2 represents azimuth measured clockwise from north and @ rep-
! resents elevation measured upward from horizontal plane,

A rathes obvious point in star calibration of a radar is that
A siation with vertical defined by a plumb Lob or bubble level
and with latitude and longitude cefired astronomically should
observe azimuth and clevation of a star computed without any
explicit consideration of deflection of the vertical,
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ALTHRNATIVE TRANSFORMATIONS

The precoding dimcussion ‘v thig appendix gives the transtormne-
tion from astronomic to pcodetic systoem with coincident origine,
Subsoquent transformsetions to other systems at other oripgins may 8
then take place.  “umetimes a different procodure is more con=- G "
venient, ™ .. .iternative proccdure is dependont upon the fuct
that ik: ﬁ@F~Ction of the gravity vector as determined by
ax‘fancml;'ohsnrvntion is parallel to the cllipsoid normal at the E
nstrorr.aical position. For example, in the casce of an astronom-
irully orientod radar system, we can immediately apply Equation
30, Page 29, to obtain true (E,F.G) if we use the asdtronomic
coordinnies &, and 17 (in place of geodetic o and yo) for the
stntion in the first two matrices on the right-hand side of the
equation and {f we use values for (EO,FO,GO) computed from the 2
geodetic coordinates of the station, Similarly, using Equation .,
31, wo can iransform from EFG to actuul radar ohservations by
supplyinez astropomic coordinates °A and Y and truc geodetic
(F".FO.GO) lor the radar site, Thus the explicit application of
the direction comines developed in this appendix is not always
roequlred,

=8




APIENRTR €
STAR POSITIONS

INTRODUCTION

. For precision optical measurements and various star calibration

exercises it is nccessery to make transformations of star posi-
tions. The word "position" as used in this appendix represents
only direction cosines or angular coordinates, The object of this
section is to arrive at a computational method for deriving look
angles (azimuth and elevation) for the stars based on information
from star catalogs, local geodetic position of the observer and
time of observation. Some definitions of star places follow. Note
that none of these computed places contains any correction for the
travel time of light from star to observer. Also there is some
confusion in nomenclature so that the following definitions are not
universally accepted:

true place: baryecentric (practically heliocentric) actual exact
geometric position referred to instantaneous true earth equator
and equinox.

mean place: Dbarycentric (practically heliocentric) exact geometric
position referred to mean equator and equinox usually at the begin-
ning of some specified Besselian year., At this epoch it differs
from true place by effect of nutation,

Apparent place: geocentric position referred to instantaneous true
equator and equinox including effects of annual aberration and
annual parallax but not refraction, diurnal aberration or geocentric
parallax. (Note: geocentri: parallax is entirely negligible for
star positions and will not be mentioned again.)

observed place: topocentriec position raferred to instantaneous

equator and equinox includinp effects of annual and diurnal aber-
ration, annual parallax, and refraction.

The problem then is to compute the observed place, given the mean
place. This is an ancient problem and many methods have been

c-1
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;5 developed. Mcdern computers permit riporous and efficient trans-

i formations. 7he rigorous method presented here is ip use at U.S. ) ﬁé

.fﬁi Naval Observatory and represents optinization for computer applica- -~
tion.

8

MEAN TO APPARENT PLACE - 5?

-l@ The general transformation from mean to apparent place is as )

o follows: ' i3

where M is vector of direction cosines for the mean place and P is
vector of direction cosines for the apparent place. The various
stages are as follows:

[ (M + R1 Rz) is a correction for proper motion

R

3 transforms to mean equinox at beginning of Besselian vear T;

nearest date of cbssrvation

i,
‘Avh'-

R“ corrects for annual aberration

- Rg corrects for nutation and precession to instant of observation

Rg R, ocorrect for parallax

Explanation of the various matrices follows: X

N M

! where x4, Y;, %, are direction cosines defining the star position
] referred to mean esquator and epoch of atar catalog,

j
I




Xq T ¢cos a9 cos 60

g
Q
»

sin o, cos 60

sin 60

where a, is tabulated right ascension and &, is tabulated declina-
tion. The subscript (0) is used to reprasent the equinox and epoch
of star catalog.

M
U My
1]
er oMy Yy

where y, My ¥y ﬁx ﬁy ﬁz represent direction cosines of proper
motion and direction cosines of proper motion derivative ob-
tainable from the table values for Vo and Mg o

Me ¥ = My sin a, cos 60 - Uy cos a, sin 60

u z ¢ M, COS a, cos 60 - ¥y sin a5 sin 60

'- |y
b u, z 4 u6 cos 60
) ' & - x.ul - 0.000205 n V |
| Hx 0 * My 8
K , 2 ‘
by ® = ypu® - 0.000205 w V u x
bz e zu? - 0.000205 ¥ V |
z 0 y My i
1
3 where L
: ) .
u 3 u: 0032 60 + My

R Ea A

Uy u, and y, are expressed in radians per tropical year, Xgr Yoo 2g
values are obtained from matrix M., n is parallax in seconds of arc. :




o F e

R P

V is radial velocity of star in kilometers per second. Times
associated with proper motion, proper motion components and ,@)
components of derivative of proper motion are tropical centuries.

‘.
X2
T
amd
R, = {m
0

where T {s the time in tropical centuries from the initial mean
equinox of star catalog to the instant of observation. ' j

: =2
¥ Yx I
: Ry Xy Yy Zy
X2 Y2 %y

, wheres

v X, &= cos g cos 0 cos z* - sin 8o sin z#*

Y, ® - gin Gy cos & cos g4 - cos §, sin z#

| 2, ® - sin 0 cos z*
i X, ® cos g, cos 6 sin z% + sin ¢, cos z#

Y a - gin Lo cos 0 sin z* + cos o cos z®

7 s - gin 6 ain z®

<

X = Qo8 g, ain @
Y 2 - gin %o sin @ !

A s co8 § l
Cc-4




where
Gp * (23047260¢17396T,)7° + 0v3027°% + ovorer-®
gy ¢ omrnare?
@ = (20047682-01053Ty)T" - otuzer-? - ovouzre?

where T, is time in tropicai centuries from 1900.0 to initial mean
equinox of star catalog. T” is time in tropical centuries from
(1900.04T,) to beginning of Besselian year nearest dete of obser-
vation,

=D
R“ . +C

+C tan ¢

where C and D are Besselian Day numbers expressed in radians and
interpolated to instant of observation by use of first and second
differences. ¢ is mean obliquity of the ecliptic,

€ ® 23927708126 - WBUBUS(T +T) - 010059(Ty¢T? + 0%00161(Tyem?

The notation (TOOT) has been used properly earlier to represent
tropical centuries from 1900.0 to instant of observation. 1In
computing ¢ it is somewhat more proper to interpret it as Julian
centuries from 1900 January 0,5 ET to instant of observation.
However the difference is slight and the earlier definition can be
used here also if more convenient.

A strict treatment of annual aberration requires the consideration

of elliptic terms but these are not justified in terms of overall
dccuracy and are here neglected.

c-5

T et ek mamn  aae




T TR AT, e ST tmaatees

1 «f =(A¢Bf)
A ~-B 1

where A and B are Besselian Day numbers and f is an Independent
Day number., All are expressed in radians and interpolated to the
instant of observation by use of first and second differences from
a daily tabulation provided in American Ephemeris.

-C sec ¢
Re Ry @ D cos ¢ [w/k]
-D sin ¢

where C, D and ¢ are defined for matrix R“; n is annual parallax
An arc seconds and k is constant of abeurration, 20%47,

[ Bad

X

P = y

z
wheara Xpy Yoo Zp are direction cosines defining the apparent star
position at instant of observation. The subscript (T) is used to

represent the equinox and epoch at instant of observation., At
this instant

c-6
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x
@ Xy * cOS ap cos 4, ,
yp * oin ap cos &
3p * &in é,
: Gq = arotan (y,/xy)
; 7 3
: 2,, 2 ]
; c.r s amtnn[z.r/(x.r *Yep ) f
g
A APPARENT PLACE TO OBSERVED PLACE ;
“ P may be corrected for diurnal aberration using either ( Xp Yo z.r)
b ceordinates or (ay &4), but it is somewhat simpler to use
(aq gt ,
a v ay ¢ 013198 r cos ¢ cos h sec &y
“ W § ® 45 ¢ 013198 r cos ¢ sin h sin &, ,
where ;,-
‘ o and § represented corrected values; i,e., including
effects of diurnal aberration i
r is geocentric distance of observer in equatorial
! earth radius units ¥
3 |8
i f ¢ is geocentric latitude of observer g
! b il'_‘
g h is hour angle of star | ;‘
5 Transform (a, &) to (x, y, z) ‘ "'\"
'\ Z X " cos a cos é -
y = s8in a cos & -
Lk .
L | 2 * 8in i

C-7
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These values of (x, y, z) may be transformed to a topocentric
system cantered at the observer with x* and y“ in horizon plane,
X’ east and y’ north., z’ is up.

x x
y’| * RgRyly
2’ 2
where
1 0 0

Ra s |0 sin ¢ cos ¢

N =cos ¢ sin ¢

-sin o, oo @) 0
R9 a «cos ay -sin 8y 0
0 0 )

where ¢ is geodetic latitude of observer and ay is instantaneous
right ascension of observer. The asimuth and elevation are

a = garctan (x°/y”*)

e * arcein 2z’

The correction remaining is that for refraction,




Normal refraction does not affect the azimuth of a celestial . : Qg

0 object, The observed elevation is greater than the geometric o
elevation; but the observed azimuth is the samo as the actual
azimuth, Modern numerical ray tracing offers the most accurate
approach to refraction correction and is applicable to oll g
olovation angles, in contrast to older mothods which are limited
to elevation angles generally above 18°, Ray tracing requires
an a priori index of refraction profile, determined for example
from Rawinsonde data, (This profile incidentally is the
principal source of error in the computation,) The index of }
refraction is assumed to be a function only of altitude above &
mean sea level for all latitudes and longitudes in the viecinity &
of the observer, The method described here is presented more
fully in Item 7 of the bibliography,

The elevation correction ims given rigorously by :
i ':
1 P

) Ae = b coms oo‘[ (1o50) [(l-bﬂ?(_ﬁl/l'o)z' ooo’::j-m ) |
where % i;
b = n:: and b = .;.z.:n

and where

e is apparent elevation angle

n° is index of refraction at came.,n altitude

r, is the mean radius of the earth

n

N }roprelont the height and index of refraction
at points between camera and celestial object,




The intogral in the expression for Ae is conveniently evaluated
using Gauss' method of approximate quadratures, which states
that

fr(ﬂ) a ~ r:p xJ r(xd) .
J=0

L)

For p = 8, the values in the summation are

e ey e e e e o oy ™ i
! B e R T o 225 g

J K, X,
0 0,04063719418 0,0159198801
p 1 0,09032408035 0,0819844462
d 2 0,1303053482 0,1933142838 ﬁ
§ 3 0.1561735385 0,3378732882 g
3 4 0,1651196775 0.8000000000 !
4 5 0,1861735385 0,6621267117 L
: 8 0,1303083482 0,8086857164 i i
3 7 0,08032408035 0,9180155537 | é
! 8 0,04063719418 0,9840801198 i
¥ W i
g For each tabular value of xJ one computes i
£(xy) = 1 . s

(1-be)[(1-bef’(1+-J/ro)z - cos* 631177 '

; Evaluation of f(xd) requires a value for I,.

; The value for UJ is obtained as follows:

Compute

n, = n, - xJ(no-l)

C=10
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Let n, fall between two successive entries in the index of re~
o tuetion profile as shown here,

. -

'0 no

! ny

.1 ni

(IJ) (nJ)

041 Bye1
[ ] [ ]

U [ ] [ ]
. 1,000 000 000

The entry LR corrosponds to the height of the camera,
The entry ., corresponds to the height of the celeatial object.

The value of IJ is obtained by logarithmic interpolation in the
following procedure:

¥, Compute
E‘;l. 1 1 ( ni -1
;»‘ LA = o8 | g——oT
:. k 5141 = % il
and then

» 1 ng -1
- 'J - —Eiﬂ log ES:T-) .

: Each of the values of t(xJ) is then multiplied by the corresponde
- fug KJ, and the products are summed to obtain the value of the
integral in the expression for le,

C=11




It should be rocognized that the index of refraction profile ]
varies from color to color and hence the index should be chosen !ﬁ
after consideration of (1) the spoctral characteristics of the ' -
particular star, (2) £ilm sensitivity to various colors and
(3) transmiseion characteristics of any filters used,
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The index of refraction profile may be computed from a density
R + profile by means of the following standard formuls:

M

e e

0,00000000126 -
2 p I "

n = 14 [0.000000222 +
A

A

vhero . ..
p 18 the air density in grams per cubic meter |

R

A is wavelength of light in microns,

ki
2

__i:" .

=

C=12




APPENDIX D

Convereion of Geodetic Coordinates from One Datum to Ancther

Historically the parameters defining a geodetic datum consist of
latitude and longitude of an initial point (origin), an azimuth
of a line (direction), equatorial radius and flattening ot
asscciated spheroid, and the geoid separation at the origin. A
geodetic datum is properly oriented if the Laplace equation has
been satisfied at the datum origin and at all other Laplace
stations and if all other reductions have bsen made rigorously.
The datum origin serves as a reference for a network of geodetic
measurements over that particular vicinity of the earth's surface,
It is somewhat more realistic and practical (though less precise)
to define a datum in terms of the geodetic coordinates of thie
network of mtations associated with the datum, because theso
networks are used to establish the relationships between datums,

Clearly each datum has a directly calculable spheroid center
which can serve as the origin for a particular geocentric LFQe
coordinate tystem—referred to in Table I simply as "origin of
coordinate system." Theso various origins of coordinate systems
have no meaning in the absolute sense, Hut are always given in a
relative sense. The relative origins of the various coourdinate
syntems are determined in a least squares process using a large
number of stations whose coordinates have heen determined on two
or more of the various datums und are of course asubject to some
error, The relative origins given in Table I are not defined
values or directly transformable from definad values, Properly
oriented datums have geocentric rectangular coordinate systems
with respesctive axes parallel,

The more recent datuma are based on world-wide matellite observa-
tions and the corresponding datum origins arc given simply aw
"geocentric." These datums are extremely accurnte and precise
and provide a means for determining the relationships amony the

e ——
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older surface~referenced datums, ‘Theo sensitivit& of the satellite
datums is such that there are indications (still somewhat incon-

clusive) that Lhe older geodetic datums are not perfectly oriented , .
but are slightly rotated and/or tilted by about a second of arc, W _ﬁf
These possible discrepancies are considered to npply to the i
reference surface only and not to the reference spheroid, At this
time it seems somewhat premature to introduce these rotations end
tilte into the geodetic transformations and they will not be ‘
further discussed in this report, | _ L

o ——b i A - - AL
2 i tacale

Table I is provided for illustrative purposes rather than for ﬁ*
: reference, In a report of this nature it will not be practical 1=f
k! to maintain an updated table,

y Some of the sphercids are defined by semimajor axis (:) and gemi- ;”
minor axis (b), while others are defined by semimajor axis (a) i

g nad flattening (f), BSome computer programs require eccentricity

3 (e). Simple exact relationships between these parameters are

"l{‘ 1 = -‘-3-
. 7 a=b

f = la }1-82

j e« 222 . T2 4
3 v

}} "Semimajor axis'" is a synonym for equatorial radius; and "semi= b

minor axis" is a synonym for polar radius,* 5

ﬁ g Table I includes a unified set of datum shifts, i.e., EFG values 4
f ! referenced to WGS-72, Many of these shifts were published with }
the WGS-72 model. The remaining shifts have been related to 1
WGS-72 by a common published NAD=27 tie point, These shifts do |
not enjoy official status at AFETR; however, they are accurate,

*Not to be confused with polar radius of curvature, which is equal
to (82/b),

D=2 /




oliminate considerahle ambiguity and provide a definite numeriecal
value in many instances where no official shift oxists,

The WGS-72 sphoroid and accompanying shifts are identical to the
N¥L=10F, The International sphoroid is also known as the Hayford,

Now consider the basic problem of transforming from geodetic
latitude (¢), longitude (y) and height (h) on one datum to the
corresponding coordinates on anather datum, or:

Given (9, v, h)1 repreganting a point on datum
No, 1, what is (¢, v, h), representing the same
point on datum No, 27

The standard solution to thia problem uses the short or long
version of Molodenskiy's formula. This formula is presented in
any textbook of geodesy. It has the advantage of providing
satisfactory accuracy without necessity of iiandling numbers with
many digitz, With present electronic computers and long word
lengths this advantage has disappeared, A more convanient and
potentially more precise transformation is currently in use at
ETR:

Transform from (¢, v, h)1 to (E, V, G)1 using
Equation 37, Translate from (K, ¥, G)1

(E, ¥, G>2 using increments from Table 1,
Transform from (E, F, G), to (¢, v, h), using
Fquations 38, 39, 40, 4},

As nn example, transform from (28°, 280°, 30 m) on NAD-27 to
Mercury-60, The EFGC coordinates on the first datum are re-

spectively: +0/8655,78 m, ~5550232,¢2? m, and +2976353,57 m,

From Table I the geocentric origin of Mercury=-60 relative to that
of NAD=27 is (=3, =111, «225), Thorefore, the EFG coordinates of
the point on Mercury=-80 are rospectively: +978658,76 m,
~-85560121,62 m, and +2976578,57 m, These transform to 28,000485°,
280,000226°, and 2/,02 m, '
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APPENDIX Kk
Geoid Hcight Computations

For locations on, or referenced to, the surface of the ocesan it

is sometimes desirable to saloulate the geoidul height from the
expression for the geopotontial and its associated spheroid. This
is possible bocause the free ocsan surface is an equipotential
surface defining the gesid. The accuracy of the computation is of
the order of ten meters and hence tidal effects are negligible.

The accuracy is limited by the present knowledge of the geopotential,

In 1961, the IAU adopted a standard form for the general case of
the exprossion for the earth's external gravity potential:

L n n
(1) v+ g 3 (-‘-) Py (80 ®
T nsl me0 \p

{cm cos my + snm sin my}] .

r ¢ ridius from center of coordinate system

where

¢ = geocentric latitude
Y = geographic longitude (Positive mast of Greenwich)
P & associated Legendre functions

GM = geocentric gravitational constant of Earth

B>

= equatorial radiue of spheroid
n, m = indices representing degree and order, respectively

C, 5 3 numerical coefficients experimentally measured,

Since the coefficients are obtained from satellite observations,
the center of coordinates is the dynamical center of mass of the
earth and the first degree harmonica are zero. The mean surface
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of the free oceans is an squipotential surface (the geoid)
resulting from the gravitational and rotational potantial:

(2) Ws Uy 0”% uzrz coo2 ¢

where ooio sarth rotation rate.

The geoid is approximated by an esllipsoid of revolution. The
potential for this ellipsoid is described by

a2 a W
(3) Ut » gﬁ[l + 62(3) }"2 (sin ¢) + C“(A‘-) Py (sinO)]
r r r

with an equipotential surface rssulting from gravitational and
rotational potential represented by

(4) Wh u Ud ¢ % q:rz oos2 ¢

The difference betwoen the geoid potential acnd that of the refer-
ence ellipsoid is

T W e W

If H denotes the height of the geoid above the ellipuoid, then
Ta fgd H

where g is gravity. To a good approximation

T
HSs e
8o

where g, is lncal gravity at surface of spheroic.
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i For oinpl:‘l;fiod computation and with only trivial error, r is set 3
b equal to a in the expression for T and also in the exprassion o
for g. Then the geoid height formula becomes (dropping the argu-
/ ment(sin # in the Legendre expresaion to simplify notation):

A g n ‘.
a{C.,P,+ L CP ¢+ ¢ TP _(C cosmy+S_ sin my)} i

- 14+ 3C,Py + 6C,P, = (w d cos 9 L

4 KW M

(2}

! The errors resulting from the approximations used in deriving

i formula for H are in general quite insignificant in comparisen

"{. with errors introduced into the H computition by the uncertain-
‘ ties in the numerical coefficients.

Vi-‘ If gravity 1is describted by OM, 02' C4 and point mnsses m

) 2 ) !
1 : ~ ) r r
b B s i l:l -4 (il) cos B + <1£)

i then [ .

x>

I+ 30292 + 504P4 - (w a cos ¢)2

where ry 18 geocentric distance of m

e s 1

cos 1, = 8in ¢, 8in ¢ + cos y, cos ¢ cos (y - vy) f 1

where (¢, y) 1s lutitude and longitude of point where we
‘s arec computing o
« s ' (q;‘. y‘) is latitude and longitude of m,

NOTE: my may be cither positive or negative, and im expressed in
carth mags units.
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APPENDIX F ;
(PART A) | :

sodano's Noniterative Solution of

The Inverse Geodetic Problem
(fxrom GIMRADA Research Note No. 1ll)

INTRODUCTION ' .

A geodesic is defined as the curve of minimum length between two
points on the surface of a spheroid, The problem is to compute
tho length S of the geodesic betwean tws points F, and P, on a
spheroid, the forward azimuth %2 of the guodesic at Pl' and the o
back azimuth a, , of the geodesic at Pye Azimuth is measured A
positively clockwise (eastward) from north. Longitude is measured '
positively eastward from neridian of Greenwich and latitude is

measured positively northward from equator.

i
1
i
;

Sodano's original algorithm is somewhat awkward and incompatible i ;

with standard subroutines. Consequently, the algorithm prasented v

in this appeindix represents a modification introduced by RCA Data

2rocessing. With l2-digit floating point computations the error

is less than a foot in geodesics of 6000 nautic.l niles and luss
~ than a thousandth of a foot in a geodesic of 1 .autical mile, All
' angle erzors are less than a hundredth of a second.

It is important that the arctan function used in the following
coinputations examine signs of numerator and denominator and locate

the angle unambiguously in the proper quadrant,

COMPUTATION FORM

Input:

‘l' Yy - Geodetic latitude and longitude of Point Pl k
92+ Y, = Geodetic latitude and longitude of Point P, '
a, b = Semimajor and semiminor axes of spheroid

s I.'.l




Compute s

£ » gphoroidal flattening = 1 - -2
a

Leva=v |
5, » tan™ [(b'm 0) /(i cos ¢,)]
83 = tan~d [ (b atn 43)/0i cos 4, ]
A= sin 8, sin 8,
B = cos 8, cos B,
cus & = A+ B cos L

(&=b) / (&+b)

3
]

(8,B)) = (9,=9;) + 2 [A(n+n3+n3) - B (n-nz*na)] sin (¢,-¢,) radians

+{[.m L cos 32]3

i
+ [nin “z".l) + 3 cos 82 sin Bl unz (L/z)]}

»
[
3
Ov
8

172

8 = tan"! (sin 6/~os §) evaluated in positive radians ¢ ¥

¢ = B sin L/sin ¢ ']_
' ma ]~ c2 k
§=b {[1-0-!-0-:2] 6 + A [(:Hz) ein & - 2252/(2 sin 6)] ‘
[ . - [m/:] [(tﬂz) ( 8 +# sin § cos §) =~ fzszltm 6]
P
F-2




Gl U eGp— - '

g 3 2 - ."
O -[A!ﬂJ sin ¢ cos & )

2.2 3 2 i
: ¢[cm/1s][a+unaco-c-zunceo- c-ad/tanc] =
+ [M 32/2] [lin s cos® & + cz/un 6]} in same unite : \

B

i and b 3

AeL+o {[m’] 3 - [A :’/:] [-m 8 + 26%/ain a]

+ [m!2/4] [un S cos & =~ 58 + Ccz/tm 6]} radians

"i' LI tan"! {[co- 8, sin ).]/ [un (8,-8,)

+ 2 cos Bz sin 31 lin2 (1/2)]}

ST A o
> e
»
I

§ s
.\“ any ™ tan"l {[-COI 81 sin x]/[a cos Bl sin 8, sln® (A/2) .
- sl - -5
1 sin (8, 81)]} 4

a3




(PART B)

Sodano's Noniterative Solution of

‘¥he Direct Gecdetic Problem

(From GIMRADA Research Note No. 1ll)

3 ~ INTRODUCT'ION

The latituds and longitude of a point Pyo the length of a geodesic,
and the forward asimuth determine the latitude and longitude of

of the point P, and the back azimuth, B8ign conventions and defi-
nitions are the same as given in Introduction to Part A of this
appendix. This algorithm also represents a modification intro-
duced by RCA Data Processing. The accuracy is equivalent to the
algorithm previously given for the inverse method, The special
requirement for the arctan function exists hare also.

COMPUTATION FORM
Input:
9,0, Y3 = Geodetic latitude and longitude of point P,
8 = lLangth of geodesic

B e MR B

@y.z = Forward azimuth

&, b = Semimajor and semimincr axes of spheroid

f = spheroid flattening = 1 =L .

a j
¢ = Second eccentricity squared = (iz-bz)/b2 ;;
0 = §/b radians

B, ™ tan~t [(b sin 01)/(; cos 01)]

Ty LU T




cos 8, cos @, , |
cos 8, sin ay .
[1 + (e*/2) sin? 91] [1-5’] / 2
[1 + “2/2) sin? 31] [li.n2 B, cos O
+ ¢ sin 8, sin o]/z ;
h [-! @ + 323y sin 0 + 3% (6 = sin 6 cos 0)/2] radians
14
n ¢? ]
©«Nain 0 + (M/2) (sin @ cos @ - 0) P
+ (5/2) N% sin @ cos © . .
+ (Mz/lﬁ) (11 6 = 13 sin 6 cos 6 - 8 O ccu2 ] ;
+ 10 sin © cos® @) + (MN/2) (3 sin @
+ 20008 0 ~5 sin 0 cos? @) radians
t sin 8, = oin B, cos & + g sin &
.? 2 27 1/2 3
\; : cos 52 - 4 [h + (g cos 8 ~ sin Bl sin 3§) ] *‘
4
| |
; F-5 ]




e

; ol -
¢ =t [(l sin 8,) /(h cos sz)J

) A = tan™? [(nin $ sin “1-2’/ (cos B, cos §

J
B )

- sin B, sin & cos 01_3)]

¥ 72-"1'0'1#].

Gy ™ tan“? [- h/(sin 8, sin & ~ g cos 6)1

t
" E
‘ )
s
4
i
1
; |
‘. i
Y
- . F=6 \
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(PART C)

Test Case

6378388,00000

+ 20°

o.

42,9416764031°

9649412,50618 m

6356911.94600

+ 45°

+ 106°

295,288499970°




APPENDIX G
KALMAN, @f and cPy FILTERS

1,0 KALMAN FILTER

Conventiona) leaste-squares differential correction (Appendix 8)

is generally used in batch data processing, In applications
where statistica)l estimations are required only after a batch of
observations has accumulated, this process is considered to be
more sfficient than the Kalman filter process, When a new
statistical estimation of the parameters is required after each
obsorvation, then the Kalman filter process is usually more
efficient, The two methods in general are equivalent in accuracy.

It is nct the purpose of this appendix to compare these processes
further .

The basic Kalman filter process is represented by the following
five equations, which conetituto a single u» inte:

~
xi - oij x&
> T T T
LRREVR I RRR VLTI I IREY
=l
a T, T ~ T, T
Ky = Py oy M LMk ki Py Oy Mg * Ry

A ! A
Xp om Xy Ry Y= M oy xiJ
A A ~

where '

i represents the known epoch of the state vector
which is being estimated in present update,

J represente the known epoch of the state vector
which was estimated in the update just prior to
present update,

k represents the ti:ue of the must recent observation,

X is state vector,

nxl

G=-1

o i v e 3. b e B ST
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1J

nxn

ki
nxn

nxn

nxs

8Xo

mx1

M
mxn

mxm

nxm

(*)

(+)

nxn

v

1s a matrix of partial derivatives of the state
vector components at time 1 wilth respect to state
vector ccmponentu at time J and 18 called a state
tranaition matrix

is a matrix of partial derivativee of the stnte
vector components at time k with respect to state
vector components at time 1 and 1s called a state
transition matrix,

18 oovariance matrix of the state veator,

is the matrix of partial derivatives of the state
veotor componente with respect to the unadjusted
parameters,

18 covariance matrix of unadjusted parameters,
is vector of observations,

18 the matrix of partial derivatives of the
observation components with respeot to the state
vector components,

18 the ocovariunce matrix of the observations Y,

1a the Kalman filter,

i8 number of elemente (components) in state vector,’

18 number of elements (components) in vector of
unadjusted parameters,

is number of elements (components) in an
observation,

represents & preliminary estimate based upon a
egeries of all prior observations not ineluding the
most recent observation,

repregents 4 final estimate based upon the com=-
binatlon of the preliminary estimate and the most
recent observation,

represents an identity matrix,

G-2
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The only partial derlivetive matrlces which represent a transitlon
over time are the ¢ matrices, In the formalism Just presented

i, J and k are kept distinct. Normally two of these will be
coincident, Tor example, in an ende-point filter application 1

nnd k increment at cach updateo but they remnin coineldent; and

J = 1-1 = k-1. 1In an carth-to-moon trajeoctory the equutions just
presented may be used to compute a series of centinually improving
veoctors having & fixed common epoch previously seiected for a
‘midcourse maneuver, In this latter case 1 will bte constant and
cqunl to J3 and k will be a variable representing times earlier
than 1 = J, Jt should also be pointed out that in the actual
application of the filter equations, all of the matrices shown in
the algorithm here may not be explicitly developed, It may, for
example, be preferable to compute & single matrix which represents
4 combination of two shown in this algorithm, Some sort of equi-
tions of motion (or equivalent) with starting conditiona are
nasumed und needed in connection with the algordthim Just presented,

To 1llustrate the'application, it simple one-dimensionnl numericul
oxumple will bhe given of an end-point filter, Let tho equation of

motion be . s
y L i 1 -
Xy = Xyt Xy ot + % Xy (At) 7 Xy (At)

where
1

At

J+ 1=k, and

time interval beiween observations,

The state vector is X = [x, X, % ]T. The ohgervation vector iao
Y = [x], b4 reduces to an identity matrix., The coefficlent in
the laot term on the right-hund side of the equation of motion 1s
defined to be a random variuble with zero mecan, Time units will
be defined ruch that At 18 unity., This definition 18 always
potsible Af obmervations are taken at equal time Intervals, In
the discussion which follows, the letter (c) located at the lower
rirht-hand corner of 4 matrix indlicaten that 1t 1s conntant over
111 time pointso,
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The following numerical values are given:

1,0600 0.0070 0 0 }
XJ = | 0,4400 ?J - 0 0.0030 0
0.,0550 0 0 0.,0001
i
QJ = [o.oooo;e]° R, = [0.01]° Y, = [1.4273]

We now evaluute the following matrices of partial derivatives:

1
o,, O H
% " (3
1 (o}
0.000001 0.000003  0.000006
044 G, Q OJT ¢1JT = | 0.00000% 0.000009 0,000018
0.000006  0,000018  0,000036 |,
11 % 1 0 0
0 1 1

¢

M, =01 o ol

Following through the Kiulmen algorithm, we obtain:

X (1.5275
x1 = | 0., 950
0.0550
L )
R 0.010019 0,0030%7 0.0000%4
Py = ]0.0030%7 0,003071 0.000062
L.0.0000'514 0.,000062 0.,000044
=4




0.5004 70,
K1 2 0,1%170588
0,00169839

1,477360
71 = 0.479799

0.054830
J
0.005005 0,001517 0,.000017
Fi = | 0,001517 0,002610 0.,000057
0.,000017 0,000057 0.0000k!

This oompleten one pass through the algorithm and the estimatien
o' n veator and covariance matrix for one particular point. We
are now ready to accept n new observatlon for a time point (At)
later and compute a vector and covariance matrix at this new time
polnt, and so on,

Some inpgenulty must sometimes he employed to arrive at the state
traneition matrix 4, ¢ is a deterministic nnd knewn relationship
and can, in fact, be a numerical iIntegration step, Az another
spreifie example, in a two-body force field lugrange'a f and p
gerley mhy be used over distances Lhat are not Loo large. The

f and g veries are very practical and versatile foocls frequently
used 1n astrodynamios, In special applicatione cven the aspher-
1aA1 oarth, atmospheric drag und the influunce of other bodien
can be approximatcly accounted for in the f and g series. Alwmo
in yome instances one oan use a closed form in place of the
irntinite nnrleg, To 11lustrite the baslec form of the f and g
nerien, equations will be given for a satelllte travellng outside
he nimosphere around a npherical earth, Canonleadl units
(Appendix 0) will be used, Rectangular coordinaten are expressed
11 1 pevcentvic inertinl eyctem, The equatlons of motion are
simply




P

L=t 4 oe

r = fry + B,
where the underline indicates a vector, r 1s position vector, i
1a velocity veclor, the zero suhbseript indicates epoch conditions;
the non-subscriptod vectors represent vectors at some time t
distant from epoch, The first few term3 in the f and g series are

f = 1 % ut? 4 % upt3 + gr (% uq - 15 upe + ue) t”

>

b3 (7 up”? - 3 upq = u? e) £° + ses
B

g = t = 1 ut3 + 1 uptu + ] (9 uq = 45 up2 + ue) t5 + eee
[} T =0

where

w B l/ro3 )

- . R
p LA -r_'o . l‘o/ro )

2 2 2
-r" w/ry

q E (Vo
where Ty is the magnitude of the position vector at epoch «nd Vb
in the.magnitude of the velocity vector at cpoch, In obtaining
f and g by taking derivatives of f and g, remember that u, p and
Qq 4re oconstants,

As another d“pecolfic example in two-hody meohanlies, refoerence is
made to Page 62 of this report,

In prcolise orbital applications employing a#ll the known perturba-
tlong, the Kalrman fllter operates qulte satlsfactorily in oconcert
with the Encke prediotion technlques,

G-68
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2,0 THE af F1LTER

0 The af} filter is a simplified version of the Kalman Zilter, When
covariances between the observation channels are negligible, the '
B filter can be mathematically equivalent to the Kalman filter,
As genaral rulee of thumb, the aff filter is inferior to Kalman in
noise reduction, superior ii maneuver-following capability, re-
quires about one=fortieth of the computer processing time needed

P T e = T

by Kalman and requires much leau computer storage,
Fquations for computing a smooth line through the observations _
from a single channel may be written: f
b
Xn - xn.p +a, (xn-xn.p); position end-point estimate g
< [ ""‘n t f
Xy, - xn.p + (xn-xn'p). velocity estimate h
7 ..
) xn+1,p = Xn + T X, i predicted position E
" . .
xﬂ”‘.p = xn ; predicted velocity b
where |
xn is measured pomition ai nth time point
x“ p is predicted position for nth time point
’
*n,p is predicted velocity for nth iime point
T is time interval betiween samples
“n is the position damping factor for nth point
un is the vulocity damping factor for nth point
? n im the numbor of the measurement, the first

moasurement heing xl.

