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0 _INTKODWTIOON

Analymsi of missile and sateAlite trajectories and tracking data
involves transformstions of position, velocity and acceleration time
points from one system to another-systems which may be fixed or mov-
ing, relative to each other. This discussion will attempt to give
explicit transformation equations for the most coimon situations
which arise, and sufficient detail so that the reader can develop
any oases not covered explicitly here. In all cases the reference
system Is that in which the coNordinate of a point are known. The
new or transient system in that in which the coordinates of the
s•ae point are to be determined. Originally the transient system
is considered to be coincident with or superimposed upon the refer-
ence system. Then by a series of translations, rotations about its
own axes and reflections of its own axes the transient system assumes
the desired, configuration In space, A translation Is only a transfer
of the origin of thi transient system from (000,0) as expressed in
the reference system to (xoF Iou Zo) as expressed In the reference

system. In this priliminary discussion X, Y, 3 will be used to
represent the coordinates of the point In the reference X Yj Z
system. x, y, a will be used to represent the coordinates of the
point in the transient x, y, a system. In a rotation the origin
of the x, yo x system and one of the x, y, x coordinate axes about
which the rotation takes place are unchanged. Rotations areO defined as cloc•wise or counter clockwise and apply to an observer
at the positive end of the axis of rotation looking toward the
origin, A reflection is a reversal of positive and negative ends of
a coordinate axis. A single reflection changes a coordinate system
from right to left handed or vice versa.

I. Position Transformations in Rectangular Coordinate Systems

Translation Is accomplished asfollows:

(1) [ I[ - [°] - [U Yo

toZ4 L Z Zo -jZ -Zo -

A reflection of an axis to accomplished by changing the sign of the
row in the Identity matrix corresponding to that axii. For
example, to reflect y:

Xo o1 0xl
(2) [ 0 -1 j Y

"z 0 0 1

.4
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Now consider the right handed coordinate systems in Frigure 1. The
% y z system has boon translated from coincidence with X Y Z system
to Xo YO Z and then rotated about the a axis In a tounterclockwine
direction thro~ugh; an gagle 0. The point

Is of tourse stationary througlhout thes" transfozmitaacs.,
Y

-ifr (XX)oe(- 0  )sn (V 6S)

X (Z -z 0 1o O i

Equations (3) apply for right hanC~ed systems with rotation about a
in a counterclockwise direot~on th.!ougn an angle e. Rquatlons (3)may be expresnod In muatrix~ fo~rm: A

x com 9sine9 0 xX

(4) L -ii L o n' 0] Y Y4

2L ..... ..
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The matrix of trigonometric elements in called a transfer or trans-
o formation matrix. Clearly transfer matrix (4) applies also for left

handed systems in which the rotation about a Is in a clockvwie

direction through an angle 0.

The transfer matrix by definition is used to pre-multiply the
column matrix of the coordinates to be transformed.

Now consider Figure 2 in which the direction of rotation is clock-
Wine about a for two right handed systems.

y

P XI YO z

L---- Yx, M,

FiguLre 2, -

The transfer matrix is the same an (4) except for a substitution of
- for 4. Thus

Fxl cons9 -sine9 01 X-
Ly - sin 9 con9 01 Y L Yo

z 0 0 1 Z Zo

Therefore to reverse the direction of rotation in a given transfer
matrix reverse the signs before sines.

So far only z axis has been taken as the axis of rotation. Consider
the following more general summary:

Counterclockwise rotation about x for two right handed systems

x 1 0 0 X Xo0
ly(R) y - 0 con 6 sin 0 Y YO

L I 0 -sin n coso z Zo0

'!I :



Counterclockwise rotation about y for two right handed systems

(7 [cone o -mine] X
7 . 0 1

S0 coZ .Z

Counterclockwise rotkqtion about z for two right handed systems

S- si i 0 con a 0 [ ¥oX0

0 m 1 Z Z o

Counterclockwine rotation about x for two left handed systems

()y 0 coo -sine x oY Y
a= 0sin 9 coo a Zo Z

0I

Counterclockwise rotation about y for two left handed systems

x xo 0 0 sin a x Xo
(10) y - 1 0 Y Yb

r I-sn c 0 cod 0 Z e

(ounterclonkwise rotation about z for two left handed systems

orrihthade codnat -sinm Gie als anM xy

111y = sin ) coom 8 0 Y .Yo

S0 0 1 Z -Zo

Transfer matrices 6, 7; 81 9j 10, 11 and the rules previlously
discussed and now summarixed will permit any transformation in
rectangular noordinates:

(at) Given X, Yj Z coordinates of a point P in a left handed
or right handed coordtnato system, Given also an x, y, z
coordinate syste,,m defined relative to the reference X Y Z
system. Required: the x, y, z coordinates of the point P.

4
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(b) Locate the x y z coordinate system first to be coincident with0 the reference Y Z system, Then work out a series of trans-
lations, rotations, and reflections so that finally it will
be located .n the proper place relative to the original
reference system.

(c) Perform the reqidired transformations in proper sequence.

(d) Since the reference system is different for each successive
transformation, trouble is easily encountered in translation.
The coordinate* for the translation are usually known either
before all the rotation transformations or after all the ro-
tation transformations and the translation should be performed
when the coordinates are known.

Illustration: :0

It has been found that a certain transformation involving a left
handed reference system requires

(1) translation to X0 Yo Z0

(2) counterclockwise rotation about m through a

(3) clockwisit rotation about x through

(4) reflection of a.

The complete transformation equation may be written as follows:

(12) y 0 o 0 Cos : sin P sin a cos a 0 Y "
z 0 0 -1I -sin f3 con 0 0 0 I Z o - V

Note that the sequence of the transfer matrices goes from right to
Ioft. A more practical example is given under the subsequent
treatment of Euler angles.

Troatment so far has been only for rectangular coordinates. Spherical
coordinate systems are generally first transformed to rectangular
systems and then after necessary transformationn back to spherical.
Severul illustrations of the technique are given in a later section
tr,,ating mpecific actual coordinate systems.

II. elocJt Transformations in nectangular Coordinate Systems

Equations for velocity transformations are derived directly from
the corresponding position transformations by differentiation.
A simple illustration should be sufficient. A commot velocity
trunsformatlon is between geocentric equatorial inertial and geo-.
cnntric equatorial rotating, both right handed rectangular aystumu.
"In thin case Z and r axes coincide always and rotation is
co)untorclockwise.



We may differentiate equation (8) with X- Yo zo 0 since the

origins of the two systems coincide. By the usual rules for
differentiating:

"dI cos O min a 0 dr -sin 0 coo 0 0

av dy AO•
S-sn co o 9 0 + -coo 8.-sin 0 0

,'0J I .o),\ Id

dz dZI) 0 1 0 0 0 Z

' in this equation corresponds to the angular velocity of earth

rotation about its polar axis, lquation 13 applies for a trans-
formation from inertial to rotating system because 0 increases
6ounterclookwise relative to reference system, For transformation
tiom rotating to inertial system, 0 increases clockwise relative
06 the reference systs,,. Thus the signs before the sines in (8)
should be reversed before differentiating.

dx cosoe -sine 0 sin e -cose 0

dY do
(14) - sin 8 cosO 90 + cO e -min 8 -a-t

dz dz.
0 0 1 0 0 0 Z

For a point P fixed in X Y Z syltem, put

dX dY dz
dt - I ITO

1II. Acceleration Tiansformations in Rectangular Coordinate Systems

A single illustration should be sufficient. ';mply differentlate
equations (13) and (14) to get acceleration transformations from
(1) geocentric inertial to geocentric rotating and (2) geocentr.
rotating to geocentric inertial respectively. Remember that
2S- 01

dt



d2 d do _i

Go mn9 -2 FitnO 9 0m c on0 00mie~dt I dt dt

2 2
-(15) 4-sin @ con 0 -- 2 -oo. A -sin 0 0 dd

dt dt' dt dt

22
7dt

S... ... . . sin a m x m (do) 2

+ in O -coo 0 Y fda%2•,dtJlI?.!•r

0 0 0 ZoJ L

dt dt dt dt

(3)sin 4 cowme 0 +2Y conmA-min 9 0 ~ ..
dt dt dt dt

d2 s. d2Z

dt' dt" dt

-con m sin 0 0 Xdo 2

+ -min 0 -coo 0 0 YI0)2

0 0 0 Z

7

", ,.. . . . . ... ,,•.. lz; ,•• . ,z;;l., L,. ......... .



Fol a point P fixed In X Y Z system simply put

-d 2X

'3dt d--t"

dt dt

IV. EUlers Anglk es, , C (Of. o I )

Consider inertial axes X Y Z in whicoh there is a moving coordinate
system x, y, a, We wanlt to determine the coordinates of a point
in the x y a system based upon the !uler angles defining therelative positton of the X Y Z and x ys systems.

Const let x y a and X Y 7 axes coincide, Both are right handed

systems. Looking downward from Z axis rotate x y a axeo counter-
clockwise about s through an angle P., Let the new system be x' yo a
The transfer matrix is given In 24uation (8).

0 -oosl minl 0

(17) -min g sos (c 0 ¥
sip 0 17

We now rotate about the x* axis through the angle I where i is

measured positively above the X Y plane. Transfer matrix (6) epplies.

:;"i[[ 0 0 x

0I coI sLe J L otl L O ti•

Finally rotate about the z*0 axis through the angle w. Defimeposittons in this final system by x, y, a.

x coo (,£) min w) 0 X 0' "

005w y
(1)y -s-i.n w coo w O0 y'

a 0 0 1 "

Sultsltituting (17) and (18) into (19)

8
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The components of along the x", y", and z" axes are as follows

due to-, - n,. I
GO 0 + 0 +

Asi. ni + 0 + 0
ya

4| •06 1 + L + 0

These components were arrived at by Inspection of Figure 3.

Now apply the transfer matrix from Equation (8) to rotate from x" I" z"
system to x y z system.

•'ax cos w sin w• 0•,
X C0 5fl

(23) a -sin w Cos W 0

C) . , 0 0 1

Expanding Equation (23)

-a asni sin W + cosW

(24) aiy a •sin 0 -W stnW

a w+ ; Cos i

Having three equations in three unknowns we may solve for (n, w, 1)
tf we wish

sin iS. _.I.•in I (a sin w, + a cos w)

) COS W "y sin t

11



VI. Transforma•ions Between Two Rectangular Cco•rd.i.nate Systems
When COsines of Angles Detween Respective Axes are Known

Many coordinate systems are, stationary relative to each other. Thus
it is pointless to go through a series of transformations eVe6 y time
data in one system is to be related to another system. For transfor-
"mations of th.is type computer programs customarily accept the
direction cosines 9 the axes of one system relative to the axes
of the other. TheoAmsua 'artem and the geocentric rotating systeon form such
a itatlocnay~ pair.

Consider two ufsteh x y x and X I•,th'o Let the direotion. cosines of
the x axis be SI mis n referred to the 1 Y Z system. Let the

direction cosines of the y axis be A2 n n2 referredto the X .Y Z

system. Let the direction cosines ot the s axis be j3 m3 n 3 referred

to the X Y Z system. Then It can be shown that

(268) KIL ml n1 [i
L J L 3 i3 3

where X Y Z refer to the coordinates of the point P in the X Y Z
system and x y a refer to the coordinates of the same p9int Ip the
x y X system. OnUlyty•ws of aLne sireotion cosines &is independent.

It should furthermore be noted that the original computation of
these direction cosines follows the exact series of transformations
illustrated by numerous examples given previ.ously. For example,
in Equation (21), the term

(cam a cos n - sin a) coa I sin n) -l

where j is the cosine of the angle between the z axis and the X
1

axis. Also n 3 - coo i, and so forth.

V1I. Definitions of Various CoordinatesBystems.

It is not practical to develop direct transformation equations
between any coordinate system and every other coordinate system.
"As an expediency all coordinate system are related to one of three
master systems.

Thea the three uaster systems themselves are inter-related. We
"may develop what might be called a flow chart which will be followed
for position transformations.

*'I&.m ub!;u:iuLu 1

12J
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The three master systems ares (1) geocenrk.., earth rotating0equatorial, (2) g~eocentrice Inertial equateL'i.-.l and (3) heliocentric
inertial equatorial$.

There in always a problem In symbols when large number of
coordinate systems are being discussed. Zi -nos discovered that
adherence to the standard 3TI symbols for he comion coordinate
systems created awkward problems in other AMpOrtAl1t coordinate
systems. Consequently a logical system developed by Kraft 1hrioke
for the various geocentric and beliocentrit Inertial coo~rdinate
system was adopted and the common 21 symbol* were then modified
an little as necessary to avoid duplication of symbols. For exa~plep
the comon x y p system In use at the zsange is called U V W in this
write-up, since z y k in.,mied for the geocentric, Inertial,
equatorial, right handed system.

¶ . r. 0

r XI

13P



Aiy or all systema in Fig. 'i can be used to define the position of
a point P in space.
A second category 'of twanformations will be velocity tvanstorma�ions. 0
The Coll�wing flow chut is descriptive of the plan to be to1low�*d
for velocity and a4lso acceleration:

A final category will be those involving orbital elements and t)�ue
combined position and ve1'��y

'4

I 1.

'I - -

[a... iC�,w, U � I
equatorial S S� I

a, ecliptic � U � ;: :: j UL _______________________________ _____________

These categorie. will apparently satisfy most present problems in
coordinate transformations invo�ving space �ehicleu. The systems
and nomenclature will now be defined.

3. F. 0: (See Figure 6)
*Oeocentrio, earth rotating , equatorial, right handed. 0 is

coincident with polar axis and extends in a positive direction

�jJj,,3) (See rigur'v (1)

Oreenwich. � � positively so as to pierce the meridian of

Geocentric, inertial, equatorial, right ha:�ded. a is coincident
with pol'hr axis and extunds in a positive direction northward. x
extends positively toward the vernal equinox.

* h'aradoxioally, the words "earth rotating" and "earth fixed" are
used interchangeably in the literature. Both refer to a system
fiied with respect to the earth but rotating in inertial space.

14
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i - ....... I
x. Y~. Z: (See Figure 7)

Heliocentric, Inertial, equatorial, right handed. Z is parallel
to polar axis of earth and extends In a positive direction north-
ward. X extends positively toward vernal equinox.

U, V W I (See Figure 8)

Common XTR system# earth rotating, right handed. Origin somewhere
near surface of spleroid at Vo, Fo' %o W extends in a positive

direction vertically in a geodetic sense, U extends downrange at
some aximuth I measured east of north.

. ,e o (See FigWe 9)

Common radar system, earth rotating, right sanded. Origin somewhere
near surface of spheroid at 3o, 1po p and 00o •o" Through the

origin and perpendicular to the geodetic vertical from the origin
ts an imaginary reference plane. A reference axis lies in the
reference plane and originates at the origin. The reference axis
points at some azimuth 7 east of north. Azimuth a Is measured in
the reference plane from the reference axis in a clockwise sense
as seen by an observer above the origin. The radius p connects
the origin with the point P. The elevation o Is the samller angle
between p and the reference plans. e is positivy, for points
above reference plane and negative for points below reference
plane. In x y a radar, with V - nero: x--*eastj

y--,. north U
s--* vertical.

00 a 4 360"; p is always positive; -90' 4 a 4 + 900

y , h:I (See Figure 1.0)

Common geodetic earth rotating system. 0 is geodetic latitude
positive in northern hemisphere and negative in southern hemisphere.
y Is longitude measured eastward from Greenwich. h is height above
geodetic spheroid, h is pWei-ve it above iopheroid and negative
If below.

-90" 4 0_4 + 90'; 0 4 y 4 360'

The latitude and longitude of a point above the earth are determined
by the intersection at the spheroidal surface of a line from the
point P perpendicular to the spheroidal surface. It is convenient
to disregard west longitude and consider 360' of east longitude
an measured from the meridian of Greenwich.

*6ee note page 206

16
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0y (r e Fiure 11)
Common geocentric earth rotating, equatorial system. r is the
radius connecting the center of the earth with tee point P. 1
is the smaller angle between r and the equatorial pliane 0 is
positive for northors hemisphere and negative for southern
he.imphere. y is longitude measured eastward from Oreenwiah
maeridis. r Is always positive.

-900 4 04 + 900 0 y4 360

.Lj..u..i'(Oee Figure 12)
Cwidirso 6!on =oinsesystsm**, earth rotating. origin scmfe~hrn

near surface of earth at.2o, Po, 00 and 0o, to. Originating at
the origin and perpendicular to the geodetic vertical from the
origin are two reference axo intersecting at right angles. The
origin is connected to the point P by a vector p. Direction
oosines of thils vector p with respect to the reference axes are
called I and m, The clockwise angle from the i reference axis
to the m reference axis as seen by an observer above the origin
is 906. The i reference axis point, at some amimuth • east of
north, p In always positive,

-1 + + . - .

a,•, .: (Cies FigL ur'e 13)

Geocentric, inertial, equatorial. The reference axis extends
from the origin toward the vernal equinox. r connects the origin
to the point P. Let r' be the vector projected upon the equatorial
plane from r. Tha counterclockwise angle (as seen by an observer
at the north celential pole) from the reference axis to r' is the
right ascension a. The smaller angle between the equatorial
plane and r is called the declination 6. 0 is positive in the
northern hemisphere and negative in the southern hemisphere. r In
always positive.

0 4 360' .90 4 5 4 90"

x Figure 14)

Geocentric, inertial, ecliptic, right handed. x' extends positively
toward the vernal equinox. z' extends positively perpendicular
to the ecliptic plane and toward the north pole of the ecliptic.

*See note page 26.
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rJ_.L...: (See Figure 15)

Geocentric, inertial, ecliptic. The reference axis extends from the origin
toward the vernal equinox., r connects the origin to the point P. Let r be
the vector projected upon the ecliptic plane from r. The counterclockwise angle
(as seen by an observer at the north ecliptic pole) from the reference axis to
r' is the longitude x. The smaller angle between the ecliptic and r is called
the latitude 0. ai is positive for points on the observer's side of the
ecliptic and negative on the other side of the ecliptic, the observer again
boi'og at the north ecliptic pole. r is always positive.

0 < A 360' -90 ae 90

atJ., I , n. t. u (ecuatorial geocentric): (See Figure 16)*

The coomnon orbital elements, a Is semi-major axis of orbit. e is eccentricity
of the orbit. I is inclination of the orbit. n is longitude of ascending node.
' is longitude of periapsis measured from ascending node. u is argument of

latitude.** The geocenter Is at the principal focus of the orbit. The
644atorial plane is reference plane.

I a-. A: (See Figure 17)

eHlticentric, inertial, equatorial. The reference axis extends from the origin
toward the vernal equinox. R connects the origin to the point P. The reference
plane is parallel to the equatorial plane of the earth and extends through the
origin. Let R' be the vector projected upon the reference plane from R. The
counterclockwise angle (as seen by an observer at the north celestial pole) from
the relferenCe axis to R1 is the angle A. The smaller angle between the referent'
pilane and R is the angle A. A is positive for points on the observer's side of
the reference plane and negative on the other side of the reference plane, the
observer boing at the north celestial pole. R is always positive,

0 < A < 360* -gO*< A < + 9O0

. •. Y : (See Figure 18)

Heliocentric, inertial, ,cliptic, rectangular. X' extends positively from te
origin toward the vernal equinox. V extends perpendicular to the ecliptic and
positively toward the north pole of the ecliptic.

* A duplication of symbols has been found necessary here. When an a or e is
used, the text will make clear whether an orbital element or a radar coordinate
is intended.

** It is quite common to see the mean anomaly M or the time of perifocal passage
T used instead of u.
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R, 1,: (See Figure 19)

Heliocentric, Inertial, ecliptic. The reftrenco axis extends from
the origin toward the vernal equinox, R connects the origin to
the point P. Lot R' be the vector projected upon the ecliptic
piane from R. The counterclockwise angle (as seen by an observer
at the north ecliptic pole) from the reference nxis to R' Is the
lonaitude A. The smaller angle between tho ecliptic and A in
"called the latitude B. B is positive for points on the observer's
side of the ecliptic and negative on the other side of the
onliptic; the observer being at the north ecliptic pole. R is
always positive.

0 A 4 :a60 -90O B + 900

a, o, i, n, •'•, u (equatorial heliocentric): (See Figure 16)

The common orbital elements previously described. The sun is at
principal focus. The plane through center of the sun parallel to
equatorial plane of earth to the reference plane.

a, o, 1, . , u (ecliptic hellocentric): (Boo Figure 16)

The common orbital elements still referenced to vernal equinox.
The sun it at principal focus. The ecliptic plane is the
reference plane.

Note on R.rorence Vertical:

The previous explanation refers to the geodetic vertical an a

refurence line for UVW, aep, imp coordinate systems, the goodotic
vortical being by definition normal to some specified spheroid.
Actually, it is customary for practical r6asons to met up theme

systems using am reference the astronomic vertical determined by
plumb bob or bubble level, the astronomic vertical being normal
to the anoid. The astronomic and geodetic verticals usually

differ at a given site by several seconds of arc and in extreme

conditions up to 20 seconds of arc. The difference between the
vrtiepl, at a Rivwn location is called the deflection of the
vertival and depends of courno upon the splheroid used. Measure-

mnntu taken in an astronomic mystemt may be correctud for dofloction
of tlie vertical before rotation to another coordinate system. The

Mulpsequent discussion of transformations (Svction VIII) assume.
mensuremvnts have been corrected for deflection of the vertical.
S('e Aipendix B, for methods of making these corrections nnd for
nltlrnatkve transformnations.
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IX. Basic Epoch Transformations
East Lonagtude of Vernal Equtnox

For transformations between earth rotating and inertial systems
the east longitude of the vernal equinox has been used in this
note. The following relation ts convenient for computing the

ma value of the geodetic east longitude of the vernal equinox

at epoch Ts

(68) mean (T) - 399.2445740 - 0196O0478460 d

-(R'6OlO) 10"3 d2 - w
0 & 7,, (T) 4 3so°

where d is number of mean solar days elapsed from Oh January 1,
1950 Universal Tine to 0h Universal Time of epoch day; t is
number of mean molar seconds elapsed from 0h Universal Time of
epoch day to epoch; ois earth rotation rate relative to moving
mean vernal equinox. By definition d is an integer. t is not
necessarily an integer. An average value for We is

(69) 0- 0.0041780?462e deg/mean solar sec.

The mean value of course does not include nutation effects.

The true value which includes nutation effects to

(70) true 7. (T) - mean 7C (T) - Ac

where Aa is called the "nutatIon in right asoension" or "equation of
the equinoxes", Computation of Am is described in subsequent equa-

tions, and Aa ls tabulated in the Amerioan Ephemeris, Universal
Time in Eq, 68 represents UTI, and we represents rotation rate of

date (see Appendix J)D but normally, in earth satellite computations
UTO and an averete ae are used. When orbital information involving

the vernal equinox is transmitted between test ranges, it Is im-

portent to verify consistency in method of computation.
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(73) N- -(47:8927 + O!04S2T) x 10 -4 fl l

+0:800 a 10"4 sin 211 -3:5361 x 10"4 sin 2 L C)

-0:1378 x 10"4 sin (3L - fr)

+o00o594 x 10 sin (L + r)

0+0;0A44 x 10 sin (2. - •

Wouo28 x so min (r' - n)

,0:3500 x 1O"4 sin (L - r)

+0 :015 x 10-4 sin (M. - )

0'661 x I0"4 sin 2 c
N600950 x IC 4 sin (2 ( -2)

-0:0728 x 10" smin (3 C - r')

.0:0317 x 10-4 sin (C+ r,')

40:0161 x 1004 sin (- -' 4r, +ln)

+0:0156 x 10"4 min (C -P -r )

-0:0144 x 10"- min (3 C +,r' - 2L)

-0:0122 x 10" sin (3 C - r, - n)

+0!1975 x 10"4 sin ( - I")

+0:0078 x 10"4 sin (2 2r,')

+0:0414 x 10- (min r' - 2L)

+0:0167 x 10-4 sin (2( -2L)

-0:0089 x 10" min (4d - 2L)
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(74) 2 -953644 x 10" com - 0511.x 10" coo 2 n

0:15336 x 10- coor 2L + 0.*0666: 10x oon (o - Ir)

006-0:0 x 10"4 can (L + r)

-0:0637 x 1o04 "Oo (Ga ' - n)

.0:3456 x 1o"'4 ~oo S (. 0:o 8 0"ooo(s-n I
0.o0069 x 10o coo (or(- r')

-O?0.3O0 a 10"4 orn (4., r') ,
, .0?008 ' 104 cor (C-' + .)

+0:245 x 10" 00. 2G'o• 00- x 0 C)

W00•69 10o- coo (3( r' -r ,)

o0o004 ax 1004 aom(3 +- r' - n)

/-

(75) , 33:44575687 - 0:01309404T
.o8a)4M o4ooso 2 4 3

- (Talk) 0 a r t*

(76) Ao - AN oa m (mee equation 70)

The various functioan usmd in equation@ (73) and (74) may be defined
so folloRs

n - 11:1137909 - 0:0529510322d + 20!795 x 10"*4
,a0:81 x 10-4 T2 + 0:0* x 0"4 T1 3

- 64;37545167 + 13:1763965268d - 11:31575 x 10" T1

-11:3016 x 10"4 T2 + 0:019 x 10-4 T3

ri 'a -208:8439877 + 0O1114040803d - 0:010334 T
-0:010343 T2 - O:12 x 10" T3

L a 280;08121009 + o:9856473JK4d + 3:03 x 10' T
+3!03 x 10-4 T2

Sa 2-2:08053028 + 0:470684 x 1O' 4 d + 4S525 x 10-4 T

+40575x 10-4 T 2 + 0:03 x 10"4 T3
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qh

T is the number of Julian Oseturiesot 36525 days past the epoch
January 1, 1950, S. T., while d is the nsamber of dAys past the same
epoch. Note that the transfer matrix in (72) may be inverted for

transformations from (x 's to (x y x).

Precc ion T Anformations

A cosmon transformation required ia that between the mean equator
and equinox of 1950.0 and the mean equator and equiluox of date. The
first is a very useful inertial system while the second is not an
inertial ayste* in the true sense. Let (x y ,) represent the

*aaenttri equatorial cootdfnate system based upon the mean equator
and equinox of date@

(77) x al a a3 X50

1 y aa1  2 a 3 1950

n a3 1  a32  a3 3  'l-950

Using the standard nomenclature of the ephemeris for too asnd O9

(78) an, -sin o sin + cm o oon coso 0

+e -coon to sin x - min to cooa z cooa

a123 -- coso sin i o

'0
• ~~~~aS1  a:L 00Je oa sin 6 o

! a9 2 - oos 0o0oa -sin •osin a oos 6

a2 3 -- sins sin 0

63 1 a cot sin a

a32 - -sin e sin n

33 " soo4

t4



whevre
a 23041"o997T + 0302T2 + OV0179T 3

U0
a 230-4V97T + 101083Tg 02?0l91T3

a 20040?4IT - OV4262T2 - 01'041ST

where T is the number of Julian centuries of 36525 days past the

epoch 1950.0. This epoch corresponds to Jan od .923 U.T. ot the
year 1950.

Equation (79) may be substituted into (78) and the resulting
functions may be expanded in power series of too a ad 0:

(80) 411 1 - 0.00029697T2 -. O.0000013Ti

a - 2 - - 0.02234988T - 0.00000676T 2 + 0.00000221T3

a-a 3 1  0 -. 00971711T + 0.00000307T2 + 0.00000096T3

agg 1 - 0.00024976T2 . 0.000000,16To3o

a2 a3  -0.00010889T2 . O,0000000T 3

U 533 0,000108bT + 0,00000001T3

a3 3  w 1 - 0.00004721T + 0.O0000000T 3

The transfer matrix represented in (77) can of courwe be Inverted

for transformatiomn from "date, to 1950.0.

To summarise, let (x,y,s) represent geocentric equatorial coordinates

of a toint In a system defined by mean equator and equinox of 1950.0.
Let (Xy,l) represent geocentric equatorial coordinates of the same

point In a system defined by true equator and equinox of date, Thenx x

where N is the transfer matrix in Equation (71) and P is the trans-
for matrix in Riuation (77).
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For precidion spaco probe or high altitude satellite computa-

tions it is customary to operato in a system defined by mean

vide the necessary trMsnfomations. For low altitude satellites

or missiles it is comen to operate in a system ohaz•acterized by

"true equator of date and man equinox of epoch.* This uses

Equation 68 and involves no nutation or precession computations.

It is an inertial system in that a fixed vernal equinox is used.

Sometimes, particularly in missile trajectory computations, equa-

tions of motion are expressed in a non-inertial earth rotating

coordinate system with centrifugal and Coriolis terms added. This

system in equivalent to 'true equator of date and mean e*uinox of

epoch" in regard to its basic accuracy and application. Finally

i*, may be pointed out that any geocentric system involves accel-

oration of the geoooenter itself. This acceleration becomes rela-

tively significant at very large distances from the earth, at

which time it is necessary to change over to a heliocentric

systems

NOTESs

Yor many purposes it may be satisfactory to discard all terms

with amplitude less than 00 3 x 10'4 in Bquations (73) and (74).

The •( y x) coordinate system discussed in this so6tion (1X) .e +he

common geocentric inertial equatorial right-handed system. a it-

coincident with polar axis and extends in a positive direction

northwards x extends positively toward the vernal equinox.

Transformations similar to those givtn in this section UIX) can

be given for the ecliptic coordinate system but at this writing

no need is foreseen for these transformations.

If greater precision is needed in Equations 73 and 74, many

additional terms developed by Woolard are available in the

Explanatory Supplement to the American Ephemeris.
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0 x. Orthogonal MatriCes (ReAl it

A simple rotation of coordinate systems which does not result in

n change in length of the vector is ca~led an orthogonal trans-

formation. The corresponding transfer matrix is an orthogonal

matrix. By definition, if R is orthogonal, RT - R71 and hence

RR T -'R T - I. where I represents the identity matrix.

Most of the transformation matricem discussed in this report
happen to be orthogonal; and hence when an inversion is called

for, the simpler operation of transposing can be substituted.

The necessary and sufficient conditions that a given n by n
matrix be orthogonal can be derived by expanding RR1 . I. We

obtain

n
SRPM Rqs Pq

(3 which must hold for every nombination of values of p and q, where

1 I p n

5pq is the Kronecker delta, which is unity when p - q and in

zero when p A q.

Orthogonality can frequently be verified by inspection for

matrices of low order, As an example, consider the transfer

matrix in Equation 4:

•cog m in e9 01

-sin 0 Cox a 0
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Applying our criterions

p q psq

1'. 2 -os05 *sin 04 Sin Ioos9 00
1 3 0-0

2 2 sin0 *+ Cos 0,- I
2 3 0 0
.3 3 -

$iUCA the eleGOmets of this matrix can be multiplied commutatively#
it is not necessary to consider other combinations like (p.2# qul).
Clearly the matrix is orthogonal,

Checking for or'thogonality is not only useful in aveiding inver-
* sion but is also useful in detecting errors. Applying our crite-
nion to the more complicated matrix (Equation 78) shows that itT
is indeed orthogonal as should be expected, it may be of interest
to apply the criterion to the approximation given in Equation 80.
We must of necessity discard terms with powers of T greater than 31

n

p q Sol 11 qa

I 1 1*0000 + 00000000T +' OOOOOOOOT3 +' 00000000T 3

1I + .00000000T + .00000000T2 + .00000000T3

2 3 + .OOOOOOOOT + OOOOOOOOT 2 + .00000000T 3

3 3 1,00000000 + .OOOOOOOOT + OOOOOOOOT 2 + .00000000T 3

Clearly to this degree of approximation the matrix is orthogonal.

in general, it can be stated and easily proven thatt

50
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m() The product of orthogonal matrices is orthogonal.

0 (2) The Inverse of an orthogonal matrix in orthogonal and 15
also the transpose.

(3) The transpose of an orthogonal matrix is orthogonal and

to also the inverse.
(4i) Orthogonal matrices are square# have Inverses and may

be ot any size,
( T) The determinant of an orthogonal matrix in ± 1. It is

+ 1 It there is no reflection of the axes or it there

Is an even number of reflectlons of the axes. It Is - 1
if there is an odd number of retlections of the axes.

(6) Zn an orthogonal transformation, the trace and

determinant remain invariant.
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XI. Error Analysis for Coordinate Transformations

'this section deals with the propagation of errors from one ooordi-
-note systum at tims t0 , to another coordinate system at time to, or
from one coordinate system at time to to the oae or another
oordia•ate sroyte at t4me to Errors ate expressed in t•ers of

-variances and covarn ancs The results an valid without depen-
duose upon nomality of the distribution,

fte covariancm matrix of a pair of vectors y - (ya y2 "'" yq)T e

#oi arT is definod as

(2 ma

"Y1 21  Ym . l r

~2r *1S Tm 0

a T

yql yq 3 Yq'r

The generalised law of covariance propagation states that if the
elements of y and a an functions of the vector x w (x 1 x2 see Xn)T
which has the covariance axxT p the covariance matrix of y and s
is rjivin by

(gymT) n (yx) (xx T) (ax)

where
(Y) YT ,sxT T(y7)T . (•) -y) , ,x (s.-) (•a)

in which inx) is the vector of partial differentiation operators

NOTE: The notation y is notTequivalent to as normally de-

fined but rather 0*)"r y has the form of the Jacobien.
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Alternatively, if the Inverses exist,

Q T1 (e)--( ( I)T

or
] %mT %.T (•,) (xz

where
(19)T . ( Xy) (5 )T (x3 )T T 4•) (x) T

*in which %Y-) and Gk) are vectors analogous to(~ already
defined.

In the vast majority of practical applications, y a m and the re-
sultting symmetric matrix is referred to as the aovariance matrix
of the vector yV The oovarianoe matrix is always not only symmetric
but also positive semi-definite.
it may happen that because of redundant Instrumentation a set of

independentaolumn vectors (V•, V2 ... Vn), each vector having
an associated covarianoe matrix (Ell E3 ... tEn), may be obtained
as estimates of the true vector at some particular time point.
Those estimates may be combined Into a single estimate V and its
corresponding covariance matrix E:

V E r 1h VI + E V2 ++ ... + Vn]

there ^IlI E- nl'
E h + E + ...

Instead ofoor prior to,combining two vector estimates V1 and V2
and associated estimated covariance matrices E1 and E2pit may be
desirable to test the hypothesis that they represent the same
population. This has direct application, for example in detec-
tion of satellite maneuvers by comparison of two sets of. orbital
elements. In the application citedthe tracking data usually
provide large sample sizes (greater than 30) and hence we may
use the simple relation:

1 V2 - jr] [~ 1 21  [V2

where x is obtained from statistical tables at some probability
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level, e.g. 1% or 5%, at degrees of freedom equal to number of
elements making up the vector, e.g. 6 or 7.

The test is more lavolved for small sample mies., First of all
must define sample piso n for this test. Lot N be the total

number ot independent meaeuroments--4n the case of radar track
at one per five secondsa t would be the sum of the number of all
the auimuth meaurreents plus the number of all the elevation
measurements plus the number of all thae range measurements.
suppose there are p oelmonts In each ao the vectors being con-
pared and there are no other parameters being estimated. Then

-. ,rptore, unit sample mie in this cae is the necessary and non
r.e0 4ant number of measurements required to define the vector.
Now lot the sample mimes for V1 and V2 respectively be nl and n2 .

poppu te

1  u [ 1 (m1 "l) C, + n(n"l)S. h+a2 n2 N-1).2]

Now If

V2-V1]T (nm+n2 ) (nl+n2-P) p

the hypothesis that VMYV1  must be re•ected, V is the V statistic
with p degrees of freedom for greater mean square and (n +n2 -p-l)

deoroes of freedom for lesser mean square,

NOTE: If we take the square root of each of the diagonal elements
in a symmetric covariance matrix, we obtain ,a set of ODOPs
or standard deviations in the computed parameters, ODOP In
an acronym for Geometric Dilution of Precision, a term in
common usage in'the aerospace induitr. The term is usually
restricted to the computed parameters, and is not applied to
the fundamental observations, ODOPe are sometimes misleading
because they ignore the covariance or off-diagonal terms.
Bee, Appendix Q.

*This interval size is sufficient to justify assumption of
independence.
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considering a Sane "eneral cases define the matrices A and 3 an
follows a

"X2 .%y xS Ax; ; %0 X, C• XX X,, ;A
a Qy as as ay on; dye$ Cor ay

7X y yA *Y, ", r' Vo

o:x o.y a:. o; :. 2 Oo:; a; to Cow

mmm

ox sy 2m g a *~ a*, C my sx M a;
C,. ag, 6~ 114 d~ oboe~i*' a

u;x 'is o aC' Y,; oX ajo

aj- ~ E;. o" a~o;

i Xe a ou as* a 'a , a 9 and y 0; aae @ vo

.i def CO$ as$# 040i a166h•' 02•* also$ wM oo

Vol aoo O ki o1 64i 06 00604 axk 06 12L. RX a'Ul I a a x aai

2X QY XTZ o 0yi
*3 Yi I~ CA2 ak Xi Ux aXj XzV A

a 0 2 a1  i a '2 a' a* a
NX~ ~ Sy24 z Oiz VO

Oi' a' ay UA2 : 0*2a d~

B a~ ixj a'Y Oi f . f a-- 6f a' *

~~CX~Y Y~Z 0 YZ YX aY0 'jZ 0 '~

hOinOY1 i iOtli f
2

defind Cloeiert e tha th tw cooi0t ays#.m are0 ans0e
to~Y be fixe reatv to Vahohr 4hspatclreape

Oj ,, jj Oj a.. j.5.6



To illustrate a transfoimation both in time and coordinate systems,

we compute the covariante matrix in latitude * and longitude -, at

imp&Gt resulting from a GoveribaeQ matrix in a . i at mign1le burn- K .

out# Assume the following partlals have been obtained numerically:

* I it -. oo003 +.005 WOO

IX by an

air unit s are in degr1ees nd feet per sec 0 ond*

aine the following covariance matrix ia givent

@3 1 +.02 W101

0,; o. 4.02 .. 5 +.03

25 wool +,03 +65

Whet units are in (9t./seco.) 2 "

Therefore the Covarliance matrix at impact is

S""T .000021 ".000053141

where units are In degrees squared.U

Uy standard procedures lI can be further transformed if desired

itot a 95% confidence ellipse, See Appendix Q.
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As a final examle it may be of interest to estimate the errors in the
orbtUl elemnts at time t resulting from errors in the orbital elements at
time to. The time from t to to would represent a coasting phase. The errors
at t an of course subsequently be transformed to errors in rectangular co-
ordinates or look angles If desired. From the law of covariance propagation

11114 (011T)t

The form of the Ep matrix Involved In the equation above Is shown below:

Be o

a * --- -IS
• ' Se ae Se Se

o a ao a a
Ep

San an an an an

W aw aw Bw aw aw
0 0ml~

a o __ L au au ____

0a 0 a, 91% 0 0 U0



The form of OEET is

2

ao a 0 a e o 1 0 l 2itQ acete QU

ala 01, a1
2  °f 0a1u

22

w4 T 2EE a d a a a a

,W. we aWi WA• oU

LL Ju u

The derivation of the partials in Ep is beyond the scope of this report,

4b0 for an ellipse

1 0 0 0 0 0

0 1 0 0 0 0

Ep_*0 0 1 0 0 0 .
0: 0 0 1 0 0 .!'

