
'~**~~~mmm^~-^^i^mmmm IN naiiumi umii •■

^Bm^Hmmmmmmmmmammmmmmmmm

SERIAL PATTERN ACQUISITION:
SYSTEM APPROACH

D . A . Waterman

Carnegie-Mellon University

AD-A013 569

A PRODUCTION

Prepared for:

Air Force Office of Scientific Research
Defense Advanced Research Projects Agency
Public Health Service

February 19 7 5

DISTRIBUTED BY:

mf]
National Technital Information Service
U. S. DEPARTMENT OF COMMERCE

II" ""«I -• ■ "—"■ -~— ■ ■■l ~-—-^

SERIAL PATTERN ACQUISITION:

A PRODUCTION SYSTEM APPROACH

by D. A. Waterman

"Department of Psychology
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15215

Complex Information Processing

Working Paper #286

February, 19^5

D D C
ÜJ m 18 m

B

=

Approved for public rateiMV
 P^Jihiitt.ni gnto Jtod

This work was supported in part by the Defense Advanced Research
Projects Agency under contract F44620-73-C-0074 monitored by the
Air Force Office of Scientific Research and in pare by the NIH
Grant MH-07722. ., p y t «xn

11

 ■ ■■■"—■

ABSTRACT

A production system technique for recognizing regularities in

serial patterns is presented in the context of the letter series extrapo-

lation problem. The learning technique consists of creating an crdered

set of production rules to represent the concept of a pattern, such that

each rule is a hypothesis about \<hid\ pattern contexts le.id to which new

pattern elements. The production system leaminv; technique is compared

with other series extrapolation methods and examples of series concepts

learned by a computer implementation of the technique are given.

Ill

" ■■"

SERIAL PATTERN ACQUISITION: A PRODUCTION SYSTEM APPROACH

by D. A. Watennan

A major hurdle to be faced in implementing computer models of complex

learning is the basic task of recognizing regularities in data. This is

particularly critical for so called "induction" type learning where a

large number of specific data-representations must be mapped into a single

more general data-representation. Much work has already been done on in-

duction programs, particularly in the area of pattern recognition (Self-

ridge and Neisser, 1963; Zobrist. 1971; Uhr, 1973) and sequence extrapola-

tion (Feldman, 1963; Simon and kotovsky, 1963; Uhr, 1964; Solomonoff, 1964;

Ernst and Newell, 1969; Klahr and Wallace, 1970; Williams, 1972; Hedrick, 1974;

Hunt and Poltrock, 1974). A somewhat different appioach to the problem of

machine induction will now be presented.

Ideally, what is neeued is a simple uniform technique for recognizing

regularities in dsta, a technique which can bo considered a natural extension

of basic associative learning techniques such as rote learning. Such a tech-

nique would tend to bridge the gap between simple learning like memorizing the

addition table, and complex learning like inducing the concept of a series.

In this paper a technique for recognizing regularities will be presented

in the context of the series extrapolation problem. No attempt will be made

here to generalize this technique to other induction type problems, although

some sort of generalization seems feasible. First the problem of data repre-

sentation will be discussed. Then, the learning technique will be described

as it applies to letter series extrapolation problems. Finally, examples will

be presented of series concepts learned by a computer implementation of the

learning technique.

^mmmmimmm^mm m ■ wm

:.

■

i

II. DATA REPRESENTATION

Basic associative leaminj; can be thought 01" as associating a stimulus

A with a response B. This can be represented very naturally as a set of

production rules (Newell and Simon, 1972), since a production rule is

just a set ol" conditions associated with a particular set of actions. Thus

a portion of the addition table for integers could be represented as the

following ordered set ot rules:

1.1 - 2

1.2 - 3

1,5^4

1,4-5

This is interpreted: if you hnve 1 + 1 then the sum is 2, else if you have

1+2 it's 3, etc. Only ordered production systems will be considered,

that is, to obtain a result the conditions in the left-hnnd sides of the

rules are compared to elements in some data base, and the highest priority

rule (topmost rule) whose conditions all match data base elements has its

actions executed.

More complex information, such as letter series concepts can also be

expressed in production system notation. For e.\;iniple, the concept of the

series CLOCU can be represented as:

1.1 C -> D

(1)
1.2 1) -C

This can be interpreted: if the last letter in the series is C then the

next is D, else if the last is D then the next is C. It is clear that this

is all that is needed to extend the series indefinitely.

Simple Letter Series Concepts

The concept of a series will be defined to be a set of extrapolation

rules, as in (1) above, together ivith a set of initialization rules. The

I 111 I ■■ w« •""^^ i" mt -

3.

extrapolation rules contain enough information to extend the series, but

both extrapolation and initializatJon rules are needed to ^nerato the

series from scratch. Initialization in (1) can be provided by including

- C as the last rule of the production system, where the asterisk (•)

represents a condition defined to match any data base, even an empty one.

Thus if no extrapolation rules match the data base then the iritialization

rule * ♦ c will match by definition. In this paper the extrapolation rules

will be referred to as the concept of the series, with the understanding

that the actual concept also includes initialization rules.

Consider the more interesting series, GBDGBGBDGBG. This series is

composed of repeated occurrences of the string GBDGh. Furthermore, it.

description does not require the use of predecessor or successor relations

on an alphabet. Series like this which can be described using nothing more

than the equality or sarje relation will be called simple repetition type

series. A production system (PS) representation of th« concept of this

series is shown below.

2.1 D G B -► G

2.2 G B -> Ü

(2)

2.4 G ^ B

This is interpreted: if the last 3 letters in the series are DGB the next

letter is G. otherwise if the last 2 are GB the next is D. etc. T^e rules

are always applied to the growing end of the series and always result in the

prediction of a single letter. To indicate that the series starts with

G. the initialization rule *- G is needed at the bottom of the production

system.

In production system (1) the regularities represented are the facts that

■" ■ ■ I I HI •■■ l.i . I . —— ■ w^^f^^^mi^m^^m

4.

