AD-A013 681

NONDESTRUCTIVE VIBRATORY TESTING OF AIRPORT PAVEMENTS.
VOLUME II: THEORETICAL STUDY OF THE DYNAMIC STIFFNESS
AND ITS APPLICATION TO THE VIBRATORY NONDESTRUCTIVE

METHOD OF TESTING PAVEMENTS

Richard A. Wéiss

Army Engineer Waterways Experiment Station

Prepared for:

Federal Aviation Administration

April 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

A AL A L, ST LN T € Bt TR R, 05 N O e S SR o

\ s e A VG2



e L F

A R SR e

— -

ADAO13681

¢

239081
Report Ig. FAA-RD-73-205-1 ‘

NONDESTRUCTIVE VIBRATORY TESTING
OF AIRPORT PAVEMENTS

YOLUME I

Theoretical Study of the Dynamic Stiffness and
Its Application to the Vibratory Nonmdestructive

Method of Testing Pavements

Richard A. Weiss

U. S. Army Engineer Waterways Experiment Station
Soils and Pavements Laboratory
Vicksburg, Miss. 39180

AL

Y

%

e )!.
"
Fapes of »

APRIL 1975
FINAL REPORT

Document is available to the public through the National
Technical Information Service, Springfield, Va. 22151.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590 2 oduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

oy

GRS S S S et o s B T L e S T S e " do SR
R SRR S :
) 7 S N e L Y RS Y -

o ¥

S T s



NOTICES
This document is dissemi;ated under the sponsorship of the Lepartment
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.
The United States Government does no%t endorse products or manufacturers.

Trade or manufacturers' names appear herein solely because they are con-
sidered essential to the object of this report.

/

[ or — /
.

G b o AMLASIGY COOES

R T

,

“‘__Cnizi..

wolt, aod, or SPRCIAL




Technicol Kepert Documentstion Page

1. Report No. 2 Goverament Accession No. 3 Recipient’s Cotelog No
FAA-RD-T73-205-11 ;
4. Title end Subntle 5. Report Date i

NONDESTRUCTIVE VIBRATORY TESTING OF AIRPORT PAVEMENTS | April 1975
VOLUME II: THEORETICAL STUDY OF THE DYNAMIC STIFFNESS |5 Feiemms OreerononCode
AND ITS APPLICATION TO THE VIBRATORY NONDESTRUCTIVE |

METHOD OF TESTING PAVEMENTS _T Perfarming Organizetion Report No. K
7. Author's) Technical Report S=-75-
Richard A. Weiss Volume II '

9. Performing Orgenization Nems ond Address 10 Work Unit No. {TRAIS) i
U. C. Army Engineer Waterways Experiment Station i
Soils and Pavements Laboratory, P. O. Box 631 T CortracieCrant e

Vicksburg, Miss. 39180 FAT1-WAI-218

13. Type of Report end Period Covered

12. Spensering Agency Neme end Address
Department of Transportation
Federal Aviation Administration
Systems Research and Development Service i6. Sponsering Agency Cods
Washington, D. C. 20591

Final report

15, Supplementery Netes

16. Abstrect

A theoretical and experimental study of the dynamic load-deflection curves of pave-
ments was conducted to determine the dependence of the measured dynamic stiffness
values of a pavement on the type of vibrator that is used to make the measurements,
and to correlate dynamic stiffness measurements obtained from different vibrators
at the same pavement location. Experimental tests were conducted to verify the
theoretical results. The dynamic load-deflection curves of pavements are found to
be nonlinear, and a nonlinear vibration theory of pavements is developed to de-
scribe these curves. This study gives a method of determining the shear modulus
and thickness of each pavement layer directly from the measured values of dynamic
stiffness for a series of vibrator baseplate sizes. This method may be of prac-
tical value for nondestructively determining the subsurface structure of a pavement.
Volume I, "Experimental Test Results and Development of Evaluation

Methodology and Procedure” is being prepared and will be released soon.

PRICES SUBJECT TO CHANGE

17, Koy Words 15, Diswribution Stetement

ﬁzzglﬁgtfmﬁggs Document is available to the public
NendestPuctive tests through the National Technical Informa-
tion Service, Springfield, Va. 22151

Pavements

Vibration tests

19. Security Clessil, (of this repert) 20. Security Clussil, (of this page) 2. No. of Peges | 22, Prce
Unclassified Unclassified /// 525 ) Qf
Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

/



SRR
-

PREFACE

This study was conducted during the period April 1972-October
1974 by personnel of the U. S. Army Engineer Waterways Experiment
Station (WES). It was sponsored by the Federal Aviation Administration
through part of Inter-Agency Agreement FAT1-WAI-218, "Development of
Airport Pavement Criteria."

The study was done under the general supervision of Messrs. J. P.
Sale and R. G. Ahlvin, Chief and Assistant Chief, respectivelyv, of the
Soils and Pavements Laboratory, Mr. R. L. Hutchinson, Special Assistant
to the Soils and Pavements Labcratory, and Mr. H. H. Ulery, Jr., Chief,
Pavement Design Division, and under the direct supervision of
Messrs. A. H. Joseph and J. W. Hall, Jr., Chiefs, respectively, of
the Pavement Investigations Division and the Evaluation Branch. The
programming for this study was done in part by Mr. A. P. Park, Soils
Testing Branch. Significant contributions were made by Mr. J. L. Green,
Evaluation Branch. This report was written by Dr. R. A. Weiss.

BG E. D. Peixotto and COL G. H., Hilt were Directors of WES during
the conduct of this study and the preparation of this report. The

Techr.zical Director was Mr. F. R. Brown.




TABLE OF CONTENTS

l [ ] INTRODUCTION [ ) L] L] . - 1 ] * L] L] L] L] L] L] L] E ] L] L] 1 ] - L ] . [l L] L] L] l 3
l . 1 BACKGROUND . . L] L] L[] . L] L] L[] L] L[] L ] L] L] L] L] L] L) ] . L] L ] . L[] 13
102 ONECTIVES L] L] . L] . . . L] L] L] . * . . L] L] . L ] . - L] - * . 13
103 SCOPE . L] [ ] L] L] L] L] L] L] L] L] L] L] L] L] . L] L] . L . L ] - . [ ] . lh
2. LINEAR OSCILLATOR MODEL OF PAVEMENT RESPONSE . . . « . . . . . 16
2,1 GENERAL CONSIDERATIONS v + v + ¢ « o « o o o o o o o « o« o« 16
2,2 HOMOGENEOUS LINEAR ELASTIC HALF-SPACE . . . + « + «» » « . 16
2.3 DYNAMIC LOAD-DEFLECTION CURVES . . « & & « & o s o « o « « 17
2. h DYNAMIC STIFFNESS L] . L] . L] L] L] L] L ] L ] . L] L] L] . 1 L] . . L] 18
3. THE NONLINEAR MECHANICAL MODEL . . &+ « « « & o o o « o « &« o o 21
3.1 INTRODUCTION TO THE NONLINEAR MODEL . . ¢ ¢ + ¢ ¢« « « « . 21
3.2 NONLINEAR PAVEMENT-RESTORING FORCE . . « v « « & « o o « . 22
3.3 EQUATION OF MOTION FOR THE NONT,INEAR SYSTEM . . . . . . . 23
3.4 EFFECTIVE SPRING CONSTANT . . . v « « « « ¢ o o « o o « o 2b
3.5 CALCULATION OF THE DYNAMIC STIFFNESS AND THE DEFLECTION
AMPLITUDE FOR NONLINEAR PAVEMENTS . . . . . ... 26
3.6 PHYSICAL ORIGIN OF THE NONLINEAR PAVEMENT PARAME'I'ERS . .. 38
3.7 CALCULATION OF THE NONLINEAR PARAMETERS . . .« « + . L9
3.8 EFFECTS OF THE MECHANICAL CHARACTERISTICS OF THE VIBRATOR
ON THE MEASURED VALUES OF DYNAMIC STIFFNESS . . . . . . 66
4, EVALUATION OF THEORETICAL RESULTS OF THE DYNAMIC STIFFNESS
BIUDY. 5 o o B e 0 T N e e T e N TS
4,1 EXPERIMENTAL PROGRAM . + + « ¢ v ¢ « o o o o o o o &« .. 10
4,2 COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS FOR
THE DYNAMIC STIFFNESS v « v v & o o o o o o ¢ o o o e« 91
5., SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS . . . « + « + « « . . 104
5.1 SUMMARY . &+ & & & v & o o e o o s o o o o o o o o o o« « & 10k
5.2 CONCLUSIONS '+ v & & 4o o o o s o s s s o o o s o o« o o« « 104
5.3 RECOMMENDATIONS . &« & « ¢ & « « & & I T e )
REFERENCES & v v v v &« ¢ o o o o o o+ « o s o s o« o o« o o o« o « o« 108

. Preceding page blank



10

11

12

13

1k

15

16

17

18

LIST OF ILLUSTRATIONS

Title

Typical dynamic response of the linear spring model . . .

Theoretical dynamic load-deflection curves and dynamic
stiffness curves predicted by the nonlinear spring model .

Theoretical static load-deflection curves predicted by
the nonlinear spring model . . « + v ¢« ¢ ¢ ¢ ¢ o o o o o

Theoretical dependence of the effective static spring
constant on the static load . . . . . . . . . . Al T

Frustum of cone in which stress and strain in the pavement
are assumed to be confined . . . . ¢« ¢ ¢ v 4 4 0 0 e e e o

Layered model of pavement . . . . « « ¢« « « ¢« ¢ o s o o o«

Theoretical dependence of the spring constant, kOO » ON
the radius of the vibrator baseplate . . . . . . ¢ . . . .
Theoretical dependence of the third-order nonlinear param-

eter, b, on the radius of the vibrator baseplate . . . .

Theoretical dependence of the fifth-order nonlinear paruam-
eter, e , on the radius of the vibrator baseplate . .

Theoretical dependence of the dynamic stiffness, S , on
the radius of the vibrator baseplate . . . . . . . .

Dynamic load-deflection curves for different locations on
AC pavements showing strong pavements to be more linear
than weak pavements . . . . ¢ ¢ ¢ ¢+ ¢ 4 & s o o o o o o & o

Dy..amic load-deflection curves for different locations on
PCC pavements showing extreme linearity of curves .

Measured values of dynamic stiffness versus dynamic load

(15 H2) & v v v v v e e e et e e et e e e e e e e e e e
Possible experimental evidence for the existance cf a
critical frequency value of ®15 Hz for AC pavement . . . .

Nearly linear dynamic load-deflection curves obtained at
15 Hz for AC pavement . . . . « « + « + &

Dynamic load-deflection curves for various static loads on
ACpavement . . . « « ¢« & ¢ ¢« o 4 ¢ o o

Experimental values of dynamic stiffness versus static load
applied by the WES 50-k1p vibrator operating at 15 Hz on AC
pavement . . . . . . . ol o o o ofa o

Experimental values of dynamic stiffners versus dynamic
load for various values of the static load . . . . . . . .

19
33
36
38

43
b7

59
60
61

62

i3
Th
75

76

19

80

81



4'4K

2l

22

23

24

25

26

27

Title

Experimental load-deflection curves for a series of base-

plate sizes on AC pavement .

Experimental load-deflection curves for a series of base-

plate sizes on rigid pavement .

Experimental values of the dynamic stiffness versus the

vibrator baseplate radius . .