0 0 0 0 1 0

- 0 0 Y -

where

t

$* sin nt~-- +i) 0 sin n-- --- 2 + 0- 0-
3-eo 0  t R t

R 2

R 2
y • 1(i~-)

t
K is gravitational constant of central body
R is distance from principal focus to orbiting body
rn is true anomaly
Other terms are orbital elements previously defined (page 22).
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Error analyses are most effioiently performed by direct trans-
0 formations of the type Just discussed. However, occasionally

such methods are not almlioables and Monte Carlo or simulation
techniques are used. so latter types frequently require
sampling from a normal distribution. It only a single Independent
parame.er is Involved or it the oovarianoe matrix of i multi-
parameter problem Is diagonals there is of course no difficulty.

oh problems permit straightforward use of a table of univariate
standard normal deviates. Let us consider a more complicated
situation of n parameters and associated covarlance matrix con-
taining non-zero off-diagonal elements. We have the problem of
sampling from a known multi-variate normal distribution described
by a mean column vector m and a covarianoe matrix Z. The pro-
cedure is an follows:

By standard matrix algebras compute an orthogonal transformation

matrix A such that [A X AT] is a diagonal matrix. Select a

column vector -= S 2 ... zaT each of whose elements is

simply a number taken from a table of univarlate standard normal
deviates. Then the required vector of parameters Is

x N m+ATI[Z AT] z,

Additional veotors x 1 may be obtained simply by substituting
different zi,

iii
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APPENDIX A

* ~A SELECT! O MI R RILATIOK I.P8 IFOR ILLIPTICbL ORBITS

1.0 Inertial Masu &ontood Rectanglar Position and VoctyC ~nem to btl36StS

•X, + Y, as

V, Y, + ;

By definition

D u 4. y*Am

The flight path angle 0 is the angle between the velocity vector

and the local geocentric horizontal and always lies between +90v

and -900.

*V *

Then
a rKa1 u 2K - ,vz

The parameter p of an orbit is defined to be one half the latus

rectwnu
P .. r2(v2 .2

K

By definition v -K

N * -
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Then

. . •pl 2 * Cl - 2 ) C1 N .. )

The true anomaly at epoch Le found from

CH +* 1~) in ecos 0tan n
x co 02 O Ln2 e

gxauLna&Lon of the signs of numerator and denominator separately
OLU reveal which of the four quadrants n is in. For a perfectly

circular orbit both numerator and denominator will be zero, in
tohLch case n is set equal to zero by convention.

Moll that Kepler's constant C is equal to twice the rate at
which area is being swept out by the radius vector from central

body to space vehicle.

Moreover

Cx • y!- Z;. C • zX- x:; C• x- yx

Now
ocos i 00 < i < 1800

tan Q 00 <A < 3600ýC

where the signs of numera,•cr. i denc,, ... or must be considered

separately to determine which of four quadrants f is in. When

both Cx and C are precisely zero the orbit is equatorial and nx dy
j ~is def ined to be zero.
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-.- ,-_ . _-_- r•
tan u= - x oin Wi cou i + y con f coc3 i + z sin i

x coo + 4 y sin 1

00 < U < 360u

where again tite sig ns of numeartor and denominator must be
considered separately to determine quadrant of 11.

w u -n 0 < w < 3600

2.0 Additional Relationships within the Orbit Plane

Semi-major axis, n

Xr rA

2K'Crv2

rp r,4+r p
i -e -r-

Somi-minor axis, b -

Soo.(rv coo 9) r
TrArP 2'K rv2

Eccentric anomaly, E

sin 1 i-' sin 2 tan' 1 "-+1: tan (I1/9)

Natot e, /2 a nd i1/2 lie
a-o in same quadrant

Eccentricity, e

22
]r 100 26 -2Kar )

1.A -rl K r

rA + rp
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Munn nnomnly, M

n (0 t p)

M-n min Mn (Koplor's HrqutiLon) (54€c Appindix I)

Radinal distance from gooeontor to satellite$ r -

1 (--0C.)T-+ I o can 11 (1-e Cos E)

Radial ditancoe from geocontor to apogee, rA r

a (1+e)
p 1+0

RIadial dimtenco from geocenter to peri•,oo, rp -

a (1-.) b2 /rA

el-e,
rA 1-

True anomaly, q -

raP1 (I-o 2 )-r 1 2 ton"g +0IT tan (E~/2)1
CT00

Note: FM/9 Pnd n/2 lie in
same quadrant

Flight path angle, 0

tnn 1  l min ,/ I ovaluatod 0 w 00 900

fPRO)h velocity, v -

I
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Moan motion, .n .

Orbi tal pertld:

Kepler, TK 2vr,

S3C Oaae2)

sAnomallstic, TL TK 2. + (1-3 sin2I
Sr

*Nodal$ 11 x T;+T K [3C2,0 no 2  )z 5, i -31

Derivatives:

r * o sin * v rin 8

K - • soon rL - FT ' cs;

*11hcwc oxprosuionm are included here for conivonience. Since
they dopond upon oblatenesm of the earth, they are not Keplerian.

A-5
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2K a sin 0p rpJ

"r rSINTI

Tho parameter p of the orbit is equal to a(1-o).

Sao Appendix N for derivatives of mean elements.

Boress expansions.
I a 5 5 107

Ti n M + (2 + Ne + ime si 3M

a (" 2  11"4 17 a "i"2

13 3 43 a 95 7+ +~ m~ . T* in 3 M

+ (103.4 451,6) .a .+ 0-• -I~ ) sin 4M

+ f1097 5 5957 7- -i4. (g ,, - T81 ) sin 3 M

1223 6 47273 7 i7+ 1g , min 6 M + min 7 M .

+ I- e + + 4. e x

+. .+ I-e~ .•.. A, °1oo.,.
ITU

:1 3 45 5 567 7.
+ [- 0 + e0]co

25 0 o61

+ P . =125 5 4375[,R 7~~] coo5 M

27 6oco6M 01 sin7 M

A A0
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MC + Mi [l 3 +1 05 1 07 ]din M

[+ *2 0 +U 1 8] sin 2 M

+. [3 3 2? 06 + 243 7 sin 3 M

IS+ Is 0 ! TT ] sin 4 M

L125 5 :3125

27 6 16807 7 j7M
+ m in 6 M + mn7M

3.0( IMxplanation of Notation

C is Kopler's constant vector.
CxO 1C are components of C in xyz coordinate system,

C9.'O in sncono monal coefficient in gravitational expression

D is defined in text.
F Ini ecoentric anomaly,

*K I~r ktontra1 gravitational parameter.
M is mean anomaly,

N in defined In text.
# 11 in Keplerian period.

14 Isnanomalistic period.

T Js nodal periodi.

A ins emi-major axis of orbit.
P4, in earth equatorial radius,

1, is uemi-minor axis of orbit,
in occentricity.

i is inclination.
11 Is mean motion.

P is parameter of the orbit, i~e,, half the lptum rectum.
r in radial distance from geocenter to satellite.
r rA Is radial distance from Seocenter to apogees

A -7



:3.0 E xplanaLion of Notation (cont'd)

rp4 rndinl d1itanoo from KeooconLtr to perigo,.

I ii0 timo.

tp) to t.mo ot porilgoo pnnsseao,

ii ts argument of tho latitudo,

v in path velocity.,

xpyou arc ooordinates in geocontric reetcngular inertial
system,

1 in Lruo Anomnly,

0 is flight path angle.

n1 is longitude of ascending node,

w in argumont of perigoe.

A-8.
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APPENDIX B

Deflection of Vertical

The problem here is to convert coordinates from an astronomioally

oriented system to a geodetioally oriented Kystom.

Consider a point P near the surface of the earth. From this

point P there may be erected a geodetic vertical which is

perpendicular to some imaaginary spheroid fitted to the geoid.

The geoid is a rea3 equipotential surface. A plumb bob at P

reprecents a vertical perpendicular to the geoid surface and

defines what is called astronomic vertical. The angular separa-

tion between the geodetic vertical and the astronomic vertical is

callod deflection of the vertical. Similarly the latitude

(positive north) and longitude (positive east) of the point P may

be determined by triangulation to obtain geodetic coordinates *0
bind y,, or the latitude and longitude of the point P may be
determined astronomically to obtain astronomic coordinates OA and

Y The deflection of the vertical at the point P is then defined
by the two components ( " *O) and (YA - 7Y). In present nota-

tion 0, in used to represent (*A - 0O)o the deviation in the

meridian; and 0 is used to represent (VA - ' 0 ), the deviation in

longitude. x

Two reotArngular coordinate systems with coincident origins both at;

P will now be established. Besides the point P and the upward

vertinal, one other reference must be established. This is a line

from P pointing toward true north as defined by the stars. This
line (or'il it N) from the point P toward true north is parallel t,o

the. axis of rotation of the earth and is not dependent upon whethei,

tho nystom in geodetic or astronomic. In addition, each eoordinnte

Luyotem haw a horizontal reference plane through P perpendicular to

ita respective upward vertical.

Define the right-handed coordinute axes of the astronomic system
1y (XA, 1A' ZA) And the right-hnnded coordinate axes of the

*Nu•t to be confused with deviation in prime vertical defined by

(' YA - 'Y ) 0ou 0 -"



geodetic system by (xN, Z . 'A is the astronomic vertical

with positive upward and z. is geodetic vertical with positive

upward. X anid ylie in the astronomic horizontal plans with

YA lying along the intqrsection of that plane with the plane de-

fined by 3A and N. YA thus points northward and xA points east-

ward in the astronomic plane. xg and YG lie in the geodetic

horizontal plane with y. lying along the intersection of that

"plane with the plane defined by sG and N. y. thus points north-

Ward and x. points eastward in the geodetic plane.

For present purposes it is not neoesary to define the position

of P more completely, but in general a third coordinate (height)

is needed to define P. In the astronomic system this is usually

height above mean sea level and in the geodetic system it is

height above the spheroid.

Now consider some point P" different from P and assume that its H

coordinates are (xA, yA' 'A) in the astronomic system. Given

the deflection of the vertical, it is desired to uomputs its

coordinates (N., y.0 za) in the corresponding geodetic system.

The complete derivation will not be developed here but follows

along the same lines as discussed in the body of this reports.

According to Equation (26) in body of this report.

Xc 91 M1 n, x A

•~ sAYG 2 L 2 i 2  YA

TG 3  m3  n, LA

where direction cosines of axis in (NA, sA' 'A) System are

*1 m, n, ; direction cosines of Y. axis in (xAt yA' 'A) system are

Q2 In2 n2 ; direction cosines of zG axis in (NAt YA' zA)

system are & 3 m 3 n 3 o The following direction cosines are exact:
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I.+ coo

nil +0Co 5 sin p-

2 +sin l. iftn

m2 + Cos si #A sin 005 p

n + sint + it 00 03

£3 Co #G00 sin

m,3 a-in C+ sin #A coo *Ql-cCI

The latitudes and longitudes occurring in these direction cosines
represent the common origin of the two rectangular coordinate systems..
If the lati~tude and longitude is known in one system and if the
deflection of the ver'tical is known, then the latitude and longitude
in the other coordinat~e system is known, or if the latitude and
longitude are known ini both systems, then the deflection of the
vertical is also known. As icon as (Kr, YG9 YQ havo been obtained,

it is possible to transform to any other system by the equations
given in the body of this report.

in cdlse titere is a reason for obtaining aistronomic coordinates
1'rcin pseodatic coordinates,



x A £1 12 X33 XG

YA m 1m m 2 m 3 YG ••

ZA n1 n2 n 3 Z Gi
* ' m m

where the elements in the transformation matrix are the same as
defined earlier.

The following approximations are accurate to first degree in
small angles, (angles in radians). 0 may be either 0 or OA
without further impairment of accuracy. In the alternative
formulation I, represents deviation in prime vertical.

' +1

m! I mi•n $ - tan 0

nI +0 Cos €=+1

t'2 "+0 min it - +1 tan I.

mn2  +1

M3- -01

n3 -+1

The following relations are accurate to first degree in small angles:

Ails eA-O0 = +n sin a + C cos a

&a a- aA a + % tan q - n tan e cos a + ( tan e sin a

where a represent% azimuth measured clockwise from north and e rep-
wesents elevation measured upward from horizontal plane.

A rathtel' obvious point in star calibration of a radar iu that
1 hi tation with vertical defined by a plumb bob or bubble lov(,]

* n"Id with latitude and longitude ceefired astronomically should
oh.,t4'V(, azitmuth and elevation of a star computed without any

exlflicit conuideration of deflection of the vertical.
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IMP AL TERNATI VE! TRANSFORMATION1S

The Jprecoding discussion Ii. this appendix givei, 'he traiiatormii-

tion from aemtronomic tn geodetic system with coincident origins.

Stibooquent trannforwt-t ions to other systems at other origins may

then take place', Itmotimos a different procedure is more con-

veniont. ~"~:.-ternative procedure is depondent upon the f~*ct

that 0'.: dl-oion o1' tha* gravity vector as determined by I
a~rlr3nemI- ohsiervation is parallel to the ellipsoid normal at the

austraor,.iocal position. For example, In the cave of an astronom-

!catily oriented radar system, we can immediAtely apply Equation

300, Page 29, to obtain triae (E,F,G) if we use the astronomic

coordinbdes 6Aand yA(in pilace of geodetic *. and y0)for the

Moation in the first two matrices on the right-hand mide ul' the

v~ijuition And if we use values for (E0 ,F,GO) computed from the

gto(odetic coordinates of the stantion, Similarly, using E~quation

31, we can transform from EFG to actual radar observations by

mtipplyinev Astronomic coordinsites $and yA and truec geodetiic

4) F~ P ,G 0) for thte radar site. Thus the explicit application of

time direction~ conines developed in this appendix is not always

roqu is red.



STAR POSITIONS 1%

INTRODUCTION

For precision optical measurements and various star calibration
exercises it is neoessatry to make transformations of star posi-
tions. The word "position" as used in this appendix represents

only direction cosines or angular coordinates. The object of this
section is to arrive at a computational method for deriving look
angles (azimuth and elevation) for the stars based on information
from star catalogs, local geodetic position of the observer and
time of observation. Some definitions of star places follow. Note
that none of these computed places contains any correction for the
travel time of light from star to observer. Also there is some
confusion in nomenclature so that the following definitions are not
*universally accepted:

true place: barycentric (practically heliocentric) actual exact
geometric position referred to instantaneous true earth equator
and equinox.

mean place: barycentric (practically heliocentric) exact geometric
position referred to mean equator and equinox usually at the begin-
ning of some specified Besselian year. At this epoch it differs
from true place by effect of nutation.

apparent place: geocentric position referred to instantaneous true
equator and equinox including effects of annual aberration and
annual parallax but not refraction, diurnal aberration or geocentric
parallax. (Note% geocentrit., parallax is entirely negligible for
star positions and will not be mentioned again.)

observed place: topocentric position referred to instantaneous
equator and equinox including, effects of annual and diurnal aber-
ration, annual parallax, and refraction.

The problem then is to compute the observed place, given the mean
placn. This is an ancient problem and many methods have been

c-I



developed. Mcdern computers permit riporous and efficient trans-

formations. The rigorous method presented here is in use at U.S. ()

Naval Observatory and represents optimization for comprter applica-

tion.

MEAN TO APPARENT PLACE

The general transformation from mean to apparent place is as

follows:

P • R6 R1 + R5 [RR( , R1 . R

where M Is vector of direction cosines for the mean place and P is

vector of direction cosines for the apparent place. The various

stages are as follows:

(H * R1 R2 ) is a correction for proper motion

R3 transforms to mean equinox at beginning of Besselian year

nearest date of observation

R corrects for annual aberration A

R5  corrects for nutation and precession to instant of observation

R6 R7  correct for parallax

Explanation of the various matrices follows:

M

where x0, yo, zo are direction cosines defining the star position

referred to mean equator and epoch of star catalog.

C-2



0 os 0 001%
yC) a O sin a. coo 60.i

.sin 6o
'0 ae

where a0 is tabulated right ascension and 6. is tabulated declina-
tion. The subscript (0) is used to represent the equinox and epooh
of star catalog.

". tS

where "x I~y P x uy • represent direction cosines of proper
motion and direction cosines of proper motion derivative ob-
tainable from the table values for pa and u"

U - la sin a 0 Cos 6 -P6 cos a. sin 0o

A U+ lji Cos o Cos 0 -o 6 sin s0 sin do

Uz1 + W6 coo 60

•- X112 - 0.000205 W V '

-Yo2 - 0.000205 w V p
y I

SM- - 0.000205 vi V Ui

where
02 P2 C2 6 + JJ

u, and V, are expressed in radians per tropical year. xo, Vol Zo
vaLues ar* obtained from matrix M. w is parallax in seconds of arc.
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V is radial velocity of star in kilometers per second. Times

associated with proper motion, proper motion components and

components of derivative of proper motion are tropical centuries.

•3 [to]

where T is the time in ta-pical centuries from the initial mean

equinox of star catalog to the instant of observation.

R3

R3  y y y

X z Y 2 ZZ

where

X a cos co Cos0Cs z* -sin COsin z*

Yx a - sin C0 cos 0 Cso z* - com C0 sin a*

Zx i - sin a coo z*

X = coo co coo 0 sin z* + sin c. Cos z*
y

Y y a - sin r,00 coo sin z* 0oo coo z*

7, z - sin 0 sin zh

X X cos C. sin ,

Yz X - sin ý0 sin S

Z a coso

C' 4



where

gCo (230#.260÷1V". 6T0 )T' + 0.302T*2  + O *01ST 3

* • *0 0"9lT' 2

0 u (20041682-08.3? 0 )"T - 0.426T 2 - 01042T'3

where To is t•Sme in tropica,. centuries from 1900.0 to initial mean
equinox of star catalog. T° is time in tropical centuries from
(1900.0÷T0 ) to beginning of Besselian year nearest date of obser-
vat ion.

R4

- j

+C tan c.

where C and D are Besselian Day numbers expressed in radians and
interpolated to instant of observation by use of first and second
differences. t is mean obliquity of the ecliptic.

S: 23027 '08 1,26 - 46 ':1846(T 0 ÷T ) - 0 1.0069(T?0 ÷T )2 + 0 ,.00 1 81 (T 0 ÷T )3

The notation (TtT) has been used properly earlier to represent
tropical cent:uries from 1900.0 to inst~ant: of observation. In

li ~computing c it is somewhat more proper t:o interpret it: as Julian

centuries from 1900 January 0.6 ET t~o instant: of observation.

However the difference is slight and the earlier definition can be
used here also if more convenient.

A strict treatment of annual aberration requirev the consideration
of elliptic terms but these are not justified in terms of overall

docuracy and are here neglected.



I -f -(A*B 1
R5 u 5.f

RS X f (B-Af)

where A and B are Besselian Day nambers and f is an Independent
Day number. All are expressed in radians and interpolated to the

instant of observation by use of first and second differences from
a daily tabulation provided in American Ephemeris.

R 1 Ro

0~ 557:

R6 R7 -D acoo t [Nk]

sint

where C, D and c are defined for matrix RO w is annual parallax
in are seconds and k is constant of aberr4tioto 20'047.

P

'IT

where xT, YT' Z are direction cosines defining the apparent atar
position at instant of observation. The subscript (T) is used to
represent the equinox and epoch at inutant of observation. At
this instant

C-6



XT a CTOS aTCo 6 T

YT G ~ T Coo OT

ST a sin 6T

NT 0 &rotaA (y?tXT)

6? T aarotan[zTq/xT, YT)]

APPARENT PLACE TO OBSERVED PLACE

P may be corrected for diurnal aberration using either (xT YT T

coordinates or (*T 6T)D but it is somewhat simpler to use

(OT 6T)l

a • T + 013198 ros o Cos h sec T

4 6T + 013 1 98 r coo#sin h sin 6T

where

a and 8 represented corrected values; i.e.,, including

effects of diurnal aberration

r is geocentric distance of observer in equatorial
earth radius units

0 is geocentric latitude of observer

h is hour angle of star

Transform (a, 6) to (x, y, z)

x Qcoo a COS6

y u sin a coo 6

2 sin 6

C-7
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These values of (x, Y9 z) may be transformed to a topocentric

system centered at the observer with x' and y' in hor-izon plans,

x1 east and y' north, z' is up.

[*] ' Re

where

1 0 01
R 0 sin coo .1

In -coo0 sin

05 -Cs 1  -.sin %I

0 D

where $ is geodetic latitude of observer and a, is instantaneous

right ascension of observer. The asimuth and elevation are

a , arctan (x'/y')

a aresin z'

The correction remaining is that for retfraction.

C-8



Normal refraction doem not affect the azimuth of a celestial

0 object, The observed elevation in greater than the geometric
elevation; but the observed azimuth is the same an the actual
azimuth* Modern numerical ray tracing otters the most accurate

approach to retraction correction and is applicable to all

elevation angles, In contrast to older mothods which are limited

to elevation angles generally above 15%, Ray tracing requires

an a priori index of retraction profile, determined tor example

trom Rawinsonde data, (This profile incidentally is the

principal source of error in the computation.) The index of

refraction Is assumed to be a function only of altitude above

moan sea level for all latitudes and longitudes in the vicinity

of the observers The method described here is presented more

fully in Item 7 of the bibliography.

The elevation correction is given rigorously by

1

As bos 0 f ilb)(1b)(+s/r0 - coo~~ 0
0

where
no-_ no-n

b . and Ip 0
0 0

and where

o 0 is apparent elevation angle

n 0 is index of refraction at camb,,n altitude

r 0is the mean radius of the earth

X ýropresent the height and index of reiraction
nf at points betweena camera and celestial object,

C-9
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The integral in the expresaion for As to conveniently evaluated

using Gauss' method of approximate quadraturem, which states

that£( d~ () .

i-o J i

For p w 8, the values in the summation are

K x

0 0.04063719418 0.0159198801

1 0*09032408035 0.0819844462
2 0.1303053482 0.1933142838

3 0.1561735385 0.3378732882

4 0.1861196775 0.5000000000

5 0.1561735385 0.6621267117

6 0.1303053482 0,8066857164

7 0.09032408035 0.9180155337
8 0.04063719418 0.9840801198.

For each tabular value of X one computes

10
(1-bXj) [(1-bX1 )• {1+sj/ro)• - oOS• :_

Evaluation of f(X 1 ) requires a value for a

The value for sa Is obtained as follows:

Compute

n - no - x (no-1)

C-l1
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Let n fall between two successive entries in the index of re-

0 fraction profile as shown her..

n n

flo no

ml~l n+l

0 •

at 1,000 000 000

The entry so corresponds to the height of the camera,

The entry •t corresponds to the heig~ht of the celestial object.

The value of al J i obtained by logfarithmic Interpolation 'in the

following; procedure :

Compute 9 a

and then n I

Each of the valuom of M(j is then multiplied by the correspond-

ing• Kip, and the products are summed to obtain the value of the

integ~ral in the expression for Ae,

*±-I ±



It should be recognized that the index of rofraction profile

varies from color to color and hence the index should be chosen

after consideration of (1) the-spectral characteristic* of the

particular star, (2) film sensitivity to various colors and

(3) transmission characteristic@ of any filters used.

The index of refraction profile may be computed from a density

profile by means of the following standard formula:

n -I + .0000222 + 0, .00000000126

whero

p is the air density in grams per cubic meter

X in wavelength of light in microns.

C-i12



APPENDIX D

Conversion of Oeodetic Coordinates from One Datum to Another

Historically the parameters defining a geodetic datum consist of

latitude and longitude of an initial point (origin), an sazimuth

of a line (direction), equatorial radius and flattening of

associated spheroid, and the geoid separation at the origin. A

geodetic datum in properly oriented it the Laplace equation has

been satisfied at the datum origin and at all other Laplace

stations and it all other reductions have been made rigorously,

The datum origin serves as a reference for a network of geodetic
measurements over that particular vicinity of the earth's surface.

It Is somewhat more realistic and practical (though lose precise)
to define a datum in terms of the geodetic coordinates of this

network of stations associated with the datum, because theso

networks are used to establish the relationships between datums,

Clearly each datum has a directly calculable spheroid center

which can serve as the origin for a particular geocentric YFO*

coordinate myste--referred to in Table I simply as "origin of
coordinate system.' These various origins of coordinate systems

have no meaning in the absolute sense, but are always given in a

relative sense. The relative origins of the various coordinate

syntems are determined in a least squares process using a large

number of stations whose coordinates have been determined on two

or more of the various datums and are of course subject to some

error, The relative originn given in Table I are not defined
values or directly transformable from defined values, Properly

I Itoriented datums have geocentric rectangular coordinate systems

with respective axes parallel,

The more recent datums are based on world-wide satellite observa-
tione and the corresponding datum origins aro given simply am

"geocentric," Theme datums are extremely accurate and precise

and provide a means for dotermining the relationships among the

*Site V-Kur- -, p.15



older surface-reterenced datums. The sensitivity of the satellite

datums is such that there are indications (still somewhat incon-
,lu-ive) that the older geodetic datums are not perfectly oriented
but are slightly rotatod and/or tilted by about a second of arc.
These possible discrepancies are considered to apply to the
reference surface only and not to the reference spheroid. At this
time it seems somewhat premature to introduce those rotations and
tilts into the geodetic transformations and they will not be
further discussed in this report.

Table I is provided for illustrative purposes rather than for
reference. In a report of this nature It will not be practical

to maintain an updated table.

Some of the spheroids are defined by semimajor axis (a) and semi-
minor axis (b), while others are defined by memimajor axis (a)'

and flattening (f). Some computer programs require eccentricity
(e). Simple exact relationships between these parameters are

minor axis" is a synonym for polar radius.*

Table I includes a unified met of datum shifts, i.e.v EFO values

referenced to WGB-72, Many of theme shifts were published with

the WOB-72 model. The remaining shifts have been related to
WOS-72 by a common published NAD-27 tie point. These shifts do
not enjoy official status at AFETR; however, they are accurate,

1• *Not to be confused with polar radius of curvature, which in equal
/b).b
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Seliminate considerable ambiguity and provide a definite numerical

value in many instances where no official shift oxists.

The WGS-72 sphorold and accompanying shifts are identical to the
NJL-10F. The International spheroid in also known as the Hayford,

Now consider the basic problem of transforming from geodetic
latitude (*), longitude (y) and height (h) on one datum to the

corresponding coordinates on an4ther datum, or:

Oiven (s, y, h) 1 representing a point on datum

No. I, what ,.s (g yp, h) 2 representing the same

Point on datum No, 2?

The standard solution to this problem uses the short or long
version of Molodenskiy's formula. This formula is presented in

any textbook of geodesy. It has the advantage of providing

S satisfactory accuracy without necessity of 1ýandling numbers with
many digits. With present electronic computers and long word
lengths this advantage has disappeared, A more convenient and
potentially more precise transformation is currently in use at

ETR:

Transform from (o, y, h)1 to (E, 1", G)1 using

Equation 31. Translate from (E, F, G) 1

(E F, G)2 using increments from Tablu 1,
Transform from (E, F, 0)2 to (0, yj, h) 2 using

Equations 38, 39, 40, 41,

As an example, transform from (28', 280, 30 m) on NAD-27 to
Mercury-nU. The EFO coordinates on the first datum are re-
spectively. +918655.76 m, -555023i2.0n, m, and +2976353.57 m.

From Table I the geocentric origin of Mercury-80 relative to that
of NAD-17 is (.3, -1]11, -225). Thorefore, the EFG coordinates of
thth point on Mercury-60 art) rospoctively: +978658.76 m,

"-5550121.62 m, nnd +1916578.57 m. Those trnnsform to 28,000455°,

280.000216, and 2/.02 m.

D-3
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APPENDIX E

0i Geoid Height Computations

For locations one or referenced to, the surface of the ocean it
is sometimes desirable to 'oalculate the geoid*l height from the
expression for the geopotential and its associated spheroid. This
is possible because the free ocean surface is an equipotentiai,
surface defining the geoid, The accuracy of the computation is of
the order of ton meters and hence tidal effects are negligible.
The accuracy is limited by the present knowledge of the geopo"ýential.

In 1961, the ZAU adopted a standard form for the general case of
the expression for the earth's external gravity potentials

n n .(1) U £+Z IP n0
r nu3. mxO (r)~Pm~~f

(C 005Co my + Sntsin my)]

where
r u ridius from center of coordinate system

4 a geocentric latitude

y a geographic longitude (Positive east of Greenwich)

Pran u associated Legendre functions

GM a geocentric gravitational constant of Earth

A a equatorial radius of spheroid

n, m a indices representing degree and order, respectively

Cp S a numerical coefficients experimentally measured.

Since the coofficients are obtained from satellite observations,
the center of coordinates is the dynamical center of mass of the

earth and the first degree harmaonics are zero. The mean surface

E - 1



of the free oceans is an equipotential surface (the geoid)

resulting from the gravitational and rotational pot•er.il (.

(2) Ws U + 44 2 r 2 Qo, 2

where v is earth fotation rate.

The geoid is approximated by an ellipsoid of revolution. The 4

potential for this ellipsoid is described by

A 2

(3) u* L I + C2  2 (in 4) + c 4 (si2 P2 + C4 P4

K

with an equipotential surface resulting from gravitational and

rotational potential represented by

2 22 o 2
(4) w* •u* r Ga•=•s• , 0•

The difference betwoen the gesid potential cad that of the refer-
once ellipsoid is

T W-W*

If H denotes the height of the $eoid above the ellipwoid, then

T a J/d H

where g is gravity. To a good approximation

HaT
go

where go is l•cal gravity at surface of apheroid.
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Tr

S• • * 3C, () n ) ÷ (sin ) + ]c
r, (

r c:' os2

For simplified computation and with only trivial error, r is sat

equal to a in the expression for T and also in the expression
for g. Then the Seoid height for-ula becomes (dropping the argu-
ment(sin #)in the Legendre expression to simplify notation):

a c~3 + ~ sl~ (Cr Cos my + S sinmy

I C + C2 P2 + 5C4 4 - (., a co )2__

The errors resulting from the approximations used in deriving
fomula for H are in general quito insignificant in comparison
with errors introduced into the H computation by the uncertain-
ties in the numerical coefficients.

If gravity is descrited by GM, C2 , C4 and point masses rmt, th'i-

_ _+ 

( r ) 2 )
a M • coo i

I A A
; ~~I + IC P2 + :jC P4 ( ao )2 a

2 2 P 4 (a coo *

where rI is geocentric distance of m

Cos - sin eL sin 1, + coo qi cos t cow ('y - y i )

wherv (d,, y) is latitude and longitude of point where we
ure computing :h

"NOT': (' Y is latitude and longitude of m,

NOTE: in, may be either positive or negative, and is expressed in
earth mass units.

•" i -3
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APPENDIX F

(PART A)

Sodano's Noniterative Solution of

The Inverse Geodetic Problem

(from GINRADA Research Note No. 11)

INTRODUCTZCIN

A geodeio, is defined as the curvo of minimum length between two
points on the surface of a spheroid. The problem is to compute
tho length S of the geodesic between two points P1 and P 2 on a
spheroid# the forward azimuth a,., of the geodesic at Plt and the
back azimuth a2 - 1 of the geodesic at P2@ Azimuth is measured
positively clockwise (eastward) from north. Longitude im measured
positively eastward from rmeridian of Groenwioh and latitude is
measured positively northward from equator.

Sodano s original algolithm is somewhat awkward and incompatible
with standard subroutines. Consequently, the algorithm presented
in this appen•dix represents a modification introduced by RCA Data
'roceasing. With 12-digit floating point computations the error
is less than a foot in geodesics of 6000 nauticol miles and lose
than a thousandth of a foot in a geode3ic of I autioal mile. Pil
angle errors are less than a hundredth of a second.

It is important that the aretan function used in the following
computations examine signs of numerator and denominator and locate

tho angle unambiguously in the proper quadrant.

COHP UTATXON FOR4

Input:

#1p y1 - Geodetic latitiude and longitude of Point P1

*. *21 Y2 w Geodetic latitude and longitude of Point P2
a, b - Semimajor and semiminor axes of spheroid

.... . . .. .. ... . " ..........



Campute I

f S 5ipheroidal flattening - b , b.-)

gal

I tan'l [(b sin c, o

mi- 01[ sin 02

B coos Cos c 2

cum A + 8 coos L

n - (i-b)/(i&b)

2 3 2 3("2- -1) - + 2 In+n +n3) -a (-n+n) sin (02-41) radians

sin 8 + ([sin L oo0 2]

"+ [ain (21) + 2 Cos 02 sin 0, sin2 (L/2)J3 1/2

8 - tan" (sin 6/rox 6) evaluated in positive radians 4 w

a a m ,in L/,i, 8

8 b ( ,,.,2 , 8 + A[ ,, .in 8 - ,,,/(2 sin )

[n/2] r(f+f2) a4 + sin a col 8) -f
2 6 2 /tana
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oY - [sin a Go$

*[t2mi2/i6] [a + fin a coo 6 -2 sin 6 co a 8 s 2 /tman ]

[ Am f2/2] [sin a 8 a 62/gin 6 in am..s units

i and b

X L , + ( +2] [ [A f2/2] [sin a + 262/sin 6]

+ [lin 6 co0 6 - 56 + 4 /adians

mtan 1 ([cce 82 fin X1/ [sin (Ba-01)

+ 2 aco sil *1 sin2 (X/2)])2[ ]/
2.1 tan coo 01 sin x 2 Cos 01 sin 02 *In n X/2)

- sin (02 - 01)
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- (PART B)

Sodano's Noniterative Solution Of, AJ
fbe''Oreet Geodetic Probklem

(Prsm, GZMRADA ilesearch Note N4o. 11)

ZNTRODUCTZCN

The latitude and longitude of a point Pl. the length of a geodesic,

and the forward azimuth determine the latitude and longitude of

of the point P2 and the back azimuth. Sign conventions and defi-

nitins are the same as given in Introduction to Part A of this

appendix. This algorithm also represents a modification intro-

duced by RCA Data Processing. The accuracy is equivalent to the

algorithm previously given for the inverse method, The special

requirement for the arctan function exists hare also.

COM4PUTATION F08M

Inputt

*•Yl, • * Geodetic latitude and longitude of point P-

S *Length of geodesic

a- Forward azimuth

&, b , Semimajor and semimincr axes of spheroid

Compute:

f - Spheroid flattening 1 -

¢2 , Second eccentricity squared , (a 2 -b2)/b 2

0 S l/b radians

1 taný' [(b sin Cos0-

V-4



q- cosr coo *i g

h oos 1 sin 412 j.::

2 2[
.- + (c2/2) .si 1 n2 *I] [. h2]/2

L- h [- S e 3fn sin B + 3f2m (O - sin S coo G)/a] radians

a Cm2

"- N ~n n 42',

4 - -Nsin o + (M/2) (sin o coo s-O)

+ (5/2) N2 gin O Cos O

+ (M2/16) (11 O - 13 sin ooS 9O- 8 S 82

+ 10 in Ocos03 0) + (M1/2) (3 sin 0

+ 2 O cosO- S5 in O 0062 0) radians

sin 02 Oin 1 cooa 4+ g Sin4

co. 02 + [h2 + (q Com 6 sin 01 min 6)2
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* txil inco * Co

si 0M *'ali 6 osn Coo1-co2

Y2  yl X + L

*- tan" !, h/Csin 01 sin i coo 6)1

1-
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(PART C)
Test Cue

a *6378388.00000 b b 635691lo94600 m

20 0 a O • + 45 *

""'J Y2 + 1060

6.2 a42.941.67640310 2.1 - 295.2864999700

5 * 9649412.50618 a

0

ji
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APPENDIX G

KALMAN. O0 and aI~j FILTERS

160 KALMAN FILTER

Conventional least-squares differential correction (Appendix 8)

ism,enerally used in batch data processing. In applications
where statistical estimations are required only after a batch of

observations has accumulated, this process is considered to be

more efficient than the Kalman filter process. When a new

statistical estimation of the parameters in required after each

observation, then the Kalman filter process is usually more

efficient, The two methods in general are equivalent in accuracy,

It is not the purpose of this appendix to compare these processes

further,

The basic Kalman filter process is represented by the following

five equations, which constitute a single ur.'ite:

SiTj iJ

A ,T T T ^ TT

Ki = P l (ki Mk [Mk *ki PikiT Mk Rkj

1i _ Xi + ti [Yk - Mk (ki Xl

A A A

SWi ) 1 W Ki Mk Oki Pi - (I - Ki Mk Oki) PI

where

i represents the known epoch of the state vector

which in being estimated in present update,

represents the known epoch of the state vector
which was estimated in the update just prior to
present update,

k represents the ti,.;,o of the most recent observation,

X is state vector,
nxl

G-1



is Fi matrix of partial dorivativeH of the state
vector components at time i with respect to staten~xn vector componentit at time J and is called a stnte
transition matrix,

4) is a matrix of partial derivatives of the "tnte
vector components at time k with respect to statenxn veoto' components at time I and is called a state
trans*tlon matrix,

P Is oovariance matrix of the state vector,
nxn

O is the matrix of partial derivatives of the state
nxs vector components with respect to the unadjusted

parameters,

Q is oovarianue matrix of unadjusted parameters,
sxc

Y is vector of observations,
mxl

14 Is the matrix of partial derivatives of the
mxn observation components with respect to the state

vector components,

R is the covarianoe matrix of the observations Y,
mxm

K is the Kalman filter,

nxm

n is number of elements (components) in state vector,

S in number of elements (components) in vector of
unadjusted parameters,

m is number of elements (components) in an
observation,

(^) represents a preliminary estimate based upon a
series of all prior observations not Including the
most recent observation,

(-.) represents a final estimate based upon the com-
bination of the preliminary estimate and the most
recent observation,

T represents an identity matrix.
nxn

a-2
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PhIe I only partial derivrtive matrices which represent a transition

over time are the $ matrices, In the formalism just presented

i, j and k are kept distinct. Normally two of these will be

coincident. Vor example, in an ond-point filter application i
nnf( k inorement at each update but they remnin coinoidontl nid

J - i-i x k-a. In an earth-to-moon trajectory the equations just

presented may be used to compute a series of continually improving

vectorq having a fixed common epoch previously selected for a

midcourse maneuver. In this latter case I will be constant and

oqunl to jj and k will be a variable represonting times earlier

than i I t. l. should also be pointed out that in the actual

application of the filter equations, all of the matrices shown in

the algorithm here may not be explicitly doveloped, It may, for

example, be preferable to compute a single matrix which repre8ents

a combination of two shown in this algorithm. Some sort of equt-

tioris of motion (or equivalent) with starting conditions tre

aaenumed und needed in connection with the algorithm just. presented,

( To 1a:lutrato the application, a simple one-dimensional nitmericU3

.xAmple wi1l be given of' an end-point filter. Let the equation o)f

motion be
I 1 ** . *to

x x1 + x3  t+ x (At) + C x. (At)

whore

i - J + I = k, and

At - time interval between observationn.