D always follows C, and C always follows D. In production system (2) they

are tlrjt G always follows the string DGI, D follows all GB's not immediately

preceeded by Ü, G always follows D, and B always follows G. This shows,

at least, that a production system representation is adequate for expressing

the concept of a simple repetition type series in terms of its regularities.

Sequence Prediction Tasks

In the literature on induction and learning the work most closely

related to production system representation of -eguiarities is the analysis

made by Restle (1967) of subjects performing sequence prediction tasks.

The subjects were given a series of binary events equivalent to a sequence

of 1's and O's, and were asked to predict each event in the sequence, given

the partial sequence prior to that event. Tretraining and test sequences

were analyzed in terms of generative rules*, i.e., grammar-like replacement

rules tiat could be used to generate the sequences. The test sequence used

was 111C01000111001,.., which has a period size of nine. Figure 1 compares

Restle's replacement rules for the test sequence with a production system

representation of that sequence. The replacement rules in no sense consti-

tute a production system or even a Markov normal algorithm (Markov, 1954;

Galler and Perils, 1970) for generating the series. Instead they define a

grammar which can generate a number of series, including the test sequence.

For example, the top replacement rule generates the seventh item of the

sequence and is interpreted "if you have 1 then replace it with 0". Thus

the test sequence can be generated by starting with 000 and applying the

rules as shown below:

000 => 1 i> 11 h in i> 0 i> 00 => 1 Z> 0 l> 00 I* 000,

*These rules were inferred by a manual analysis of the test sequence, rather
than by a computer model of the induction task.

Item Predicted Repl acement Rules Production Rules

(7) 1 ♦ 0 1 Ü 0 1 - Ü

(6) 0 0 - 1 1 1 0 0 ■» 1

(3) 1 1 -111 0 1 1 ♦ 1

(2) 1 - 1 1 0 Ü 1 ■► 1

(9) 0 0 • 0 0 0 1 0 (1 - 0

(1) 0 0 Ü - 1 0 0 - 1

(8.5) 0 -> 0 0 0 ♦ 0

(4) 1 1 1 - 0 1 1 - 0

Figui : 1. Comparison of Restle's replacement
rules and production system rules for
the series with period lliOOlOOO.

 ■ "»^^^«■■IIPÄ'«B»WBWi^^

The reason the replacement rule: generate scries other than the test

seauence is that some rules (/ and 2, 6 and 9] contain identical left

hand sidjs. Restle found that subjects make the most errors predicting

items that these "optional" rules generate.

The production rulei in Figure 1, unlike the replacement rules, repre-

sent the concept of the test sequenct- since they have associated with them

a general control mechanism (interpreter for ordered PS's) which defines

their use. Notice, however, that the replacement and production rules are

pair-wise isomorphic, i.e., for each replacement -ie that predicts a

symbol there is a corresponding production rule thac predicts the same symbol.

The production rules which correspond to the "optional" replacement rules

are the must complex, since they have the most symbols in their left hand

sides. This occurs because enough context must be retained in the left hand

side of the production rule to discriminate between similar alternatives.

Thus within the PS framework one would expect the mc.;t errors during learning

to occur on items generated by the most complex rules, which corresponds to

the result obtained by Restle. We will now consider the problem of generating

a concept from a series and will describe a learning technique capable of

creating the productio:i rule representation shown in Figure 1.

III. BASIC LEARNING TECHN1QUL

A learning technique will now be described that is a simple, uniform

procedure for generating the concent of a series by finding regularities in

the series. In general terms, the technique consists of creating a hypothesis

about a particular type of xegularity in the data, adding this hypothesis,

in the form of a production rule, to the current set of hypotheses (the

production system), and then using the data to test the hypotheses. When

the data prove a hypothesis false, a new hypothesis is added above the

■

■' ■ ■ — ■ ■

error-caui-iiij; üMO.

In terms of series concepts, each hypothesis consists of a production

rule formed from a consecutive sequence of letters from the series (the

condition) and the letter assumed to follow that sequence (the action).

Ihe action aKays consists of just a single letter.* Sequences of the

series are presented to the production system (first letter, first-two

letters, first-three U-tters. etc.) and it predicts what the next letter

should be. The prediction is checked hy comparing it to the next letter in

the actual series. Nkm the prediction is in evror a new rule is added

to the system above the error-causim- rule. The new rule contains one more

letter in its condition than the error-causing rule and the actual next

letter as its action. The principle is one of minimum local consistency.

A new rule is always a correct statement about the sequence, and is only

created following an error at precisely that point in the sequence. When no

prediction is made (the sequence of letters fails to match any of the rules)

a new rule with a condition equal to the rightmost letter of the sequence

and an action equal to the actual next letter is added.

A learning cycle for a series containing n+l letters consists of pre-

senting the system with the first letter, the first-two letters, on up

through the first-n letters, and obtaining a prediction in each case. The

learning phase consists of repeated learning cycles and is complete when a

learning cycle is encountered which produces nothing but correct predictions.

At this point the production system represents the concept of the series and

"an be used to predict the ex^nsions of the series.

svs P™ rn T /' m0re than 0ne letter can also be USfcd to form production system concepts of series. Such systems can be generated using the same
earning techniques described in this paper. One problem SS'.uS "stems

predicted bv JhTrT ^V^^ed rules when the number of letters "
predicted by the rules exceeds the period size of the series being represented

I""1 '— mm^mmmm^m^^tm^' wmv^mmmmfmmm ^i^vaiB

8.

An example of this technique applied tc the series GBOGKI will now

be presented. Initially the system contains no rules and thus fails to

predict the first letter of the series. This error leads to the creation

of the default rule * -> G. Now G is given to the system and matches the

default rule. This is considered an error* so tin- rule G - B is added.

