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ORBIT DETERMINATION IN THE PRESENCE OF UNMODELED ACCELERATIONS

Introduction

The determination and prediction of the orbit of a satellite in the
near-earth environment is complicated by the fact that the satellite is
influenced by the non-spherical effects of the Earth's gravitational field
as well as the dissipative effects of the Earth's atmosphere. The effects
of the atmosphere are difficult to determine because the atmospheric density
and, hence, the drag undergo large uvnmodeled fluctuations. For mauny artifi-
cial satellites this fluctu~stion in the drag, rather than the observational
error, is the main source of error in orbital predictions. The actual fluctua-
tions in the drag can be correiated with the dynauic state of the Earth's
atmosphere, i.e., the hourly, daily, and monthly fluctuaticns in the atmos-
pheric density, as well as in the orientation of the spacecraft's attitude.
This latter effect, i.e., changes in the spacecraft's attitude will directly
influence both the drag coefficient and the projected cross-sectional area.
Previous discussions of the effect of atmospheric drag on the determination
and prcdiction of the orbits of near-carth satcllites are given in Refercnees
1-18,

In the presence of ummodeled accelecration due to dynamic model error,
both batch and sequential estimation algorithms can yield inaccurate results.
Due to the "random nature" of fluctuations in the aimospheric drag, this is
an important considcration in establishing the accuracy with which the orbit
of a near-earth satellite can be determincd. The nature of the errors, whicl

occur when the batch processor is used, it discussed in Ref. (8); while a
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, discussion of the errors which occur when the sequential processor is used

p

are discussed in Refs. (9), (10), and (11). The correction for the effects

of dynamic model error (or unmodeled accelerations) can be implemented,

most easily, using the sequential estimation algorithm. The algorithms which

account for noise in the state equations, 1.e., the equations of motion, are

derived by adding a term to thc uquation for propagating the covariance matrix

VR

associated with the siate estimate. This additive term is chosen to account
for the uncertainty in the mathematical model. This method of accounting for
the effects of unmodeled accelerations suffers from two significant disadvat-
ages:

1) The accuracy with which the estimate can be obtained depends on the
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value chosen for the additive state-noise covariance term, If the additive
term is too large, undue emphases will be placed on the most recent observa-
tions. 1f the term is too small, the state estimate convariance can become
3 too sm2ll and ti.2 estimate can diverge.

2) Such an estimation algorithm does not yield any direct information

f concerning the values of the unmodeled accelerations.
In Ref. (12), a method for estimating the state of a spacecraft in the

presence of dynamic model error (unmodeled accelerations) is described. The
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proposed method, referred to as the Dynamic Model Compensation method, pro-

cesses the data in a sequential fashion. The method has the advantage that
in addition to obtaining a more precise estimate of the state of the space-
cxaft, the values of the unmodeled accelerations are determined also as

a function of vime. The method is statistically categorized as a first-
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crder auto-regressive estimation procedure in which the unmodeled accele-
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ration in each of the three components of the equations of motion is modeled
as a first-order Gauss-Markov process.13 The correlation times are treated
as unknown parameters and are estimated also during the orbit determination
procedure.

In Ref. (14), the method is applied to the problem of estimating the
unmodeled accelerations acting on a lunar satellite. Range-rate data
obtained during the Apollo 10 and 11 missions is processed and a signifi-
cant improvement in the accuracy with which the orbit is determined over
that obtained by the NASA Manned Spacecraft Center using a conventional
batch processor is obtained. In some regions, the range-rate residual is
reduced by a factor of approximately ten. The estimated values of the
unmodeled accelerations are repeatable from revolution to revolution within
a given mission and from mission to mission when the spacecraft covers the
same ground track. In addition, the variations in the unmodeled acceleration
show a high physical correlation with the reported location of lunar sur-
face masconsls. In Refs. (16) and (17), the estimates of the unmodeled
accelerations are shown to be an accurate representation of the accelera-
tion due to the lunar surface mascons, These results yield a high confi-
dence in the ability of the algorithm to estimate the unmodeled accelera-
tions. In Ref. (18), the application of the procedure to the problem of
estimating the random accelerations acting on the rotational motion of the

earth is discussed.