R e iy I -
C TRV

G=7




Initiation of the aff tilter requircs the prior acquisition of X
and X,,.

1

The factors ¢, and “n ﬂorually lie between zero and unity for
obvious reasons, Por least squares smoothing with an af filter,

“n *. ninel

In practice thess two oyvkiions are used for computing an and ”n
for 1 < n 15, PFor n > 15, & is fixed at 0.242, and B is
[ixed at 0,028; otherwise the late observations tend to be
ignored,

The simplest type of GB filter is onc in which @ and P are fixod
constants, For ramp type maneuvers it can be shown that optimally

a and B (fixed) are related as follows:

3.0 THE afy FILTER

The off concept may Le extended to an Py filter:

X; - xn.p + 0 (xn-xn.p); position end=point estimats
N . ﬂn
Xn - xn,p + ‘r'(xn‘xn.p); volocity estimate
fard .o ‘yn
+ -
xn - xn.p' ;g (xn xn.p); accoleration ostimate
. OO
xn+1.p - Xn +T X, +w X,  prodicted position
» - e
x“+1.p - xn + T xn ; predicted velocity
o o
xn+1,p ™ xn i predicted acceleration

G-8




where

xh’p is predicted acceleration for nth time point,

it ) T

Yn is avceleration damping factor for nth point,

R 72 A 2, i RN il 2 T AR e M b ¥

and cther symbols are defined in the aff algorithm,

Initiation of the clly filter requires the prior acquisition of

The apy filter is supecior to the Gf filter in manuever=following
capability but obviously requires more computer storage and
processing timc, The &ff (or ofy) filter is readily applicable to
adaptive tiltering, whare the aumerical values for the damping
frotors vary as a function of cor‘ain specialized conditions, It
is also posaible to substitute more sophisticated cquations of

motion for the aimple prediction equations shown in this dis-~
cussion,

o =t

Noto:

To initialize the ajy filter ass:ming prior acquisition of xl. x2:

fq " Xy

Xy = (XgeX )/T
To inftializo the atdy filter assuming prior ancquisition of Xl, xg. xa:
I
7

2
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APPENDIX H 3
POLAR MOTION g

Polar motion is a displacemant of the Earth's crust with resﬁcct to the spin
axis, It 1s thus distinct from precession and nutation which describe the
motion of the spin axis in inertial space. The International Polar Motion
Service (IPMS) observes and issues data on the polar motion. The effect is
15 meters or less with raspect to the mean pole of 1903.0. Since present
survey methods from satellites are somewhat better than 15 meters, it is :
desireble to refer all survey data to the mean pole of 1903.0 for comparison |-
and standardization. In actual application the standard survaey can be :
transformed to latitude and longitude of date.

The coordinate system used to describe polar motion is a rectangular grid
(X,¥) cantered on the mean pole of 1903.0* The X-Y plane is tangent to the
earth at the north pole, with the +X along the Greenwich meridian, and +Y
along the 90 wast longitude meridian,

If the north latitude and east longitude of a point related to the standard 3
system are ¢, and vy, respectively and the instantaneous latitude and 9

Tongitude of the same point as affected by polar motion are ¢ and Yy then
the following simple transformations apply:

Yy vg * tan o (X siny + Y cos v)
by * 4 +Xcosy«Ysiny

_ where the unsubscripted ¢'s and y's may be either standard or instantaneous
4 with no Toss in accuracy.

f Azimuth measurements (a) as made from a point located at position (e,y) are .
| also affected by polar motion as follows: .

3, * & +sec ¢ (X sin y + Y cos v) | 4
4 where a is measured positively in a direction eastward from north in a local
§ horizontal plana,

The IPMS values of X and Y ara correct to the order of 0.5 meter. Changes i
of almost 5 meters in a month may be observed in X and/or Y. Monthly y
bullatins are issuad by IPMS giving current data. At prasent there is no -
reliable prediction service from IPMS or other sources valid for more then

two weeks, IPMS actually supplies X and Y in terms of seconds of geocenir -~

great circle arc and these values may be substituted directly into equations ]
fur vy ¢.' and 51~ '

sprogently enlled the Conventional International Origin (CIU).




- To illustrate thu application, let (x,y,2) designate the inertial,

right-handed, rectangular, geocentric, equatorial coordinates of

méan equator and equinox of epoch

and cxoi where the & axis extends positively northward along the
s

& point in a system detined by

spin ax

eguinox, .
Tectangular, geocentrio,
systen dotinod by

A

Lot (E,7,G) demignate the earth-fixed,

, and zho X axis extends positively toward the vernal

right=handed,

equatorial coordinates of a point in a
squator of date as affected by pole wander,

where th: G axis ogymnép positively northward along the spin axis,
and the E axis extend. positi.ely toward the meridian of

Greenwich, Then

-

o> ™>m>
|

DBNP

y ’
g

where P transforus from mean equator and equinox of epoch to mean
equator and equinox of date (Eq. 77); N transforms from wean
oquator and equinox of date to true equator and equinox of date

(Eq. 71); B transforms from inertial

defined by CIO (Rq. 42); D transforms

P and N have besn explicitly presented.

Bquation 42, -

008 Yy
oin 7y,
0

vhere v,
(Equatien 70),

D = 0
X

panas

system to earth-fixed system

from CIO to pole of date.
8 is implicitly given in

-—
- uin Yo 0
cos v, e )
0 1|
is true geodetic east longitude of vernal equinox of date
0 X
1 -Y ’
Y 1

eoud

where X and Y have been defined in this appendix and must be ox-

pressed here in radian unite,

The transformation illustrated here is numerically simpler than
the use of the equation previously given in this appendix for vy

and ‘1'

Earthfixed site locat.ons are normally maintained in

the rectangular or polar coordinates consistent with clo.




APPENDIX I ;
VEHICLE~OENTERED OOORDINATE SYSTEMS { 3

§
o 1. PYT COORDINATE SYSTEM

Reontaring missiles are subject to large aerodynamic forces.
It is customary in aerodynamics to resolve these forces into
o components parallel to and perpendicular to the local velocity
: vector. The force component parallel to the velocity vector is
usually identified with drag. The force component perpendicu-
lar to the local velocity vector is known by many names, one of
13 which is 1ift, Lift has two components: one along a coordi-
v nate in the trsjectory plane and the other along a coordinate
N perpendicular to the trajectory plane. In the analysis of
reentry trajectories it is convenient to have the residuals
expressed in a coordinate system conmistent with these forces.

let
!1 represent the earth fixed unit relative® velocity kﬁ'
vector in computed trajectory at some time t, A
gl represeélit a unit vector from mismile directed toward 3
the center of the earth, b
¢
q L) Detine ;
pt eyl identified with a unit vector dir.cted along o
. the trajectory at time t, i
1 k’
vl o 2 XY  idontified with a unit vector perpendicular to )
- |JI x VII plane ot trajectory, or more precisely, unit i f
- - vector opposite to angular momentum vector at R
time t, Ce
21 - !1 X !1 identified with a unit vector is plane of tra-

) Jectory, perpendicular to velocity vector and k
; in practical camses with an upward component at "
time t. d

Let (E, F, G) reprement the usual right handed rectangular earth i
fixed geocentric coordinate system with E and F in equatorial
rlane, E through QGreenwich meridian, F through longitude 90°
vast, und G polar,

e

*Rela.ive to the local atmosphere, i,e¢., corrected for wind. }

I-1




Then if V and J are expresmsed in the EFG system:

gl has components Pi. P}. P
!1 has components Yi. Y:. Y

-~ )

¥

93

Bl \

31 has componentas Ti. T:. T;

These components represcnt direction cosinea of the unit veciors
in the EFG coordinate system. Consequently, the residuals at
any time t may be transformed from the EFG systom to the PYT
system au follows:

p= e ) - poss —1
1 1 1

p P, P, Py E, - E,
o el 1 1

Y Y, Y, Y F, - P,
1 1 1

T ™ " G -G
e 4 o c
L. L ¢ L |

where subscript (o) cefers to the observed quantity and sub-
script {¢) refers to the computed quantity. In practice the
residuals are not usually computed in the EFG system but in mome
tracking system coordinates. 1In that case a standard transfor-
mation must be made ahead of the one indicated,

e " i MTFI e




2., HCL COORDINATE SYSTEM

This coordinate system is moving in inertial space and has its origin
at the instantaneous position of the satellite in the computed or
reference orbit, The H coordinate extends outward from the origin
u;ong an extension of the reference radius vector, which originates

at the mass center of the earth and terminates at the origin, The
cross track coordinate C is measured in the direction of the vector
cross product of reference satellite inertial valocity vector and the
reference radius vector, Thus the direction of C is opposite to the
_angular momentum vector, The L coordinate is directed so as to make
the HCL a right handed orthogonal coordinate system, Thus L has
precisely the direction of the reference inertial velocits vector if
the orbit happens to bs circular, Note that the HCL coordinates of

an actual satellite position represent the differences in the positions
of the actual and reference satellites in the sense (actual - reference),

The coordinate transformations are as follows, Assume that the
coordinates of test object and the position and velocity components
of refarence object are known at some time t in a geocentric inertvial
rectangular right handed coordinate system with X and Y axes in
equatorial plane and Z northward, The longitude of ascending node
is measured from X uxis, The X axis may for example be directed
through vernal equinox or perhaps through meridian of Greenwich at

t = 0, The final HCL coordinates are independent of this choice of
direction,

Let

(xt.Yt,Zt) inertial position coordinates of test object

at some time t

(x,Y,2) = inertial position coordinates of reference
object at time t

(i,i,i) = inertial velocity coordinates of reference
object at time t

u = argument of the latitude of reference

objmct at time t

I-3
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i = Inclination angle of reference object at ot
- time t ¢
N = Longitude of asocending node of reference
orbit at time ¢
o, X
Cl - Y5 - 3Y
N :
. ]
C2 = '* - X%
sl ™ .
§ 03 = XY « YX
b 2 2|3
o h e (cl + c: + °3)
1 R » (x’ + ¥4 53)
3 ,
} 1/2
. (ci R |
b sin i = i)
3 ]
cos i = 5-9-
4 If sin 4L = C, set sin R = 0 and cos R = 1
i)
_ If sin & # 0, .
E c ll z;
h sin i |
! - !
h sin
Then
3 uinu-[ool i(eX 9in 8 + Y 008 B) + 3 sin 1]/11
i i
conu-[800nﬂ+¥uin0]/l :
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The preceding development uses classical orbital elements in the
tinal formulation. 1In many applications it may be prererable to
use poaition and volocity components.

Let:
y represent inertial velocity in computed trajectory
at some time t.
R represent position vector in computed trajectory at
some time t.
1 B
H® = «= represent the unit vecter directed along R.
| B
Cl - yxR represent the unit vector pci‘pendicular to plane of

- V x R' computed trajectory, cr more precisaly, unit vector
I— =] opposite to computed angular momentum vector at
time t.

hl - glx gl represent the unit vector in plane of computed tra-
Jjectory, perpendicular to position vector and lying
generally along the velocity vector but usually with

sone angular separation from the velocity vector, &;)
Tien - - — -
H H,l(' H% Hﬂ xt-x
c| = |cx ¢ € Y, - Y
S N
L . . o

wvhere subscripts X, Y, Z are used to denote components along
X, Y, 7 axes.

Note: Thc symbol I |which oncloses a vector and a vector cross
product in the donominator of two of the equations above
ropresonts the positive mquare root of the sum of the
squarcs of the cocofficionts of the orthogonal unit vectors,
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TIME ERROR

Having the HCL coordinates, it is a simple itop to obtain the
correaponding time error in a computad satellite position,

a = ltn"l'%‘
. h
N w
R
ot = &
n

i
3
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b
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o APPENDIX J
TIMK TRANSFORMATIONS

In this section, time units will be specified where they are
important, 1In general, sidercoal time will always be expressed
in sidereal time units, Universal time will always be oxpressed
in mean solar time units with the exception of UTC, which is
oxprossed in atomic time units, Ephemerie snd atomic times will
be exprossed in their respective time units,

It should be emphasized that all equationm giving the time in
ol onec system corresponding to the time in another systom assume the i
same instant of time in both systems, This instant is called f.
epoch, The day in which epoch occurs is called ejoch day, -

s et il
»

A, Sidereal Time {

Sidereal time is the basis for all time systems which depend upon ’3
earth rotation to define the time intervals. Apparent sidereal £ |
time is determined by the rotation of the earth relative to the 3
stars and is defined as the hour angle of the vernal equinox, B
reckoned along the celestial equator westward from the
instantaneous local celestial meridian to the hour cirecle
through the celestial pole and the true equinox at the instant,
Thus a star transits the meridian st a sidercal time equal to
its right ascension, I« conformity with its definition, local
sidereal time is dotermined directly from star obhservations i B
using 8 zenith tube, Sidereal time referenced to the true 3
vquinox of date is called apparent sidereal time, Sidereal time ;
roferenced to the mean equinox of date is called mean sidereal i
time, The relationship between them is !

Mcan Sidereal Time = Apparent Sidereal Time = Equation IR
of Equinoxes ;

The equation of the vquinoxes is dofined as the right ascuneion
S S ol tho moan equinox referred to tho true equator and equinox,
' This ¢an be computed from equations givon in Scction IX of thiw




A report or obtained from *ables in the American Ephemeris,

Greonwich sideroal time (GST) is related to local gidereal time
(LST) as follows:

GST (locondl) « LST (seconds) + (1/18) (Local West Qe
Longitude in arc meconds) g

b One day shouid be subtracted if necessary to maintain gk
0 < GST < 1 day, A

- This same relationship applies for eithor apparent or mean 3
g. sidereal time, although generally the apparent time is changed ;ﬂ

il to mean time immediately. In the preceding equation the units s
- could jumt as well be (minutos and arc minutes) or (hours and 9
degrees), 3

fi The right sscensions of stars are given by fundamental star

3 cotalogs, By decision of the International Astconomical Union
3 in 19681 the FK4 cataloy is designated tor sidereal time }
obsorvations, Sidorcal timo is not a uniform timc scale becnuse g
it is tied directly to the variable rotation rato of the earth,

g The sidereal second is definod as the (1/88400)'" part of the
' time interval betweon two succossive transits of the mean vernal
; equinox on the international meridian, The sidercal day has )
J 86400 sidereal seconds, The sidereal month is the true period
y of revoiution of the moon about the earth with rompect to
inortial space, not with respect to vernal cquinox of dato,
: The sidereal month is approximately 27,3068465 sidoreal days,
f The midoreoal yoar is definud as the period of one coumplete
revolution of the earth about the sun with respect to inertial |
L ! space, The midereal year is approximately 366,256399 sidereal N
' dnys, Sidereal time can be determined to an accuracy of about
2 millimoconds,

<c
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B, Univorsal Time UTO

Thore are three other kinds of Universal Time (UT) besides UTO,
They will be discussed in subsoquent sections, UTO and Green-
wich mean sidereal time (GMST) hava a mathematically defined
relationship between them,

UTO = (0,987369566414) [ousw ~23925%836 - 8640184%5437T
-0,0932973 ]~

vhere

» o (Julian Date at 0% UT of epoch day) - 24108020

Some carc must be sxperienced in applying the equation for UTO,
since occasionally *there are two possible anawers only on. of
which is valid, The ierm in brackets should always be
normaliz¢d to fall in the region (U to +86636,5358 secs) by
adding sufficiont increments of #6400 seconds to the raw value
first calculated, A typical ambigunus case is (86500 geconds

or 100 msoconds), both of which lie botween (0 and +86636,5338
soconds), Tho correct choice must be made on the basis of

a priori knowledgo of UTO, 8ince there im almost 24 hours dif-
forence in the two values of UTO, there is gonerally no question
as to which answer is valid, The above equation for UTO can be
usced to solve for GMST in case UTO is knowh ~ no ambiguity in
this application, Consequently, it should be clear that siderenl
timo and UTO aroe equivalent picces of information,

UTO and the equivalent ST are both contaminated by variations
in the position of the pole ot rotation {polar motion) and by
variations in the earth rate of rotation, Both ot these affects
are amnll and not rocognized until this century, However, at
present thoy are quite smignificant and are not usually neglecsted,

*Tnbulnted under "Universal and Sidereal Times" in
Amorican Ephemeris,

J=3
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C. Universal Time (UT1)

Refer to Appendix H of this report for discussion of Polar
Motion, X and Y supplied by IPM3 may be substituted into iLhe
following equation to obtain UT1:

UT) = UTO = (1/15)(X 8din A + Y coa A) tan ¢

where A 48 east longitude from Greenwich; ¢ 1s north latitude,
If X and Y are in arc seconds, then the second term on the
vight 18 in seaonds of time, Typleally, UT1 and UTO differ by
less than 30 milliseconds, The above equation can of course
also be used to solve for UTO if UT1 18 known,

D, Universal Time (UT2)

T2 48 obtained by making seasonal earth rotation rate correc-
tions to UT1,

UT2 w UTl + a 8in 2 wt + D oos Ot + ¢ 8in 4 wt + A coa U nt

whore ¢ 18 fraction of tropical year from beginning of Besselian
yoar and (a, b, o, d) are empirical constants issued by Bureau
International de 1'Heure (BIH) in Paris under direotion of
International Astronomical Union,

For the period 1962-68 thesa were:

a b ¢ d
+5022 -Bo12 8008 +8007

The seasonal variation between UT2 and UT1 is & 30 milliseconds,
T 18 ntlll subject to some long period variaticn plus secular
variation, However, 1t is closer to uniform time than any other
Bystom based on earth rotation, The equation above can, of
course, also be used to solve for UT1 if UT? 18 known. The
arguments (2 rt and 4 wt) 4in the equation above are in radians,

J-4
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E. Atomic Time (AT)
This system depends upon the atomic resonance corresponding to transition

between the two hyperfine levels of the ground state of cesium 133, The
frequency has been measured to be 9192631770 Hx per sphemeris sacond.

A7 18 the system operated by the U.S. Naval Observatory. NBS-A is the aystem
maintainad by the US Bureau of Standards, Intarnational atomic time (IAT) 1s
maintained by Bureau Intemational de 1'Heure (BIH) in Paris, France.

The various atomic time systems have different ipochs. The most proltigiqus
systam in this country is A1, The epoch for Al is o" o™ 0* U2 on January 1,
1958, at which instant A1 was Q" 0" o8,

Atomic tima is very close to uniform time. It is slightly affected by local
mgnetic fields and by relativity perturbations.

F. Coordinate Time

Coordinate time is atomic time with ydded periodic relativistic corrections
for diurnal and orbital positions of the clock site. The orbital correction
1s about a thousand times that of the diurnal correction. The total correc-
tion over the complete period of a year falls between + 2 milliseconds. The
exprassion for the correction 1is

at « 1%658 x 10" [sin E, + 0.0388)

+ 2%3 x 10'6 cos ¢ [sin (UT + 1) - sin 2]

+ smaller torms

whe ¢
E° = eccentric anomaly of the sun

UT = universal time

¢,A = Jatitude and east longitude of clock.

J=5
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G, Lphemeris Time (ET)

This time system is independent of earth rotation. It is a gravitational system
basud on the geometric longitude of the sun--specificilly Newcomb's Tables of

the Sun, It is theoretiocally a strictly uniform measure of time in the Newtonian
sense, Logically, ephemerdis time could be determined from the relative ordital
motion of any of the heavenly bodies; and to obtain maximum precision it is
usually devarmined from the motion of the moon as described by Brown's lunar
theory, Ephemsris time deduced from the comparison of observations with the
lurar ephemarides J = 0, j s 1 and § = 2 (reference nmbers apecified in the
recommendations of the International Astronomiocal Ooinnission 4, Prague, 1967) is
denoted by ET0, ETl and ET2, respectively, where the suffiwms 0, 1, 2 veflect
difforences in systems of astronomical corstants and not differences in defini.
tion. EI0 is official for Years 1960 - 1967} LTL for Years 1968 - 1971} ET2 for
1972 orwards} but any of tha three may be projected outnide its official repiua
using information in the Amarican Ephemsris. Differences among ETO, LTL and ET?
4t corresponding Universal times are generally less thian 300 milliseconds and
the precision of each is of the order of 100 milliseconds. At the present time
when & suffix is not used with ET, then ET2 is implied. The following simple
relation holds:

LT = UT2 + AT

AT is given in the American Ephemeris and is presently of the order of 43 seconds.
Sometimea a subscript (0, 1, 2) is attached to AT to indicate that when added to
UT2 one obtains ETO, ET1, ET?, respsctively. Also as a matter of practioal con-
venlence AT is sometimes tabulated siich that when addad to UIC one obtains ET,

The standard epoch of epheameris time is 1900 January 075 ET. The instant to

which this designation is assigned is near the beginning of calendar year 1900
when the geometric msan longitude of the sun referred to mean equinox of dite was
precisely 279° ul' 48Y04, ‘The primary unlt of aphemeris time is the length of
the tropical century at the standard spoch. This ephemiris seuond is
(1/315566925,9747) part of the primary unit and almost identical to the mean solar
gucond (to better than 1 part in 108).

Ephameris time is uniform within the .imits set by the theory and constants used
in its dctumimfion. Agreement with atomic time is good, If we compare ET with
the function (32% 15 + AL) over 4 ten year interval we obtain an average dis-
agreument of only 10 milliseonnds with no discernible trends or perdodic varia-
tiong, Since ET is not known accurately for several years after the fact, It in-
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oconvenient to estimate it from

ET = 32515 + AL
ar altarnatively from

ET = 32018 + I AT.

Ephemeris time agreed with Universul Time at some instant around 1903, and the

ephemerds day is approximately the average of the mean solar days during the
nineteenth cantury.

ils  Broadcast Tims (UTC) (Coordinated Universal Time)

This is the time system in use at AFETR, UTC and AT have a mathematically de-
fined relationship between thems They are equivalent pieces of information,
The time unit in each is the international atomic second, Time expressed as
Al' (BIH) and time expressed as UTC (BIH) differ by an integral number of
international atomic seconds. This difference is adjustable by plus or minus
one second at the exact beginning of sach calendar month in order (o insure
that the disagresment between UTC and UT2? will not exceed 0.7 seconds. This
adjustment will normally take place no oftensr than once every eight or ten
months and will be announced eight weeks in advancs.

Time Servios Publications Series 7 and 11, published by the U. S, Naval
Observatory (USNO), and BIH circular D (USNO Series 185) provide information for
comverting UTC to UT1, UT2, Al, IAT, and ET, This information is availahle
weckly and projocts ahead tw: weeks, Algso provided arc meusured and two week:
uxtrapolation of the insta-tansous pole.

Information ir these bulletins can be used to compute the instantancovs angular
velocity of the earth, Time Service Bulletin Series 7 provides a current
numerical vdalue for

DUl = UTL - UTC

and also the tims derivative of DUT1 which here will be designated by TOTT.
With this Jdimensionless constant than the inertial angular velocity of sarth
over period covered by the hulletin is (in units of rudians per international
Atomic pecond):

wy & .0000729211514667 (1 + o

{




i The corresponding angular velocity of the earth relative to mean vernal
. equinox is (in units of radians per international atomic second): .o

ap = (,0000729211585468 + 428 x 10°1%1) (1 + TOM)

where T is the number of Julian centuries of 36526 U,/. days elapsed since
K © noon UT on January 0, 1900,

Present day precision orbit work takes account of this variable rotation
rate.

I. Solar Time

3 The definition of Greenwich mean solar time {s not identical with the R
g definition of Universal Time (UT2). However in practice no distinction is R
5 made numerically; and Greenwich mean solar time, or simply Greenwich mean p
: time, or simply GMT, 1s set equal to UT2. The following relationship applies ']
E between GMT and local mean solar time (LMT). a ) !

: GMT (s.cs) ™ L"T (s.cs) * L._OCH W. Lonﬂo ‘M‘C SQCSQ
i 15 '
-

In this equation the units could just as well be (minutes and arc minutes)

¥ or (hours and degrees). The lutter S is nevar used to abbreviate solar since

"ﬁ it is already usad to represent sidernal. Mean solar time differs from 3
b apparent solar time by the "Equation of Time".

|
3 !
: Mean solar time = apparent solar tine - Equation of Time Ia
|
%
|

The Equation of Time is no langer included in the American Ephemeris but
i3 1isted in the Nautical Almanac.

J-8
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J.  Zlone Time (27)

The world is divided into twenty-four zones eech having a width of 16° (one
hour) of longitude, in each of which the same standard time 1s kept.
(Sometimes the border of a zone is ¢lightly modified to make it correspond to
certain geographic boundaries.) The meridian of Greenwich is taken ss the
center of the system and of Zone 0. 2ones eastward from Greenwich are
numbered AZ = -], -2, etc., progressively and those to the wast, AZ = +], +2,
atc., according to the number of hours to be added to ZT to obtain UT,

Thus

UT = 2T + AZ

where AZ {s called the zonal correction or zonal description. The twelfth
zone s divided into two parts by the date 1ine, that to the west being

Al = +12 and that to the east AZ » -12, When crossing the 1ine on a westerly
course, the date must be advancod one day.

In the center of each zone is a standard meridian. The zone time corresponds
to the mean solar time at that meridian. For example, in the Eastern Zone
(aZ = +5) the standard meridian is 75° ..«st longitude.

In practice, zone time is usually regulated according to UTC.

K. Julian_ Dates

The system of Julian day numbers is a continuous sequential numbering of days
from an epoch so remote that all astronomical events o€ historical record
will be assigned positive Julian dates. The epoch of the Julian cycle is
4713 BC, January 1, Greenwich mean noon on the vulian nroleptic calendar, at
which time the Julian date was exactly zero.

Jul'en Data (JD) 1s measured in days of UT. Julian Ephemeris Date (JED) is
measvres in Jays of ET, Cither date is specified' by the day number followed
by the Jeu“Mal portion of a day elapsed since 12h UT or ET. A table of day
numbers ‘s given in the American Ephemeris. (JD) and (JED) are related by

J "9




JED = JD + AT

where AT has heen previously discussed on Page J-6 and here nust be supplied

in fractional days. l;

There s a Modified Juliair Date (anathema to most astronomers) defined by

L, Begselian Date

The Besselian year beqgins at the instant of time at which the right asrension

of Nawcomb's fictitious mean sun, affectad by aberration and referred to the
mean equinox of date is precisely lBh 40", This instant, designated by the
notation (.0) after the year (e.g., 1950.0) always falls near the beainning
of the Gregorian calendar year. 1900.0 1s the basic epoch, which corresponds
to CED 2415020.31352 = 1900 January 0,81352 ET, The JED for the beginning of

arny other Jesselian year may be computed from

JED (1900,0 + ) = JED (1900,0) + (365.24219879 -
0.856 x 1078 1) T

where t is integer years,

The length of the Besselian jyear differs only a fraction of a second from the

lenqth of the trobical'year. The length of any particular Besselian year is
Besselian year = tropical year . 05148 T

where T is measured in tropical centuries from 1900.

Every usage of decimals with years impiies that Besselian years are intended. 8




M. Constants

It is not the purpose of this uppendix to provide constants, but
as a matter of convenience the following approximate values arse

listed:

" Time lntervals:

Earth inertial rotation period = 86164,0988041 mean

1 Tropical year
1 Sidereal yoar
1 Julian year
1

Sidereal (sec, hour, day)

[

1 ntomic second

Universal time unit
1 mean solar second

1 aphemeris second

 Earth sidereal rotation period = 86164,00054 mean

368,2422 mean
3658,2564 mean
365,28 mean
997269566414 mean

solar secs,
solar secs,
solar days
solar days
solar days
solar (mec,

hour, day)

1 ephemeris second
1 part in 10a

1 ephemeris second
1 part in 10°

1/31556925,9747 of

"1 mean solar time unit

to about

to about

length of

tropical year 1800,0

In encn of the time systems (sidereal, universal, ephemeris,

mean solar) there are 60 seconds por minute, 60 minutes por
hour, snd 24 hours per day,

Standard kpochs

1900 Jan 0,56 UT

1950 Jan 0,5 uT

1900 Jan U Grecnwich mean noon
1899 Dec 31 Greenwich mean noon

JD 2115020,0

JED 2415019,99995

1950 Jan 0 Greenwich mean noon
1919 Dec 31 Greenwich mean noon

JD  2433282,0

JED 2433282,00034

o,-ll

acataca-s ol

.




Standard kpochs (continued)

Besselian Date 1900.0 = JD 2415020,31387 )
= JED 24185020,71352 ' ]
= 1900 Jan 0,81352 ET §

Besselian Date 16850,0 ~ JD 2433282,42309
' = JED 2433282,42343 ]
= 1680 Jan 0,82343 ET ;

N. Timing Polznomialn

The primary timos used in trajectory and orbit determination _
work are ET, AT, UTl and UTC. At correaponding instants these N
various times have been tabulated by the U.S., Naval Observatory,

As we have seen, discontinuities exist in these relationships, .
4 but continuity is maintained over discrete time periods of the o v
- order of months, JPL, BAO and cthers have fit these taculsted \J
data over discrete time periods and interpolate over them, The

difference between ET and AT is described by a simple constant,

The difference QQtwoon ET and UTC is described by a simple

constant, The difference between ET and UT1 is described by a

second degree time polynomial, The difference hetween UT1 and

UTC is described by a mecond degree time polynomial, The errors

associated with the polynomials are about one millisecond,




APPENDIX K

W) HQUATIONS OF MISSILE MOTION FOR THE TEST RANGE Lo

This entire discussion 1i from the viewpoint of the mimsile test
range performing its primary funotion of dotermining the
trajectory of a test mismile from radar tracking data,

Consoquently, we will consider only three-degree-of-freedonm
motion,

The basic accsleration equations in an earth-tixed coordinate
system are:

[ ]

e = G. * 8. * R' + D. + La * T. )

[ ]

g = G‘ + 8' + Rg + Dg +* L‘ + Ts , Where l

¢, f and g represent coordinatus in a geoccentric rectangular -
(;) earth=fixed coordinate system, with the e axis in equatorial ijf
plane through Greenwich meridian, f in equatorial plane through
90° east longitude, and g polar northward, The mubscripts on
the right=hand side refer to compononts along e, £ and g axes,
G reprerents acceleration due to gravity, S represents Coriolis
rccceleration, R represents centrifugal acceleration, D :
represents drag acccleration, L represents lift acceleration, o

Wind accelerations are included in 1ift and drag, T represents i
powered thrust,

i

Appandix T treats in some detail the acceleration due to gravity, %

The Coriolis and centrifugal terms are, respectively i

S, = 2w ‘

§ S, - =200 ’ :

; % 70

E R, = w’e ) :
L Rr - mzf and

; SR




where @ is earth rotation rate relative to inertial coordinate
system,

Drag, by definition, is the component of the aerodynamic forces
direct>d along the negative relative velocity vector (-V). The
relative velocity vector components and total magnitude are

.
vt = f"wt »
V‘ w g =~ w‘ and

<
[ ]

1/2
2 | 2
(Ve + Vf + V‘ )

W represents the wind velocity moeasured in the rotating
coordinate system, The drag components are

/ AC
D
o = =, (m)

Dy = =pVWVW, \ wy and
( AC )
D“ - --‘pVVg ) .