Now GB is presented, does not match G - B. but does match the default rule,

Since this is considered an error B • [) is added. Next GBI» is presented

and ?lso matches only the default rule, leading to the addition of the

rule Ü -+ G. The system now looks like:

3.1 D ■> G

3.2 B -v D

(3)
3.3 G ->• B

3.4 * > G

Next GBDG is presented, which matches 3.3. predicting that the next letter

is B. From the series we see this is indeed the next letter so no new

rule is necessary. Next. GBÜGB is presented which matches 3.2. predicting

that the next letter is D. From the series we see the next letter is

actually G. so the rule G B -> G is added. Next GBDGBG is presented and

matches 3.5. correctly predicting B. Now the first cycle is complete, but

since errors occurred the process starts over, and G is presented to the

system, which is now:

4.1 G B -> G

4.2 D - G

4.3 B H- D

4.4 G H- B

4.5 * ♦ G

(4)

7rl%UrlLi0r■init\aliZati0n) ruleS are always considered to make erroneous predictions in order to accelerate the learning process.

^^^^r-^^^^mmmmmmmmmmfmmmmmm^^^^^^^^m ii i i iummm^mFPi^^^*n< i ■ ■■■m» i <imt< ^

9.

G matches 4.4 and the correct prediction is made. But now GB is presented

and leads to an incorrect prediction, thus G B ^ D is added. GBD and GBDG

both elicit correct predictions but GBDGB matches 6 B ••> 0 which predicts

D instead of G. Thus D G B -> G is added. After one more correct predic-

tion the third cycle begins, but this time all predictions are correct

and thus the learning phase terminates. Figure 2 diagrams the rule acquisi-

tion process fo. this particular series, showing the first two cycles.

The rules learned are:

5.1 D G B -> G

5.2 G B -> D

5.3 G B -► G (5)

5.4 D -> G

5.5 B -► D

5.6 G -> B

5.7 * -v G

We will consider the concept of the series to be the set of non-redundant*

rule- learned, i.e.. the rules that can be accessed using this series as

context. We see that G B -^ D (rule 5.2) makes G B - G (rule 5.3) uncondi-

tionally redundant, and B - D (rule 5.5) contextually redundant (since, in

this particular series. G always occurs before B). The default rule is

always contextually redundant. Removing these redundant rules from produc-

tion system (5) gives the concept of the series as shown in production system (2).**

This learning technique will handle all letter series based on simple

repetition and this is a theory for recognizing regularities in such series.

*See Wateman (1970) for a discussion of redundancy as applied to ordered
production systems.

**The system does not have to remove these rules since their presence cannot
attect system output. In the current implementation the rules are left in-
however, they could be removed by having the system keep track of non-firing
rules, eventually eliminating them. »»m

■

■ ■ ' ■■ '• ' ■■■

10 •

\ no match/5.6 created
G ^

\ no match/5.5 created
G B ^

v no match/5.4 created
G B D G

V 5.6 matches/correct
G B DGB

v 5.5 matches/5.5 created
G B D G B G

v 5.6 matches/correct
G B D G BGB

i—i

a. Cycle 1

\ 5.6 matches/correct
LG B

^v 5.5 matches/5.2 created
C B D

^*v 5.4 matches/correct
GBO G

(■ B D G B
\ 5.6 matches/correct

G B D G B G

G B D G B G B
i

b. Cycle 2

v 5.2 matches/5.1 created

5.6 matches/correct

Figure 2. Diagram of Learning Technique on GBDGBGB
for first two cycles, (Underlined letters
at tail of arrow indicate letters used as
rule left hand sides. Letter at .iead of
arrow is rule right hand side).

^^bal^#WMKjB J

«mmmm ■—•-- ■—

11.

In fact, it is an instantiation of the compound stimulus hypothesis

(Restle and Brown, 1970) in which a response is assumed to be associated

with some sequence of adjacent past events. Restle and Brown found a

positive but weak relationship between number of errors at a position and

number of previous events required to specify the nsxt event. During

production system learning the number of errors made at each position in

the pattern tends to be proportional to the number of elements in the condi-

tion side of the rule that r edicts an element for that position. This is

true because each error during learning is corrected by effectively adding

one new stimulus element to the condition side of the error-causing rule.

Now we will see how an extension of this technique can be applied to more

complex letter series extrapolation problems.

IV. REPRESENTATION OF COMPLEX LETTER SERIES

The simplest type of letter series other than those characterized by

simple repetition are those requiring the use of predecessor and successor

operations on the alphabet or any explicitly defined ordered list of symbols.

Examples of such series are ABCDEF, AAABBBCCC, and DEFGEFGH. To represent

series of this type, the system must be able to handle the concept of varia-

bles and must be given the capability for executing both predecessor and

successor operations on the alphabet.

Production System Representation

In the production system representation of complex letter series

variables will be indicated by the symbols xl, x2, x3, ..., and predecessor

and successor operations by an apostrophe (') before or after a variable.

Thus 'xl represents the predecessor of xl, and xl' its successor. A

variable in the condition side of a rule inatches anything and is temporarily

bound to the value of what it matches, thus a bound variable can be used

- ■ ■ — =

w^mmmr P^^^w^^w"^*

12.

in the action side of a rule.

With these refinements, the concept of the series ABCDEF can be repre-

sented as xl - xl- . This rule is interj.reted: if the last letter of the

series is anv letter then the next letter in the series is the successor

of that letter. Initialization would be accomplished by the rule * * A.

Conversely, the series ZYXWVU can be represented as xl - 'xl, with * -> Z

for initialization.

Simple repetition can now be represented in a very compact manner,

i.e., consider the two simple repetition series discussed earlier. The

first, CDCDCD, instead of requiring the two rules shown in production system

(1) only requires one rule to represent its concept:

xl x2 ♦ xl. (6)

The second series. GBDGBGBDGBG. instead of requiring the four rules shown

in production system (2) also requires only one rule to represent its

concept:

xl x2 x3 x4 x5 -»■ xl. (71

It should be clear that any simple repetition series of period n can be

represented by a single rule of the form:

xl x2 x3 ... xn -* xl. (g)

Now consider the more complicated series AZCXEVGT. Its concept can

be represented as:

xl x2 xl" -^ ' ,x2

(9)
xl x2 -> xit .

where double apostrophes stand for double predecessor or successor. If

we apply these rules to the series the first rule fails to match (since T

is not the double successor of V) but the second matches, predicting that

the next letter is I. If the rules are now applied to AZCXEVGTI, the first

mr^mma^ammmmmmm •^~**^mmmm**~~^mmn*mi*mmmm*ammm " '"■,- ■■' "W

13.

rule matches, predicting the letter R. Thus (9) can be used to extrapolate

the series as shown below.