. *. T
The state vector is X - Fx, x, x I . The observation vector- Is

Y F] *ki reduces to an identity matrix. The coefficient in

tho loot term on the right-hand side of' the equation of motion is

defined to be a random variable with zero mean. Time units will

b. dfirn(,4 euch that At is unity. This definition is always

pois1.ble if observations are taken at equal time Intervaln. In

tht dincul 31on whi;h follows, the letter (c) located at the lower

vii-iqt-hrind corner of ;* matrix indicate, thati it It conntant over,

. .I time points.
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The Pollowing numerical values are given:

1.0600 007
0.4400 a 0 0.0030 0

0.0550 0 0 0.0001

Q " 0.00003610 R k (0.01]Oa Yk " 1.42731

We now evaluate the following matrioes of partial derivatives:

o0.000001 0.000003 0.00000C
IiiQ j a1  0 T 0.000003 0.000009 0.0000•8

L0.000006  0.000018 0.000036J

SI "1 f- 0

0 2 1c 01
S0 1J0 o 1

)Mk 1 0J O e

FolJowing through the Kiman algorithm, we obtain:

0.0550-

0.010019 0I003037 o.oooo.4"
Pi 0.003037 0.0030o 1 0.000062

o00oo034 0.00oo6o o.oooo4
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K L0.1l370588
0.00169839)

0.0548301

[i 0.005005 0.00JC610 0.0000)7
0.0500 0.03('17 0.000037)1

151 0.002537 0.002610 0.000057
0.000037 0.000057 00001t

T1111 nomploten one pass through the algorithm and the estimatlon

of' ti vector tind coveriance matrix for one particular point. We

are now ready to accept n new observation for a time point (At)

Inter, arid compute a vector and covarianoe matrix at this new time

point, arid so on.

,ome Ing•,enuit;y must sometimeýi he emp'loyed to arrive at the state
tyraRuvitlon matrix I, s l.a a deterministic nnd knroin relationship

anid oan, ½r Print, be a numerical Integration ,•tep, As another

:opnoirl.n examp)e, In a two-body force field i•gi'ange's f and fr

M(:-'Te-0 mrw.y bh •iied over d.istninoes that are not too :large. The

P tnnd g iserien fre very practioal End vereat.i le iboole frequently

used In autrodynamion. In special app.icationn t:'ven the akipher-

toril •art;h, iitmospherio drag tnd the influ••ne of other bodien

Pan be approxinatcly Locounted P'or in the f and g series. A 1o EI-

in sormn instances one can use a closed form in place of the

Inl'rilnito n,.r,'e• To illuptrite the basic form of the f and g
r'itC•,, o.quations win' be giver, ror a satellite traveling oiitside

ItHi htmosph•ro around a nphorri(.aJ narth, Canonical unItt

*(A\ppendix 0) will he used. Ren arnijuIar eoowd•it••tel are expressed

ii, ,i meocentric inerlftial i• yztLem. The nqumtlo•is of motion are
nirripi y •5i



p• •.. . .. ... .... •..~...... . • • -dmm iI mJmN m 4 u

r O 
i"

1 0 0 0

where the underline Indicates a vector, r is poaition vector, r

is velocity vector, the zero subscript indicates epoch conditionsa

the non-subscripted vectors represent vectors at some time t

distant from epoch. The first few terms in the f and g series are

I I i-ut 2 4.1upt + 1(3 uq- 15 UP + u2) t 4

+ 'R (7 up3 - cpq - uP p) J +

g t O+IUt 1 u 11 3P + u2 t5+

wihere is IN,v m 1/ro0

p • • . •!i
(I v (VO2 -ro 2 u)/ro2

where r 0 Is tho magnitude of the position vector at epoch ,.nd V0
i'1 the magnitude of the velocity vector at epooh. In obtaining

0and ý by tnking derivati.ves of f and g,, remember th|at u, ri nd

q Nre oonstant,.

Av tnother npeocfti example in two-body mechanics, reforence Is

mAd. to Page 62 of this report.

In precise ovbital applications employing fil t-he known perturbn-

tioxis, the Kalmann fi:ltore operates quite wAt:tari'actor'ily in concert

with the Encke prediction techniques,
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2.U THE ac. FiLTER

SThe 0 filter is a simplified version of the Kalman filter, When
covarlances between the observation channels are negligible, the
c* filter can be mathematically equivalent to the Kalman filter.
As general rulias of thumb, thA r'P filter Is inferior to Kalman in

noise reduction, superior li': maneuver-following capability, re-
quires about one-fortieth of the computer processing time needed
by Kalman and requirees much leou computer utorage.

Rquations for computAng a smooth l0no through the observations

from a single channel may be written:

X + n (Xn'xnl; position end-point estimaten ~ nop +n nm n,p

7 nXn = Xnop + I (Xn-Xnop velocity entimate

Xn~lp ' xn + T Xn ; predicted positionU
x n+01) " xn ;predicted velocity

where

Xn is measured position at n th time point

thx is predicted position for n time pointl•,p)

Xnp is predicted velocity for nth time point

T is time interval between samples

is the position damping factor for n th pointn

is the vulocity damping factor for n point

n is the number of the measurement, the first
measurement being X1 .

(-7
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Initiation of the aV4 filter requires the prior acquisition of X1

and X2 .

The factors and P.S dorsally lie between tero an~&d unity for

obvious reasons. For least squares smoothing with an nO filter,

Sand
nC

n(n+l)

In practice these two ae:vttttons are used for computing a and Pn
tor 1 4 n 4 15 Forn ) 15, On is fixed at 0.242, and P n i

fixed at 0.025; otherwise the late observation, tend to be

Ignored.

I The simplest type of 013 filter is one in which n. and P are fixed

constants. For ramp type maneuvors it can be shown that optimally

n and • (fixed) are related as follows:

2

2-a

3.0 THEa cP7 FILTER

The C4f concept may be extended to an CAPy filter:

X + a (X lXp); position end-point estimato

nn,p ni 11 nop

SXnp + I. nmXnp); velocity estimate

X X + "I (Xn-Xnp); acceleration ostimato

- 2

X + TX + r ; predicted position
n+l,p n n TX

in+*,p . Xn + T Xn ; predicted velocity

Xn+l,p " Xn ; predicted acceleration

G-8
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w he re
'0 ..

Xhop Is predicted acceleration for nth time point,
h~th

"•n Is acceleration dampingi factor for nth point,

and othor symbols aro defined in the (91 algorithm.

Initiation of the aiy filter requires the prior acquisition of

X1 1 X2 and X3 ,

The OPy filter is supeG,.ior to the QP filter in manuever-following

capability but obviously requires more computer storage and

processing time. The Ot Coe' a00y) filter is readily applicable to

adaptive filtering, where the xumerical values for the damping

factors vary as a function of cortain specialixed conditions. It
is also possible to substitute more sophisticated equations of
motion for the aimple prediction equations shown in this dis-

C) cuassion,

Noto:

To i.nitianize the a*t filter as':ming prior acquisition of X1 , X2:

x? (x2-Xl)/T

To initinliz( the a'y filter assuming prior acquisition of X1 , X, X9 :

T1'3 =X3

X'1 (x ( "X,I-;)/T

x., .. (M -U,2 + X I)/T!'

G-9
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APPENDIX H
POLAR MOTION

Polar motion is a displacement of the Earth's crust with respect to the spin
axis. It is thus distinct from precession and nutation which describe the
motion of the spin axis in inertial space. The International Polar Motion
Service (IPMS) observes and issues data on the polar motion. The effect is
15 meters or less with respect to the mean pole of 1903.0. Since present
survey methods from satellites are somewhat better than 15 meters, it is
desirable to refer all survey data to the mean pole of 1903.0 for comparison
and standardization. In actual application the standard survey can be
transformed to latitude and longitude of date.

The coordinate system used to describe polar motion is a rectangular grid
(XY) centered on the mean pole of 1903.O0 The X-Y plane Is tangent to the
earth at the north pole, with the +X along the Greenwich meridian, and +Y
along the 90 west longitude meridian.

If thenorth latitude and east longitude of a point related to the standard
system are # and ys respectively and the instantaneous latitude and
longitude of the same point as affected by polar motion are #I and yt, then
the following simple transformations apply:

SYi" YS + tan o (X sin y + Y cos y)

" + X cos y. VY sin y

where the unsubscrlpted 4's and y's may be either standard or Instantaneous
with no loss in accuracy.

Azimuth measurements (a) as made from a point located at position (0,y) are
also affected by polar motion as follows:

81 * as + sac f (X sin y + Y cos y)

where a is measured positively In a direction eastward from north in a local
horizontal plan,.

The IPMS values of X and Y are correct to the order of 0.5 meter. Changes
of almost 5 mreters in a month may be observed in X and/or Y. Monthly
bulletins are issued by IPMS giving current data. At present there is m,o
reliable prediction service ,rom IPMS or other sources valid for more th•n
two weeks. IPMS actually supplies X and Y in terms of seconds of goocen'%',
great circle arc and these values may be substituted directly into equations
rur vi, *t and a1.

'Premvntly called the Conventional International Origin (CIO).
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To Illustrate thtD application, let (xy,ya) designate the inertial,right-handed, rectangular$ geocentric, equatorial coordinates ofa point In a system defined by mean equator and equinox of epochand CIO where the ,a axis extends positively northward along the0spin axis, and the xaxis extends positively toward the vernal
*quinox. Let (3,1,0) designate the earth-fixed, right-handed,
rectangularo geooeetria, equatorial coordinates of a point in a*ystem defined by equator of date as af feoted by pole wander,
where the 0 axis e~ttspositively northward along the spin axis,
and the I axis oztendj positively toward the meridian ofGreenwich. Then

wghere P transformis from mean equator and equinox of epoch to moan
equator and equinox of date (3q. 77); N transforms from mean"euator and equinox of date to true equator and equinox of date(~.71); 8 transforms from inertial systqm to earth-fixed systemdefined by CIO (Sq, 42); D transforms from CIO to pole of date.
P and N have bequ explicitly presented. 0 in implicitly given in
Equation 42.

Ga 'oYT *insinYT 0

iYT~ coos 0IT

whpr* y Is tregeodetic east longitude of vernal equinox of date

Il0 X
D. 0 1 MYJ

where X and Y have been defined In this appendix and must be ex-pressed here In radian units.
The transformation Illustrated here is numerically simpler thanthe use of the equation previously given In this appendix for yand $I. Earth-fixed site locations are normally maintained In
the rectangular or polar coordinates consistent with CI0.

H=2



APPENDIX I

VEHICLE-OENTERED OOORDIWATE SYSTEMS

1. PY COORDfIN~ATE SYSTEM

Reentering mimmiles are subject to large aerodynamic forces.
It Im customary in aerodynamics to resolve these forces into
components parallel to and perpendicular to the local velocity
vector. The force component parallel to the velocity vector is
usually identified with drag. The force component perpendicu-
lar to the local velocity vector in known by many names, one of
which is lift, Lift has two components: one along a coordi-
nate in the trajectory plane and the other along a coordinate
perpendicular to the trajectory plane. In the analysis of
reentry trajectories it tI convenient to have the residuals
expressed in a coordinate system consistent with these forces.

Le t

VI represent the earth fixed unit relative velocity
vector in computed trajectory at some time t.

represeant a unit vector from missile directed toward
the center of the earth.

Define

_T V1 identified with a unit vector dirJcted along
the trajectory at time t.

1 JXIV 1  Identified with a unit vector perpendicular to
plane ot trajectory, or more precisely, unitFix T vector opposite to angular momentum vector at
time t.

p I yl X V1 identified with a unit vector iai plane of tra-
jectory, perpendicular to velocity vector and
in practical cases with an upward component at
time t.

L7et (E, F, 0) represent the usual right handed rectangular earth
fixed geocentric coordinate system with E and F in equatorial
prane, E through Greenwich meridian, F through longitude 90'
east, und G polar.

i*ela,.ie to thu local atmosphere, i.e., corrected for wind.

`_AL



Then if V and J are expressed in the EFG system:

p has components P., pi, p 1
1 y1 1l

IF has components Ye I 1
0' f'

Ti has components TI T1  TI
0' f g

Theme components represent direction cosines of the unit vectors
in the ViPG coordinate system. Consequently, the residuals at
any time t may be transformed from the EP1 system to the PYT
system am follows:

1 PI p I p 1 Eo c

1 p1  P, 1-

Te f o " PC

6 f C

where subscript (o) refers to the observed quantity anld sub-
script (a) refers to the computed quantity. In practice the
residuals are not usually computed in the EPG system but in some
tracking system coordinates, In that case a standard transfor-
mation must be made ahead of the one indicated.

I-2
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2. HOL COORDINATE SYSTEM

This coordinate system is moving in inertial space and has its origin

at the instantaneous position of the satellite In the computed or

reference orbit. The H coordinate extend@ outward from the origin

along an extension of the roeerence radius vector, which originates

at the mass center of the earth and terminates at the origin. The

cross track coordinate C is measured in the direction of the vector

cross product of reference satellite inertial valocity vector and the

reference radius vector. Thus the direction of C is opposite to the

angular momentum vector. The L coordinate is directed so as to make

the HCL a right handed orthogonal coordinate system. Thus L has

precisely the direction of the reference inertial velocit. vector if

the orbit happens to be circular. Note that the HCL coordinates of

an actual satellite position represent the differences in the positions

of the actual and reference satellites in the sense (actdal - reference).

The coordinate transformations are as follows. Assume that the

coordinates of test object and the position and velocity components

of reference object are known at some time t in a geocentric inertial

rectangular right handed coordinate system with X and Y axes in

equatorial plane and Z northward. The longitude of ascending node

is measured from X axis. The X axis may for example be directed

through vernal equinox or perhaps through meridikn of Greenwich at

t - 0. The final HCL coordinates are independent of this choice of

direction,

Let

(Xt,Yt,Zt) - inertial position coordinates of test object
at some time t

(X,Y,Z) - inertial position coordinates of reference
object at time t

(XYZ) inertial velocity coordinates of reference
object at time t

u - argument of the latitude of reference
object at time t

-:-5



j ~i Inclination angle of reference object at
time t

0 Longitude of ascending nods of reference

orbit at time t

C1 .a 5 I

h C (2 + C. +C21/

R (a + Y2 +

*Ln L 1 2

C3
cant

I f sini L 0p met xiA 61 .0 and cooA 0 1

if sin i pi O

sina .
h sin i

Co a -0C

h sin i

Then

sin u a [Eoos L(X sin 9 + Y coo 2) + I sin iJ /R

coom 0 Ex coo A + y sin II/
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The preceding development uses classical orbital elements in the
final formulation. In many applications it may be preferable to
use position and velocity components.

Let:

Lt represent Inertial velocity in computed trajectory

at some time t.

a represent position vector in computed trajectory at
some time t.

H - - represent the unit vector directed along _.

1 represent the unit vector perpendicular to plane of

"- " computed trajectory, or more precisely, unit vectorx ,opposite to computed angular momentum vector at

time t.

II
* * Hlx C1 represent the unit vector in plane of computed tra-

Jectory, perpendicular to position vector and lying
generally along the velocity vector but usually with
some angular separation from the velocity vector.

Then

J - 4c

weesubscripts X,, Y, Z are used to denote componentw along
X, Y, 7 axes.

Note: The symbol I which oncloses a vectar and a vector crossScros
product in the, denominator of two ol the equations abov"
ropresents tho positive square root of the sum of tho

squnres of the coofficionts of the orthogonal unit vectors.
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0 TIMN ERROR

Having the HCL coordinates, It is a miuple stop to obtain the
oorresponding time irror in a oMpUted sesllit positiuon*

a -min" 1

h R

a-

nI

©I

I
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APPDI)J X J

0 TIMM T-RM4BFDRMATIONB

In this section, time units will be specified where they are
important. In general, sidereal time will always be expressed
in sidereal time units. Universal time will always be expressed

in mean solar time units with the exception of UTC, which is
oxpreseod in atomic time units. Ephemeris *nd atomic times will

be expressed in their respective time units.

It should be emphasized that all equations giving the time in
one system corresponding to the time In another system assume the

same instant of time in both systems. This instant is called

epoch. The day In which epoch occurs is called epoch day.

A. Sidereal Time

Sidereal time is the basis for all time systems which depend upon
earth rotation to define the time intervals. Apparent sidereal
time is determined by the rotation of the earth relative to the
stars and is defined as the hour angle of the vernal equinox,
reckoned along the celestial equator westward from the
Inotantaneous local celestial meridian to the hour circle
through the celestial pole and the true equinox at the instant.

Thum a star transits the meridian at a sidereal time equal to
its right ascension. In conformity with its definition, local
sidereal timo is determined directly from star observations
using a zenith tube. Sidereal time referenced to the true
equinox of date is called apparent sidereal time. Sidereal time
referenced to the mean equinox of date is called mean sidereal
time. The relationship between them in

Moan Sidereal Time a Apparent Sidereal Time - Equation
of Equinoxes

The equation of the uquinoxes is defined &N the right aiscunion
el' th, moan equinox referred to the true equator and equinox.
'lhim crin be computed from equations given in Soction IX of ttiet

J-1
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report or obtained from tables in the American Ephemeris.

Greenwich sideroal time (GOT) is related to local sidereal time

(LST) am follows:

GOT (seconds) w LBT (seconds) + (1/15) (Local West
Longitude in are seconds)

One day should be subtracted if necesary to maintain
0 S GOT 4 1 day.

This same relationship applies for either apparent or mean

sidereal time, although generally the apparent time is changed

to mean time immediately. In the preceding equation the units

could just as well be (minutes and arc minutes) or (hours and

degrees).

Thu right ascensions of stars are given by fundamental star

catalogs. By decision of the International Asteonomical Union

in 1961 the FKI- catalog is designated for sidereal time

obsorvations. Sidoreal time is not a uniform timc scale because

it is tied directly to the variablo rotation rate of the earth.

The sidereal second is defined as the ( 1 /8 6 4 0 0 )th part of the

time interval between two succoasive transits of the mean vernal

equinox on the international meridian. The sidereal day has

86400 sidereal seconds. The sidereal month in the true period

of revolution of the moon about the earth with respect to

inortial space, not with respect to vernal equinox of date.

The sideoal month is approximately 27.396465 sidereal days.

The sidereal year is defined as the period of one complete

revolution of the earth about the sun with respect to inertial

space. The midereal year is approximately 366.256399 sidereal

days. Sidereal time can be determined to an accuracy of about

2 millisoconds,
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C. Universal Time (UTI)
Refer to Appendix H of this report for discussion of Polar

Motion. X and Y supplied by IPMS may be substituted Into the

following equation to obtain UTlt

TnI.T.. UTO - (2/15)(x sin W 4- Y cos 7) tan ,

where W J.s east longitude from Oreenwiohj 0 is north latitude,
If X and Y are in are seconds, then the second term on the

right Is in seconds of time. Typically, U'T3 and ft1) differ by

loss than 30 milliseconds. The above equation catn of course

also be used to solve for UTO if UTl is known.

D. UnIversa2 Time.... (UT2)

TIT2 in obtained by making seasonal earth rotation rate correc-
tions to UTI,

UTP.. w TI + a sin 2 irt + b coo '.' t + a sin 4 wt + d coo 4• Yt

whore t is fraction of tropical year from beginning of Bessellan
year and (a, bpa,, d) are empirical constants Isaued by Wureau •

International de IHeure (BIH) in Paris under direction of

International Astronomical Union.

For the period 1962-68 these were:

a b c d

+.022 -. 012 -!00 +.007

The seasonal variation between UT2 and UTI is ± 30 milliseconds.

TJ;T is ntill subject to some long period variation plus secular

variation. However, it is oloser to uniform time than any other
systcm based on earth rotation. The equation above can, of
nourseo, also be used to solve for UTI if UT2 is known. The
ar,'uments (P rt and 4 rt) in the equation above are in radians,

j.



E. tcTime (AT)

This system depends upon the atomic resonance corresponding to transition

between the two hyperfine levels of the ground state of cesium 133. The

frequency has been measured to be 9192631770 Hs per ephemeris second,

Al is the system operated by the U.S. Naval Observatory. NBS-A Is the system

maintained by the US Bureau of Standards, International atomic time (IAT) is

maintained by Bureau International de I'Moure (BIN) In Paris, France.

The various atomic time systems have different epochs. The most prestigious

system in this country is Al. The epoch for Al Is 0h Om O UY2 on January 10
1958, at which instant Al was Oh 0m 0 $.

Atomic time is very close to uniform time. It is slightly affected by local

ognsetic fields and by relativity perturbations,

F. Cogrdinate Time

4%) Coordinate time is atomic time with added periodic relativistic corrections
for diumal and orbital positions of the clock site. The orbital correction

Is about a thousand times that of the diurnal correction. The total correc-

tion over the complete period of a year falls between + 2 milliseconds. The

expression for the correction is

at al ,658 x 1003 [sin E, + 0.0368] 4

+ 2!03 x 10"6 cos [sin (UT+ x) -sin A3

+ sm&ller terms

whoee
o eccentric anomaly of the sun

UT * universal time

$,A latitude and east longitude of clock,
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G. Cphmnsris Tim. (ET)

This time system is independent of earth rotation. It is a gravitationtl sv-,tem
based ont the geometric lonp'itude of the sun-epecifickily Newcomb's Tables of)
the Sun. It is theoretically a strictly uniform measure of time in the Newtonian
sense, Logically, sphemewts time could be determined from the relative orbi'tal
mo~tionl of ary of the heavenly bodies; and to obtain maximuim precision it is I
usually deesrmirad fromi the mction of the moon as described by Br~om's lunar
theory, Ephisamris time deduced from the compar'ison of observations with the
lunar epheimerides j*0, 0 1 and j*2 (reference mrnbers specified in the
Ieccnmandations of the International Astronomnical Ommflision 49 Pro"u, 1967) is
denoted by M1, Mf and E12, respectively, where the suffims U, 1, 2 veflect

'17,diffavvnoes in Wotean of astrorndomal constants and not differences in defini.
tion. EM~ is official for Yeam 1950 - 19671 M~T for Yoar 1968 - 1971; LM? for

* 1972 onwards; but any of the three may be projected outside its official regital
p ~~using in~formnation in the American Ephemeris, Differences amo~ng £1, 1T1 and LM2

at corresponding Universal tiime are generally loes thain 300 mi.1liueconds an
the precisilon of each is of the order of 100 milliseconda. At the present time

* ~when a suffix is rot used with ET, then E12 is implied. The following simple
* rvlation holds i

C1T v UT2 +AT

AT is given in the American Ephemeris and in presently of the order of 43 seconds.
* Sceutinus a subscript (0, 1, 2) in attached to AT to indicate that when added to

MV one obtains LID0, ET1, E77, respectivelys Also as a matter of practical con-
verdunoe AT is sometimess tabulated si~ch that when added to UMl ons obtains ET.

The standard epoch of ophomeris tins is 1900 January 0Oh ET, The instant to
which this designation is assigned is near the beginning of calendar year 1900
when the geometric mean longitude of the sun referred to mean equinox of dite was
precisei~v 2790 41' 48104. The primary unit of ephemeris tine is the lenp'th of
toe tropical century A*t the standard epoch. This ephemeris sevynd is
(i/M15692b.9747) part of the priuary unit and almo~st identival to the mean solar
sGeCOIKI (to better thAn 1 part in 10 8)G

Ephemeris tims is wiiformi within the :.into set by the theory and constants used
in its determination. Amemehnt with atomic tine is gr~ode If we compare ET with
thu function (321. lb + Al) over a ton year interval we obtain an average dis-
agruuirunt of only 10 mlllisecc'nds with no discernible tretnds or~ periodic varla-
tionui Since CT is not known accurately for several years after the fact, It ii;
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ownveIient to estimate it from

AWL ET 32h.l+ A1

ar alterrtively from

ET 3218 + I AT.

Ephenris tine afoeed with Universid Time at naw instant around 1903, and the
ephuirnis day is approximately the average of the mean solar days d~*in• the

nineteenth century.

ii, , (UT (Coordinated Universal Time)

hi1s is the tim aystemnin use at AF . UM and AT have a mthematioally de-
fined relatioship between the They a* equivalent pieces of information.
The time unit in each is the in1emrna=onal atmio second. Tim expressed as

AT (BIO) and tin eMmqsd as LTC (BIH) daffer by an integral runber of
international atomic seconds. This differ'ence is adjusuble by plus or minus
on second at the exact beginning of each calendar month in order -ýo insire

that the dis"aemant between L't and UL2 will not exceed 0.7 seconds. This

adjustimnt will normlly take place no oftener than once every eight or ten

months and will be anounced eight wvee in advance.

7ime Semvioo Publications Series 7 and Il, published by the U. S. Naval
Oiservatory (USNO), and BIM circLlar D (USNO Series 15) provide information for

oiwortrng UTC to UTI, Ubt, Al, LAT, and ET. Thib information is availahle
weokly and projects ahead twi weeke. Aloe provided uvc mnured and two week)

oxtrapolation of the instAtAxwous pole.

Infornmtion in thue bulletins can be used to coutoe the inatantaneouV angular
velocity of the earth. Time Service Bulletin Series 7 provides a current
numrical vclue for

aiJd al:wo th: tim derivative of DUTI which here will be deip•rated by

4', With this dimunsionless constant then the inertial angular velocity of earth
over period w.vered by the bulletin is (in units of radians per interrntional

atomic evoond):

W .0000729211514667 (1 +V )
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The corresponding angular velocity of the earth relative to mean vernal II

equinox is (in units of radians per international atomic second):

wT • (.0000729211585468 + .428 x 10' 14T) (1 + fl)

where T Is the number of Julian centuries of 36525 U.i. days elapsed sinco
noon UT on January 0. 1900.

Present day precision orbit work takes account of this variable rotation
rate.

I. Solar Tirm

The definition of Greenwich mean solar time is not identical with the
definition of Universal Time (UT2), However in practice no distinction is 2
mude numerically; and Greenwich mean solar time, or simply Greenwich mean
time, or simply GtT, it set equal to UT2. The following relationship applies
etween GMT and local mean solar time (LMT).

GMT (secs) * LMT (secs) + Local W. Long. (arc secs)
15

In this equation the units could just as well be (minutes and arc minutes)
or (hours and degrees). The letter S is nevor used to abbreviate solar since
it is already used to represent sidereal. Mean solar time differs from
apparent solar time by the "Equation of Time". -

Mean solar time - apparent solar tinot - Equation of Time

The Equation of Time is no l',nger included in the American Ephemeris but
is listed in the Nautical Almanac.
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J. Zone Time (ZT)

The world is divided into twenty-four zones esch having a width of 160 (one

hour) of longitude, in each of which the same standard time Is kept.I
(Sometimes the border of a zone is slightly modified to make it correspond to
certain geographic boundaries.) The meridian of Greenwich is taken as the
center of the system and of Zone 0. Zones eastward from Greenwich are

numbered aZ - -1, -2, etc., progressively and those to the west, aZ " +1, +2,

etc.• according to the number of hours to be added to ZT to obtain UT.
Thus

UT a ZT + AZ

where 4Z Is called the zonal correction or xonal description. The twelfth

zone is divided Into two parts by the date line, that to the west being
AZ a +12 and that to the eastA AZ a -12. When crossing the line on a westerly
course, the date must be advanced one day.

In the center of each zone is a standard meridian. The zone time corresponds
to the mean solar time at that meridian, For example, in the Eastern Zone
(AZ a +5) the standard meridian is 750 ..wst longitude.

In practtce, zone time is usuially regulated according to UTC.

K. Julian Dates
The system of Julian day numbers is a continuous sequential numbering of days

from an epoch so remote that all astronomical events oF historical record
will be assigned positive Julian dates. The epoch of the Julian cycle is

4,713 BC, January 1, Greenwich mean noon on the julian proleptic calendar, at

which time the Julian date was exactly zero.

*VJuln Oats (JD0 is measured in days of UT. Julian Ephemeris Date (JED) is

me,ýsae(; in Jays of ET, Either date is specifiek' by the day number followed

by th, Oc(.47", portion of a day elapsed since 12h UT or ET. A table of day

numbers !q given ir. the American Ephemeris, (JD) and (JED) are related by
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JED -JD + AT

where AT has heen previously discussed on Page J-6 and liere nust be supplied

in fractional days.

There is a rtiodif ed Juliai Date (anathema to most astronomers) defined by

MUD - JD- 2400000.5.

L. Besselian Date

The fBesselian year begins at the Instant of time at which the right asrension

of Newcomb's fictitious mean sun, affected by aberration and referred to tihe

mean equinox of date is precisely 18h 40m. This Instant, designated by the

notation (.0) after the year (e.g., 1950.0) always falls near the beglinning

of the Gregorian calendar year. 1900.0 Is the basic epoch, which corresponds

to ZED 2415020,A1352 m 1900 January 0.81352 ET. The JED for the beginning of

any other '3esselian year may be computed from

JED (1900,0 + ') • JED (1900.0) + (365.24219879 -

0.856 x 10"8 1) -

where T Is integer years.

The length of the Blesselian year differs only a fraction of a second from the

lenfth of the tropical year. The length of any particular Bessellan year is

Besselian year a tropical year - 0s148 T

aihere T Is measured in tropical centuries from 1900.

Every usaqe of decimals with years implies that Besselian years are intended.

J-10
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M. Constants

It is not the purpose of this appendix to provide Constants, but
as a matter of convenience the following approximate values are
listed:

Time 1:ntervals:

Earth inertial rotation period - 86164,0989041 mean solar secs,
Earth sidereal rotation period 86164,09054 mean solar sees.
I Tropical year 365,2422 mean solar days
1 Sidereal year 365,o-2564 mean solar days
1 Julian year 365.25 mean solar days
1 Sidereal (see, hour, day) = .997269566414 mean solar (see,

hour, day)
1 Universal time unit = 1 mean solar time unit
1 mean solar second = 1 ephemeris second to about

1 part in 108

1 atomic second 1 ephemeris second to about

1 part in 109

1 ,phomerin second a 1/31556925.9747 of length of
tropical year 1900.0

In oncu of the time systems (Rlderenl, universal, ephemeris,
invan solar) there nre 60 seconds par minuto, 60 minutes per
hour, i'nd 24 hours pcur day.

Sta.ndardI JXpochs

1OO0 Jnn 0.8 UT = 1900 Jan Greoonwich mean noon
= 1899 Dec 31 Greenwich mean noon

= JD 2115020.0
=JI) JW245019.99995

9..0 Jnn 0,5 UT 1!)50 .Jan 0 Greenwich mean noon
19'19 Dec 31 Greenwich moan noon

JO 2433282.0
, JED 2433282.00034

I *
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Standnrd Fpochis (coutinued)

Besselian Date 1900.0 = JD 2415020.3:357

* JED 2415020.11352
* 1900 Jan 0.81352 ET

Besselian Date 1950.0 a JD 2433282.42309

- JED 2433282.42343
- 1950 Jan 0.92343 ET

N. Timing Polynomials

The primary timos used in trajectory and orbit determination
work are ET, AT, UTI and UTC. At corresponding Instants theth
various times have been tabulated by the U.S. Naval Observatory.
Ans we have seen, discontinuities exist in these relationships,
but continuity is maintained over discrete time periods of the
Order of months. JPL, SAO and others have fit these taculated
data over discrete time periods and interpolate over them. The
difference between ET and AT Is described by ?a simple constant.
The difference between IT and UTC is described by a simple
constant. The difference between ET and UTI is described by a
second degree time polynomial. The difference between UT1 and
UTC Is described by a second degree time polynomial. The errors
assocAated with the polynomials are about one millisecond.

J-12
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APPENDIX K
0 0UATONS MISSILE MOTI FOR THE TEST RANGE

This entire discussion is from the viewpoint of the missile test
range performing its primary function of determining the
trajectory of a test missile from radar tracking data.
Consequently, we will consider only three-dagree-of-freedom
motion.

The basic acosleration equations in an eirth-fixed coordinste

system are:

e Oa + so + Re + De + L1 + To

0 0 + a + R + D + L + T and

0 +. a 4. R + D + L + Tg ,whero

o, f and g represent coordinates in a geocentric rectangular

earth-fixed coordinate system, with the e axis in equatorial
plane through Greenwich meridian, f in equatorial plane through
90' east longitude, and g polar northward. The subscripts on
the right-hand side refer to components along e, f and g axes.
0 reprenenta acceleration due to gravity. S represents Coriolis
accoleration. R represents centrifugal acceleration, D
represents drag acceleration. L represents lift acceleration.
Wind accelerations are included in lift and drag. T represents

powered thrust.

Appondix T treats in some detail the acceleration due to gravity.
The Coriolis and centrifugal terms are, respectively

Re 2e4

S f u-2ti;

S .0

RI - r2f and
R K
Rg 0

K-1
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where ei is earthJ rotation rate relative to inertial coordinate
system, I

Drag, by definition, in the component of the aerodynamic forces

directid along the negative relative velocity vector (-V). The

relative velocity vector components and total magnitude are

*

p u f•- We I

Yt= f Wt

Yg g Wg and

V (Ve + Vt2+V2)/

W represents the wind velocity measured in the rotating

coordinate system. The drag components are

De W "pVVe r/ D)

Df V -pVVf ( ) and

IACD
D - IV

In theso equations p represonts air density; A represents cross-
sectional aroa of missile; CD representn drag ooefficipiit; W
reprosent, mass of missile; W and p are, of course, functions of

altitude and are obtained from hawinsovdo data.

( D) may be expressed as a fun.,)tion of various parameters.

Optlonm roquired are a table of CD vs timep CD vs Mach number,

nnd r vs altitudo with tip to 3UO e'ntries. Also required in a
firth cte'igroe polynomial to I(, used oither as a table multiplier

(Jr Jndepundently. A choice of utthor timr, or altitude should be

nvnilable as independent variablo in the polynomial. It is quite

p)raicticll to solve for All six polynomial coefficients in a lonsa

S squjnr(. ndjustmont,
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Thl lift acceleration I nets in a plane porpondicular to the

relative velocity vector V. It also lieo in a plane containing
the relative volocity vector And the longitudinal axis of the
missile. The lift acceleration lies a magnitude

Lu p'V2 (1L)

where CL is lift coefficient. CL varies strongly with angle of

attack and Is in fact mero for zere angle of attack.* CL also

varies with Mach and Reynolds numbers, In order to visualime

the direction of the lift vector, imagine a plane perpendicular

to the instantaneous relative velocity vector and passing

through the center of gravity of the missile. Let the center of

gravity of ths missile define the origin of a rectangular

coordinato system in this plane with the P axis lying in a

vertical plane and pointing positively in an upward direction,

and with the Y axis pointing positively in a horizontal direction

to the right as viewed by an observer looking in the direction of

wijisile travel. The lift vector lies in the P-Y plane and its

direction Is described by an angle 0 measured positively clock-

wi.e from P by an observer looking in the direction of missile

travel.

Options required are a table of CL and e vs time, CL and 0 vs

altitude, CL coo 6 and CI, sin 9 vs time, and CL coo 0 and CL

sin 0 vs altitude with provision for up to 300 entries.**, Also

required is a paJr of fifth degree polynomials to be used either

as toble multiplicrs or independently. A choice of either time

or altitude should he available as independent variable in the

polynomialm.

*T1ho angle of attack is the angle between the relative
velocity vector and the longitudinal axis of the missile.

**'( co. 0 is sometimos called coefficient of lift. CL sin 0 in
'11

sometimes called coefficient of side.

K-3
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Attempts at ETR to use pulse radar track data to determine

separate precessional and nutational components in an epicyclic

description of the motion of a spinilng missile have been un-

successful. Hence, tho simpler treatment described here has

been adopted as standard practice and is adequate for trajectory

computations.

The P-Y components of the lift acceleration are simply

P - L coon and

Y a 1, sin 9

whore CLO , G .CL cos 0 v;ý. C1, sin 0 may be reprosonted by e

polynomia., or the produ,•,of a polynomial and a table.

The lift acceleration will now be resolved along the efg

coor.ii..te axes, Lot J raprosent a unit vector from missile

diroctel toward tho center of the earth and lot V1 ropresent

unit r'elaLive velocity vector. Then let

Jx Vy1 -- -

and

1 pY I Z, x V1

where the superscript (1) is used to denote a unit veotor.

