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ABSTRACT

A production system technique for recognizing regularities in
serial patterns is presented in the context of the letter series extrapo-
lation problem. The learning technique consists of creating an ordered
set of production rules to represent the concept of a pattern, such that
each rule is a hypothesis about which pattern contexts leud to which new
pattern elements. Thc production system learning technique is compared
with other series extrapolation methods and examples of series concepts

learned by a computer implementation of the technique are given.




SERIAL PATTERN ACQUISITION: A PRODUCTION SYSTEM APPROACH

by D. A. Waterman

A major hurdle to be faced in implementing computer models of complex
learning is the basic task of recognizing regularities in data. This is
particularly critical for so called "induction" type learning where a .
large number of specific data-representations must be mapped into a single
more general data-representation. Much work has already been done on in-
duction programs, particularly in the area of pattern recognition (Self-
ridge and Neisser, 1963; Zobrist, 1971; Uhr, 1973) and sequence extrapola-
tion (Feldman, 1963; Simon and Kotovsky, 1963; Uhr, 1964; Solomonoff, 1964;
Ernst and Newell, 1969; Klahr and Wallace, 1970; Williams, 1972; Hedrick, 1974;
Hunt and Poltrock, 1974). A somewhat different approach to the problem of
machine induction will now be presented.

Ideally, what is needed is a simple uniform technique for recognizing
regularities in dzta, a technique which can be considered a natural extension
of basic associative learning techniques such as rote learning. Such a tech-
nique would tend to bridge the gap between simple learning like memorizing the
addition table, and complex learning like inducing the concept of a series.

In this paper a technique for recognizing regularities will be presented
in thé context of the series extrapolation problem. No attempt will be made
here to generalize this technique to other induction type problens, although
some sort of generalization seems feasible. First the problem of data repre-
sentation will be discussed. Then, the learning technique will be described
as it applies to letter series extrapolation problems. Finally, examples will

be presented of series concepts learned by a computer implementation of the

learning technique.
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11. DATA REPRESENTATION

Basic associative learning can be thought or as associating a stimulus
A with a response B. This can be represented very naturally as a set of
production rules (Newell and Simon, 1972), since a production rule is
just a set of conditions associated with a particular set of actions. Thus
a portion of the addition table for integers could be represented as the

following ordered set ot rules:

1,4 » 5
This is interpreted: if you have 1 + 1 then the sum is 2, else if you have
1 + 2 it's 3, etc. Only ordered production systems will be considered,
that is, to obtain a result the conditions in the left-hand sides of the
rules are compared to clements in some data base, and the highest priority
rule (topmost rule) whose conditions all match data base elements has its
actions executed.

More complex information, such as letter series concepts can also be
expressed in production system notation. For example, the concept of the
series CDCDCD can be represented as:

i.1 € =D
(1)
1.2 b »C
This can be interpreted: if the last letter in the series is C then the

next is D, else if the last is D then the next is C. It is clear that this

is all that is needed to extend the series indefinitely.

Simple Letter Series Concepts
The concept of a series will be defined to be a set of extrapolation

rules, as in (1) above, together with a set of initialization rules. The




extrapolation rules contain enough information to extend the series, but
both extrapolation and initialization rules are needed to generate the
series from scratch. Initialization in (1) can be provided by including
* » C as the last rule of the production system, where the asterisk (*)
Tepresents a condition defined to match any data base, even an empty one.
Thus if no extrapolation rules match the data base then the initialization
rule * + C will match by definition. In this paper the extrapolation rules
will be referred to as the concept of the series, with the understanding
that the actual concept also includes initialization rules.

Consider the more interesting series, GBDGBGBDGBG. This series is
composed of repeated occurrences of the string GBDGB. Furthermore, its

description does not require the use of predecessor or successor relations

on an alphabet. Series like this which can be described using nothing more

than the equality or same relation will be called simple repetition type

series. A production system (PS) representation of thn concept of this

series is shown below.

2.3

2.4
This is interpreted: if the last 3 letters in the series are DGB the next
letter is G, otherwise if the last 2 are GB the next is D, etc. The rules
are always applied to the growing end of the series and always result in the
prediction of a single letter. To indicate that the series starts with
G, the initialization rule *-+ G is needed at the bottom of the production
system,

In production system (1) the regularities represented are the facts that




D always follows C, and C always follows D. In production system (2) they
are that G always follows the string DGB, D follows all GB's not immediately
preceeded by D, G always follows D, and B always follows G. This shows,

at least, that a production system representation is adequate for expressing

the concept of a simple repetition type series in terms of its regularities.