AZCXEVGTIRKPMNO ... (IQ)

Comparison with other Representations

Other programs have been written which solve letter series extrapolation

problems (Simon and Kotovsky, 1963; Klahr and Wallace, 1970; Williams. 1972;

Hedrick, 1974; Hunt and Poltrock, 1974). The Klahr and Wallace (KdW) model

represents series concepts solely on the basis of inter-period relations, i.e.,

relations between letters occupyinq the same relative position in adjacent per-

iods. For example, letting s stand for same, n for next, p for prior, n2 for

double next, and p for double prior, the concept of series (10) would be:

2 2
n p . The number of relations is the period size (in this case 2), and

the representation is called the pattern template. Simple repetition is

represented as a sequence of m same's, where m is the period sir«. Thus the

concept of GBDGBGBDGBG is just sssss.

The Hedrick mocel represents series concepts as a set of unordered,

grammar-like productions which can be used to parse a given input sequence

to determine if it is an instance of the series in question. For example,

the series ABCDEF... would have a representation equivalent to the grammar:*

si -^ A B

si ♦ si next(last letter of si) .

Thus when given the sequence ABCD the system would recognize it as an

instance of si (the series ABCDEF...), since the above rules lead to the

*ThiS is a gross simplification of the actual representation. The rules
are condition-action pairs where the conditions are pattern matches on
both the series and an intermediate semantic net which can be modified by
the actions. Thus the model is effectively a production system implemen-
tation of a grammar.

>"' '""" " '■ ■■■ mmmn^mmim^^m

14,

parse shown below.

next si

The Jledrick model learns the concept of a scries from a set of examples

(positive instances) by creating and generalizing productions which

classify the components of the series. The model would have to be given

AB, ABC, and ABCD before it could acquire the concept of the above series.

The Williams model is part of a more general program for inducing

performance strategies from examples taken from aptitude tests. Series

concepts are represented in a way very similar to the template representa-

tion of Klahr and Wallace. Rule- aw constructed which define the inter-

period relations same and next, one rule for each element in the period.

For example, series (10) would be

Rule Relation Iteration Start Move Alphabet

1- next 2 1 2 Forward English

2- next 2 2 2 Backward English.

Rule 1 states that the double next (next with iteration 2) relation on the

forward alphabet holds between letters which are 2 positions apart, starting

at position 1. Rule 2 is the same except that the starting point is

position 2 and the alphabet is the backward one. This representation is

essentially a generalization of the template representation.

mttu

^ I'»' "■ WP" ■ I "^^■»■■■Pll

15.

The Hunt and Poltrock model represents series concepts on the basis of

both inter-period and intra-period relations. This model uses the sa^e three

basic relations used by the other models: same, next, and predecessor. These

relations can be applied either to adjacent letters within a period or to letters

with corresponding positions in adjacent periods. The series concept is repre-

sented as a set of rules, one for each letter in the period, and relates each

letter to some other letter in the series. A series of period n is shown below.

Sl S2 S3 Sn Zl z7 z3 ••• 2n

The model represents the series as n rules, the first relating «j to either

sn or s1. the second relating z2 to either z^ or »^ etc. Thus the concept of

the serxes AAABBBCCC would be:

ij - next(s3)

1. = same(z)

z^ = same(27) .

Simple repetition is handled by a set of inter-period rules. To illustrate,

the concept of GBDGBGBDGBG is s-iown below.

z = same(s)

z2 = same(s7)

23 = same(s)

24 = same(s4)

z5 = same(s)

Initialization information, such as ^ - G, s2 - B, s3 = D. s4 = G. and

s5 = B, must also be included as part of the concept.

The Hunt and Poltrock model does not recognize multiple next or predecessor

relations; nor does it permit the description of relations between letters with

non-corresponding positions in adjacent periods. Ifcu. the concept of series

(10) cannot be described. However, this is more a deficiency of the model than

of the representational technique used to describe series concepts.

 --

1 I "• mmmir~- mmm^

10,

The Simon and Kotovsky (S«) model represents series concepts pri-

marily on the basis of intra-period relations. This requires a mechanism

for stepping a pointer fonvard through an arbitrary alphabet (the successor

operation), a mechanism for resetting the pointer to any arbitrary location

in the alphabet, and a mechanism for constructing arbitrary circular

alphabets. The standard forward and backward circular alphabets art-

initially available. T^ concept of the series AAABBBCCC would be:

i 1 = [alphabet] ;A

(11)
inl,ml,ml,n(ml)

where ml is the forward alphabet with pointer initialized to A. Th» n(ml)

represents the act of stepping the pointer to the next position in the

alphabet and does not represent the generation of a letter cf the series,

as do the mi's. The concept of scries (10) would be:

ml = [alphabet];A

m2 = [backward alphabet] ;Z (12)

ml.n(ml).n(ml),m2,n(m2),n(m2) .

Here two separate alphabets, ml and ..:. are required. Simple repetition can

be handled by cwating an arbitrary alphabet from the letters comprising

one period of the series, i.e.. the concept of GBDGBGBDGBG would be:

ml = [GBDGB];G

ml.n(ml)

A comparison of the PS. Sf,K. and Kf.W representations is given in

Table 1, using series taken from Simon and Kotovsky (1965). Note that in

the S§K notation inter-period relations are implicit rather than explicit,

while in the K§W notation intra-period relations cannot be described at

all. However in production system notation both can be explicitly described,

as illustrated by the first two columns of the Table.

WMRHPMMIPapPIMranHHBPMP i lim i i

I
18.

One advantage of using a PS representation is that it permits iritiali-

zation rules to be represented in a form identical to extrapolation rules.

Furthermore, there is a certain degree of independence between initializa-

tion and extrapolation which makes it possible to extrapola'^ a given

series without using initialization information. With the Kf,K representa-

tion this is also possible, but the system must effectively regenerate the

series from scratch in order to extrapolati it To extrapolate a series

using S§K extrapolation rules the system must obtain the initialization

information from the series (a nor.-triviai .ask) and then use it to regen-

erate the series from scratch.