-p11 has components P.1, Pf, 1  Pg. Y has components Y 1 , yfl,

.Y . Sinco these componentm are nothing more than direction

K-4
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0Lo PP + Y Y

Lf P +p yY and

L P P + Y Y

Instead of CD and CLO the missile contractor is likely to give

Cx (the axial force coefficient sometimes also designated CA)

end N (the normal force coefficient), Cx and CN are referenced
to the body axes of the missile instead of to the velocity

vector. CD and CL may be obtained from Cx and CN an follows:

CD - CxooT + CN in UT 0

C L CN Coso T M Cx minn a ,T 0

S whore QaT Js total angle of attack.

The total angle of attack UT is the angle between the relative
velocity vector and the missile longitudinal axis. It has com-
ponente ni,, nnd Cly in the pitch and yaw planes respoctively.

The ngleos aT' a Sind a are relstvd as follows:

tan2 0 T M tan2 (I y + tan2 OP

Filuro 1 shows the missile body axes, the velocity vector with
tat components, and the total angle of attack with its components.

The origin of the XYZ coordinate system is at the center of

gravity of the missile. X extends positively forward along the
mts•ile longitudinal axis. Y extends positively horizontal and
to the right. Z completes the rectangular right-handed syptem.
If we define tho aerodynamic accelerations acting along the

A - n(ne1ntive missile axes (-X, -Yp -Z) by AXI AY and AZ respectvely,
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- ~t. ho fl

t ' I AX P Pi ( )

AY m I pv2 ( 0i and

AZ.: 2  ('.)
whore C y mnd Cz are orthogonal components of the normal force

cooeficiont and have the relationship

CN 2 N

Tho magnitude of the elsultant aerodynamic accolerntion vector
in given by any of the following alternative exprossioni:

o L<."2 (AY)
2 + (AZ?2 1/2

2 3 1/2
'ii;- (CX + C Y + Cz /

2 1/2
4WVA (C 2 + CN

S(CDi + C1 )21/2

Again referring to Figure 1, we note that the velocity vector V
defines a roctangular solid WiLh *idou v $, vY and v . The total

anigle of attack it inhcronly posittive. Ils componelits ý6 and

a oxtond positively so shown, The orionLetion angle .0 of the

norinnl force lu moasured in n piane perpendicular to t.lio miSHilo
WxN urid In positive clockwise from the intorme•tion of the'

vrlie•li plan, through the mismile axil to viowod by an obsorvor

Iookinq forward along the missile axis. Wv have simply

-tan (A

tan Up
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S'l'IVi i il't r~r Iel l In o I nioipl n 0 (dI'i oI 0d pre'v iot i I N) 1H g v, I y

tala P Rill N C;O5 Q - Uh| Ii
tI I Yl I V

ton sin ly + sin Coxny

whore

siiin X tan a coS T

ton o Rill
tan and

ton b gin S coos a + Cos

oos C¥ (tan F + tan E)

Cos a• tanK tan F

in thOlso Oquationt the anOglOs r\y, apt L TI M i"icd all ito
lnIido 1tho rogioin -900 + 90°. Tho angles , anid 0 lie il t11h
quadrants doeturiinud by tho signs in the numorator aind dornSmi-
nator in tho oxprossions for tan * and tanl 0. Tho analo !) is
mionsured from the hto~vi-ontnl positively upward to tho vector
e ixtendinig forward along the missilo axis. The an•le F is the
flight path angle measured from the horizontal poeitivoly upward
to the velocity vector.

Tho ruoainingli Lurms in the oquationb of motion are ambociatud
with thu powered tnirust. Since powered-flight trajectories on
huio test rango are estimated oi n point-by-point basis, equa-

tioun of p)owured flight are uised v.ry 1Atlto. iHowever, there
Pre' two formrulations of powerud flight which are useful and will
he prosrentod hore. The firm1 option in rlidual thrust after

b- I nout
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This thrust vector acts &long the velocity vector V with an

original value of To aV time to and decaying with a decay

constant 'N It in practical to estimate To and X in a least

equares adjuntmcnt. can be readily transformed to the e*g

coordinate system as was demonstrated tfr the lift acceleration,

Tlie second option uses three sets of fifth degree time poly-

nomi'als - one set for each of three burn periods, Each set
consists of three polynomials - uone lolynominl for each of three

rectangular coordinates. The rectangular coordinate system used

isn eg, In th4.s powered flight option provision should be made

for several intervals with corresponding start and stop times.

In the event that the same computer program is to be used for

precision satellite and space probe work as well as missile

trajectories, then the earth-fixed coordinate system used here

should be roplaced by an inertial coordinate system.

lISCUSHIO4 or OPTIIS

It is impossible to describe exact procedures followed in all

trajectory problems. A tow general and somewhat heterogonous

comments will be offered,

The mathematics presented is useful for either spinning or non-

mpinning projectiles and even aerodynamically guided missiles.

For free-flight trajectories entkroly above 300,000 foot, the

choice of epoch is purely one of convenience or program limita-
tinn and hae no influence on the accuracy of the computed

trajectories. I'n the computation of reentry trajectories, it

is nearly always good practice to jet epoch for the position -

velacIty vector at reentry - genorally defined as 300,000 feet

altitude. Tie reason ior thix is that track data above 300,000

foot altitude usually provide highly accurate estimates for the

valuces of position and velocity at reontry and theom otilmntva

K-9



are relatively unimprovod by the track data at lower altituder.J

These estimates are given heavy weight in a reentry computation

rnd can, if nocessary, be enforced so as to assure continuity
with the midcourse trajoctory, Reference time for the drag

polynomial is usunlly hest established at impact time, which is

ordinarily known from the time of loss of telemetry signal.
The reason for this choice is that one can net the a priori

value of the constant term in thl• drag p'olynomtal to correspond

Io theoretical drart, and by puttin:: an a priori small standard

drnvintton on this value ono can onsure that the final. drag curve
in the extrapolated region near impact will not depurt too far

from thoorotical. Becauso lift may be known to be zero over
the last 10 or 15 seconds before impact, It is desirable to hw vo

a start time and stop time onplhiJity in the progrAm, The

r,,terencae ttin, for the lift polynominl may be sot, for example,

al. 15 moconds prior to impact, and the a priori value of the

constant torm in the lilt polynomial may ho chosen to correspond

tL •aro iift with an m priori small standr(Il deviation, Lift

would b.o set to torminate 15 seconds before impact,

1 'lmo n I most; ionorally used as the indopendent variable in the

aerodynamic tables and polynomials, but there Pre: occasions

whore othr independent variablon arc preJfurnbl0 Whoen the dt'ait

vs Mach number Is not doublo-vnluod, such a table can con-

voniently be uised for a numbor of trnjectorios associated with

Stho some minsile. Also it can be met up prior to launch.

When impact time im not known or when it in desirable to set up

tho program prior to launch, it may be desirable to use altitude

In the aerodynamic tables an-s polynomials instead of time.

Wh.'n thoorvtical nerodynamic tables are available, they should

always bu used because their use reduces the required number of

ndjustrt' parametors and computer running time, Tables are never

nihsolut-oly necessary, however, if there are sufficient track

data. Iow-degreo independent polynomials ropresenting CL con 0
n1d Ca sin cannot he used roalistically for precessing ro-

(vnLoring mimsiles. If independent polynomials are used in this

K-1O
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casoe they should represent CL and 9 - and convergence is
generally agonizingly slow. When lift tables are used along

with multiplying polynomials, the best form of the lift table

is CL cos 9 and CL sin 9. In tables of CL and 0, e is not

usually monotonic, and hencs a polynomial multiplier of 0 cannot

he used, and a polynomial multiplier of CL alone would not pro-

vide sufficient flexibill ,.

SINOULARI¶'Y CONBIDZRATI2U8

It is well known that the coefficients in ordinary power series
polynomials are highly correlated In a fitting process, and this
correlation becomes progressively worse with higher degree
polynomials - a situation conducive to loss of precision in the
ndjustmont process. This problem is frequently relievod by ro-
sorting to orthogonal polynomials. It has in fact become a rule
of thumb in numerical analysis to use orthogonal polynomials
snmotimos for sixth degree and always for degrees of seven or

U moro. 30olow sixth degree the benefit from orthogonal poly-
nomials is marginal. Since in estimation of aerodynamic
parameters we are concerned with polynomials usually no higher
than thiv'd degree and never higher than fifth degree, orthogonal

polynomials are not presently used for this applicntion nt this
test rango. When singularity problems are encountered with the

polynomial coefficients, the aRlalyn3t may ro(Iuco the dogree of the
polynomial, set smaller standa;rd deviations on some of theI
n priori values, or resort to ridge regression. (See Appendix

AA.)
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APPENDIX L

Transformations of Pairs of Anmular Coordinates

This report has discussed primarily transformations of coordinates

defining prciiSely a point in space. Many times there may be only

a pair of angular coordinates defining the direction of the point
from s*m origin, perhaps topocentric right ascension and declina-

tion (a, 8) or radar azimuth and elevation (a, c). The problem is

to transform from one to the other set of angular coordinates.

The rotations are performed exactly as for a point in space by

asstling a point along the line of sight to be located at unit

distance from the origin. Fot example, consider a topocenter at

(*. y) where # represents geodetic latitude and y represents east

longitude from Greenwich. At this origin erect two right-handed

rectangular coordinate systems. The first is the usual radar
system with x east, y north, and a up. The second is an equatorial
system with X and Y parallel to equatorial plane and X toward

k ~ vernal equinox, 7 is parallel to polar axis and pointing northward.

Two rotations are required to get from XYZ to xy: [:[x [1 0 0 " sine ]
y - con 0 sin 6 in Cos 0 Y

o (90-n)

* - (900 + y + geodetic east longitude of vernal equinox)

If we represent the elements of the combined transfer matrix by
b and transform the rectangular coordinates to their angular

equivalents,

L - .



Cos a oos a b 1  b 1 2  b 1 3  Cos 6osn a

see•S~in ,, b 2 1  b 2 2  j3

mi 8j b 3 1  b32 b33gin i

Hence

tan * 2 1  o 6o Co + 62 2
11 oos aos a+ 08 6 sin a + b 1 3 1 in 6

.ift 0 b Cos a Cos a +.b 3 2 cog a sin a + b 3 3 sin 6

*a" wili be located unambiguously by cozsidering signs of numera-

tar and denominator. The sign of sin aj will determine either first
or fourth quadrant.

Clearly in transformation& of pairs of angular coordinates it in

not possible to translate the origin.

L-2'
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SAPPRUkD:x K

The ADBARV orbital Slments

These elements are defined in an inertial frams and represent

respectively right asOension (a)M declination (6)M flight path

angle (0), azimuth of velocity Vector (A)# distanoe from earth

masa center (r)p and scalar velocity (v). They explicitly define

position and velocity vectors at sows particular instant or epoch.

The position vector originates at the center of the earth and

terminate& at the orbiting body. It has magnitude (r) and orien-

tation defined by (a) and (6). (C) and (6) are described on

page 19 of this report. See also Figure 20,

The velocity vector with magnitude (v) originates at the termi-

nus of the position vector and extends in a direction defined by
(0) and (A), (0) is the angle botween the velocity vector and

() the extension nf the position, vector. Vor example, (0) is zero

for an object traveling outward along the position vector and is
900 for an object traveling perpendicular to the position vector.
in order to describe (A), we erect a local horizontal plane per-

pendicular to the position vector and located so as to include
the point defining the terminus of the position vector and the

origin of the velocity vector. From this point and lying in the
horizontal plane lies a northward reference direction line N.
The projection of the velocity vector upon this horizontal plane
defines a direction line V. (A) is the angle measured eastward
from N to V. Thus if V points north# then (A) in zero. If V

points southwest# then (A) is 2250. (A) and (a) are defined in
region 00 to 360'. (6) is defined in region + 90'. 0 is defined

in region 00 to 1800.

It is useful to relate the ADUARV elements to the (xyz) geocentric
inertial equatorial right-handed rectangular coordinate systela.
x extends positively toward vernal equinox and z is coincident

M-1
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with polar axis and extends in a positive dirsctim northward.
The selatlions follows

a *8 v sin 6

(•o m(o os-.c.,oo.• &n , On n ) coosu. sin A sin a sin A]

i {(oos coo 0-coo A sin 0 in 6) sin + sin A oo a sin]

a faos A sin 6 oo 6 + oosesinaJ

v- ( 2  *2 + /2

au tan' (XA)
x

6-sn"1 ( +)

p-wu' 4 rvJS" °°"• (X; '+ •' +";)
A a

I [• : ,) - x(. z- x•)

in order to locate (a) or (A) unambiguously in one of four quad-
rants, the signs of numerator and denominator must be examined
separately. (6) is locatod (+) depending upon the sign of s.
(0) is located in first or second quadrent depending upon the
sign of numerator.
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APPENDIX N

0 ELEMENTS

INTRODUCTION

In this report the classical olements a, e, I, A, w and u have been
discussed along with equations relating them to reotangular position
and velocity components. The equations presented relate osculating
orbital elements to actual position and velocity rectangular com-
ponentse and they also relate mean orbital elements to mean position
and velocity components. The purpose of this appendix is to relate
osculating elements and mean elements.

Tie concept of mean elements requires a few words of explanation.
If a central force field were the only force acting on an object,
the classical Keplerian elements desorbLng the sise, ihape and
orientation of the orbit would remain constant in time. Because
of perturbative forces the classical elements vary significartly
in time. Two of the most influential perturbative forces are asso-
ciated with the second and third degree zonal harmonic terms
(02 and J3) in the geopotential. These forces cause secular, short
period and long period variations in the classical elements of an
earth satellite, Short periods are of the order of time of one
complete passage of the satellite around the earth. Long periods
are of the order of time of one complete passage of perigee around
the earth. The elements as affected by J 2 and J 3 are called os-
culatLng elements. It is possible mathematically to remove the
periodic effects of J2 and J, and arrive at new elements called
mean elements. (If only the short period effects are removed the
new elements are called quasi-mean.) Mean elamencs will still vary
with time but the variations can be described very closely by
third degree time polynomials. Consequently the mean elements
"lend themselves to what is called general perturbations--a field
of immense value in orbit determination and erhemeris generation

over relatively long periods of elapsed time. In summary, the
osculating elements represent the actual position and velocity
"of the object but are poorly behaved in time. The mean elements

N-1
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do not represent the actual position and velocity but are well
behaved in time. The ability to transform between "~an and
osculating elements provides the capability of knowing the actual
position and velocity associated with mean elemnst The name
"mean elmoent" was given to the modified element because It rep-
resents a ;mooth "average" value through the cyclic behavior
characteristic of the oiculating element.

A typical application in orbit detersination is as follows:
rFret, each pass of tracking data is reduced to a state vector
(i.e., position and velocity components) using some form of
filter. Second, all such vectors ame transformed to sets of
mean Xeplerian elements, each set corresponding to the time of
that particular pass, Third, polynomials in time are passed in
a least squares sense through individual mean elements. The
resulting Volynomuals then represent the multi-pass solution and
may be used to compute a set of mean elements at any particular
time of interest, perhaps much later than the observations. At
this time of Interest then the computed mean elements can be
transformed to osculating elements and theane perhaps to look
angles for soam sensor.

The use of general perturbations and meat elements avoids the
time consuming numerical integration associated with speoial
perturbations and also the round off and truncation errors; and
consequently over long periods of elapsed time general perturba-
tions are somtimes preferable to special perturbations.

At AFETR the Kosai formulation has been applied sunceasfully in
many routine calculations. The Fraser formulation has also been
used and here is considered superior in several respects to the
Kozai method. Algorithms for both transformations will be given.
In addition, a self-contained desoription of ephemeris generation
(recommonded by Aerospace Defense Comand) using simplified
general perturbations is given in Section V of this appendix.
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1. KosaL Algorithm - Qua4i-M4an to Osculating

Given quas4-mean elemata Ir w, r, it , and it, compute corr'esponding
osculating elements at ea, 1t 49 and M, wihere

a i 

's
a • + seee

0 a geo

First compute iterotLvely the eccentric anomaly £ from Kepler's
equation:

where -- Pr can be used to start the process. Iterations con-
tinue until suoceesive differences are negligibly small. Then
compute the true anomaly .

a2tanuul[1..~ + i sin
I Iwo coo

The mean radius from the center of the earth to the object is
given by

and the mean semi-latus rectum by
S• i(l - 2)
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Then

I &i~..n2I 1 ] WIT

3. 2

32 r r" -3

iJ~r i. sin2 tII(-i ; 2)4]

* slin2 ? oos2(; *

2 
-)(sii 1 2;)

813 , -rn in2I[Toos2(3 * 2 * 5 aoa(W * 2)

4py

+ - coo,( 3W 2;)]
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*~ si (1 0) lin +if~)f * ± 4sin2 + *. in$i!

sien(?i 2w Sin't + j2 1  n2 T)]

* an2r sinoif - sin2r) sin2(iT *

Pr7 2; 2a I

- sin(Y inO 2M 2) sl2 si(i s4(8 2Z

an uin2T 9 Ti si-a)e]2W7

sinI ' Z) 0 in(SW 4 2) ; ~C

am(1 j2) (I 2 - * i2r ;2)ai'

-2

w2w)

-IT rir"(5v +*2
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where J 42e

2 0!
and ae Is equatorial earth radius.

For W equal to or very nearly zero the Kasai method is not applicable

because of choice of elements.

11. Fraser Aleorithm - Heaim to Osculatins

Preli•inary Diseuusien

Given mean elemints , I, t r, ?19, R compute correpondLng elements
a, e, i, A, iX, T. The first step is to develop wuit vectors •, W
V. The reference plane is the orbit plane and contains 0 and
V is perpendicular to the reference plane. These vectors are ex-
pressed as components In the usual inertial geocentric equatorial
rectangular system x y x (page 14):

Ux call CosI - sien sing cost

U U y 6o81 sini 4 sine, Coasl coat

us sinU iini

V - sinu3 costi COUsin aril cost

V , V - sinu sing C eoU COIN coes
y

5v os.. siuT

Sx sinif minT

W y CO '-o[sinr

W cost
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Then compute as in Section I of this appendix. Next~0

(1 * I'ooosFl

where K is earth gravitatiional constants.

( The mean state vector is

N[i]

N-7
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The osculating state vector* is

Y

It is convenient to break 4* and dr down Into short and long periodS~ vari ations

raa art

ar o r +*Er

Computation of Short Period Variations and dr 8

r Er5  + r(uus + on covi )V

*+ C((is mint - aEn oosim sint)

t÷z -, ar• ÷ 8u5  + 6nm coost)J

+ [(Ei. msinir- 8%l oos3 .inI)

+ f; n (61j CoOm + a8 minir minTI)w

*The clAsmIcal osculAting elements may bo derived trcw this state
vector by mathematics of Appendix A.

VMS
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where o, .(--

( i2 
2114i 1i)

2 .nU
+ (I - 3 coo~rwstir +1~-

S~~ ~ lsn~L 4o2 (1 2e) 1 o(2

*1co$Wi 0127' ](1 + i OuM

* (14 1osWM)( - 3 cos.t )[73 * INc~i 2 0 1~ J

41 T (3. -

* a aitoosr(I~ o2 (i Ginm (~

du * 5 oom(i oo4

8u~~2- + I -(( 3 S ooI)(f
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+ (1 -3 o.21) 2(5 sinn)(e cosW)

US 2(5 o - 2) i sin(2U - W)

+ (7 cci2" - 1) sin2U * 2 0os 2 1 F sin(2U Wi))

where
2•2 %e•

PFor orbits of low eccentricity it is desirable to compute CF - 9)

where it appears above by

sn1 ( Ico1

SL\L °0'")+]
+ Cl ,. W2+ j i mn•

+ oomF

Computation of' Long P•riod Voriations dr and -rr1

*r F2 sinlci + W ccii) a iniu U*

s*.LnT(2 + 5 ccsF) cos' * cosT a oeeW

• " •2 - inT(( + i couW) •l

,,,m£i"l(sin-u +i W minla)v *our i sinW•(

where a.

2 
2J 2i-

N-1O
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III. TrAzliformation from Osculating to Mean Elements

In this and the subsequent section the use of the word "mean" is
intended to include not only mean but also quasi-mean. This tWranb-

formation cannot be made directly, but muat be done iteratively,
each Iteration requiring about as much computation as an ordinary
direct computation. Zn the case of the Ftwser elements three
iterations are nearly always sufficient. In the case of the Koaai
elements sometimes many move iterations are required and special
techniques beyond the scope of this report may be necessary. The
approach given here applies explicitly to Framer elements but the
same general approach may be applied to any elements.

Given a, e, L, a, w, m, compute is, is, t, Z, and go As a first
step these osculating elements are transformed to the true oscula-
ting state veOtort

[n T

This vector and the accompanying osculating elements are taken as
the first estimate of the moan elements in the following iterative
process:

L- - - a a

1 r

6 LLJT

S Di +

!- - - ',-11

14-11
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The three equations included in the dashed line represent one

iteration. The result from the third equation is used as direct

input to the first equatlon and also to compute a now estimate

of the 6 vector for the first equation. When D meets convergence

criteria of 1.0 toot and .001 ft/sea, the process is said to have

coaverged and the essooiated seen elements from the following third

equation are accepted.

IV. Transformation of Mean Elements from Epoch at t0 to Time t

The equlations for mean element update are simply MacLaurins

series expansion

A t t -t

am i'0 +,A * 1.A2
02

' A 0 + !a

' 'l'= 0 + iSA + A

WU+6 a A*

In the equations of this section bars will be omitted but implied

over the time derivatives of the mean elements. Thus a means the

first time derivative of W. Subscript (0) is used to represent

epoch conditions. represents the mean mean motion and is
equivalent to M. As implied in the introduction to this appendix

these derivatives are preferably estimated from empirical fitting

of tracking data. There are occasions however where analytical

expressions are useful. One particular application is the use of

N-12
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known analytical relationships to constrain the experimentally
0 derived derivatives@ Conhequently analytical relationships for

the seen element derivatives vwil be presented hoes. We will neod

U i

Zn order to compute & it is first necessary to compute the rate of
apoage decay (W) and the rate of perigee decay (0) using McHair

and Boykln#@ methodi

A "" -364003B[K(l * ( 2ico.W)'(1 . oo.T)d)

"LCI +l J J2; 2 ow) -

where B . ballistic coefficient u CDA

wI

where CD v drag coefficient

A a reference area

NW U mass

I a mean semi-major axis assumed constant over one
rovolution

' a mean eccentricity assumed constant over one
rev 31ut ion

0 atmospheric density at each integration stop

16 true anomaly at each stop

N-13
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Numerical Integration is accomplished at 100 steps It over one
complete satellite revolution, p is obtained from some model

atmosphere,

Then

a - 20 2

where

c*Jii

d . 2 [1 + .n0 03(n,.•

whare

no 16.667 revs/day

Q -" 0, if 0.06

, 4, it 0.06 andW 1.16.204

Q -13, it 00.6 and .16.204

Further derivatives are

61

a

j a

N-14



r
42U - WJ(5 co.o T- 2)

Lia.
--

I E i n 
0O

-2
T

n ~ ~ \ + 4 L '+:0

Other relationships used In acme aigorithms are

[B + 5 52iwhere

-2 2/3 3

* m (- 4/3) (T/W) (;/2)

.6 40 2 n

.4 -( ( 2
S0-2 2
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V. EPNEMERIS GENERATILK USING SIMPLIFI3I) GENERAL

NMI'! For Simplicity* the notation In this section to not exactly
the Sam as iln sections I to IV of this appendix,

1.0O PHYSICAL COMSANTS

The following are needed for the computation of the updated earth-
fixed geocentric position and velocity vectors:

K 11467,S74 (earth r~adii) /(Nean molar day)*

.1082,549 x 10~

2* 3435 x10

a, 6,30038749 radians/day

This discussion carries the computation only an far as goo-.
centric, earth-fixed position and velocSbty vectors, In order to

compute look angles, one needs along with the geodetic position
of the station the NORAD spheroid constants:*

Barth radius a 6378145 meters

Earth flattening a 1/298.25

*5ee note Page N."23,
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2.0 COORDINATE SYSTEM

(9 The adopted coordinate system is that of the mean equinox of

epoch and true equator of date. The following relation is used

for computing the value in radians of the Reodettc east longi-

tude of the mean vernal equinox at epoch (to)I

a• st to - 4.8365375861 - 0.017202191461d

-.5,0641 x 1I0lSd2 - 6.30038810F

0 ir at epoch 2 2w

where d Is number of mean solar days elapsed from h

January 1, 1950, Universal Time to 0 h Universal Time of epoch

day; P Is the fractional part of a day from 0 h Universal Time of

epoch day to epoch.

3.0 TIME

Included in the Two-Line Element Set is epoch year, epoch day and

the :Fractional day in UTC. UTC is used throughout all computa-

* ) tions; and if a discontinuity occurs in UTC between epoch and

time of interest, then thin offset should be taken into account.

4.0 'nZ.X Of COMPUTATIONAL P CEDU

The Two-Line Element Set includes eight mean elements. Three

additional mean elements are needed and must be computed by the

element user. Theme eleven mean elements constitute the initial

conditions. To these initial conditions we first kdd secular
effect-, ýhen effects due to atmospheric drag, then long

periodic effsets. We then solve Kepler's Equation and compute

some polar coordinates of the satellite. We then add in some

short periodic effects to obtain osculating parameters. These
osculating parameters are then transformed into explicit Inertial

p0osition and velocity vectorr. A final transformation ts made to
A I•ocentric, rectangular, earth-fixed coordinate system, from
which look angles may be readily calculated. To avoid e multi-

plicity of subscripts, the subscript associated with only the

most recent update or correction is attached to a parameter,

N-17
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5.0 EIGHT MEAN ELEMENTS AT EPOCH INCLUDED IN TWO-LINZ ELEMENT SET

Me U mean anomaly (degrees)

0o - right ascension of node (degrees)

wa argukvnt of perigee (degrees)

e0 = eccentriiity (dimensionless)

1o0 i nclination (degrees)

no U mean motion Crev/(mean solar day)]

no • time derivative of na [rev/(mean solar day)

n - second time derivative of no (rev/(mean solar day) I

NOTE: As soon as these elements are input to the computer, all
angle measurements are transformed to radians. Computa-
tion will proceed using earth radius units, rAdians and
mean solar days.

6.0 THRZE AD1TIONAL MEAN ELEMENTS AT EPOCH TO BE

COMPUTED BY ILMNT USER

ao - semi-major axis [earth radii]

fo = time derivative of 0o (radians/(muan solar day)]

o time derivative of wo [radians/(meon solar day)]
i'I

These elements are computed as follows:

W I.
a' ,* [K/noJ 7

3

J2 ' (-, " (l0- ,im2 i o)

so - '1+ -

N-18



TRMP - J~2 [&.'-o~v2 2 n

n -TEMP coorn
2W TEMP (32d.2,uif )00 0

it to convenient to Include in this section on Initial conditions

the mean orbital longitude L0 and the meon per'igee distanceq

NOTE: All the precedineg computations or* to be performed nnly
once per element mot. All the remaining computations
must be performed once for each time point in the
ephemerim.

7.0 COMPUTE SECULAR PERTURBATION$ It MEAl' ELEMENT
AT TIME (tint0) FROM EPOCH

La ~ Lo +% (nt+-t0) h) t-.

PO 0(0 0 0o(.-o

0.0 'ADD IN ATMOSPHERIC DRAG. PER"3APMATIONS
1l 2 l*of 3

LA Le + no(t-t,) + -,nr~t-to

n ~ no + ntt (t-t ) 2

n /

CA 1 ..-- f Ma q ; otherwise e 0
A A 0 A
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PA &A (l-*)

.8 A *A o

440 ADD &NOW PERIODIC PZRTURBATIONO

J3 axA 3001

LS ~~ 72- WT mn

LA A

00 sN L 27r~

N1  * E1-e in mi IKpe' qain

The~~~~~ 3ouino elrsEuto o ~b tagtowr
iteatin 1 as olos

e(a M *sinYk 2

Intitete roes it snE~a inNtoobai hefis

stioathe subandcoiptiu un)tilpoarl conderintrdce asbcriteinpsmt:
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Having the eccentric anomaly E4, we compute tho corresponding
true anomaly v:l

VA1

too'm (~e) tan1.

where "k" Is evaluated in eame quadrant as "T"

Z'j - aA (l-ei *oas Sj)

S1 ej min IAroA A (A) rA

A V - (XpA)y /r1

*) 100. ADD IN BS RT PMIODIC PERTURBATION8

rh r.j + s.imns o coo• 2 u

1 J3

PA

h ,, +j "3 2 Cos - n o sin 21 u

h a 77 asi coj u

3J2
Oh ii + I• -XI. sO , in i o o uj

11.0 TRAAIFORM TO IXNRTIAL POSITION AND VELOCITY. VCTORS

-sin nhCos ih

[] i*mi flh Cos ih

sin i
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can "L"
[CO '¼

-IN mi mo

h [~h
[~~~iu Cv]i O I V)[]*f

12- MM-C PORTION AND Vo [ ITY VIC,&S

$i 'Y aoay 1 ON %) 0

0 0 0 1

CIooe 7T, -min VT 0

.10 0 0 1mi VT C oo. -T 0
*1n~ 0

+ w -o1 .ny. o [rJ
L 0 0 O0
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where

-Ye, (YT att~o)i01 (tint0)

and whero

the IWO coordinate system Is geocentric, earth-fixed, equatorial,
rectangular and right-handed. 0 In coincident with earth polar
&%I* and extends in a positive direction northward. I extends

a, positively so as to pierce the meridian of Oreenwi42h, The
units are earth radii and mean solar days,

NOTE: It may be necessary to reference the stations to some
spheroid other than the NORAD spheroid. Ideal alter-
natives are NWL-OCO NWL-83 and NWL-8 because they are
Identical In mime and shape with the NORAD spheroid
and have center*suaifficiently close to the NORAD
spheroid, Other acceptable spheroids are Kaule-m6l,
Mercury Plsoher-5B, LSAO-66, LAO-S7 and SAO-69., The
dimensions of each of theme last five differ somewhat
from the PORAD spheroid and one may question whether

* these changes necessitate changes in any of the
physical constants in the NORAD algorithm, The
answer Is no, with the possible exception of the
central gravitational parameter K.
For the NORAD, NWL-OCl NWL-SS and NWL-S spheroids

11467.874 (earth radii) 3/(mean solar day) 2is equiva-
lent to 398801.2 km3 /sec 2 a standard value derived
from apace probe trajectory analysis. For the other
five acceptable spheroids theme two numbers are not
equivalent. For theme last five spheroids there in a
slight advantage in maintaining X - 11467.874 (earth
radii) /(mean solar day)2 for near earth satellites
with semi-major axes less than about two earth radii,
and there is increasing advantage In maintainingI
K w 398601.2 km /mec2  transform*J to (earth radii)/
(mean solar day)2  as the orbit semi-major axis In-
creases beyond two earth radii.
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APPENDIX 0
CANONICAL WNITS AND MISCELLANNOUS CONSTANTS

1.0 CANONICAL OR CIIARACTELISTIC UPITS1
It in sometimes desirable from considerations of computational
accuracy, computational speed and/or analytical simplicity to
use canonical urits in orbital meachanics. These units are
always defined ni~merically an the basis of a circular orbit
under the influence of a central force, alone, with no drag or
other perturbations; but they may be fre~ely used In any kind of
orbit with perturbations of all kindaso and such use does not
reprisent an approximation or source of erzir in the orbital
computations, When these units are used, the central gravita-
tional parameter 9 beculmes unity and does not appear explicitly
in the equations of motion, Lot

CUL a canonical unit of lengthFCUA a canonical unit of acceleration
AU au canonical unit of velocity

k...CUT? a canonical unit of time

By definition a satellite in circular orbit at one CUL from
center of central body Is subject to one, CUAv travel, at rate
of one CDV and traversies one radian in one CUT, basei onp
central force theory with no drag or other perturbations, CUL
may be chosen arbitrarily but is usually selected to be meanI. equatorial radius of planet for planetocentric orbits and one
astronomical unit (i~e., semi-major axis of eartb's orbit) for
heliocentric orbits. After CUL in obosen, then. CUA, CDV and
CUT are autoastically determined:

CUA - K/(CUL) 2

cuv a WK(cuL)]lI

CUT - [(CML) 3/it),/2

0-1



3 2
As ajt ensuple, for K - 39864' ki /sac and NWL -16 spheroid

CUL - 6378145 .

CUA , 9.79827462102 a/s-c-

CUV w 7905.36629655 m/s.ec

CUT a 06.,812076650 see

0.

•2 0-2



2.0 SOME MISCELLANEOUS COVSTAIITS AND CONVERSION FACTORS

- 3.141592653589793

e a 2.718281828459045

M a 0.4342944819032518

1 foot (international) = 0.3048 meters*

1 foot (American Survey). (1200/3937) meters*

- 0.3048006096012192 meters

1 nautical mile w 1852 meters*

= 6076.115485504304 international feet

1 statute mile w 1609.344 meters*

0 5280 international feet*

1 radian a (180/0) degrees*
* 57.29577951308232 degrees

I degree - (6400/360) milu*

1 degree w 17.77777777777778 mile

1 degree 0 17.45329251994329 milliradians

1 knot w 1.687809857101196 international feet/second

1 pound w 0.45359237 kilograms*

I) 1 slug 0 32.17404855643045 pounds

1 millibar M 1.01971621297 grams/centimeter 2

Speed of light = 299792456.2 + 1.1 meters/second**
in vacuum

Earth gravita- 32Eart1 parameter =398800.8 + 0.4 kilometers /second **tJonal parameter-

One astronomical 149597893.0 ± 5 kilometers**unit

1 milligal * 0.001 centimeter/second 2 *

NOTE: Seconds as used here represent international atomic
seconds. (See Appendix J)

* Exact by definition

** Experimental and approximate

0-3



APPENDIX P

TMANSFORMATION OF MEAN ANOMALY TO ECCENTRIC ANOMALY

This involves the solution of Kepler's Equation:

M - E - . sin E,

where M is moan anomaly, E im eccentric anomaly, and e is

eccentricity. This was the first transcendental equation to
engage the attev~tion of mathematicians and hence there are well
over a hundred treetments of this problem in the literature.

Present practice or. electronic computers is usually a simple

straightforward f.teration using

Ekz M + • sin k

initiating the process with

E mM

and continuing until a convergence criterion is met4

Ek+l " •kI

This method has Advantageo of simplicity and small storage
roquiromontnr. 11owever, it may bo unnocessarily wasteful of

computer Lime. Eight-place accuracy (radians) way required 36

itorations if a in large.

A maLhod which is always as fast and sometimes twice as fast is
,lhc t irst-order differential correction procuss:

""M-Ek + Bill Ek

k+l e con Ek

wile ru

E0 M

PI-



Seven iterations or lose will gonoraily give eight-place •'

accuracy (radians), If eccentricities are less titan .01 thou

the straightforward iteration is Just as fast no the first-order

differential corree,•tion process.

For eccentricittew' less than 0.6, additional computor time can

be saved by usingy a series expansion to improve the estimate of

E prior to either one of the iteration processes described:

E aM +a ai nld4+ (e/2 )uin 2M+ (o/3)0 Bil3M- sin i)

4 5+(e /6)(2 M sin 4M - sin 2M) + (a /3p4)(125 asin 5M 81 sin 3M

+ 2 sin Mi) + ... .

No time will be saved using this sor|les u n Iuggium a tiveIii

r')utino in UE.Od Io (dovul0j sil 2M, w in 3M, t e, funct.ion• 1'rl o

tlie values fjr Hiln l M and co M" thus

sin 2M H ? sin M cow M

Bll 3M '1 1in M - 1 141zC N1

sin 'IM . , ous Mtl O| (t n M ill NO' H 1(|(

sin ,M . 11 Hli'i M , il l M I. gill M

Thuo oxpfansion for X Is goIl•.e|ri|i ly ut•|utI ye Ill aCtluccurnty to
about five at raightforward i teoratiuiwt and in comauputer time to

about hall that number.
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A1iP1ENITX Q

Transformation of Covartianoe Matrix to
Probabilitry Region

Tho boinidary of a confidonce, tolerance or prediction region can
bo (onst'mctod on the braiii of a random sample of N observations
tvansaformed Lo a mean position column vector u and a sample co-
vaLVianoe matrix :. A confidence region is one which has a pre-
nm:Agned probability of' Including n parameter (e.g., the mean) of
the population sampled. A tolerance region will on the average

ontr•.ain aotxIy some spr.:;ified proportion of the population.* A
prc(diction region hau a Upeflified probability of containing the
n•xt observation (or perhaps the mean of the next h observations).
'Poh regionf dincunL-ed here are all centered about the mean of the
rvimple and may be onel, two or three dimensional, specified by
1) :i, :', ", ropaetively. Conditions assumed are: optimum (i.e.,
iinimum) oizo probability region, random normal distribution of

, bl)'!vatOions, mean WAd nov•tvtanoe matrix of population estimated
-J"v( the obseivatio.nti. 'T'he Ipobabi:lity region will be a straight
1111o' (r .1), an el .lpi ( . .., Q) or, nn eil i pio d (p - 3).

foI Verez:t), for tn x. y r. *,,.t;titugul ni' noordinato kystem, let

P:cm ' "i•y Sz"i

• '.1 . I• w.•.,ilu(,I IIv ,Ul',tl~t, , ,hft' ¶l it~orn b•ut riot th}e only one,

I. 9I



lu U -' U U Q,

where

poN-p for confidence region for-

the population mean,

Q v for to3orincee region,N M-) p N-p

Q T 'M _P p N-p for' pr'edioti on

region for muni-i of' next h obuervaltionorm,

and where F is the tabulated 10 nt.UtAtLt~ for, p and (N-p) dugvcm. 1
of freedom. p in degreeiu ol' Prurodorn for gr'entotriin ITiC~qu.i-vrr'

,numnerator ), and (N-p) 1iii dogr~oeo ol' Vree~domi for l)ML10 r meoan

siquare (denominator) in Ii' tFab~tlo.