Experimentally derived values
baseplate radius . . . . . .

Experimentally derived values
baseplate :1adius

Experimentally derived values
baseplate radius . . . . .

Experimentally derived values
vidbrator baseplate radius . .

Experimentally derived values
baseplate radius . . . . . .

Experimentally derived values
baseplate radius . . . . . .

of the parameter kOO

versur

of the parameter b versus

of the parameter e versus

versus

of the parameter 2.0

e o e & s e s o s .

of the parameter !.2 versus

of the parameter

2 L versus

Page

8l
85
86
9L
94
95
97
97

98



LIST OF TABLES

Table Title

1 Mechanical Characteristics of Vibrators .. . . . . 2

2 Comparison of Dynamic Stiffness Values as Measured by the
Dynaflect Vibrator and the WES 16-Kip Vibrator (Concrete
Pavement) . + v & ¢ ¢ ¢ o 4 o 0 e e 0 e e 0 e e e e

3 Comparison of Dynamic Stiffness Values Measured by the Road
Rater and by the WES 16-Kip Vibrator (Flexible Pavements)

4 Comparison of Typical Dynamic Stiffness Values as Measured
by the CERF Vibrator and by the WES 16-Kip Vitrator . . .

5 Approximate Numerical Values of the Parameters Appearing in
the Nonlinear Pavement Model (WES 16-Kip Vibrator) . . . .

6 Experimental Values of the Parameters Describing the Sub-

surface Structure of Pavements at the WES Test Area

87
89

90

99



acl’aczgo . oaci

G,,G,,G ,...G

l’
h),h
Hl,H

2, 3"
h

2’ 39"
2,H3,..

lh
.H

- I O N T

LIST OF SYMBOLS

Contact radius of vibrator baseplate
Critical contact radius of vibrator baseplate

Amplitude of dynamic deflection of pavement surface
directly beneath vibrator baseplate

Third-order nonlinear elastic parameter

Function of Poisson's ratio for the homogeneous
haif-gpace

Values of B for each pavement layer
Damping constant of the pavement-vibrator system

Damping constant for homogeneous linear elastic half-
space

Algebraic discriminant
Fifth-order nonlinear elastic parameter

Complex number notation for a& sinusoidal time
dependence

Elastic strain energy density
Dynamic load of vibrator

Magnitude of the sinusoidal dynamic force applied to
the pavement surface

Pavement-restoring force
Static load of vibrator
Critical static load of vibrator

Total force applied to the pavement surface (static
plus dynamic)

Acceleration due to gravity
Shear modulus of homogeneous elastic half-space

Shear modulus of subgrade

Shear modulus at the very top of the subgrade
Shear moduli of pavement layers

Thickness of the pavement layers

Sums of pavement layer thicknesses

/T

Effective spring constant of a nonlinear pavement



k Spring constant of a homogeneous linear elastic

= half-space
ko Effective quasi-static spring constant
koo Linear elastic parameter of a nonlinear pavement

L Finite depth of influence of the static strain field

zo,zz,zh,...zi Coefficients of the power series expansion of the
finite depth of influence

m Lumped mass of pavement and soil
Number of layers of pavement
Function of Poisson's ratio

Ql’Q2’Q3""Qi Value of Q for each pavement layer

Qs Value of Q for the subgrade
Qg Value of Q at very top of subgrade
66 Value of QG averaged over the depth of influence 2%
QsGs Average value of QsGs in the interval £ - H3
S Dynamic stiffness of pavement
Sc Critical value of dynamic stiffness
SO Value of the dynamic stiffness obtained from S by
taking k = k, (or A = 0).
t Time

Elastic strain energy

| U2’Uh’U6""Ui Coefficients of the power series expansion of the
i elastic strain energy

v Volume of the frustum of a cone having a depth equal to
the finite depth of influence in the pavement

w Work done during elastic deflection of the pavement
under the action of the static load FS
W2,Wh,W6 Coefficients in the series expansion of W
X Total elastic deflection of the pavement surface under
the vibrator baseplate

X Velocity of pavement surface

Acceleration of pavement surface

Xy Static elastic deslection of pavement surface beneath
the vibrator baseplate
z Depth below surface of the pavement
al,az,...an Coefficients appearing in the power series expansion

of the amplitude of the dynamic deflection

L T T T R T T R Trp



81’82""8n

Ab
Ae
AL
Av

ea,sh ,€6

By
¢2(a).¢3(a).¢h(a)

L/

B Ih e oA T '

Coefficients appearing in the power series expan-
sion of the dynamic stiffness

Weight density of the half-space

Function of the expansion coefficients of the fi-
1ite depth of influence

Value of the discontinuity of b for lo Hi
Value of the discontinuity of e for 10
Increment of finite depth of influenct

Increment of the volume of the frustum of the cone
containing the strain field

Vertical strain in pavement (assumed constant)

Expansion coefficients appearing in the expressions
for koo s, b, and e

5/8
Flastic volume dilation

Ratio of the radius of the lower base to the radius
of the upper area of the frustum of the cone of
stress

Expension coefficients appearing in the expressions

for kOO s, b, and e
Lame elastic constant
3/4

Poisson's ratio for homogeneous elastic material
Poisson's ratio for subgrade
Poisson's ratios for pavement layers

Dynamic elastic deflection of pavement surface
beneath the vibrator baseplate measured from the
static equilibrium deflection

Function of the expansion coefficients of the finite
depth of influence

Angle which appears in the solution of the cubic
equation for calculating Xo in terms of FS

Angle of stress distribution

Functions of the baseplate radius and Poisson's
ratio of the successive pavement layers

ol
FDSOh » expansion parameter

Volume factor for the frustum of the cone

Angular frequency



Critical angular frequency
Resonance angular frequency

Phase angle between the dynamic load applied to the
pavement surface and the dynamic deflection of the
pavement surface

10



CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to

metric units as follow:

Multiply

inches
feet
square inches

pounds (force) per
inch

pounds (force) per
square inch

pounds (force) per
cubic inch

kips (force)

kips (force) per
inch

kip-second per
iach

kip-second2 per
inch

By

2,54

0.3048

6.4516
175.1268

0.6894757
27,679.91

4,L48.222
1.7512685

1.7512685

1.7512685

11

To Obtain

centimeters
meters
square centimeters

newtons/meter

newtons per square
centimeters

kilograms per cubic
meter

newtons

kilonewtons per
centimeters

kilonewtons~-second per
centimeter

kilonewtons-second2 per
inch



1. INTRODUCTION

1.1 BACKGROUND

Nondestructive vibratory testing of pavements may be of impor-
tance toward predicting the performance of airfield pavements and may
be used for the repid evaluation of pavement strength.l'3 To be useful,
the physical quantities measured by the nondestructive testing technique
must be related to pavement performance. Pavement performance is mea-
sured by number of aircraft coverages on the pavement required to reach
some defined condition of failure. The U. S. Army Engineer Waterways
Experiment Station (WES) was requested to perform experimental and theo-
retical investigations to determine if the physical quantities measured
by the nondestructive technique can be used for pavement evaluation and
can be related to pavement performance. Some of the quantities that are
measurable by the nondestructive vibratory technique are:

a. The dynamic deflection of the pavement surface versus the
frequency of vibratory loading for a series of fixed static
and dynamic loads.

Is

The stress and strain distribution in the pavement around the
vibrator measured on instrumented pavement sections.

c. Rayleigh wave dispersion curves giving phase velocity versus
wavelength measured with the wave propagation technigues.

[[=8

The dynamic deflection of the pavement surface versus the
dynamic force for a series of fixed static loads and fixed
frequencies.

Most of the previous work on the nondestructive testing of pavements has
treated the mechanical quantities listed in Subparagraphs a, b, and c.
This report concentrates primarily on the nonlinear response exhibited
by pavements through the measurements listed in Subparagraph d. Further
study of the physical quantities mentioned in Subparagraphs a, b, and ¢
should be made in the light of the new results obtained from the study

of nonlinear effects in pavements.
1.2 OBJECTIVES

The overall objectives of this pavement study are:

a. The development of a mechnical model which describes the

= Preceding page blank



measured response of pavements to a sinusoidal dynamic load-
ing that is applied to the pavement surface.

b. The development of a method for determining the subsurface
structure of the pavement in terms of the measured dynamic
response of the pavement.

The development of the pavement response model includes the fol-
lowing specific objectives:

a. To determine the effects of intrinsic pavement properties and
structure on the dynamic load-deflection curves.

b. To determine the effects of such vibrator characteristics as
dynamic load, static load, and contact area on the dynamic
load deflection curves.

¢c. To calculate the dynamic stiffness and determine its depen-
dence on the intrinsic properties of the pavement and on the
characteristics of the vibrator used to measure ‘his quantity.

d. To develop a theory of the nonlinear dynamic response of
pavements which enables the comparison of dynamic stiffness
measurements obtained from different vibrators at the same
pavement location.

The theoretical work done in this report may have applications
for the nondestructive testing of roads and airport pavements. The
possible practical applications of this work are twofold: (a) the use
of the dynamic stiffness measurement for determining the subsurface
structure of the pavement, i.e., the shear modulus and thickness for
each pavement layer, and (b) the development of the capability of com-
paring the values of the dynamic stiffness measured by different vibra-

tors at the same pavement location.
1.3 SCOPE

To achieve the objectives listed above, both theoretical and ex-

perimental studies were conducted.
1.3.1 THEORETICAL STUDIES

The theoretical studies included:

a. The formulation of a nonlinear mechanical model to describe
the response of a pavement to static and dynamic loading.

b. The determination of effects of the structure of the pavement-
soil system on the parameters which appear in the nonlinear
vibration model.

1k
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¢. A numerical evaluation of the parameters that appear in the
nonlinear model.

d. The development of formulas giving the shear modulus and layer

thickness of each pavement layer in terms of quantities that
are obtained directly from the measured dynamic load-
deflection curves.

1.3.2 EXPERIMENTAL STUDIES

The experimental studies performed on both actual airport pave-
g ments and especially constructed test sections included:

a. The measurement of dynamic load-deflection curves using a
vibrator developed at WES which can generate dynamic loads
up to 16 kips* (WES 16-kip vibrator) with a constant 16-kip
static load and a constant frequency of 15 Hz.

b. The measurement of dynamic load-deflection curves at a con-
stant static load of 16 kips for a series of fixed frequen-
cies in the range from 10-40 Hz.

¢. The measurement of dynamic load-deflection curves at a con-
stant static load of 16 kips and a constant frequency of
15 Hz for a series of baseplates whose diameters ranged from
5-18 in.

d. The measurement of dynamic load-deflection curves at constant
frequency and constant baseplate size for a range of static
loads from 5-50 kips.

® A table of factors for converting U. S. customary units of measure-
ment to metric (SI) units is given on page 11.

15



2. LINEAR OSCILLATOR MODEL OF PAVEMENT RESPONSE

2.1 GENERAL CONSIDERATIONS

Nondestructive vibratory testing of pavements uses a mechanical
vibrator operating at a known frequency and dynamic force applied to the
pavement surface to produce a time-dependent sinusoidal deflection of
the pavement surface directly beneath the vibrator baseplate. The mag-
nitude of the dynamic deflection of the pavement surface for a series
of dynamic force levels and frequencies is considered to be a measure of
the strength of a pavement. This section discusses a linear oscillator
model used to describe the motion of the surface of a linear elastic
half-space and then shows how this model fails to account for the mea-
sured values of the dynamic deflection of the pavement for a series of
frequencies and dynamic loadings generated by the vibrator. The con-
cepts of dynamic stiffness and deflection are introduced, and the sep-
aration of static and dynamic displacements is demonstrated.