Representation of Hierarchical Sequencer

Sequential behavior can be analyzed in terms of hierarchical systems

(Chomsky, 1963; Restle, 1970) and we will now compare one such analysis

with a corresponding production system analysis. Restle (1970) developed a

notation for describing a hierarchical sequence as a series of nested

operators: T., R and M, which can transpose (add or subtract by i), repeat,

or mirror (reflect) sequences given as arguments. For example, T (3) is

(3 4) and T+3(3 4) is (3467). Similarly. R(3) is (3 3) and R(l 2) is

(1 2 1 2)*. Thus the pattern 31316464 can be represented as

^j(R(T «(S)))« This is equivalent to representing the pattern as a regular

binary tree.

The hierarchical pattern 3 1 3 1 b 4 6 4 can also be represented by

the following production system:

13.1 xl x2 x3 x4 ♦ i l1"

13.2 xl x2 -* xl (13)

13.3 xl ^ "xl

*For a description of the "mirror" operation see Restle (1970).

wmmmmrm ■■ ■•■■■ . ■■•. i i ■ •■ A i ■ i n

19.

It* pattern is generated from the initial element 3 by one application of

rule 13.3 (to produce 3 1). two applications of 13.: (to prodlX« 3 13 1)

and four applications of 13.1 (to produce 3 13 16 4 6 4). Note that

each production rule is analogous to one of the Restle operators (or one

level in the corresponding binary tree). Hierarchical sequences based on

transposition and repetition can be described in terms of this PS notation

since these operations map directly into the predecessor, successor, and

same relations used by the PS's in this paper.

Greeno and Simon (1974) have analyzed the problem of convertxng sequence

information stored as a hierarchy of operators Into serially ordered per-

fonnance. The analysis was made on information represented in Restle's

notation and considered questions about the requirements made by the inter-

pretive process on memory storage and computaticnal complexity. Three

interpretive processes (push Jown. recompute, and doubling) were presented

for producing the sequence 5 6 2 3 4 5 1 2 from ^(1^(5))). and each

was analyzed in terms of storage and computational requirements. One of

these processes, called doubling, involves the application of identical

operators several times in succession, as illustrated in Figure 3. This

particular interpretive process is identical to the one used to interpret

a production system reF.dentation of this pattern. For example, the above

sequence can be represented in PS form as:

14.1 xl x2 x3 x4 ♦ 'xl

14-2 xl x2 - '"xl ^4)

14-3 xl - xl'

If we map rule 14.1 into the operator T^. 14.2 into T,. and 14.3 into T ,

we see that the sequence of rule applications which generates the series is

the same sequence given in Figure 3. Greeno and Simon found that the

- -

»nil. ■■•ii i utmmm wmm wmmm^i" > ■ • v

20.

Figure 3. Doubling interpretive process for
producing a sequence from
T-l(T-3(TiC5))). (Taken from
Greeno and Simon, 1974).

>. i

— tu* nrnwrnm^m .i*m

21.

düubling interi)retation process, when compared with the other two,

minimized the number of operator applications and perator retrievals from

memory, while maximizing the amount of short-term memory requ.red.* Thus

we conclude that a production system represent .cion of serial patterns

implies a process for which computational complexity lias been reduced at

the expense of memory requirements.

■

V. EXTENSION OF LEARNING TECHNIQUE

The primary interest here is in developing a simple uniform technique

for generating the concept of a complex letter series. The creation of com-

pact or minimal sets of rules is considered to be of secondary importance.

An extension of the previously discussed learning technique will now be

presented. Since series based on alphabets are used, rules must now be

generalized before being added to the system. For example, the series Ai3CD

cannot be extrapolated from the rules A -* B, B -+ C, and C - D. A generalized

version of these rules, namely xl -► xV, provides the needed predictive

power. But the need to generalize rules leads to another problem: that of

determining which relations between letters should be made explicit in the

generalization. This is a non-trivial problem because the s^r-tem will

either make errors or become bogged down in backtracking if spurious rela-

tions are made explicit (Waterman, 1974). This problem is solved by

hypothesizing a period size and then making explicit only relations between

letters which occupy the same relative position within adjacent periods.

This method for limiting the search for relevant relations is called the

template strategy. Since this technique deals only with inter-period rela-

tions it creates production systems similar to those shown in column 1

of Table 1.

*For m operators the number of operator applications was 2 - 1, operator
retrievals was m, and maximum memory capacity 2m"1.

•IP«aa<m«"M«p«<p mmmmmm^m^^^^^m^f^^mm 1 11HI.II in I» i i imtm

22.

Example of Production System Series Extrapolation

The new production system learning technique is identical to the

earlier one with the following exceptions:

1. Only one cycle through the series is necessary, regardless
of errors.

2. New rules are added immediately above the error-causing rule,
rather than above all the current rules.

3. A generalized version of each rule is added to the system,
rather than a specific one, and only inter-period relations
are made explicit.

4. Period size is hypothesized, in order from 1 to n, where n
is the length of the given series. For each period size
hypothesis one learning cycle is attempted. The cycle is
aborted and the period size hypothesis incremented whenever
(a) no relation can be found between letters occupying the
same relative position in adjacent periods, or (b) the
number of rules added exceeds the period size hypothesis.

An example using the serie' ABMCDMKF will illustrate this procedure. The

initial period size hypothesis is 1, and no rules are present. The context

A is presented to the system; since there are no rules an error results

and the rule A -•■ B is generalized and added to the system. Since the period

is assumed to b 1 the relation between A and B is made explicit and A -»■ B

is added as xl ♦xl*. Next the context AB is presented which matches the

rule just added and C is predicted, rather than the correct letter M. Thus

a new rule must be added. However this would make the number of rules (2)

larger than the period size (1), so the cycle is aborted and starts over

with a period size hypothesis of 2 and no rules present.

Now the context A is presented; it leads to an error since no rules

are present, and the rule A H- B is generalized and added as xl -> B, since

A and B are now both in the same period. Next AB is presented which matches

the rule just added and B is predicted rather than the correct letter M.