12 thesio equations p represents air density; A represents cross-
soctional aroca of missile; CD representsn drag coefficient; w D
represents mass of missile; W and p are, of course, functions of -
altitude and are obtained from hawinsondo data, )

AC )
( EWR) may be exprossed as a fumition of various parameters, i

Options roquired are a table of CD ve time, Cp vs Mach number, )
and CD va altitude with up to 3U0 ontries, Also required is a ~
fifth degroe polynomial to bo usmed oither as a table multiplier i
or independently, A choice of either time or altitude should be
available as independent variable in the polynomial, It is quite

proctical to solve for all s8ix polynomial coefficients in a lonst
squares adjustment,

K2
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The 1ift acceleration L ncts in a planc perpondicular to the
rolative velocity vector V, It also liem in a plane containing
tho relative volocity vector and the longitudinal axis of the
mimsile, Thoe lift acceleration has a magnitudo

AC
l L = pva ("w—l‘)

where Cp is 1lift coefficient, C, varies atrongly with angle of
nttack and is in fact mero for zero angle nf attack.* CL alao
varies with Mach and Reynolds numbers, In order to visualize

tho direction of the lift vector, imagine a plane perpendicular
to the instantaneocus relative velocity vector and passing

through the center of gravity of the missile, Let the center of
gravity of the missile define the origin of a rectangular
coordinate system in this plane with the P axis lying in a
vortical plane and pointing positively in an upward dirvction,
and with the Y axis pointing positively in a horizontal direction
to the right as viewed by an obmerver looking in the direction of
niissile travel, The lift vector lies in the P=Y plane and its
diroction is described by an angle 5 measured positively clocks
wirke from P by an observer looking in the direction of mismile
travol,

Options required are a table of cL and 6 vs time, C and 6 vs
altitude, c cos 9 and C sin 6 vs time, and c cos 9 and C

sin 6 va ultitudo with provinion for up to 300 ontriolo** Alno
required is a pajr of fifth degree polynomials to be used oither
as table multiplicrs or independently, A choice of either time
or altitude should be available as independent variable in the
polynomials,

*Tho angle ol attack is the angle hetween the relative
velocity vector and the longitudinal axis of the missile,

‘*CL cos ( i sometimesm called coefficient of 1ift, CL sin 0 is
sometimens canlled coefficient of side,

K=-3
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§ Attempts at ETR to use pulse radar track data to determine

: separate precessional and nutational components in an epicyclic e
description of the motion of a spinning missile have been un- d 3;
successful, Hence, the simpler treatment described here has B
N heen adopted as standard practice and is adcquate for trajectory 3
computations,

)
=3
d ’
-
L]

- The P-Y components of the lifc¢ acceleration are simply

5 = L cop @ and
Y = L sino®

whore CL' 9, CL cos O ¢~ CL 8in 6 may be ropresonted by
polynomial or the produs:,of a polynomial nnd a table,

7 The }ift acceleration will now be resolved along the efg

‘&l cvordiinte axes, Lot J1 ryproscnt a unit voctor from missile
} dirocte ]l toward the center of the earth and let V1 ropresent
unit ~alaL1ve velocity vector, Then let

\ }
1 g xy! |
Y ~ Stast— )
‘ | =)
and '}
‘ Pl ™ !1 x Y_l ‘

where the supersoript (1) is used to denote a unit vegtor,

. Pl has components P l, P 1, P 1. Yl has components Y 1. Y 1. o
: - o f R - [ ] | 4 3
y Yul. Sinco these components are nothing more than direction )
QoHinus, \ ]
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Instead of CD and CL’ the missile contractor is likely to give
Cy (the lxia} force coefficient sometimes also designated CA)
snd Cy (the normal force coefficient), Cy and Cy are referenced
to the body axes of the missile instead of to the veloocity
vector, cn and CL may be obtained from cx and c“ as follows:

CL - CN cos Qp, = Cx ain Ap

whore “T is total anglo of attack,

The total angle of attack °T is the angle betweon the relative
veloecity vector and the missile longitudinal axis, It has come
ponents ﬂp and GY in the pitch and yaw planes respoctively,
The sngles GT, Gp und ﬂY are relatud as follows:
] 2 2

tan uT w tan GY + tan ap .
[Figuro 1 shows the mimssile body axes, the velocity veotor with
its components, and the total angle of attack with ita components,

The origin of tho XYZ coordinate system is at the center of
gravity of the missile, X extends pomjitively forward along the
misiile longitudinal axis, Y extends positively horizontal and
to the right, Z complotes the rectangular right=handed symten,
I{ we define tho aerodynamic accelerations acting along the
negniive missile nxes (=X, =Y, =Z) by AX, AY and AZ respectively,

K-8
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AC

AX V3 (,'—") ,
AC

‘\Vz -,w!) and

Ac,
AZ - pv? (wﬁ)

whore cv and cz are orthogonal componenis of the normal force
coofficient and have the relationship

AY

2

2
N * Cy

c e

The magnitude of the golultant aerodynamioc accocleration vector
is given by any oY the following alternative exprossions:

1/2
[c.\xg? + () m.)’]

1/2
VA, a8, .
B " v oy v 0

1/2
2 2 2
ngA (Cx + cN )
2 1/2
VEA 2 2
P.“_ (CD +C )

Apain referring to Figure 1, we note that the velocity vector y
defines a roctangular solid with sidos Vyr vy and v,+ The totel
angle ol attack is inheronily positive, I[ts componenta *p and
aY oxtond positively as shown, ‘The orlentation angle ¢ of the
normal lorce i8 moasured in a piane porpendicular to the missilo
axiN and 1is positive clockwisce from the intorscction of the
vertical plane through the missile axis a8 viewed by an obscorvor
looking forward along the mimsile axim, We have mimply

-tan @

'
[
.
Y
k

T

Y
tan Op
K=7
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Thee TiEt arlentation angla 8 (definod previoudly) {8 piven by

cou2 GY - tan E tan F

In thoso oquatione tho anglos Ayr Opy GT' B, E

tan P sin K com QY - #in “y v
tan ) = ;
tan P sin 0y + 8in R com @,
whoero
sin K « tan @, cos O, ,
tan L sin uY
tan £ = and
tan b min ¥ com GY + com B
con GY (tan F + tan k)
tal ), = .

and & all lic

1niido tho rogion =90° & 80°, Tho angles & and 9 1ie in the

quadrants detorminud by the sigus in the numerator lﬁd donomi«

nator in tho oxprussions for tan ¢ and tan 0,
mneasurecd from ihe horizontnl positively upward
extonding forward along the missilo axis, Tho
flight path angle measured from the horizontal
to the velocity vector,

Tho ronalning Lerms in the oquations of motion
with the powered tnrust, S8ince powarod=Illight

Thu angle % im

1o the vector
angle F is the
positively upward

are associatod
trajectorios on

the test rango arc estimated on r point=by-point basim, equa-

tions of powured flight are usud very littlo,

Howevor, there

are two formulations of powered ftlight which are useful and will
be prosentod here, The first option is residual thrust aftoer

bi nout

" il s s
e i ‘AM il Baga s
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T = T, %P [- A (t-to)] -

This thrust vector acts along the velocity vector V with an
original value of To acv time to and decaying with a docay
constant A, It is practical to estimate T, 6 and A in u least
squaros udjustment, T can be readily transformed to thse efg
coordinate system as was demonstratec for the 1lift acceleration,

The socond option usos three sets of fifth degree time poly-
nomials — one set for each of three hurn periods, Each met
consists of three polynomials = une polynominl for each of three
roctangular coordinates, The rectangulay ccordinate system used
im ofg, In this powered flight option provision should be made
for mseveral intervals with corresponding start and stop times,

In the event that the same computor program is to be umed for
procision satellite and space probo work ns well as missile
trajoctorios, then the earth-fixod coordinatc system used here
should be roplaced by an inertial coordinate system,

NISCUSYION OF OPTIONS

1t is impomsible to doscribe exact procedurcs followed in all
trajectory probloms, A few gencral and somewhai heterogenous
comments will be oftered,

The mathematics presented is useful for either spinning or non=-
spinning projectiles and even aerodynamicnlly guided missiles,
I'or free=flight trajectories ontiroly above 300,000 feet, the
thoiece of epoch is purely one of convenience or program limita-
tion and has no influence on the accuracy of the computed
trajectorias, 'n the computation of reentry trajectories, it
is nearly nlways good practico to set epoch for the position -
volocity vector at roentry - genurally defined as 300,000 feet
altitude, The reanson for thix is that track data above 300,000
feot altitude usually provide highly accurate estimates for the
valuca of position and velocity at reentry and these ostimaton

K=9
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are rclatively unimproved by the track data at lowexr altitudes,
These eatimates are given heavy woight in a recontry computation
and can, if nocessnry, be onforced so as to assure continuity
with tho midcoursc trajectory. Reference time for the drvay
polynomial is usunlly hest establishod at impact time, which is

‘ordinarily known from the time of loss of telemetry signal,

The roason for this choieo is that one can set the a priori
vnlue of the constant term in tho drag jolynominal to corraespond
10 theorotical drapx, and by putting en a priori small standard
doviation on thim vaiue onn can onaure that the final drag cuvvoe
in the extrapolanted region noar impact will not depart too ftar
from thoorotical, Becauso lift may be linown to be xero ovor

the last 10 or 18 seconds before impnect, it is deairable to have
o start time and stop time onpability in the program, The
referonce time for the 11ft polynominl may be sot, for oxample,
Al 15 msuvconds prior to impact, and tho a pricri value of the
constant torm in the lift polynomial may ho chosen 1o corrospond
Lo zoxo [ilt with an a priori smnll standard doviation, Lift
vould bo set to torminate 18 seconds boefore impact,

Time 18 moMt prenorally usoed a8 the indopendent variable in the
acrodynanmic tablos and polynominls, but there nrce occasions
whore othoer independent variablos are prelorable, When the duvag
ve Mach number i4 not doubla-vnlued, such o tableo ean cot=
venlently heo used for a numbor of trajectorieos associnted with
tho same missile, Also it can be met up prior Lo launch,

When impnet time 18 not known or when it is desirable to set up
the program prior to launch, it may be desirable to uso nltitude
in the aercdynamic tables an<i polynomials instoad of time,

When theoreticnl nerodynamic tables are available, they should
always he used becoume their use reduces the required number of
ndjusted parametors and computor running time, Tnbles are nover
auhsolutoly necessary, howoever, if there arc sufticient trnck
dota, Low=degree independent polynomials represmenting CL cos ¢
nnd CL gin ¢ cannot he umsed roalistically for precessing ro-
cenlering minsiles, If independent polynomials are used in this

K=-10




caso, they should represent cL and 9 - and convergencs is
generally agonizingly slow, When 1ift tables are used along
with multiplying polynomials, the best form of the 1ift table

is CL cos & and cL sin 6, In tables of cL and 9, 6 is not
usually monotonic, and hence a polynomial multiplier of 6 cannot
he used, and a polynomial multiplior qr CL alone would not prow=
vide sufficiont flexibili .,

SINGULARITY CONSIDERATIONS

It is well known that the coefficients in ordinary power series
polynamials are highly corralated in a fitting process, and this
gorrelation becomes progressively worse with higher degree
polynomials — a situation conducive to loss of precision in the
ndjustmont process, Thim problem is frequently relieved by re-
sorting to orthogonal polynomiale, It has in fact hecnme a rule
of thumb in numerical analysis 1o use orthogonal polynhominls
somatimes [(or sixth degree and always for degreos of sevon or
more, Bolow mixth degree the bunefit from orthogonal poly=
nominls is marginal, Since in estimation of aerodynamic
parametors we are concerned with polynomials usually fo highor
than thivd degree and never higher than fifth degree, orthogonal
polynomials are not presently used for thils applicntiion at this
test rango, Whon singularity problems are encountered with the
polynomianl coefficients, the aualyst may roduco the dogreo of the
polynomial, set smaller standaid deviations on #some of thoe

n priori values, or resort to ridge regression. (Sce Appondix @
AA,)
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APPENDIX L

%;5 Transformations of Pairs of Angular Coordinates

This report has discwssed primarily transformations of coordinates
defining precisely a point in space. Many times there may be only
a pair of angular coordinates defining the direction of the point

from soma origin, perhape topocentric right ascension and declina~
tion (a, §) or xadar azimuth and elevation (a, ¢). The problem is
to transform from one to the other set of angular coordinates.

The rotations are performed exactly as for a point in space by
asswming & point along the line of sight to be located at unit
distance from the origin. For example, consider a topocenter at
(¢, v), vhere ¢ represants geodetic latitude and y represents aeast
longituda from Greenwich., At this origin erect two right-handed
rectangular coordinate systema. Thg first is tha usual radar
system with x east, y north, and 2 up., The second is an eguatorial

e syatem with X and Y parailel to equatorial plane and X toward

(o vernal equinox. % is parallal to polar axis and pointing northward,

Two rotations are required to get from XYZ to xy=:

TN TV T W . =

x 1 0 0 co8 § -gin ¥ 0 X 1
g Y = [0 cos & sin @ sin ¢ cos ¥ 0 Y
o ] 0 =-8in @ cos ® 0 0 ) § Z J
% where

6 = (90° - ¢)

v = (90° + y + geodetic east longitude of vernal eguinox)

If we represaent the elements of the combined transfer matrix by
bij and transform the rectangular coordinates to their angular
eguivalents,
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- “ - r 7 ]
Co8 e COos a by DbBj2 By, cos § cos a
cos & sin a = |b b b ocos § sin o i
21 22 23 i
. - hoo - L '8
Henoce
b,, cos § cos a + b,, con & sin a + b,, sin ¢
” tan a » .-3-!‘-:- e Ecz , 23 .
) Ryy 008 § cos @ +. by, cos § sin a + by, 9in §
, #in e = b,, 008 & CO8 & + by, 008 & 8in o + by, sin &
) “a" will be located unambiguously by covsidering signs of numera- o .75"'
k! tor and denominator. The sign of sin » will determine esither first X
or fourth quadrant. : (
Clearly in transformations of pairs of angular coordinates it is . j-"
i hot possible to translate the origin. R -
‘; ' \. / ‘[ 7
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APPENDZIX M
The ADBARV Orbital Elements

These elements are defined in an inertial frame and represent
respectively right ascension (a), dsclination (8), £light pash
angle (B8), asimuth of velocity vector (A), distance from earth
mass centsr (r), and scalar velocity (v). They explicitly define
position and velocity vectors at some particular instant or epoch.

The position vector orxiginates at the ocenter of the earth and
texninates at the orbiting bodv. It has magnitude (r) and orien-
tation defined by (a) and (6). (a) and (6) are described on
page 19 of this report. See also Figure 20. '

The velocity vector with magnitude (v) originates at the texrmi-
nus of the position vector and extends in a direction defined by
(8) and (A). (B) is the angle batween the velocity vector and
the extension af the positior vector, For example, (B) is zero
for an object traveling outward along the position vector and is
20° for an object traveling perpendicular to the position vector.
In oxder to describe (A), we arect a local horizontal plane per~
pendicular to the position vector and located so as to include
the point defining the terminus of the position vector and the
origin of the velocity vector. From this peint and lying in the
horisontal plane lies a northward reference direction line N,

The projection of the velocity vector upon this horizontal plane
defines a direction line V, (A) is the angle measured eastward
from N to V. %Thus if V points north, then (A) is zexo. If V
points southwest, then (A) is 225°, (A) and (a) are defined in
region 0° to 360°, (8) is defined in region + 90°, B is defined
in region 0° to 180°,

It is useful to relate the ADBARV elcments to the (xyz) geocentric
inertial equatorial right-handed rectangular coordinate systen.
X extends positively toward vernal equinox and z is coincident

M-1
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with polar axis and extends in a positive directiqgn northward.
The relations fellows

X =y oos & gos &
y=reinoooné
g = ¢ sin GU

& = {(oon 6 oo & -cos A sin B sin &) cos a » sin A sin o sin B]

-{(ooolcplc-oonhnnslnﬂ uncd-unAooluqinQJ

e

i g = {oo- Asin 8 cos § + cos B sin ‘6]

1/2
(x2 + yz + lz)

1
. /2 .
+ 33 / i

”
|

ve (x2+ g2

™t ) | .

sin™ (5 o

8 = cos~l (an'c + wu' + :i)

i oo

N T e—— T L S

>
[ |

tan™? [..Lx = vk) ]

y(y: = 8y) = x(sx = x=)

| In order to locate (a) or (A) unambiguously in one of four quad- ;
' rants, the signs of numerator and denominator must be examined
saparately. (8) is locatod (+) depending upon the sign of s, ‘
(8) is located in first or second quadrant depending upon the

sign of numerator,

H
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APPENDIX N
MEAN ELEWENTS

INTRODUCTION

In this report the classical clements a, e, i, 0, w and u have been
discussed along with equations relating them to rectangular position
and velocity components. The squations presented relate osculating
orbital elements to actual position and velocity rectangular come
ponents; and they also relate mean orbital elements to mean position
and velocity components, The purpose of this appendix is to relate
osculating elements and mean elements,

The concept of mean elements requires a few words of explanation.
If a central force field were the only force acting on an object,
the classical Keplerian slements desoridbing the sise, rhape and
orientation of the orbit would remain constant in time, Because

of parturbative foraees the classical elements vary significantly

in time. Two of the most influential perturbative forces are asso-
ciated with the second and third degree sonal harmonic teras

(J2 and Jy) in the geopotential. These forces cause secular, short
pesriod and long period variations in the classical elements of an
earth satellite, Short periods are of the order of time of one
complete passage of the satellite around the earth, Long periods
are of the order of time of one complete passage of perigee around

‘ the earth. The elements as affected by J2 and J3 are oalled os-

3 culating elements., It is possible mathematically to remove the
periodic effects of J2 and J3 and arrive at new elements called
mean elements, (If only the short period effects are removed the
new elements are called quasi-mean.) Mean elsments will still vary o
with time but the variations can be described very closely by '
third degree time polynomials. Consequently the mean elements
lend themselves to what is called general perturbations--a fiald
of immense value in orbit determination and ephemeris generation
over relatively long periods of elapsed time. In summary, the
osculating elements represent the actual position and velocity !
of the object but are poorly behaved in time. The mean elements v

=Sy
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do not represent the actual position and velooity but are well
behaved in time. The ability to transfora between mgan and
osculating elements provides the capability of knowing the actual
position and velocity associated with mean elements, The name
"mean elemant" was given to the modified element because it rep-
resents a cacoth "average" value through the cyclic behavior
characteristic of the osculating element.

A typical application in orbit determination is as follows:
First, each pass of tracking data is reduced to a state vector
(i.0., position and velocity components) using some fora of
filter. Second, all such vectors are transformed to sets of
nean Keplerian elements, sach set corresponding to the time of
that particular pass, Third, polynomials in time are passed in
4 least squares sense through individual mean elements. The
repulting polynomials then represent the multi-pass solution and
aay be used to compute a set of mean elements at any particular
time of interest, perhaps much later than the observations. At
this time of interest then the computed mean elements can de
transformed to osculating elements and thence perhaps to look
angles for some sensor,

The use of general perturbations and mear. elements avoids the
time consuming numerical integration associated with special
perturbations and alsc the round off and truncation errors; and
consequently over long periods of elapsed time genersl perturba-
tions are sometimes preferable to spscial perturbations.

At AFETR the Kozai formulation has besen applied supcessfully in
many routine calculations, The Fraser formulation has also been
used and here is considered supsrior in several respects to the
Kozai method, Algorithms for both transformations will be given.
In addition, a selfecontained description of ephemeris generation
(recommended by Aerospace Defense Command) using simplified
Reneral perturbations is given in Section V of this appendix,
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I. Kosai Algorithm - Quasi-Mean to Osculating

Given quasi-mean elements ¥, ¥, T, &I, § and N, compute corresponding
osculating elements a, ¢, i, 0, w and M, where

¢ $a

¢+ de

) 61.

+ ca.

¢ cu.

¢+
LA

2
-
Xl 8 © =

M =

First compute iteratively the eccentric anomaly E from Kepler's
equation:

B, « @ oinf; - i
i i

18 CQ.E’.

where Ei * ¥ can be used to start the process. Iterations eon-
tinue until successive differences are negligibly small, Then
compute the true ancmaly W ,

i 1 3}
I 7 on 2 tan-) [1 ¢ :J oin\7
1-9 OOI(;)

The mean radius from the center of the earth to the object is

given by
¥ F = §(1 - T coask)
: ¥ and the mean semi-latus restum by

P v 31 - a?)
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Then *
% %‘;—L- sin’T||1 - oi
! da ]
i s Jr
3 1 -?-‘1 - 7 lil\ ][1 - .]

- 3 _*
o L/2y o 3 Nljk- -1 - ]

g :{"L ¥ 8in :) @
3 *(é) 04n’T cos2(W + @
. -

1
ty

1
‘y

s
)

+ ~ cos(In ¢ 2%) )

2
. 8in°l ( J )(aon(?\'# W)+ T cos(ii ¢+ 20)

84i_ = —;-!- linﬂtcon(i ¢+ §) + @ coalh ¢ 2@) \

1-9 un"f][(-l-;)a - (1 - :’)+}

3 —
E) 8in?T com2(F + 3)}
Y Lo

2¢ \ap

@ coa(dn ¢ 2'6)}
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3 2
where J =& 7 J2 a,

and a_ is equatorial earth radius.

For & equal to or very nearly szero the Kosai method is not applicable
because of choice of elements,

II. IFrazer Algorithm - Mean to Osculating

Preliminary Disecussion

Given mean elements &, &, I, 1, §, H compute corresponding alements
8, ¢, i, 0, w, M. The firet step is to develop unit vectors 9,9,
!. The reference plane is the orbit plane and contains U ana ¥,

W is perpendicular to the reference plane. Thease vectors are ex-
pressed as components in the usual inertial geocentric equatorial
rectangular system X y 3 (page lu):

"l.lu'1 (008T cosll - sinG sinll cosl
U Uy » |cosy sinll + sinG cosll cosl )
N
U, oinT einl |
L - o -
vaﬂ « 840U cosll = cosl sinll cosl
V s Vy| |- oinT oind + cosT cosll cosl
E LY'J cosu sind i
b r
] wa r;inﬁ sinl 1
Vo wy * |« cosfl sinT
i | W, cos{
L L _J
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Then compite # as in Section I of this appendix. Next

P &= W1 - 8%)

F '——L-
1+ @ cosh
o K5 sinfy
"]
-7 1
FAoe _-_x-:] (1 + T cos®)
P

where K is sarth gravitational constant.

C) The mean state vector is

]
';7-37 e 70

5

%
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The osculating state vector* is i;) N
| %] E
] +
& R afy|s FeP .  ;
i 3 ii
i %
! , . {
3 It is convenient to break ¢F and &5 dewn into short and long period ' 4
. variations |4
| » - *» ' X
- ér = Gr. + dr‘ S
.'.".; * ? ? ' l
) | §» = &, ¢+ ép, 3
l} . ?’s
Computation of Short Pericd Variations ¢F, and ér, §
! . - 1
! Gr' . Gr. g r(8u, + 8n, cosT)¥ :
: 5
] ¢ F(84, oinT - 80, cosd ainD)¥ B
oF [8F, - F Ridu, + 6 0 :
*y f ry = F nldy, A, cosi) U L
» v *>
¢ [8r0, + N(8u, + 60 coald IV
+ C;(Gi. sinid ~ 80, cosu sini) ;
- - - - ‘
+ 7N (61, cosl ¢+ in, 8ind sinD)IW 3

; : *The classicel omculating elements may be derived from this state 1
! vector by mathematics of Appendix A,
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27, 2(e sinn)(e cosn)
(1 - 3 cos*D q—rn—
1+ (1 -8°)

2(5 cos?T - 2) ¥ sin(2G - W

*

+*

(7 cca?l - 1) 8in2¥ + 2 co6’l & 8in(2T - 'ﬁ)}

where
7 ol
e & —r
up
L]‘}
a
1 P

For orbits of low eccentricity it is desirable to compute (n - M)
where it appears above by

- - ..2+ — —
— i-l(losinn')(g&-g) 4-14.9”"]
non R A [, + & cosh 1+ (1¢+sH)T )

o -3t S einf
1 ¢+ & cosW

Computation of Long Period Variations GFt and 6;,_

63‘ * 6, F[linI(l + @ cosn) sinu G

s e ST

+ ginl(2 + @ cos?d) cosu V ¢+ cosT & cosh ;J
+ + -
¢, = - a, (-_L) [#inI(1 + 7 cosR) cosT U
P

+ sinlCednd + @ sin@)V + cosl & sinf w)

- D 5 T U WP P G - S

where J
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III. Transformatlion from Ouculatin; to Mean Elements

In this and the subseguent section the use of the word "mean" is
intended to include not only mean but alsc quasi-mean. This trans-
formaticn cannot be made directly, but must be done iteratively,
each iteration requiring about as much computation as an ordinary
direct computation. In the case of the Fraszer elements thrse
iterations are nearly always sufficient. In the case of the Kozai
elements sometimes many more iterations are required and special
techniques beyond the scops of this report may be necessary. The
approach given here applies explicitly to Fraszer clements but the
same general approach may be applied to any elements.

Given a, e, i, 0, w, M, compute &, &, 1, U, G and M. As a first
step these osculating elements are tranaformed to the true oscula-
ting state vector: :

]r

od 3¢

[

This vector and the accompanying osculating elaments ars taken as
the first estimate of the mean elements in the following iterative

I |

process:

n
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+
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The three equations included in the dashed line represent one E
3 iteration. The result from the third equation is used as direct '

: input to the first squation and also (o compute & new estimate 3
§ of the & veotor for the first equation. When D meets convergence 3
ﬁf' criteria of 1.0 foot and .001 ft/sec, the process is said to have 1§
Qé,' ccaverged and the assoglated mean elements from the following third
e equation are mccepted.

R IV. Transformation of Mean Elements from Epoch at t; to Time t

The equations for mean element update are simply Maclaurin's
b series expansion .

A = toe t,

- » ‘2
a = + ad ¢ - A
-_ . ‘2
0-.00.50-!-5

T « T + 44

s L 8,2 [
wd + T A :

€l
L]
€l
o
+

| = f .2
{ ﬂ-ﬂo*ﬁAOIA

H o« H°+EA+§A2+§-A°

In the equations of this section bars will be omitted but implied
over the time derivatives of the mean elements. Thus & means the
first time derivative of &a. Subscript (0) is used to represent
epoch conditions, n represents the mean mean motion and is
equivalent to M. As implied in the introduction to this appendix
these derivatives are preferably estimated from empirical fitting
of tracking data. There are occasions however where analytical
expressions are useful. One particular application is the use of

N-12
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known analytical relationships to constrain the experimentally
derived derivatives. Consequently analytical relationships for

the mean element derivatives will be presented here. Ve will need

. A | -{515,[1 .3 Q?-._ﬁ* Q-3 -m’I)]y .

In order to compute & it is first necessary to compute the rate of
apoges decay (A) and tha rate of periges decay (P) using MoNair
and Boykin'e method!

t

an
fo(l ¢ @ 425 cosh)
.

t

A o . 884008 [&KC1 ¢ 'i‘)] (1 + cosP)aR

¥ (1 - &

i 2w 1

s 884008 [(AK(1 - @) 'j‘.- w? . oae e — e

P 8 o | = p(l + @° ¢ 2@ coen) (1 =« cosn)dn
[ (1 +79 ] )

where B ® ballistic coefficient = 92:
[

where Cp * drag coefficient
A s preference area
W % mass

& = mean wemi-major axis assumed constant over one
ravolution

mean eccentricity assumed constant over one
revolution

o = atmospheric density at each integration step

31
'

true anomaly at each step
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Numerical integration is accomplished at 10° steps in T over one
complete satellite revolution, p is obtained from some model

atmosphere, :
4
Then
i - i (i + 5)
)
n o, .30
Tooa
i
bog
3 = ¥ (2d+ 2%
3
4 where
g [}
3 0 .
.‘ d = Qo? [1 + ——0-...—-_'
| 3(ny~ W) ‘
Er !
‘ whure
i n, = 16,667 revs/day
Q =» 0, Af :Vt 0,06

! Q = 4, 12 & < 0,06 and T < 16,204

Q =13, if£® < 0,06 and T > 16,204 .
Further derivatives are

é . _38® (’5. +_5i (;)

Y
(1 =-9) ]

T e s

o
| ]

Ve -
N ¢ 'd'
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Other relationships used in some algorithms are

o %] ¥ [1+§-8" ] wmere

<3 3/3 2 -8

hoeed @) Q=) 1=-3un?T)

2 = (- 4/3) (%/F) (n/2)
-‘ 3 - ovm [ @ -3]
‘1‘1 , - a/n —_'_ ’ "'8 N
; e = (=9 (“‘)(,) .
»e - [} 2 -
g = ("—Q_n_—‘-'-?-ug:)(;) -3 .
n

N=18
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V. EPHEMERIS GBNERATEW ESING SIIPLIPIE) GENERAL

NOTE: PFor simpliocity, the notation in this section is not exactly ,
the same as . in Sections I to IV of this appendix, 1

b 1,0 PHYSICAL CONSTANTS
The following are needed for the computation of the updated earth-
f1ix9d geocentric position and velocity vectors:

11467,874 (earth radii)a/(-nnn solar day)zt

Ca
»
B

1082,549 x 10~° 1

Jg = = 3,438 x 1070

F
]

6.30038749 radians/day &

This discussion carries the computation only as far as goo-
centric, earth=fixed position and velocity vectors, 1In order to
2 compute look angles, one needs along with the geodetic position
F of the station the NORAD spheroid constants:#

. Earth radius m 6378148 meters
i Earth flattening = 1/298,28

*See note Page N-323,

N-16




st M ad e i .t

2,0 COORDINATE SYSTEM

The adopted coordinate system is that of the mean equinox of
epoch and true equator of date, The following relation is used
for computing the value in radians of the geodetic east longi-
tude of the mean vernal equinox at epoch (to)z

Yo 8t t, = 4,5385375881 - 0,017202791451d
-5,0841 x 10°134% . 6,30038810r
0 = Vo at epoch < ar

where d is number of mean solar days elapsed from n“

Jenuary 1, 19580, Universal Time to 0h Universal Time of epoch
day; ¥ is the fractional part of a day from oh Universal Time of
epoch day to epoch,

3,0 TIME

Included in the Two=lLine Element Set im epoch year, epoch day snd
the fvactional day in UTC, UTC is used throughout all computa=-
tions; and i{f a discontinuity ocours in UTC between epoch and
time of interest, then thiu‘o!fcet should be taken into account,

4.0 OQUTLINE OF COMPUTATIONAL PROCEDURE

The Two=Line Llement Set includes eight mean elements, Three
additional mean elements are needed and must be computed by the
element user, These elevéen mean elements constitute the initial
conditions, To these initial conditions we first udd secular
effect~, .hen effects due to atmospheric drag, then long
periodic effects, We then solve Kepler's Equation and compute
some polar coordinates of the satellite, We then add in some
short periodic effects to obtain osculating parameters, These
osculating parameters are then transformed into explicit inertial
position and velocity vectore, A final transformation is made to
A rreocentric, rectangular, earth-fixed coordinate system, from
which Took angles may be readily calculated, To avoid s multi-
plicity of subscripts, the mubscript associatod with only the
most recent update or correction is attached to a paramsater,

N=17




8.0 EIGHT MEAN ELEMENTS AT EPOCH INCLUDED IN TWO-LINE ELEMENT SET

'o = mean anomaly (degrees)

{) = pright asgension of node (degrees)

w,. = argunent of perigee (degroes)

9

6. = ooeontrtdity (dimensionless)
i_ = 4inclination (degrees)

n_. = mean motion [rev/(mean solar day))

n. = time derivative of n, (rev/(mean solar day)?)

h. = second time derivative of n, (rev/(mean solar day)al

NOTE: As soon as these elements are input to the computer, all
angle measurenenta are transformed to radians. Computa=-
tion will proceed using earth radius units, rpdians and
mean solar days.

6.0 THREE ADDITIONAL MEAN KLEMENTS AT EPOCH TO BE
COIPUTID BY ELEMENT USER

semi-major axis [earth radii)

e 13
]

time derivative of 0 (radians/(mean solar day))

& w time derivative of We [radians/(mecn solar day))

These elerents are computed as followe: g

1
2' [K/nozl 3

e

56 = -3 300 ¥ (- F eind))

a. = a'(le é d - % 62]
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~2
: 3 2
TP = g dp [a,0-0.D)]  ng

b = ~TEMP cos i,

0
» T 2 2
W, - EMP (2+2,.8 sin 10)

It i convenient to include in this seotion on initial conditions
the mean orbital longitude Lo and the mean perigee distance 9,

Lo - “b + Mo + no

q, - L (l-co)

NOTE: All the preceding computations are to be performed only

=" once per element wet, All the remaining computations
must be performed once for each time point in the
ephemeris,

7.0 COMPUTE SECULAR PERTURBATIONS IN MEAN ELEMENTS
AT TIME (t-to) FROM EPOCH

Ly - L+ (no + @, + no)(tmto)

ﬂ' - Qo + no (t-to)

g - Wy + Wy (t-ﬂto)

8.0 ADD_IN ATMOSPHERIC DRAG PERTURFATIONS

1! 2 ) e 3
L, - Ly + 7% no(t-ta) + no(t-to)

. . 1" 2
n, = n, ¢+ no(t~to) + % no(t-to)
n %2/3
0
8, - 8, (—---"---nA y

q
- ] . —-57‘:-'- if uA zq, i otherwise e, = 0,




Bga " 8, 008y

Iy‘ - iA ein Uy

#,0 ADD IN LONG PERIODIC PERTURBATIONG

1 Js Sea 3+8 cos 1°

Ly == 375 5" i\woeT,
0 3 L‘ < 2y
. . a _1 Js sin 1°
yé yA "9 I3 TRy
. tan~! x4 0 <2
!L)‘ L an .u 3 (b‘ T
2 2\

P, - 8, (l-o‘a)
“‘ L] L‘-m‘-ﬂ. Q 3 M‘ < ar
M, = Eg,-e, sin K, (Kepler's Equation)

The solution of Kepler's Equation for E, by straightforward
iteration is as follows:

We drop the subscript (4) temporarily and introduce a subsoript
(k) to indicate the sequence of estimates starting with k = 0}

Ektl = N+ @ sin Ek "

Initiate the process with sin Eo = 8in M tOo obtain thp firet
entimate E1 and continue until a convergence criterion is met:

'Ek+1 - 'k' <€ .