2.2 HOMOGZNEOUS LINEAR ELASTIC
HALF-SPACE

The equation of motion of a mass of pavement or soil undergoing
vertical oscillations on the surface of a homogeneous elastic half-space
is

x = F_(t) (2.1)

m¥ + CHx + k v

H
where
m = lumped mass of pavement and soil

% = acceleration of pavement surface

C, = damping constant (3 * haQVGY/B/(l - v), where a 1is the
contact radius of the vibrator baseplate, G 1is the
shear modulus of the half-space, Yy is the density by
weight of the half-space, g 1is the acceleration due
to gravity, and v is Poisson's ratio, Reference L)

x = velocity of pavement surface

k., = spring constant (4Ga/(1 - v), Reference i)

=}

x = total elastic deflection of the pavement surface under
the vibrator baseplate

16
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Fv(t) = total force applied to the pavement surface (static plus
dynamic)

t = time

The values of kH and CH are chosen to construct a damped spring model
for the vertical vibrations of an elastic half-space; therefore CH
represents the radiation damping of the system. If viscous friction is
present, the value of the actual damping constant may be considerably
larger than the value of CH g

The total force applied by the vibrator is written as
Fy(t) = F_ + Fo(t) (2.2)

where Fs equals static load and FD(t) equals dynamic load. The

total displacement can be written as
X=X, +E (2.3)

where Xq is the static elastic deflection of the pavement surfece be-
neath the vibrator baseplate, Fs/kH , and £ 1is the dynamic elastic
deflection of pavement surface beneath the vibrator baseplate measured
from the static equilibrium deflection. Combining Equations 2.1, 2.2,

and 2.3 gives the equation of motion as
m§ + CHQ + kHE = FD(t) (2.4)

wherein all static forces and displacements have canceled. Therefore,
for & linear system, the static deflection does not affect the dynamic
response of the vibrator mass; only the reference point is changed by

the static load.
2.3 DYNAMIC LOAD-DEFLECTION CURVES

For a sinusoidal driving force, the dynamic deflection obtained

5

from Equation 2.k is

17



FD(w)ei(mt-A)
€= (2.5)

T \2
2 2 2
\léu""‘") HLCqe

4

where:
FD(w) = magnitude of the sinusoidal dynamic force app:.ied to
pavement surface
ei(wt'A) = complex number notation for a sinusoidal time depen-

dence where i = /1 , W = angular frequency, and A =
phase angle between the dynamic load applied to the
pavement surface and the dynamic deflection of the
pavenent surface.

Two kinds of dynamic response curves of physical interest can be ob-
tained from Equation 2.5:

a. Dynamic deflection versus frequency.

b. Dynamic deflection versus dynamic force.
For a linear system, the magnitude of the maximum dynamic deflection is
a simple linear function of FD(m) as shown in Figure la. The magni-
tude of the peak dynamic deflection as a function of frequency appears
in Figure 1b for a constant force vibrator and for an eccentric mass
vibrator (where the dynamic force is frequency-dependent in the manner
FD(w) s wz). The WES 16-kip vibrato; is a constant force vibrator.
Therefore, for ua linear system the dependence of & on w is rather
complicated, but the dependence of £ on FD(m) is given simply by a
straight line whose slope is the dynamic stiffness. The phase angle A
is assumed to be the same for all of the elements of the mass of pave-
ment and subgrade which enter into motion with the vibrator mass. This
is the lumped mass assumption, which requires that m be interpreted as
an effective mass which vibrates in phase with the vibrator mass and has
a value which is determined by requiring that the theoretical frequency

response curves agree with the measured frequency response curves.
2.4 DYNAMIC STIFFNESS

Equation 2.5 shows that for a linear system, the dynamic stiff-

ness is given by

18-
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5= \f(kﬂ g mmz? + 27 (2.6)

and depends only on the following quantities:
a. Frequency.

. Spring constant.

o

c¢. Demping constant.

d. Lumped mass of pavement and soil.
The elastic parameters of the pavement, G and v , and the radius of
the contact area of the vibrator with the pavement enter the dynamic
stiffness through kH and CH as seen from Equation 2.6 and the ex-
pressions for the spring constant and damping constant. For a linear
oscillator modeli, the dynamic stiffness does not depend on the dynamic
load or on the equilibrium elastic deflection, i.e., £ 1is a linear
function of FD(w) . However, the experimental values of the dynamic
stiffness of pavements, as given in Section 4.1, indicate a strong de-
pendence of the dynamic stiffness on the dynamic load and on the static
elastic equilibrium displacement of the pavement surtace. Therefore,
the linear oscillator model is insufficient to describe the response of
pavements to dynamic loadings, and a nonlinear oscillator model is re-

quired to explain the experimental data.
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3. THE NONLINEAR MECHANICAL MODEL

3.1 INTRODUCTION TO THE NONLINEAR
MODEL

In this section, a nonlinear mechanical model is developed to

describe the response of a pavement-subgrade system to a sinusoidal dy-

namic loading applied to the surface of the pavement by a vibrator. The

model is developed in three basic steps:

a. The determination of the nonlinear pavement-restoring force
in terms of three parameters: the linear elastic parameter
of a nonlinear pavement, the third-order nonlinear elastic
parameter, and the fifth-order nonlinear elastic parameter.

b. The solution of the motion equation (2.4) for the case of the

nonlinear pavement-restoring force and the subsequent cal-
culation. of the dynamic stiffness and deflection of the pave-
ment as a runction of the static and dynamic loads exerted by

the vibrator.

The determination of the parameters k 0 ° b, and e in
terms of the elastic constants of the gayered pavement-
subgrade system and in terms of the finite depth of influence
that a static surface load produces in this system.

{o

If for a fixed frequency the dynamic deflection of the pavement
surface is not directly proportional to the dynamic force, the system is
said to be nonlinear. The experimental data ot Section 4.1 indicate
that this is the case for most asphaltic concrete (AC) pavements and for
some portland cement concrete (PCC) pavements. It will be shown in
Section 3.8.2 that the nonlinear behavior of a pavement undergoing
forced sinusoidal vibrations can produce very different values of dy-
namic stiffness such as those measured at the same location by differ-
ent mechanical vibrators. Therefore, it is important to be able to
account for the nonlinear effects by a simple physical model.

A physical and mathematical model for the nonlinear response of
pavements can be derived which will account for the dependence of the
impedance values on the type of vibrator used to determine them, i.e.,
on the static weight, dynamic load, and contact area of the vibrator.
This report will show that it is possible to describe the dependence of

the measured values of pavement dynamic stiffness on the physical
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characteristics of the vibrator by introducing three parameters to de-
scribe the nonlinear pavement-restoring force.
3.2 NONLINEAR PAVEMENT-RESTORING
FORCE

The pavement-restoring force is the force that the bulk pavement
exerts on the lumped pavement mass from below. In linear Equation 2.1,
the pavement-restoring force is simply ka . In general, the pavement-
restoring force is not equal to the force generated by the vibrator;
only for the static case are these two forces equal. The first task
to be accomplished is the development of a mathematical expression for
the pavement-restoring force which satisfies the following two very
general criteria:

8. The mathematical form of the pavement-restoring force will

be sufficiently general so that the nonlinear dynamic re-
sponse of the pavement that is calculated from this restoring
force will be adequate to describe the experimental nonlinear
dynamic load-deflection curves.

b. Only terms based on sound physical theory are included in
the mathematical form of the pavement-restoring force.
The form of the nonlinear elastic pavement-restoring force used
in the nonlinear model is determined by requiring the restoring force

to be antisymmetric in the deflection of the pavement surface, i.e.,
FP(x) = -FP(-x) (3.1)

where FP(x) equals the pavement-restoring force. Equation 3.1 is sat-
isfied for the linear case, FP = ka . A simple nonlinear pavement-
restoring force which satisfies Equation 3.1, and which is found to be
adequate to describe the dynamic load-deflection curves for paveménts, is

- 3 )
FP(x) = KygX + bx” + ex (3.2)

where k00 equals the linear elastic parameter of a nonlinear pavement
while b and e equal respectively the third- and fifth-order non-
linear parameters. The experimental data of Section 4.1 indicate that

at least two nonlinear elastic parameters, b and e , are required to
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describe AC and PCC pavements. The linear :pring constant kOO which
appears in Equation 3.2 is not ia general equal to the spring constant

kH which describes the homogeneous linear elastic half-space.

3.3 EQUATION OF MOTION FOR THE
NONLINEAR SYSTEM

The equation of motion of the oscillating lumped pavement and
soil mass can now be written using the expression for the nonlinear
pavement-restoring force derived in the previous section. This equation
of motion cannot be completely separated into static and dynamic parts
as was the case for the linear elastic system.

The equation of motion for the nonlinear spring is given by

m + Ck + kox + bx> + ex” = F(t) (3.3)

wh2re C 1is the damping constant of the pavement-vibrator system, and
m is the in-phase lumped mass of the pavement and subgrade. The value
of C 1is larger than the value of the radiation damping constant CH
which appears in Equation 2.6 because C describes several material
damping processes in addition to the dissipation of energy by mechanical
radiation. Equation 3.3 can be greatly simplified by choosing a new
origin of coordinates as in Equation 2.3, such that the motion is de-
scribed in terms of coordinates measured relative to the static equilib-
rium deflection. By itself the static load produces a static deflection
given by

3 5 .
= )
FS kooxe + bxe + ex_ (3.4)

Substituting Equation 3.4 into Equation 3.3 enables the equation of

motion to be written as

m¥ + Cx + koo(x x xe) + b(x3 - xz) + e(x5 - xi) = FD(t) (3.5)

Using Equation 2.3 and the frllowing algebraic identities:

x3 = xz S xe)(xz + xx_ + xi) (3.6)
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x5 - xz = (x - xe)(xh + x3xe + xexi + xxz + xt) (3.7)
allows Equation 3.5 to be rewritten as
mE + CE + k& + bE> + eg” = F (t) (3.8)

where ko is the effective quasi-static spring constant and is defined
ry

ko = Koo * 3bx§ + 5ex2 + g(er) (3.9)

and

<

g(x €) = bx g + 10eng + 10ex§52 + Sex (3.10)

Equation 3.8 is a generalization of the Duffing Equation.6
3.4 EFFECTIVE SPRING CONSTANT

In this section, the equation which determines the amplitude of
the sinusoidal dynamic deflection of the pavement surface beneath the
vibrator mass is developed. The amplitude equation is expressed in
terms of an effective spring constant which in turn depends on the
static and dynamic deflections of the pavement surface. The dynamic
stiffness for the nonlinear system will eventually be expressed in terms
of this effective spring constant.