Thus the rule A B -► M is generalized and added, except that here the

generalization fails since no relation can be found between A and M

(nothing higher than triple predecessor and successors are considered).

-

■■■

(IS)

23.

As before the cycle is aborted and starts over with no rules present and

a period size hypothesis of 3.

Again the context A leads to an error and xl -> B is added to the

system. Then AB is presented, leading to the erroneous prediction of B.

Thus A B -> M is generalized and added as xl x2 * M, since A, B, and M are

all in the same period. The set of rules is now:

15.1 xl x2 -* M (initialization)

15.2 xl * B (initialization)

Here "initialization" indicates that these are intra-period rules needed

for initialization of the series but not for extrapolation. To accelerate

learning this type of rule is always considered to lead to an erroneous

prediction. Next the context ABM is presented, matching 15.1 which predicts

M rather than the correct letter, C. So the rule A B M -* C is generalized

and added above 15.1 to produce:

16.1 xl x2 x5 ->■ xl' ' (1)

16.2 xl x2 -> M (initialization) (16)

16.3 xl -^ B (initialization)

where the (1) indicates that this is the first rule added that counts relative

to the abort decision based on the number of rules added (only inter-period

rules are counted). Next the context ABMC is presented which matches 16.1

and correctly predicts D as the next letter. Now the context ABMCD is

presented, again matching 16.1 but incorrectly predicting 0. Thus the rule

B M C D -• M is generalized and added to produce:

17.1 xl M x3 xl' ' H- M (2)

17.2 xl x2 x3 * xl" (1)

l7-3 xl x2 ■+ M (initialization)

I7»4 xl -► B (initialization)

(17)

 "

mmm^mmmm****"" ■>**"" •^^■W^WP^^^WI mm^*^m^ii^*mm^m*i*mm*mmrmmwi&miim •^f^^mmm

24.

Finally, when ABMCDM and ABMCDME are presented they elicit correct predic-

tions and the learning phase is complete. Now the entire series ABMCDMEF

is presented and the correct extrapolation, letter M. is made. The concept

of the series is considered co be the extrapolation rules (17.1 and 17.2)

plus the initialization rules (17.3 and 17.4) shown in (17).*

Rule generalization is straightforward and requires the rule, the

series, and the hypothesized period size. For example, if the rule is

B B C ^ B and the series is ABBCBAE with period si-e 3, then, as shown

below, arrows can be drawn between letters whose relations are to be made

explicit.

ABB/CBA/E

Now the rule B B C -> B has only one such arrow, thus only the relation

between the first and last B is made explicit. Since it is a same_ relation

it can be made explicit by usinj; total generalization to get xl x2 x3 ♦ xl

or partial generalization to get B x2 x3 ^ B. Partial generalization can

only be used for two letters connected by the same relation, and never for

letters connected by predecessor or successor relations.

The learning technique j\a* described works when only total generaliza-

tion on same is permitted and also when only partial generalization on same

is permitted. But in the former case the concept learned for series con-

taining simple repetition is much more compact. Thus in the computer

implementation of this learning technique, total generalization on same

occurs on the first inter-period rule added to the system during each cycle.

The default rule * -* A is also needed to generate the series from scratch
in the current computer implementation of the extended learning technique
all initialization rules, except the default one, are learned during
the noraial execution of the technique. Thus to generate complete series
the system must be given either the first letter, the default rule, or a
trivial program modification which causes automatic generation of the
default rule.

M»

 ■ ■ • • vm

25.

and partial generalization occurs on all the subseqaent rules added.

Since total generalization on same always leads to a single rule repre-

sentation of simple repetition series, this procedure is equivalent to

the heuristic: "check to see if you have a simple repetition series

before proceeding with the more complex series extrapolation methods".

Comparison with Other Series Extrapolation Techniques

The production system learning technique just illustrated is a method

for leaminc series concepts based solely on inter-period relations. In

this respect it is similar to the K|N template matching technique for

series extrapolation. There are some differences, however. First, for

template matching the series must always exhibit two complete periods or

the template will not be complete, and no predictions can be made. In the

PS technique two periods are not always required since the method auto-

matically hypothesizes that the inter-period relations not yet specified

are similar to those already learned. For example, the template technique

fails on the series AABBACB, even though this can be extrapolated

AABBACBDAEBFA. It can be thought of as the series ABABABA interleaved

with ABCDEF. The PS technique* applied to AABBACB produces the series

concept:

xl x2 x3 x4 xl -► X2'1

(18)
xl x2 x3 x4 -* xl ,

from which the correct extrapolation can be made. A second difference

between the template technique and the PS technique is that the former

always finds a concept based on the shortest period whereas the latter

*For this example only, the technique consists of using only total generali-
zation on same.

^""•" mmm^w^trmmmr—^^^ ■ ■ i

(

26.

may find a concept based on some multiple of the shortest period. Even

when this occurs the predictions made by the PS technique are identical

to those made by the template technique.

A production system learning technique based on intra-period relations

has not yet been developed, but might prove to be a promising area for

continued research. One of the major problems with this approach is the

difficulty during the learning phase of distinguishing between relevant

and spurious intra-period relations. Both the Simon-Kotovsky and Hunt-Poltrock

models dealt with this problem «,ith a certain degree of success, thus the heur-

istics they used should provide useful guidelines for an adaptive production

system implementation.

Computer Implementation of Production System Learning Techniques

Both the basic learning technique (applied to simple repetition series)

and the extended learning technique (applied to scries using circular alpha-

bets) have been realized as computer programs written in the PAS-II system

(Waterman and Newell. 1973). Each program is a short production system

which can modify itself by adding new production rules. The rules added by

the system represent the concept of the series being learned. A complete

description of these self-modifying production systems is given elsewhere

(Waterman. 1974).

Examples of series concepts learned by SCI, the program employing the

basic learning technique, are shown in Figure 4. Both Figure 5* and

Table 1 (first column) contain series concepts learned by SC2, the program

employing the extended learning technique. Here redundant ruleü have been

^The series in Figure 5 were taken from Williams (1972).