N-20
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Having the eccentric anomaly E‘, weé compute the corresponding

";‘; true anomaly v,: _
1
o v 140 E b
by ‘ -1 ‘ ! ‘ i
n - e = tad ] tan :
2 1=, T |
vy E, 1
\ where =y= 18 evaluated in samne quadrant as . . ;'-,_
"Y u, - v, +m‘ 0 2y < 9
K
5 L\l r‘ - .A (1".‘ cos “)
,: . 1 .‘ win l‘
'\ ‘ r‘ L (‘.A), . —-—-—r‘ -
. 1 K
10.0 ADD IN_SHORT PERIODIC PERTURBATIONS '
i g J .
(“ ; 1 2 2
“ ‘ ,' *hn o m Ty ey 3-‘- sin ‘o cos 2 u, 3
: u - u -IJ2 (e-7lin31)-1n2
; h I | ;"1 o v, -
¥ !
i 3 I3
\ Qh - ﬂ. +* T -y Q08 10 ein 2 \l‘
- Py
1
L B 3 Ja
; ih - 1°+zp—,lin 1° cos 10 cos ﬂu‘ H
‘ i+
i
\ B
,.' 11,0 ‘TRANSFORM TO INERTIAL POSITION AND VELOCITY VECTORS ‘ 4
i ' - Y
» [-atn 0, cos i ]
|
M - cos (], cos i
¥ % [ ] h h
i ? i sin i, |
¢
N=21




s

rcou nh
sin nh

l)

[N) c;o u, + (M) sin u

«[N] sin u, + (M) cos v,

r, (U]

g (V) & 2y, (V]

TRANSFORM 10
(27 [ oos v
sin Yy
OJ I 0
-.'1 r
cos Y
) oin v,
: 0
) L
[ adn T
+ wy |-cos v,
L 0

~8in v,

con 1,

=8in Vi

cos v,

cos 'y,r

sin Ty

ENTRIC POSITION AND VELOCITY VECTORS
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where
Yo ® (v 8t ) = wp (t=t))
and whero

the EFQG coordinate lylfo- is geoventric, earth-fixed, equatorial,
rectangular and right-handed, G is coincident with earth polar
axis and extends in a positive direction northward. E extends
positively 80 as to pierce the meridian of Greenwinh, The

units are earth radii and mean solar days,

NOTE: It may bs necessary to refervnce the stations to some
spheroid other than the NORAD spheroid, Ideal alter-
natives are NWL-SC, NWL-8E and NWL=8 because they are
identical in size and shape with the NORAD spheroid
snd have centexrs sufficiently close to the NORAD
spheroid, Other acceptable spheroids are Kaule-8l1,
Mercury Fischer-88, BA0-688, SA0=-67 and SAO0-69, The
dimensions of each of theae last five differ somewhat
from the NORAD spheroid and one may question whether

( these changes necessitate changes in any of the

o physical constants in the NORAD algorithm, The
answer is no, with the possible exception of the
central gravitational parameter K.

For the NORAD, NWL-9C, NWL~-8E and NWL-8 spheroids
11467.874 (earth rtdil)a/(mean solarx day)2 is equiva-

lent to 398601,2 kms/loca. a standard value derived
from space probs trajectory analysis, For the other
five acceptable spheroids these two numbers are not
equivalent, For these last five spheroids there im a
slight advantsge in maintaining K = 11467,.874 (earth

radti)al(uoan solar dly)2 for near earth satellites
vith semi-major axes less than about two earth radii,
and there is increasing advantage in maintaining

K = 398601,2 kma/no2 - transformed to (earth rndii)a/

o (mean solar day)2 = as the orbit semi--major axis in-
creases beyond two earth radii,

N-23
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APPENDIX O
CANONICAL UNITS AND MISCELLANEOUS CONHTANTS

1.0 CANONICAL OR CHARACTERISTIC UNITS

1t is sometimes desirabls from considerations of computational
accuracy, computational speed and/or analytical simplicity to
use canonical urits in orbdital mechanics, These units are
always defined nuserically om the basis of a circular orbit
under the influence of a central force alone, with no drag or ’
other perturbations; but they may be freely used in any kind of
orbit with perturbations of all kinds, and such use doea not
reprasent an approximation or source of error in the orbital
computstions., When these units are used, the central gravita-
tional paramdter X Decomes unity and does not appear explicitly
in the equations of motion, Let

g i O radar . oo

o et e MEE O

canonicul unit of length ﬁi

CUL =
CUA =« canonical urit of acceleration |
CUV =« canonical unit of velocity '

CUT = oanonical unit of time

By definition a satellite in circular orbit at one CUL from
center of central body is subject to one CUA, travels at rate
of one CUV and traverses one radian in one CUT, based on
central force theory with no drag or other perturbations, CUL
may be chosen arbitrarily but is usually selected to be mean i
; equatorial radius of planet for planetocentric orbits and one
- { astronomical unit (i.,e,, semi-major axis of earth's orbit) for
E heliocentric orbits, After CUL im chosen, then CUA, CUV and

{ CUT are autounatically deterained:

CUA = K/(CuL)3
cov e [K/(CuL) )Y/
cur « [(cuL)d/x)d/?

te LlEewh e e nlD zas e
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As ar example, for K . 398801 knalnecz and NWL - 8K spheroid 1
'\J

CUL = 6378145 m
CUA =  9.79827462102 m/mec
: CIV = 7905.36629635 m/sec
% CUT = 806,812076850 sec
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2.0 SOME MISCELLANEOUS CONSTANTS AND CONVERSION FACTORS

= 3,141592653589793
= 2,718281828459045
= 0,4342944819032518
foot (international) « 0,3048 meters*
foot (American Survey)= (1200/3937) meters*
= 0,3048006096012192 meters
1 nautical mile = 1852 meters+*
= B8076,115488564304 international feect

- - = e

k 1 statute mile = 1609,344 meters»
] = 5280 international foet*
3 1 radian = (180/7) degrees*
-2 = 57,20077981308232 decgrees
; 1 degree = (6400/360) milm»
1 degree’ w 17,777177777777778 mils
y ¢ 1 degree = 17.45329281994329 milliradians
1 knot = 1,887809857101196 international feet/second
E 1 pound = 0,45359237 kilograms*
i {‘} 1 slug = 32,17404855643045 pounds
1 millibar = 1,019716212987 graml/cent:‘\meter2

Speed of light
in vacuum = 209792456.2 4+ 1,1 meters/second*»

i B T ater = 0398800.8 + 0.4 kiloneters®/second

One astronomical , 149597893.0 4 5 kilometermss
2

1 milligal = 0,001 centimetor/second

L1

.

NOTE: Seconds as used here represent international atomic
seconds, (See Appendix J)

* Exact by definition
*» Experimental and approximate
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APPENDIX P

TRANSFORMATION OF MEAN ANOMALY TO ECCENTRIC ANOMALY

This involves the solution of Kepler's Equation:

M = E=- e 8inekE,

where M is moan anomaly, E is eccentric anomaly, and e is
eccentricity, This was the first transcendental equation to
engage the attention of mathematicians and hence there are well
over a hundred trectments of this problem in the literature,
Present practice o= electronic computers is usually a simple
straightforward Jteration using

Ek+1 = M+ e sin B '
initiating the process with
E = M
and continuing until a converguence criterion is mot:
< ¢

Epel = By

This method has advantageu of aimplicity and small storage
roquircements, Howevor, it may Lo unnocessarily wasteful of
computer time, Eight=place accuracy (radians) uay required 36
itorations 1! e in large,

A method which is always as fast and sometimes twice ag fast is
the Lirst-order differential correction procuss:

M--Ek + 0 sin Ek

+
k 1 - e cos B !

whery

Pl
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Seven iterations or loses will gonurelly give eight-place
accuracy (radians), If eccentricities are less than ,01, theu
the straightforward iteration is just as fast ns the first-order

differential correction procoess,

£

For eccentricities less than 0.8, additional computer time can
be saved by using a series expansion to improve the estimate of
I prior to eithor one of the iteration processes described:

Eo a M+ esin i+ (02/2) Bin 2M + (03/8)(3 sin 3M - 8in M)

+(04/6)(2 sin 4M - sin 2M) + (95/3E4)(125 gin 5M - 81 sin 3M

+ 2 Bin M) + ,., .

No time will bhe saved using this sories unless a specing
foutine i8 usod Lo dovolop sln 2M, sin UM, otco,
the values fur sin M and cod M; thus

functions [ron

#in 2M = 2 Hin M cos M

L] ,
sin UM 9ouin M = 1 8in? M
ain M 4 oo M (Bip M - HlH”M)

) .
BAn M = 18 810 Mo~ 20 stu” Mo+ Loutn M,

The cxpansion for E“ Is gonorally oguivaluent
sbout five straightforward {terations and in computer time to
about half that number,

in aceuracy to
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APPENDTX Q

Transformation of Covariance Matrix to
Probabllity Region

The boundary of a confidence, tolerunce or prediction region can
ba constructed on the basiu of a random sample of N observations
transformed to a mean position column vector u and & semple co-
varlance matrix !5, A confidence region is one which has a pre-
aunnigned probability of ineluding a parameter (e.g., the me&n) of
the population sampled, A tolerance region will on the average
contoln exactly some speeified proportibn of the population.* A
predietion region hay a spenified probabllity of containing the
next ohservation (or perhaps the mean of the next h observations).
The reglons discusued here are all centered about the mean of the
gampie und may be one, two or three dimensioral, specifled by

p = 1, @, 4% rcepectively, Conditions assumed are: optimum (i.e.,
minimum) size probability region, random normal distribution of
abitervations, menn and covhrlance matrix of population estimated
Irom the obsevvations, 'The probabllity region will be a straight
Hne {p = 1), an elldpue (p = ), or an elliproid (p = 3),.

fh general, for un x y ¢ ractungulat oocordinate system, let

' y R

[ < B
A X Hx nxy n)x‘.
U \ U S e| 8 S ? N 1
3 [N ¥ [N Y
g Y v X y vy !
' Yox Yoy Sy i

et b lare, for on twosdimenslonsl or onv-dimensional reglon
Al eetentad, one v bwo off the coordinate axes may be

: 3 cad s et d The orede e o 5 roduded becordingly, !
i |
: g Th- racwtdon of the proelnbility rewlon 1a i
¥ <
iT SRR :
| et b s commen by eeepted deftnttion but not the only one,

:

Wl




where . i
e - § =55 Fp, nep for confidence region for 5
the population mean, p.
N21) |
Q = LN_TN%BE F,,, Nep for tolerance region, _g
1.1y p (N= e -
Q = (H + N) Lﬂgﬁ"l Fp’ N-p for predicetion é

reglon for meun of next h ohservations,

and where F 18 the tabulated 1 ntatistic for p and (N-p) dugroes
of freedom. p 1s degrees ol' fraocdom for greater mean square
!numerator), and (N-p) iu degrees of freedom for losror mean
square (denominator) in I tableu,

NOTE: The probability regions are generally computed using the

covariance matrix of the mean vector output from a prior crrvop e
anulysis, Thie covarianace matrix doen not correspond to o but .
rather to S/N or O (% + %). Hence the covariance matrix of the )

mean vector may be substituted For 4 In ull of the equatlionse of
Lhis appendix 1f Q 18 modifled nccordingly by removing Lhe factors

1 1,1 E
() or (¢ +gq). |
IFor some applications, 1t 1t more convenient to consider the
equation of the probabllity reglon in the form

RT s R - 0, -

where 1
“a 1l 3

Io=lrmi|s [u=-ul, '

rn i

and r 18 magnitude of radiue veetor frop center of probabllity
rogdon to the boundnry, and (1, m, n) repreucnt direstion coslnes

W= I\




of r relative to the x y » coordinate esystem, If (1, m, n) are
given, 1t 18 then an easy matter to solve for r, (1, m, n) may,
for cxample, be chosen to represent the direction cosines of the
inatantaneous veloocity veator of a missile; and then + r would
define the in-track position probability interval at that instant,

Tor some purponru, it is useful to know the lengths of the semi-
axeg of the probability region, Form the matrix

A = fS-dI].

dot 1ts determinant equal to zero and solve for d. 'There will be
ohe, two or three non-zero roots. All roots are real and non-
negdtive, let d1 represent the value of the ith root, Corres-
ponding toe d1 there 18 a seml-axis ay with length equal toyfa—ai '
where Q fa computed using p equal to the number of nonezero roote
(unloun a different p 1o known a priori), I in the A matrix is
Ll ddentity matrix with order equal to order of &,

1t 1y alno froquently dentrable to know the orlentation of the
somd=axed, Lot the order of % be J, If J equals one, there is
Ondy one oot di and only one sami-uxis By and 1t lies along the
singln coordinute uxis tn the problem, For J > 1, the orientation
G the nemd -n ey iy he deteruidned us follows, where we arsumn for
o onent Lhat atbl thy rools ”i are divtinet:

Sl dj 10 the Amatetx,  Thore vi11 be at ]'IBE one row 8 1n
Ve ot T U ant ety for whieh o111 the cofuctor (Ast’ t =1 to [)
nonol ovantsh, Phen the it veetor lcj deseribing the orlentallon

1o The ceml~axis Hy hat Lhe l'ollowlng componenty along the co-
TR N TN RS SO
~ -
o "~ x ™ ;, ";‘- r I\l'l
.‘ '(‘ (A'Jl) | . + (I\”.’) . .
A
L
* oA g
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The components of k1 arc dircetion cosinen of the semi-axis a.
The procedure may be repeatcd for nll the distinct roots d
mhy be noted that

l .
1 It

S - dI ,a 0

conatitutes what 1s called the characteristic equation ¢f the
matrix S, The roots d1 are called elgenvulues and the unilt

vectors k, are celled normalized eigenvectors, ("Latent roots" and
"oharactoristics roots” are synonymous with "elgenvalues",)

I'f two or more roots di are ldentical, the orientation of all
neml-axes can be computed; but the very nature of the problem
prec¢ludes a urdque tolution, The only problem off posaible
luterest to us here 18 that in which there 1u one dlstinct root
and two non-zaro repeatoed rootu, A non-unicue Holutlon to thin
problem of possible interest cun be obtained as followa:

I'roceed as before to delormine the three vem!-tnxen and algo the
urlt veector k1 for the nemi-axts corresponding Lo the distinet
root d., da and d3 willl then be Ldeontledal, nnd M and a} wlill
nlgo be identical. Form the matrix

[S - d2 I)

wliere d2 is the numerica; value of the repuuled root of cliurac-
teristic equation, and lét some non-zero row of this matrix be
denoted by (e £ g). Then a possible value fop k,, 1f both g and
f are not zero 1is ' '

-4 0
e 2
k,‘?u{g-Of} o

r\

or 11" both f and g are zero,

The correupo.ding value for ks may be compmicd trom the vector
crosn product

kﬁ = k] X kﬁ

Phe discursion oo Lor han treated position data, but the mathe-
matics appliens equally well to veloolty dauta or acceleration data,
U, u and ' may bhe defined in terma of veloelty, for example,

Q-4
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Thotend of podeton,  'Thew fy will reprenent oo ceml-axta of
veloelty and k1 will repranent a unit vector defining the
direetion of u,.
A Tinal word of caution should be given in regard to possibly
biaped obacrvationn, The partienlar "population" being cstimnted
my or may not require an assumption of unbinsed data, If such
nnoaguunption 16 required and the observations are known to have
9 bian uncertainty, it may Le possible to augment the covariance
mitrdix to take enre of the problem., Fach problem should be
carefully analyzed before proceeding with the routine of calou-~
lating o probabllity reglon,

Nunepical Example

(Hveahs

Ca ey T [S.00sTS - JIBTI30 4+ 9375007
S ”yﬂ fep | | - JUBT139 4353125 -1.h0700
o) ] ) }“ T - 1 Vae . - .
L R Yoy 8,7 |_ I L9%7500 =1, 40700 +5,5750C |
' N « 20
"1 p = 3
b

Comprat o
o e ol probc MLy regdon, lengthe of cemdenxen,and orlentn-
Vo ol cemdeaxen foroa O5% conthdoenee el itpaold for population
qo, e Lotoranee oM pootd, and a0 909 prediotion elliprotd
i <0 obnoprvatlin,  Avctame anblased observationy,

oot il probabd Ly ropetons are ol contored HE A
' L M pomt =axe s e computed otarting with the




(4.,09375=d) - 437139 1, O3(500

A = | - 487139 (+3.53125-d) ~1.40729

+ 957500 -1,%0729 (4+3.37500-4)

- J

Setting the determlnuant equal to zero, we obtaln

42 - 1242 + 4ka - 48 = O
The roots of this equation are

(’1 - + 2 »
d, » + 4 ,
16 G

Now Q w é5§§g§%}- (3.,20) = 0.5365 for csonfildence e¢llipuold,

202.1
Q = é5133:%72 (3.20) = 11,2859 for tolerance elllpsoid, L

E—
. i 1 5(20=-1 . g
Q0 (14 ) Syl (3,00) = 11,2659 for prediction
elliproid,
Therefore

‘onfidence Tolerance Prediction )
ap = 1.0359 §,7468 4,7468 §
1
n, = 1,650 6.7130 6.7130 i
Hy w  1./94D 8.20170 8.221/0 .
I -, 1050 +. 649 14,7500 )
ky < [+1.608 K, | FBILG Ky =f - 4320 :
1 +, 1500 - 330 +,5000 :

* The futeger roota ure rnot fortuitous but were contrived
For purposva of simpiicity,
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CLOSED FORM SOLUTION OF CUBIC UIAVING THREE REAL ROOTS

We are given

Ax3 + sz +Cx +D « 0 .

Divide throupgh by A, so that

x3 + sz + QX + R = 0 .

Computo

-
P

8 =« (P” = 4Q)/3 and

b = (8PQ - 2p% - 27R)/27 .
lvaluate ¢, where 0 4 <, from

COS ¢ (3/2)(!»/:\)\3/!\ .

f-
o

Then tho roote are
XQ w 2.’3/3 coB lo/aJ - p/3
Xp = ﬂ\lu/u COs l«b/a + 'lBO'J - P/ and

X

Y ZJu/Ii ) Irb/(t 4 240“-‘ - P/ .

»
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- EVALUATION OF DETERMINANL OF OHDER 3

oA

- "2 by o

b

t Sot up

$

Toke producis of olements on dodcunding diagonnl lines wlith
. the sign + and take products of elements on ascending diapgonal
3 lines with tho sign = , The nggregatle of the six products
- thus obtained
| = by ey ny =0y Ay by
) will be the value of the doturminant,

’ (J=H
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APPENDIX |
RADAR MEASUREMENT EQUATIONS

?
B R P W ol .
B et 7 o e e

The following equations are useful in adjustment processes and
simulation exercises:

.. it bt B
T TN § R L i

measurement true zero set scale factor veloocity leg
and timing
+ ry ﬁt + Ty oBe E, + «g
acceleration reaidual random
lag refraction error
' ‘ . |
A ) At o8y + Ny At + Aoy At ’
measurenent true zero set veloclity lag aaoeleration *
and timing lag

+ ay tan E{ + “5 seaq Et + aﬁ ain At + ny oo At

non=orthogo= collimation enocoder cccentrioity |4
nality

+ u #in At tLan mt -~ V 008 At tan Ef + €,

minlovel random eirror
v ;. . . fl ’ t: . & c: 4
Iy ¢ LL | ¢, | Cooty 1 ®y I, f
MERHULeme n L tre Lo Bet veloelty 1ng ncoceloraticn :
nnd Liming Tow
toey etn By "y vn By A o voi
renddund ol odep cnvoder cecopt ple oty
rofract bon ceeenbplolty and droop
Lo o A' Fvo oot hL 4 "
mivteval rardom error
é e b et Yon cavopn ne Yhe b €y In theae equatdon g
- oper v eaneer Ny bbby Iy ceviat ton,
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The zero=set errors are constant bias or off-set values, Scale
factor represents the rango error resulting from an error in the
osclillator frequency or in velocity of propagation, Non=-
orthogonality represonts the lack of perpendicularity between
the azimuth and elovation axes, Collimation represents the

lack of perpendicularity betweon the R«F beam and the mechanicnl
clovation axis, Mislevel represents a tilt of the azimuth

plane - u being thc northward component and v being the enstwvard
component.‘ This tilt ils measured with respect to the local
horizontal to the geodetic spheroid., Velocity and acceleration
lags are dynamic radar errors which become dignificant in
azimuth at high elevations and sometimes during missile reentry
at lower elevntions, and which become significant in clevation
in missile reentry, Droop reprosents the sag ot the R-F axis,
Timing errors refer to crrors in the time tag on the data, The
random orrors represent nolse in the data with zero moans,
Residual refraction and cncoder eccentricity require no explana=
tion. The numericai coefficients fo be adjusted are Tyy Poy Ty
Fgr Tgr 81y By, By By, Rgy Ngy 89y 0, 8y, &4y €4y €5, Cgy U
and v, Some approximate a priori one-sigma valucs for thoesco
coetficients in the case of MIPIF radars are shown in Table I.

NOTE: In ship radar calibration it is frequently preferable to
express the mislevel in amplitude M and phase angle F, where
amplitude is positive upward from local horimontnl and phase
angle is measured positive eastward from north, The mislevel
term for azimuth is then

M [lin(At - F)J tap Et
and the mislevel torm for elevation is

M l°°'(‘t - F)J .

R-2
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TABIE I
A PRIORI ONE-SIGMA VALUES FOR MIPIR ERLOR COEFFICIENTS

Erpor Coefficients Values E
ry 20 feet* L
r, 0.0000005
Ty (velooity lag) 0.,0001 seconds
ry (timing) 0,00001 seconds
r) . 0,0005 (seoonds)2
g 0.1 foot
ﬂl 0,00005 radlans
a, (veloocity lag) 0.003 seconds
8, (timing) 0.00001 seconds k
a, 0.06 (seconds)?
8y 0.00002 radians
a 0,00004 radians
ag zero ;;
8, zero g
ey 0.,00005 radians %
¢, (veloeity lag) 0,003 seconds ;}
e, (timing) 0,00001 seconde !.:c
e, - 0.06 (seconds g g
ey 0.00002 radians B
o5 zero '
¢g (encoder) zero .
eg (droop) 0.00004 radians !
u 0.00004 radians B
v 0.00004 radians |

*in scho track, May be larger
in beacon track,:

A4 b i i i i
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'APPENDIX 8
4 0 Differential Correction

i Transformations treated in the other secticns and appendices of
this report are direct and precisely determined, Socme of the

: most important transformations in missile and satellite technology
" are not ©f this type; but instead they are itsrative because of

i ~ assumed lireariiy in the partial derivatives, and statistical
bacause of redundancy in the data. It is the purpnae of this
appendix to sketch out the solution for problems of this latter

: type. 1t is beyond the mcope of this report to treat this subject
3 in other than the barest elements, It is a complex subject in
both theory and application, Complexity in the applications is
asaociated withvtho required partial derivatives, matrix parti-

b tioning, constraint intricon, bounding of corrections, logical

. sequence of iterntions, a priori parameter weighting, data

¥ weighting, selection of parameters to he adjusted, and effects

§ . from errors in parametern not adjusted, The bibliography contains i
W) some references whioh may be helpful for further study.

Four types of applications will be considered here:
(1) One in which the observations sre connected by some
- functional relationship; e.g., & missile or satellite
in free or ballistic flight described by equations of
motion,

23

(2) One in which the olmervations are not connected by a
functional relationship; o.g., & missile in powered
t1light, '

() A variation of (2) in which, although the actual ob-
survations are not connected by a functiona) relation-
ship, the observations are commonly affected by some
error such as survey opr zero set Liases.

! (4) A simple non-statistical type of problem using non-
redundant dais,

vy
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These four types will be treated in ordser. An explanation of all
notation is given at the end of thix appendix, For variouw

reasons the notatjon may not conform with notation elsewhere in

this report, » i
Type (1) T . .

This can be most lanily explained by illustration using s simple
orbit determination add associated sstimation of radar error
coslficients. Ve assune all observatioas to be made from radars,
although the extension to other typs semsors is simple and ob-
vious. The radar measurement equations referenced in.this dis-
cussion are troated in Appendix R,

The observations at the various time points are !unétionnlly con-
nected by the following simple equations of motion which are
satisfactory for most low altitude satellite work:

%g + of X + 20Y -~ DpVX
F e & ov ety auk- 0w

z ?z - DpvE

In these equations ‘the acceleration is defined in terms of a
geocentric earth-fixed right-handed rectangular coordinate systen.
(See Glossary.) The first term on the right of each aquation
representas acceleration due to gravity. The last teram on the
right of each aquation represents acoeleration due to asrodynamic
drag. The other terms on the right sides of the equations of
motion are the usual ones descrihing Coriolis and centripetal
accelerations in a rotating coordinate system, U represents the
Earth's gravitational potential and is defined by

U = E

u [ n(max) n A

A=l =0
i The gravitational model is defined by the experimentally de-

termined values for cn_ and “nn‘ Any of the newer models issued

P B e T TR e mmep i Tt T N T e

n
1+Z L (R) P, (sin 9)(C,, cos my + 5 sin m] .

At . S

e e e
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by Naval Weupons Taboratory, Smithsonian Autrophysioal Observa-
tory, Applied Physios Laboratory or NASA may be vsed, Any of the B,
newer atmospheric models issued by NASA, Smithsonian Astrophysical .
Observatory or U, 38, Air Force may be used to degcgi?e the air
density p, Conseguently, given a veoctor (X Y 2 X Y Z) and the
various models and constants entering into the equations of
motion, one can numerically integrate the equations of motion and
thereby generate a satellite orbit for as many revolutions as
neceasary, .

The orbital parameters to be eet%meted are the constant D and the
components of the veotor (X Y 2 X Y 2Z) at an epoch corresponding
to firat track point.

The object 18 to make a aimultaneous ustimate of the orbital
parameters and the radar error occefficients, The mathematical
procedure 18 1terative and 18 based upon the oriterion of minimiza-
tion of the sum of squares of the welghted measurement residuals,
A wolghted measurement residual (dimensionless) is simply a
measurement residual divided by tih2 a priorl estimate of standard
deviintion in random error in that particular measurement,
Measurement residuals are obtalned as follows: .

AT TR, T T RN T
- N . . .

An initial estimate of « vector (X Y Z X ¥ 7) at the first track

point may be obtained by a simple curve fitting and numerical :
Mf'ferentiution process on a short span of aotual RAE traclk data
tranaformed to XY7, An orbit 1s generated by numerieal integri-

tion of equations of motiun, and then by a coordinate transforma-
tton the remilting XYZ time points are trunsformed to theoretical
WAl mengurements for the rndar sites, Thesc theoretical measure-
meat s are uged Ln place of the true but unknown measurements on

: ; fhee piphl 0lde of the radui meapurement equations to producc

- "oomputed" measurcements, BRandom errors are never included in the
3 computed wmeasurements, and on the f1rst iteration all other error

cocffleionts are pet Lo vero sinece they are unknown and have ex-
pectatlons of zeruv, Affer the rirst 1teration there are non-zero
coltmatey of the radar creror coetficlents to use in producing

compuled measurementu, ‘The computed measurcments are differenced

L L Y T T B RO Y




SR S,

with the actual measurements to obtain measurement residusals,

The measurement residuals from the first computation will generully
be mueh larger than the random errors in the actual redar measure-
ments and thus indicate that one or more of the adjusted parameters
have been poorly estimated, Corrections are therefore computed and
added to the original estimates of all the adjustable parameters.
Corrections are computed ueing a basle least squares lterative
equation satisfying the orliginal minimization criterion:

. 1
T ul -] ‘e -:l A -]
F = Q,° M Q) +J fi (0., M7 a," +J37° 1

B 1s_a column veotor of correctlors for the adjusted parameters,
including both orbitul varamoters and radnr orror coefficlents,
Thibv equation 18 used together with the equations of motion and
the radar measurement equations like any other set of lterative
equations, After u number of iterations, reductions in the sum
of squares of the weilghted measurement residuals become negligi-
bly small, at which time the adjustment process ig said to have
converged an: 'nel estimations of all parameters have been
obtained,

This type of adjustment is also known as "orbital oonstraint,"
When the time points aro functionally related aa they are here,
then observations at all time points add information and strength
to the solution for uny particular time point, ''mhe covariance
matrix of all the adjusted parametu.d 18 given by the fivat
factor on the right=hand side of the equation for F, However, if
there are any unadjusted orroncous constante or parsmetcrs con-
tributing te error in the solution, then a more acourate estimate
of the covariance matrix of the adjusted parameters 18 glven by:

m - - _1
1 (Qil My 1 Q) + 7 1] + BN BT
‘= :

The subjeet of efl'cots from crrors in unadjusted parameters is a
very controversial one and beyond the scope of thils report., It

* Assumes no serial correlation in the obacrvations,
See Appendix AA,
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may be mentioned that in some circumstances an unbiased wund
better solution is obtained by adding the unadjusted plrnnator:
effects directly into My ir. which case the first fmaton i, the
equation for F will be the covariance matrix of adjuetid
parameters including the effects from unadjusted parameters,
Numorical as well as theoretical difficulties are reduced
appreciably if unadjusted parameters can be avoided by adjusting
for all influential parameters,

A problem frequently encountered in least squares adjustment is
high correlation among errors in the adjusted parameters,

Methoda for treating non~orthogonal problems of this type have
been invesiigated at length at this test range, Ridge regression
has been found to bt a satisfactory solution to the problem of
correlated parameters and is discumsed in Appendix AA,

Finally, it should be pointed out that random errors in the
observations have a harmful influence on the accuracy of the
adjustments and should bhe coatrolled as far as possible,

Type (2

This type is similar to Type (1) and uses the same basic oquation,
but has one important difference, 'the obsorvations entering into
coach least squares adjustment must all bo ant the :ame time point,
and of course no least squarosd adjuniment can be perfermed at any
{ime point for which redundant data are not available, In a
powored-flight missile trujectory, tor example, an independent
adjustimont of missilo position 48 made at vach time point, A
shmple oXxample will demonstrute the application,

3=5




EXAMPLE:
Consider an array of U transponders, one at cach corner of a
square, two miles on a aslde, Assume B aplash ocours atl come

point W, and at the instant of gplash each transponder observen

the range from the transponder site to the splash, Designate
these runge observations Ri‘ Leti the ocorrenponding standard
deviations and variances in the ohservationn be 8y and Mi’
respeotively,

Adopt an x y coordinate systein as f'ollown:

(0,0) (2,00 %
Numerical data are as follows:
Transpondara “1 S M1
1 1,/ 0.1 0.01
2 1.9 0.2 0,04
3 1.9 0.? 0,09
4 0.3 0.4 0.16

Dnta errors are uncorrelated, There are ne other sources of
error, and there 18 no a prior{ knowledge of splash locatlion,
Start with inltinl estinates: x = 1l andy = 1,

Wo have the following relations for the R's in terms of x and

” ) ”

Rl' a X y©

ol
R, = (x=2) 4 y°

" (x-:?);) + (.V—}.‘)

v
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From the initial estimates of x and y we compuie the following
° values for the ranges:
R; = 11,4142
12 = 1,4142
Ry = 1.4142
| 34 = 11,4143
Subtracting these from the observed values, we obtain residuals
01 = 4,2058
Ga . 4, 4858
Gy = ~1.1142

The weighted rme residuals are thcrefore

’ 2 2 2 2
{2, t00)T , ungs, +(“f“2)}} - 2,472,

)
We now seek to reduce the weighted rus residuals by improving
the estinates of x and y, using the iterative relation
4 -1 4
T "1 -1
F ow [ >SN TR | Q ] ‘ L Q, M G ]
1al i i i 1=l 1 "1 i .
From the definition ot Q1 and from the expressions for Ry as »
function of x and y, )
‘ " ;
Q = .5_.“1 a_anl - | 4
1 . ox y “1 1 -
. E'RQ 3321 x~2 :
APEER I -l 2l B 1;"*2' |
"OR, OR \
3 3 x-2 -2 J
Qn”[.asrard'["n;‘wg. *
Q 3 A 6.4 m X -2 1
4 ° | 9y Ry 4
In numerically evaluating the partials, tho most recent computed
vilues lor R, are used, nlong with the most recent estimates for
k ‘ B~7
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x and y.
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We now evsluate Qi M1

+ 00,01
" :‘n . 21

r-
n

."
- |-

r -
w n

may be

T ~1]

2.8/
i lﬂ () . (A.)l

01 and sum them:

oviluated and vummoed:

50,001

=12,500

»)(y=2)

405,105

- 5,125

r+/].18P

L '1)9.(_)5;'

RN

+ 50,001
4+ 50,001

"1;}«5”0
+12.,500

+

+

o}

+39.,9350
','7 1 . ] 8:“

H.556 4 5,506

5.h56  + 5,556

3,105
}.125

)
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The inverse 1is

Aon -1 + ,020500 ~ ,011500

1=l - ,011500 + ,020500
Therefore
A x + 020500 - ,011500 || + 2.87 - 085
F L) L] [
Ay - ,011500 + ,020600 +29.91 + .580

T™e new estimates for x and y are

X - l - 0285 -+ 0715
y = 1+ .,580 = +1,580

Thins completes the first iteration and we start the second iteration,

Withi these latest estimates of x and y, the new values for R1 are

R, = 2.037
' " Ho
1*-3 1.3)
Ry = 829
The residusls are
1 7. 003“‘
G, = = 137
, w b B4R
Ay s o= 0589

The weldghted rmy 40 now 1,191, down from the provious 2,472, The
partianlye are reevialunted and 1t 18 found that

Y
o
[

] ~7.831

0 -

’I‘ -
My " 0,

=597
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and -1
4 T -1 ) +,030792 -.009286

i=l ' -,000286 +.012726
from which ;
A x [-.187 k
F = 1 = k.
Ay’ -.003 4

The new estimates for x and y are then ' 3
X7 [ +.718 - ,187 + .528 2

Yy +2.580 ~ ,003 +1.877

We will only start ti.e third lteration to obtain the welghted
fun residuals. cComputed ranges and residuals are

R, ~ 1.663 G, = + .037 F,

Rg = 2.157 Gy = =~ .287 4
Ry = 1.832 Gy = + .368 . ;
ll4 - 077 04 a - 371

These give a weighted rms of 1,022 down from 1,191, In a real
situation theme iterstions would continue until the reduction in
weighted rms becomes trivial, Normally the final weighted rms

A § will be approximately unity, When convergence has finally been »
o achivved, final estimates for x and y will be obtained, and the '

matrix 1
-'-‘ 4 T .] b -l
. L Q, M, Q 3

will represent the covariance matrix for x and y if there are no
influential erronecus unadjusted parameters.