NOTE: The probability regionms are generally compuited unit1.np, tho
oovarianoe matrix of the mean vaootor output: fromn a prct'1 ovvoiOI
nnrujetsi. This oovarlanne matrix 'ioeri not, correspopdi to 111 1but
rfither to SIN or P, + N~.!once thci covaiilainne t.ýatrix of' tho.
inevn veotor may be suvi~t tritd rot- 8 In :01I of thv, eqivit~ions of'

* ~~this~ appendix If Q Is ni mlifl wi iicaoi(d~i Jg1,y by romovirig Uhi~o vnor'il-

(l) or (

* 1~~or some applicationui, It It, move corrvenlrit to oonsider tMe
* equation of the probabilit~y reetort in tho form

RT S-1H 0

whe re

I.mIl

'ml r I ~m'igl tur! _r~i n. tr rf on~

roirJon to the houidar'y, aiid (I m, n) L'epreLiont dire~tion (JotitleB



. ,. .. . . - " "

of r rolative to the x y l? coordil-ite system. If' (I m, n) arr

given, it is then an easy matter to solve for r. (1, m, n) may,

for example, be chosen to represent the direction cosines of the

instantaneous velocity ventor of a missile; and then + r would

define the In-track position probability interval at that instant.

For. some purponnu, it iH useful to know the lengths of the semi-

axes of the probability region. Form the matrix

A -[ - dI],

'ivt its determinant equn] to zero and solve for d. There will be

ono, two or three non-zero roots. A]] roots are real and non-

ri, live. LUt d i sepresemt the value of the i root. ,orres-

pviaulng to di there is a semi-axis aR with length equal to Q-i

where Q Is computed using p equal to the number of non-zero roots
(ni~~i:,., a difl'orrnl: p In known a priori), I in the A matrix is
thi! identity matrIx with order equal to order, of '

( . 11. I L n] •o frquerilly dht.iiibrit . bo know the orientation of the

muil ,I -6,K("O. Let thto ori,,er, ci' •1 he J. If j equaA s one, there is
Ir, onli, i',oot d ii1d onlly olle somi-axis a8 , and It l•les along the

oi. gl , ,iourgill d tt,, iixi In tlt problom. Foor J > .I, the orientation

X tlu f. zemi .-, ',u Iti;ly h,, h, oriiiined tin fol.owOz, where we a r-sumnr fo ,

I 11' ll0JI1ulij 11 ,i , tI it I I tll i'O1 01,H dI ti 'e diutinct,

,, ,i uI !. t.h ' A llit rI1 . , ' iI ( r,(' l.i'l be at; 1, ,et one row u in

I i'z'I1.1 n; inix Vcn'- whinoh nil IINh o CO'lAottor (A at' t -I to
It 1,til, V4il 141 1h '.lP,'in th, U i ¶t V t(.ot ,'u 1C I d tic ibIng the orvie tantl.oi

I lit' ,in*'ed.1 KI8 hu lii ti ll Ir .low .ig component. n along the c'o-

A- 1
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Th,4 components of k are Al.ruOtiur) ,OniinrO of the semi-axis a.,
The procedure may bo repeated for n132 the dittinct roots d1 . it

mniy be noted that

constitutes what In called the characteristic eutlution of the

matrix S. The roots di are called eigenvalues rind the unit
vectors k are celled normalized eigenvecto;o, ("Latent roots" iand

"characteristios roote" are synonymous with "elgenvalues".)
If two or more roots d are Identical, the orientation of' all
IeIi-axev can be covuputed; but the very nature of the problem

proe 1ude a ur'iqu,,'! v•uohtioon. MTe only probioml) of possil)]o

initerest to u1 here is that in which ther, Its one d1$tinct root
awrl two non-z,'r'o repeattud root&;. A non-untqjue •,o]ut.•(', to tfhbi

pI'blelflm of possible intoerest ,•n be obtaind ati fo]llows:

Proceed as before to deoxrmin no tlho three n.em,1-:iCe, •nd a 11.1 1le

I.1 ti vector, kI for the temt-ax.|: 'ort~ lporit|. og to the dit.:1 net

root d I d 2 and d wll, than be :tduntical, atd u,. and a3 w I .
2 3

n 1so be identical, Form the matrix

[S - d•) ]

where diIs the numerical vatlue of thu rep't, 10(1 root oV oharae-

t.ristic equation, and let some non-z'.,ro row or' 1hie' matrix be

denoted by (e f g). Then h posal bil vnlu. ('or' 1,, if both g and

f are not zero is

k2a 2 2 [3
or 1.' both f Hnd g avP zero,

k.,

T'I., uuivret po,,dJ ng value for k twryy Ie uonmpi ti.d t'rom the vector

(W Oi81l pr'oduct

It k x I i

'. h,' dismouitAoi lu i ir Im t r'U(--ijto',iI poal tion dninta, but the mathe-

nvitiei applii. e(lurily wel] th) veloi)tty da.,tm or acceleration data.

u, u fnd w may bo do'f:ine .hi terrms of velocity, for example,

Q.- - - --4i



1.1 i t t(,til ul U1, oIl Ci 1~f on t'11.ij 1 W1 I I ntujliI'l(Iiit ii ;'Ol'i VIi Xl Si Of

veloocity an~d k will1 roprominf~t~ n mit vreatur deftinng the

d~trection of

A Viri&I word of' caution should bo eivtn in regmrd to possibly

bla ood obj.acvvii tiorn, The pr~fLicm Iitr "popul atio0n" boinp catirynrited

manv or' r:.ty niot roquire ari assumption of unbirtoed data. If auch

mi u L(J4maption iii reqtlorecl arid the observat.ions are known to havv

LbIan urice rtoIrdnty it mny be pos~lblo to ;iugment the covariance

mrwi~itx Ito t~ako anvo' of' tho pi'ohlern mi~ch problem should be

0ANrf~'e1iIy analyzed before proce~eding with the routine of calou-

Inat. tug n probabili ty region.

2
i'j~.O487139 + .937500J~

.53(00-1 110 +'53700

N P

I . r~i-axra ti' 1e 1i t 'I 114c' [,' I t I11oid U for opcp lai: Iol

' '~~iti i vu'jok ii 1 1.,/1 , lini i , :irlt?'54 prýiio IO al x. ~

,im.i v nt.i tI iw't. h



(~.o.09],/-d) - .49.. ,93'(0

A . 487i39 (+3.53125-d) -1.40729

+ *, 937500 -1.40729 (+3, 7500-d)

Setfting the doterminant equal to zero, we obtain

d3 - 12d 2 + 44d - 48 0

The roots of this equation are

(d I + 2

d * + 4 ,

d - -I 6 *~d °

Now Q • (3.'-20) . 0.1365 foi oonridence c.t liptuold

Q (3.'0O) 31.2659 for tolerance elL.pu:ol.d

~) 4:1 (3,20) *11.12659 for predictio~n
e131 .n~old.

Ther'ef ore

Confidenou Tolerance Predi cti on

a1 .O359 4.74611 4.7468

-, 1.4(650 6.7130 6.7130

a - 1.942 8.2'?1/0 8.22110

k 4 .Y k ]o/

L.- 1o0J -. t3~ -oJ+, ooo.J

'lhle I iiteger rooto ire not f|'irtu.toin but werq contrived
'ror purposh-e of sirnpJi(cty,
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CLOSED FOsRM-OLUTION O' CULBC HAVING THREE REAL ROOTS

W nrae given

Ax 3 + Bx + Cx + D 0

Divide througjh by A, so that

x3 + Px2 + x +l 0

Computo

- (P• - 3Q)/3 and

b - (9PQ -27- 2R)/27

,:vluato 0, where 0 1 i t, from

c * • (0/2) (hi/) \F1/

Thon tho roots are

xI 2f.i corn 1./3J -P3

2 2 /il/:i Sos *~/3 + i12O*j P/:-i a nd

x 2 11/3 c~ tih1,/34 240' 1)"

.4,

-• 
i[.1



EVALUATION 01' DETERMINANT OF QOkRPRl 3

a b I ,I

12 b c

a3  b 3  03

Sot upJ

22 2

'Tke products of oloments on disattindinua diagonli Litive with

the sign + and take products of olonments on asconding dctagonni
lines with thlo muwn - , The turegatu of the six products]

thus obtained

a1 b2 03+ b1 C~ at3+ C1 a 2b)3a1)201I b2 c3 1 bI c.3 + 2L 3 - 3 h2 1

- b3 c 2 ;aI - C3 a2 b 1

will be the value of the dtorminant.

(J-84



APPI'.NfT X Hi

RADAR MEAS3UROW41NT EqUATIONS

Th fol:loicwng equnit;one are useful in aldjustmenlt processes and

simulation exeroaiest,

+ r r, Rt
11L1. 811uO111romnt true zero set ocale factor velocity Jag~

and timing

+ ~1 ~+ r5 OHO + I

acceleration reultduaJ random
Ing r'efraction orror

A .~At + A1 + fl ~ 4 At.
til oII 'il 1 true zero set veloolty Jag a0celerationL.and timlingIn

+ Lill tatn x + a1, a e 0 + a6 sin~ At + n7 oo At
non-orthogo- Collimntion encoder onccentrioity
tn Iiity

+ it sin A t ttinM.t - v nos A t tan E .+CA

mi 111.o Vt.. random ci-i-ca-*

101111I fllU VEUg't Iit, L t. ' t In I V- ( B t, VO I ()(,I t y I g i ce .c'z tI

rupig~I )It C' nL~ii.pl l:,y Find dvioop

Ai I'*) v n Ii A 4

ii I IV(,~ 1i'l t i'll II v.i In licor



T''he zero-tet errors aze constant bias or o'f-sot valu0S. Secale1

factor represonts the range error resulting from an error in the

obcillator frequency or in volocity of propnlation. Non-

orthogonality represents the lack of perpendicularity betwetbn

the azimuth and elevation axem. Collimation represents the

lack of perpendicularity between tho R-F beam and the mechanical

elevation axis, Mislevel represents a tilt of the azimuth

plans - u being tho northward component and v being the eastward

component. This tilt Is measured with respoct to the local

horizontal to the geodetic spherold. Velocity nitd accol(ration

lags are dynamic radar errors which becomni ,•ignificant in

azimuth at high elevationu and sometimes during missile roentry

at lower elevations, and which become signIfIcant in olevation

in missile reentry. Droop represents the sag of the R-F axis,

Timing errors refer to urrors in the time tag on the dat.. The

random errors represent noituv in the data with zero munt•n,

Residual refraction and encodor occontricity re(uiro no explana-

tion. The numerical coefficients to be idajusiod are rl, r., r.,

r., r., al, a21 a:, aNO A51 a6 , a7 , oil 02# eV~ VII# el'-) 0(l U

and v. Some approximate a priori one-sigma values for those

coefficients in the case of MIPIP. radars are shown in Trable I.

NOTE: In ship radar calibration it is frequently preferable to

express the mislevel in amplitude M and phase angle F, where

amplitude is positive upward from local horizontal and phase

angle is measured positive eastward from north. The mislevel

term for azimuth is then

M .sin(At - F)j tan Et

and the mislevel term for elevation is

M [co.(At- F)j



TABLE I *

A PRIORI ONE-SIO14A VALUES FOR MIPIR ERF.OR COEMPIIENTS

rIhor Coetticients Values
-ft,0

rI 20 feet*

r2  0.0000005

r• (veloolty lag) 0.0001 seconds

r (timing) 0.00001 seconds

r4 0.0005 (seconds) 2

r05 0.1 foot

a1  0.00005 radians

a2 (velocity lag) 0.003 seconds

a£ (timing) 0.00001 seconds

a 0.06 (seconds) 2

5
a4  0.00002 radians

a5 0.00004 radians

S86 zero

a7  zero

eI 0.00005 radians

e0 (velocity lag) 0.003 seconds

e* (timing) 0.00001 seconds

e 0.06 (seconds

e4 0.00002 radians

e5  zero

e6 (encoder) zero

e 6 (droop) 0.00004 radians

SO. O0004 radians

v O.O000011 radians

*in echo track. gay be larger
in beacon track.

R- 3



APPRNDIX 6

L0 Differential Correction

Transformatione treated in the other sections and appendices of
this r-port are direct and precisely determined. Some of the
most important transformations in missile and satellite technology
are not of this type; but instoad they are Iterative because of
assumed linearity in the partial derivatives, and statistical
because of redundancy In the data. It it the purpo of this
appendix to sketch out the solution for problems of this latter
type. It is beyond the scope of this report to treat this subject
in other than the barest elements. It is a complex subject in
both theory and application. Complexity in the applications is
associated vith the required partial derivativem, matrix parti-
tiossing, constraint matrices, bounding of corrections, logical
sequence of iterations, a priori parameter weighting, data
weiohtit•g, selection of parameters to be adjusted, and effects
from errors in parwartero not adjusted. The bibliography contains
some references which may be helpful for further study.

Four types of applications will be considered here:
(1) One in which the observations are connected by some

functional relationship; e.g., a missile or satellite
in free or ballistic flight described by equations of
motion.

(2) One in which the observations are not connected by a
functional relationship; e.g., a missile in powered

flight.

(0') A variation of (2) in which, although the actual ob-
mOJevations are not connected by a functional relation-

ship, the observations are commonly affected by some
error such as survey or zero set !iases.

(4) A simple non-statistlcal type of problem using non-
redundant data.

.. .S- "



AIL

Theme four types will be treated in order. An explanation of all

notation is given at the end of this appendix. For variouu

reasons the notat$on pay not conform wlth notation elsewhere in .7.

this report.

This can be most S asily explained by illustration using a simple

orbit determination a~d associated ostimation of radar error

ooefftiients. We asnume all observatioms to be made from radars,

aithi9ugh the extension to other type sensors Is simple and ob-

vious, The radar measurement equations referenoed in this dim-

cussion are treated in Appendix R.

The observations at the various time points are functionally con-

nected by the following simple equations of motion which are

satisfactory for most low altitude satellite work:

I * + W2 X +Sw2 DpVX

Z W D TUXVp Y Z

In those equations the acceleration Is defined in terms of i
geocentric earth-fixed right-handed rectangular coordinate system.

(Bee Glossary.) The first term on the right of each equation
represents acceleration due to gravity. The last torn on the

right of eash equation represents acoeleration due to aerodynamic
drag. The other terms on the right sides of the equations of
motion are the usual ones describing Coriolis and centripetal
accelerations in a rotating coordinate system. U represents the

Earth's gravitational potential and is defined by

n(max) n n.~
[- 1 t mm+ (I + (sin 0)(Cn Cos mY + Sm sin I" "4"1 Sao

The gravitational model Is defined by the experimentally do-
termined values for C and 5. Any of the newer models issued

an-M



by Nnval Weapons .1 )Aborktovy, Smithsonian ALntrophysloal Observa-

A tory, Applied Physion Laboratory or NASA may be used, Any of the
newer atmospheric models issued by NASA, Smithsonian Astrophysical

ObBervatory or U. S. Air Force may be used to describe the air

density p.. Conseqaently, given a vector (X Y Z X Y Z) and the

various models and constants entering into the equations of

motion, one can numerically integrate the equations of motion and
thereby generate a satellite orbit for as many revolutions as
necess¥ry,

The orbital parameters to be estimated are the constant D and the
components of the vector (X Y Z j Y at an epoch corresponding

to first tr'aok point.

The object is to make a simultaneous estimate of the o.rbital

pax-amoters and the radar error coefficients. The mathematical

prouedure is iterative and is based upon the criterion of minimiza-
tion of the Otwn of squares of the weighted measurement residuals.

A woighted measurement residual (dimensionless) is simply a

U imueniirement remidual dividnd by th- a priori estimate of standard

devi•tion in random error in that particular measurement.

MpFiBurement residuals arc obtaineQ as follows:

An tliitial estimate of it vector (X Y Z X i ,) at the first track

poi•it may be obtained by a simple curve fitting and numerical

iIA'fTerentiation process on a short span of aetua:I RAE track data
trunsforrned to XY,. An orbit is generated by numerical integro-

t1on of equations of mottun, and then by a coordinate transforma-
Iin•o the resliting XYZ tim.M. points are transformed to theoreti3al

uAI.'l; wuniuroements for thu viirdar sites, These theoretical measure-
.,,•,''r',: used in place ,.I' the true but unknown measurements on

Sh," riF•I. l•re of the ridio,, mireanurement equations to produce

"(•onplpuItPd" m.asurv"ment. Reiadom errors are never included it) the
,oflpututd ineaur'vmelntu, and on the first iteration all other error

cooIfic.lnots aIep h+', to e.ilCo stino tihiy are unknown and have ex-

pet'Latiorn of zero. Ali-er tIhe fir'1t'. iteration there are non-zero
.I lInn tc.:i of, i'lle i'.i', 1 tt, o, ( ,ff n.• IentIs to usae in producingf

,,(,rpuled e;asur•em(eritu. '1lw eomj•,t;id m(osurements are differenced

5..



with the actual measurements to obtain measurement residuals.

The meanurement residuals from the first computation will generally

be much larger than the random errors in the actual ra'dar measure-

mento and thus indicate that one or more of the adjusted parameters
have been poorly estimated, Corrections are therefore ýomputed and
added to the original estimates of all the adjustable parameters.
Corrections are computed using a basic least squares iterative
equation satisfying the origina3 minimization criterion:*

.1t( Q0 T M i -1  I t + j ' -3% M 1 ' " ..

F is a column vector of correctiors for thVc adjusted pnrameters,
including both orbitul ptaramoters and radar error noeffeentu. c'
Thiu equation Is used toguther with the equations of motion and
the radar measurement equations like any other set of iterative

equations, After u number of iterationr, reductions in the sum
of' squares of the weighted measurement residuals become neg:ligi-
bly small, at which time the adjustment process is said to have
converged and :'nal estimations of all parameters have been

obtained.

This type of adjustment is also known as "orbital constraint,"
When the time points arn functionally relatod ns they tre here,
then observations at all time points add information and strength
to the solution for any particular time point. 'lhe covAriance
--matrix of all the adjusted paramnetuca is given by the first
factor on the right-hand side of the equation for F. However, if

' there are any unadjusted orronoous constants or parameters con-
"* tributing to error in the solution, then a more accurate estimate

of the covarianoe matrix of the adjusted parameters is given by:

M 1 .-.) Q1. -1 + B N T

The subject of effects from orrorfi in unadjusted parameters is a

very controversial one and beyond the scope of this report. It.
iI

* AssumeM no wortnl -,orrelationn in th observntions.
So* Appendix AA.

-• -- -~~.... .lj .. . .



O may be mentioned that In some circumstances ani unbiased ond

better solution is obtained by adding the unadjusted papametor
ef fects~ directly Into M,, iv'. which case the first fat.71 1&. the
equation for F will be the covariance matrix of adjuv' 4ý
parameters Including the effects from unadjusted parameters,
Numo rical as well as theoretical difficulties are reduced
appreciably If unadjusted parameters can be avoided by adjusting
for all Influential parameters,

A problem frequently encountered In least squares adjustmuent Is
high correlation among errors In the adjustod parameters*
Methods for treating non-orthogonal problems of this type have
beon investigated at length at this test range, Ridge regression
has been found to be a satisfactory solution to the problem of
correlated parameters and is discussed in Appendix AA.

Finally, it should be pointed out that random errors in the
observations have a harmful influence on the accuracy of the

Uadjustments and should be controlled as far as possible,

* Ihis type is similar to Tylic (1) and uses the same basic equation,
hut has one important differe~nce, The obsorvattons entering into
4)lc'h least sq;Ajaren adjustment must. all be tkt the 'ame time point,

iand cof cuurse no least square" adjutitment can be perfermed at any
(ime point. for which reclundant data are not. available, In a
1,,)worert-rf'1ght missile IraiJootory, for examnple, an independent

Adtatmn of minisilo Ponitl.oii in made at vach time point, A
-k £ni't osxanipl will donionstruto the application.



EXAMPLE:

Consider an array of 4 trariupondern, one at each cornpr of a
square, two miles on a ald,2. Assumn a splash occurs at come
point W, and at the instant, of splanh e~ich trnrisponder ob.ierves:

the range from the transponder site to tho splash. Donignate
these range observations R L.4 the oorronponding otandard
deviations and varianoes in the ohoervationr be 31 and MV

respeotively.
Adopt an x y coordinate syntein as 1'ollown3:

y ~ y

(01 (20 x
Numerical data are as follows:

TransponderE _I_ S1 . Mti

1 1.1 0,1 0.01
1.9 0.2 O.0

3 1.9 0. 0.09
4 0.3 0.4 0.10

Dnta errors are unr.orre~ated. Thei,-. tre no. other sources• of
error, and there is no a priori knowledge of splash location,
Start with Initial entinates: x I and y 1.

W, have the following i.r-ationrig for the RW in terms of x and y:

S+
X . .1

Y1



From the Initial estimates of x and y we compute the following

values tor the ranges:

- 1.4142

112 - 1.4142

R3 a 1.4142

t4 a 1.4142

Subtracting these from the observed valos, we obtain residuals

01 a +.28B8

+.4808

03 w +.4858

04 - -1.1142

The weighted row residuals are thtrefore

,.2685h2 (.4828) (.4858)2 + (1.1142) 2 - 2.472

We now seek to reduce the weighted rum residuals by Improving

the estimates of z and y, using the iterative relation

4QT M 1
1 Q 1] I. Q4 M;.1 O. .

From the definition of Q1 and from the expressions for R1 as a
function of x and y,

++

r"m3  0 3  r x-2

S114 B~4 X 2

Q4 --T.T ]

In numerically evaluating lhie partials, the moot recent computed

values for R are used, along with the most recent estimates for

S-7



T I
x and y. We now evaluate (4T a and sum them:

[x-2]
22Ly-J a% ' ,8.

x[-2 3 82]

xl 4 ,.93

z Q1 M a 4. 1 29.9(.1

Similarly Q T M'. qI may be ovalUatetd and Lu1mmud:.

x 2 . 50.001 +i 50.001

Rl MI XY y 50.001 + 50.001]

(x-2) x- ) +1 -1.,1oo -12.L 1o

S(x-2) y' -10.500 +3.2b50

55 5.556

R (2- ] [ + 5.556 + 5.556

x x (y-: ) i . :5 - 3. 1"5
*I, M4 x(y-;,) (y-:') - +. 5 43.15'4 Jr+4.')5 -

Y~l Q. M 4 r iM 4.1,'

. l

.dwi

..................................................



The inverse is

4 .020500 -. 011500'
Y.QT M
I Tj [i • - .011500 .02 0 5 0 0

Therefore ,x"l F + iFo ioo~o 2•.871F ;•o
Ahexe+or0 [500 - .011500 + 2 L0'
A y .011500 + .020500J L1+29.91 +.5

The new estimates for x and y are

x I - .285 -, + .715
y - I + .580 - +1.580

i-Th.li1i completes the r1rat iteration and we start the seoond iteration.

With these latest estimates of x and y, the new values for Ri are

R,, - 2,037

24, .829

'I'I•,o remiduals are

(1 .2 - .034

0•1,, - 1.37

The W..Pt-hi.ed rzma In r now 1.1()I, down from the previous 2.47p, T4r
pnrtilua1• ,c.re reevrilunted and It in found that

QT 3 -* 7a ~]
• . •: T Ml- 01

,, I.I Qi-13.97")



4,, tT 1 tl i.030792 -. 009286)

T~ -1-i [.009286 +022

from which

[/X] y [.003]

The new estimates for x and y are then .

[ * - .715 - .1871 + .528)
y 4-.5. 80 - .003 +1. 577 :

We will only start tie third iVration to obtain t•le weighted

finn residuals. Computed ranges and residuals are

R1 - 1.663 01 " + .037

R2 M 2.157 02 a - .257

R3- 1.532 033 + 368

143 .677 04 - .377

Theme give a weighted rm, of 1.022 down from 1.191. In a real

situation these iterations would continue until the reduction in

weighted rms becomes trivial, Normally the final weighted rms

will be approximately unity. When convergence has finally been

achieved, final estimates for x and y will be obtained, and the

matrix

will represent the covartance matrix foir x and y if there are no
influent.al erroneous unadjusted parameters.
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A powered-flight missile trajectory computation is seldom as

simple as Type (2). The type (2) Qdjuctment represents what is
commonly called an "inner" iteration. Having made a trial esti-

mate of the trajectory by an innor iteration, one can thonJ
temporarily f'ix these time point positions and then perform an
"outer" iteration to estimate parameters such as radar error
model coefficients &nd survey errors which are common to two or
more of the trajectory points. This outer iteration represents
a type (1) adjustment over all time points with the important
exception that Q does not contain partial derivatives of computed

muasurements with respect to orbital parameters, and consequently
V includes only corrections for survey and radar error coefficients.
In the adjutwment process inner iterations and outer iterations are
alten~ated optimally antall convergence is reached. The final inner

Iteratlion gives the covariance matrix for each position time point
(uniually in a topooentric x y z system). The final outer iteration

gives the covariance matrix for the adjusted parameters.o
his ui•es the same basic equation as the first three typoG, but

here it becomes conelderably simplified because the covariance
matrix of the observations is omitted. WVe no longer need weighted

oljaoo-rvationn or weighttud residuals sinca all observations can be
N l tt',d to anv desired degree of precision, eiA residuals cart be

wi-,l'n :as near zero as desired, J-I is Also set to zero since it
will "iot influence the final soluti.n and it will reduce the rate
,U Wicnvergence. Also omitting the summations, which are no longer
i.'t.lnent, and rea~izirig that Q w1.ll be square P.nd presL.lab]y have
"":in .I:,v:re• we bavo nimply.

'111.t :Ap.,rlt and rithov ohbviouti Iterative relationship can be quite
I t~~ui',efu I .

" X' <1'.ple, given a pulliton pol lit; KX, Y, Z) at time to andj ii athlr' point (X, Y, Z)> at tml. tl, it is possible to derive a

;-l]J



free-fall trajectory between the points in a few iterations. The K
solution involvet repetitive corrections of the estimated velocity

vector iX,.Y, z)o nt time to In the proc•as the partial deriva-

tive matrix Q must be numerically evaluated, where

0xo 0 0

•xo -Io-Z
0 0 0

'These d&rivatives are obtuined by incrementing Xo, and 2O
individually and integrating to time t3 and differerncinS the ob-
served (X,Y,Z) at time tI with the computwd (X, Y,/) [it time t ,
The resulting Q matrix together with residual matrix Q obtailned
by straight integration of must recent estimate of vector at to
gives a correction F to the velocity components at to.

Another application occtrs in reentry trajectory Oomputations.

Here we are give'n a vector (X,Y,Z,X,Y,) tit reentry knd an impact

latitude $ and longitude ')4 at time t. Tho object is to adjust the

lift components and the drag factor so that the resulting computed

trajectory will go through the a priori impact point at the right
tiAtie and thus establish a mean trajectory.

The drag is a vector tangent to the trajectory and is oqual to

the product of dyn•,inc prenmire and the dram, parnmeter D. The

lift it a vector perpendicul.ar to the trajectory and is equal to

the product of dynamic iresmir. and the 3ift parameter 1, An
orientation angle 0 defineil the direction of the lift in the plane

perpendicular to the drg veut.orv. Wo assume T arid 1 to be con-

stant. We assume an a priori 1 curve to be r#lat~i.,eely rorrect and

. ...... . ...... . .



we will compute a constant factor D such that the corrected D is0 equal io the product of Df and a priori D. The problem is to

compute DfO L and 0. The solution converges better, however, if

we adjust Df. L min 0 and L cos 0. The Iterative form is then

. CD2 N(L coo 0) b(L sin 8)

L coo 8 L on I) 6-Y 'V 'nk

_6 •Df b(L coo 0) b(L sin 0).k

In this formula (sTO -YT tT) represent the true latitude, longitude

and time of impact. The subscript k denotes the iteration number.

Given the results from iteration k, the formula gives a new estimate

for the (k+l) iteration. The partials are computed numerically by

integrating separately with incremental values of T L co0 8, and

L sin 0 and observing the incremental changes in. * y, t. Conditions

are very nearly linear and convergence is rapid.

In the simple examples giver, in this appendix the partial derivatives

have been obtained analytically or by finite difference. In more

c'omplex situations it is common practice to ume vcriational equations.
1rt,,,e will be discussed briefly in the next section.

VA•IATIONAL EQUATIONS

Vi|rint.ional equations are not a substitute ior analytical partial

.%1x'lV;11is. Analytical partials nre always proferable when

mathemhatica.lly fonsiblt,, and thoy are feasible lor such parameters

ng rndtir orror model coefficients and survey errors. On the other

Iuiid I I it not malheinalically po a~hlu to derive analytical partials

fut, parameters such as orbital elemunts, aerodynamic coefficients
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nnd gravity anomaltesm For parameters of this latter type one can

use finite difference methods or variational equations. There are
advantages and disadvantages associated with the finite difference
method, but modern colplex adjustment programs almost without
exception use variational equations instead of finite difference
methods to obtain therequired partial derivatives. Variational
equations are ordinary differential equations containing as deo-
pendent variables the partial derivatives themselves. In the
usual application the variational equations are numerically
integrated simultaneously with the differential equations of
motion,

The variational equations arc nothing more than the partial
derivatives of the total acceleration equation with respect to the
adjustable parameters. Normally there will be three second order
(corresponding to six first order) differential equations for each
scalar parameter to be adjusted. Lot the total acceleration be
expressed functionally by

where r is a position vector with first and second derivatives r
and • respectively and where • is a vector of explicit and/or

implicit parameters in the equations of motion. In general, r
and its first derivative are also functions of 1. The variational

equation for some parameter # of 3 is expressed as

r wlr Ur 'r _____

The terms in brackets are determined analytically. The last term,
called the non-homogeneous term, is usually the most difficult to
compute. Because * is indopendent of time and because the deriva-
tives are continuous, the order of differentiation in this latest

equation may be interchangod to obtain

s-14
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A double integration of thiu equation with respect to time then
yieldi the trajeutory partial derivatives

dr

which express the sensitivity of the computed position points to

variation in the parameter •
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GLOSSARY FOR APPENDIX 8

A radar asimuth angle. Defined by two vectors lying in
t2 the local horizontal plane and originating at the radar

gimbals. The reference vector points northward in the
plane and the other vector in a projection of the radius

* vector extending toward the tracked object. Angle is
po~sitive eastward from north.

Bmatrix of partial derivatives of adjusted parameters
with respect to unadjusted parameters,

C dimensionless sp~horival harmonic coefficient, in
am ~ geopatential expression having degree n and oxder in

* 1)drag parametor of matellito or missile equal to product
of drag coefficient and cross sectional aroea divided by
twice the maims

;~ j drag factor.

K ~radar elevation an~lol. Measurod p~ositively in vertical
plane from local horiz~ontal plane upward to radius'
vector to tracked object. -

P column vector of corrections to be added to most recent
jXl estimate of adjusted parameters.

Gcolumn vector of measurement restguals, defined as n
Ul actual minus computed, for the i cibmtrvation.

H column vector of difference~ between a priori 4nd'
jx1 current estimates of the pa~ameters, defined nos prior A

minus current, II

J a priori covariancoe matrix of parameters to be adjusted.
JXJ

lift parameier of missile, *qual to product~ of lift co-
3fficient and cross sectional area divided by twice the
blas.,

Mi ,.,varivinee matrix of measurements at I th observation.
3x3 '
N covariance matrix o~f unadjusted parameters,

P n (sin ib) associated Iesondra polynomial of degree ni and order mnm with argument sin t.

matrix of partial derivatives of the computed measure-
3xj ments with respect to the adjusted parameters for the

it observation,
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R rgnje. Distance from radar or other sensor to tracked

9 estimated standard deviation in observation.

8am dimensionless spherical harmonic coefficient in
geopotential expression having degree n and order m.

T matrix transpose If used as superscript, "True" if

subscript,

U earth gravitational potential.

V zatellite or missile velocity (mcalar).

W splash point.

XYZ position coordinates of tracked object in a geooertuic
earth fixed rectangular right handed cuotdinate system
with X and Y axe@ in equatorial planes X sxten•tI•i
through meridian of Oreenwich and Y through )0 oast
longitude. Z points nortk.ward along spih Axis,

xyz. velocity components of missile or satellite in XYZ
coordinate system.

fu u

XYZ acceleration components of missile or satellite in
) OXYZ coordinate system,

a earth equatorial radius.

i observation index.

number of adjusted parameters Including those which
describe the trajectory and the radar error coefficients.

iteration number.

,,1R degree and order respeontively in spherical hprmonuic
expression for geopotential.

0 •total number of observations in type (1) adjustment.
Total numbor of observations at a particular time point
in type (2) ndj;stment.

r distance from center of earth to missile or satellite.

t time,

x0yz topocentrlc rectangular coordinate system,

71 summation.

east longitude from Greenwich.
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earth gravitational constant, equal to product of I
Newton's constant and earth mane.

p atmosphere density.

4 geocentric latitude.

O orientation angle defining direction of lift in plane
perpehadioular to ,ilocity vector.

(D earth rotation rate.

A ' nowemon•. ".

('1) used am mupermoript to denote matrix inverse.

adjustable parameter.

(-n) underline. Vector.

S-18)
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API'I.NWuX T

NOTES ON H ml AHtT1hS POTENTIAL FUNCTION

1.0 I)EVELOPMINT OF ALTERNATIVIE FORMS

From Newton's Universal Law of' Gravitation it is possible to show
tint gravity roprosonts a connorvativo field of torco, and hence

thev work donile by the grsv~tational field on a particlo moving,~
LA'vIin ono point to aziother i&o indopondont o1f the path takon, In
as.r1,onoinical c'onven~tionl the 4lotal work done by tho gravitational
lorce, wvile at particle of Unit masa moves from infinity in to
wonio point P is tho gravItaticnlal, potential at P, Potential is nl
sealer quantity. The grrudiviii of tho potential is a vector
representing the gravitational forcw po~r unit mas~s or itcuolurp-

timi, The potontial oul~widt. thu ua~rth vatisfiom Lalc'
Htluat ion. LApi aoct ' Equati on iN a socond or'der 11 nuer homogru'eous

difforonltial equation. Pnrticular sol.utionsu of i~npiacota hmuiitioii
iirv known as spherioal tarmiauien * and th moat 4oneral. sol ution
(:fli bi reachod by their addition, In vna-1iomtionl treatmenit of
Hi thc gravity potontial (also enillod gravipoteuntipl or g~eoprtential)
It IN Con1v0un18ot to U111 111ph(riCAl coordinates, r, P, andI )) whore
ilio' origin in at tho naxii conter; r is distance from I.Caoconter to

P1 18 conmplaimeni o1 gooeunirmi l'(Iat ituide of 1 ; j, im unait lungi-
I ii 1 fromii Gite' uwirh * 1I sii*hor~iv ciiiutrdIIIIIIItN Laipi ace 's h~ uji~o

taiv 1110 t lIorinm

aimp TT-r -

10,4 U reprosentm tho 6eopulnit mit a I .Tha ;.ronrri I so] ut ion t c
I Iutjalti n xptJLso I.IIt tc orr it ocommentdod bty tho

iiih i~i.ia Imtia]L Amt~ronommi'n1 IjItIonm in 19.12 Is

A

IL Ii E L(_!L-.) I. (,ino)(C cHi + S H111nv~
~I Ai~ IMOD r 1,1 lf ri, M

N% 11, ,411. I'(1IIIjIrosem H 11hu. cmii rim I I-0,av I I t lonal partimntut r; n~ nad m

11111 IMmum-1mila t. Ive. I auliceti ro W,' 1 11:tamum Ill- 111 10ir' ~~ ou eit, 1,06111C-



SC and 8 are experimentnlly dotermined coefficients; P (sinp)
Sis an associat.ed Legendre polynomial. A simple, Legendre poly-

nomial P (x), where x is equal to min 10 in this case, may be do-

fined by Rodriques' formula:
I dn

2 ni dx~ 4

The corresponding assoo-;ated Logondre polynomial of mth order and
nth degree is d'

Pn,n(X) .X•• -- pn(x)dxm

Noto that for n O, Pnm (x) reduoen to Pn (x). Also note bhat

for m > no Pn,m (x) relunes to zero. See Section 3.0 for recursive

methods in computing Legendre associated polynomrnals.

These funotions ar,, incidentally related to Oegenbsuer po)ynonftala:

"T•M  (x) p (x
n-r dm ndxm

and T (x) P n (x) n.K

ITf we actempt to evaluate U or the asuelerations associated with

U, wo note that nlo.hougli the products of tho associated Legendre

polynomials and their corresponding numerical coei'ficleots de-
cline only moderately with increasing degree and order, the

nassociated Legendre polynomials increase grontly ti value and the

numerical coefficients decrease greatly. hils u,,i.umstance may

lead to loss in computational accuracy and alsc to n misinter-

pretation of the importance of individual numerical coefficients.
To improve this situation, Jt; han become standard prantine to

multip~ly the ,umer'c-al coetf'le.ltin, bly normal izing factors such

that the re:.xw'l.ting, nortnnili;.',I c•.tI'l]cltonto have values approxi-

mately proportional to their, "f•f'r.ot.z"; the corresponding associ-

ated Legendro polynomials irv. of coinise divided by these same
factors in order to satisify the .quation for II.

Tr-2
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Consider the following four products extracted from the equation

for U:
P n~m (sin*) CC n,m con m 7] with m 0 0*

(sin$) CSm sin m y] with m m 0,

Pnm (sin$) [On,m con m I1 with m a 0.
Plr' (sint) [S... sinm ywith m - 0.

The fourth produot is clearly zteo at all pointq on the earth's

surface and hence In of no interest in regard to normalization.
IT we compute the root mean square over a unit sphere for each o0
the other three pro4uots-oortsidering thin to be a measure of

their effeot---we obtain respectively:
iiN Onm , 1

x S nm P

whoro .... .. _ _

N (n+m) t
N = "{n-mj I k2n•ATy.

zirWI where X I for m. 0=, and X a 2 for m / 0. Consequently,
tIhls factor N Is commonly used for normalization. To change

oonventional Cnm azd S to normalized nm a nd IT,

"a = N CnO

nm n,m

'rhia elunge :neoessittes a oorresponding and desirable ohange in

(sinO) '

nm (sin.) - (I/N) P (sinc).
n~m n~m
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As a consequence, 15 11mo - ~ and !T~f do not show the strong

trends observed Inl P ~ C nmand 8 S ; and the val.ues of'C n~
and are approximately proportional to their effects.

n~m

The type of normalization just described is called "full normali-

zation" or "Kaula nortua~lzation."1 There are alternative forms
uded for simplicity. One suoh form uses

hicoh Is called simply "normalization".