■■"■ ■'um11 ipiWn^MPn*<«B«WH« If I •■w»ww»iBM«mnwwwF">^WiBP

27.
1

Series Concept Predictions

1. AABAABA B ^ A
A A H- B

A -* A

AAB

2. ABACABA C -> A
B A H- C

B -^ A
A -»■ B

CAB

5. GBUGBGBÜG 1) G B - G
G B -^ D

D * G
G - B

BGB

4. BBABCBBBBA B B
B
c

B B -* A
B B - B
B B -> B

C ^ B
A B -^ C

A - B
B - B

BCB

Figure 4. Series Concepts Learned by the

SCI Series Extrapolation Program.

•m—~mm~mm^ "

Series

1. CDCDCD

2. AAABBli

3. ATBATAATB

4. RSRTKURV

5. ABMCDMliF

6. DEFGEFGI1

7. QXAPXBQXA

8. ABCDABCEA

9. MABMBCMCÜM

10. URTUSTU

U. MNLNKNJ

12. ABYAB)u\B

13. RSCDSTÜE

14. NPAOQAPR

15. MNOMOOMPO

16. WXAXYBY

17. JKQRKLRS

18. PÜNONMNM

19. CEGEDEHEEE

28.

 ^

Concept Prediction

xl x2 -»■ xl CDC

xl x2 x5 -»■ xl' ccc
xl x2 x3 x4 x5 x6 * xl ATA

R x2 R -* x2, RIVR
xl x2 ■* xl

xl M x3 xl1 ' -*■ M MGH
xl x2 x3 ■*■ xl"

xl x2 x3 x4 - xl'

xl x2 x5 x4 x5 x6 ■♦ xl

C x2 x5 x4 C -<■ x2,

xl x2 x3 x4 ■»■ xl

M x2 x3 x4 x5 x6 M -»■ x2"
xl x2 M x4 x5 x6 xl'' X21 ' - M

xl x2 x5 x4 x5 x6 xl1 ' -► x2"
xl x2 x3 x4 x5 x6 -> xl

U x2 x3 U -» x2,

xl x2 x3 -* xl

xl N 'xl - N
xl x2 ■»• 'xl

B x2 x3 B -K ,x2
xl x2 x3 ->• xl

xl x2 x3 x4 -* xl'

xl A x3 xl' -»• A
xl x2 x5 ■♦ xl'

M x2 x3 M -► x2'
xl x2 x3 -»• xl

xl x2 x3 -<■ xl'

xl x2 x3 x4 -»• xl'

xl x2 x3 -* 'xl

xl E x3 x4 xl' -^ E
xl x2 x3 x4 -♦ xl»

Füll

PXB

BCF

DEM

TTU

NIN

WAS

TUE

AQS

MQO

2C2

IMS

LML

IEF

Figure 5. Series Concepts learned by the SC2

Series Extrapolation Program.

B " n ■ « ' ■ I ■

29.

eliminated from the concept descriptions. Figure 6 contains more diffi-

cult series concepts learned by SC2. The S5K program, or any program

based on intra-period relations, would tend to have difficulty with

these series. Note that .series 4 in Figure 6 is another that the K5W

template matching procedure would be unable to solve.

Even though the SC2 progra.T- is an extension of SCI they do not always

make the same predictions, particularly when given ambiguous series. For

example, given the series AbßA, SCI makes the simple extrapolation:

BBA.... or simple repetition of period 3. However, SC2 (and the KciW pio-

gram) would find a more complex extrapolation of period 2, i.e., CZD...

For unambiguous simple repetition series, SCI and SC2 always make the same

predictions, but SC2 produces a simpler concept after a much greater compu-

tational effort.

VI. CONCLUSION

A learning technique has been presented for finding regularities in

sequential patterns. It consists of nothing more complex than forming an

ordered set of hypotheses about which pattern contexts lead to which new

pattern elements. The learning system starts with very general hypotheses,

i.e., rules which apply to particular classes of patterns. As these rules

are proven erroneous their generality is reduced by adding new rules above

them which apply to subclasses of these patterns. More specifically,

learning proceeds by first assuming that only one element in a particular

pattern context is relevant and then, as this is proven false, falling

back to the less general assumption that other elements in that pattern

context are also relevant. When the learning phase is complete, the system

has learned which pattern elements are relevant given any particular

pattern context.

-»-^-^i^mmm

30,

Series

1. ABCCDEFFG

2. DDCCODBDEAO

3. BADBAUCE

4. AAABBBCACBÜ

5. ABCBCDCDLF

6. ADUACUAEUABUAF

Concept Predictions

Xl x2 x3 x4 * xl' " HI1

xl I) x3 'xl - 1) FZD
D x2 x3 D -»• x2'
xl x2 x3 ■♦ 'xl

1 x2 x5 x4 'xl -* x2," 2GB
xl x2 x3 x4 ■♦ 'xl

xl A x3 x4 A3 x6 xl'' -»A
xl B x3 x4 x5 x6 xl" -» B

xl x2 x3 x4 x5 x6 ->• xl* '

C x2 x3 x4 C x2" - x3' '
xl C x3 x4 xl'' -* C

xl x2 x3 xl -► xl" '

xl U A x4 xS X6 'xl U A -♦ x4'
U A x3 x4 x5 x6 U A - 'x3
A x2 x3 x4 x5 x6 A -+ x2'

Xl U x3 x4 x5 x6 'xl - U
xl x2 x3 x4 x5 x6 * xl

BEA

CFG

UAA

Figure 6. Difficult Series Concepts Learned
by the SC2 Series Exatrapolation Program

—————— IIII ■

31.

The preceeding remarks apply to both the basic learning technique

and to the extension of that technique. However in the extension of the

basic learning technique an additional generalization process is present.

This is the process of characterizing the relations between elements of

the pattern in a very general way before adding the rule containing these

pattern elements to the system. Here a specific rule is made more general

subject to constraints imposed by the current strategy for recognizing

relations. Only one such strategy (the template strategy) was presented

in this paper. As mentioned earlier it involved hypothesizing a period

size and only recognizing relations between corresponding elements of

adjacent periods. However by making the strategy for recognizing relations

a little more sophisticated it should be possible to create a single unified

program which can Uam series concepts based on both inter-period and

intra-period relations.