- $-10
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A powered-flight missile trajectory computation i1s seldom as
simple as Type (2). The type (2) adjuttment represents what is
commonly called an "inner" iteration. Having made a trial esti-
mate of the trajectory by an ianer iterution, one can then
temporarily f'ix these time point positions and then perform on
"outer" iteration to estimate parameters such as radar error
model ccefflcients &nd survey errors which are common to two or
more of the trajectory polnts, This outer iteration represents

. & type (1) adjustment over all time points with the important

exception that Q does not contain partial derivatives of computed
measurements with respect to orvital parameters, and consequently

¢ inaludes only corrections for survey and radar error coefficients,
In the adjastrent process inner iterations and outor lterutions are
alternated optimally until convergence 1s reached., The final inner
iteration gives the covariance matrix for each position time point
(usually in a topocentiisc x y z system), The final outer iteration
¢#lves the covariance.matrix for the adjusted parameters,

Lype (4)

Thla uies the same basic equation am the {irat three types, but
here 11 becomes consjiderably asimplified because the covariance
matrix of the observations is omitted. We no longer need welighted
obiservations or welghtud residualse sincz all observations can be
f1tited to anv desired degree of precision, ai.d residuals car be
iirlven a8 ne&r zero as desired, J"l i8 also set to zero since 1t
will not influence the final sslution and 1t will reduce the rate
of soenvergence, Alao omitting the summations, which are no longer
prrvinernt,and realizing that Q@ wlll be square and prescmably have
o invoerge, we have aimply,

-1 - }
T [QT Q] [QJ u] - wla,

i ¢ luple and rather obhvioun iterative relatlionshlp can be qulte

useful,

For ozumple, gilven u positlion peint (X, Y, Z)0 at time to and
another point (X, Y, Z)] at time t,, 1t 1s possible to derive a

8-11
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free-fall trajectory between the polnte in a few iterations., The
golution Involves repetitive corrections of the estimated velocity
vector (i,.i, é)o at time to‘ In the proce¢us the partinl deriva-
tive matrix Q must be numeriocally evaluated, where

[ ax, oY, 3%y
——y— -y ——
BXO BYO BZO
— —— =
BXO BYO BAO
BZl BZ] 321
e - ;E—

A axo .{o ¢ OJ

These derivatives are ohtuined by inorementing i o’ Y and &o

individually and 1ntegrat1ng to time t and differeucing the ob-

served (X,Y,7) at time ty with the computcd (X,Y,7) at time by

The resulting Q matrix together with residual matrix G obtained

by stralght integration of must recent estimate of vector at to
glves a oorrection F to the velocity components at t

Another application occurs in reentry traduotory computations,
Here we are given a vector (X, Y.Z,X Y Z) at reentry and an impact
latitude ¢ and longitade % at time t. The object 18 to adjurt the
111t components and the drag factor so that the resulting computed
trajectory will go through the a priorl impact point at the right
tixe and thus establish a mean trajectory.

The drag 18 a vector tangent to the trajectory and 1s equal to

the product of dynemic presmure and the drai parameter D, The
11ft 1e a vector perpendicular to the trajectory and 1s equal to
the product of dynamle pressure and the 1ift parameter L. An
oricntation angle 0 definen the dircction of the 11ft in the plane
perpendicular to the dyrug vector, We assume 1. and @ to be con-
gtant, We assume an a prlori 1) curve to be relatirely correct and

Bele
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we will compute a conatant factor Df such that the corrected D is
equal (o the -product of D‘ and a priori D, The problem is to
compute Dy, L and 6, The solution converges better, however, if
we adjust Dy, L sin 6 and L cos 6, The iterative form is tlien

7 [T WL
. t 3, 3(L cos 9) 3(L min 6)
Lcos 6] = L cos 8| + 3. & Ch Yp = Y%
' ' an (L cos B) O(L sin 8)
| " 3 ot 3t ¢ -t
‘ L sin 6 L sin @& - s U3 k
. k+l k >
. I J L J© (9Dg (L com &) oL sin )y | ]

. In this formule (8g) Yps ty) Tepresent the true latitude, longitude
B and time of impact, The mubscript k denotes the iteration number,
4 Given the results from iteration k, the formula gives & new estimate
’ tor the (k+l) iteration., The partials are computed numerically by
-é {;) integrating separstely with incremental values of Dy, L cos 6, and
5 L Ain 6 and observing the incremenial changes in ¢, vy, t. Conditions
i are very nearly linear and convergence is rapid,

ﬁ In tho simple examples given in this appendix the partial derivatives
3 huve been obtained analytically or by finite difference, In more

; complex situations it im common practice to use vuriational equations,
.f These will be discussed briefly in the next section,

VARTATIONAL FQUATIONS

virintional equations are not a substitute 2or analytical partial

durdvatives, Analytical partials anre always preferable when

§ malhematicnlly feasible, and thoy are feasmible for such parameters

: ns randar orror model coefficicnts and survey errors, On the other
hand 1t i& not mathematically possible to derive analytical partials

~ for parameters such as crbital elemunts, aerodynamic coefficients
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and gravity anomalies, For parameters of this latter typo onc can
use finite dittorgnco)method- or variational equations, Thero are
advantages and dissdvantages associated with the finite difference
method, but modern complex adjustment programs almost without
exception use variational equations instead of finite difference
methods to obtain. the.required partial derivatives., Variational
equations are ordinary differential equations containing as de=~
pendent variablem the partial derivatives themselves, In the
usual application the variational equations are numerically
integrated simultaneously with the differential equations of

. motion,

Tho variational equations aro nothing more than the partial
derivatives of the total acceleration equation with respect to the
adjustable parameters, Normally there will be three second order
(corresponding to six firat order) differential equations for each
scalar parameter to be adjusted. Let the total acceleration be
expressed functionally by

I owor(E W

~ where L is a position vector with first and msecond derivatives é

and r respectively and where y is a vector of explicit and/or
implicit parameters in the equations of motion, In general, r
and its first derivative are also functions of y, The variational
equation for some parameter y of Y, is expreased as

ar 3 | or ar | or 3 (2,2,1)
- — w— & — - .
O lN|Y T E]Y v

Tho terms in brackots are determined analytically, The last term,
called the non-homogenaous term, is usually the most difficult to

compute, Because y is independent of time and because the deriva-
tives are continuous, the order of differentiation in this latest

cquation may be interchangod 1o obtain

S=14
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53 or & | or a | 4 or A (r,r,y)
Sy @@ = || + | =] &> «
3t3 oy o | oy 3% | ot o ”

A double integration of this equation with respect to time then
yields the trajectory partial derivatives
ar
L] .
| 5\0
which express the sensitivity of the computed position points to
variation in the parameter y ,
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GLOSSARY FOR APPENDIX S

radar azimuth angle, Defined by two vectors lying in
the local horizontal plane and originating at the radar
gimbals, The referance vector points northward in the
plane and the other vector is a projection of the radius
vector extending toward the tracked object., Angle is
pusitive eastward from novth,

matrix of paftial derivatives of adjusted perameters
with respect to unadjusted paramoters,

dimenmsionless sphorical harmonic coufficient in
geopotential expression having degree n and order n,

drag parameter of sntellitc or missile oqual to product
of drag coeffizient and crosm sectional area divided by
twice the mans,

drag factor.

radar elevation angle, Measurced positively in vertical
plane from local horizontal plane upward to radius
vector to tracked object,

column vector of corrections to be added to most recent
estimate of adjusted purameters,

column vector of meusuroment res%guatﬂ defined as
actual minus computed, for the i cbuervation,

column vector of difterenoa: between a priori and’
current estimates of the pa ameters, defined ms » priori
minus current, !

a priori covariance matrix of parameters to be adjusted,

1lift parameier of missile, équal to product of lift co-
officient and cross sectional area divided by twice the
NASS,

4 th

<ovAariunce matrix of measurementcs at observation,

covariunce matrix of unadjusted parameters,

associated lLegendre polynomial of degree n and order m
with argument sin ¢,

matrix of partial derivatives of the computed measure-
ments with respect to the adjusted parameters for the

i h observation,

§=-16
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rgngo Distance from radar or other sensor to tracked
OJO*. . .

eatinatad standard devimtion in obmservation,

dimensionless spherical harmonic coefficient in
geopotential expression having degree n and order m,

matrix transpose if used as superscript, "True" 1if
subseript,

earth gravitational potential,

satellite or wissile velocity (mcalar),

splash point,

position coordinutes of tracked object in a geocentric
earth fixed rectangular right handed coordinate system
with X and Y axes in equatorial plane, X sxtending
through meridian of Greenwich and Y through 90" oast
longitude, 7 points nortkward along spin axis,

velocity components of miswile or sutellite in XYZ
coordinate system,

acceleration components of missile or satellite in
XY2 coordinate system,

aarth equatorial radiums,
observation index,

number of adjusted parameters including those which
describe the trajectory and the radar error coefficjients,

iteration number,

degree and order respsctively in spherical hermonic
expression for geopotential,

total number of observations in type (1) adjustment,
Total numbor of obaervations at a particular time point
in type (2) ndjumtment,

distanca from center of earth to mismile or satellite,
time,

topocentric rectanguiar coordinate system,

summation,

east longitude from Greenwich,

S=-17
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earth gravitational constant, equal to product of
Newton's constant and earth mase,

atmosphere density,
geocentric latitude,

orientation angle defining direction of 1ift in plane
perpeudicular to sulocity vector,

earth rotation rate,

increment,

used as supersoript to denote matrix inverse,
adjustable parameter,

underline, Vector.
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APDPENDYX T
0 NOTES ON THE EARTH'S POTENTIAL FUNCTLON

L o Aot T A

1.0 DEVELOPMENT OF ALTERNATIVE FORMS 3

From Newton's Universal [Law of Gravitation it is pomsible to show
tiint gravity roorosonts p» conservative field of force, and hence
tlic work done by the gravitantional field on a particle moving
from one point to another i indepondent of the path taken, In
astronomical convention the total work done by the gravitational ;
force while a particle of unlil masa moves from infinity in to '
some point 0 is the gravitational potential at P, DPotential is a l
|

. scalar quantity, The gradivnt of tho potentinl im a voctor
repromenting the gravitational lorce per unit mnss or accelora-
tion, The potuntial outside the carth satisafies Laplace's
o Bquntion, Laplace's Kquation i8 a second ordur linesr homogencous
diffoerontial equation, Particular solutions of liaplaco's Enuntion
nre known as spherical harmonics, and ihe moat ponoral solution ' }j
1 . cnn bho reached by their addition, In mathemeticnl troatment ol f‘&
% (‘) the gravity potontial (mlso cnllod ¥gravipotentiel or geopctontial) | i
it {8 convonlent to ume sphorical coordinates r, 1, and y, whore ‘ B
the origin Is at the mass conter; r is distance from peoconter to |
. Iy 1d comploment of gowcontric latitude of 1"y » 18 east longi- E
| tude from Groeuwich., 1o sphorienl coordinates Laplace's Equation
takes the ftarm; A

”
) Coat(ry) | 0 Iu ' -
) T—y— + m m (sin m ) 4+ ——y— 'aTy'z w 0 ’ g ‘

|
o gin’p
oty U reprosents tho pgeopuotontial, Tho roneral solution to
Vinba wyuation exprosdsed i the form rocommendod by the
tuteraantbonald Astronomicnl Unton in 1962 1u
[ n n

X A
I . a
1 L |1, ¢ E (=) |

r L il Nwul) fhym (!'1““‘) ¢

Q) : ,

w,mCOH MY 4 8y Hin y)J 4

whepe pooroprosents the contral pgraviiational parameter; n aond m

wre pop=nepative dndfcoen ropecuent bng dgiee pnd ovdoer rosgpec -
~

ively, a is carth ogquatorial radlas; ¢ I8 geocentric latitude;

2 LR




Cn " and an m Bre gxperimoninlly dotermined coefficients; Pn " (8ing)
’ 14 »

18 an associated Legendre polynomial, A simple legendre poly-

nomial Pn(x), where x 18 equnl to aln ¢ in thils case, may be dee

fined by Rodriques' formula:

n n
d 2 ..
P (x) B i oe— (x -1) .
n ! dxn

The corresponding assoc.ated lLegendre polynomial of mth order and
nth degree 18

0
Poon(®) = (1=xF) :x"‘ Po(x).

Noto that for m = O, Pn.m (x) reducesn to P (). Also note that
form >n, Py o (x) reduaes to zero, See Soction 3,0 for recursive
methods in computing Legendre assoclated polynomlals,

These funotions aru inoidentally related to (egenbauer polynomials:

o (x) A (x)

¢

and Ty, (x) = P (x) .

If we actempt to evaluate U or the acvelerations associated with

U, wo note that nlthough the products cf the assoclated Legendre

polynomials and their cerrcsponding numerical coei'ficients de-

aline only moderately with increasing degrec and order, the

assoclated Legendre polynomlalo inerease greatly 11 value and the

numeriocal coeffioients decreuse greatly, This olrcumstance may :
lead to lose in computationnl accuracy and ulsc to & misinteve-
pretatior of the importance of individual numerical coeffioclents,
To improve this aituation, 1t hae become standard practice to
multdply the numerieal coefficioents hy normallzing factors such
that the resulting normuticed coct'flelents have values approxi-
mately proportional to their "effrctn"; the corrcaponding assooci-
ated Iegendre polynomials are of coursc divided by these same
factors in order to matiafy the cquation for U,
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Consider the following four products extracted from the equation
for U:

P (sine) [Cy,;, co8 m v] with m # O,

P (sind) [S _sinm ¥] with m ¥ O,

n,m
F (8in¢) [on,m cos m ¥] with m = O,

P, . (sin¢) [smm sin m v¥) with m = O,

The fourth product ip cleariy zero at all points on the ecarth's
surface and hence is of no interest in regard to normalization.
If we compute the root mean square over a unit sphere for each ol
the other three products—corsidering this to be a measure of
their effects——ye obtain raspectively:

N cn,m ’
N Sn’m ’
N On,m ’

whare

n-+Hn
N - ""En-m“!!nﬂh
and where X = 1 forrn = 0, and X = 2 form # 0, Consequently,

:his factor N 1s commonly used for normalization, To change

-
conventional Cn,m ané Sn,m to normalized Un.m and Sy,mt

f ™1o change necessltrtes a corresponding and deairable change in

pn,m (8ind ).

E )4 (sine) = (1/N) Pn. (sinv),
f
|

n,m m

T-3




As a consequence, Pn m? Uh o 8nd E p do not show the strong

trends observed in Pn m’ Cn y 8nd 3 m’ and the values of C

and Sh’ are approximately proportional to their effeocts,

n,m

The type of normalization just desoribed is called "full normali-
zation" or "Kaula normalization.," There are alternative forms
uded for simplicity, One such form uses

n+m
N = n-m,{x °’

which 1s called simply "normalization".

Another form uses

N = n-+m ,

n=m
whioh is called APL normalizaticn,

The literature does not always specify which form of normalization
is used, and the roader may be requireu to take a given numerical
norivalized coefficlent and unnormalize it by verious methods to
ocompare with a known unnormallized value,

Table I gives the Legendre polynomials &and assoolated legendre
polynomials up through (n,m = 6, 6), Table II gives ti.e correspond-
ing normalization raotoru. n (x) 18 called a zonal harmonio
whern(n > m = 0), Pr,m (x) 18 oalled a sestorial harmonic when
(nwm>0). Pa,m (x) 18 called a tesseral harmonic when
(n>m>0). .

For our applications

m () 18 equivalent to Pn,m (sine),

Therefore, for example, in Table I

P1,1 (x) Pl,l (sind) = coad

e

93,2 (x) = P3,2 (sind) = 15 miné ocos“e

T=4
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It should he noted that to avoid the use of a comma, many writers
use

m
Py (x) instead of P,m (x).

Aido ahere there 18 no risk of confusion, many writers use

Py (x) instead of Pn,m (x),
These variations simply represent differences in notation,

T'or purposes of thim disocussion, the geopotential form
recommended by the International Astronomical Union in 1962 will
be referred to as the atandard form and all othevrs will be com-
pared to it, An obvious variation of the stendard form as '

U o ; 2 (E)n P (uine ) (C coe my + 8 8in m )
¥ w0 me0 T n,m n,m n,m .

In this form 00 0 is defined to be unity.* All other symbols

1]
ratain the same meaning and have the same values that they have
in the standard form, Another obvious variation of the standard
form 418

0o ke {‘J 0 )m (-‘?-)n[C P (aind) ? (¢ cos m vy

T ney T non mel Dol
A ﬂ“‘m sin m vy) Pn,m (ain¢)]} ,

whoee the flrst summation 1s over zonals only,

‘ome publications prefer the (J, K) notation in place of the
(i1, 1) notation, ‘e equations for U are the same as those
provionnty glven with the exceeption that a negative slgn replacen

- P

T 19y Kemila recommonded chal b be defincd as 0.598605Px1091
[} A

om /oce’ and that O 0 e perniitted to depurt from unity, This
U

reconmendot fon hne not palned general acceeptance,

o T ——




TABLE I ;
LEGENDRE POLYNOMIALS 3
AND E
ASSOCTATED LEGENDRE POLYNOMIALS U
*V“
n m an(x) .
0 0 1 4
h 0] p 1/ 7:
2 . 1
1 1 (1-x2) 3
2 0 (3%2-1)/2 :
N 172
2 1 3% (1-x") :
2 2 3(1-%° ) 3
3 0 (5%7-3x)/2 a
0 1/ B
3 1 (1-r8)""" (15x°=3) /0 4
3 2 15%(1-%7) | .
n 3/ PN
15 (1-x") W
(35x4-30x2+'5)/8 |
n 1/2 i\
4 1 (1=x7)""7 (s5%2-1x) /2 "
| 4 2 (1-x2) (105%°-15)/2 B
/2
4 3 105x(1-x2)° g
2.2 T
4 4 105 (1-x“) L
5 0 (63%2-70%2+15% ) /9 g
. 1/2 o a l
5 1 (1-x) (315x -210x"+15)/3 ]
5 2 (1-x7) (315x°=105%)/2 |
5 3 (l_x?)j/e (91453(;.)—105)/9 ,
5.2 x
5 4 oh5x(1-x%) |
, 5/2 ' Y
5 5 945 (1-x°) -
] b
- -8 .
z :




9
B
g

TABLE I (Contd)

n m an(x)
6 0 (231x6-315x4+105x2-5 )/16
1/2
8 1 (1-x%)" " (693%°-630x>+105x) /8
6 2 (l-xe) (3465xu-1890x2+105)/8
3/2
6 3 (l-xe) (3465x3-945x)/2
N 2
6 4 {1-x“) (10395x°-945)/2
p b/2
6 5 10395x% (1=x)
N D
6 6 10395 (1=x“)

T=7
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TARLE IX
VARIOUS NORMALIZATION FACTORS

(0
i APL Tull -
\ n m Normalization Normalization Normalizatiocn
; 0 o 1.,000000 1,000000 1.,000000
] 1 0 1,000000 1,000000 0.,5773503
{ 1 1 1, 414214 1,000000 0.5773503
3 R 0 1,000000 1.,000000 0. 4472136
i 2 1 2, 449kgo 1.732051 0.,7745967
b 2 2 4,898979 31164101 1.549193
& 3 0 1,000000 1.,000000 0.3779645
i 3 1 3,464102 2. 49hy0 0.9258200
4 3 2 10,95445 7.745966 2.907700
§ 3 3 26,83282 18.97367 7,171373
3 4 0 1.000000 1.,000000 0.35%3333
. 4 1 4, 472136 3,162278 1,054093
4 2 18,97367 1341641 k. 4721737
4 3 70,99296 50,19960 16.7%320 .
¥ % 200,798k 141,5859 47,3863 L
5 0 1,000000 1,000000 0.3015113
5 1 5.477226 3.872984 1.167749
5 2 28,98275 £0,49300 6.179143
5 3 141,9859 100,3992 30,27150
5 Y 602,3952 425,9577 128, 4311 ki
5 5 1904, 941 1346,997 406,1349 s
6 0 1,0000:0 1,000000 0.2773501 1
: 6 1 6.480741 4,582576 1,270978 A
) A 2 40,98760 28,98275 8.038369 }
: 6 % 245,9268 173,8965 48,23021 1
! 6 4 1346,997 952,4707 264,1678 i
4 G 5 5317,974 4467 ,482 1239.057 :
6 6  21886.11 15475.82 4292.220 |




the positive sign ahead of the first summation, The last
mentioned equation thus tranaforms to

H’. L] a n , n
U= r{l -nfl(-i,-) [J’nln(aino) +m§1('7n,m°°8 m vy
+ Ky SR my) By (ain¢)j} .

Ag a result ‘
c " =J and S = =K P

n,m n,m n,m n,m
alac Cn = -Jn .

A form frequently used in geodesy is

L] n 1 n+l
UnaZ b B
nuQ mw=u

(A

n,m GO8 MY + Bn,m gin m v) Po,m (g4ne) ,

For this relation
n
Chpm ™ An.m/(“ )

and S o = Bh,m/(u g") .

Another form used by geodesists 18

w n ﬁ n+1
Uws 2 (;)

n=0 m=0 eos m vy + bn.m sin m W) Pn‘m (Bin¢),

(8, m

where

and 3 -
Pk A form sometimes used by JPL 1 4%
b

| , . 2 . 3 4
g" vk [1 -%J (-f;) Po(eipe) - £ M (%) Pj(sima) -1-3-85 D (%) P“(sind')] .

Wl




The conversion relations are

2
Cobo = =37
»

C30 » -7 8
8

Cu’o = +3-5D

The coefficients in front of J, H, and D are actually combined

with the legendre polynomial, which is not explicitly given in
their expression for U,

A form used by Sterne, Baker, Herrick and others is a# followa:

o ) .
U= %[1 - % a‘(-i'f-)2 Py(sine) - & n(%)} P,(otne) +1'1§K(“z‘t) Py (eim)] ,

'The conversion relations are
02’0 - '3\7 »

2
€30 = =5 H

)

Cy,0 = *+izk o

The coefficients in front of J, H, and K are actually combired

with the Legendre polynomial, which 18 not given explieitly in
their expreasion for U.

A form used in an older ETR computer program 1is

) o B ,
7 = %[J g P, (81no) + o Py (sin’-*)] .
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I
'he ocnversion reiations are , ..
02'0 a - a/(B “') ‘
4 ‘ i
’l U
.c)‘-oo = +B (51‘ ) ‘
Again the conatant coefficients in the denominators of the terms
containing & and B are actually combined with the lLsgendre g
polynomial, which is not explicitly given in the original ex-
pression for U, Note¢ that o and @ are not dimencionless,
We now consider forms which make use of amplitude and phase g
angle, A form somezimes used by Smithsonian and STL 1s as 3
ollows! L
00 n n '
L] u }J 5 ' [ - 1
v k {1 + 2 mfo (r) Jn,m Pn,m (sind) cos [m(y 'Y‘n,m)} ]
O
“hay eonversion relations are
Cam ™ In,m 008 (m "'n,m> ’ 1
Soym = Tn,m D (m 'Ymm) . .‘
ey, torom > 0, 3
2 2 ]
S Jnom "t Jcn.m F Shm 7
A' §," q I1.
L 1 -1 ,"n,m b
} ;{. h,m m U;;:m 4 1
b -
i ;i?;’ o '
1 ; aeve tant oy ovaluated &n region 0" 1 180°. '
‘ I_i -
T-11
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For m = O,

Jn‘o - Cn.O .

A form used by JPL, SOF and also by ETR and recommended by
International Geophysical Union is

- S
U = E{ ..nfl( [3, B, (sine)

- mfl Yn,m Pn,m (84n¢) cos {m ('y-'yn n)) ]}

The conversion relations for (m > 0) are

(@]
2

n,m In,m ©o8 (m Vn,m) K

sn,m ~ Jn,m sin (m Yn,m)

-

2 )
ah,m " +1lbn,m + Sn,m ’

S
1 =1 /“n,m

where tan™! 1s evuluated in region 0° + 180° ,

For m « O

Jnao n,o

A11 these various forms clearly lead to oconfusion, Since none of
the variant forms seems to have any advantage over the standard
form, the standard form is becoming almost universally zccepted,
The same normalization formulas discussed in conneation with the
standard form apply also to the variant forms, Wherever the index

T-13
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m 18 omitted from a coefficient or polynmomial in the previous
disoussion, m is zero. Also when m is mero, S, ., K, ., and v, .
may be set to zero,

A great deal of confusion exists over the inter~relationships be-
twecn the geopotential model and the earth spheroid, The geopo-
tential U desoribes the gravitational potential outside the earth
and 1iu referenced ¢o a coordinate system with origin at the
dynamical or mass center. The geold is an equipotential surface
describad by the ocombination of gravitational and rotational
potencial, This combined potential W is given by

W o= U+%w°2 r2 oosetb ,
where W is earth rotation rate and where W is chosen such that
the sorresponding equipotential surface corresponds most closely
to the mean surface of the free oceans, The geoid is approximated
by a prolate spheroid whioch most olosely fits tne geold and whose
center ocoincides with the mass center of the earth, Spheroids
determined since 1968 have centers agreeing within 15 meters of
each other and semi~axes agreeing within about 10 meters, It is
common praoctice to assume that all spheroids have paruallel
rectangular axes, Possible small tilts in the datums are present.-
ly ignored at AFETR,

When a laboratory establishes a geopotential model and
accompanying soherold, it simultaneously arrives at the coordi-
nates for all the tracking sites used in the adjustment, These
site lucetiona, the geopotential model and the spheroid consti-
tute a compatibvle set, PFurthermore, for purposes of compatihility,
uhif'ts are determined which permit the transfer of sites located
on other spheroidsts the spheroid assocliated with the geopotential
model, (See Appendix D,)

Consequently an ideal situation, and one which 1s generally
attainable, 18 to use a spheroid oconsistent with the geopotential
model and express all site looations on that spheroid, Sometimes,
however, for some reason it is desirable to use a spheroid different

T=-13
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from thutl associnted with the geopotentinl model, This practice
is penerally satisfactory 1f the oxtrancous sphoroid has a centor
within 15 metors of that associateod with the ;reopotentinl mode)
and 1t the valuos of R agrec to 1 ppm, 1f the sgpheroid dif-
ferences lie outside these limits, crrors develop which usually
cannot be ipnored but which can in large part be enrrected, The
lnrﬁést source ol nerr and one which moat computer programe can
corroct i# in the pgravitational potential for an off~contor
sphoroid, It is nocessary to add npproprinte valuas of C1 0?

C1 y and 81 y to the geopotential modol as doseribed in Scation

g 0. Inclusion of thosc terms takos carc of perhaps 90% of tho
total orror, but sometimes the remaining 10% is still intolerably
large, The remaining orror (gencrally incorrectible) arises [ron
falso aesumptions in rogard to rotational characteriatics of the
farth and ita ntmosphere and from an crronoous roference surface
for the atmoaphore, Most of the datums and sphoroids shown in
Tehle I of Appondix D are unsatisfactory for trajectocy oquations
of mntion oven with goopotential modols modificd by appropriato
values of C],O’ C,"1 and 81’1. For exampln, the use of NAD-27 on
Clorke=1886 is not recommended for use with trajectory oquations
of motion,

Sone: of the older geopotontinl models have poor valuces for i, It
is jood practico always to use . « J9BBOU,E 4 0,1 kma/nncn. Thim
is the most accurate detorminatiun at prescnt, Some trajuctorics
and calibration oxerciscs aro cxtromely sunmitive te the valuo
used for u,

Once further point of possihle concern is the oarth's atmosphere,
Strictly spoaking, pgeopotentinl models determined from matellito

data apply only outside the ntmomphere, lven the use of Laplaco's

liquntion inside the atmosphere is not strictly correct, Actually,
at prusont accuracy lovols, the effoct of tho atmosphore upon all
the coefficients except u is nogligible, The atmosphore is
rospongible for 1 ppm of the published valuos for u, Jt is

hardly oven worthwhile to correct ;. for Frnjoctoriol inside the
atmosphore, howevey, since drag uncertainties overwhelm this

T=-14
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amall correction,

A typical modern* geopotential model ims included in this appendix

simply as an example, Thims model was developed at Goddard by a

simple averaging of coefficiants trom many published models, It

bears the ETR catalog number of SA-22, Evaluations here at ETR

show it to be ono of the more accurate unclassified models, This

model is incidentally a truncation of a larger model. Many

analysts have beon reluctant to truncate geopotential models he~-

cause of the correlations among the coeificients — correlations

of perhaps 0,2, Recent studies by the author indicate that al-

though truncation of a larger model is not an ideal method for

obtaining a smaller model, it is acceptable as a practical '
measure, A simple and somewhat better method is to transform the
1nrger model to a smaller model, Probably the mimplest suitable
transformation procedure is the following two=-stop proceas:

(1) Using an ascurate, largo geopotential model and the EPG co-
ordinate system (Section VII), generate a soriems of trajectorivs
of only those types to be used subsequently with the small model;
(2) Treating the EFG time points as observations and using an ' ¢
a priori amall geopotential model obtained by truncation, perform
n lonst-squares, multiplo-arc fitting process, adjusting the
goopotential coefficients in the small model, Unless the tra~
Joclories used in the data generation are uniformly distributed
nver the entiro earth, the resulting small model will be biased
by the transformation and must be used only over the pre=seclectod
region used in the generation,

W AT * g

""I.: bibliography contains a reference describing the accuracy of
the coefficients in modern large geopotentin]l modelm, The
uppronch dimcussed there has been umed to updato error eatimatos
to tho 1874~/8 ora, and these updated estimatos are shown in
Tnhle IV at the end of this appendix,

AT L L TR

*un, 1970

i

Kid




2,0 MODIFICATICN OF GEOPOTUNTIAL MODELS FOR
APPLICATION WITH OFF=-CENTER EARTH SPHEROIDS

Occasionally a mimsile test program stipulates the use of an old
spheroid whose center is considerably different from the center
of mass of the earth, In powered=flight trajectory computations
this stipulation presents no problem whatever, 1In free=flight
trajectory computations using equations of motion, some corrcc-
tive measvres may be nccosamary,

An obvious approach is to transform the sites to a modern
apheroid, compute the trajectory, and then transform the trajecw
tory back to the old spheroid, An alternative approach, which has
advantages in some circumstances, is to work ontirely with the old
apheroid but to modify the geopotentinl model to account for the
discrepancy between thu center of mass of the earth and tho center
of the coordinate system. This alternative approach will be
domcribed hero.

Modern geopotantial models do not contain terms in 01,0' cl,l and
81'1 because with coordinste mystems centerod at the mass conter
these terms are zaro, These three coefficients have the following
meaning: c,"0 is the number of e.r.u.* from an equatorial plane
through the center of mass tg the origin of coordinates, positive
in a southerly direction, C; ; 18 the number of e.r,u, from a
meridional plane through 90" east and west longitudes snd the ‘
centor of masa to the origlin ot coordinates, positive on the side P
away from Greenwich, 51'1 is number of e.r,u., from a meridionsl
plune through Greenwich including the center of mass to the
origin of coordinates, pomsitive on west side of Greenwich, An ; i
example will be presented based on data given im Appendix D. J

center of the earth, Then if Mercury«Fischer 1960 is used, the

Asasume the center of SAO0-87 spheroid is exactly at the mass é
{
: ; origin of the coordinate systom relative to the centexr of mamss ig ‘

*e,r,u, represents earth radius units,

T-16

;&f,_Ag.A.

SERETMPBE #1011V L LTI VIRTUURE S Ty 1 T o OO U S 1 S ST



(Table I, Appondix D):

K a =29 n
' w +84d 0
G = «40m

Expresscd in ¢,r,u,, theso aro

£ o« =3.88 x 10~¢
P o~ 48,90 x 1078
w =3,27 x 10~€
T'heae correspond therofore to

-

Cy o » +0.27 x 10
-}
{ “ - -0

8,1 ¢ =890 x 10

Corroctive maasures of this type in the jgoopotontial are hprdly
evor worth making for discropancios leoas than 15 meters botween
conter of mass angd conter of coordinatae aystom, DBeyond 13 motors
the orvor bogomes incroasingly important, An uncorrected orror
in center of coordinnte systonm shows up as cyclie orrors in thoe
coaputed trajactory with amplltudos of the order of tho wmimsin:g
Cl,u' Cl,l nnd 81.1, and with froquencies anssociatod wiih tho
orbital periods and the rotation rate of the carth, Inh addition,
thore may bhe a seeular orcor whoso magnitude is depondent upon
the wieo of the mnisming 01,0' 01,1 and S],l' and also up.on the
lanrth of the trajectory coverad hy the tracking instrumentation,

Au dlscussod varlice in Lhis appendix, thore arc other errors

arsocintod with off~conter gpheroids, some of which are not roadily

correctahblo,

T=17
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3.0 COMPUTATION OF ACCELERATION COMPONEN'TS

;
;
F

one of the most time~consuming operations in orbit determinations
is computation of grovitntional accelerations due to contrenl
hody,  Conscquontly, a great donl of oxperinmoatation has jrone
into optimizing the compuvtations, Hvaluations nt Acorospnco,
ESSA, Data Dyunamics, LTR and elsewherce gencorally agroe that for
smnll goopotential models (dogroe no higher than 4) it is
preferable to program the nccelaration components dircetly in
toetangular coordinates, For larger modols it is profernble to
uso rocursive mothods to arrive at accolorutlon components in an
tpstenorth-radial coordinate syitnm. From here on there mve
ninor ditforoncec in mothods, I'robably the simplost wny to
tomplote the transformation is to porform n rotation to the body
ti.nterod rectangular system, This is the method premsently umsed
by Aorospace and LTR and im tho one prosonted here,

The acenleration components in tho geocantric earth fixed RFG
gbordinate system* aro

1T 10
. 1 AU
B -sin y ~sin ¢ com y cos ¢ Cok v T 008 ¢ oy
F |w cos y -8in ¢ sin y cos ¢ sin vy % %%
o a 0 cos ¢ sin ¢ U
: J . J { Tr.