Another form uses

w~hich is called APL normalization.

The literatup'e does not always specify which form of normalization
Is used1 and the reader may be requireu to take a given numerical
normaalized coefficient and unnormalize it by various methods to

compare with a known unnormalized value.

Table I gives the Legendre polynomials and a~ssociated Legendre
polynomials up through (n,m m 6, 6). Table 11 gives the correspond-

Ing normalization factors. Pn (x) Is called a tonal harmonic
n~nm

(n - m > 0). ~nm (x) is called a tesseral harmonic when

(n >m> 0).

For our applications

P (,'m W is equivalent to P nm(rsiný).

Therefore, for example, in Table I

P1 1l (x) 0 P,,1 (min$) w coou*

P , x) 0 P3 2 (sinlo) w 15 sin$ 084

TV%4



It holilild be noted that to .void t.he use o a comma, many writers

Pm (x) instead of Pn,m (x).

A'ao 4here there is no risk of confusion, many writers use
Pri Wx inst6ad of Pnm()

These variations simply represent differences in notation.

For purposes of this disoubsion, the geopotential form
recommended by the Xnternational Astronomical Union in 1962 will
bo referred to as the st&ndard form and all others will be com-

pared to it. An obvious variation of the standard form is

Sn ~n
"U X. I (A) P (uino)(C coo m Y + sn. sin m y)PnMO M"O r l nom •

In thin form i0,0 ts defined to be unity,* All other symbols
(J) pt.in the ulame meaning and have the same valuen that they have

1n the standard form. Another obvious variation of the standard
form ia

n.. rn, n1ý: •- ' ý, .1 . ]> Y - On n ( ile) -f ;' (("n m (),a m 'Y

., ' ,iin m Y) Fili (sinO)]}

wlhw, , e ti .1rat r.tumzltion in over zonals only.

"il ili•.tAono prefer the (J, K) notation trn place of the.:, ') iotati.on. 11he equationa for 11 are tho slnLe at those
.,,'.,1.u,,y 4gtvrn with the uexteption thut a negative aign repfla.el-.

" l i '19W, 11,wi•l: puomrncidei Lh i L w It be definod as O.

OM /1l(, :f;ld t lld (!()I() lie permnitted to depart from unity. Thiv

., ,.r i•r~i •d IIon h'it s n,,i g .i i'ed gcrne rtl acceptance.



TABLE I
LEGENDRE POLYNOMI ALS

AND

ASSOCIATED LEGENDRE POLYNOMIALS K'

n m P m(X)

0 0 1

1 0
1/2

2 0 O.x 1)/
SI ( 2

1. 5x(2-x")

2 2 3(1-x-)
3 0 (5x .x)lP

3 1 (1-y) x

3 2 15x(I-x')

3 3 15(1-x')

4 0 (,5x4-3_ox2 +3)/83

4 1 (I1(-x' (35x ,2 2_

4 2 0. -x ) (1o5x-15)/•

4 3 205x(1-x )3/2

4 4 105(1-x 2 )

5 0 (63x 7ox3+-15x)/8
. 1. /2 n r

.5 (I-x-) (5l5x -210x-+15)/,l,

5 (a-x 2 ) (315x3-105x)/2

5 3 (1-xP)312 (945x'-105)/2

5 4 945x(1-x 2 )

5 9 5(1-x 2 )

g'i-f



TABLE I (Contd)

n m prim(x)

6 0 (231x 6 -315x 4 +105x 2_5)/16
1/2

6 1 (1-x)/ (693x -630x 3 +105x)/8

6 (1-x 2 ) (34I65x -189ox +105)/8
3/2

6 3 (l-x)2 (3465x 3 -945x)/2

2)
6 4 (1-x 2 ) (10395x 2 -945)/2

26 5 10395x(1-x

6 6 10395(1-x")

T ,

I
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TABLE II
VARIOUS NORMALIZATION FACTORS

APL Full
n m Nornmalizatlon Normalization Normalization

0 0 1.000000 1.000000 1.000000
1 0 1.000000 1.000000 0.5773503
1 1 1. 414n.14 1.000000 0.5703503
2 0 1.00U0OO 1.000000 0.44723.36
2 1 2,44949o 1.732051 0.7745967
2 2 4.898979 3.'t64iOi 3.549193
3 0 1.000000 1.000000 O. 3 77964 5

3 3 3.464102 2.449490 0.9258202-

.3 2 10.95445 7.745966 2.92/00
3 3 26.83282 18.97367 7.171-373
4 0 1.000000 1.000000 0.5333333
4 1 4,472136 3.,16278 1.054093
4 2 18.97367 13.416i4i 4.472137
4 3 70.99296 50.19960 16.73320
4 4 200.7984 141.9859 47.32863
5 0 1.000000 3.000000 0.3015113
5 1 5.477226 3.872984 1.167749
5 2 28.98275 20,49390 6.17914.5
5 3 141.9859 100.3992 30.27150
5 4 602.3952 425.9577 128.4311
5 5 1904.941 1346.997 406.1349
6 0 I.0000(p0 1.000000 0.2773501
6 1 6 .48074I1 4.582576 1.270978

40.98760 28.982's 8.038369
6 3 245.9268 175,P965 '48.23021
6 4 1346,997 952.4707 264.1678
6 r 6317.974 4467.482 1239.057
6 6 23886.11 15475.82 4292.220
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.. •': ~ ~ I I llI" . - m . . .

the positive sign ahead of the first summation. The last

* mentioned equation thus transforms to

, I - x (1)E (s~n + (n (3 +
nmi r mrni .. O m

+ K nm sin m y) Pnm (sin.)))

As a result

0n,m - "Jn~m and S - n-K,m

alsOC n "Jn

A form frequently used in geodesy is

S 11 n+l
s ( 7 ) (Am 0os m 'Y + B,, sin m y) Pn (Zino)
n.oO m-O , n

For thia relation

and S9 Bn)/(l••)

Another form used by geodesists Is

Sn n+l

TU - 2 ( (an cos m 'y + bnmin m y) P n,(nO),
r=O m=O

whore -n

r n,m () n,m

A ;i'orr sometimes used by JPL in

Ii -. i• -I . (~) P2 (sr..) - 1I (1) Pa(sinO) + D P 1(sVin4' . 2

T-9 l1



The conversion relations are

C2 , 0

a3,0 3o - H
C400 - +3 D

The coefficients in front of J, II, and D) are actually combined
with the Legendre polynomial, which is not explicitly given in
their expression for U.

A form usod by Sterne, Baker, Herrick and others is nit follows:

U ! (K 2  g) - l 3  4~un' 4 si)

The conversion relations are

C H3,0

The coefficients in front of J, I.T, and K are actually combired

with the Legendre polynomial, which is not given explicitly In

the;Ir expression for U.

SA form used in an older ETF computer program is

Tj I (SIn0) 0~P(sn)
S2 --- P4 (sine;))

r1 -

T-10
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The conversion relationo are

C2Oo - +/(,M V)

C40 + 0,/(5r)

Again the constant coefficients in the denominators of the terms

contairtnn a and 0 are actually combined with the Legendre

polyrn omialp which in not explioctly given in the original ex-

pression for U. Notc that ( and 0 are not dimenrionless.

Wl now consider forms which make use of amplitude and phase

tln3e. A form sometimes used by Smithsonian and SMI is as

ro3Iows:

S i nl m=On1 4
"1'ho' oonveion relations are

(1nam anm oo (M 'nm)

/nm nam $in (M nom)

'1 y, "or Im > 0,

nam "+ njm njm

njM

, L~IL IU OV.t.v.-ited in region 0n ± 180"
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For m O 0p

A. form used by JPL, SOP and also by ITR and recommended by

3nternational Geophysical Union is

U, - • (1- nZ (•)n [Jn Pn (si.ne)U,,
* . nm (sino) coe(m (V-Tnm)))

The conversion relations for (m > O) are

nm Jm coso(m ) ,
Sn om " n ,m e: n( m 7 ~ ) ,..

sn (m Ynam "nom nm

Jm On 2+4 ~S ,m2UL

n~m

where tan"l is evaluated in region 00 +.1800

For m a 0

* n,0 " n,o

All these various forms clearly lead to oonfasion. Sinoe none of
the variant forms seems to have any advantage over the standard
form, the standard form is becoming almost universally accepted.
The same normalization formulas discussed in connection with the
standard form apply also to the variant forms. Wherever the index

T-12



m is omitted from a coefficient or polynomial in the previouo

discussion# m is zero. Also when m, Is zero, Sem* KNm and Ynpm

may be set to zero.

A great deal of confusion exists over the inter-relationships be-
tweon the geopotential model and the earth spheroid. The geopo-
tential U desoribes the gravitational potential outside the earth
and il referenced co a coordinate system with origin at the
dynamical or mass center. The geoid is an equipotential surface

described by the combination of gravitational and rotational
potenbial, This combined potential W is given by

W a U +_1 2 r2 0o82 ,

whore ws is earth rotation rate and where W is chosen such that
the corresponding equipotential surface corresponds most closely
to the mean surface of the free oceans. The geold is approximated
by a prolate spheroid whioh most closely fits the Scold and whose
center coincides with the mass center of the earth. Splheroids

C) determined since 1966 have centers agreeing within 15 meters of
each other and semi-axes agreeing within about 10 meters, it is
common practice to assume that all spheroids have parallel
rectangular axes. Possible small tilts in the datums are present-
ly ignored at AVETR,

When a laboratory establishes a geopotential. model and
accompanying spherold, it simultaneously arrives at the ooordi-
nates for all the tracking sites used in the adjustment. These
site awrations, the geopotential model and the spheroid consti-
tute a compatible set. Purthermore, for purposes of compatibility,

nhilts are determinvid which permit the transfer of sites located I
on other spheroids t the spheroid assoolated with the geopotential

model. (See Appendix D,)

Oo•sequently an ideal situation, and one which in generally
attainable, is to use a spheroid consistent with the geopotential
model and express all site locations on that spheroid. Sometimes,
however, for some reason it is desirable to use a spheroid different
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frinm titut arnsociatod with tht' geopotentinl. Toodu1 T its prac't tci
Is j'nvrpl 1y Hoi~*siac~tory Ifr the extrnneow-s riphoroid hois n contor

wY.Iiii 15 motors of that associatod with the -ronpotontiol model

on(] It the vitJuon of Rt agree to 1 ppm. 1f the spheroid dif-
forencos lie outside theme limits, errors dovelolop which usually

cannot be ir~norod but which can in large part be correctod, Tho

largest isource of orror and one which moat computer programs can

corroct to In the g~ravitatio~nal potential for an off-contor

spheroid, It is noCessary to adid appropriateC vnalues of CO)

C,,, nd81,1t tho iroopotential model Ps dosorlbod In Section
ý,,Inclusion of tmaterms takon cpre or perhiaps 00%, of tho

toa rror, but sometimes the romalning 10% in still intolorably

larRco. The romaining error (gonertilly incorrect ible) Arispoe from~
#a]lSo assumptions In rogard to rotational characteristics of 1ho

6arth and its Atmosphere and from an orroneouts reference AurfaCV

for the atmospherco. Most of the datums and aphoroid#4 shown inII

T'h11c0 I of Appendix D are unsatisfactory for tranjoctoey equationm
bf motion oven with geopotential modols modifiod b'y npproprinto

valules of' Cl, 0, C39 1 and 8,.For examplo, tho tise of N4AD-27 an

Clarke-2B66 is not recommended for use with trajectory equatlons

Sotni' of the older geopotential inodols havo poor valucs for 11. 11,
93

in :,,ood prantico always to use I. , 119890o.t' +i 0.1 1km~ /Nov,* This

iii the most Accurate detormination at present, Some traJectorlos

and calibration oxercisos arc extrumely monsitive 10 the' VAIlI

used for 4,

Ono further point. of possible concern Is the oarth's atmosphere%.

Strictly mpeaking, Iteopotentinl models determined from matellito

data apply only outside the atmosphere. Even the use of Laplace'sI
Eqtiintion inside the atmosphere Is not strictly correct, Actually,

at proennt accuracy lovols, the offoct of the atmosphere upon all

tho coefficients except i.x is negligible, The atmosphere is
rosponsible for 1 ppm of the published valuesn for ýi.. it in

hardly oven worthwhile to correct; ýt for trajoctories insido the

atmoaphore, however, since drag uncertaintics overwhelm this
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small correction.

A typical modern* geopotential model is included in this appendix

simply as an example. This model was developed at Goddard by a

simple averaging of coefficients from many published models. It

bears the ETR catalog number oa SA-22. Evaluations here at ETR

show it to be one of the more accurate unclassified models. This

model is incidentally a trumication of a larger model. Many

analysts have been reluctant to truncate geopotential models be-

cause of the correlations among the coeiticients - correlations

of perhaps 0.2. Recent studies by the author indicate that al-

though truncation of a larger model is not an ideal method for

obtaining a smaller model, it Is acceptable am a practical

measure. A simple and somewhat better method is to transform the

lorger model to a smaller model. Probably the simplest suitable

transformation procedure is the following two-stop process:

(1) Using an accurste, largo geopotential model and the ZFG ca-

ordinate system (Section V11), generate a series of trajectories

of only those types to be used subsequently with the small model;

(2) Treating the IWG time points as observations and using an

a priori small geopotential model obtained by truncation, perform

a Lonst-squares, multiple-arc fitting process, adjusting the

goopotential coefficients in the small model. Unless the tra-

,ectorioa used In the data generation are uniformly distributed

over the entire earth, the resulting small model will be biased

1y the transformation and must be used only over the pre-selectod

region used in the generation.

',: bibliography contains a reference describing the accuracy of

Hi(e coofficients In• modern largo geopotential models. The

approacli dmisussed there has boon used to updato error ostimatos

to the 191:1-15 or&, and these updated estimates are shown in

STnblo IV at the end of this appendix,

F

j,,1i. 137U
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2.0 MIODIFICATIC'N OF GEOPOTBNTIAL MODELS FOR
APPLICATION WITH OFF-CNTER EARTH SPHEROIDS

Occasionally a missile test program stipulates the uso of an old
spheroid whose center is considerably different frort the center

of mass of the earth, In powered-flight trajectory computations

this stipulation presonts no problem whatever. In free-flight

trajectory computations using equations of motionp some correc-

tive measures may be necossary.

An obvious approach is to tranaform the sites to a modern

spheroid, compute the trajectory, and then transform tile trajed-

tory back to the old spheroid. An alternative approach, which hal
advantages in some ciroumetances, is to work ontirel- with thle old

spheroid but to modify the geopotential model to account for the

discrepancy between the center of mass of the earth and the center

of the coordinate system, This alternative approach will be

described here.

Modern geopotential models do not contain terms in C1 0, C1 1 and
81,1 because with coordinate systems centered at the mass canter

these terms are zero. These three coefficients have the following

meaning: C1 0 is the number of e.ru.* from an equatorial plane

through the center of mass JA the origin of coordinates, positive

in a southerly direction, C 1  is the number of e.ru. tc2 a
meridional plane through 90 east and west longitudes &nd the

center of mass I the origin of coordinateu, positIva on the aide

2way from Greenwich, S.ll in number of e.r.u. .from a meridioial

plane through Greenwich including the center of mass to the
origin of coordinates, positive on went side of Greenwich. An

example will be presented based on data given in Appendix D.

Assume the center of SAO-67 mpheroid is exactly at the mass

center of the earth. Then if Mercury-Fischer 1960 is used, the

origin of the coordinate system relative to the center of mass im

*e.r.u. represents earth radiuv units.
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(Tnhe 1,Appendix U.):

.0 -20 Mn

E~xprr'amod in vr.u., themo are

+8,*R90 x 1O0

G -3,27 x 10,06

'rhome correspond thei'orore tu

C1 ,1  . *510  +0,27 x 10-0

Covroc~tiv moa iiioi~lO of third typo in tho goopotontial art) hivd1ý

tivor worth makintg for discropancion loom than 15 moetors botwooti

v~iiilor of' masm wid center of coordinate x~at'torn Deyond 15 motfirx

1w' ev rov hocomes increinsinrg1y important, An unucorrected orror

in ucntc'r of cooadineto msytoin shows Lip asi cyclic orrorm in tho'
colaptiit cc) trnajctorý with ampli udox o.(' the ordlur of t ho misgsinq

*C O , nd S11 and with froquorucie. rssociated wilh t-he
* orhital periolds and the rotation rato of th', c~arth * In atddit ionu,

1iir ho iny ho nI moculnr ureor whoso magnitudc is depondont upon

11w ujAzn of the, ininninir C1 ,) C,0' and 8,,, and also ~iij~ou IIuu

r ~Iini'-t h ot iliv ira~jctc try (uovCrIod by the trnching' tnalutrunntatiou.

A~i Ol)IcIaund utrl~ier in this uppendix, tharo arc. other ~urrurs

I M~ocututod w~ith ihJ'-conter splivroids, smote of which nra not. roudily

c'orroctahlo,

T-1 7



3.(j CAMMM¶ATION OF ACCELERATION COMPONO4TS

Otiv of the most t ine-constuning onperntiouts in orbit deteormnafltic'nt
In conmpl'tntnn of nrpvitntional necclerntiotis (duo tn ceontrlil
hhdy 1* Coflnt(lItintIy , n. Igrqeat lon] of eperlimontation in IIM3011t.,
Inrto optimizing~ the conmpLt-tatlow * Evalunt iomwm Ot Acro1.npov,
ESSAO Data Dywrimisoa UTR and olmanyhorc' j~onornhly agrov thrit for
mmnnil goopbtontiai models (dogroo no higher than 4) it Is
proftornble to program the ocoe~nrationoompronenta diroct3,' in
ieontfingtilar coordinanaa.,M For largeor tnodols it is~ prvfl~rphl to
UNI.'. zocitraivo methods to arrlvo at anoccoration como~njeantn Ali itin
Ohut-.north-.rAdial coordinate system, Fromn h1ro on~ tIWZ'Q noa
i'iinor diftoronoee in mothocim, 11robably thc' simnp1Qot wn)y to

bbmplatv the transformation is to r.urtorm P rota~tion tn ihn body
-Ctentovd rectangular system. This to the method presenutly used

i~y Anroulpacjo and ICTR itnd in tho one presented hora,

The' ooloration comnponents in tho igeoccmntric Garthi fixecI HFC
Oborcdinato system* are

I,-min V -min 0Cox Co to@Coll V'

cou - -mn Bill Y ca saIn -y i

*SePIiiio I I for d0cucriptiofl of LIG myatem rind
I~~. 1r~for 0-y'r uiystain.

......... 1.



whore

1 ')tr

nm P (in 0) (OC sin my- 8nm cot; 111Y']

no-1 m!4 m mn

3 MI

* [ Nnax)(sin)) OB k. C~moo m'V+Snmsin my
r ~nm ]

a .

1111dWhO war'e O rin '0) reprcnventa the durivntivo of' the ],ejendru
ftiriction with reiipoat to sin 40.

11 -riurai voý 1'ornvu1'n! utied in computing Legerndre nsLoo~i1tod I'ntition3

:izid IW(tr der.1va tiVen are no roniowe (whore the argument F31 ri ha a
kwn om:Itted but nhouid be understood) :

H ~n-3

1"or inItin] vn'iucfI useC V0  Pý miWd 11 u Ln 4).

T-.19



-.... ....__ _ .a ... .....~

Form in 0

P /0c o a±i*p /o -ri~) ~cs*/nm
nm Lnl uin Pr_"/o ,(~-1)n-'..,m/0 j

rnm cop&'' (fl+fl)P ni ~in/008 *-n min P I P/Cos

IPor initial valiuen use P M n, 0 And

r ,/000~~ ' (2m-1) c08m-1 4

1- tEM.IJ~ANCE EP'FEC-1's

10,LionuInco arfocts, primarily lii~-traok, nre obaurved An loni.-are

troJectcriqS, Thoy ttro most pronounced in poiiir or nenr-polar

orhits iind MAuY show amplItudom i p to a thotisnn'j foci or so

d0n01i'ndAI upon tho degroo Of resonance. Am an exempla, P'

1F111"llAL vwith Pori.od Of 011)U acconds will disp~lay resonniax

seisuciaotrl with the (17,11), (.16,14)t (115,14) nnd (14,14)

grcj~nuntialcoofficiuiits; e~nd numericail vilitaw3 for those&c cu-J

O.r icivnts s~hould bo includod lit tho rrwopotantin'i mociel usjod

wvithi this SýI toll itc ovenl thou'j~h no othor toi-ma hijthor t h~i (,, M)

nirc I ncl(' Idd. Resonant periods L nd corre,vponditi w ortdcw of thtŽ

)itirmontic~ orbfic'ienlts are listed An Toblo M1. Although every

non-zonal term to resonant at some period, it in common practice
to define "reoonance, Wools an thoane with m a: 12. This parlance
is Implied in Table IV.
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U TABLE 711

SA~hLLLITE RESONANT PL-RIODS AND THE
coRKE SpONDING ORDER OF THE HARMONIC COEPFICIENTS

Period (S8(c) i Period (Sec) m

88760 to RO5'0 1 98O0 Lo 9290 0

4,1380 to 41780 8880 to 8300 10
.9t90 to 17R850 8070 to 7600 11

. 4, 0 to 1'0890 4 7,100 1.,, 6960

17750 te, 16710 5 6830 to fl,123 11

1,1790 to 139e0 r) n341 to 5970 14

12680 to 11940 7 5917 to 5571 15

1.1100 to 10450 8 5148 to 5222 11

4.A

ST-21
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MODEL SA-22 ,
(Multiply all and T Values by 10-6)

n m

2 0 -484.1743
2 2 2.:4 -1.398

3 0 00.62
3 • 1.99 0.219
3 2 o.831t -. 653
3 3 0.726 .•71

4 0 0.54.97
4 1 -. 550*-52
4 2 0.316 0.604

3 0.915 .. 121
4 -. 125 0. 21

5 0 0.0633 -

5 1 -. 0'7 - .061
5 2 0.553 - .248

5 357 - .012
5:1 2 0.117
5 5 0,040 .501

6 0 .1792 .
6 1 -.086 0.056
6 2 0.027 - .329
6 0.051 0,079
64 -. 090 - .459
6 5 -. 220 - .501
6 6 -. 072 - .261

7 0 0.0860 -
7 1 0.159 0.039
7 2 0:321 0.0,9
7 0.206 -. 9
7 .225 03
7 5 0.055 04o1
7 6 -.~266 0 315
7 7 0.070 0.043
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MODEL SA-22 (Contd)

Un In "•

8 0 0.0655
8 047 0.028

2 0.059 0.020

8 -.050 0.021
8 6 .og 0.259
8 7 0.040 0.025
8 8 -.142 0.020

12 12 -. 031 0.001

13 12 -. 070 0.068
13 - -. 063 0.059

14 12 0.009 -. 0,5F4 13 0.00 0.089
1414 -. o04 -.009

15 12 079 -.010
15 13 -. 019
15 14 00 .81
15 1~5 -.005 11

17 13 0.006 0.011
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TABLE IV

AVERAGE KE-SIGMA ERROR ESTIMATES

F LOR FULY NORMALIZZD OXOPOTUTIAAL CCI"FFJCI INT0

(4_VALEJE CALERD uBY 10)

Non-Resonant -onant

DeKree Zonals TOomeralo & Sectoriale Teoseralm & Bectortals
(Order: • 12) (Order: 12, 13, 14)

0 1 ppm --

.1 28. 17.

2 0.6 1.4 ---

3 0.7 3.0 "-

"4 0.8 1.9

5 1.0 3.5 -

6 1.1 2. --3m

7 1.2 3.9 ---

a 1.4 2.8 -m,

•i~ 15 .5 4.2 .t ,

10 1.6 3. 2.3m

J.11 .s4.4mm
12 1.!) 3.5 1.9
13 2.0 2.4.5
14 2.2 4.02.7

15 2.3 4.6 2.3
16 2.4 4.3 2.4
17 2.5 m 2.6

1s 2.7 m 2,7

19 2.8 2.8
20 2.9 3m.e

21 3.1 3.1 m3

22 3.2 3,2
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APPENDIX U

Differential Expreasions Relating Errors in

Initial Conditibna to Ephomeris Errors

In examining the unoertainties associated with orbital parameters

after an orbit determination, an analyst may have diffioulty in
eatimatlng the effect of these small uncertainties upon tho sub-
vucuent ophemers. The following equations provide accurate

quantitative answers to such questions. Abbreviations and symbols

Lare explhined at the end of th:Ls appendix.

H + Aa 10l-e costf) -. ne~sin f (t,¶))

- iAe a costf + 2ao sin~ f

A Tv nae sinf

4 Ab ( pa n ([-2(t• o) + 0 rae(t'to)2 sin r

- • (,&b)paf3(t-to)' 4
e sin (tf-
2 na

C - A^• f r(-e coo t) sin u}
+ AQ, a (I..e coof si in i oo u0

+ Ab t . pa wU), (sin I sin u)(t-to)(1-e 0o0 8)l

3 n (l+e con t) (t-r

+ A? a(2-e 0o0 r) in f

+ ,\0, n(I-e cos f) cos i4

' /&11t n(1-e 00os r4

- ^r Ina(1e cos f00

-. Ab pý 1)'8n (3- or)(t-t 0 )2}

14e os f(
i 2na

' ! U-1.
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F'igure 1 Density Factor vs Eccenitricity

for Various Perigee Distances
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AB]BRIWIATIONS AND SYMBO1,1 FOR APPENDIX U

______ Defrinition

S(n,,L) ooordinates of teat object in a moving
rectangular coordinate system with origin
at instantaneous position of reference
object. H extends outward along radius
vector. L is in the orbit plane, perpen-
dioular to H and in the direction of
mobion of the reference object. C is
perpendicular to orbit plane and opposite
to angular momentum vector.

Classical orbital elements, a is semi-
major axis. e Is eccentricity. I is In-
clination angle. n is 3ongitude of
ascending node. w is argument of perigee.
T is time of perigee passage.

r True anomaly,

f+ Argument of the latitude.

n Mean motion.

b w C Ballistic coefficient or drag parameter.

((|(O,' A# m) 0D is dimensionless drag coeftioient, A

is frontal area of natellite. m in mass
of satellite.

StEffeocive atmospheric density. It is vonit
fraction of the density at perigee. Seo
Figure 1.

K Gravitational parameter of' Earth. Equals
aM where 0 is Newton's gravitational oor-
stant and M@ is mass of Earth.

(An1,&o.AtAi , Errors in the orbital elements, drng paramoter'
A,,,M Ab t 1K and gravitational parameter at epoch. Or

alternatively, oharaoterinltins of teat orbit
minuo characteristics of reference orbit.
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t TIme of epoch.

t •e

w Rotational rate of atmosphere about earth
*xis, asaumed t6 be equal to rotational
rate of earth. Also represents rotational
rate of earth.

u-

P.4
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APPENDIX V

Q Orthogonal Geo.desio Ooordinate System

For this discussion a geodesic Il defined as a curve lying on the

su'faoe or the earth spheroid and representing the minimum path

length between two points located on that surface. A spheroid

trace is defined as the path on the earth spheroid surface traced

out by a perpendioular to the earth spheroid surface from some
moving vehicle - ship, aircraft or missile, Of all the simple

mat hematioal curves, the geodesic frequently agrses most closely

with the actual spheroid trace and hence serves as a useful

roforence coordinate axis. The geodesic may connect the origin
(0) nt teit point of departure with the termiius (T) at the point

of arrivnlw or in the came of a missile at the intended point of

mrrival. Thin reference coordinate axis will be called 0

Another coordinate axis 00 is defined as follows:

At some particular time there is a point P1 established or. the

U �spheroid surface by a perpendicular from the vehicle P to the

spheroid surface. At that same Insta.it there is some other point

P1, located kin the coordinate axis 0 such that a geodesic con-

nesting P1 and P, will intersect perpendicularly with T his

geodesic eonnecting points P1 and P2 defines a moving coordinate
:ixIU uO. The coordinates of the point P1 are therefore:

* m.• 0 P . )Distance is measured positively from

0 to T along the G axid. Xf an imaginary observer traveling

vroui 0 toward T arrivew at PP and sees P1 off to the left, thor
LI,, dlistunon along the geodesic from P2 to Pi is positive; and if
11, is off to the right, then the distance from P2 to PI is nega-

tiv,,. Tho ax .ou Oil and O0 clearly form a curvilinear- coordinete

!lyInt;('f, fnd diutances 6 and =- are not straight line distances
W lit; tire disritnces measured along geodesics.

Th, third noordin4ýi required to define the vehicle position P is

the height: 01 a ", I" i a straight 3ine distance. nI Is
* ponitive if P is above the spheroid surface and negative If P In

V-I



below the spheroid surfaoe. GL aO 0 OH form a right handed system:

• p

Pl

SL-,

fhe problem to be conaidered In development of transformation
equations between the 6L 00 OH ooordinate system desoribed here
and the 0 -y h ooordinate system desoribed on Page 16. We see

tnimnediately that uH 0 h and henoe we may devote all our attention
to ouilves on the surtaoe of spheroid involving only $, yo 0 L and

If one is given the ooordinates 0 L and 0 of the point P1 and
either the geodetlo position ($O' y0 ) of 0 and (4*, 'T) ,f T or
the geodetio position of 0 and the forward azimuth AOT at 0, then
one oan straightforwardly obtain the latitude and longitude ($,1

'1) or P1 by 0odano's inverse and direot methods. (See Appendix
F.) Consequently, the only problem remaining to be disoussed is
the transformation from l y1 ) to (OL, 00). The prooedure is
fn Iterative one:

(I) Determine the length g.1 of geodeoio from (•00 y0 ) to
($10 y1 ) by Sodano's Inverse method to uoa as first

estimate of the geodesio 9O2 from 0 to P2 '

(2) Obtain an estimate of ooordinates of P• (#p' y2 ) by
applying Sodano's direct method using known values

V-2



III

of 400 y0, AOT and the estimated value for 02'

(•) Determine back azimuth A2O at P2 oorresponding to
geodesio 02,

(4) Determine geodesin ael from P2 to PI and cor-
responding formard azimuth A21.

(5) Y•or$t 0OS ( A20) N 0O , a' the cosine of angle
formed by Interseotion of 902 and 921 at ?2'

(6) Deorsent 602 by somr small value an6 repeat
steps 2 - 5.

(7) Two passes through Steps 2 - 5 with different

values of 02 give a numerioal partial.

(~.) ~902

(8). The iterative equation to reduoe coo a to zero
and arrive at a final value for 902 in

19021 t tRI - -(oo,<
[62i+1 [ Iy~

02 I2
(9) Convergence is rapid and iteration is terminated

when nuocesbive diffez'enoes In estimates of
become less than some predetermined value.

(I0) The final value of 902 and the final value of

2,l represent the coordinates OL and 0.
respectively of the point P1.

V-3I
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(i) PFor many applications one pass through Steps i,
2 and 4 is suffioiently aoourate, because Is

usually many times, larger than F21" 1or almost
all applications one pass through Steps 1 - 7 and

a second pass through Steps 2 - 4 will be

sufticient.

MCAMPI.ZtI

Let 0 28"

0 * P800

AO 1100

a 2? A~3948!)984•950

-78.0894o766940

a - 6378140 meters

1/f 298.25

solve for 0a and 0(

(The answer Is known to bet OL - 200000 mi 00 3000 m,.)

F ~SOLUTVION;
(Numbers in pnrentheses represent step numbers In
provious dimouasIon.)

(1) go, 200022.443269 eat gOea

(;•,) $, * 27,3695330078
7P a .8.1000076956

(3) A, 0  - ;290.88•826201

VI) gl 30o0,08397063

A•I * 20.i4541998564
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(5) AI-A,. 0 , 89,571'57365 . a

con a .,00748087121

(6) Take 602 - 5 a 200017.43269

(2) 02 N 27.3695490919

"IVa -78.1000549159

(3) A20  a 290.8828o4492

(4) gi • 3000.05074o54

A2 1  N 20.54966457'1

(5) A21-A20 a 89.666860085 a a

0o0n a - .00a81435563

(7) A oos a a -. 00166651558

Ag02  u.

A( .000333303116
A _02

(8) O , 200017.443269 - oo58140 6

a 199999.998621

(2) 0,2 w 27.3696052091
yr - -78.1002196697

(3) A, 0  , ?90.88272875

(4) 221  2999.99995916

At this stage the aomputed values for OL and 00, are

0 19999S).986p1 meters

a" 2999.99995976 meters
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Comparison with the known anewer shows the errors to be:
,' .05 inch

O0 .002 inah

Since we are down to the precision level 'ot the programs
further iterqltiorns here would not be useful. In a normal

operation when the answer is not known, one further itera-

tion might be made to be sure of convergence.

...ONQ Orthogonal geodesic coordinates (also known as Laborde

P'ojocntiona) form the basis~ Cor conformal grid maps such as
Unlversti3 Transverse Mercator (Appendix W). Steps (1) and ($,) on

p. V-2 arnd V-3, used to provide a first estimate for point P2' 2,
-can causo diffioulties in the event that the coordinate 0 is

Bal'ge re:a"tive to GL. This is a highly unlikely circumstliC-i in

present miltile arid satellite applications. If such a situation

-I; ti-ntcpaied in nome partioular applioation, then a spherica.

"solution should be substituted for making the first estimate, ,
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APPENDIX W

0 ,ZNIVERSAL TRANSVERSE MERCATOR (UTM)
COORDINATE SYSTEM

UTM 1In a con1'ormMl coordinate system used for artillerV and short
r'ange miusile maps. UTM describes the earth spheroidal surface
from R-0 0 south latitude to 800 north latitude, with 600 zones in

the aouthern homisph;re an6 600 zones in the northern hemisphere.
Each zone covers 60 in longitude and 80 in latitude. The longi-
tudinal boundaries of the zones begin at 1800 from Greenwich and

continue eastward with 1860 E, 1920 E, 1980 E, etc., the longi-
tudinal regions being numbered 1, 2, 3 ... 60. The latitudinal
botindaries of the zones begin at 800 S and continue nurthward
with 72" S, 640 S, 560 S, etc., the latitudinal regions being
lettered 0DEQHJKLMKQRSTUW. Thus the point at lF90 E longitude
and 40 N latitude is at tne center of zone 2M. Each zone is
ch~iracterized by an Interior rectangular grid system and by it

central meridian. The central meridian for zone IP, for example,
!3 ti ,t 1830 A longitude, Grild coordinates (northing and easting)

describe the position of a point within a zone. j

Transformation equatioul presented here were obtained from Ist

(Toodetic Survey Squadron, Warren APB, Wyoming, and represent
modif'ication~s of those given in U. S. Army TM5-;?41-8. These
mudifications are minor and do not represent an impairment of

rlcicuracy.

Al'I l.onritudeu are measured positive east from Greenwich.
,iu'ade r :ie measured positive north of the equator and negat~ve

;, s,3,,t:ti of eq(uator. In conformance with normal tesege N will be

i Lo dornote north latitude and also northing. Also E will be
'tiwod to denote east longitude and also easting. The conte!xt will
pr,-vrent. ambiguity. Twelve digit floating point computations are

: • th~(j1•te. The following notation is used-

W-l
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1, k - goodetic latitude and longitude

N, E = northing and easting

NO3 EO t false northing and false ensting

longitude of central meridian

ok Bsoale factor

k0 scale factor at central meridian

N' w (NANo)/kO, true northing

E I . (E-Eo)/ko, true easting

K'V , grid convergence (geodetic azimuth minus

grid azimuth, approximately)

ai - major and rtinor semiaxes of the spheroid

p = a /b, polar radius of curvature

" = (a 2 -b 2 )/a 2 , first eccentricity squared

6 /(l-e 2 ), second eccentricity squared

n - (a-b)/(a+b)

m - •ectifying latitude

Z = zone number

Spheroid constants are computed as follows:

A i + 3n F-I + (7/4) n (I-n/0.679)

kB 0o.4 x 1o 10 + (A-a)/A

C -2.5 n (I+n/o.55..9)

D = 1.23 0

F 1 - A + 0.14 x 10-9

a) 3.5 n (1-n/.0-3269)

I 1 1.388 G

W-2
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The flol1owing conntants are used in UTM for all spheroids:

NO 0 for northern hemisphere
a 20 000 000 for southern hemisphere

EH U 500 000

ko 0.9996

Wo(deg)- 6Z.183

The direct problem it defined as the computation of grid coordi-

nates (northing and easting), scale factor, and convergence,

given geodetic coordinates and central meridian value. The fol-

lowing equations apply, in which all angles are In radians:

92 a 0o 2 *

t - tan 0

Ou * + 3 t cor 2 * [1 + C co0 2 0 (1 + D cor 2 .)]
a • •p A NOTE: p must be in meters.

AL - (*"%o\) co0 *

No . NP+t (p/2V)(•L)26+(1/12)(AL)2 [- 2 + g2 (9+4g 2 )

N = N' kO+ NO

'(p/V) LL (,i + (/6)()[t + 2 +(1/0)()(5

+2 (-18+t 2 ) + 15 g2 (1 - 4t2]

Ei I kw 0 + EO

P - (E'/p) V2
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(, + p2 f, + /1 p2

N. ~+ (1/5) (AL)2 (2-

This completes the direct problem. The reverse problem is defined
as the computation of geodetic coordinates,, given universal trans-

verse meroa'obor grid coordinateis &nd central meridian value. The

tolowi.ng equations apply, In which all ungles are In ,'adians:

No (N-NO)/ko

E' (E-E 0)/kc

N,/(A p)

f w + F 08woos2  tan w (l + cos u(l+ H oos2  )
g2  eoos02 *f,

2 2Ig'

S- •(Vlp) 1,

t tan *f

" *t + (/a) t a - -�g 2 + (112) QQs + 3(t2 [3._ 2 (2 + 3g))

+ g P(2-9 2) _ ("./2) (12(,4 + 3t 2 (2 + t2))J

AN n (Q/oou *.) (1 - (1/6) 4 + 2 t+ 2  (1/20) Q(5-05

+ 4t2 (7 + 6t2)3

N 7% 0 + A?ý

This completes the reverse problem.
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EXAMPLE (UTM, Clarke 1866)U---
Latitudo 1 340 15' 34. 742 N

Longitude : 960 P-' 4311 158 W

Central Meridian: 990 W.