The functions ko(xeg) and g(xes) are time-dependent, and
therefore Equation 3.8 is very difficult to solve exactly. Under spe-
cial conditions to be described, the coetficient which appears in Equa-
tion 3.8 may be taken to be independent of time, thereby making this
equation somewhat easier to solve. For harmonic motion, the dynamic
force applied to the pavement surface by the vibrator can be written as

iwt

FD(t) = FD(w)e (3.11)
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E(t) = nel(ut=A)

(3.12)
vhere A equals the amplitude of the dynamic deflection of the pavement
surface directly beneath the vibrator baseplate. The dynamic deflection
of the lumped mass is assumed to be equal to the dynamic deflection of
the pavement surface. For the case in which the dynamic deflection
amplitude is much less than the static equilibrium deflection, A << Xg s
g(er) % 0 can be used in Equation 3.9, while for the case where

A ™ x_, the time-averaged value of g(xee) & lOex: can be used in

Equatior. 3.7. For the two special cases, the coefficient ko can be

written as
k =k_ +3bx° + Sex’ A << x (3.13)
0 00 e e e '
k,.=k +3bx2+15exh A= x (3.14)
0 00 e e e :
A simple linear interpolation formula for ko is given by
kK =k + 362+ 5(1 + 2 A)ex? (3.15)
0 00 e X, e ‘

It should be noted that the choice of ko
proximation which becomes invalid for large dynamic deflections.
Even with the coefficient k, assumed to be time-independent,

0
Equation 3.8 is a nonlinear equation. However, it can be shown that

as time-independent is an ap-

Equation 3.8 can be cast into the form of an equivalent linear system

whose amplitude equation is
2
Az[(k w2 02w2] = Fo(u). (3.16)
provided an effective spring constant is introduced which is defined by

k =k, +ubA2 4+ neal

0 (3.17)

where ko is given by Equation 3.15, u = 3/k , and n = 5/8 . The
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effective spring constant, k , is seen to be a function of the ampli-
tude of the dynamic deflection a3 d also depends on the static equilib-
rium deflection through the coefficient ko . If the static load ap-
plied to the pavement by the vibrator were zero, then X, = 0,

g(er) = 0, and ko = kOO . For this case, there could be no coupling
of terms between Xq and £ and the effective spring constant would
depend only on the amplitude of the dynamic deflection. On the other
hand, if the dynamic load were zero, the effective spring constant would

be k= ko and would depend only on the static equilibrium deflection.

3.5 CALCULATION OF THE DYNAMIC STIFF-
NESS AND THE DEFLECTION AMPLI-
TUDE FOR NONLINEAR PAVEMENTS

This section considers the calculation of the dynamic stiffness
and the dynamic deflection of the pavement surface and dyrnamic forces
generated by the vibrator. The deflection amplitude equation (3.16)
derived in the previous section is expanded in powers of the deflection
amplitude, A , to give a tenth-order algebraic equation for the de-
termination of A . Infinite series expansions for the dynamic ampli-
tude and the dynamic stiffness are obtained as solutions to this equa-
tion. These solutions express the dynamic stiffness and deflection as
functions of the dynamic load generated by the vibrator and the statie
deflection of the pavement surface. The static deflection is then ex-
pressed in terms of the static load, so that finally the dynamic stiff-
ness and deflection are expressed in terms of the static and dynamic
loads at which the vibrator is operated.

3.5.1 EQUATION FOR THE DYNAMIC

DEFLECTION AMPLITUDE

The explicit equation for the dynamic deflection amplitude will

now be calculated. The dynamic stiffness of the pavement which is de-

scribed by a nonlinear oscillator is given by
2
2
§° = (k 3 mw‘?) + €22 (3.18)

where the effective spring constant is given by Equation 3.17. The
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dynamic stiffness depends on the amplitude of the dynamic displacement
and the static equilibrium deflection. The amplitude of the dynamic
deflection is determined by Equation 3.16, which may be written es

2°s? = Fg(w) (3.19)

Using Equations 3.17 and 3.18, the amplitude equation (3.19) can be

vritten as

2.2 2\, b ( 2 2.21.,6
SOA +2ub(k0-mw)A +[2nk0-mm)e+ub]A

8, 22,10 _

+ 2unbeA” + ne“A F2(w) (3.20)

D

vhere S0 is the value of the dynanic stiffness obtained from S by

taking k = ko (or equivalently A = 0 in Equation 3.17) and is

defined by the equation:

Sg = (ko - mw2)2 + 22 (3.21)
Whereas the simple linear system produces a linear equation for the
calculation of the dynamic displacement in terms of the dynamic force,
the nonlinear system appropriate to describe dynamic pavement response
produces a fifth-order equation for calculating A2 in terms of FD(w) .
The value S, appearing in Equation 3.21 is the dynamic stiffness in

0
the limit of zero dynamic loading.

3.5.2 POWER SERIES EXPANSION

The tenth-order equation (3.20) will now be solved for the dy-
namic amplitude A which will take the form of an infinite series ex-
pansion. The dynamic stiffness is calculated in terms of A by Equa-
tion 3.19 so that S also will have the fcru of an infinite series
~axpansion.

The solution of Equation 3.20 for the amplitude of the dynamic

displacement in terms of the amplitude of the dynamic force is, in
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general, difficult to obtain analytically. For the case in which the
dynamic force is not very large, the amplitude of motion and the dynamic
stiffness are easily obtained from Equation 3.20 in the form of

Fplw) 2
A= (1+alw+a2w +) (3.22)
0
ss8 (1+8y+8u°+ (3.23)
o l 2 L3R I L]
where
al, a2 = coefficient appearing in the power series expansion of
the amplitude of the dynamic deflection
y = expansion parameter
Bl’ 62 = coefficients appearing in the power series expansion of

the dynamic stiffness

The values of ¥ , al 5 a2 5 Bl , and 62 can be obtained by com-

bining Equations 3.20 and 3.22 with tae following results:

F2 (0)
i =1 (3.24)
s
0
and
al = -ub(ko - m:..2) (3.25)
2 2 2
6y = "21 u2b2(k0 - me) - Sg[ne(ko - mw2) + %—] (3.26)
_ 2
B, = ub(ko - mw ) (3.27)
2.2 2
2 2 b 2.2 2
32=So[ne(ko-mm)+L2-——]-gub (ko-mm) (3.28)

The solutions given in Equations 3.22 and 3.23 are valid provided the
dynamic load is not so large as to prevent the convergence of these
power series solutions. Equations 3.22-3.23 have been derived from
Equation 3.19 and give the fundamental description of the nonlinear dy-

namic load-deflection curves. These equations will be fitted to
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experimental dynamic load-deflection curves in Section 4.2.2.
Equation 3.22 shows that the amplitude of the dynamic deflection

is not a linear function of F_ but approaches the linear condition for

small FD or large S0 . TheDlinear system can be regained by setting
b=e=0 in Equations 3.22-3.28. When FD =0, A=0 and S = S0 5
and the dynamic stiffness depends only on the static equilibrium deflec-
tion. If Fs = 0 , the deflection and stiffness are given by Equations
3.22-3.28 with the provision that ko

The static equilibrium deflection can always be expressed in terms of

be replaced by the constant kOO
the static load through Equation 3.4. Therefore, in general, the dy-
namic stiffness of a nonlinear system will depend on the magnitude of
FD and FS . The dependence of S on F‘D enters through the expan-
sion parameter § given in Equation 3.24, while the dependence of S

on Fs enters through the function S0 given by Equation 3.21.
3.5.3 FIRST-ORDER NONLINEAR TERM

The expression for the dynamic amplitude A given in Equation
3.22 shows that A does not depend linearly on FD . The departure
from linearity is due to the terms alw q a2¢2 se++9 that appear in
Equation 3.22. It is desirable to determine the physical quantities
which determine the degree of departure from the linear condition,

A= FD/S0 . In the range of small F the predominant term describing

D b}
the nonlinear behavior of the deflection of the pavement mass is ob-
tained from Equations 3.22, 3.24, and 3.25 as follows:

2
F
_ 2\ °D
ap = --ub(ko - mw );E (3.29)
0

In general the degree of nonlinearity depends on four quantities:

a. The magnitude of the nonlinear parameters b and e .

b. The relative magnitudes of FS and FD .

c. The frequency at which the vibrator is operated.

d. The static stiffness S, of the pavement-vibrator system.

0
The parameter ¢ , which appears in the infinite series expansion for

A and S in Equations 3.22-3.2L, depends inversely on S0 in the
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form Sah , and therefore it follows that the dynamic load-deflection
curves of stiff pavements are more linear than those of the more flexi-
ble pavements. Thus concrete pavements are expected to have a more
linear response to a dynamic loading than do the more flexible asphalt
pavements, The value of So includes the effects of the subgrade as
well as the effects of each layer in the pavement.

3.5.4 CRITICAL FREQUENCY

It is clear from Equations 3.22 and 3.29 that the degree of de-
parture from the linear condition expected for the response of a pave-
ment to an applied vibratory load at the pavement surface depends on
the frequency at which the vibrator is operated. In particular, it is
apparent from Equation 3.29 that the first-order nonlinear term is
frequency-dependent and that this first.-order term will vanish at a
2

o-mw=00

It is a characteristic property of the first-order nonlinear

special critical frequency for which k

term (Equation 3.29) that there is a critical frequency for which this

term vanishes; the critical frequency is defined by
(3.30)

where “c is the critical angular frequency. In terms of the critical

frequency, the first-order nonlinear coefficient can be written as

a, = -ubm(wg - w2) (3.31)

At the critical frequency, the departure from a linear system occurs

only through the second-order and higher terms in ¢ , i.e., a2w2

+ 13w3 +.... Therefore at the critical frequency, the pavement response
for small dynamic loads should be nearly linear. The critical frequency
depends on the vibrator characteristics as well as on pavement proper-
ties. The connection between the resonance frequency and the critical

frequency is obtained from Equation 3.17 as follows:
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o e e

2 L 2
2 2 bA” + neA C
we =+ > - 2(—2m) (3.32)
wvhere wR is the resonance angular frequency. In general wR < w, .

3.5.5 CRITICAL STATiC FORCE

In addition to a critical frequency, wc(FB) which depends on
the static load of the vibrator, there is a critical static load Fsc
for each operating frequency of the vibrator, which is defined from

Equation 3.29 by @, = 0 or

2

kO(Fsc) = mw (3.33)

Using Equations 3.15, 3.31, and 3.33, the first-order coefficient %

can be written as

ay = wblieg(F,) - ky(F,)] (3.34)

_ a3l 2 2y, (3.35)

4 = 2 se s ) °°° 3.35
ko0

It is possible to operate a vibrator at the critical condition by ad-
Justing either the frequency or the static load of the vibrator.

3.5.6 SHAPE OF THE DYNAMIC

LOAD-DEFLECTION CURVES

An approximately linear dynamic deflection versus dynamic force
curve occurs at the critical frequency. For an arbitrary frequency, the
departure from this approximately linear curve is positive or negative
depending on the sign of the parameter &) in Equations 3.22 and 3.31.

The sign of the parameter a depends on the sign of the parameter b

1
and whether w 2 w, or Fs 2 Fsc . It will be shown in Section 3.7

that b 1is generally negative. For the case b < 0 , which corresponds
to the case in which the shear modulus of the half-space is constant

with depth, or to the case of a Luyered system which has G decreasing
with depth, as is usually the case with pavements, the dynamic stiffness

and deflection versus dynamic force curves are shown schematically in
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Figure 2a, For the case b > 0 , which may be poesible tor the situa-
tion in which the shear modulus of a layered system increases rapidly
with depth, the dynamic stiffness and displacement versus dynamic force
curves are shown schematically in Figure 2b. Therefore the choice of
sign b < 0 has physical relevance to pavement problems. For the

choice b < 0, the sign of the parameter o, can be positive c¢r nega-

tive depending on whether w < W, or w > wi » respectively. The value
of wc can be determined by observing the frequency which produces the
most linear load-deflection curve. The algebraic signs of b ana e
can be determined from the manner in which the dynamic lcad-deflection
curves bend away (as in Figures 2a and 2b) from the approximately linear
load-deflection curve which occurs at w = w, - It should be pointed
out that the definition of dynamic stiffness as being equal to the ratio
of the dynamic load to the dynamic deflection for each point on the dy-
namic load-deflection curve is different from that used in Volume I of
this report in which the dynamic stiffness is teken to be & single num-
ber determined from the portion of the dynamic load-defliection curve

where FD is large.