Y e T Al e

2

*Sve Pogo 11 for desceription of LEFG mystem nnd
Pege 19 for ¢yr systoem,

A
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ls . Cam g min gl

whore
¥ 1 . |
roecon & oy rP cos & i

T e, 3 ",
RIS
oo oy

?é?ax) 4 n U
. (=) Ag% mP..(sin ®)(C  8in my=il, . cou my)

koo o el il G e e gt

[nwx)W) E B’ (a1 0) cos o ( )
o Bin &) cos ¢ (O, coB my+S_ 8in my
’ g&i r ooty nm nm nm
v |t
(i) . n(mox) a Von : . ;
. . 4 2 (n+1) (=3-) A;% P (81N @)(Cnmoos my+8, ein ) ,
and where rkhﬁnin ®) ropresents the derivative of the legendre "
function with respecot to ain ¢, .

Reourslve formulanr used 1n computing legendre asusocianted functions

dud Lhedr derlvativeo are as folliows (where the argument sin ¢ has :
heen oml tted but should be understood): _ (

Fop med

| . v i -

I, [(.n 1) win o LU (n=1) Pn_p]/n
" [i}] ‘ ] i‘
T“ oot & w nin ¢ Pn-l cog ¢ 4+ n Pn_1 con ¢ !
. ‘
Tor initial valuce use Po - Pi w 13 ound P] = uin o, 5
;
j
i
g
r-18 !
. !
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P__/cos ¢ = [(Enul) sin ¢ Pn-l,m/°°° ®=(n+me1)P /cos ¢]/(n-m)

n-:’?,m

P’ gon ¢ = (n+m)P /cos ¢-n #in & P /cos ¢

n=1,m
For initial values use Pm-l,m « 0 and

1\ m/oon b = 1a3 see (2m-1) cos™ ! ¢
]

1,0 RESONANCE LIFLCTS

Resonance offocts, primarily inetrack, are obsorved in long-arc
trpjeoctorine, They arce most pronounced in polay or near=polar
orbita and may show umplitudes up to a thousand feeti or so
depoendiig upon tho degroe of rasonance, As an exampleo, n
patollite with poriod of G180 suconds will display resonauce
ansoedatod wath the (17,24), (16,14), (15,14) and (14,14)
goopnivntial coefficients; ond numericul valuos fot these cu-
efficients should be includod in the peopotontianl model usod
wvith this satellite even thourh no other torms highor than (8,8)
arce included., Resonant periods ¢nd corrvespondine order of the
harmonic confficients are listed in Tnble 111. Although every
non-zonal term i® resonant at some period, it is common practice
to define ''reponance terms" as thowe with m z 12, %This parlance
is implied in Table 1V,

Q;:
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TABLE Il e

x .
i R A SR, I UL BT PP

SATLLLITE RESONANT DPLRIODS AND THE
CORRLSIONDING ORDER OF THE HARMONI1C COEFFICIENI§

K
i
Period (Soc) n Period (See) m fﬁ
. -
y 88760 to B3BAO 1 9860 to 9290 O |
§ 44380 to 41780 p 8880 to 8360 10 | 3
4 20500 to 778850 3 070 to 7600 11 E
. 22§90 to 0RY0Y 1 7400 1o 6960 1n l ?
4 17760 te 16710 s 6830 tu 0128 10 B
3 14700 to 13930 6 A341 to 5970 14 |
; 12680 to 11040 7 5917 to 5571 15 E
11100 to 10450 8 5148 to 5222 18 .

() a
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MCDEL SA-22

"IN

(Multiply all T and ¥ values by 107°) o
n m T 1
2 0 -484, 1723 -
2 2 '10398
3 0 3623 -
3 1 0.219
3 2 o 83# -,65%
3 s 0,726 1,271
4 o) o 5&97 -
u‘ 1 - 0452
4 2 o 516 0,604
4 z 0.915 - G121
4 -.125 00212’
5 0 0. 0633 -
5 1 .0.’ - .061
5 2 0 553 - 248
5 z ? - 0012
5 bo 0.117
5 5 o ouo - 501 )
6 0 "01792 -
6 1 -,086 0.056
6 2 0,027 - 329
6 3 0,051 0.079 &
6 -,030 - .b59
6 5 -, 220 - .501 { ]
6 6 -0072 - n261 A .
7 0 0,9860 - !
7 1 0.159 0,039 i
7 2 0,32} o.oaﬁ i
7 Z 0.206 “ o0 iR
7 _ -.224 - ,Ob3 !
7 5 0,055 - 040 ¥
7 6 -, 266 0,115 .
7 7 0,070 0.043 l




()

MODEL SA-22 (Contd)

n m T L
8 0 000655 -
8 1 -.047 00028
8 2 0,059 0,020
8 B -.012 0,081
8 -.094 0,025
8 5 - 050 0,021
8 6 B 0.259
8 7 ) 0.025
8 8 .1 2 0,020
12 12 031 0,001
13 12 070 0.068
13 x 063 0,059
14 12 0.00 -.025
14 1% 0,00 0,089
14 1% -.0l0 -.009
15 12 -,07 -,010
15 1 003 -0019
15 1 0,008 -,01%
15 15 -.005 -. 010
17 13 0,006 0.011
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3 { TABLE 1V :
5 AVERAGE ONE-SIGMA ERROR ESTIMATES |
) = M
E FOR PULLY NORMALIZED GEOPOTENTIAL CCEFFICIENTS Q¥

(g_YALUES SCALED BY 10°)

c | . Non=Resonant "~ ReSonant i
. Degree Zonals | Tesaerals & Sectorials|Tesserals & Sectorials 35
L B (order: < 12) | (order: 12, 13, 14) 3
‘ 0 1 ppn —— ———
g 1 28. 17, - :
; 3 0.6 1.4 ——— l
' 3 0.7 3.0 [y (
L 4 0.8 1.9 —— 4
3 5 1.0 3.5 - 3
8 . 2.3 -
\'E-i: 7 . 3.9 ——e
A 8 . 2.8 ——— -
\, 0 4.2 I j ‘

DY bt bt ek et b b g
. &
QO C OO DN W

: 10 3.3 - S
l 11 . 4.4 mae b ",;
8 12 \ 3.8 1.8 o
3 13 . 4.5 2.0 4
1 14 2.2 4.0 2.9 -

pu
[}
N
|2 ]

406 2.3 '*'-"
4.3 2.4

-
[ ]
N
[ 3

b 17 2.8 - 2.6 N
: i 18 2.7 -l .- 2.7 sl
'f 19 2.8 - 2.8 ! _l_\.

>4
(=]

2.9 - am a.c
N 21 3.1 - 3.1 ;
; 22 3.2 - 3.2 )

1 \."

T=24




APPENDIX U

Differential Expressions Relating Errors in
Initiel Conditibns to Ephemeris Errors

In examining the uncertainties associated with orbital parameters
after an orbit determination, an analyst may have difficulty in
estimating the effect of these small uncertainties upon the sub-
nequent tphemeris, The following equations provide accurate
quantitative answers to such qQuestions, Abbreviations and symbols
ure explained at the end of this appendix, '

H = + Aa {(1-e cos f) - ( % ne sin ) (t—r)}

- ‘Ae { a cos £ + 2a0 sin® ¢ }

- At { nae sin f}

+ Ab { pa®n [-2(t i) + % ne(t-t )% sin ¢
, g (ab)pan’(twt )4 ]}

+ AX {(9-'-’-1'1’-,}) (t-'r)}

2 na

¢ = ~- A { n(l-e cos f) 8in u}
4 A0 { a(l-e cos f) sin 1 cos u}

+ Ab { % p89 Wey (ein 1 sin u)(t-to)(1-e cos f)}

Lo =~ An {%P (14+¢ cos ) (t-r)’
+ An ! a(2=e cos ) sin r}
4+ AQ i n(l-e cos f) cos 1}
” 4+ A { n(l-e cos f)}
r/ - A1 ¢{na(l+e cos f)}
f ? 4 Ab -%-p an? (14 cos f)(t-to)z}

ax {(keson £) (p.r))

2na

+
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ABBREVIATIONS AND SYMBOl.S FOR APPENDIX U

Sngol
(#,0,L)

(“ .e,i.‘l,(b' 'l‘)

f
us
K
n =
na
b Cp
m
(CDD A, m)
p
K

(An, Ae AL, AD
AL ATy Ab) AK)

Definition

Coordinates of teat object in a moving
reotangular coordinate system with origin
at instantaneous position of reference
object., H extenda outward along radius
vector, L 418 in the orbit plane, perpen-
dicular to H and in the direction of
motion of the reference object. C is
perpendicular to orbit plane and opposite
to angular momentum veotor,

Classical orbital elements, a 1s semi-
major axis, e 18 eoccentrisity. 1 18 in-
clination angle, O is longitude of
ascending node, o 18 argument of perigee,
v 18 time of perigee pansage,

True anomaly.,
Argument of the latitude,

Mean motion.

Ballistic coeffisient or drag parameter,

Cp i8 dimensionless drag coeffiolent, A
is frontal area of satellite, m 1o masn
of satellite.

Effective atmoaspheric density, It is come
fraction of the density at perigee, See
Figure 1,

Oravitational parameter of Earth. Equals
GM0 where @ 1s Newton's gravitational ocon-

stant and M0 18 mass of Earth.

Errors in the orbital elements, drag paramecter

and gravitational parameter at epoch, Or

alternatively, characterintinse of test orbit

minut characteristics of reference orblt.

NPTLE LIPS B 10 WP dt s Wit EPERS RN SR o .



R O ot e S 1

t T™me of epoch,

o]

t T™nme,

3 Wy Rotational rate of atmosphere about earth
" axis, assumed to be equal to rotational

K rate of earth, Also represents rotational
rate of earth,

o
E{.
¥
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i
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A
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APPENDIX V
Orthogonal Oecdesio Coordinate System

For this discussion a geodesic 18 defined as a curve lying on the
surface of the earth spheroid and representing the minimum path
length between two points located on that surface, A spheroid
trace i defined as the path on the earth spheroid surface traced
out by a perpendicular to the earth spheroid surface from some '
moving vehicle = ship, airoraft or missile, Of all the simple K
mathematiocal ourves, the geodesic frequentiy agreses most closely ?
with the aotual spheroid trace and hence serves as a useful

rafoyrence coordinate axis, The geodesic may connect the origin

(0) at the point of departurs with the terminus (T) at the point 1
of arpyival, or in the case of a mianslle at the intended point of

arrival, Thins reference coordinate axis will be called GL'

Another coordinate axis Gc ia def'ined as follows:

3 At some particular time there 1s a point P, established orn the !
(U  sphoroid surface by a perpendioulur from the vehicle P to the
spherold surface, At that same insta.t there 1s some other point
P, looated un the noordinate axin GL such that a geodesioc con-
neoting Pl and Pe will interseot perpendicularly with GL' T™is
peodeaie aonneoting points Pl and P2 defines a moving coordinate
axin Gc. The coordinates of the point P1 are therefore:

ly, = U?, ; G = Pij. Distance is measured positively from

0 to T along the G axis. If an imaginary observer traveling
from O toward T arrives at P and sees P1 off to the left, then
Lhe distunce aloung the geodeuio from P to P is positive; and if
'y, 18 off to the right, then the distanoe from P to P ims nega-

1

3 {

. § tive, Tho axes Gy and G, clearly form a ourvilinear ooordinate i
! ayitem, and distances UFZ and F_F, are not straight lins distances f

: but nre distnnces measured along geodesios, f-

T™e third coordinu:? required to define the vehicle position P s

the height: G, = F,F. TP ic a straight line distance, @ 1s

popitive 1f P 18 above the spherold surface and negative if P inm
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The problem to be considersd is development of transformation
equations between the G; G, O coordinate system described here
and the ¢ v h coordinate system desoribed on Page 16, We see
1mmediately'that GH = h and henoce we may devote all our attention
to ocusves on the surface of spheroid 1nvo}v1ng only ¢, «, GL and
Qpe

4

If one is given the ocoordinates GL and Gc of the point P1 and
elther the geodetio position (00, yo) of 0 and (OT, yT) af T or
the geodetic position of C and the forward azimuth AOT at O, then
one can strailghtforwardly obiain the latitude and longitude (ol,
yl) of P1 by Sodano's inverse and direct methods, (See Appendix
F.) Consequently, the only problem remaining to be disoussed is
the transformation from (61, yl) to (GL, GO)' The procedure 1is
an iterative one:

(1) Determine the length 8oy Of geodesioc from (¢o, yo) to
(wl, yl) by Sodanu's inverse method to uoe as first
_estimate of the geodesio 8gs from O to PE‘

(2) Obtain an estimate of ococordinates of P, (6?, 72) by
applying Sodano's direot method using known values




of g Yor AOT and the estimated value for 8o+

E {“) (3) Determine baok azimuth Ayy 8t Py corresponding to
geodesioc &o2°

1 (4) Determine geocdesin 8y from P, to P, and cor-
responding f{urward azimuth “21'

i (5) Yorm cos (A, -Ayg) = 008 a, the cosine of angle
formed by interseotion of 802 and 827 at P2.

i (6) ‘Decrement g,, by some small value and repeat
3 steps 2 - 5,

3 (7) Two passes through Steps 2 - 5 with different
F values of g,, give a numerical partial:

L m

A (cos a)

tl ) L

] (8) . The 1terative equation to reduce cos A to rero
3 and arrive at a final value for g,, 1A

[802] - [gr\o] - 5082 T ]
pic %!ooa a K\

1+l h | 8o2 | 3
1 ...

3 (9) Convergence is rapid and iteration is terminated i.F
when succesusive differences in estimates of 8oo
| 3 beocme less than some predetermined value,

. (10) The final value of g,, and the final value of
821 represent the coordinates OL and Go

respeotively of the point Pl'

V=3




(11) For many appliocations one paas through Steps 1,
2 and 4 18 surfioiently aoccurate, because Boo is Q
usually many times, larger than 8p1° For almost \
all applications one pass through Steps 1 - 7 and L
a second pass through Steps 2 - 4 will bde

sufficient, é

' ! 5

Let ¢° - 28"
Yo « 280° g

AéT . 110° é

® = 27,3948498M95" f

¥, = =78,0894076694° 3

a = 6376140 meters &

1/f = 298,25 E

Solve for GL and GC
(The answer i1s known to be: G, = 200000 m; G4 = 3000 m,)

RN TN

SOLUTION: i
(Numhers in parentheses represent step numbers in '
previous disoussion.)

3 (1) gy = 200022,443260 = est gy,
5:; (2) o, . 27,3695330078
E' Y, « -78,1000076956
é- (3) Ay - 290,882826201
;; (M) 8ay = 3000,08397063

Apl " 20,4511998564
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(5) Ay -A,q v 8D,571373635 = a
0 coB & = 00748087121

(6) ‘Take Egp = 5 = 200017.443289

(2) o, = 273695450919
(3) Mgy = 290,882804492
(4) &py = 3000,0507 4054

Agy = 20,54986457;

(5) Apy=Ang = 89,666860085 = a
cos & = ,00RB143558%

(7Y A ocos a = «,00166651558
ABop ==35

I
1 ,':

L A (cos a) . ,000333303118 | ’ '
|

A 8o

(8) gy, = 200017,k43269 - f%8§§1u§8§6§

= 199999.998621
(2) o, - 27,3696052091
Yq « -78,1002196697

(3) Ay = 290.88272875

() 8y = 2999.99995976

At this stage the computed values for Cp, and G, are
Oy, = 199939,98621 meters
Gc - 2999,99995976 meters :

AT




****

G et s

Comparison wilth the known answer showse the errors to be:
GL ¢ .08 4inch

Gc t 002 inch

Sinoce we aro down to the precision level of the program,
further iterations here would not be useful, In & normal
operation when the answer is not known, one further itera-
tion might be made to be sure of convergence,

NOTE: Orthogonal geodesic coordinates (also known ap Laborde
Projeotions) form the basis for oconformal grid maps such as
Universul Transverse Mercator (Appendix W), Steps (1) and (?) on
pp. V=2 and V-3, used to provide a first estimate for point Pe,
oan cause difficulties in the event that the coordinate G, 1s
Jarge relatlve to Gy, This 1s & highly unlikely ecircumstunce in
present misoile and satellite applications, If such a situation
is nnticipated in msome particular application, then a spherioal
solution should be substituted for making the first estimate,

A 0 ALl e i Bl A 1
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APPENDIX W

UNLVERSAL TRANSVERSE MERCATOR (UTM)
COORDINATE SYSTEM

U™ 18 a coni'ormal coordinate system used for artillery and short
range migslle mapé. UTM describes the earth spheroildal surface
from f0° south latitude to 80° north latitude, with 600 zones in
the southern hamisphére and 600 zones in the northern hemisphere,
Each zone covers 6° in longitude and 8° in latitude, The longi-
tudinal boundaries of the zones begin at 180° from Greenwich and
continue eastward with 186° E, 192° E, 198° E, etc., the longi-
tudinal regionas being numbered 1, 2, 3 ,,, 60, The latitudinal
boundaries of the zones begin at 80° S and continue nurthward
with 72° 8, 64° S, 56° 8, etec., the latitudinal regions being
letterad CDERGHIKIMNPQRSTUVWX, Thus the point at 189° E longitude
and 4° N latitude 18 at tne center of zone 2M, Each zone 1is
chiuracterized by an interior rectangular grid system and by a
central meridian, The central meridian for zone 1P, for example,
19 at 133° £ longitude, Grid coordinates (northing and easting)
desoribe the position of a point within a zoae.

Trunsformation equations presented here were obtained from l1lst
Geodetle Survey Squadron, Warren AFB, Wyoming, and represent
modifications of those given in U, 3, Army TM5-241-8, These
modifications are minor and do not represent an impairment of
nceuracy,

[V GORITHM

AT longltudes are measured positive east from Greenwich,

o fuadesrt are measured positive north of the cquator and negative
south off equator. In conformance with normal usege N will be
uped Lo denote north latitude and also northing., Also E will be
wed to denote east longltude and also easting., The context will
provent amblgulty, Twelve diglt floating point computaticns are
adegquate, 'The followlng notation is used:

B T T LU SN L S, N 2% DUT AT 0 L S
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$, A . guodetic latitude and longitude
N, E = northing and easting (
ﬁO,EO = false northing ahd false easting
ko - longitude of central meridian
kK = socule fastor
kg = soale factor at central meridian
‘N . (NHNO)/RO, true northing
B - (E-Eo)/ko, true easting
V. =« grid convergence (geodetic azimuth minus

grid azimuth, approximately)

a,n = maaof and rinor semiaxes of the spherold

p = aa/b, polar radius of curvature
o? = (ae-ba)/aa. first eccentricity squared
€ - '09/(1-02). second eccentricity squared
| n = (a-b)/(a+d) ' o
l w = pectifying latitude )
E‘l 2 =  zZone number
%; i Jpherold conatants are computed as follows:
S : A m 1 4 3n [-1 + (7/4) n (1-n/0.679)]
- B = 0.4 x 1073V + (A-1)/A ]
i | ¢ = =2.5n (1+1/0.524) f
ﬁ D = 1,234 ¢ ]
¥ = 1-4A+0.14x 107
a = 3,5 n (1-n/0,%269) ?
I = 1,388 ¢ (
]
W2 ]
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The following conatants are used in UTM for all spherolds:

\I
Ag(deg)

0 for northern hemisphere
10 OGO 000 for southern hemisphere

500 000

0.9996
62-183

The direct problem 1t defined as the computation of grid coordi.
nates (northing and easting), scale factor, and convergence,
given geodetic coordinates and central meridian value, The fol-
lowing equations apply, in which all angles &are in radians:

v2

Np

AL

Et

€ oole ¢

1+ 32

tan ¢

¢+Btcosao[1+Cooae¢ (1+Dc032¢)] |
wpaA NOTE: p muat be in meters,

(A=}g) cos ¢

Nj+t (p/2v)(aL)? 1+(1/12)(AL)2[%-t2 + g2(9+lg?)
+ 2(AL)? {14¢2 [-1+(1/60)t2]):|}

N' ko+ Ng
(p/V) a1 (1 + (1/6)(a0)2[1-t7 + &2 + (1/20)(AL)¥(5
+ t°2 (-18+t7) + 15 g° [1 - 4t2]}]}

E' k., + E0

(0]
(B /p) V2

W-3

st pm———




"."' ‘. . %
I ' ¥
k =k, {1‘ + (2/2) P2 [1 + (1/22) Pal}
v = t AL {1 - (1/’5)(AL)2 1+g2 (3+2¢g% L
+ (1/5) (a1)2 (a-tej l
o : 3
ﬁ . This completes the direct problem, The reverse problem is defined A
\ as the computation of geodetic coordinates, given universal trans- b
} verse mercator grid coordinates and central meridian value. The i
b followlhg equations apply, in which all wngles are in radians:
. E! - ( E"‘Eo )/ko
® - N'/(Ap) |
L2 = w+ Foos®wtan w [1+0cos® w(l +H c0s® w)) )
‘ ge - ¢ oos? %p 7
o ’ ! ) r.
vV . 144gf =l
3 Q = (V/p) B !
o= 0y + (1/2) £ Q7 (-1 - g% + (1/12) @®[5 + 3(%12-g°(2 + 38°)] l
{ + 8% (2-g)) - (2/2) @2 (4 + 3t% (2 4 te)_)J} I
: r
|

- AN = (/008 ) {1 - (1/6) 02[1 +2t2 4+ g% - (1/20) @2 (5.05
-‘ : + 42 (7 4 6‘02)5'}
] A= g+ AN

This completes the reverse problem,

Wbt ¥




) EXAMPLE (UM, Clarke 1866)
t«-‘. ’

Lutitude ¢t 349 150 34" T4e N
Longitude . 96° 2t 43" 158 W
i Central Meridian: 99° W.
_i' Northing :  3794702,172 meters
FE Easting :  772075,.,812 meters
E Scale Faoter : 1.00051259
A Convergence ¢+ 10 391 51" 27
i L)
K,
3 i




: APPENDIX X
0 EARTH_SHADOY

It is mometimes desirable, partiocularly in photography, to know 5
whoen a satellite is in full sunlight and when in the shadow of
the earth, Prigure 1 shows tho geometry of the situation., In !

this figure

8g = 06,9598 x 105 knm

A« #,37814 x 10° km 4

-1 %
6 L .1“ T-

8 ;

/ ¥
R R 3

€ u COB 1 -: ; ('

8% )

Y = b+ ¢ 4

a - .1n-1 -—-9—

R' ;:

The logic to determine the location of P 18 am followa:

s ¢ > (2 + 8) yeo - j
lno 3

Is y<o 22y 1s > -P;- L UMBRA
no no )

+ R

w PENUMBRA 3

Thie same Jogic, of course, can be used to dotermine whether the
1racking station is in sunlight or shadow,
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and R

This salgorithm requires the computation of the vectors 59 Rg»

Tho vector 5@ is computed in the usual way using the orbital
cloments of the satellite, 58 is ssen from the diagram to be
-8 g, « R, Tho voctor R is available from an ephemeris tape
i! auch a tapo is convanient, For most purposos tho goocontric

. inortial cuordinates (X,Y,4) of the vostor R can be computod

satisfactorily from elliptic expansions using Beasel functions
of the first kind, No significant orror is introduced by
truncating terms with powers of cccentricity groater than threc,
We have therofore

3) sin M+ (

f w M+ (2 » % 9 % 02) sin 2 M + ¢ %% es) 8in 3 M+ 4449

-%- - 1l %r o (= 0 # % os) cos M + (-~§ e?) cos 2
*‘-%.3) 00.3“* s
M = 2 (t - tp) ?

U w O+,

1 0 0 cos |
| 0 cos ¢ -8in ¢ sin u R, where
2 Q ein ¢ COB & 0

L

is truc nnomaly,
¢ is uvccontriocity,
M is wmean anomaly,
u is semi-major axis of earth orbit about the sun,
n In mean motion « 0,.01730279 rad/day,
t is timo,

1. 18 time of porigee passage, anh input constant
P obtained [ron American Eouiomeris,

» is argument of perigee, an input constant
obtained from Amaricanr lphemeris,

U is argument of the latitude,
¢ im mean obliquity -« 23 44% dey.

X=3

[
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APPENDIX Y
SOML S =EARTH GE 1CAL FORMULAS

The following simple formulas -~ oxact for sphorical oarth - are
presented primarily for planning purposes and simplo error
analyses, Exact and necossarily more complex computational
methods for the oblatc earth are presented clscwhere in this
report,

1,0 PLANE TRIANGLE FORMULAS

The triangle is defined by onc side axtending from the center of
the carth to the observer on the surface of the earth, one side
uxtending from the centor nf tho carth to the tracked ohject
alove the sarth, and one side extending from the obsurver to the
tracked ohjout, Soce Figure 1,

ohse)y /ar on surfaco of oarth

tracked
0 objoct

surface oi ocarth

colitoy
of carih

FIGURE 1

w,otiole i Mgure 1 are defined aw follows:

—

i dlant range from vbserver to trackud object,

ls clovation anglu of tracked object above local hoxizontal,
pusiltivo above nnd negative bolow,

h e altitude of tracked objuct ahove surfaco of earth,
R’ I8 carth radius, approximatoely 3440 nm,

s conlral angle between vector frum center of carth to
oLeesvor and the vector from center of cvnrih to trackod
ol jeel, where @ s 6 5 180°,

~

Y-l
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; “ha lollowiny formulas apply:

i {1) Ground range = R¢, where ¢ is in radiane,

") * a +J§ R (Rth) (1-com 8) 4 hd

(7)) ¢ = tan'l' [ﬂ%"ﬂ' - ngm] s Where

(=80) < @ < (+00°),

'ﬁ. (8) 4 w ’R’ +T3+2rRaino -R

6) 8 w coa™ [9.2.9.-_3] =0, where 0° < 9 % 1R0°

v R+ h .

9 Simple considurations permit these fovmulas to be used with an )
; ohsurver above the surface of tho earth, Note that thoan

i formulas are strictly geometrical and do not consider refraction
: offectn,
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2,0 SPHERICA ANG OR 8

Equator

FIQURE 2
4 8ymbols in Figuro 2 are dofined as follows:
b
A N, 8 roprosent respectively the north and mouth polas
- of the earth,
L 1, ? designnte Sites 1 and 2, rospectivoly,
3 § ¢ is latitude, positive north of squator and
k i negative south of uquator,
ﬁ ' o) is longitude difference hetween mitcs,
{ E ] is contral angle botween vectors extonding ftrom
o center of carth to two sites,
i g a's 7 are azimuth angleas as indicated in diagranm,
E_,




The following formulas apply:

(7) 6 = col'1 [oin 01 sin 03 + cos 01 cos 02 cos (Ax)J )

whore 0' < 6 < 180°

[ ] ¢
(8) a, « 3 wind [T NI -~ - .
\ sin A cos ¢1 _

where 0° < Oy X 180°

(9) 0y = lin"1 [lin ¢, 6o% 6 + cos ¢i sin 0 com “1] '

where (00°) < g % (*90')l )

tan a, sin D '
(10) 2> » tan™? [ 1 1] , whore 0° < AN < 1&0°

iIi’(¢l+D1)

and where

(11) b, = tan™) [tnn 0 cos 01] ) where 0° < D, x180°

An alternative form for each of equations 8, 9, 10 and 11 can bo
obtained by substituting subscript 1 for subscript 2 and
substituting subscript 2 for subscript 1 throughout the
particular equatinn,

e Tk i =




APPENDIX 2
NUMKERICAL MITHODS — INTERPOLATION,

DIFFERENTIATION, QUADRATURE AND INTEGRATION

INTERPOLATION

The problem of interpolation consists in conatructing a con-
tinuoua function which fulfills certain conditions at a finite
numbor of dimcrate points, The condition umsually imposed is
tho coincidence in numerical values of tho interpolating function
with the numerical valuos of a finite number of tabulated points,
The tyno of funotion includes powor polynomials, rational
functions and trigonometric polynomials, 'There aro special
applications in which each type is preferable, However, con-
sidorations of speed, simplicity, versatility — as well as
ponsible requirements for differentiation or integration =
gonerally result in the selection of power polynomials of the
type

2(x) = ny 4+ B X+ 3y x3 LARTTRL I ",

The logitimacy of the power poulynomial ropresentation is bamed
upon a thuorom of Weierstrass, which can bo atated as follows:
Lot £(x) be an arbitrary continuous function defined in a

finite interval o < x <« b, It is alwnys possible to approximate
P(x) over tho whole intorval (a,b) as closcly ng we ploasc Ly a
power polynomigl of sufficiently high degre¢, This obviously
does not mean that woe can intorpolate in a table as accurately
as we plcame by choosing a power polynomial of sufficiently

hih dopreo,

Most of tho discussion in this appendix will bhe focussed on
powor polynomials, All of tho interpolation formulas (of
Jdogree n) in this appendix will precisely fit or go throupgh
(n+1) proints in the table, An individual formula is selected
for a particular application primarily on the basis of com=-
putationnl convenience and upon special limitations and
ndvantinios ussocinted with distribution of tho table entriuvs,

Z=-1
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Helnetion of the preper dogree of the ipterpo]ntinn polynomia)
is donc on the Lasiis of an orror analysis, which should be
porformed by the mathematician who proparos tho table, Firsat
degreo corrosponds to linear intorpolation, Interpolation
boyond sixth degrec is virtually unknown, and 2 good practical
limit is fourth degree, '

NOTATION FOR NEWTON'S, BESSEL'S AND EVERETT'S FORXULAS

The ?ollowing table showing differences up to the fifth will

- sorve té ¢éxplain tho not ciong

A VALUE _ DIFF,  DIFF,  DIFF, _ DIFF, __ DIFF,
X.2 Yan
, -
X, v, LI
-1 A3 .
xo yo A-o .5 ) ‘O‘ B Ao
Ao Aa A5
A 0.5 0.5
X y 0 .5 "
1 ] A’ Al
) 1.8 b A3
X2 Ya ) 2 1.8
&y b2
Xa Ya

It is nccessary that tho entries in the tahlo be listed at oqual

intorvals, First differences are defined ns follows:

°-1.5 - y_1 - y_z H A0.5 e yl - yo ; ote,

S cond difforences are definod as follows:

. 2 2 ] A
Calt Bap,s T Bl1,p 88 8yt B p i Cte.

dimllurly for third, fourth, fifth, sixth, cte, difforoncos,
[t bx v Ky = Ko ow Xy = Xy ooy = Xy cte,

s vy e 7 B R s A v
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NEWTON'S FORVARD AND BACKWARD DIFFERENCE INTERIPOLATION IORMULAS

Thege [ormulas are normally usced only nea- the bepinning or ond
of a tohle whare other and more rapidly converging formulas
such as DBessel's and Lverett's arc not applicable., Lot us
agsume that x, is the first entry in the table., The ontry, x,
for which we want. to compute a table valuc, y, is located at
(ko#p&x), where p is some positive fraction less han unity,
Nowton'l Forwnrd uif!eronce-rormula is upplicnble-

y-yoé'pao.;* !P(P-I)A '|' gp (p_l)(p_')) A15+ X
Next let us nllumo thtt ‘0 is the last entry in the table, The
entry, x, for which we want to compute a table value, y, is
locatsd at (xoupéx). where p is sone poeitive fraction less than
unity, . Nowfon'- Backward Dirfcronco Formula is applicable:

V- Yo P o, 5 + vg F (p-l) - 3 P (p=1) (p=2) A-I.S TN

Clearly these rormulns may be uled where - X does not fall within
the first or ‘las't’ interval of the table, In fact, for roasons
wulch will b¢ apparent later, 1t 48 usually necessary to apply
thesy formulas when x is less than two intervals from the be-
ninning or ond ot the table, Newton's Forward and Backward
Difference Formulss have been shown extended out to thard
differences, hut there is little 1f any advantoge in using
differences beyoad tno second, bacause highor differonces are
ton far removed from the entry of interest,

NESSEL'S INTERPOLATION FORMULA

Thig is prolably tne most widely used of all intexrponlation
lormulas, It 18 & central differcence formula, sometimes ox-
tended to fourth Jdifferences, but if differences higher than

the third aro desired, Everety's formula is penerally preferrcd,
The entry, x, for which we want to compute a tablc value, y, is
1naated at ((0 + 0 U x), where p is sohe positivo fraction less
thiaw unity, TDesscl's formuia im as follows:

2-3
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{p=1 2 2)

y = 0,5 (y0+y1) + (p-0.98) 8.5 * By + oy

+ E(E-ozszse-l)_Ag.a * p "1 -2 (A04 + 614) P

In cascy where fourth differences are significant, it i«
froquently satisfactory and somewhat simpler to "throw back" .
tho fourth differences into the second as follows: a

N & 0.5 (yo'.'yl) + (9'0.5) Ao‘s

' 1) 2 2 4 4
+ZSF—-[AO + 8,7 = 0,184 (8% + o 1)]

N + . &9 .5

EVERETT'S INTERPOLATIUN FORMULA

} Lvoarett’'s formula is generally proferred to Bessel's when higher
i diffaerences are necessary, Everett's formula shown extended out i \}
to sixth differences — usually the ultimate limit of usefulness - A k.
is am follows:

caiss & 41 r ol e

y =4 yg + g @1 8 ¢ g @D @ a4t

+ g (4P-D @ %0 8% v L ]