Northing : 3794702.172 meters

Easting : 772075.812 meiors

Scale ?aotor : 1.0005lP59

Convergerkoe : + 10 39° 51" 627

W-5
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APPENDIX X
BARTH SAD•W

It is sometimes deilrablej particularly In photography, to know

when a aetellite is In full sunlight And when in the shadow of

the eprth, rigure I altows tho goometry of the situation. In

tis figure

0 0,5283 dog

i 6,9Bg8 X 105 km

so a 4.37814 x 103 km

a smini a8

R53*

y+ *

'rho login, to determine the location of P 114 am follows:

no

i26 Is

PILN UMBRA P R

The swi lollic, of course, can be used to determine whether the

1v -;tmk•nr, station is in sunlight or shadow.
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This algorithm requires the computation of the vectors R and R8 .
Tho vector Is computed in the usual way using the orbital

eloments of the satellite, h5 is seen from the diagram to be

g& w - le" Tho vector 4 is available from an ephemeris tape

if such a tapa is convanient, For most purposeo the Coocontric

ianrtial cuordinates (XYZ) of the vector I can be computod

satisfactorily from elliptic expansions using Bessel functions

of the first kind. N4o significant error is introduced by

truncating turms with powers of accentricity greater than threo,

We have therefore

f 0 M + (3o- a3  singinM ( +) sin 2 M + ( "Uin 3 M+ ..+1 2 1 2
+ +(- + 1 (o) 0coSM+ coig An

3 3
+ ( a C os 3 +

M f(t t~)

SU , +

Y 0 Cos a -sin lsin u Hi ,where

z L ( I s i n 4 Co x (a JLJ

f Is true Rnommlyl
e is accentrioity,

hl is mean anonalyt

u im semi-major axis of earth orbit about the sun,

o Iu mean motion . 0.01720279 rad/day,
t is timo,

I is t i, m or porigcoe passagal an input constant
I obtained £rom American 3oaloemris,
iu argument of p)er•goe, •nu input constant
obtainod fromi Atnoricar "Lphormenim,

u is argument ot the latitude,

C is mean obliquity , 23 441 dog.
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APICNDIX Y

SO". SPUUICAL-RATI 9KOUTMR1UAL , ORN&ASU

The following simple formulas - oxact for aphoriculearth - are
presented primarily for planning purposes and simple error

analyses. Exact and necessarily more complex computational

methods for the oblato earth are presented olscwhere in this

report,.

1.0 .PV AH1 TiIIAEOL. FOlkYAMU

The triangle is defined by one side extending from the.center of
the earth to the observer on the surface of the earth, one side

oxtending from the coantor of the earth to the tracked object
aliovo the earth, and one side extending froai Ilo obeorvon' to the
tracked objout. Oee Figure 1.

ohnorier on surfaco of earth

ji~trackeod

surfaco ol oarth

of carth

FIOUflE 1

b, li Intlguru 1 aro defined am followe:

J is maun.t range 1rom obsorvor to traokud object.
, is ,luvation anglo of tracked object abovu local lio1±4zontal,

pumlivoik bovo ond negoativ bolow.
h ki& nit,•tudt of trackod objuct above surfaco of earth.

it iu oarth radlius, approximatuly 3440 nm.
is v'•,tral angle betwoen vector from cer.'ter of earth to
o*cjbseveor and the vector I'rom center of ,nrth to trnckod
o l , J v c I , w h e r e a : j n 1 1 8 0 *. 2
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AThe L'ollowini, formulas apply:

(1) Ground range w R9, where 0 is in radiatn,

C') - *t~ R(R+h)O.'.com 0) + I

3(r) t . Ian"1  a- whosero

(-90) a 4 (+900).

<1) )a l [IT
( h) h . +a + r• + 2 r R sin -a I

[ .] whereO10

Simple considorations permit those I c©mulai to be used withi ant
obhryvor abovo the *uracoe of tho earth., Not* that thosv
formulas are strictly geometrioal and do not consider refraction

I'I
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t.o 8PHhZCAL TRIANLE• 1Ro Laue

Equator

FIOURE 2

Symbols in Figuro 2 are defined an follows:

No S roprosent respectively the north and nouth poles
of the earth.

1, I designate Bitos 1 and 2, rospeotivoly.* is latitude, positive north of equator and

nenative south of oquator.
A). is longitude difference between mitos.
* 2is central anglo between vectors extonding from

center of oarth to two mites.

"" a are azimuth angles an indicated in diagram.
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''Tni following formuils apply:

(7) . co.s" [.,n .1 .in * + cor° co. 4oo0 (con) G

(8)~~ ci ~~J* ~i2 1.
whore 0 4 1 4 180

(a) el l sin4 [ sin 00 on 3

whoere (DO') Q 1 (-180'

(0) ýO s in"l [min 4 co 00 + coon 0' sin a ON 2o 1]

Swhere (-90*1 02 eg (.19001 ,

(10) 4? tU - tanl [ 01, s~in D] whr 0*- N 8
• i• (o) a• an'1login (*1,+D)"

and where

(11) D1 . tan"1 [tan Goa a, where O0 D .180"

An altorina1,ivo form for each oi oquations 0, 9O 10 and 11 can bo

obtained by substituting subscript I for subscript 2 and

substituting subscript 2 for subscript 1 throughout the
particular equation.
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APPEN•DIX Z

NUMIEUICAL METHODS - INTERPOLATIONI

I)IFFEBUCNW'IATION. QUADRATUPJC AND INTEORATION,

INTERPOLATION

The problem of interpolation consists in constructing a con-
tinuous function which fulfills certain conditions at a finite
number of discr'te points. The condition usually imposed is
the coincidenop in numerical values of the interpolating function

with the numerical values of a finite number of tabulated points,
The typo of function inoluces powor polynomials, rational
functions and trigonometric polynomialn. There are special

spljlications in which each type is preferable. However, con-
sidorations of speed, simplicity, vermatiLity - as well as
possible requirements for differentiation or Integration -

generally result in the selection of power polynomials of the

type

I(x) - 10 + a x + a2 x2 x+ .. + an xn

The logitimacy of the power polynomial representation is baled
upon a thoorom of Weteirtrams, which can bo stated as follows:

Lut I(x) be an arbitrary continuous function defined In a
finite int;ervnl a - x - b. It Is alwnys prndsible to approximate

r(x) over tho whole interval (a,b) as clos.ly ns we please by a

power polynomoial of sufficiently high degrev, This obviously

does not mean that we can intorpolate in a table as accurately

as we plea.e by choosing a power pytYynomial. of Mufficiently
h o'1doaroe.

kl.st oJ' the discussion in this appendix will be foctsmod on
po•wor polynomials. All of tho interpolation formulas (of
dottroo n) In this appendix will precisely fit or go through
(01+1) points in the table. An Individual formula ts selected

for a particulnr application primarily on the basis of com-

pu]ationinl convenience and upon special limitations and

n(ViittII4(w "Lbociated with distribution of tho table ,.ntritos.

Z-1
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S;,1Prtttir. of the' pteper dogreo of the intorponntin:, polynomta]

JN donu oa thc bamiH of ani orror analysim, which should be

porformed by the mathematician who proparos the table, First
degree corresponds to linear interpolation. Interpolation
beyond sixth degree Is virtually unknown, and a good practical

limit is fourth deWree.

NOTATION FOR NEWTON'S BESSEL'S AND VXRETT'B , o AS

The following table showJnfg differences up to the fifth will
sorve to 6xplain the not cion:

TABLE 1ST 2ND 3RD 4TH 5TH-'•:'" ENTRY VALUE DIFF, DIFF, DIFF, ...

• 5: l . ... 
.: . .. . .. D IF F 4 D I F F ,

X'I,

4,0.5 o 4

SY 01.5 a 1i

x2 1.

V. Y
x 3  ,1

"It is neoessar, that tho entries in the tahlo le listed at o vuil
intorvals. First differences are defined no follows:

A-1. 5  Y-1 Y-2 '0.5 I Y YO etc.

S- co"lnd rliffuronces are definoci na followH:

26 -6 ; A * -A ; etC,

j. Iilurly for third, fourth, firth, sixth, etc. difforonros.

1-"t X 3 - X x - .,etr.

Z-2



NEWT0'!'ON ' FORWA1RD AND BACKWARD DIFFERL-NC4 IV.TEIU'OLATION lFOLRMULAS

O T'he'se rormul nm arc normally used only ne- the bieniuning or o11.

of u tnr'!.e where other and more rapidly converging formulas

such as DBcssl'ae and Everett's arc not applicable. Lot us

rissume that xi si the firot entry in the table. The entry, x,

for which we wnnt to compute a table valuo, y, is located at

(xoýpbx), where p is some positive traction less '-han unity.

NOwton's Foraprd ijifferanceljormula Is applicable:12 ,1 3

- ,o + , a., + ',p (p-1) a I + P ( ,-2) A.,+

next let us assume thAt-mx4 is the last entry in the table. The

ontry. X1 for which we want to compute a tsibl value, y, is

locatc'd at (no 0 -p~x), where. p is some poait iýve fraction less than

unity., Newton's Backward Difference Formu:La is applicable:

.y y _05+ p(p-l) 4m1 - p (p-1.i)(p-.2) &_1 5 .

Cl.,arly these formulas may be used Wherp ,; does not fall within

t othe firt or las'tl interval of the table. Ian fact, for reasons

,h..ch will ho apparent later, it 'is usual]), necessary to apply

thc'* formu]as when x is less than two intervals from the be-

r:innin. or and oi the table. Nowton's Forvard and Dackward

Ditffrenfce IFormulas have been shown extended out to th3.rd

difforences, but there is little iý any advantotre in usiner

ditferene, s bcyo.id trio second, because highor d.fferonces are

too far removod from the entry of interest.

N.SS L 'S INT TPLAT ON FORMULA

't",ils is prolnbl the most widely used of all interpolation

io>'mulaj. It is c central difference formula, sometimes ox-

tended to fourth -liferences, but if differences higher than

tho thiird aro desired, Everett's formula is generally prefevrred.

'I'l1, arnry, x, for which we want to compute a table value, ý, i-s

lnnntioc at (0 + 1 1) x), where p is soine positive fraction less

thi;ij uity. Bessol's formuia is as follows:

Z-11
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..; 1 . . .. .. . .

y 0.5 (y 0 +yl) + (p-0.5) A0.5 + £.p-1)4 in 0
2 + a

+ p(p-0,5) (12-1) &3. + (•)P-)n2(04 ÷14)

+L~-4L~.,A0 +. &I2 2 0  +j+

In onsovz whex-o fourth differences are uignfticant, it im

froquently sattsfctory and somewhat simpler to "throw back"

tho fourth difforences into the second as follows:

V17 0.5 (yo+yj1 + (p-0.5) Ao. 5

+ I + 0.184 (4 +A' 1 )]

+:- 0.5

ERITT'_S INTERPOLATIo FORM

Everett's f'ormula is generally preferred to Bessel's when higher

differences are necessary. Everett's formula shown extended out

to sixth differences - usually the ultimate limit of usefulness-

is as follows:

+•(q-) 402 + I (q2-1)(q2"4)

o ~ A0

+ I (q 2 .- )(q2_4)(q 2 _9) 4 06 + *.. ]
1 2 A 1 21),~4

+ P Y1+ Tr (-1) + 1)2- a' j1 _1 p2 ,) (1)2_

"9 6 1 o,•O{I (p2-1) (p•-l)(p2-9 16 .+ ],

whore (I - (1-p) nnd where the entry, x, for which we wnnt to

coinj,,pt' a tmblp value, y, is located at (x0 +P 6X), where p is

some positive fraction loss than unity.
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LAGRANGIE 'S FORMULA

!,ngranrm"s formuln is more ;eneral than the formulas provioumly

treated. Uqual intervals in the table entries are not required.

Interpolation can be accomplished nnywhorv within the table

including the firut and last Interval, and also extrnpolation

can be performed (with caution). Most analysts prefer formulnu

gtiven previously, however, for tables with entries at equal

Intorvals. Lot the table be of the form:

ENTRY TABLE VALUE
xo YO

xl yl

x 2  Y2

x 3  Y3

* B

Xn n

(Avon son, ontry, x, we wish tn estimate the corresuponding table

vnlue, 3'. Lnrgrnngo's formula is as follows:

(x-x ) (x-x 2 ) o.o (x-x)

1 2 31

(x-xO)(x-x2)-..(x-7:n)+ . .... .. . Y l
(Xz-XO)(Xl-X) )*..(XI-Xn)

+ (x-.x 0 ) (x.x 1 ) .(x-x 3)..,(x-xn)
+ ,Y'7 + see• (m-0) (x2-x.-) (x,,,-x3) .. (x2- d.

(x -x 0) (x -x I)S.O.(xn-x n.

.~ ~ ~ x.o (X_.). .Xn1 . ....... n



iUERMI Tp1 8 FORMULA

T'his is v trironomntric analog to La(prangc's formuln. Equal

intervals in the tahiv entries are not required. Interpolation

can be accomplished anywhere within the table including the

first and last intervalo and also extrapolati.on can bn per-

formed (with caution), When n function represented by a tnble

is known to be poriodic, Hlermite's formula Is froquently

preforrod over Lamrangc's in spite of the much larger computation

time, Ilormito's formula is Ps follows:

sin (X-c 1 Biln (x-7,t)...sin (x-xn)
U := • , - ' -"- "' yO~S;in (xo.-x 1 ) sin (xo-x 2 ).,,sin (X0 ..Xn)

sin (x-xo) sin (x-x 2 )..,sin (x-x,)

sBil (Yl-x. ) sin (x -X,)...sin (xB-il)

sin(x-xO)sin(x-x1 )sin(x-x3) . ,sin(x-xn)
min(x Mxo)ain(x WXl)sin(x-x ).,,.sin(x-:n X

sin (x-:cO) sin (x-xl)...Min (X-X n 1 )

sin (xn-7O) sin (xn-x,)...gin (x n-%n1 )

Tho mnthepnatics literature contains many 1.1vterpolntion formulne

not included hor*. Among these are Grorory's, Newton's Divided
Differonces, Aitkins, Neville's, Gauss'; Stirling's, 'rhiele's

,l 31,+,ffonseit's. Arte car, ful consideration ond (]vntltltion
tioso werv oinittnd, becauso in our field or Inlerost thry

nlponlr Lo contrilbute: ltittle to the capability roprebonted by

ht, formulas intluded.
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INVM116 I NTIUiPOLATI ON

A tablu SUlpplied (y a competent mathomatician Is amanable to

fiuturpolation. If such a supplier does not spocify any
1)nrticular interpolation procedure, then it is safe to assume

that one of the direct interpolation procedures previously

d(Iisuisod JL applicable. Occasions nrise, however, when the

problem is not the standard one of determining the tnble value

fromn a given entry but rather determining the entry from a

givon table value. The process by which the entry is determined

from a Riven table value Is called inverse interpolation.

In invorso ititerpolation the analyst is uving a table for a

purpose for which it was not designed, and he is consequently

rosponuiblo for checking out the accuracy of any procedure he

uses. The most offi.ciont method of inverse interpolation in-

volves a rovorsal of the roles of entry and table value in

interpolation formulas already discussed. In other words,

instead of oxprossing the table value In terms of a polynomial
Uin the entry, we express the entry In terms of a polynomial in

thi tnble volue. With the original table, however, tflore is no

assuranco that the entry can he adnquately expressed in 'terms

of a mimple polynomial In the table value. In fact, revwrsnl

of the roles of entry and table value can easily result in rtn

Jnturi-olntcd value in the wrong, interval of the table. The

naccuracy of this reversal. procedure is depndont upon the

,)artlc~lar table being used and may frequently be improved by

using prior direct interpolation to reduce the table interval

size. If reversal of the role of entry and table value ,ivos

ui-iatisfct.ory results with P. given table and if it is im-

practicnl to reduce the table interval sizo, then one cen

rosort to ilceesit | V. npprnximr.tionts* In 5t(;cussivo y ipproxina.-

tJons one applies direct interpolation procedures using closer

and closer approximations to the true entry corrospondinr, to v

f,-vovn table value. These tw, Veacral approaches will be dis-
CuIM140d in further det all.

S~z-7



Revarsol of Hol r• and Table Value

Beeause. Larirnngo's and Hormito's formula& (do not req(iUr, (,qun'l

intorvnlA botwoen nuccounive values of the ontry, the roloe of)

entry and table value may be roadily interchlnRed, This is a

perfectly qnneral method and requires no further discussion.

-aItorpolation formulas devoloped in the form of convergent

2: |•pnwer tmories can always be reverted, Without devoloping the

reverted series for any specific interpolnadon formtile, we will

show the general case. The power series

Y a0 +ax+ A2 x + . anxn

when reverted becomes

(X')+ - 1)2 + 0()3 +(,
I-

Lao,

where

C, t

a,

34 --

a3. / / 3

\ l/ 2•l

.1112 ý 2NK

e+
6+ 74( 2>53 4 2 (4a) 4AA
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SucC(Sivo Approx imations

O Densseo's formuln will be usod to illu.trate n general procoduro.

if we transpose and divido through by,60.5, we obtrin

. o.5

Tfo a first approximation for p, we neglect all difforoncos
higher than the tfirt and therefore have

1i(1)

The sucor12d approximation is obtained by sub~stitutin:g )(1) in the
) rJ1htr-haind silIc of the oeries expression for p. The rosulting,

.. second approximation p(3) In then substituted in the right-hand

uldn of tho ksorios expression for p, and a third npproximation
(3) is obtained - and so on for higher approximations until thie'

differonco in successivo approximations for p become noý jjible.

A moro :;enoral but usually moro slowly converging mothod of
IsceMsJvoe l•iprnxiimatiions makIS use of Lairrange's formula. To

illustrrte, let y lie betwoon yo and yl. Then we know that x

liom hotwoon X nnd x1, As P first approximation for x, wo hawv

,oY + - I 0/O

SEupplyin.( to Lngranno's fnrmula will result in a correspond-

III vn0110 for y() in gvzi•o•ra not equal lo y. If y I ies be-
tweon ys nnd yl, we perform Pnother lin,:nr interpolation ns

fol 1ows

Z-9



Y 1
x(2) - (1) + - ( l) ( -

yl- Y
had liov ) howe (1)

If on the otlhr hand lis between y, nnd YO we compute-

Y YO .1)
(2) () x

y -y0

Lngrange's formula will provide a corrosponding y(2) with which

to estimate x(3), etc.

Double Interpolation

Suppose we Pre given a table of the form

x0 1 x2 x3
X0 x I x 2 K

w0 YOU Y0Y Y0 Y03

w2 Y1.0 Y11 Y1.9 Y1321  Y , Y1 2 V13  '

w*

3 Y30 Y31 Y32 Y30

In this table we have double entries, w and x, associatod with

(,fch tablc. value y. The problem is to determine the table value

Y; rr iven x•(, ,h)Q Special formulns have boon derived for

this prohlom based upon assumption of simple interpolation

formulas. The morn ,;oneral procodure is to reduce the double

rntry table to a singlo entry table and then pr(,:7eed with one

or the formulas previously discunsod. For examp'.n, by standard

Z-1O



intorpolation procedures already doscribed, wo first compute

3'ohl Y1' Y1h0 Y 3h#

Wo theln interpolate within this set, *(:in by wtandard Interpol&-

tion procedurew already described, to obtain y

Difforentiat i on

The procedure is to differentiate the appropriate interpolation

formula. Besuel's formula will be used to Illuetrate the menernl

method. We reoo•Irnle that

O) Hence,

1 A0.5 + (4 0 2 + A1 2) + 3 .3 5

43'P 4) + ]
+ 0I + ÷&I '

Ar'rpated difforcontiation gives higher order derivatives, where

2 • ... 2 d3 d3

.4 d2 - tc,
dx (5x)2  dp dx (Ox)' dx'

if. thc taoleo vnlues are noi given for equidistant vnlues of the

' ,,ntry, we mny reprfEsnt the table values by Lagrange's or llermite's

tor'iiula ijrior to differentiation. For oxample, In the case of a

second doqrope polynomial, Lagrangce's formula give*

Z-11
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+2x-x1x-x X 2x-x -x
o ÷ ix•Y-imT2 Y, + 0 2 x2-xl) Y

Y (x0"x-) 14,0"xs (X x•'xM0 _x

Qartur*

Newton-Co tea uuadratures

These formulas require equal intervals between the table entries

or independent variable. There is no limit to the number of

these formulas, but there are only four that are used commonly.
7hese are 1he trapezoid rulo•, Simpson's rule, th~ree-eighthe ?

rulep and Weddle's rule. The total number of intervals covered

in the integration is not restricted when the trapomoid rule is

uood. An even number of intervals must be covered in the

integration when Simpson's rule is used. Tho number of intervals

covered in the integration must be a multiple of three when the

three-eights rule is used. The number of intervals covered in

the integration must be a multiple of six when Weddle's rule is

used, In terms of accuracy these rules rank in descending order:

Weddle's, three-eights, Simpson's and trapezoid. Simpson's rule

is probably the most useful of all formulas for quadrature. I
The notation followed in this discussion of Newton-Cotes

quadrature is explained by the following table:

value of value of
Independent corresponding
variable x function y-f(x)

X0  YO

xo+÷2x Y2

XO+3bx Y3

x0 +n x Yn

Z-12



T r n pB L.o z o d Itu 1 ,)

XO+nbz°*
f O(xldx x [TY0+2Y 2+`*.+2 .. +yn

x0

where, exCluding y0 and yn each of which has a coefficient of 1,
every value of y has A Coefficient of 2 Inside the brackets.

,jimpleqn's Rule..

J(x)dx " [Y 0 14Y +2Y 2 ÷4Y3 +2Y4 +-...+2Y n-24yn.÷ +yn

x 0

where, excluding yo and yn each of which has a coefficient of 1,
the repeatingC pattern of coefficients beginning with ymyl is 4,2
inside the bisaokets.

ThrQQ-Eih•hthu Rule

x +0~
f(x)dx TLyO+3Yl+3 +2÷ +3÷+3y4÷r

x0
txx -. [Y3Y+2 312,+2yn.3 +y 4.23yn5 +

where, excluding y0 and yn each of which has a coefficient of 1,
the repeating pattern of coefficients beginning with ymy1 in
3,3,2 inside the brackets.

Z-13
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Waddle's Rule

f(x) dx. Tr LyO+fYl+Y2+6y3+Y4+8Y5+2ye+BýY+Ys+6Y9+Yvo

+8¥11+Y2y2+,, ,+2n6+n.

*yn.4+OYn.3+Yn.2+BYn. l+yn

where, excluding yo and each of which has a coefficient of 1,
the repeating pattern of coefficients beginning with YwYl It

5,1,6,1,5,2 inside the brackets.

gauge Quadrature

f(x) dx- E j H,(r

an equation whiih holds exactly if f(x) is a powor polynomial of

degroe (,n-'.) or les. The discrete abacismao a And the
corresponding weight coefficients H must be determined. Based
tipon Wealerstrams' theorem, we conclude that the resulting
quadraturc formula should be capable of approximating definite

integrals of any continuous function withJn a margin of error
which should diminish, in general, with increasing value of n.

If' A and b are finite, it is convenient and entails no loom in
wenerality to asmumo that (bu+l) and that (a-'-l). If this
ansumption is not true in an actual problem, it can be realizod

by an appropriate linear transformation of variables:
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h +1"-b-
f (y) dy - - J(S) C

a-1

whore jt(z) dlz is obtained by substitu*ing y 1/2 [(b-a)z + a+b]

Into f(y) dy. Consequently the problem is to evaluate the H
and the aj for the following equation:

+1
n

f(x) dx M H fa
-f Jul

Olus. h•s shown that it (f(x) is a power polynomial of (2n.1)
degree or lower, then

+1 R• ,,t a )
f(x) dx 2 E

-(-& i) [p)(A)]

where the a aro roots of the Legendre polynomials Pn(x) and
where the P•I(a) are derivatives of P WX) evaluated at aj
Findinm the roots of a Legendre polynomial Pn(x) is equivalent
to solving an algebraic equation with terms up to degree n.
Having thesei roots, one can calculate H with little difficulty.
Recnume of the difficulty in obtaining the roots, a.,, it is
customnry to use tabulated values for both aj and H even in
ci•mputer applications. Table Z-1 (from Bull. Amer. H1ath. Soc.,
18, 739, 1942) in this appendix shows H and a to fifteen
decimal places for n up to 16. Note that all weights H are
positivo. Because of the symmetry of the Legendre polynomials
about their origin, their non-zero roots accur in pairs, plus
and miius aa, both members of a pair having the amem weight,
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TAKLE Z-1

H jk
n,,2

+
1.00000 00000 00000 (and) 0.87735 02691 89626

0.55555 55555 5556 (and) 0.77459 66692 0493
o0.66t6e 8888 88689 0.00000 00000 O0066

n=4
0.3478 48451 37454 (Ad) 0.86113 63115 94053
0.65214 51548 62546 (Wd) 0.33998 10435 84856

+
0.23692 68850 56189 (and) 0.90617 98459 38664

0.47862 86704 99366 ( 0.53846 93101 05683
0.58888 88888 88889 0.00000 00000 00000

V11-.6

0.17132 44913 79170 (and) 0.93246 95142 03152

0.36076 15730 48139 (and) 0.66120 93864 O.G6265

+
0.411791 39345 72691 (and) 0.23661 91860 83197

0.24 96 68870 (and) 01.94910 79123 4.o;tD9
+

0.27970 53914 19277 land) 0.74133 11855 99394

+

0.3818I 00505 05119 (and) 0.40584 51513 77397

0.41795 91836 73469 0.00000 00000 00000
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TAB3LE Z-1 (Cont'd)

Hj a,1
n=b

0.10122 85382 90376 (aid) 0.96028 98564 97536

0.22238 10344 53374 (asd) 0.79666 64774 13627

0.31370 66458 77887 (and) 0.52553 24099 16329

0.36268 37833 78362 (and) 0.18343 46424 95650 .

nm9

0.08127 43883 61574 0.96816 02395 07626

0.18004 81606 94857 (and) 0.83603 11073 26636

(,.26031 08964 02935 (and) 0.61337 14327 00590

+
0.31234 70770 40003 (and) 0.32425 34234 03809

C) 0.33023 93530 01260 0.00000 00000 00000

0.066437 13443 08688 (and) 0.9739U 65285 17172

0.14945 13491 50581 (a+nd) 0.86506 33666 88985

0.21908 63525 15982 (and) 0.67940 95682 99024

0.26926 67193 09996 (and) 0.43339 53941 29247

0.29552 i2247 14753 (and) 0.14887 43389 81631

: n=ll

0.05566 85671 1817.4 (and) 9.97822 86581 46057

0.11,55H 03994 64U05 (a~nd) 0.88706 25997 68095

OA18679 02109 2,7734 (and) 0.73015 20055 74049

0.23319 37645 91990 (and) 0.51909 61292 0691ý2

0.299U 4341445 10247 (aRd) 0. 26954 31559 523-45

O.'.7"'9 5H0837 77901 O.OOGO0 00000 o000
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TABLE Z-1 (Cont'd)

H a

+
0.04717 53363 86512 (and) 0.98156 06342 46719

0.10693 93259 95318 (and) 0.90411 72563 70475

0.16007 83285 43346 (and) 0.76990 26741 94305

0.20316 74267 23066 (a8d) 0.58731 79542 86617

+
0.23349 25365 38355 (and) 0.36783 14989 98180

0.24914 70458 13403 (and) 0.12523 34085 11469

n=13

0.04048 ý.J047 65316 (and) 0.98418 30547 18588

0.09212 14998 37728 (and) 0.91759 83992 22978

0.13887 35102 19787 (asd) 0.80157 80907 33310

0.17814 59807 61946 (and) 0.64234 93394 40340

0.20781 40475 36F89 (and) 0.44849 27510 36447

0.22628 31802 62897 (and) 0.23045 83159 55135

0.23255 15532 30874 0.00000 00000 00000

n-14

0.03511 94603 31752 (and) 0.98628 38086 96812

+0.00158081 5760(and) 0.92843 418836 63574

0.12151 85706 87903 (and) 0.82720 1i:150 69765

0.15720 31671 58194 (and) 0.68729 29048 11685

0.1855W 83974 77938 (a~d) 0.51524 863633 58154

0.20519 84637 21296 (and) 0.31911 23689 27890

0.21526 3853,t 63158 (and) 0.10805 49487 07341
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TABLE Z-1 (Cont'd)
@H

naialn-15

0.03075 32419 96117 (and) 0.98799 25180 20485

+

0.07036 60474 88108 (agd) 0.93727 33924 00706

0.10715 92204 67172 (and) 0.84820 65834 10427

0.13957 06779 26154 (and) 0.72441 77313 60170

0.18626 92058 16994 (and) 0.57097 21726 08539

0.18616 10000 15862 (and) 0.39415 13470 77563

0.19843 14853 27112 (and) 0.20119 40939 97435

0.20257 82419 25561 0.00000 00000 00000

. 0n1 6 4

0.02715 24594 11754 (and) 0.98940 09349 91650

0.06225 35239 38648 (and) 0.94457 50230 73233

0.09515 85116 82493 (and) 0.86563 12023 87832

0.12462 89713 55534 (and) 0.75540 44083 55003

0.14959 59888 16577 (and) 0.61787 62444 02644

0.13915 35193 95003 (and) 0.45801 67776 57227

0.18260 34150 44924 (and) 0.28160 35507 79259

0.1R915 06104 55068 (nd) 0.09501 25098 37637
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Numerical Integration
A general troatment of this topic is far outside the scope of'

this report. The particular problem to be discussed here is the
typo associated with the solution of the equations of motion of

a missile or satellite. We have a system of equations defined

by

Yi Ut f I(to Yip'sep YNO Yi p' p y N )(imlj2,.o.$N),

where we are given as initial conditions

V, t V 0 ) - Yioj yi(tO) l YiO (l,2, ... ,N)

for a rectangular coordinate system and no variational equations

If would be 3, but with variational equations N may be much

larger. The fourth order Runge-Kutta process is almost univer-
#ally usod to start the integration,

The Fourth Order Runge-Kutta Process

It we denote the values of yi and yi at tntn by Yin and y'
rempectively, and if we let h be the step size of the independent
variable , then the following Runge-Kutta algorithm is applied
to each of the N simultaneous equations in order to complete one

integration step:

•. kil = h ftn, Yin' Yin)

Ii h kkJ3 h fi(tn + 1' h + h k ,-

12 1 n h, Yin ,In IVY +

k h f h, 11 n Y n + h k Yn + 1

11 yf (t+h 1 k 3,y + k1
''Y -. h Ytn + (kil + kip + ki 3 )J

kil + 2 k12 + 2 k + ki4J

i,n+l Yin + AYin

": Yi,n+ ' Yin + 'Yin-
:, 7-20



The output of the first Integration step serves as the input for

the next Integration step %nd so on. We require n integration

steps through Runge-Kutta to start on nth order Cowell process.

The Cowell process is almoet universally used for orbital und

long range missile trajectories.

Cowell Intearation Process

The Cowell integration process is widely known as the Gauss-

Jackson integration process and also simply as the second-sum

Integration process. The procedure is usually characterized by

a table of differences, In some research investigations -

particularly in the field of celestial mechanics - differences

up to tho tenth are used, At the Eastern Test Rnnge differences

up to the aixth are adequate for over 99% of the applications,

and differences higher than the eighth are never used. Aul

eighth-difference algorithm presented here follows closely that

used by Aerospace in the TRACE-66 computer program. A slight

departure ham been incorporated In the Aerospace algorithm in

('-') that all major equations are given in terms of differences.

This departure facilitates scaling the algorithm down or up from

eiahth order. For lower order applications one may simply drop

oft higher differences. For higher order applicatio:si one must

establish the necessary constants by integrating the appropriate

interpolation formulas,

Consider the difference table, Table Z-2. In order to start the

,oighth-order Cowell process, we need the eleven values immediate-

ly above the diagonal line, All the second derivatives of Yi

except Y" ar3 obtained in the preceding Runge-Kutta integration.

JEnch A in the triangtular array above the diagonal line is then

computed by differencing the value Immediately above it from the

value immediately below it in the preceding column. For example,

14 Y4; e1- 1 y " yy; A " S r -1 1 4 ; etc.

itittally, thureforo, all the values in the triangular array above

thc dipional line and to the right of the vortical line come from

Rungi.,-Kutta. We now proceed to fill in the table values that lie
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above the dinr•onn] line and to the left of the vurtical line.

Wilh an intoeration stop size of h, compute

lj5 y 4 /h -D~jyj D a1  - ) A~ - ) a111 114 1 14 1 13 310

IV V VI VII Viil"1D4Ai2 " DA 12 " D6Ai" D7 6 il DoA'%iO

and
8 4 /h 2  CY .C vCA CvI!

*15 21 0 14 2 13 4"C412 6 C11 8

whore the C and D cc fficients are given (nlong with some others
needod later) in Table Z-3. The remaining F values above the
diagonal lina in Table Z-2 are computed recursively in the ,,
following sequence:

"FiK+l 'F + Y±K (K = 8, 6, ., 8)

"FiK + `FK (K 5, 6., 0.. 9)

In fay he4 rorkarlted here that all, the valu.-., in thl difforencc lable
albove t1| diantonnlll l i e nre now copple't'e anId vnnl for this int'-ro-

i Jun m .top. The C•UW'll prodiclt oil-correcti(Jn procoss will now vinkco
t tirre luccossivo eu ti •lat( for Yll and II]ac t 0 t 00 w iV
,.1 tima rvs for each value that .litvs bnen, Iatl 1h(' ,lin"onnS 1111c 11!14. to

I . right of the vrtical linen , and one , liolit fo Cr each valuL,' t!int.

1iL. )ioiua Lbh Lhu d.tagoiinl 1 inc and to the Ie •rL or th1, vertical fi no.

The prediction proeesu pror.eeds as follows:

Y h21 Fio + A0y ' + AIA 7 + A At6 + A346t 1

19 11 18 1i 216 1j5
14^V + A AV + A VI + A AVII + A AVIII

5 4 1 13 i)12 7 J1. H 10
YO 10g 1 11 1113II

('F19 + A 0 + A ; A1A / + ;2 A1 + ; 5

- AA IV + V + AVI + AVII + AVill
4A14 + 5 + A~Ai2 + A(1 1 + A1Si0

wavre the values U L 'r A tind A ar, given in 'r itble Z-3.

Z-22



NotP that thin prediction process uses only the row of table

values immediately above the diagonal line. Substitution of

those estimates of Yiq and y;9 into the oririnal set of smiul-

taneous squatiomi provides a set of estimates for y.09 We are

now in a position to calculate the remaining values in the

difference tuhlo that lie in the row beneath the diagonal line

and to tho riOht of the vertical line. For example: 41
i501* of 1 1

Yt 7 " - A 7 etc.

We now apply this row of values directly beneath the diagonal

line to corrvct our estimates for yi 9 and y 9 :

h2 IFI B 1 1 1

+ B4  IV + B AV + B6 + B7 i2 + B8 aVXII:
4 5 4 6 03 12 811 I

ii 1 •9 19 0 ('i oY19 + ; I A'1 += '2'17 + 'S 48"

where the values for B and A are given in Table Z-3. Substitu-

tion of these new estimates of Yi9 and yi 9 .into the original Pet

of simultaneous equations provides a new and final set of

estimates for y9 . We now calculate new and final estimates for

t111 remainin,, values in the difference table that lie in the row

tUoneath the dio'qonal line and 1o the right of the vertical line:I 4POA - y" etc.

W' now npply this row of vpluns directly honeath the diafzonal

iJnv to recorrect our corrected estimates of Yi9 and y'.0 usin•r

Ihw correction equatton:i Jufmt I)r.sent(HI. These rocorrected

,.timatoes ,nntitute the final ostimates for y and yi9' This

itntvrntion stop ix completed hy computing 'F 9 + Y

nnd "'FillI *OF •II + `F il0



Note that one must carry out each stage of the integration stop

with each of the N simultaneous equations before proceeding with

the next stage.

Before belvinning the next i•itegration step we must effectively

shift every element in thet difference table upward so that thc

row immediately below the diagonal line becomes the row Immedi-

atnly above the diagonal line.

Only the basic essentiails of the Cowoll process have been

presented. A utep-size selector is 9iways incorporated in the

algorithm. It is possible to estimate the error in the into-

Iration by comparing predicted and corrected estimates for the

position and velocity voctors. If the error is excessive, the

ltep size is reduced. If conditions permit, the step size is

increased. Reduction in step size necessitates a return to the

Runge-Kutta process for a new start.
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TABLE Z-2

D 19R5 NCH TABL

YiOio

A~to
11 IV

01

I A 0

£2 A1111  IV

153 12

"I1 A1 0

14 0

F1OF y 4*Al VviJ l

1 ^I 14 A12

- A - I V &-

7- 14•4"s i•• '

I IV

"Fig 0 AI 0

A Ai

"P I II0

"Z 17I!
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APPENDIX AA
BASIC REGRESSION RELATIONS - RIDGE: RIGRERSION

. 1.0 ITRODUCTIOIo

Well-known to analysts associated with regression studies are the

problems related to ill-conditioned matrices - problems leading

to lose of precision, grossly inaccurate (inflated) estimates or

th, parameters and gross underestimatie of the errors in the V

estimates. Theme problems have been• the subject •f a great many

I.nvstitiatIonM. One of the most fruitful approaches was developed

by Hoorl and Kennard and labeled by them "ridge regression".

Tite lloorl-Kennard (RK) estimation process is inherently Bayesian
in nature. It assumes expected valeos of moro for the ndjustable

parnmters and tends to constrain the adjusted values as close as

possible to zero without unduly enlarging the residuals.

We oxtend rIdjoe regression to cases whore a priori expected values

and variances of the adjusted parameters may be used. The re-

sulting ridge estimator ins general in nature and specifically

adaptable to ordinary orbit detormination computer programs.

Somo appropriate background material is furnished in Section 2.