3.5.7 STATIC EQUILIBRIUM DISPLACEMENT

The explicit dependence of the dynamic stiffness on FD is given
by Equations 3.22-3.28. These eql_.lations will also give the explicit
dependence of S on Fs s provided that the static equilibrium dis-
placement X, is expressed explicity as a function of Fs by using
Equation 3.4. Because Equation 3.k is an equation of fifth degree,
numerical methods are geuerally required for its solution. However, in
the extremes of very large and very small values of Fs , analytical
solutions of this equation are possible. For a very small static load,

the equilibrium elastic displacement is given by
x_ = (3.36)

For somewhat larger values of FS , the cubic term manifests itself and

Xq may be obtained from the approximate equation:
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The discriminant of this cubic equation is

2 3
Fo  Kpo

D= =5+ —= (3.38)
e 27b

and is negative for small Fs when b < 0. For the condition D < 0O ,

the solution of the cubic equation can be written a.s7

(3.39)

(3.40)

where @ 1is the angle which appears in the solution of this cubic equa-
tion. In the limit of small Fs (or small b), the cosine term in

Equation 3.39 has the value

F F
3

2\, S

cos (3) s + 372 +... (3.41)
| Mo b,
- 3 -

Combining Equations 3.39 and 3.4l gives

. F_ bFS

) S Bl S (3.42)
e kOO kh
00

The solutions of Equations 3.39 and 3.42 have been derived for b < O
and are therefore applicable to pavements. It can be shown that Equa-

tion 3.42 is also valid for b > 0 .
With increasing values of Fs , the fifth-order terms become Aom~

inant, and in this region the approximate solution for xe is

P pa15 p 3570
x_ = [Ji -.ill(_§> jé(.é) ] (3.43)
. € e \e T e\e )
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Equation 3.4 is easily solved for the general case of an arbitrary value
of FB by using a digital computer. A schematic graph of X, versus
F_ for pavements (b < 0) is given in Figure 3a while the corresponding

8
greph for a b > 0 formation is given in Figure 3b.

3.5.8 DEPENDENCE OF THE SPRING CONSTANT
ON THE STATIC FORCE
The spring constant ko given by Equations 3.13-3.15 has a con-
ventional interpretation only when the dynamic deflection amplitude sat-
isfies A << xe . For A # 0 the spring constant has the approximate
value given by Equation 3.15. Using Equations 3.13, 3.42, and 3.43, the

value of k. for zero dynamic amplitude and for small FS is

0
2 4
F, bF> (Fs ng
k0 = kOO + 3b E;;'— ;E— + Se ESE - ;E_ (3.4k)
00 \ 00
while for large Fs
. e 5y yr /51
kK. =k _ + 3b —5-3<_S-> _L(_S>
o 00 Le e \e e \e
- 235 e s
s b S 00[ "s
+ Se _e—-z<e—) o= <e) 1 (3.45)
For very small Fs , Equation 3.4k can be rewritten as
k. =k + 3| — + (5e -6 — ) |{— (3.46)
0 00 kOO ( kOO koO
while for very large FS , Equation 3.45 can be rewritten as
AL
ky = Se| > (3.47)

Equations 3.4 and 3.15 are easily solved simultaneously on a digital

computer to give the general solution, k, = ko(FS). Figures lLa and b
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show respectively the dependence of ko on Fs for pavements (b < 0)
and for b > 0 formations. For the case b < 0 , the function ko

exhibits a local minimum value for some value of Fs (or xe).
3.5.9 DAMPING CONSTANT

The dynamic stiffness defined by Equation 3.18 depends on the
damping constant C of the pavement as well as on the effective spring
constant k . This damping constant is not in general equal to the
damping constant for the homogeneous linear elastic hall-space, CH "
that was defined in the damping constant expression. A theoretical cal-
culation of C was not made in this report; however, the nonlinear
elastic nature of flexible pavements gives rise to a simple method of
estimating the value of the damping constant. Equations 3.17, 3.18, and
3.30 show that when w = W, the dynamic stiffness has the critical

value:

' 2
S = (ubA2 + neAb) + 02w2
c c
ol Ech (3.48)

Therefore a measure of the damping constant can be determined directly
from the dynamic load versus deflection curves by measuring the critical
value of the dynamic stiffness. An approximation to the value of the

damping constant is thus given by

3.6 PHYSICAL ORIGIN OF THE NONLINEAR
PAVEMENT PARAMETERS

3.6.1 INTRODUCTION OF THE FI-
NITE DEPTH OF INFLUENCE

This part of the report examines the physical origin of the pa-

rameters b, and e that were introduced in Section 3.2 as part

k00 ’
of a model developed to account for the observed nonlinear vibration
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data that will be presented in Section U4,1. It is the departure from
perfect linear elasticity that is responsible for the nonlinear response
of vibrators operating at the surface of pavements and soil formations.
Over a large depth in the half-space, the departure from a perfectly
linear constitutive equation for soils and pavements has the effect of
introducing a finite range of influence of the elastic stress and strain
due to a static surface loading on an elastic half-space. In this re-
port the finite range of influence of the static stress and strain is
assum2d to produce the experimentally observed nonlinear dynamic load

deflection curves.
3.6.2 DEPARTURE FROM LINEAR ELASTICITY

Many authors have studied the problem of the static embedding of
a circular punch into a linear elastic ha.lf-space.8 Layered elastic
half-spaces have been considered and so has the case in which G has a
pover law variation with depth.s-lo The case in which G has a simple
linear variation with depth has been worked out completely.ll All of
these theories are insufficient to explain the experimental data appear-
ing in Section 4.1 because these theories are based on the assumption of
a perfect linear elasticity. One of the characteristics of a nonhomo-
geneous perfectly linear elastic half-space is that the static load-
deflection curve and the dynamic load-deflection curve are straight
lines. For instance, a stack of perfectly linear elastic layers of
different values of v and G produces a linear load-deflection curve
for a load applied to the surface of the stack. This is so because the
static stress and strain in a perfectly linear elastic half-space ex-
tend to an infinite depth and to an infinite radial distance, and the-
oretically the entire stack of elastic layers contributes to the deflec-
tion of the load at the surface of the stack. In a perfectly linear
theory of elasticity, the static load-deflection curve for a stack of
layers can always be reproduced by an equivalent homogeneous three-
dimensional hall-space with an equivalent spring constant. Therefore,
a nonhomogeneous linear elastic system exhibits a linear load-deflection

curve, and nonhomogeneity by itself is insufficient to explain the
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nonlinear load-deflection curves observed on pavements and soils. A
basic departure from linear elasticity is required to account for the
observed nonlinear response of vibrators which are operated on the sur-
face of airfield pavements. The nonlinear behavior of pavements is an
example of the inadequacy of linear elasticity to explain the dynamic
response of real materials.

The static stress and strain field has a finite range of influ- c
ence in real systems such as PCC, AC, or soil. This is a fundamental
characteristic of real media. If a static load is placed on the surface .
of a soil fornatiun or a pavement, the static stress and strain attenu-
ate rapidly with depth and radial distance and go to zero at some finite
depth below the surface and at some finite radial distance from the
load. The stress and strain field in a real half-space does not extend
to infinite depth as it does for the case of the Boussinesq and Terazawa
treatment of the static load aprlied to the surface of a linear elastic

12,13 For .eal materials, the depth of influence depends on

half-space.
the size of the loaded area, the magnitude of the static load, and the
intrinsic nonlinear properties of the material. For a dynamic load,
there is also a finite range of influence in real media where the dy-
namic amplitude of the three-dimensional elastic waves emanating from a
source goes to zero. For the dynamic source, the finite range of in-
fluence is generally thousands of feet or often miles; but for the
static source, the finite influence distance is generally a few feet or
inches. Both homogeneous and nonhomogeneous materials exhibit a finite
range of influence, and in this report it is assumed that the finite
static depth of influence combined with the variation of the elastic
properties of a pavement with depth determines the magnitude of the non-
linear response of a pavement to static and dynamic loads applied to the
surface.

Only a small departure from the linear stress-versus-strain con-
stitutive equation is required to produce a finite range of influence of
several feet. A small specimen of this solid would exhibit essentially
linear characteristics during laboratory load-deflection tests or stand-

ing wave tests. Only over a distance of several feet in an actual soil
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formation or pavement would the nonlinear constitutive equation manifest
itself by the finite range of the stress and strain field. The spring
constant for a real elastic half-space depends on the static range of
influence and on the values of v and G which are contained within
the static range of influence. 1In this chapter, the foregoing arguments
are placed on a quantitative basis by a calculation of the nonlinear
response of a one-dimensional representation of an elastic half-space
for aay distribution of v and G with depth.

The four calculations required to determine the three parameters
b, and ‘e are:

a. Work done by the static elastic deflection of the pavement
surface beneath the vibrator baseplate (Section 3.6.3).

ka0

b. Static strain energy in the pavement (Section 3.6.L).

c. Calculation of average elastic parameters for a one-
dimensional layered system (Sections 3.6.5 and 3.6.6).

Representation of the finite depth of influence by an in-
finite series (Section 3.6.7).

|

3.6.3 WORK ASSOCIATED WITH STATIC
ELASTIC DEFLECTION

The dynamic load applied at the surface is determined by the
three parameters kOO , b, and e . A general method of calculating
these three parameters in terms of the variation of v and G with
depth is required. The static elastic indentation as a function of
static load can then be calculated from Equation 3.4 using these three
paremeters. The method used to calculate kOO s, b, and e is an en-
ergy method which equates the work done during the indentation of a
rigid punch into the surface of an elastic half-space to the increase of
the potential strain energy of the half-space. The work done by the

static load is obtained from Equation 3.4 to be

k X2 bxh ex6
W= 007e o _e ;i _e
2 L 6
- 2 4 6

L1
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vhere W wh , and w6 are the coefficients in the power series ex-

’
pansion gr W . Only a static approach to the calculation of kOO -
b , and e 1is undertaken in this report, and it should be realized that
a fully dynamic calculation of these parameters may introduce a fre-
quency dependence.

3.6.4 STRAIN ENERGY OF AN ELASTIC

HALF-SPACE WITH A FINITE
DEPTH OF INFLUENCE

The elastic strain energy of a pavement-socil system can be ex-
pressed in terms of the equilibrium static elastic displacement Xq
A complete three-dimensional calculation of the strain energy of & non-
homogeneous nonlinear half-spece is very complicated. The calculation
of the static strain energy that is done in this chapter is a one~
dimensional approximation of the actual physical situation. In this
calculation it is assumed that the strain in the half-space is in the
vertical direction only and is confined to a frustum of a cone whose
upper area is equal to the area of the vibrator baseplate. The height
of the frustum of a cone is taken to be equal to the finite depth of in-
fluence in the pavement, and the area of the lower base is chosen to
make the theoretical values of the finite depth of influence agree with
the experimental values.