” 9 .
+p [yl + % (p?-1) A"+ TéU w3-1) (0745 AI’

vt v S e e L 2 SR

1 2 2 2 8
+ wors (p7=1)(p"~1) (p~=9) 8 *+ .. J ’
vhore ¢ = (1=p) and wherc the cntry, x, for which we want to

compte a tahle value, y, is8 located at (x0+p 6x), where p is ; f
some positive fraction less than unity,

Z-4
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LAGRANGL'S FORMUILA

Lagrance's formuln is more general than the formulas praviously
treated. KEqual iuntervals in the table entries are not required,
Interpolation can be accomplished anywherc within the tahle
including the 2irst and last interval, and also oxtrapolation
can be performed (with caution), Most analysts prefer formulns
ffiven previcusly, however, for tablea with entries at oqual
intervala, Lot the table be of the form:

ENTRY TABLE VALUE
%0 Yo
*1 Y1
X9 Ya
X3 Vs
xn yn

Given some entry, x, we wish to estimate the corrasponding table
value, y. Lapgrange's formula is as follows:

(x'xl)(x-xz)oe-(x-xn)

(xo'xl)(xo-xz)ooo(xo'xn) yo

) ;

(x-xo)(x~x2)no.(xfx
Y1

4]
(xl'xo)(xl'xz)-oo(xl'xn)

;? (xe%) (XmRp ) (ReKy) oo, (K=K,
+ Va + s .v
(xg'xo)(xz-xl)(xa-xs)nuo(xz‘xn) ) )

. (x-%0) (X=X ) 0y o (=X 1) y
(xn-xo)(xn-xl)ooo(xn-xn_l)

n




HERMITE'S FORMULA

i T™ig 18 » trironometric analog to Lapgrange's formula, Equal ?
i intervals in the tahio entries are not required, Interpolation \ B
fﬁ“ can be accomplished anywhere within the table including the i
n Pirst and last interval, and also extrapolation can ho per= E
. formed (with caution), When n function represented by a table

is known to bhe poriodic, llermite's formulp is froquently
preforred over Larrange's in apite of the much larger computaticn
time, Ilermite's formula is s8 follows: 'y

Bin (x-K;) Bin (X=Xp),..8in (x~X) 3

sin (”0‘”1) 8in (xo-xz)...sin (xgex,)

sin (x-xo) 8in (x-xz)...ain (x—xn) 5

- ¥
gin (xl-xo) sin (xl-xg)...ain (xl-xn) )

sin(x-xo)sin(x-xl)sin(x-xa)...sin(x-xn) - b
v') ..!.,.

ain(xz-xo)sin(xz-xl)sin(xm-xs)...sin(xQ-xn)

sin (x-x;) sin (X=-X;)...8in (x=x, 1) i

sin (xn-yo) sin (xn-x])...sin (xn-xn_l)

PP e

NCIE

" The mpthematics literature contains many ivterpolation formulas
not included hore, Among theso are Gropory's, Newton's Divided 1
Differences, Aitkins, Neville's, Gauss', Stirling's, Thielc's | 4
- aul Steffonsen's, After car. ful considerantion and cvaluation

y thesn were omitted, becuuse in our field of inierest they 4
nppeoar Lo contribute little Lo the capability ropresonted by 3
the formulas included, ]




INVERSL INTLERIQLATION

A table supplied hy a competent mathomatician 1s amenable to
iutorpolation, If such a supplier does not spocifty any
particular interpolation procedure, then it is safe to assume
that one of the direct intorpolation procedures previously
discusised I8 applicable, Occnsions arise, however, whoen the
problem is not the standard one of determining the table value
from n iziven ontry but rathsr determining the entry from a

given table value, Tho process by which tho entry is determined
from a pgiven tahle value is called inverse interpolation,

In inverso interpolation the nnalyst is using a table for a
purpnse for which it was not designed, and he is consequently
rospousible for checking out the accuracy of any procedure he
usa8, Tho most officioent method of inversc interpolation in-
volves a rcversal of the roles of ontry and table value in
interpolation formulas alroady discussed, In other words,
instead of oxprossing the table value in terms of a polynomial
in the entry, we oxpress the entry in terms of a polynomial in
thie table vpnlue, With the original tahle, however, thora is no
assurance that the entry can he adequately expressed Iin torms
of a simple polynomial in the table value, In fact, reversal
of the roles of ontry and table value can casily result in n
inter;olated value in the wrong interval of the table, The
accuracy of this roeversal procedure is dependeat upon the
particular table heing uscd and may frequently be improved by
usini prior direct interpolation to reduce the table interval
size, 1f roversal of the role of entry and table value ygivos
unsatisfactory rosults with p piven table and if it 18 im-
practical to reduce the table interval si7e, then one can

resort to successive approximations, In successive opproxima.-
tions one applics direct interpolation proccodures using closer
and closor approximations to the true entry corresponding to u
rmiven table valuao, These twa gencral approaches will be dis-
cussed in further detail,

L=1




Revorsal of ltole of Entry and Table Value
Becausc Lapgrange's and Hermite's formulas o not require cqual
intorvals botween succeumive vplues of the entry, the rolos of

entry and table value may be ropdily interchanged, This is a
perfoctly nganeral method and ro¢uires no further discussion,

Interpolation formulas developed in the form of convergont
power sieries can always be reverted, Without developing the
revertced series for any specific interpolation formula, we will
show the pgeneral caso, The power series '

Y e B b ByX 4 B2 4 aux + + a x"
"0 1 2 3 s n

whon reverted becomes

4
X - Sat—— C —— Cc ———— W ———————— se s
'l) 1 y 2 8y 3 an

[y \"
+ C ————
n"l .1 ! ‘A’
whare
a
2
“©@ 7w ’
*3 '22
i B T Y '
3
a ' 0,0 n
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1 ay 1
] 2 4
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Diessel's formuln will be uscd to illustrate a general proceduro,
If we tronspose nnd divide through by Ao ne Wwe obtsin

2 .2
ny=yo-V - Y
p-o.ﬁ*To——ln-m —Qz—-l-

0.5 005

A3 4 4

- 2(p=0:)(p=1) (- 0,8 _ (p+1)p(pn1) (p-2) So ¥4 )

0.5 80,8

To a first approximation for p, we neglect nll differonces
higher than the fiyrst and therefore have

2y=~yn=-y
p(l). 0-5 + ¢ o 1
0.8

The sucond approximation is obtained by subhstituting p(l) in the
right=hand si 1 of the sories expression for ;. The rosulting
Hecond approximation p(a) is then substituted in the right-hand
gide of the sorics expression for p, and a third npproximation
p(a).ls ohtained — and so on for higher approximations until the
differonce in succeasivo approximantions for p become noe;y .gible,

A more generanl hut usually more slowly converging mothod of
sticeesaive approximations makos use of Laprunge's formula, 7o
11lusirate, let y lie botweon Yo and Yy Then we know that x
lics hotwaon X0 and Xy o A8 o rirst approximation for x, we have

(1) Y=¥o
X . X 4 n———— X.=X .

to Lagrangoe's formula will result in a correspond-
(1)

(1)

by value fov y

Supplvine x
y in general not equal 1oy, If y 1ies ho-

1weon'y(1) and Yy, we perform another linnar interpolation ns
tfollowy:

4-9
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y - Y(l) 1
X - x(l) + 'y--—-—;-(r) (xl - x( )) .
1

If on the othor hand y lies hotween y(l)

(2) Yo (.1
X = XU + —TTT——- : - xo .
Yy "=¥o

and Yor Ve compute

Lagrange's formula will provide a corresponding y(e) with which
to estimate x(a), ete,

Double Intergolation

Suppose we sre given a table of the form

xo 1 2 xs . [} ]
‘ Yo You Y01 Yoo Yos . . '
" Y10 4 Y12 Y13 . . .
¥2 Y20 Ya1 Yoo Y23 . . .
Y3 Y30 Y31 Y32 Yaa . . .
[} [ ] [ ] [ ] [ ] [ ] L[] [ ]
L ) [ [] [ [} ] * | 1
|
. . . » . . . . [
-
In this table we have doublc entries, w and x, associatcd with b

1 opach table value y, 'The problem is to determine the table valuo
i Yeeh riven (wﬂ, xh). Special formulns have beon derived for 5 4
this prohlom hased upon assumption of simple intorpolation

formulos, The morn «oneral procedure i8 to reduce the double
entry toble to a single entry tahle and thon proteed with ono f
of the formulas previously discussed, For example, by standard %

- 4-10
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intaerpolation procedures alroeady described, we first computc

Yon' Y1n' Yane ySh’ o0 .

Wo then interpolate within this set, again by standard interpola-

tion procedures nlready described, to obtain ych‘

Nifforentiation
L~

The procedure is to differentiate the appropriate interpolation
formula, Bessel's formula will bo used to iltustrate the genernl

i nethod, We recognize that

IR A

U Hence,

‘ (al'g? * %[A0.5+M(602+A13)+ 322-320;0.5 Ag.5
: i + 222:!5::22:! (Ao‘ . A14) . ...] .

Reprated differentiation gives higher order derivatives, where

2 2 3 3
i S VU S A U i S
;;& (8x)3 cu:i ' 3-;5 0x)°  dax'

11 the tahle values are not piven for equidistant valuces of the

entry, we may represent the table values by Lagrange's or Hermite's

i forwula prior to differentiation, For example, in the casc of a

second denree polynomial, Lagrange's formula gives

Z2-11
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Newton-~Cotes Quadratures

These formulas require equal intervals betwocn the table entries
or independent variable, There is no linmit to the number of
these formulas, but there are only four that are used commonly,
These are the trespesoid rulo, Simpson's rule, three-oighths

rule, and Weddle's rule, The total number of intervals covered
in the integration is not restricted when the trapezoid rule is
usoed, An even number of intervals must be covered in the
integration when Simpson's rule is used. The number of intervals
ocovered in the integration must be a multiplo of three when the
three-eights rule is used, The number of intervals covered in
the integration must be a multiple of six when Weddle's rule is
used. In terms of accuracy these rules rank in descending order:
Weddle's, three-eights, Simpson's and trapezoid. B8impson's rule
is probably the moat useful of all formulas for quadrature.

The notation followed in this discussion of Newton-~Cotes
qundrature is explained by the following table:

value of value of
independant corresponding
variahle x function ywf(x
X0 Yo

xo+6¥ y1
x0+2hx Yo
x0+80x Y3

s o e T oI
T RS BTT | Sh enii me  B L

e e ad A
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3

‘Irapezoid_Rule 1N

x0+nbx 5 ?i
] K gn

“/ t(x)dx = - [vo+291*=¥3*...+2yn_1+yn J A

X0 3

where, excluding Yo and Yn cach of which has a coofficient of 1, ,?

cvery value of y has a coefficient of 2 inwide the brackets, g .
Stnpsun's Rule ,

x0+nbx 8 b

x , 3

j f(x)dx w = [yo+4y1+2y,+4y3+2y44-...+2yn_2+4yn_l+,\n] i

X i

0 . o

‘ where, oxeluding Yo and Yn each of which has a coefficient of 1, :;
i' the repeating pattern of coefficients beginning with ymy, is 4,2 B

| &7} 1inside the brackets,
e )

Threg~kighths Rule_

xo+nb ’
r 3°x
J t(x)dx = -5 [yo+3y1+3y2+2y3+3y4+3y5
x

0

Maed o -

*2y6+...+2yn_3+3yn_2+8yn_l+yn ]

where, exoluding Yo ond Yn each of which has a coefficient of 1, F
the recpeating pattern of coefficients beginning with Y=y, ins !
J,3,2 inside the brackets,

Z-13




Yeddle's Rulo
Xg+Ph s -
Jf £(x) dx = TUg Lyo+6y1+y2+6y3+y4+5y5+2y6+53,+y8+6y9+y10

X
0

wn-4*°yn-3"'yn-2*”n-1*ynj

where, excluding Yo and Yn each of which has a coefficient of 1,
the repesting pattern of coefficients beginning with y=y, 18
5,1,6,1,8,2 innide the brackets,

QIUII Quldraturo

Yo oot

n
£(x) dx = & H, f(n.)
if T T A

an equation which holdm exactly if f£(x) is a powor polynomial of
dogree (2n-i) or less, The discrete abscissanc aJ and tho
corresponding weight coefficienta HJ must be dotermined, Based
upon Weierstrass' theorem, we conclude that the rosulting
quadrature formula should be capable of approximating definitc
integrals of any continuous function within s margin of error
wvhich should diminish, in general, with increasing value of n,

If n and b are finite, it is convenient and entnils no loss in
generality to assume that (bet+l) and that (an-l), If this
amsumption is not true in an actual problem, it can he realized
by an appropriate linear transformation c¢f variables:

Z-14
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5 ismil

b +1
J 1w ay - Bt f R(=) dz
. -1

where ;(z) dz ims obtained by substituting y -~ 1/2 [(b-a)z + a+b]
into f(y) dy, Consequently the problem is to evaluatoc the H

and the aJ for the following equation: J
+) a
f f(x) dx = ".'.:1 HJ ‘(.J) .
-1 b

Gauss has shown that if (£(x) is a power polynomial of (2n-1)
degree or lower, then

+l n £(a,)
u/ f(x) dx =« 2 I - ’
) J=1 (l-ld ) ’n"a)

where the a, are roots of the Legendre polynomials P (x) and
where the P (n ) are derivatives of Py (x) evaluated nt R, .
Finding the rootl of » Legendre polynoninl P (x) is equivalent
Lo solving an algebraic equation with terms up to degree n,
Having thosce roots, one can calculate HJ with little difficulty,
Becnumse of the diffioculty in obtaining the roots, aJ, it 1is
customary to use tabulated valuem for both a, and H, even in
canputer applications, Table Z-l (from Bull, Amer, Math. Soc.,
AR, 739, 1942) in this appendix shows H and a to fifteen
decimal places for n up to 18, Note that all weights H aro
positive, Bocause of the symmetry of the Legendre polynomials
about their origin, thoir non-zero roots nccur in pairs, plus
and minus uJ, both members of a pair having thc samo weight,

Z=158




TABLE Z-1

. H J ] J
4 Nul
‘ +
| 1.,00000 006000 00000 (and) 0,87736 02691 A9G626
.
_ n=3d .
: 0.588588 55585 58556 (and) 0,77459 68692 41483
L 0.84888 48888 88889 0,00000 00000 0000Y
Y : n=4g
N 0.34785 48451 37454 (afid) 0,86113 63118 94053
) 0.65214 51548 62546 (afid) 0,33998 10438 84886
;5 nej ‘
= 0.2369% 84850 56189 (and) 0,80817 98439 38664
I{ +
k. 0.47862 84704 99368 (and) 0,53848 93101 05683
2 0.538R8 88888 88880 0,00000 00000 00000 !
| " nm6 .
% 0,17132 44923 79170 (and) 0,83246 95143 03152
4 0,36076 15730 48139 (aﬂd) 0,86120 93864 £6285
; +
: 0.43791 39345 72691 {and) 0,23881 91860 83197
. % n oy § +
4 0.12948 49681 68870 (and) 0,94910 79123 44759
:1 0,27970 53914 99277 (aﬁd) 0,74133 11835 99394
' +
0,381R3 00305 05119 (and) 0,40884 51513 77397
0.41795 91846 73469 0,00000 00000 00000
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B s =L AMMETA

TABLE Z-1 (Cont'd)

|
Hy | ' i
n=b g}
0.10122 85382 90376 | (afid)  0.96028 98564 97536 E
0.22238 10344 53374 (afid)  0.70866 64774 13627 E
0.31370 86458 77887 | (ahd)  0,52553 24099 16329 4
0.36268 37833 78362 (ahd)  0,18343 48424 95850 3
_ n=9
0.08127 43883 61574 (ahd) 0,96816 02395 07628
0.14084 81606 94857 | (ahd)  0.83803 11073 26636
¢.26081 08984 02838 (ahd)  0,81337 14327 00590
0.34234 70770 40003 (ahd)  0,32425 34234 03809
0.33023 93530 01260 0.00000 00000 00000 .
[
n=10 ; )
0.08667 13443 08688 (ahd)  ©.87390 65285 17172 K
0.14345 13491 50581 (ahd)  0.8B6506 33666 B8BHSS
0.21908 63625 15082 (and)  0.87840 95682 99024
0,26926 57193 09996 (ahd)  0,43339 53041 29247 ;
0.29552 12247 14753 (and)  0,14887 43389 81631 ﬂ
P n=11 . |
B 0.05586 85671 18174 (and)  0.97822 86581 46057
g 0.12558 03894 B4V0S (ahd)  0.88706 25997 68U9S
; 0.1H629 02108 27734 (ahd)  0.73015 20055 74049
t
0.23319 37645 91990 (afid)  0.51909 61292 UG41?
a 0.26780 15445 10247 (afid)  0.26954 31559 52145

; 0,272 50837 77901 0,06L00 VOOCL JOLOO




TABLE Z-1 (Cont'd)

H, Y
nel2

0,04717 53363 88512 (ahid)  0.98156 08342 46719

0.10893 93250 95318 (ahid)  0.90411 72563 70475

0.16007 83283 43346 (afid)  0,76090 26741 94305

0.20316 74267 23088 (ahd)  0.58731 79542 86617

0.23349 25365 38335 (and) 0.36783 14989 98180

0.24914 70458 13403 (ahd)  0,12523 34085 11469

n=13

0.04048 <J047 65318 (ahd)  0,98418 30547 18388

0.09212 14998 37728 (ahd)  0,91759 83992 22978

0.13887 35102 19787 (afid)  0,80157 80907 33310

0.17814 59807 61946 (Alid)  0,64224 93394 40340

0.20781 30475 36889 (ahid)  0.14849 27510 36447
| 0.22628 31802 62897 (amd)  0.23045 83159 55135
: 0.23255 15532 30874 0.00000 00000 00000
t‘ n=14 . ;
4 0.03511 94603 31752 (and)  0.98628 38086 06812 1
g 0.08015 HOBT1 59760 (ahd)  0.82843 48835 63574 i
| U.12151 85706 87803 (and)  0,82720 13150 69765 %

0.15720 31671 88194 (shd)  0,68729 29048 11685 i

0.18553 83074 77938 (afid)  0.51524 B6333 58154

0.20519 81637 21206 (and)  0.31911 23689 27890

0.21526 38534 G3158 (afid)  0.10805 49487 07341

Z=-18 !




TABLE Z=1 (Cont'd)

i "3
n=15
0.03078 32419 96117 (ahd)  0,98799 25180 20485
0,07038 60474 88108 (ahd)  0,93727 33924 00706
0.10715 92204 67172 (and)  0,84820 63834 10427
0.13957 06779 26154 (afid)  0,72441 77313 80170
0.16626 92058 18994 (ahd) 0,87097 21726 08539
0.18616 10000 15562 (and)  0.39415 13470 77563
0.19843 14853 27112 (afid)  0.20119 40939 97435
0.20257 82419 28561 0,00000 00000 00000
n=16
0,02715 24594 11754 (and)  0.98940 09349 91850
0,06228 35239 38648 (ahd)  0.94457 50230 73233
0.09615 BE116 82493 (ahid)  0,86563 12023 87837
¥ 0.12452 89712 55534 (ahd) 0.75540 44083 55003
¥ 0.14959 59888 16577 (and)  0.61787 62444 02844
; g 0.16915 65193 95003 (and)  0,45801 67778 57227
| g 0.18260 34150 44924 (ahd)  0.28160 35507 79259 {]
? 0.1R915 05104 55068 (ahd)  0,09501 28098 37637 1
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Numerical Integration

A general treatment of this topic is far outside the scope of
this report, The particular problem to be discussed here is the
type associated with the solution of the equations of motion of
& missile or satellite. We have a system of equations defincd
by

y;‘ w fi(tp yivooop YN. y; Posey Yﬁ )(1513200003N)n

where we are given as initial conditions

VR

= ¥i(tg) = ¥ygr ¥y(t) = yfo (4=1,2,,,,,N) .

s For a rectangular coordinate system and no variational equations
f? N would be 3, but with variational c¢quations N may be much

‘ larger. The fourth order Runge-Kutta process is almost univer-
#ally used to start the integration,

The Fourth Order Runge=Kutta Process

It we donote the values of y, and y; at t-t, by y, and y;n,
respectively, and if we let h be the step size of the independaent
variable {, then the following Runge-Kutta algorithm is applied
to each of the N simultancous equations in order tn complete one
! integration step:

\ ‘ i (4
;; kil a h li(tn' yin’ yin) »
§ | h h ki
. " ) . ¢ ’
Kiz LEUES TR IPRS RICRE ETTR AL I I
. ' k
v 3 h "h s . h . 12
| ki3 R Vit Y R Y )
¢ h ’
kil h f‘j(tn + h, Yin * h Yin * % kiB' yin + k13 ) .
4 . _ Lo 1
§ Yin o 7 M| Yyp g (kg o+ kg, 4 “13)_' '
]
N 1
AV - 3 Lk“ + 2k, 42k 4 k“J :
“1,nsl * Yyinp t Ay:ln )
’ ’ ¢
Yi ne1 7 Yin BV
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The output of the first integration step sorves as the input for I
the next integration step and so on, We require n integration .
steps through Runge=Kutta tu start an nth order Cowell process, §§
The Cowell process is almost universally used for orbital und g
long range miesile trajectories,

Cowell Integration Process I

The Cowell integration process is widely known as the Gauss- !
Jackson integration process and also simply as the mecond-sum
integration proce¥ss, The procedure is usually characterized by
a table nf differences, In some research investigations - 2
particularly in the field of celestinl mechanics -~ diffarences
up to the tenth are used, At the Eastern Test Range differences
up to the sixth are adequate for over 89% of the applications,
and difforences higher than the eighth are never used, An
eighth=-difference algorithm presented here follows closely that
used by Aerospace in the TRACE-88 computer program, A slight |
departure has been incorporated in the Aerospace algorithm in |
that all major equations are given in terms of differences, \
This departure facilitates scaling the algorithm down or up from i
eighth order, For lower order applications one may simply drop
of? higher differences., For higher order applicatious one must i
establish the necessary constants by integrating the appropriate
interpolation formulas,

Consider the difference table, Table Z-2, In order to start the
eighth-order Cowell process, we need the eleven values immediate-
ly above tho diagonal line, All the socond derivatives of Yy
aoxcept yfé are obtained in the preceding Runge~Kutta integration,
Each A in the triangular array above the diagonal line is then
computed by differencing the value immediately above it from the
valuc immediately below it in the preceding column, For example,
Sq T Yis T Yiat Ofs = Vig = Yigi B4q = Bp = A4 ete,

Initially, thuerefore, all the values in the triangular array above
the diagonal iine and to the right of the vortical line come from
Runge~Kutta, We now proceed to fill in the table values that 1lie

I
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above the dingonal line and to the left of the vertical line,

¥ith an integration step size of h, compute

. , y 1 11 111
Fig = Yiq/h = Dy¥yyq = Djay4 = Dpnyy - Dgdjq

3 oAV oV VI VIT. L VITL
[ Dgfyg = Dghya = Dghyy = Dybyy = Dyhyo

¥ and
; p 2 . 11 IV VI ViIX
4 Fig = V3470 = Co¥Jy = Ch0y5 = Cubq, - Cgdy] = Cgdlp "

@ whore the C and D cc fficients are given (nlong with some others
2 needed later) in Table Z-3, The remaining F values nbove the
diagonel lino in Table Z-2 are computed recursively in the

‘E following sequence:

’ ’ o

| Fiker = Fig * Yk (K=5,8,,.,8)
[/ ¢ P

It may bhe renarked here that all the values. in the diflerence table
o above the diaronal line nre now complete and final for this inte~ro-
i tion stop, The Cowell prediction-correction process will now make

: threce succossive costimates for Yia and also y'jg, two suceessive
\, ostimates for eachi value that lieos bencath the fingonal line and to
the right of the vertical line, and one estimpte for each valuoe that
/ﬁ' 1ies bueneath the diagonal line and to the lofl of the vertical line,

The prediction process proceeds as follows:

- 2 4 ” 1 11 11X
Yig ™= NOTFig + Ag¥yg + MAY, + Ajdig + Ajbig

IV + AAY VI

, Vil VIIl
+ A1A14 5A13 + AﬁAiz + AN )

+ AN Mg

’ Ul

¢ M 1 . 11 . I1X
0Yi8 * MMy * A0y + Mgl

3 IV .t oVt NIt VITI * VI
AN Y Aghyg + Aghyn ¢ AN+ AN )

waere the valuca lor A and A arce given in Table 4=3,

L=22 b
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~Note that this prediction process uses only the row of table

values imwediately above the diagonal line, Substitution of
these estimates of Yig and y19 into the orininal set of simul=-
taneoun oquationa provides n set of eatimatos for y19' We are
now in & position to calculate the remaining values in the
dilference tublo that lie in the row beneath the diagonal line

rnd to the right of the vertical linoe. For example: AI -

16
11 .1 1
Yig = Yip } 417 = &4g = Ayy 1 etc.

We now spply this row of values directly beneath the diagonsl
line to correct our estimates for y,o and y;gz

2 - 1 Al RiE:
Y39 = W (Fyyg + Bo¥yig + By Ojg + By 47 + By Ayg
v v Vi vrx AVITE,

. . A SR I IR 1
Yig « h ('Fyg + By yig + By Ayg + By &3y + Bg 449

5. ATV N 66 \2 s AVII

VIII
+ By Oyp *+ Bb 14 i3 *+ n Byp + Ba )

where the values for B and é are given in Table Z~3, Subastitu-
tion of these new ecstimates of Yio and y{e into the original set
of simultaneous equations provides a new and final set of
ostimates for y{é . ¥e now calculate new and final estimates for
the remaining values in the difference table that lie in the row
bencath the diazonal 1line and to the right of the verticel linc:
Mg " Vip = Yip ¢ ote.

Yo now npply this row of valuns directly honeath the diaygonal
line to recorrect our correocted estimantes of Yio and y;g, using
the vorrection equations just presentad, ‘These recarrected
cxtimates constitute the final ostimates for y o and y;9. This
jnterrntion mtep is completed hy computing 'F = 'F -

+y
110 19 * Vig
,90, 4,
and “Fyqy o= Fii0 * Fiio oo




Note that one must carry out each stage of the integration step
with oach of thie N simultaneous egquations before proceeding with
the next stage,

Before bepinning the next integration step we must effectiveoly

" shift oavery element in the difference table upward mso that the

row immediately below the diagonal line becomes the row immedi~
atnly above the diagonal line,

Only the baaic essentinle of the Cowoll process have been
presented, A step-size selector is plways incorporated in the
algorithm, It is possible to estimate the arror in the inte-
geration by comparing predicted and corrected estimates for the
position and velocity vectors, 1If the error is oxcessive, the
step size 18 reduced, If conditions permit, the step size is
increased, Reduction in step size necessitates a return to the
Runge=Kuttia process for a new start.




TABLE Z-2

DIFFERENCE TABLE

1
} |
;i 5
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APPENDIX AA
BASIC RFGRESSION RELATIONS = RINDGE REGRESSION

1,0 INTRODUCTION

Well-known to nnalysts associntod with regression studies are the
probilems relnted Lo ill-conditioned metrices - problems leading
to loss of precision, grossly inaccurate (inflated) estimatem ol
the parameters and gross underostimates of the arrors in the
estimates, These problems have been the suhjoct ! & great many
irvestigations, One of the most fruitful approaches wss developed
by Hoerl and Kemnard and labeled by them '"ridge regression’,

The iloorl-Kennard (HK) estimntion proceas is inherently Bayemian
in nature, It assumes sxpectad values of zero for the ndjustable
parameters and tends to constrain the ndjusted valuem as close as
possible to zero without unduly enlarging the residuals,

We oxtend ridge regression to cames where n priori expected valuea
and variances of the adjusted parameters may he used, The re=
sulting ridge estimator im general in nature and specificnlly
adaptable to ordinary orbit detormination computer progroma,

Sona approprinte background material is furnished in Section 2,
This is followed in Section 3 by the mathemntical development of
the ridre ostimator using prior information, In Section 4, an
application i showvn Dhased on a setellite orbit estimated from
radar tracking data, n=nd this is l(oilowed in Section 5 by a brief
sunmary of other ridge cstimators apnd in Section G by some con=~
clurling remarks,

7.t  STANDARD REGRESSION USING PRIOR INFORMATION

Wo nssume the standard linear approximation to the general non-
Lineary multiple regresmion prc¢..'em;

Y m Ka + €m (ﬂol)

vhere Y I8 (nx1) and denotes tho mepsuroment vector; X is (nxj)
nud of ravii | oand reprosente tho partinl derivative matrix of
nonstochnsatsc elemonte relating the mean valvam of the mensurononts
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to the adjucted parameters; 8 is (jxl) and designates the true

fixed but unknhown parameter vector; €n is (nxl) and constitutes )
the measurement error vector. We assume B(cm) is zero and that L)
E(cmc;) u VAR(e,) ® I, where I is (nxn) and known,

In addition we have prior information consisting of a k element
parameter vector Bo. which estimates RS and a k elemant parameter
error vector ‘p‘ 8o is known from introspection or from previous
independent measurements. Therefore

Bo s RR + zp (2,2)

where R is (kxj) of rank k and consists of known nonstochastic

elements, 1If, for example, R = [I0), where I is a (kxk) unit

materix and 0 is a (k % (j=k)] zero matrix, then A, represents

titimates of the first k elements of A, Equation (2.2) assumes

Bo is random and hence represents a departure from the Bayesian

dpproach, which assumes a prior distribution on 8, here considered

fixed. In addition E(c_) is zero and E(e¢ c;) ] VAR(cp) 2 T

where I_ is (kxk) and assumed to be known, Furthermore we assume L
COV(cm, cp) is zero,

In order to include the prior information in the estimation of 8,
we combine esquations (2,1) and (2,?) as follows:

Y X €
* B + e (2.3)
So R tp

or in an obvious change of notation

Y 1 X8 + ¢ (2.4)

where

AA-2
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The prior information hins thus assumed the role of measurements,
Applyineg goneralizod lenst squares t“.‘"'d)' we obtain the
following relation tor the estimator P of the parametexr vector (3.

P ) - -1

Boa (X 2™ x) Xl y

Y) . ‘ (2.58)

This counverts hy simple substitution to

~ -] 1 3 -1

BN B &t vents e (2.8

¢ -
X+ R L m p

n p
ot In nn obvious change in notation

~ -l

b (X’ Y y+R°E"YpB) (".7)

n P o

~
It con he shown that P is an unhiamcd estimnator ol B and thnat
VAR“"') - P

The fractional part of posterior precision due to sample in-
formation is

1/3) t lx’ £l x (x £l x + r’ £} u)-1
(173) tr - m X+ p ! )

d.0 0 RIDGE LSTIMATOR USING PRIOR INFORMATION

Mehly correlntod errors in the parameter cstimates rosult in
poor conditioning of the (X° nm'l X ¢+ R’ xv“ R) matrix in
Equatign ¢2,8), The poorer the condition of this matrix, the
more (h-bo) ean bho expected to bo ino long, thereby resulting in
cunsldernble disajgreement between |8 and the true vector B, On
tie other hand, the worse the conditioning, the less i the
avnnxllvxly ot the residunl sum of squarcs Lo small departurcs
[rom ¢t Tollowing the concopt of Hoer!l and Kennasd, wo impose an
necessory condition upon the least squaros eriterion, thereby
restraining the lenpgth of the vecetor (ﬁ-Ln) without groatly in-
tlaenedrr the residual Hum of squarces.,
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Let 8 be any estimate of the vector 8, Then the sum of squares
of the weighted "measurement" residuals is given by

“

(¥-%8)° 71 (Y-x8),
Using Lagranpgian constraints, we minimize
seel 1 ¥ oertrelio v -
Fa(8,070-0(8a8) ¢ £ [(P-ke) Flcx-xm) - o] 1)

where (1/h) is the multiplier and ¢ is the total sum of sauares.
We obtain therefore

ar =l I\ Sesel, g o .
3+ 0 r rteeesy) - Ga Xi-ley-xm) (3.2)
This reduces to
-1
- op=l ‘-l n=l sn=l o 7,
IO CICR (18 Sl TS ST3S rel) B (6 R TSR R LS el W RS
or in an obvious change in notation (3.3)
a o=l =l
80w ofx"z7 v o ey R:; 8] 120 . (3.4

Equation (3.3) constitutes the ridge estimator with prio: {nforma-
tion and has the same form as Fouation (2.8). The input constant
L(h01):;1) has replaced the input constant (r=ly, Computation and
evaluation of the ridge trace is handled in a way similar to that
used with the (HK) estimator and will be demonstrated in Secticn 4.

E* is related to 5 as follows:

g2 0 pl g son R z;l B, - (3.5)

Application of the law of covariance propagation gives

VAR(B#) = Q[g‘z;l %o+ (hel)? R‘:;l R]Q' . (3.5)
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The aum of the squared biases of all the adjusted parameters is
piven by '

a‘[o Pl e qn R'!.';1 R - zj]‘[q p=l 4+ o n R'}:;l R - rj]a -0 .