Study Objectives

During the course of this investigation, the algorithm for estimating
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the state of a dynamical system in the presence of unmodeled accelerations,

i.e., the Dynamic Model Compensation (DMC) algorithm, has been applied to

the problem of estimating the motion of a near-earth satellite influenced
by the non-central components of the earth's gravitational field aad the
effects of atmospheric drag. Since one of the major limiting factors in
the 1l4th Aerospace Force's orbit determination and prediction capability
is the effe:ts of the drag fluctuations due to the unmodeled changes in
the atmospheric density, a basic objective of the investigation was to
improve the precison of the orbit determination and prediction capabili-
ties of the 1l4th Aerospace Force. The initial objective of the study was

the evaluation of the capability of the DMC method proposed in Ref. (12)

ba ol e b

to improve the precision with which the state of an orbiting object in-
fluenced by unmodeled atmospheric drag can be determined. A secondary
objective was to improve the prediction capability by analyzing the time

3 history of the random fluctuations in the atmospheric drag over a given

A orbit to obtain smoothed coefficients for describing the secular effects

of the drag. Additional possible applications of the method include the
development of an improved capability for terminal impact prediction,

E the improvement of system calibration methods and finally the possibility
of determining indirectly the attitude behavior or orbiting objects. Since
the atmospheric drag force will depend on both the projected cross-sectional
area and the drag coefficient and since these functions will depend on the
attitude of the spacecraft, a sufficiently fine delineation of the random

accelerations acting on an orbiting objective will yield information which

can be correlated directly with the attitude of the spacecraft.
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As a related matter, the computational characteristics of batch and
sequential estimation algorithms were studied with regard to computing time,
computer storage requirements, estimation accuracy, and convergence character-
istics to determine the efficiency with which each algorithm performs the real-

time orbit determination functions.

Resul ts

The results obtaincd during the course of these studies are described
in Refs. (19) through (45). In Ref. (34) and (45), results are presented
which are pertinent to the problem of estimating the atmospheric drag on
satellites in circular and small eccentricity orbits. In Ref. (45), three
different procedures were developed. The proposed methods were tested by
numerically simulating the orbit determination problem with the simulated
true atmosphere defined to be the analytic Jacchi-Roberts atmosphere21 and
the filter atmosphere approximated locally with an exponential atmosphere.
The results obtained in this investigation indicate that the simulated world
atmospheric density and ballistic coefficient for the satellite could be
accurately estimated with either of the two empirically adaptive processes.
In Ref. (34), it was shown that under favorable tracking conditions, errors
in the atmospheric density cen be estimated to one part in 10-lsg/cm. The
dynamic model compensation representation used in R¢ €. (34) can be described
as follows. If the atmospheric density, p, and the drag parameter, Bc'

are assumed to vary as follows:
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p = dlp expl-B(r-r )]1/dt + u, (1)

2
B, =w [Bc - Bo] + u, (2)

2 ﬁo - u4, 6 = u5 (3)

where r, is a reference radius, Po is the density at radius r , Bo is

the mean drag parameter, €, w, and ¢ are constants and the random noise
components Uy, (i1=0,1, . . ., 5), are each ascumed to satisfy the condi-
tions E[uil =0 and E[ui(t)uj(T)] = qi(t:)c‘s(t:—'r)éi:I where 4&(t-1) is the
Dirac Delta function and 6ij is the Kronecker Delta, then the differential

equations governing the modecl compensated motion can be expressed as follows:

. 2
Xg = Xjg(p - Xp) +uy

ig = {%; {xg (t)) exp [-X), (r-r )]} +u, (4)
xlo = u,

X179

X12 =Yg

wherc r 1is the position vector, v is the velocity vector and A is the

velocity of the satellite with respect to atmosphere.

Following the demonstration of the applicability of the representation
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shown above to the problem of estimating the atmospheric density and time
varying drag coefficient, for satellites in circular and small eccentricity
orbits the application of the method to the problem of estimating tie drag
acceleration on a highly eccentric orbit using actual observed data for com-
parison was initiated. The data obtained by tracking the Atmospheric
Explorer-C (AE-C) satellite is particularily appropriate for such a study
since this satellite is instrumented with a set of minature electostatic
accelerometers (MESA) from which the estimates of the total drag force can
be obtained. In the proposed study, The I' ersity of Texas Orbit Processor
Incorporating Statstical Analysis (UTOP1.) was to be used to perfrom the com-
putational requirements of the study. During the final stages of study,
simulated observations were used to evaluate the effects of the tracking
network and the observation quality on the accuracy of estimates of the
parameters in the model atmosphere representation. To develop an adaptive

model atmosphere which could be used for long term prediction, the exponen-

tial model used in Eq. (1) was replaced with the Modified Harris-Priester

Mode1.21 In this modecl, the density is expressed as follows:

- p 3 ; v
p(h) po(h) 1+ PlL) Q + P2 Cos P3 2)
p(h) is the atmospheric density at altitude h above the reference

ellipsoid,

po(h) is determined from the Harris-Priester table by exponential

interpolation,

Pl’ P2, P3 are adjustable model parameters

t is the integration time and

v is the angle between satellite position vector and the vector

-7_
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toward the apex of the maximum diurnal density bulge.

Using this algorithm, observation data obtained from the AE-C was to be pro-
cessed in order to determine the applicability of the alternate algorithm
using actual tracking observations,

In addition to comparing the Analytic-Jacchia and the Modified Harris-
Priester atmospheres, the study, also, compared the Russian model atmosphere
proposed in Ref. 47. The conclusioas of this study were that the Russian
model atmosphere requires the least computational effort. The Analytic
Jacchia was the most accurate, An additional conclusion from the comparison
was that the uodified Harris-Priester atmosphere variation could be adjusted
to have the same frequency and phase angle as the Jacchia atmosphere with
an associated computing time which vas only slightly greater than the
Russian atmosphere. As a consequence, it was concluded that the Modified
Harris-Friester model holds the greatest promise for developing an adaptive
atmospheric model.

Finally, a significant effort has been made to determine the most
efficient method for propagating the state error covariance m:trix. In
the investigation, both quadratic and square root propagation algorithms
have been evaluated in an attempt to define the operational advantages and

disadvantages of each method. The methods evaluated include:

1) numerical integration of the matrix Racitti equation,

P=AP + AT + Q

2) the algorithm P = ¢P¢T + ¢ where b = AQ,,@(tk,tk) = ] and

3) a new algorithm for propagating the squarec root of the covariance

_‘X__
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matrix in lower triangular form.

Conclusion

/T

1 Based on the results obtained during the course of study, it can be
concluded that using observations from topocentric tracking stations, the
Dynamic Model Compensation Method can be used to obtain an accurate appro-
ximation of the unmodeled aerodynamic forces acting on a space vehicle due
to 1) Uncertainties in the atmospheric model and 2) Variations in the drag
parameter. The accuracy of the estimate will be influenced by the accuracy

and density of the observations and the tracking station distribution. The

é observation accuracy requirements for successful implementation require
; participating satellites; that is, accurate estimates of the density can not

be obtained with "ckin-track" or passive observations. lowever, there are

2 alternate formulations which hold potential for drag estimation using passive

3 satellite observations.

Recommendations for Further Study

Topics which can be recommended as candidates for further study include

the following.

1) Utilization of the DMC algorithm to process actual tracking data

from the Atwospheric Explorer~C (AL~-C) satellite would be of interest. The

AE-C satellite has a capability for directly measuring the atmospheric drag

3 using very precise accelerometers, and, consequently, the drag estimated with

the DMC-algorithm can be compared with the drag measured by the accelerometer

to provide verification of both approaches.
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2) Further study should be made to determine the relative accuracy and
computing speed associated with integrating the state transition matrix and
the covariance matrix differential equations to obtain the propagated values
£ for the covariance matrix. In this study, particular attention should be
given to the efficiences of complete numerical solution to the problem versus
approximate analytic determinations of the state noise covariance matrix
contribution. In particular, the question of which procedure is best suited
to the short arc fit and which procedure is best suited to the joint short

arc multi-revolution orbit prediction fit should be investigated.

3) Further studies comparing the characteristics of the batch and the
sequential estimation algorithms should be made. In particular, the following

specific topies should be considered:

mwwmw{‘ Y w——T

« A comparison of the batch eud sequential estimaition convergence character-

istics with regard to the data accuracies and data type, i.e., both skin

e gy

track data and active satellite data should be considered.

* Mean Motion - B-Coefficient Study - An attempt to determine the minimum
dota span required to effectively separate contributions of drag and

gravity should be made. The influence of data-type, tracking station

R T

location and orbit g:ometry as well as satellite altitude should be in-

vestigated in this study.
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