The frustum of the cone in which the strain is assummed to be

confined is shown in Figure 5. The volume of the frustum is given by

V = 12y (3.51)

wvhere
V = volume of the frustum of a cone having a depth equal to the
finite depth of influence in the pavement
£ = finite depth of influence of the static strain field
¥ = the volume factor for the frustum of the cone which is cal-

culated as follows:

- 1+ + K2

3 (3.52)

¥
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where « equals the ratio of the radius of the lower base of the
frustum to the radius of the upper area of the frustum. Experimental
tests show that ¥ ® L and «k ® 3 for AC pavements.

It is assumed that the strain energy can be written in a form
analogous to that for a perfectly linear elastic system except that the
depth of influence is taken to be finite. The elestic strain energy

1

density for e homogeneous solid is

& = Ge2+32—2 (3.53)
where
&6 = energy density
€ = strain in vertical direction
A = Lame elastic constant
8 = elastic volume dilation

The validity of Equation 3.53 for a material with a finite depth of in-
fluence arises from the essentially linear elastic behavior of most
solids including PCC and AC under a small, uniformly disturbed stress.
This implies that G and A have a physical meaning even for real
solids. It is only over a long distance from a static surface source on
a half-space (which produces a nonuniform distribution of stress and
strain) that the nonlinear effects manifest themselves by producing a
definite cutoff range for the stress and strain.

An approximation to the strain energy density of a real half-space
is given by Equation 3.52 if the finite depth of influence is introduced
through ¢ and 6 . For a one-dimensional representation cf an elastic

half-space, the strain and dilation can be approximated by

where

Ly



Af = increment of the finite depth of influence

AV = increment of the volume of the frustum of the cone contain-
ing the strain field

Therefore within the limits of the vertical strain approximation, ¢

and 6 are equal, and the strain energy density for a homogeneous half-

% 2
& = (G + %)(ﬁ) (3.56)

The total strain energy for the homogeneous material in the cylinder

space can be written as

of influence can be written as

2
X
U=68V = 1ay (G+%)-2£ (3.57)

where U 1is the elastic strain energy. In engineering practice it
is customary to use Poisson's ratio in place of the Lame elastic con-

stant. In terms of Poisson's ratio, Equation 3.57 is written as

nazQGxiw
U=—% (3.58)

where Q , the function of Poisson's ratio, is expressed as

Q=12 (3.59)

For a nonhomogeneous half-space for which v and G vary with depth,

the strain energy is written as
ma QGxiW

DS (3.60)

where 66 equals the value of QG averaged over the depth of

influence 2 .

3.6.5 LAYERED ELASTIC MOD®L OF
PAVEMENT AND SOIL SYSTEM

A pavement-soil system generally consists of a layer of PCC or AC

k5



overlying several layers of crushed rock base and subbase, all of which
rest on the subgrade which is the natural soil foundation. A model
representing the pavement-soil system consists of a series of elastic
layers, with v and G constant in each layer to represent the pave-
ment, base, and subbase overlying an elastic half-space. This half-
space represents the subgrade and therefore has v and G increasing
continuously with depth because the overburden pressure increases con-
tinuously with depth. This variation of v and G with depth is rep-

resented in Figure 6.
3.6.6 AVERAGED ELASTIC PARAMETERS

The average value, 66 , required in Equation 3.60 is calculated

by averaging over the depth of influence % as follows:

QG = Q,G, , 2 <h (3.61)

—_— £ _

@ = oy + 450 - 0], h <t <H, (3.62)

——— _ -1—_ -

® = Laom +aon, vagge-n)], < <n (.63
where QlGl . Q2G2 , and Q3G3 equal respectively the value of QG in
layers 1, 2, and 3, h1 5 h2 , and h3 equal respectively the thick-
nesses of layers 1, 2, and 3, Hl . H2 , and H3 equal the sums of

pavement layer thicknesses, and where

H, =h, +h, (3.64)

= + + 5
H3 hl h2 h3 (3.65)
Equation 3.61 is valid if the depth of influence extends only into the
upper layer, while Equation 3.62 is valid if & extends into the second
layer, and finally Equation 3.63 is valid if £ extends into the third
layer. The generalization of Equations 3.61-3.63 to more than three

layers is obvious. Equations 3.61-3.63 are valid only if the depth of
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influence is contained within the pavement, base, and subbase, i.e., the
layers in which v and G are constant. If the depth of influence ex-

tends into the subgrade, then the proper average is

_._i — ¢
QG = ) [QlGlhl + Q202h2 + Q3G3h3 + QSGS (2 - H3ﬂ . L > H3 (3.66)

where Gs equals the shear modulus of the subgrade, Qs equals the
value of Q given by Equation 3.59 but for the subgrade, and QSGs
3" The

product QsGs for soil at a depth 2z below the surface of the pavement

equals the average value of QsGs in the interval & - H
can be written as a Taylor series expansion as follows:

| (2 - )

0w o
(o]
w o
)
4]

a,(2)6 (2) = @

where Qgcg equals the product QSGs for the soil at the very top of

the subgrade, i.e., the value of QsGs at 2 = H3 . The average value
QsGs appearing in Equation 3.66 is assumed to be given as
')
oG =—=— | qc_ az (3.68)
s s L - H3 s's *
H
3

a(Q_G_)
0.0 1 s s
G = G = L - H
Qs S Qs s 2 dz ( 5)
H
3
2
a“(Q_G_)
PRy = (2 - 1) +... (3.69)
3
dz
H?

and this value is used in Equation 3.66.
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3.6.7 SERIES EXPANSION OF THE FINITE
DEPTH OF INFLUENCE

The physics of pavements and soils enters through a calculation
of the depth of influence, & , from a fundamental knowledge of the
molecular structure of pavement and soil materials and from a knowledge
of the cracks, voids, dislocations, and other microscopic flaws in these
materials. A basic calculation of & from a theoretical physics point
of view has not been carried out in this study. 1In this report, the
static depth of influence is assumed to be given by

Y

_ 2 4
= 8 RxD L)X+l (3.70)

where 20 5 22 , and Rh are coefficients of the power series expan-

sion of the finite depth of influence, and depend on the radius of the
contact area of the load with the pavement surface and on the values of
v and G of the pavement-soil system. The choice of the form of Equa-
tion 3.70 is dictated by the even powers of the work function in Equa-

tion 3.50. A rigorous calculation of the values of 22 , and lh

Q
% o
has not been accomplished theoretically. In this report the values of

20 5 22 , and Rh are estimated from the experimental values of k

b, and e .

0o °

3.7 CALCULATION OF THE NONLINEAR
PARAMETERS

All of the quantities required for the determination of koO 0

b , and e have been calculated in the previous five sections. Now the
energy principle, that the static potential strain energy must equal the
work done during the static elastic deflection of the vibrator into the
pavement surface, is applied to the one-dimensional pavement model.

This condition gives the connection between the parameters kOO , b,
and e and the corresponding elastic and inelastic pavement parameters.

In this section the parameters kOO , b, and e are calculated for a

pavement system consisting of a series of layers overlying a subgrade.

L9



3.7.1 GENERAL EXPRESSION FOR THE
PAVEMENT PARAMETERS

The potential strain energy is calculated using Equations 3.60-
3.70 and can be put in the form:

_ 2 L 6
Us=Ugx, +Ux, + U, (3.71)
where 02 . Uh , and U6 are the coefficients of the power series ex-

pansion of the elastic strain energy. The particular mathematical form
for the potential strain energy given by Equation 3.71 is chosen in
order to agree with the fuorm of the work function in Equation 3.50. The

values of U, , Uh , and U6 are calculated by substituting the value

2
of & given by Equation 3.70 into the expression QG in Equation 3.60

and expanding in a power series in xg . The values of U2 5 Uh , and
U6 will depend on the magnitude of the depth of influence, which is

determined by £ 22 , and Zh , and on the v and G values within

0 ?
the depth of influence. The coefficients koO s, b, and e are ob-

tained by setting W = U or equivelently

w2 = U2
M =0y (3.72)
¥ = Ug
from which it follows that
kOO = 202
b = LU, (3.73)
e = 6U6
The values of kOO s, b, and e will depend on lo 3 22 , and Qh 3

In the following sections, the general expressions for the param-
eters kOO , b, and e given by Equation 3.73 are evaluated for
specific cases of layered systems and layered systems overlying a
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subgrade whose shear modulus increases uniformly with depth.
3.7.2 ONE ELASTIC LAYER

For 2 < h1 s, the stress and strain extend only into the upper

pavement layer. Equations 3.60, 3.61, and 3.70 give:

2
_ 218 QlGlW

00 20

k (3.74)

112

2
20

hnaeQ G, 2.Y

b= (3.75)

2. =
i 6ra Qluléw

%o

(3.76)

e

where & 1is the function of ,the expansion coefficients of the finite

depth of influence and

2
= =2\
6~(2) = (3.77)

The results of Equations 3.74-=3.7T7 are valid for the homogeneous half-

space.

3.7.3 TWO ELASTIC LAYERS

For h1 < g < H2 , the stress and strain extend into the second
layer and Equations 3.60, 3.62, and 3.70 give:
2naQW I
00 © 72 hl(QlGl - Q2G2) i’ chzlo] (3.78)
o
hnazlgw i
b= - -—;g——— L?hl(QlGl - Q2G2) * QG0 (3.79)
0
=6“2“’ h(Q.G. - QG.) + 6Q.G.2 (3.80)
CTTR 2SR Sty 2789 g
0
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where p 1is the function of the expansion coefficients of cthe finite

2
=% ig -2 fﬂ (3.81)
p ) QO 3.

depth of influence and

Equations 3.78-3.80 reduce to Equations 3.TuU-3.76 when QlGl = Q2G2 , 85
they should because this condition reproduces the homogeneous half-space.

3.T.4 THREE-LAYER SYSTEM AND THE
GENERALIZATION TO n LAYERS

For the three-layer case with H2 < & < H3 corresponding to the

case where the stress and strain extend into the third layer, Equations
3.60, 3.63, and 3.70 give:

2
_2ra ¥ T, ¢ -
Koo .2 0)(Q)6) = Q365) + hy{QG, - QG4) + Q3G3'Qo] (3.82)
0 e
hn3222W -
= - - + - I
b 23 2 ‘Pl(QlGl Q3G3) h2(Q202 Q3G3ﬁ + Q3G3RO} (3.82)
0
e = éﬂgfi h,(Q.G, - QG,) + h (Q,G, - Q.G,)| + 6Q,G,2 (3.84)
EI i e i S 3'3°0 .
0
The generalization to the case of more than three layers is simple.
Consider a system of n layers where Hn—l < g < Hn and which corre-
sponds to the case in which the finite influence depth extends into the
th

n  layer. For this case the coefficients are

[ n-1
2
k=202 n.(Q.G, -QC ) +QG2e {3.085)
00 22 itMiTi n n Qn n o T
0 <
Ll-‘-l
hnaQRQW s
R _?— 2 Z hi(Qi(‘i " QnGn) i QnGnQO (3.86)
£ N
0 i=1
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n=1
zlumc - Q) + 864G L, (3.87)
0 i=1l

6ﬂa2W
2.