The production system learning technique was presented primarily as

an artificial intelligence implementation of sequence extrapolation, rather

than as a model of human problem solving. In fact, comparison with Restle's

work indicates that the learning technique may more closely model human

sequence prediction than sequence extrapolation, even though the two are

very closely related. Since both extrapolation and prediction require

pattern acquisition, it might be useful to examine the implications of

this learning technique for a general theory of human serial pattern acqui-

sition. First, it implies that some portico of human long term memory is

organized in the form of a production system or set of condition-action

rules. Second, it implies that these rules have an order imposed on them,

i.e.. given any rule, one can find the next rule in the list. However,

■ mm —

s9

this ordering does not imply that conditions on rules are accessed serially,

"me matching of production rule conditions against data in short term

memory is considered to proceed in parallel*, leading to a set of rules

whose conditions match the data. A single rule is chosen from this con-

flict set on the basis of relative location in long term memory, and its

actions are executed. Thus response latency is not necessarily propor-

tional to production system size. Third, the learning technique implies a

memory for the locations of rules recently fired. This follows from the

necessity of incorporating new rules into the system in front of error-

causing rules. Finally, it implies that learning serial patterns involves

a liberal use of memory capacity in order to reduce computational complexity.

It is felt that this learning technique can be generalized to other

induction-type tasks. A similar, though much simpler, technique has already

been used in a production rule simulation of verbal learning (Waterman.

1974). Another similar, but more complex, technique has been used in a

production system program which learns heuristics for draw poker (Waterman.

1970).

*This is currently implemented as a simple serial process,

"mmmiimtß^^^^^^Kmmt^mmmmwim'

35.

ACKNOWLEDGMENTS

f ««i. Paper. ^ coments an(1 „,,,_ of ^ ^ Dick ^

sWorted in part by the N,H crant Mi_o77_,2i and ^ ^^ ^ ^^ ^^

Research Projects Agency of the Office of H.. c
i-ne urtice of the Secretary of Defense

(1-58200-8130).

34.

REFERENCES

■ Chomsky. N. Formal properties of grammars. In Handbook of Mathematical

I Psychology. Luce. R. P.. Bush. R. R., 5 Galenter. E. (Eds.). Vol. 2,

Wiley. 1963.

I ErnSt' G- W" andN^ll. A. GPS: A Case Study in Generality and Problem

Solving- Academic Press. 1969, pp. 232-246.

I Feldman. J. Simulation of behavior in the binary choice experiment.

[I Computers | Thoupht. Feigenbaum. E. A.. § Feldman. J. (Eds.). 1963.

I Galler. B.. 5 Perlis. A. A View of Programming Langua.es. Addison-Wesley. 1970.

I Greeno. J. G.. and Simon. H. A. Processes for sequence production.

Psychological Review. Vol.81, n. 3, 19 4. pp. 187-198.

I Hedrick, C. L. A computer program to learn production systems using a semantic

net. Ph.D. Dissertation. GSIA, Carnegie-Mellon University, 1974.

a Hunt, B. B.f | Poltrock. S. E. The mechanics of thought. In Kantowitz, B. H.

I (Ed-)' Uuman Infori"a^°n Processing: Tutorials in Performance and Cognition,

L. Erlbaum Associates, N.J.. 1974, pp. 277-350.

I Klahr, D., and Wallace. J. G. TT.e development of serial completion strategies:

An information processing analysis. British Journal of Pgcholgg Vol. 61,

1970, pp. 243-257.

Markov. A. A. The theory of algorithms (tr. from the Russian by J. J. Shorr-kon).

U.S. Dept. of Commerce. Office of Technical Services. OTS 60-51085.

(Teoriya Algorifmov, USSR Academy of Sciences, Moscow, 1954).

Newell, A., and Simon, II. Human Problem Solving. Prentice-Hall, 1972.

Restle, F. Grammatical analysis of the prediction of binary events. Journal

of Verbal Learning and Verbal Behavior. 6, 1967, pp. 17-25.

Restle, F. T^eoiy of serial pattern learning: Structural trees. Psychological

Review, Vol 77, no. 6, 1970, pp. 481-495.

- - --

■ ll1

35.

Restle. F., f, Brown, E. R. Serial pattern learning. Journal of Experimental

Psychology. Vol. 83, no. 1, 1970, pp. 120-125.

Selfridge. 0. G., and Neisser, U. Pattern recognition by machine. Computers S

Thought. Feigenbaum, E. A., and Feldman, J., (Eds.), McGraw-Hill.

1963, pp. 235-267.

Simon, H. A., and Kotovsky, K. Human acquisition of concepts for sequential

patterns. Psychological Review. Vol. 70, no. 6, 1903. pp. 534-546.

Solomonoff, R. J. A formal theory of inductive inference. Part II.

Information and Control. 7. 1964, pp. 224-254.

Uhr' L- Pattern Recognition, Learning and Thought. Prentice-Hall, 1973.

Uhr, L. Pattern-string learning programs. Behavioral Science. Vol. 9, no. 3,

July 1964, pp. 258-270.

Waterman, D. A. Generalization learning techniques for automating the

learning of heuristics. Artificial Intelligence. Vol. 1, nos. 1 and 2,

1970, pp. 121-170.

Waterman, D. A., and Newell, A. PAS-II: An interactive task-free version

of an automatic protocol analysis system. Proceedings of the Third

International Joint Conference on Artificial Intelligence, 1973,

pp. 431-445.

Waterman, D. A. Adaptive production systems, CIP working paper 1285,

Psychology Department, Carnegie-Mellon University, December. 1974.

Williams, D. S. Computer program organization induced from problem

examples. Representation and Meaning. Simon, H. A., and Siklossy, L.

(Eds.), Prentice-Hall, 1972, pp. 143-205.

Zobrist, A. L. The organization of extracted features for pattern

recognition. Pattern Recognition. Vol. 3, 1971, pp. 23-30.

maimm