This in followed in Section 3 by the mathematical development of

tho ridrfe. o•timator using prior information. In Section 4, an

applica•i:on i.• shown based on a satell.ite orbit estimated from

radar tracking( data, '•nd this Js io'liowed in Soction 5 by a brief

?innmary of other ridge eesti.mators ard in Section (I by some con-

cluding remarks.

1, u STANDARD REOG1SSOION USING PRIOR INFORMATION i

Wi nksiume the standard linear approximation to the general non-

Irinvnr multiple regreasion pro'.".em:

Y - . + e m(")

vI¶(,ro Y in (nxl) aud denotes tho monsurmeont vector; X is (n.,j)

nt (J rv.2, ,j hind reprosvite thr partinl derivntive mntrix of

nonNtochn~tiv elements relatlnir tho menn v•l•,u of the megiuro'nonts

,'rn'•a*1.A,-. . -I



to the adj:Lcted parameters; 0 is (jxl) and designates the true

fixed but unknown parameter vector; cm is (nxl) and corstI~•utc ,

the measurement error vector. We assume E(c) is zero and that

Ell c) a VARlca) C .~, where 1m is (nxn) and known.

In addition we have prior information consisting of a k element
parameter vector Bo, which estimates Ri and a k element parameter

error vector t * o is known from introspection or from previous

independent measurements. Therefore

P0 'RO (2.2)

where R is (k•j) of rank k and consists of known nonstochastic
elements. If, for example, R a [101, where I is a (kxk) unit

Matrix and 0 is a (k x (I-k)] zero matrix, then ao representn

6itimates of the first k elements of B. Equation (2.2) assumes

o is random and hence represents a departure from the Bayesian
ipproach, which assumes a prior distribution on 0, here considered ;

fixed. in addition E(c p) is zero and E(c p;) a VAR(lt) .p,

where E. is (kxk) and assumed to be known. Furthermore we assume
COV(c*, cI ) is zero.

In order to include the prior information in the estimation of B,
we combine equations (2.1) and (2.?) as follows: A

ro 01 11 p104[CTO2.3)

or in an obvious change of notation

Y 2 XB *(2.14)

where
m

VAR(c) L I -
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''lih' lrior nfornna t Ion lins tVill is•tuinud Lhc role of it-esurq'lnynt ,S Arp)Iyin-, ionoralizod least squar.m to (11.4), we obtain the

fni Low1:in rlation for thit' estimator r of the parameter vector 0:
A -1

0 (X, ;) 0 Y) . (2I.-)

This c•.nvorts by simple substitution to
**(X -1 +i -1 -1 -1 • :-l

X + H L p R) (X ' L V * + 1 L 0

oL' iIi aln Ob)ViOUs c•hinIgO inf notation

A 0
1I)(X y + R' 1P" 0 (P.7)

It con be shown that P is an unbiased ostimator oef and thnt
VAt(W) P.

The fractional part of posterior precision due to sample in-

formation 1i s

Ol/D tr [ E X (X' E"' X +. K' E; R)

:I.0 I II)Gi !' ETIMATIOR USING PRIOR INFORMATION

ilgIlil,ýy norre)ntnoc errors in tho parainuter cstimnteu rosult in* ' -1 m atri

poor rondi., ionnng of tho (X" L m X + it ,I; R) matrix In
IErnuation (9*,f), The poorer the condition of tIhis mntrix, the
inorr (,-h ) rnn ba vxpectod to Io too long, thereby resulting in

!:contildernhlo dims fment betutwen (, and the truc: vector P. Oni
I it) oth iz' liond, thi worst, thi e AondI1tionl nl,, the lesn in t te

nii•t iv ty •tit tho+ residualt m of mqunrum Lo smal l d.pna' turvo

I I',i I ]F'O]•owinII tho en eoi1 of l iilvr aid Xjiorl a .,d, Wo iqpose nli
1l1 ''' I•1Sb V, (condi I I oil uponl lieIO ht •• u a I u tI'P•, cr i ti Ii onl, ti(,'UOIv ,

Pt N I'r• i I'Iim Iv lonl.th of the vvct'or (h-h o) i.t hoult grontly Iil-

Ii ~ 11) iin '- ~ t e ilut' Lnt mu of squares .

A A -3
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Let it be any estimate of the vector 0. Thon the sum of squares

of the weighted "measurement" residuals is given by

(V-KB)' E (Y-XB).

Using Lalranrian constraints, we minimize

r a (B-6•o)-p(..1E1

where (1/h) is the multiplier and 0 is the total sum of 3cuares.

We obtain therefore

) 0 a .. ,!3.2(

K This reduces to

B u ~x~'X+Ch+.R'r; K]j1 [X'E;l v.(h+lR'r;1 Ao] hi >

or in an obvx.ous change in notation (3,3)

A

E" Y + 041h~) RgdlSo h 1- 0(3.4)

Equation (3.3) constitutes the ridge estimator with prioh' informa-

tion and has the same form as Frciuation (2.6). The input constant

1(h~l)E i]has replaced the input constant (W 1 ). Computation and
p P

evaluation of the ridge trace is handled in a way similar to that
used with the (HK) estimator and will be demonstrated in Sectic. 4.

A A

P* is related to 0 as follows:

8* • 0 P-1 8 * 0 R' - - Bo . (0.5)

Application of the law of covariance propagation gives

,,R + A - R]Q 0.6)
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The sum of the squared blases of all the adjusted parameters is

V given by

B'[ P- + Q h R'; ~Ii] [Q P-1 +Q h R*F, 1 R. 1j] 0 O0

(3.7)

For computational convenience, Equation (3.3) may be linearized

to obtain the following iterative form:

A8* • X' )*X+(h4l)R RJ LX - m(AY)+(h+l)R•E-p(ABo)J h > 0

(3.8)

where A8* is the vector of corrections to the current estimates

of the adjusted parameters; AY is the vector of measurement

residuals; A8S is the vector of differences between current and

a priori estimates of the parameters. When h z 0, Equation (3.8)

reduces to a lineari~ed form of Equation (2.6).

4.0 APPLICATION IN ORBIT DETERMINATION

'.I"I " d , 'i h n ] iiowlOd r.' r '*,,,'rs'stIiton n, a s is n rcg d5 .i, (' in%

i1 I I I (' icr:j' of tIho prorcH oF orhi ) (ir ' ('l d le | I roitiofn. TIn ; ;•n•1 ti'(

, t '. ' (I1 (t ,(i .i i i ii •)l Ilie pn SalK' :rs rv,;e.r5( ,'sss~d ti on nre tIl ir (w orbitrl

, 'o tac tIm j.; Iii ti nil] 1y n dozen or miore' othier ]1lnrnnic ers rulatimn;1 to

1, eriv ic'tilit|,.'l. i, i id tiot' trrakck r charactvristics,

The present application involves a standard satellite orbit

determination (Cowell, special perturbations, batch processing)

in which the adjustable parameters include eight radar coeffi-

cients and six orbital elements. The measurements are radar

track data. The radar track data are characterized by certain
errors which may be expressed as linear terms in the so-called

radar measurement equations. The radar measurement equations,
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abbreviated so as to contain only terms of present interest,

are as follows%

R u . CR(.1

measuremient true zero set random error

A * At + a 1  + a 2 sac 8
measurement true zero set collimation

+ a3 tan E t + u sin A t tan 8 - cas At tan E
nonorthagonality mislevel

+ CA

random error (4.?)

measurement true zero set droop

*u corn At + v sin At+ 1(43

mislevel random error

In these equations R represents range; A, azimuth; R. elevation.
The zero-set errors are constant bias or off-set values..
Collimation represents the lack of perpendicularity between the

of the azimuth plane - u being the northward component and v

being the eastward component. This tilt is defined with poect
to the local horizontal to the geodetic spheroid. Droop repre-
sents the sag of the radar beam axis. The random errors

exercise provides estimates for rl, a,, a,, a,, *,~e, u and v.

Along with these coefficients, estimates are also made of six
orbital elements.
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The (C5yARV) orbital element set is used in this illustration.

0 The individual elements of this set are respectively right ascen-

sion and declination of the position vector, flight path angle,

azimuth of the velocity vector, length of the position vector

and magnitude of the velocity vector. Tn contrast to the

classical elements, the (sWyARV) set varies rapidly with time, a

characteristic which is sometimes a disadvantage although not in

the present application.

The mathematical adjustment procedure is iterative and is based

upon Eq. (3.8), the equations of motion of the satellite, and

the radar measurement equations. Initially, with h a 0, the

procedure is the standard one in orbit determination. After a

converged solution with h a 0 has been obtained, then ten or so
additional solutions with different values of h are computed in
order to define the curves comprising the ridge trace. The

correlation matrix with h a 0 is shown in Table I with elements

rounded to three digits.

Tn the ridge trace, Figure 1, we plot ( 0 -8 oQ~l 0o vs h and also

show the root-mean-square of the weighted measurement residuals
vs h. The symbol ae is used for the a priori standard deviation

in Oo1, where the subscript i designates the i element in the

parameter vector. Note the typically inflated values for the

estimates of 01 and •2 at h a 0. We see that the estimate of e1

Is 4.4 standard deviations larger algebraically than Its expected

value, and the estimate of e2 iA 3.? standard deviations smaller

algebraically than its expected value. This inflation is

associated with a correlation coefficient of -0.905 between the

eribors in the estimates of e1 and e2. At h a 40, the estimated

0 is only 1.7 standard deviations from its expected value and the

estimated a2 is only 0.1 standard de'iations from its expected

value. Stability is achieved at around h i 40, at which time 0*

; behaves more like an orthogonal vector. Also note that the root-

medr)-3quare of the weighted measurement residuals has increased

only from 0.991 to 0.994 as h moves from rero to forty. Inflation
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to some extent Is also shown at h = 0 by the estimates of al, a2t

nnd a3o Their absolute values contract as Ih moves from zero to

forty. The, remaining cnefficients art, only slightly affected by L)
chmnngcs in Ii. Without significantly increasing t.he residual sun,

of squanres, this numerical example provides a sot of radar co-

c'ficients more consistent with the a priori values and variances

than would havo bron obtainod from standard regression procedures.

5.0 OTHER RIDGE ESTIMATORS

In the provious discussion we have chosen ti minimize the sum of

I1N weighted Ncjunrvd differencos hotwoen the regression ('4ttimatu

4and a priori estimnles subject to a side condition which places n

Jimit on the amount by which the residual weighted sum of squares

iany oxcoed the minimum value. The resulting estimator is morce

ftluxible than the other two to be nivntioned in this section and

is alnso ,irect.ly aj)plicablo to standard orhil determination

prohgrams, It provides for the' explic it irnclusloui of both n

priori (fttimates of the paramteters and tht, (covurianc, anitr.ix ol

tho n priori entimates. The estimator in Igtivn In Mluntion (1.:1);

the varianne in the estimate is given in 1.tquition (3.1); (ndt th le

* ttinator Is unbiased.

Ut il1 zi ng t he same ma thrematical procedure, one iany minimi/.• t, h

s;ti of tho srluarod riifforoneom btitwoen th. rvgress ion eoc'T.''(iionIf

innd n priorl esti mates subject to a side condition which p1.nees n

I Imit on the amount by which the residual sum of squares may
oxcod the mini nu~m value, Tho resulttng vst imnt;or is

'. op X i. k I x 0Y+I k ' k u 0 (,5.1)

%V,'1.l't, A X Js In tl 1, forll of a corrvintion matrix; measurementts

a1'{iin(orre 1. tied and tnJlt nlrf, chosen to acllov('h common vrnianev
0)

1J I ti m 'iie r tn liremui't',s I I, .dil .tity maitri.%. The variannc in
* tit i,,t iflatA's is g"vc'iil b1

V it N I + k (XX X) ] + it -
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The bias in the estimates Is given by

2 2(• • -)' E•*- • -k (0-0o)' (X"* X + k 1)"2 05-0o (5.3) '"0 A

Hoeri and Kennard assume the a priori estimates of the parameters

to be zero and hence they minimize the sum of squares of the T

regression estimates subject to a side condition which places a

limit on the amount by which the residual sum of squares may

exceed the minimum value. The resulting estimator, variance and

bias are given by Equations (3.1),(5.2) and (5.3) respectively

with 1B set to zero.

6.0 CONCLUDING RIVARKS

This discussion Illustrates an Important deficiency in the

standard least-squares, point-entimation procedure: In the case

of high correlation among the errors in the parameter estimates,

there may be a gross inflation of the adjustment vector in order

to achieve a final miauscular reduction in the mum of squares of

the residuals.

All three estimators discussed in the previous section fulfill the
Bayosian desideratum that estimates, be held as closely an possible
to a priori expected values so long an the residuala are not sig-

nificantly larger than In standard least-squares regression. In

mean-square-error characteristics, however, these estimators

differ somewhat. The estimator given in Equation (6.1), with or

without non-zero Pop is biased. The bias tends to increase the

mean square error relative to standard least squares, which im

unbiased, but the variance associated with the (5.1) estimator is

Ho much loss than that from standard least squares that over some

(unknown) range in k values the moan square error is less than

that from standard least squares. The use of the ridge trace with

the (5.1) estimator does not assure reduced iman square error.

The estimator given in Equation (3.3) has the generally desirable

ipropr)rty of being unbiased, but the variance associated with it is

genornlly larger than that from standard least squarom. (If ona

subtracts the variance given in Equation 3.6 with h ( 0 from the
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corresponding variance with h 0 0, one obtains a positive definite
matrix.) Hence with exact models the estimator given in Equation
(0.3) will generally produce larger mean square error than does
standard least squares.

In real life one is likely to encounter under-specified models
whose use leads to inflated estimates In cases of high correla-
tion. In such circumstances all three estimators discussed in
the previous section usually give smaller mean square exror than
4oes standard least squares. Inflation of the type shown in
J~gure 1 is usually characteristic of a misfit between the data
%pd the model.- a circumstance which is frequently unavoidable.
A typical situation associated with inflation in high correlation
between the errors in two or more parameters in the specified
modol, accompanied by high correlation between these errors and
the error in an unmodeled term. Application of the ridge esti-
mqtors does not of course eliminate the effect from the error in
the unmodeled term, but it reduces the effect to a value com-
parable to the error - hopefully small - in the unmodoled term.

At first glance the reader might be alarmed at the rather large
vllue of 40 arrived at for h in the numerical example. It

appears that the prior information has been given (nearly) full
weight. Actually this is not the case. If the prior informa-
tion had been given full weight, then the curves in Figure 1
would show a general tendency to be tangent to the zero line at
h a 40, whereas most of them show a strong disinclination to
approach zero even at h a 70. Furthermore, if h had been in-
creamed to the point wher. prior information was given full
weight the residual Rum of squares would - except in a pro-
hibitively unlikely coincidence - have shown a marked increase.
In reality the demonstrated ridge estimation procedure has a
mignificant effect only upon the parameter estimates whose errors
are mutually correlated, and with these the adjustments are
minimized and portioned out inversely according to their a priori
variances so far as possible, without unduly enlarging the residuals.
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An interesting characteristic of 6 typical ridge trace is that
* -. for all values of the multiplier the following simple @ouation

holds quite closely:

a1 IX +& 2 x2 +0" an Xn " (6.1)

In this equation the x's represent the parameter estimates*, and
the a's are empirical weight constant@ calculated from the ridge
trace. Each "a" is a maoure of the "effect" of unit value of
Its respective parameter. The total "effect" is constant and
arbitrarily designated ans unity.

The R matrix is included in Equation (3.3) for mathematical
generality, but there is a possibility of confusion in using
R 0 I in ridge regression, For example, if R p I, then one or
more of the adjusted parameters are effectively assigned infinite
a priori variances and cannot be represented in the ridge trace.
In the event that one of the parameters with infinite variance
has error highly correlated with that of a parameter with pre-
assigned small finite variance, then the ridge analysis may re-
sult in practically all of the adjustment being thrown into the
parameter with infinite variance. (In this circumstance,
incidentally, Equation (6.1) will not hold.) The final result
may nevertheless be anceptable, but the analyst sh,'uld realize
that he has effectively discarded that particular parameter with
small finite variance from the ridge regression and assigned it
its a priori value.

In many applications - for example, orbit determination - the
number of observations may run into the thouasnd&, and the re-
sulting X" X matrix (or equivalent) bocomem too large to invert on

a practical basis. In such a circumstance the analyst may choose
to reduce the data density to a rate where merial correlation is
negligible. If serial correlation can be ignored, then the size

*that is, tho values plotted in the ridge trace an a function
of the multiplier.

AA-11
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of the matrix to be inverted to only J by J, where J is the

number of adjusted parameters. For examplet Equation (3.8) with

h -0 and R -I simplifies to

V ?X+l ±jx'~ (~~4
~~bere ~ n Zs th(AmbrY)obeysi]s

rheretn in(6 wtth number ofoherangtions.tto i sdad i s

4,n Appendix S.
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APPENDIX AB

DERIVATIVES OF MATRICES

rop,,use of the neoeemlity for limitingI the size of thin report,

it h&o5 been nocessary to omit many derivations or at loast many

strps in thce derivations. Tho material of this appendix - per-
hotpe not immediately available elsewhere - is offered as back-

(Tround for the reader who may wish to derive equations given

earlier. Applicationis are primarily in tho realm of statistical
trans~formations,

There is no firm convention for the forms of many of those

derivatives, and consequently the mathematician is free to adopt
Isis own for'ms so long am he definoes them. Th~e rather looso con-

vention - so far an they exist - are giveni nt this point. For

purposes of illustration, we first define tho following five
quanttiflos:

oS is (lxj)

V is (pxi,) with eloments v

T Is (qxl)

M i (rxh) with oloinntsm

v. Js (rxt)

The, corrusf, ondir-, deri-vativo forms aro an .follows:

bvl

bv
2

ass
(p.'l)

),0

An-1
...................... .......



am ~ am  a

~21 '22 2
bs as

bI'

(gxch)

an a

as as as

ass

(pxl)

as
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•sas as

am

? 
h

S•~ss" as 66 " •

as

i, (pxl)
as U

AB2

=•(pxt)

I

ip

+" ; !s ......... +.......... !.... ..' ..... "I' "... ! • + t I I i + - i i



beas bs

aas

av b

*v 2

(q xp) a Ta

_ I

(crx hp) I

am 21
a')' av v

aM ~12 a 22

*I a

&V av )
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4i i~

11 M 2

(hrxgt)

There are four particularly useful theorem3 whose pronf$s ro
olomontary. In order to presont those, wn define the rollowving

v•ctors and matricem (subject to restrictJons given later):

A is (pxl); n3 is (pxl); C is (qxl); E is (pxq); I, is (pxp).

Cobinintions of these give the scalars X, Y, Z, where

X A'13 - 'A A

Y A'E C

Z A 0FA

Then ve boawb tbe tbeorem

I
S B

U * AC'

IlIl -M 2FA

IV _ U 2AA" - d(AA'), where d(AA')
denotes a diai-onnl matrix with
elements the same as those in
AA .
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Rostrictions applying to theorems I through IV respectively are

na frolIoWR

I. A lins independent elements. The elements-
of A arc independent of those in B.

II. E has independent elements. The elements
of 11. are independent of those in A and C.

III, A ham independent elements. The elements
in A are independent of those in F. F is
symmetric,

IV, F Is symmotric. Except for the dependence
associated with the definition of symmetry,
the elements of F are independent. Trh
elements of F are independent of those in A.

A -
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APPENDIX AC

IMPACT PREDICTION

Thr, tollowin, 'r nll,,nrJthm may be usod in roal time to cOmiatitO tile

lnnmritude nnd latitude of Impact under vneuum nasumnptions. Orvv-

ity in reprosontod only by the central gravitattonal pnrameter.

The Input is a position vector and a voloecity veotor. Bocause of

connflicts in notation and meaa new interprotations, all symbol&

are defined at the. end of this appendix.

2 2 2*
, r) (x + y + z

(.')) scot - (rv /K) - I

(4) a m r/(1 - 9 coo B)

(• ) , oin 2 . (xx + y; +. !,

(6) a2 * (o sin E)2 + (a cos E)

CJ (7) o oos E (a " r)/A'
(8 ) a sJ. 11 B, W -to2 (o Co}s 8, 1) 21

( C ) cos (Es-I) W r(e coo ki)(e cos E) + (e sin H I)(e sin E) /e2

(10) Pmn (Il-E) f [(o sin EI)(e com U) - (C 0 o- El)(e Cito E)L'e 2

(11) f u [coil CCI " E) - ] c[1 EL/(i - 0 Cos i]

1) 9 fain (E - E) + * sin F - sin sin

(11) x fx +gx

(1T1) + fy+gy

I I S) fz + sg

* . l( '2 X1  +7 2

2 2 2 22(17) [A Cx+ + )+ 1 /r

A I

.4.. * . ,* ..- '.v- " "---. - :T .. . . ...... .



FV r,: ditffrs oxc('ssivoly from r,,, then introdtce rc

atreomont, totain tho finol r to unoin )laocoof ri(

0~~~~ N 11 -. rctan (y1/x1) W- o 1 .1)

(10)~~ -rn( I/ 3

"cr:A suitable approxiimntion to 84, 1? may bo tined In place
of E~q. 17 in order to rociuco compulor timo if neiossary.
it Is customary to tint cnnoni~cal units (see Appendix 0)
vn d flint. rorluco K to unity.
11 is possiblo to Innorj.1cra~o nominal corrections for
ritinosl-Iaor, second gravity harmonic, rind qoocentrie. to
iroodiottc Inttiudo by compu tinpg thcokw( corroctions bofore
I ntinrl in torms of (A lant.*) and (i'. l ow,,. ) nt imprict,
n3Icbrrticn1Iy summrin,,, the. correctio~ns, wid fitting to a
pnir of low order polyznomirile, 'ho vnlutt(F of (t and -y
cic'vrminend fromi Lqua4;ionn 20 and 21, respectively can
then beo improvod in reni time b) jAcflg tho corractions
lndicatcI -from ovaluntinn of tho two polynomisila. Thv
intdo))nclont vnrlabla In the polynomirila many, for oxamplo.,
he -), if the missile Is Inin~Ichod rgon'rnhly opstwnrci or
v'ostwgird .
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secoentric: anomaly at epoch.

eccentric anom3ly at impact.

X central rqravitattonal parameter.

A uemi-mnjor nxls of enrth spharoid.

9 semi-minor axis of carth •phorold.

4 semi-major axis of trajectory ellipse.

S*eccentricity of trajoctory ollipuo.

f defined by Eq. 11.

9 defined by Eq, 12.

distanco from geocontor to missile position
at Opoch.

r vnaious •pproximnationei for distance from,S'1 I0 qcocentor to missile position at impact.

11 titmo of Clight, from opoch to impact.

v mninitudo of Inertial velocity vector at cspoch.

j",,chn] I Iotki.al po~ititon and velocity components

X',z i iiilar In ri- uro 1, Pne 15 with one important
(oxceptionf The x nxaiH 1oos throu:•l tho moridin

or Greeni~ch it. viinch. ~ htomrdn

InnrtinI position and velocity cmiponents at
imract in same coordinato system no abovo.

S• l•~~,rono en1tri lat.J i udl.,

y ,-,',)€1tic ]onnii-tude (F"ost)A

wD vrirtl' i rotation rate.

The equatorital radius of the earh can be used for rl,

in the first cycle through the algorithm if no better
approximati-n is available.

AC,1M b o
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APPENDIX AD
"Osn•,OORAPH IC COORDIIATS TRANSFORMATIONH

1.0 DEFINITION OF SRLMIIOQRAPHIC-COORDINATI SYSTEM

This system in Moon.ocentered, Moon-f ixed and either spherical or
rectangular. Selenographic latitude 0(Is analogous to geo-
contric latitude arni Is measured from the lunar equator, positive
to the north; that is, in the hemisphere containing M•ae
-erenitatis. The Moon's equator is a great circle containing the
center of mass of the Moon and lying in a plane perpendicular to
the Moon's axis of rotation. Selenographic east longitude YC is
measured from the lunar prime meridian positively along the

equator toward Mare Criitum. The lunar prime meridian ic defined
as being the meridian that passes through the mean center of the -'

Moon's disk, where the mean center is taken to be th.i point on
the lunar face intersected by the lunar radius that is directed

towar4 the Earth's center when the Moon it at the mean nacending
node and whenthe node coincides with the mean perigee or mean
apog •. The third coordinate is distance from the Moon's center
of mass, r( . There is as yet no solenoid analogous to the geoid
and no ellipsoid corresponding to the Earth ell9ipsoid.

oelenographic coordinates of an object may also be expressed in
a rectangular, right-handed, Moon-centered system (EI, F(1 0G1
analogous to the geocentric system (El F, 0) (p. 14) defined by

EaZ ra coso, (coov(

- r(, min 5 (P

The (F F( Gc() coordinate axes are not in Aleneral parallel to
the E10 coordinate axes.
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2.0 DEFINITION OF SELENOCENTRIC EqUATORIAL COORDINATE SYSTEM

This *ymtem is Moon-centered inertial and hkm coordinate axes

(x y(, se parallel respectively to the axes of the geocentric

inertial equatorial system (x,y,z) (p.14) and has origin at the
Center of mass of the Moon.

3.0 CA8SIII'8 LAWS

The statemht of these laws will facilitate a clearer under-

standing of the relative mot±"n of the coordinate systems of the
WO0h and the Earth. These lawo are as follows:

1. The Moon rotates uniformly direct about on
axis which in fixed with respect to the Moon
itself. The period of rotation is identical
with the sidereal period of the loon in its
direct orbit about the Earth, n~mely
27.321661 days, and as a consequence the
Moon presents almost the same face toward
the Earth.

I1. The plane of the lunar equator intersects
the ecliptic plane at a ctvatant angle of
about l* 35'.

III. The plane of the Moon's orbit intersects the
ecliptic plane at a nearly constant angle of
58 9', while the node of the Moon's orbit
regresses with a period of about 18 2/3
years. Moreover, the following three planes
intersect in a common line: (1) the plane
determined by the Earth orbiting about the
Moon, (2) the plane through the Moon parallel
to the ecliptic plane, (3) the Moon's
equatorial plane. The second mentioned plane
lies between the first and third. (The
ecliptic is the plane of the Earth's orbit
about the Sun.)

These "laws, are obviously only approximate, but they are very
close approximations, There are various months essoclated with

the Moon's motion. The sidereal month of 27.321661 days is the

true period of revolution of the Moon about the Earth with
respect to inertial space. The synodic month of 29.530589 days

is the period between two conjunctions (new Moons) or oppositions
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(ftill Moons) with the Sun, The tropical month of 27.321582 days
is the period between two passages of the Moon over the vernal
equinox. The anomalistic month of 27.564551 days is the period

batwuen two successive perigee passages of the Moon. The

nodical or Draconitic month of 27.212220 days Is the period be-
tween two successive nodal palusagem of the Moon as its orbit
intersects the plane of the se!lptic. The "age" of the Moon is
the elapsed time since the previous new Moon, full Moon thus
occurring at an age of about 14 3/4 days, at which time the

fraction illuminated is 1.00.

4.0 LIBRATION

Libration refers to the osoillationm or nodding of the Moon's
face as seen by an observer on the Sarth. There are three
general types of libration: (1) Optical or geometric, (2)

Dynamic or physical, (3) Diurnal or parallactic. The resultant
of the first two at some. instant is described by the departure
of the selenographic coordinates of the Earth's center from
zero. These coordinates are tabulated for each day of the. year

In the American Ephemeris.

4.1 Optical or Oeometric

S- - WN-ý-ý--

This type represents by far the major part of the libration. It

is described by Cassini's laws and calculated mathematically from
Encke's (1843) formulas. Because the Moon's equator does not
lie in the orbital plane of the Moon about the Earth, an observer
on the Earth sees more than half the northern hemisphere of the
Moon at one period during the month and more than half the
southern hemisphere of tho Moon at another period during each
month. This dispersion in latitude is about j 6.5 degrees.

That is, the selenographic latitude of the Earth varie, from
ahout +6.5 dejreea to -6.5 degrees. Becaume of the eccentricity

of the Moon's orbit about the Earth, the radius vector' from the
Earth to the Moon does not maintain a constant angular rate

(Kepler's Iaws). Therefore, since the Moon's rotation about its
AA own axis is nearly uniform, an observer on the Earth sees
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relatively farther about the eastern limb and farther about the

western limb at different periods durlug the month. An a

conmequence, there is a longitude dispersion of about • 7.5 b)

degrees. That ist, the seleoographic longitude of the Earth

0rties from aRcut +7.5 degrees -to -7. degrees. Because of the

geometrical librations, which constitute practically all of the

librationa, an observer on the Earth to able to see approxi-

mate1y 56% of the Moon's surface over a period of a mouth.

4.2 nD"anio r Ph yeica la

ýiehbn librotiona result from differences between the principal

idbonts of Inertia of the Moon In Association with the Irregu-

oiities in the Moon's orbital motion. The longest diameter of

the Moon is directed generally toward the Earth and the shortest

along the axis of rotation. Becauue of the geometrical libra-

tion, the longest diameter does not point directly toward the

Earth, and therefore the atvraction of the Earth on this bulge

exerts a torque causing the long axis to process with a small

apical angle. Standard mathematical theory develops the forced

vibrations and free vibrations asmociated with th. constants of

integration. The tree vibrations are presently considered

negligible. Physical librationa are calculated 'rom Hlayn's

(1907) formulas.
4.3 Diurnal or Parallactic

Because the Moon Is approximately only 60 Earth radii from the

Earth, at any particular instant observers on dfferent parts

of the Earth will have significantly different ualenographic

coordinates and hence topocentric corrections mlist be considered.

5.0 MOON'S ORBITAL MOTION

The geocentrio coordinates of the Moon can be d-iscribed by

Brown's Lunar Theory originally published in 19J5 and containing

over 1650 terms in the equations of motion. With improvements

by Eckert and others, this theory still forms the basis for most

lunar ephemerides. Some ephemerides are computed using special
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perturbations and numerical integration. In this country the
JPL Lunar Ephemeris Tapes are used almost 4xclusively, Thoy kre

constantly being improveO. Although tbo Moon's po@itioa can be

calculated approximately from orbital Plements and a relatively

simple computer program, thv JPL tapes are used Ar serious aad
accurate work on a computer. For hand ,computationms the ephemoris
given in the American Ephemeris is more convenient and is satis-

factory.

6.0 s3QECZ OF TRASFORMAT.ONS

There are two general types of problems: (1) Given the selono-

graphic coordinates of a point, what are the apparent coordinates

for an observer on the surface of the Earth? (2) Uiven the

apparent coordinates of a point for an observer on the surface
of the Earth, what are the selenographic coordinates? For

problem 1, the following sequence applies:

O) V3  " T8 T7 T8 r• T4 (T1 S2 V2 + T. V1 ], where

V1 is Input selenographic vector.

"T1 transforms to the bolonocentric equatorial system
expressed ini the true equator and equinox of date.

V2 is the Input geocentric equatorial coordinates of
the Moon's center expressed in the mean equator
and equinox of 1950.0.

T 2 transforms to the moan equator and equinox of date.

Ti transforms to the true equator and equinox of date.

T4 transforms to the Earth-fixed, Earth-centered,
rectangular coordinates based on Conventional
International Origin.

T5 transforms to the true pole of date.

.Te tran•rorms to radar coordinates an affected by
• "deflection of the vertical.
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T7 introduces aberration effects.

T introduces refraction effects.

V3  is vector of final apparent radar coordinates.

For problem 2, the following sequence applies in which all terms
have the same meanings:

V1  - TlTT1 
1 IT '1 T T" T7" T 8

1 V3 - T3 T2 V2J

7.0 MAI p$TCA& DESCRIPTION

The ,,nly transtormation peculiar to the problem being discussed
An this appendix is that associated with T1 V1 . All other
traneformations ar'e discussed elsewhere in this report. VI is

46fihcd by

V O

S•1 Is defined by

Cl Cl Cl

T I C2 1  C2 2  C 2 3

C3 1  C3 2  C3 3

where the elements of T1 are Zunctions of the Euler angles

S(.•.A, i, f') defining the Moon's orientation:
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C Co1 - •00S -q os 1 min si A

C12 -mi A-o cooIaim0 coo A

C19  sin I min V'

C2 1  o cos ahin '+ coo 0 o 0 ' sin An

C 3  a -sin A sin q #+os l0 o n c0o A OS

- -min I sO o'

C31  - sin I coo.

C3 2  , min l A

C33  - cowl

Prerequisite to the computation of the Moon'* orientation angles
are the physical libration constatits (do, r, p) which may be
computed an follows:

g - (- r', the mean anomaly of the Moon.

9 L r the mean anomaly of the Sun.

. r'- a , the argument of perigee of the Moon.

Expresasona for (, r* , L , r and S are given on Page 45. Then

a sin 1 . -0:0302777 ain g

+0:0102777 cin (g + 2 w)

-o:003055!35 sin (2 x + 2 w)

..0 *3.003333 gin x + 00163888 sin g'
40:005 min 2 to

p a -0!0297222 coo g + OtO02777 coo (g + 2 w)
-0:003,58555 co,, (2 g + 2 w)

where I - I.tA35D
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In addition, we require e from Eq. (75a) and A, where

On tI + P) CON C - con + p)"sin e 06I e t + a +

0 •A 360"

where a N is given on Page 44.

The final orientation angles are obtained from the following

relations:

con i - con ((I + a 4 X) sin E (I + p) + cOS con (I p) ,CO

0 ' 1 * 90

sin n' -Sin (I + a + A ') sin (I + p) cO 9 .

-900 -( fl' 90go

SA 4 c ÷ - (I - a , 0 .<. 3600

This completes the algorithm for TV. The other transformations
are given elsewhere in this report and need not be repeated here.

A note regarding aberration:

Most tables of the Moon Mre constructed so as to
give the apparent position of the Moon directly,

by slightly modifying the geometric elements of
the Moon'° orbit, and hence with such tables only

the small diurnal corroction is missing. When a
geometric lunar ephemeris is used, then the full

planetary aberration corrections must be made.

The JL.J tapes are geometric.
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APPENDIX AE

ABERRATION

1.o INTRODUCTION

Because of the finite velocity of light, the apparent position of
any celestial body depends upon the motions both of this body and

of the observer during the Interval of time required for light to

travel from the body to the observer,

Th, displacement of the apparent position of the celestial body
from its actual geometric position at the instant when the light

left it is called stellar aberration. Stellar aberration is due
to the instantaneous velocity of the observer in an inertial

system with origin at the center of mass of the solar system.

Stellar aberration is independent of the motion or distance of

the observed body, but the computations are somewhat simpler if
the dlistance is known. It in convenient to separate stellar

aberration into two parts: diurnal (due to rotational velocity

of the observer about the Earth's axis) and annual (due to Earth's
orbital velocity). There is a third part associated with the

motion of the solar system In space which is always ignored.

The displacement of the apparent position of the celestial body
from its actual geometric position at the instant of observntion

is known as planetary aberration. Planetary aberration is thus

the resultant of stellar aberration and the geometric displace-

mont of the body in spaoe due to its motion while the light was

traveling to the observer, the latter component bving called

"light time" correction. To the order of accuracy that the motion

of the object during the light time is rectilinear and uniform,
the planetary aberration depends upon the instantaneous velocity
of the ubiarver relative to the object at the time of observation

in exactl', the same way as stellar aberration depends upon the

instantuncous total velocity of the observer.

AFETR is concerned with missiles and satellites at distances no

4reator 1han the Moon. Since these objects partake of the same
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orbital motion as the Earth about the Sun, the annual component
of aberration is negligible. It is satisfactory therefore to
work In a geocentric inertial coordinate system. Expressed in
this system, the corrections to be added to the apparent observa-
tions are

AX AX

AY -' A 1
S{

&Z &Z

Where (X,Y,Z) form a geocentric inertial right-handed rectangular
System with X and Y in the equatorial plane, Z extending north-
ward along the spin axis and X extending through the meridian of
the site at the instant of observation. i in light travel time

from object to radar. (AX, 1Y, AZ) designate the velocity com-
ponents of the observed object relative to the corresponcing
velocity components of the site. ,

Equation (1) is similar in Zorm to the corrections currently used
at AFETR for aberration or transit time with radar:

AR a

AAA (2)

AE E

where (R,A,E) form an Earth-fixed polar topocentric system with
R designating the slant range, A the azimuth measured in the
horizontal plane positive eastward from north, E the elevation
measured positive above the horizontal plane, origin at the
radar gimbals. Since the (RA,E) system is not inertial,
Equation (2) is accurate only for AR. However, since for all
satellites within a few thousand miles of the Earth, the correc-
tions AA and AS are extremely small, the errors in AA and AS
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computed from Equation (2) are not important. At distances equal

to that of the Moon, however, Equation (2) gives significant

errors in &A and &E. (Aberration corrections to be used In star

observations are discussed in Appendix C.)

The problem here is to transform Equation (1) from the (X,Y,Z) '1
system to the (R,A,l) system for practical applications. .

ALGORI THM

An intermediate (u,v,w) coordinate system is useful, It has

origin at the radar gimbals located at geodetic latitude

The u and v axos lie in the local horixontal plane, u pointing

eastward and v northward. The w axis extends upward. Ar4

u R coL2s sin A o
v R coo S coo A (3)
w -Rsin S

u R coo E sin A I R sin I sin A + A R coo cs A co

coo E coo A - I R sin I cos A - R co X min A (4)
m X + R coo R

i

The light travel time from object to radar is given by

¶= .R/C , (5)

where C is volocity of light.

&U W V min 0 0 + W w O c o
At, + W u min (

6i w .) u coo @o

whore w Is Earth rotation rate,

A E .-
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U U + v~ v +w WA~RR

&A v A U -u a (v
u + V

-R(R 2 W2

It is evident In the case of AR the correction in identical to
that in %quation (2). In radar traverne and elevation angles, a
typical disagreement between this algorithm and Equation (2) Is
4f the order of 0.1 milliradian at lunar distances.

instead of correcting the observation and keeping the time fixed
is Inl Equations (1) and (2), one may corroct the time of the
'Observation and leave teobservation fixed. Analogous to
kquation (1)t we have

truej
or apparent

geometr'ic

X X

where t is the time of observation.

Analogous to Equation (2), we have .'

"ftrue
or apparent

geometric"

IA A (2a)

Equation (2a) like Equation (2) hau limited accuracy.
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