3.7.5 LAYERED SYSTEM WITH SUBGRADE

If the n layered pavement overlies a subgrade and £ > Hn o)
that the stress and strain extend into the soil medium, then Equations

3.60 and 3.66-3.70 give

n
2 a(Q_G_)
_ 2na’¥ 0.0 0.0 5§
ko0 = 72 Z By (QiGi - QsGs) *9%0%% T %2 Ta |,
0 i=1 n
a“(Q_G_)
* K, —35 (3.88)
d22
H
n
2 n
LwaL, ¥ d(Q_G_)
S 2l :E 0.0 0.0 ‘*ss’
P iaes 2 hi(QiGi - QSGS)+ %t Ay T |
R‘0 i=1 n
2
+ K e (QsGs) (3.89)
dz2
H
n
6" 2, - a(QG,)
e = th(QG-QG)+5QGp. +ep —
20 i=1 Hn
a®(q6,)
tKe T (3.90)
d22
H
n
where €55 E) s €c s K5 o Ky » and K6 are the expansion coeffi-

cients appearing in the expressions for k b ,and e and

00’
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G2 5 @1 (20 - Hn)
8
Ky =g (45 - H))
- _ L
i 2 ofhn
- 1
%) g%
- _ 1
tg ™ = g Sl
_l,,.2
% Lk
For a soil formation by itself, hi = (0 and Hn =0
2 2
oray | 0.0 Yo 3(985) 2o 47(Q.G.)
Koo = 7% R G T g S >
0 ’ 0 dz
Lkrass, ¥ 22 4% 6 )
b = - 2 QOGO _ 0 -] "
20 s's ~ 6 dz2 :
2 0
2 2,8 d2(QG.)
6ma”y 0.0 L™0 s's
= ) S )
0 dz

so that

..

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.98)

0
where QSGS depends on the values of Vg s Poisson's ratio for the

subgrade, and Gs at the soil surface.
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3.7.6 ALGEBRAIC SIGNS OF THE NON-
LINEAR PARAMETERS b AND e

The minus sign appearing in the expression for the nonlinear co-
efficient b arises from the inverse dependence of U on & . From
Fquation 3.75 it follows that b < 0 for a homogeneous half-space. For
a nonhomogeneous half-space, the sign of the coefficient b depends on
the variation of v and G with depth in the pavement and in the soil.
Consider first the case where the depth of influence extends only into
the pavement, & <H , and Equation 3.86 is valid. Then Equation 3.86
shows that if the values of QiGi decrease with depth, as is the gen-
eral case with pavements, then b < 0 . If QiGi increases with depth,
then b <0 or b >0, depending on the rate of increase of QiGi
with depth. If the rate of increase of QiGi with depth is suffi-
ciently rapid, then there is a possibility that b > 0 . The same re-
sults are valid when the depth of influence extends into the subgrade.
Most cases of interest to soil and pavement engineers will have b < O .

3.7.7 CALCULATION OF THE FINITE DEPTH

OF INFLUENCE AND THE DETERMINA-
: TION OF LAYER THICKNESS
It has been shown in Sections 3.T7.2-3.T7.5 that different expres-

sions for the coefficients k b, and e must be chosen according

s
to the magnitude of the depthogf influence, i.e., depending on the par-
ticular pavement layer into which the static depth of influence extends.
The static finite depth of influence is expected to depend on the base-
plate radius of the vibrator and the static load that the vibrator ap=~

plies to the pavement surface. Therefore different expressions for the

coefficients k b , and e must be used if a series of baseplate

s
radii are selecggd for the vibrator. Equations 3.T4-3.99 show that the
change in the equations describing kOO , b , and e occurs when

R’O = Hi , i.e., when 2’0 passes through the successive interfaces of
the pavement system. The values of the baseplate radius for which

20 = Hi will be called the critical radii. Therefore the critical radii

are defined by
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SRSy L,

20(aci) = H, | (3.100)

vhere a are the critical contact radii of the vibra-

el * Bc2 *tfei
tor baseplate corresponding to the interface at the depths Hi .

The zeroth-order coefficient, 20 s of the static finite depth of
influence can be calculated in terms of the radius of the vibrator base-
plate, the critical radii for the layered system, and the elastic con-
stants of each layer of the system. The value of 20 for a homogeneous
elastic half-space can be obtained by equating the value of kOO given
by Equation 3.74 with the value of the spring constant for a linear

elastic half-space, with the result:
1
L, = 5 mayB (3.101)

vhere B 1is a function of Poisson's ratio for the homogeneous half-

space and is defined by:
B = (3.102)

Equation 3.101 shows that 20 is proportional to the radius of the

contact area of the vibrator which is exerting the static load on the

surface of the half-space.

For a layered pavement system, £ is given by the following

0
expressions:
% == 1VB.a | 0 <2 <H (3.103)
0~ 2 =0 0 1 "
=0 _
zo =3 n\l’[BQa + (131 Bz}acl], Hl < Ro < H, (3.10L)
g =1qy[Ba+ (B.-B.)a, + (B, -B.a H <& <H  (3.105)
0 2 3 2 3/ %¢2 1 2'%c1|? 2 0 3 '
= s _
20 T2 "w[Bna * (Bn-l Bn)ac,n-l (Bn-2 n-l)ac,n—2
+...(13l = B2)ac1], H ;<% <H (3.106)
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where the values of B for each pavement layer are given by:
(3.107)

and v. , Vv_ ,...v, are the values of Poisson's ratio for the 1, 2,...1

1 2 i
layers of the pavement.

In Section 4.1 it will be shown that the critical radii of a
pavement system can be measured experimentally using a mechanical vi-
brator, so that in principle the function Eo(a,aci) can be evaluated
The value of the first critical radius is related to the thickness of
the first layer in the following menner:

=1
h, = 5 "¥B.a (3.108)

1

In a similar manner it is easy to show from Equations 3.103-3.105 that

the thicknesses of the second and third layers are given by:

=l
hy, =3 wlsg(ac2 - acl) (3.109)
h. =%n¥B.(a . -2 ) (3.110)
3 2 3" el c2 :

Therefore the thickness of each pavement layer can be determined if the
values of the critical radii can be measured.

The values of 12 and Zh can be obtained in terms of the
0 b, and e using Equetions 3.75, 3.76, 3.79, 3.80,

3.83, 3.84, 3.86, 3.87, 3.89, and 3.90. Therefore measurements of b ,

values of &

e , and the critical radii are necessary for the complete determination
of the finite depth of influence. A theoretical calculation of 10 5
22 , and lh would probably involve either a molecular theory to de-
scribe the nonlinear behavior of the molecular bonds in AC and PCC or a

semiempirical nonlinear elastic theory, which has not been considered in
this report. Numerical values of RO S 22 , and Qh can be obtained

from measured velues of Kk b, and e , provided that the elastic

00 °
constants and the layer thicknesses of the pavement are known. The
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numerical values of the coefficients 20 = 2,2 , and Eh that are de-

scribed in Section 4.2.2 were estimated in this manner.
3.7.8 EFFECT OF BASEPLATE RADIUS

The coefficients k.. , b, and e depend on the following

Vo
quantities:
&. The elastic parameters vy and Gi of the pavement layers,
b. The elastic parameters w £ and GS of the subgrade.

1)

The coefficients 20 » %, , &nd 21‘ , Which describe the
departure from the linear stress-strain constitutive equation.
The coefficients JLO . 2.2 , and Q’h are functions of the radius of the

loaded area on the surface, and therefore Kk b, and e also de-

00 °

pend on this radius. The values of kOO s b, and e can be obtained
as a function of baseplate radius by combining Equations 3."{’4-3.87 with

the equations giving 2. as a function of baseplate radius. The basic

forms of the pa.ra.meterso kOO s b, and e and the dynamic stiffness,
S, are given in Figures 7, 8, 9, and 10, respectively, for the cases
where QG decreases with depth (as in pavements) and for the cases
vhere QG increases with depth. The measured degree of nonlinearity of
a pavement-soil system should depend on the radius of the vibrator base-
plate.' For very large values of the radius, the slopes of the param-
eters kOO , b , and e with respect to the baseplate radius are de-
termined by the deeper pavement or soil layers, whereas the values of
these three parameters are determined by the elastic properties of all
of the layers which are contained in the depth of influence 20 . For
very small values of the baseplate radius, the slopes of kOO , b, and
e with respect to tne baseplate radius are determined by the elastic
properties of the surface and near-surface layers. The parameters b
and e are discontinuous functions of the radius of the loaded area;
the discontinuities occur when 20 passes through the boundary between
two layers, i.e., when £&_ = Hi where Hi is the total thickness of i

0
layers. The value of the discontinuities at ILO = Hi are

lmazl?,z‘}'
= S Hi(Qi(;i - Q0 ) (3.111)
%
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The values of the discontinuities in b and e can be positive or

de (p - &) H(QG, -~ Q.0 ,,) (3.112)

negative depending on whether QG 1is a decreasing or an increasing
function of depth, as indicated in Figures 8 and 9.
3.7.9 DETERMINATION OF THE SHEAR MOD-
ULI OF THE PAVEMENT LAYERS
The shear modulus of each pavement layer can be obtained from the
values of k for a series of baseplate radii. Computer programs have

00

been developed for calculating the values of kOO from the measured

dynamic load-deflection curves. Therefore, if dynamic load-deflection
curves are measured for a series of vibrator baseplate radii, it is

possible to obtein k as a function of baseplate radius. The elastic

00
shear modulus of each pavement layer is expressed in terms of kOO by
using Equations 3.T74-3.89 with the result:
_ EoEoole) 0<% <H (3.113)
G =—F — 0 1
2ra WQl
1 (“gkoo(a) 12 LS
G, = - h.Q.G 5 H <& <H 3.11
2 Q2(2o - Hl) I oraly 1171 1 0 2
i zgkoo(a)
G, = -h.QG, -hQG |, H, <&, <H (3.115)
3 Q3(2O - H2) i 2"a2w 2722 17171 2 0 2
r
2
g = 1 Lokgo(a) oG
4 Qh(z0 - H3) ] oy 3733
- h,Q.G, - h,Q G |, 2, > Hg (3.116)

These expressions for the shear moduli can be expressed in terms of the
baseplate radius and the critical baseplate radii by using Equations

3.103-3.110, with the result:
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Gl = Tkoo(a) . 0 <a < a8, (3.117)

a, <8 sa, (3.118)
(1 - v.) vV, & .=28 B 2
_ 3 c2 el 72
G3 “4(a -8 ) ¢3(a)k00(a) "1-v, a-a B G2
c? 2 2 3
l=-v a B 2
- el (L) g a.<a<a (3.119)
i 1= vl a-a., B3 1° c? - c3 *
1 Y 1 Vv, & a B 4 1 v
- Ty Fe3 T Te2f U3 )
G = g (a)k, (a) - (-—-) G, -
L L(a - ac3; L 00 1 -~ v3 a - 8.3 L 3 1 - Vo
2 2
8 -8 B 1l -v a B
c2 el {72 N cl ( l)
X ——————{—] G. - ==l (P & 8 < a (3.120)
a - ac3 (Bh> 2 1l - vl a - ac3 Bh 1 c3

where ¢2(a) 5 ¢3(a) , and ¢h(a) are functions of the baseplate

radius and Poisson's ratio of the successive pavement layers. These

functions are given by

2
B. - B a [
_ 1 2 ‘el
¢2(a) = (1 + —132 - > (3.121)
B. - B, a B, - B.a .\
_ 2 2 "3 1 2 ¢l P
¢3(a) = (1 + B3 == ¥ B3 = ) (3.122)
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Therefore the values of the shear modulus of each layer of the
pavement system can be calculated if the values of Poisson's ratio are
assumed to be known for each pavement layer and if the function koo(a)
is known for a series of values of the baseplate radius. This series
must include a baseplate radius sufficiently large to make the static
finite depth of influence penetrate into the deepest leyer whose shear
modulus is to be determined. The function koo(a) can be obtained
from measured values of the dynamic stiffness S(a,Fs,Fd) . The shear
modulus of the subgrade can be determined by this method if a suffi-
ciently large vibrator baseplate is used. It is clear also from Equa-
tions 3.97-3.99 that this method is also applicable to soil formations
and may prove to te a useful method of shallow ¢ bsurface geophysical
exploration.