(3.7)

For computational>cdnvonionce, Equation (3.3) may be linearized
to obtain the following iterative form:

" L4 ) - -1 » .-
aie e [r bR IR [ echenR T 8] n 2 0
(3.8)

where Aa* is the vector of corrections to the current estimates
of the'adjusted parameters; AY is the vector of measurement
residuals; ABO is the vector of differences between current and
a priori estimates of the parameters, When h = 0, Equation (3.8)
reduces to a linearized form of Equation (2.6),

U.0 APPLICATION IN ORBIT DETERMINATION

The readers with o knowladpe of reoression nralysais already aave an
D il ecnenpt of the proecess of orbit determination,  In standnrd
bt deterngnation the parameters resressed upon arce the orbitipl
clegents plns usually a dozen or more other paramcters rclating to
the envivoament amd Lthe tracker characteristics,

The present application involves a standard satellite orbit
determination (Cowell, special perturbations, batch processing)
in which the adjustable parameters include eight radar coeffi.
cients and six orbital elements, The measurements are radar
track data, The radar track data are characterized by certain
errors which may be expressed as linear terms in the so-called
radar measureament equations, The radar measurement equations,

AA=5




abbreviated so as to contain only terms of present interest,
are as follows:

R s R, ¢+ r + €q (4.1)
measurement true 2610 set random error
A ] ‘t + ‘1 * 12 sac rt
measurement true zero set collimation
+ a, tan St + u sin A, tan Et-v cos ‘t tan .
nonorthogonality mislevel
+ CA
random error (4.2)
Iy s Et + e, + 02 cos Et
measuremsnt true zero set droop
¢+ ucos A, ¢tV sin A, * ¢p (4.3)
mislevel random erronr

In these squations R represents range; A, azimuth; 5§, elevation,
The zero-set errors are constant bias or off-set values,
Collimation represents the lack of perpendicularity between the
radar beam and the elevation axis. Mislevel represents the tilt
of the azimuth plane - u being the northward component and v
being the eastward component. This tilt is defined with . . pect
to the local horizontal to the geodetic spheroid. Droop repre-
sents the sag of the radar beam axis. The random errors
represent noise in the data and have zero means. The adjustment
exercise provides estimates for Pys @), &,, 85, &,, &,, U and v,
Along with these coefficients, estimates are also made of aix
orbital elements.
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The (adyARV) orbital element set is used in this illustration,
The individual elements of this set are respeactively right ascen-
sion and declination of the position vector, flight path angle,
azimuth of the velocity vector, length of the pcsition vector

and magniiude of the velocity vector, In contrast to the
classical elemants, the (adyARV) set varies rapidly with time, a
characteristic which is sometimes a disadvantage although not in
the present application.

The mathematical adjustment procedure is iterative and is based
upon Eq. (3.8), the equations of motion of the satellite, and
the radar measurement squations. Initially, with h = 0, the
procedure is the standard one in orbit determination. After a
converged solution with h = 0 has been obtained, then ten or so
additional solutions with different values of h are computed in
order to define the curves comprising the ridge trace. The
correlation matrix with h = 0 is shown in Table I with elements
rounded to three digits.

In the ridga trace, Figure 1, we plot (8!-8°1>/o°1 vs h and also
show the root-mean-square of the weighted measurement residuals
vs h, The symbol %4 is usad for the a priori standard deviation
in 8,y where the subscript i designates the 1*) element in the
parameter vector, Note the typically inflated values for the
estimates of ¢, and e, at h = 0. We sea that the estimate of e,
is 4,4 standard deviations larger algebraically than its expected
value, and the estimate of e, is 3.7 standard deviations smaller
algebraically than its expected value, Thig inflation ias
asgsociated with a correlation coefficlent of -0.985 between the
errrors in the estimates of e, and e,. At h = 40, the estimated
¢, is only 1.7 standard deviations from its expected value and the
eatimated e, is only 0,1 standard de'iations from its expectadﬂ
value, Stability is achieved at around h = 40, at which time B8
behaves more like an orthogonal vector. 136 note that the root-

mean-square of the weighted measurement residuals has increased
only from 0,991 to 0,994 as h moves from zero to forty, Inflation
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.% to some extent 18 also shown at h = 0 hy the estimates of Ny, 2y

and a,. Their absolute values contract as h moves from zero to -
forty, The renaining cocfficlients are only slipghtly affceted by in)
changes in LW, Without significantly increasing the residual sum

of squarcs, this numerical oxample provides a set of radar co~

cfficients more consistont with the a priori values and variances

than would have beon obtained from standard reopression procedures,

5.0 OTHER RIDGE ESTIMATORS

In the previous discuasion we have chosen t» minimize the sun of
the weighted squared differences hetwoen the regression costinntes
and a priori c¢stimnics subject to a side condition which plares n
fimit on the amount by which the residual weightoed sum of squares
may oxcoed the minimum value, The vesulting estimator is more
fluxible than the other two to be moentioned in this scetion and
is also dircetly applicable to standard orbit determination
programs, It provides for the coxplicit inclusion of both n E
| priori catimates of the parameters and the covarionee matrix of é
K the a priori estimates, The ostimator is piven in kguation (3.3); C '
3 the variance in the estimate is given in bquation (J,5)3 and the ‘
ustimptor Is unbiased,

Tt
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o

=

Laenl T

i R

tillzing the same mathematical procedure, one may minimize the

sum of the squared Jdifferences botween the repression cocoltficlients
A and n priori cstimates subject to a side condition which places n ' 3
b limit on the amount by which the residual éum of SqUAres may ' %
cxeood the minlaum value, The resulting estimator is 4

—— e,

1. A

A - -1 . . .
k AL Y [x'x + k l] [x’ Y+ k PDJ k20 (5.1) o)

i where A7 X 18 in the form of a correlation matrix; measurements ! ?
3 uxl uncorrclated and units arce chosen to achiove common variance p
i g in the measurements: 1obn ddentity malris,  'he vardiance in :
] the cxtimates is given by

R P b S
RS x)] (X’ X) [l+k(XX)J . (AL

1y -

VAR (G r) = y”

q

-
~-
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The bias in the estimates is given by

(BEBs - B)" (EBs - B) -k (B=B )’ (x* X+ k D2 (B-p) . (5.9)

Hoerl and Kennard assume the a priori estimates of the parameters
to be zero and hence they minimize the sum of squares of the
regression estinates subject to a side condition which places a
limit on the amount by whiech the residual sum of squares may
exceed the minimum value, The resulting estimator, variance and
bias are given by Equations (5.1),(5.2) and (5.3) respectively
with Bo set toc zero,

6.0 CONCLUDING REMARKS

This discussion illustrates an important deficiency in the
standard least-squarea, point-estimstion procedure: In the case
of high correiation among the errors in the paraneter estimates,
there may he a gross inflation of the adjustment vector in order
to schiceve a final minuscular reoduction in the sum of squares of
the residuals,

All three estimators discussed in the previous section fulfill the
Baycsian demideratum that estimates be held as closely as possible
to a priori oxpected values 80 long as the residuals arc not mig-
nificantly larger than in standard least-squares regression. In
mean-square-error characteristics, however, theee estimators
ditfer somewhat, The estimator given in Equation (35.1), with or
without non-zero Bo. is biased, The bius tends to increasge the
mean square error relative to standard least squares, which is
unbiased, but the variance associated with the (5.,1) estimator is
#0 much loss than that from standard least squarcs that over some
(unknown) range in k values the mean square error is lesa than
that from standard least squares, The use of the ridge trace with
the (5.1) estimator does not assure reduced mcean Bquare error,

The ostimator given in Equation (3.3) has the generally desirable
property of being unbiased, but the variance associated with it ims
gkenerally larger than that from standard least squares., (1f one
subtracts the variance given in Equation 4.6 with h =~ 0 from the
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corresponding variance with h > 0, one obtains a positive definite
matrix.,) Hence with exact models the estimator given in Equation
(3.3) will generslly produce larger mean square error than does
standard least squares,

In real life one is likely to encounter under-specified models
whose use leads to inflated vstimates in cases of high correla-
tion. In such circumstances all three estimators discussed in
the previous section usually give smaller mean square e!ror than
does standard least squares., Inflation of the type shown in
FJigure 1 is usually characteristic of a misfit between the data
ARd the model ~ a circumstance which is frequently unavoidable,
A typical situation associated with inflation is high correlation
bhotween the errors in two or more parameters in the specified
model, accompanied by high correlation between these errors and
the error in an unmodeled term., Application of the ridge esti-
mators does not of course eliminate the effect from the error in
the unmodeled term, but it reduces the effect to a value com~
parable to the srror -~ hopefully small — in the unmodeled term,

At first glance the reader might be alarmed at the rather large
value of 40 arrived at for h in the numerical example, 1t
appears that the prior information has bheen givoen (nearly) full
veight. Actually this is not the came. If the prior informa-
tion had been given full weight, then the curves in Figure 1
would show a general tendency to be tangent to the zero line at

h = 40, whereas most of them show a strong disinclination to
approach zero even at h = 70, Furthermore, if h had been in-
creased to the point whers prior information was given full
woeight the residual sum of squares would — except in a pro-~
hibitively unlikely coincidence — have shown # marked increase,
In reality the demonstrated ridge estimation procedure has a
significant effect only upon the parameter estimntes whose errors
are mutually correlated, and with these the adjustments are
minimized and portioned out inversely according to their a priori
variances so far as pomsible, without unduly enlarging the residuals,
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An intereating characteristic of a typical ridge trace is that
for all values of the multiplier the following simple aountion_
holds quite closely: '

8 Xy + 8, X5 4+ .., 8 Ry = 1 (6.1)
In this equation the x's represent the parameter estimates*, and
the a's are empirical weight constants calculated from the ridge
trace, EKach "a'" is a measure of the "effect" of unit value of
its reapective parameter. Ths total "effect" is constant and
arbitrarily designated as unity.

~ The R matrix is included in Equation (3.3) for mathematical

Renerality, but there is a possibility of confusion in using

R ¥ I in ridge regressicn, For example, if R 4 I, then one or
more of the adjusted parametors are effectively amsigned infinite
& priori variances and cannot be represented in the ridge trace,
In the event that one of the parameters with infinite variance
has error highly correlated with that of a parameter with pre-
assigned small finite variance, then the ridge analysis may re-
sult in practically all of the adjustment being thrown into the
parameter with infinite variance. (In this circumstance,
incidentally, Equation (6.1) will not hold.) The final result
may nevertheless be anceptable, but the analyat sh.uld realize
that he has effectively discarded that particular parsmeter with
small finite variance from the ridge regression and asmigned it
its a priori value,

In many applications - for example, orbit determination — the
number of observations may run into the thousands, and the re-
sulting X’ X matrix (or equivalent) becomem too large to invert on
a practical basis, In such a circumstance the analyst may choose
to reduce the data density to a ratc where serial correlation is
negligible., If serial correlation can be ignored, then the size

*that is, the values plotted in the ridge trace as a function
of the multiplier,
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of the matrix to be inpverted is only j by j, where j is the ‘
number of adjusted parameters, For exsample, Fquatiom (3.8) with !

h=0andR =1 sinplifies to

a ll. wl g:‘ .
A8 = 2‘(x' Nl B 5} z 1 (AY) ] R 738 ] ¥
1= 1-1

{8,2)
'ﬁ yhere n is the number of observations, 43

4 fquation (6,2) with some changOl'in notation is used and discussed
i in Appendix S,
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APPENDIX AB ﬁ
DERIVATIVES OF MATRIC)YS &
Necause of the necemssity for limiting the size of this report, A
it hos heen nncessary to omit many derivations or at loast many
stops in the dorivations, The materinl of this appendix — vpor- ‘
hope not immediately availakble elsewhere — is offerod as back- Bi
ground for the reader who mny wish to derive equations miven :
carlier, Applicntions are primarily in tho realm of statistical
transformations,
There is no firm convention for the forms of many of these .
derivatives, and consoequently the mathomatician is free to adopt )
his own forms 0 long as he definos them, The rather loose con- ‘
ventions -~ so far as thoy exist — are given at this point, For k
purposes of illustration, we first define the following five
quantitions: ;
S is  (1x1)
Vv is (pxl) with olements vy
_Tg; T i (qx))
';", M 18 (nxh) with ~loments s
. N is  (rxt)
.
“ The correspondinm derivativo forms arc as follows:
". -
B L ) dvy ;
.Ev %
1 } v,
y ) S 95
‘; ')" as .
1. (rx1)
;.. l}'\' *
b ’
. é
. dv
E .. 3
Rk ‘{. i J
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Thore are four particularly useful thcorems whose proofs nro
clomontary, In order to presont those, wa define the following
voctors and matriceer (subject to restirictions piven later):

A is (px1); B is (px1): C 18 (aqxl); E is (pxq): I' is (pxp).
Combhinntione of these give the scalars X, Y, Z, where

X
Y
z

Then we havie the theorems

. 3x

3%
ay
36
%
2

v -2
oF

@

111

AN v 1Pkt i bt

« AB=BA ,

= A’EC »
= AF A .
s B ’
» AC’ ’
= 2FA ’

s 3AA° = d(AA’), where d(AA")
denotes a diaponnl matrix with
elgmontl the samc as those in
AA .

ADB-4

SRRV NI W




Rostrictions applying to theorems 1 through IV respectively are
an followa:

I. A has independent elements, The elements
of A aro independent of thosoc in B,

I1. E has independont elements, The clements
of ) are independent of thosc in A and C,

111. A has independent elements, The elcements
in A ‘are independent of those in F, TF is
symmetric,

IV, T is symmetric, Except for the dependence ;
asgociated with the definition of symmetry, i
the elomonts of F are independent, 'The a
elements of F are indepondent of those in A, ‘
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APPENDIX AC
IMPACT PREDICTION

The followiny alprorithm may be used in reoal tiwme to compute the
1enritudo and l1atitude of impact under vacuum assumptions, Qrove
ity is reprosontod only by the central gravitational parameter,
The input is a position vector and a volocity veetor, - Because of
conflicts in notation and some new interpratations, all symbolas
are defined at the end of this appondix,

(1
(
(3
(4
(5
(6
(7
(8

(o

)
)

(10)

(1)

(14)

(13)

(11)
S RLD

(18)

(17)

)
)
),
)
)
)
)

r
ve

e con K
s

e 8in E
?

e cos EI
e sin EI

cos (EI-I)
min (EI—E)

t

(xz + yz + 22)

x3 4 y2 402

(rv¥/K) =1

r/(1 = e cos E)

(xx + y§ + l;)/(KI)*

(o sin 5. (8 cos B?
(a = rpy)/a
(02 = (o cos Ml)zl

[(e con EI)(o cos E) + (e #in ml)(o sin E) /e
[ (@ sin EI)(Q cos L) - (¢ cos EI)(e sin E) ‘e
[coB (L; ~ BE) - @ cos El]/[l - 8 cos )

[sin (1-:I = L) + @ 8in F - e sin nI][-axxl*

Ix ¢ gi
Iy + gy

fz + gi

xI’ + v 2422

2,2, 2 2 a2t
[A (xI + oy ) + I 7y ] /rIz
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1f r13 diffors oxcoessively {rom rI
in place of r!l in Eq. 7 and loop through Enuations

7 « 17 up to n maximum of threec times to improve the
aisreoment, Retain the Tinnl rra3 to use in plaace of ey
for thn next eyele bhoirinning at Eqg, 1,

o then introduce rI3

(14) (EI-E) - arcton (ain(!l-x)/cue (EI-E)]
(o) t - [(E;=E) + & sin E - e sin E, J(a°/K]
(70) ¢ - arcsin (zI/rIB)

(1) v - arctan (yI/xI) - ot

YOTE: A suitable spproximntion to Eq, 17 may bo used in place
of Iq, 17 in ordar to roduce computor time if necossary,
It is customary to usc cnnonical units (sec Appendix O)
rnd thus roduce K Lo unity,

I1 is posaible to incorrora'‘c nominal corrcetions for
vtﬁoarhoru, sacond gravity harmonic, and coocentric to
rrodetic ITatitude by compuling thesoe corrections bhoforc
Inunch in terms of (A let,) and (~» lont,) nt impnct,
nluzobraically summing the corrections, and fitting to a
palr of 10@ order polynnminls, The valucs of ¢ and ¥y
dotormined from lkqua*tions 20 and 21, reampectively can
then Lo dmproved in real timo by alding the corroctions ;
indicatad from ovaluation of the two polynominla, Tho
fndependent variable in the polynominls may, for axample,
be - 17 the missile is launcherd geonerally esstward or
vasgtward,

.fL '.»)
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GLOSSARY

E eccontric anomaly at epoch,

lI eccontric anomaly at impaet,

X centranl aravitational paramoter,

A semi=-mpjor axis of onrth spheroid,

B semi-minor axis of carcth sphoroid,

[ semi~mnjor axis of trerjoctory ellipse,

* eccentricity of trajeoctory cllipnsn,

{ defined by Eq, 11,

[ defined by Eq, 12,

g distancce from geocentor to missile position

at opoch,
Ypve Ty
p vatious approximations for distance from
I3 neoconter to missile position at impact.

t time of flight from opoch to impnct,

v matnitudo of inertial veloeity vector at cpoch,

Kol cpoehnl fnortlal position and velocity components

>t ; ginilar (o Maurce 6, Pare 15 with one important

XV exeoption: The x axis pgoes throagh the meridian
3 ol Greenwich at c¢poch,
3 !
y “12¥10%1\ inortin) position and velocity components at ]
: . e e impact in same coordinato system as nbove, .
: RpsVpr®y .
o i
A ® preoeantric latitude, ]
[ ~ mondetic lonaitude (F'ast) f
| w enrth rotation rate,

* The equatorial radius of the earth can be used for Py
in the first cycle through the algorithm if no better
approximation is available,

oduced from _»
ACed E:flr available copy. '
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APPENDIX AD
SELENOGRAPHIC COORDINATE TRANSFORMATIONS

1,0 DEFINITION OF SELENOGRAPHIC COORDINATE SYSTEM

This system is Moon-centered, Moon-fixed and either spherical or
rectangular., Selenographic latitude ¢, is analogous to ge0=~
contric latitude and is measured from the lunar equator, positive
to the north; that is, in the hemisphere containing Mayre
Serenitatis. The Moon's equator is a great circle containing the
center of mass of the Moon and lying in a plane perpendicular to
the Moon's axis of rotation,. Selenographic east longitudo-y« is
measured from the lunar prime meridian positively along the
equator toward Mare Crisium, The lunar prime meridian ic defined
a8 being the meridian that passes Lhrough the mean center of the
Moon's disk, where the mean center is taken to be th? point on
the lunar face intersected by the lunar radius that is directed
toward tho Earth's center when the Moon iz at the mean cscending
node and when the node coincides with the mean perigee or mean
apog ). ‘the third coordinate is distance from the Moon's center
of mass, r, , There is as yet no selenoid analogous to the geoid
and no ellipsoid corresponding to the Earth ellipmoid,

8elenographic coordinatos of an object may also be sxpressed in
& rectangular, right-handed, Moon-centered system (Bgy Fgu, Gp)
analogous to the geocentric sysetem (E, P, G) (p. 14) defined by

Ec - r« con @‘ cos 'v«
FG - R‘a coB ¢« sin ’ya
G« - l‘a 8in ¢¢

Tho (Eq F( G«) coordinate axcs are nrut in general parallel to
the EFG coordinate axes.
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2.0 DEFINITION OF SELENOCENTRIC EQUATORIAL COORDINATE SYSTEM

This system is Moon-centered inertial and hus coordinate axes
(x‘, Yo lc) parallel respectively to the axes of the geocentric
inertial equatorial system (x,y,z) (p.14) and has origin at the
denter of mass of the Noon,

T Rt

3.0 CASBINI'S LAvS

=St Yy

The statemcnt of these lawe will facilitate a clearer under~
standing of the relative mot-an of the coordinate systems of the
Mooh and the Earth., These lav:i are as fullows:

3
!
i
‘.
!
l

1. The Moon rotates uniformly direct about on
axis which is fixed with respect tc the Moon
itself, The period of rotation is identical
with the sidexreal period of “he Moon in its
direct orbit about the Earth, namely
27.321661 days, and as a consequence the I
Moon presents almost the same face toward )
the Earth.

I11. The plane of the lunar equator intersects
the oclgptto plane at a coratant angle of
about 1° 38', 1)

I11. The plane of the Moon's orbit intersects the
ecliptic plane at a nesrly constant angle of
5° 9', while the node of the Moon's orbit
regresses with a period of about 18 2/3
yoars, Moreover, the following three planes
intersect in a common line: (1) the plane
determined by the Earth orbiting about the
Moon, (2) the plane through the Moon parallel
to the ecliptic plane, (3) the Moon's
equatorial plane. The second mentioned plane
lies between the first and third, (The
ecliptic is the plane of thke Earth's orbit
about the Sun.)

P kO I ek

These "laws'' are obviously only approximate, but they are very :
closoe approximations, There are various months esmsociated with

the Moon's motion., The widereal month of 27,.321681 days is the :
true period of revolution of the Moon about the Earth with ?
rospect to inortial space., The synodic month of 20.530889 days

i is the period betwcen two conjunctions (new Moons) or oppositions
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(fnll Moons) with the Sun., The tropical month of 27.321582 days
is the period between two passages of the Moon over the vernal

" equinox, The anomalistic month of 27,554551 days is the period

betwasen two succeasive perigec passages of the Noon, The
nodical or Draconitic month: of 27,212220 days im the period be-
tween two successive nodal pausages of the Moon as its orbit
intersects the plane of the ecliptic. The "age" of the Moon is
the elapsed time since the previous new Moon, full Moon thus
occurring at an age of about 14 3/4 dayws, at which time the
fraction illuminated is 1,00, |

4.0 LIBRATION

Libration refers to the oscillations or nodding of the Moon's
face as seen by an observer on the garth, There are three
general types of libration: (1) Optical or geometric, (2)
Dynamic or physical, (3) Diurnal or parallactic. The resultant
of the first two at some instant is demcribed by the departure
of the mselenographic coordinates of the Earth's center from
zero, These coordinates are tabulated for each day of the year
in the American Ephenmeris,

4.1 Qptigal or Geometric
This type represents by far the major part of the libration, It
is described by Cassini's laws and calculated mathematically from
Fncke's (1343) formulas. Because the Moon's equator does not

lie in the orbital plane of the Moon about the Earth, an observer
on the Earth sees moro than half the northern hemimphere of the
Moon at one period during the month and more than half the
southern hemisphere of the Moon at another period during each
month., This dispersion in latitude is about 3 6,5 degrees.

That is, the melenographic latitude of the Earth varies from
about +6.8 degrees to -6,5 degreces, Becaume of the eccentricity
of the Moon's orbit about the Earth, the radius vector from the
Karth to the Moon does not maintain a constant angular rate
(Kepler's laws), Therefore, since the Moon's rotation about its
own axis is nearly uniform, an observer on the Earth sees
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relatively farther about the eastern 1imb and farther about the
western limb at different periods during the month. As a
cnnsequence, thare is a longitude dispersion of about ¢ 7.5
degrees, That is, the selenographic longitude of the Earth
veries from aucut +7.8 degrees to -7.5 degrees, Because of the
goometricnl librations, which constitute practically all of the
librations, an observer on the Eurth is able to see approxi-
nitely 8% of the Moon's surface over a period of s month,

4.2 Dynemig or_Physigal

yheme lilirations result from differences between the principal
jichents of inertia of the Moon in masociation with the irregu-
larities in the Moon's orbital motion. The longest diamcter of
the Moon is directed generally toward the Earth and the shortest
along the axis of rotation. Becauwe of the geometrical libra-
tion, the longest diametor does not point directly toward the
Earth, and therefore the atiraction of the Earth on this bulge
exerts a torque causing the long axis to precess with a small
apical angle, Standard mathematical theory develops the forced
vibrations and free vibrations asmociated with the constants of
integration, The free vibrations are presently considered
negligible, Physical librations are calculated ‘rom Hayn's
(1907) formulas,

4.3 Diurnal or_Parsllagtic

Bocause the Moon is approximately only 60 Earth radii from the
Earth, at any particular instant observers on d-fferent parts

of the Earth will have significantly different uelenographic
coordinates and hence topocentric corrections m:ist be considered,

5.0 MOON'S ORBITAL MOTION

The geocentric coordinates of the Moon can be d»scribed by
Brown's Lunar Theory originally published in 18J5 and containing
over 1850 terms in the equations of motion, VWith improvements
by Eckert and others, this theory still forms the basis for most
lunar ephemerides, BSome sphemerides are computed using special

AD-4




. Tl T T s W LIRSS AT TS T s e o T

perturbations and numerical integration. In this country tho

JPL Lunar Ephemeris Tapea are used almost uxciusively, Thaey ure
constantly being improved, Although the Moon's po#ilica can be
calevlated approximately firom orbital elewents and a relatively
simple computer program, the JSPL tapes are used for serious and
accurate work on a computer, For aand <omputations the ephemaris
given in the American Ephemeris is more convenient and ie satiw~
factory.

6,0 SEQUENCE OF TRANSFORMATIONS

Therc are two general typeas of problems: (1) Given the mseleno=-
graphic coordinates of a point, what are the apparent coordinates
for an observer on the surface of the Earth? (2) Given the
apparent coordinates of a point for an observer on the surface

of the Earth, whai are the selenographic coordinates? Yor
problem 1, the following sequence applies;

V1 is input selenographic vector,

1 transforms to the svlonocentric equatorial systen
oxpressed in the truo equator nnd equinox of date.

V2 is the input geoceuntric equatorial coordinates of
the Moon's center expressed in the mean equator
and equinox of 1950,0,

72 tranaforms to the mean equator and equinox of date,
Ta transformes to the truc equator and equinox of date,

T4 transforms to the Earth-fixed, Earthecentered,
rectangular coordinates based on Conventional
International Origin.

T5 tranaforms to the true pole of date,
Tg transforms to radar coordinntes as affected by

deflection of the vertical.
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T7 introduces abherration effects,

Ta intyvoduces refraction effects,

Va is vector of final apparent radar coordinates.

For problem 2, the following sequence applies in which all terms
have the same weanings:
-l -l wl -l -l -l
i = Ty LT4 Ts Te Ty Ty Vg-TyTy 'z] .
7.0 MATHAMATICAL DESCRIPTION
The nly transformation peculiar to the problem being discussed

in this appendix iw that associated with Ty ¥y o All other
transfornations are discussed elsewhere in this report. vy is

detined by

V, = F« .

S

T i defined by

1

where tho elements of Tl are functiona of the Euler angles
(A, 1, O) defining the Moon's oriantation:

b
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= comAcos Q° - cos 1 min 2’ sin A
Cig = =-SinAcov 0° - cos 1 sin 0° cos A
Ci;g = sini sin Q
Cyy = cos.AsinQ’+ cos icos 0’ sinA
Caa = =simA min Q° + cos 1 cos Q° cos A
Cqy = =sin i coc Q'

°31 w 8in i sin A

C” = ®#in 4 cos A .
033 « cos i

Prerequisite to the qonputntton 0} the Moon'os orientation angles
are the physical libration constants (o, v, p) which may be
computed am follows:

R = @=1r’ the wean snomaly of the Moon.

s

g = L ~T, the mean anomaly of the Sun,

o = T’~ Q, the argument of perigee of the Moon.

[4

Expressions for {, ' , L , I and Q are given on Page 45, Then

N e a o
e X S =

o sinl = =070302777 win g
+090102777 c£in (g + 2 w)
~0700308555 sin (2 g + 2 w) )

PP A s A 2K bk
o e T LT R =i ooty ok < oY, 35 ARl et CTL AN -
B g S > St R = e e L R e s Srgiey e o S AL R el i T e T S i -l T TAle 2T TR Y T ﬁ‘ S

e fem s aSalnE

v = 7003333 Bin g + 070163888 sin g’
+0%008 uin 2 0,
p = =010297222 cos g + 000102777 cos (g + 2 w)
«07003u5888 cos (2 g + 2 w) |, .
where I = 19,838 , |
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In addition, we requlre ¢ from Eq. (75a) and A, where

-1 |-8in ¢ sin (A + 0 + & A &
4 = tan {_-n T p) COBC~Com (Y +p) Binccos (s 0+ 'FJ']’ S

0 <A < 360°

where A )\ is given on Page 44,

The final orientation angles are obtained irom the following
relations:

cos 4 ~cos (Q+ 0+ A 1) sine (I 4 p) + cos ¢ cos (I + p) ,

0 <4 < 90° ,

8in Q' = -8in (2 4+ 0 + A A) sin (I + p) csc ¥,
i -90° < Q< 90°* ,

M w AeQer=-Q=0a , O0gN=<360°

This completes the algorithm for T,. The other transformations
are given elsewhere in this report and need not be repeated here,
A note regarding aberration:

Most tables of the Moon ure constructed mo as to
! Rive the apparent position of the Moon directly,
by slightly modifying the geometric elements of
the Moon's orbit, and hence with such tables only
. the small diurnal corroction is missing., When a
g | geometric lunar ephemeris is used, then the full
'f ‘ planetary aberration corrections must be made,
- The JPL tapes are geometric,
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APPENDIX AE A
ABERRATION i

1.0 INTRODUCTION 4

Because of the finite velocity of light, the apparent position of
g any celestial body depends upon the motions both of this body and :
4 of the observer during the interval of time required for light to -
o travel Irom the body to the cbserver,

4 The displacement 0f the apparent position of the celestial body 3
i from its actual geometric position at the instant when the light
’ left it is called stellar aberration, BStellar aberration is due
: ' to the instantaneous velocity of the observer in an inertial

‘g system with origin at the center of mass of the solar systenm, B
. Stellar aberration is independent of the motion or distance of ;f
| the ohserved body, but the computations are somewhat simpler if '
the distance is known, It im convenient to separate stellar

R N aberration into two parts: diurnal (due to rotational veloecity
’fﬁ {;) of the observer about the Earth's axis) and annual (due to Earth's
' orbital velocity), There ig a third part associated with the .
motion of the solar system in space which is always ignored, ?i 

‘ The displacement of the apparent position of the celestial body g
; from its actual geometric position at the instant of observation
is known as planetary aberration. Planetary aberration is thus
. the resultant of stollar aberration and the geometric displace-
o3 ment of the body in space due to its motion while the light was B,
traveling to the obsexver, the latter component buing called 4
"iight time'" correction, To the order of accuracy that the motion P
of the object during the light time is rectilincar and uniform,
the planetary aberration depends upon the instantaneous velocity

: of the ubserver relative to the object at the time of observation
E in exactlv the same way as mtellar aberration depends upon the
B inetantuncous total velocity of the observer, 1

f% . AFETR i8 concerned with missiles and satellites at distances no

. T preater than the Moon, Since these objects partake of the same

3 s !‘
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8 orbital motion as the Earth about the Sun, the annual component -u;
'ﬁm ol aberration is negligible, It is satisfactory therefore to gab gf
B work in a geocentric inertial coordinate system, Expressed in Q“
" this system, the corrections to be added to the apparent observa- %Q
X tions are ﬁf
. - -
- ax ax ¥
8 .
1A N [
j‘i: . :
L AY - 7 IN'S 1)
)
i AZ AZ
}'._:, — — L -

N ¥here (X,Y,7) form a geocentric inertial right-handed rectangular
-}%. system with X and Y in the equatorial plane, 2 extending north-

. ?} ward along the spin axis and X extending through the meridian of bR
o8 the site at the instant of observation. =« is light travel time 53
. from object to radar, (Ai. AQ. Aﬁ) designate the velocity com- 1
: ponents of the observed object relative to the corresponding 'R
velocity components of the site, J

?} Equation (1) is similar in Jorm to the corrections currently used
at AFETR for aberration or transit time with radar:

- 19
i AR R '
f . ]
3 AA A (2) 3
F' . : '{
g AE E .
' — d o . ; |

. where (R,A,E) form an Earth-fixed polar topocentric system with
3 R designating the siant range, A the azimuth measured in the
horizontal plane positive eastward from north, E the elevation L
measured positive above the horizontal plane, origin at the J
- radar gimbals, 8ince the (R,A,E) System is not inertial, | f
Equation (2) is accurate only for AR, However, since for all
3 satellites within a few thousand miles of the Earth, the correc-
tions AA and AE are extremely small, the errors in AA and AE
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computed from Equation (2) are not important, At distapnces equal
to that of the Moon, however, Equation (2) gives significant
errors in AA and AE, (Aberration corrections to be used in star
observations are discussed in Appendix C.)

~ The problem here is to transform Equation (1) from the (X,Y,2)
system to the (R,A,E) system for practical applications.

ALGORITHM

| An intermediate (u,v,w) coordinate system is uweful, It has
origin at the radar gimbals located at geocdetic latitude ’o'
The u and v axes lie in the local horizontal plane, u pointing
eantward and v northward, The w axis extends upward,

n R cos E sin A'
v - R cos E cos A . (3)
~R sin E
r N - e

ﬁ cos E sin A = i R ain K ein A + i R cor E cos A

P ain K+ E R cos E
L. - _

u
; - i cos E cos A - é R sin E cos A ~ A R con R sin A|, (4)
w

The light travel time from object to radar is given by

T - R/C ) (5)
where C is velocity of light,

-

» W u cos QQ

Au U« w v sin °o + W W COS ‘o
Av = + v+ wu sin * , (8)
AW w

- .

where w is Earth rotation rate,
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AR Ul eV g V4WAW
AA - vAu=uayv . &2
u’ + v
AE RAW-wAR
- J n(n’ - '2)

It is evident in the case of AR the correction is identical to
that in Equation (2). In radar traverse and elevation angles, a
typical disagroement between this algorithm and Equation (2) is
52 the order of 0,1 milliradian at lunar distances,

indtoad of correcting the observation and keeping the time fixed
as in Equations (1) and (2), one may correct the time of the
observation and leave the observation fixed. Analogous to
Equation (1), we have

true
or apparent
geometyic
X X
Y = Y (1a)
z twy -z t

wvhere t is the time of ohservation,

Analogous to Equation (2), we have

ﬂtru.
or apparent
geomotric!
R R
A - A (2a)

'E E t

Fquation (2a) like Equation (2) has limited acourycy.
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