The unique feature of this method of determining the variation
of‘the shear modulus with depth is the one-to-one correspondence between
the vibrator baseplate radius and the finite depth of influence in the
pavement. Each pavement layer can be detected individually by choosing
a proper baseplate size. This one-to-one correspondence does not exist
in the wave propagation method of determining subsurface structure, be-
cause in this case a single point on a measured Rayleigh wave dispersion
curve is influenced by the values of the shear modulus at all depths be-
neath the surface.

The basic purpose of applying pavement layers over a subgrade is
to distribute the load which is applied to the pavement surface in such
a way as to protect the comparatively weak subgrade. A measure of the
load distribution characteristics of a pavement is given by the angle of
the frustum of the cone in which the strain (and stress) in the pave-
ment system is assumed to be confined. This angle is shown in Figure 5

and is defined as follows:

)

- b4 A 0
LU Sl crapey P ey (3.224)
where ¢D is the angle of stress distribution. For a homogeneous elas-

tic half-space this angle is given by
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2.
~ TB(1 +«k + «7)
tan ¢D 6(0( _ l) (3-125)

Similar expressions for the layered pav:ment system can be obtained by
using Equations 3.104-3.106. For the homogeneous elastic half-space,

¢D is independent of the baseplate radius; but for layered systems,
this angle does depend somewhat on the baseplate radius. The values of
k are determined experimentally by requiring that Equations 3.108-3.110
correctly predict the pavement layer thicknesses. This requirement
gives a value of ¥ <from which the value of k 1is immediately obtained
by using Equation 3.52. A typical value of ¢D for pavements is

¢D ~ T0 deg.

3.8 EFFECTS OF THE MECHANICAL CHARAC-

TERISTICS OF THE VIBRATOR ON THE
MEASURED VALUES OF DYNAMIC STIFFNESS

3.8.1 VIBRATOR AND PAVEMENT PARAMETERS
INFLUENCING THE DYNAMIC STIFFNESS
The dynamic stiffness of a pavement is measured by using a me-
chanical vibrator to determine the load-deflection curves. The shape
of these curves depends on the values of the nonlinear parameters b
and e . The experimental results of Section 4.1 and the theoretical
results of Section 3.5 indicate that the nonlinear parameters b and e
are not zero for pavements. Ia this case, Equations 3.22-3.28 show that
in sddition to the quantities listed in Section 2.4 pertaining to the
linear oscillator, the dynamic stiffness of a pavement measured by a

vibrator also depends on the following quantities:

a. Two nonlinear elastic parameters describing the pavement.
b. The static load (or static equilibrium displacement).

c¢. The dynamic force generated by the vibrator.

d. The baseplate radius of the vibrator.

Because various vibrators have different vaiues of FS and FD Sk
follows that the dynamic stiftness value measured hy different vibralores
at the same locality will in general be different. The dynamic stiff-
ness measured by a vibrator thus depends on the physical cnaracteristics

of the vibrator used for the measurements. For flexible pavement it is
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in part the dependence of the dynamic stiffness on F_ that produces

the discrepancy in the measured values of dynamic sti?fness using two
different vibrators with different values of FD at the same pavement
location. All other factors being equal, two vibrators operating at
different levels of dynamic force will not yield the same value of dy-
namic stiffness. The lower value will occur in the region of large
dynamic load.

3.8.2 THEORY OF THE ANOMALOUS BEHAVIOR

OF THE DYNAMIC STIFFNESS

The spring constant expression shows that the linear theory of
elasticity implies a value of the dynamic stiffness which is essentially
proportional to the baseplate radius of the vibrator mass. Experimental
results presented in Section 4.1 contradict this basic conclusion of
linear elasticity. Some of the experimental data in Section 4.1 indi-
cate that for the same vibrator (same static and dynamic loads), the
measured values of dynamic stiffness are roughly independent of base-
plate radius. In fact, some of the data in Section 4.1 show that for
different vibrators (different static loads), it is sometimes possible
to measure smaller values of the dynamic stiffness with a large base-
plate than with a small baseplate at the same location. This conflict
between the experimental results and the predictions of linear elastic
theory will be referred to as the anomalous behavior of the dynamic
stiffness.

The ancmalous behavior of the dynamic stiffness can be explained
in terms of the nonlinear response of a pavement to a static and dynamic
load. The anomalous result, that the dynamic stiffness does not appear
to vary directly with the radius of the baseplate (as it does for a
lincar homogeneous half-space), is due to the finite depth of influence
which makes kOO only a very slowly increasing function of baseplate
radius except for really small radii (see Figure Ta). This is espe-
cially true for the case of a concrete pavement where a very strong
upper layer overlies considerably weaker layers of base and subbase. In

this case, the value of k is determined primarily by the strong

00
upper layer, and the major part of this value can be obtained with a
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very small baseplate radius as shnown in Figure 7a. The weaker lower

layers tend to flatten out the k_ _~versus-baseplate-radius curve.

00
Thus, measurements of kOO using different sized baseplates would yield
values of k considerably less different than they would be if the

00
pavement were a homogeneous half-space with elastic parameters equal to

those of the upper layer of the layered system. According to the non-

linear theory, is a very slowly increasing function of baseplate

k
radius for baseplgge radii larger than the first critical radius. There-
fore, for sufficiently large baseplate radii, the values of dynamic
stiffness of rigid pavements measured for fixed static and dynamic loads
should be essentially independent of the baseplate radius.

The fact that the values of kOO are similar for different base-
plate radii which are sufficiently large implies that the values of two
kO(Fs,a) functions corresponding to two different baseplate sizes are
also similar for some pavements. In this case it is possible, due to a
locel minimum of the function kO(Fs,a) for some value of Fs , for
kO(FS,a) for a small baseplate radius and small static load to be
larger than kO(Fs,a) for a large radius and a large static load as
shown in the rigid pavement curve in Figure lLa., If the values of kOO
are very different for two baseplate radii, the corresponding two values
of the function kO(Fs,a) will also be very different. In particular,
the function kO(Fs,a) for the larger radius will be larger than the
corresponding function for the smaller radius for all values of FS , 8s
shown in the flexible pavement curves of Figure ha. This case would
then represent the normal situation in which large baseplates produce
slightly larger values of dynamic stiffness than do smaller baseplates.
This normal situation is expected to occur for weak pavements where
there is not a great difference between the elastic parameters of the
upper and lower pavement layers, The anomalous behavior of the dynamic
stiffness measurements on pavements can be explained in terms of the

relative constancy of the function k..(a) , which implies that the

00
values of the dynamic stiffness measured on rigid pavements by vibrators
with large and small baseplates will be roughly the same. On the other

hand, linear elastic theory implies that the value of the dynamic
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stiffness should be directly proportional to the baseplate radius. The
experimental results, then, contradict some of the predictions of the

linear elastic theory.
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L, EVALUATION OF THEORETICAL RESULTS OF THE
DYNAMIC STIFFNESS STUDY

L,1 EXPERIMENTAL PROGRAM

The basic goal of the experimental program was to provide data
to establish the use of the nondestructive evaluation method for airport
pavements., Nondestructive pavement evaluation methodology based on cor-
relations between nondestructive data and existing Federal Aviation Ad-
ministration evaluation criteria is given in Volume I of this report.15
The specific objectives of the experimental program were:

a. Determination of the dynamic stiffness as a function of fre-
quency, dynamic load, static load, and vibrator baseplate
radius.

b. Validation of the theoretical procedures and predictions of
the nonlinear mechanical model of pavements.

4,1.1 MECHANICAI, VIBRATORS USED FOR
NONDESTRUCTIVE TESTING OF
PAVEMENTS
Dynamic stiffness data were obtained from several vibrators
inecluding:
a. The WES 16-kip hydraulic vibrator

b. The Dynaflect

¢. The Road Rater

d. The Civil Engineering Research Facility (CERF) vibrator
e. The WES 9-kip eccentric mass vibrator

Each vibrator has its own basic dynamic characteristics including weight,
maximum dynamic force, and baseplate radius. A compariscon of these four
vibrators is made in .-Table 1. According to the nonlinear vibration
theory of pavements developed in Section 3.5, the dynamic characteris-
tics of a vibrator will be reflected in the value of the dynamic
stiffness measured on a given pavement.

The experimental measurements of the dynamic load-deflection
curves measured by WES were made primarily at a frequency of 15 Hz, but
also in the range of 10-25 Hz. Most of the data taken were for a static
load of 16 kips and for a dynamic load which varied from 5-1L kips.

Some dynamic stiffness measurements were performed using a different
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Table 1

Mechanical Characteristics of Vibrators

Static Maximum Effective Contact GUperating
Load Dynamic Load Baseplate Area Frequency
Vibrator kips kips Radius, in. g in. Hz
WES 16-kip 16 15 9 2L5 5-100
Dynaflect 1.6 0.5 0.9 (concrete)* 2.54 8
~3,2 (asphaltic 32.0
concrete
Road Rater
Loo 1.5 0.75 20-30
505 1.5 0.75 Ly, 20%# 56 20-30
510 2.0 1.5 10-40
550 k.o 3.0 10-L40
CERF 6.75 ? 6 113.1 15,425
WES 9-kip 9 8 9.5 283.5 5-60

]
* Road Rater applies load through two 4~ by T-in. rectangular steel
pads spaced 6 in. apart.
#* Dynaflect applies load through two L4-in. wide and 16-in.-diam steel

wheels.
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vibrator arrangement which allowed for a variation of the static load
in the range of 5-50 kips by the addition of a series of lead weights
to the vibrator load.

4.1.2 EFFECTS OF DYNAMIC LOAD

Typicel dynamic load-deflection curves for AC pavements appear
in Figure 11, while Figure 12 gives these curves for PCC pavements.
These load-deflection curves correspond to a frequency of 15 Hz and a
static load of 16 kips. The dynamic stiffness is the ratio of the dy-
namic load to the corresponding value of the dynamic deflection, and can
be evaluated for each point on the dynamic load-deflection curve. The
value of the dynamic stiffness corresponding to FD = 0 has been desig-

nated by S in Equation 3.21 and can be obtained from Figures 11 and

12 by measuging the slope of the load-deflection curves at the origin.
The dynamic stiffness values corresponding to the dynamic load-
deflection curves presented in Figures 11 and 12 are given in Figures
13a and b. For the WES 16-kip vibrator operating on AC pavements, the
dynamic stiffness is generally a decreasing function of the dynamic load,
while for rigid pavements the dynamic stiffness is essentially indepen-
dent of the dynamic load. However, the 10-Hz dynamic load-deflection
curves shown in Figure 14 indicate that it is possible under certain
conditions for the dynamic stiffness to be an increasing function of the
dynamic load and to have a local minimum value at a specific value of
the dynamic load.