Sequence Prediction Tasks

In the literature on induction and learning the work most closely
related to production system representation of “egularities is the analysis
made by Restle (1967) of subjects performing sequence prediction tasks.
The subjects were given a series of binary events equivalent to a sequence
of 1's and 0's, and werc asked to predict each event in the sequence, given
the partial sequence prior to that event. Pretraining and test seqences
were analyzed in terms of generative rules*, i.e., grammar-like replacement
rules tiat could be used to generate the sequences. The test sequence used
was 111¢01000111001..., which has a period size of nine. Figure 1 compares
Restle's replacement rules for the test sequence with a production system
representation of that sequence. The replacement rules in no sense consti-
tute a production system or even a Markov normal algorithm (Markov, 1954;
Galler and Perlis, 1970) for generating the series. Instead they define a
grammar which can generate a number of series, including the test sequence.
For example, the top replacement rule generates the seventh item of the
sequence and is interpreted "if you have 1 then replace it with 0". Thus
the test sequence can be generated by starting with 000 and applying the

rules as shown below:

000 &> 1

*These rules were inferred by a manual analysis of the test sequence, rather
than by a computer model of the induction task.




Item Predicted Replacement Rules
(7) 1 0
(6) 00 -1
(3) I L+111
(2) 1 +11
(9) 00~-000
(1) 000 ~1
(8,5) 0-~00
(4) 1110

Production Rules

1001-0

1100 -1

Figui> 1. Comparison of Restle's replacement
rules and production system rules for

the series with period 11.001000.
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The reason the replacement rule:s generate series other than the test
sequence is that some rules (7 and 2, 6 and 9) contain identical left
hand sides. Restle found that subjects make the most errors predicting
items that these "optional" rules generate.

The production rules in Figure 1, unlike the replacement rules, repre-
sent the concept of the test sequency since they have associated with them
a general control mechanism (interpreter for ordered PS's) which defines
their use. Notice, however, that the replacement and production rules are
pair-wise isomorphic, i.e., for each replacement r.le that predicts a
symbol there is a corresponding production rule that predicts the same symbol.
The production rules which correspond to the "optional" replacement rules
are the inost complex, since they have the most symbols in their left hand
sides. This occurs because enough context must be retained in the left hand
side of the production rule to discriminate between similar alternatives.
Thus within the PS framework one would expect the most errors during learning
to occur on items generated by the most complex rules, which corresponds to
the result obtained by Restle. We will now consider the problem of generating
a concept from a series and will describe a learning technique capeble of

creating the production rule representation shown in Figure 1.

IIT. BASIC LEARNING TECHNIQUE

A learning technique will now be described that is a simple, uniform
procedure for generating the concent of a series by finding regularities in
the series. In general terms, the technique consists of creating a hypothesis
about a particular type of gegularity in the data, adding this hypothesis,
in the form of a production rule, to the current set of hypotheses (the

production system), and then using the data to test the hyvpothcses. When

the data prove a hypothesis false, a new hypothesis is added above the
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error-causing one.

In terms of series concepts, each hypothesis consists of a production
rule formed from a consecutive sequence of letters from the series (the
condition) and the letter assumed to follow that sequence (the action).

The action always consists of just a single letter.* Sequences of the
series are presented to the production system (first letter, first-two
letters, first-three letters, etc.) and it predicts what the next letter
should be. The prediction is checked by comparing it to the next letter in
the actual series. Ihen the prediction is in error a new rule is added

to the system above the error-causing rule. The new rule contains one more
letter in its condition than the error-causing rule and the actual next
letter as its action. The principle is one of minimum local consistency.

A new rule is always a correct statement about the sequence, and is only
created following an error at precisely that point in the sequence. When no
prediction is made (the sequence of letters fails to match any of the rules)
2 new rule with a condition equal to the rightmost letter of the sequence
and an action equal to the actual next letter is added.

A learning cycle for a series containing n+1 letters consists of pre-
senting the system with the first letter, the first-two letters, on up
through the first-n letters, and obtaining a prediction in eich case. The
learning phase consists of repeated learning cycles and is complete when a
learning cycle is encountered which produces nothing but correct predictions.
At this point the production System represents the concept of the series and

can be used to predict the ex*~nsions of the series.

*Rules which predict more than one letter can also be used to form production
System concepts of series. Such Systems can be generated using the same
learning techniques described in this paper. One problem with such systems

is that they generate unduly complicated rules when the number of letters
predicted by the rules exceeds the period size of the series being represented




An example of this technique applied to the series GBDGBGB will now

be presented. Iritially the system contains no rules and thus fails to
predict the first letter of the series. This error leads to the creation
of the default rule * + G. Now G is given to the system and matches the
default rule. This is considered an error* so the rule G -- B is added.
Now GB is presented, does not match § - B, but does match the default rule.
Since this is considered an error B - D is added. Next GBD is presented
and 21so matches only the default rule, leading to the addition of the
rule D + G. The system now looks like:

2.1 D=6

3.2 B >D

(3)

3.3 G-+ B

3.4 *5 G
Next GBDG is presented, which matches 3.3, predicting that the next letter
is B. From the series we see this is indeed the next letter so no new
rule is necessary. Next, GBDGB is presented which matches 3.2, predicting
that the next letter is D. From the series we see the next letter is
actually G, so the rule G B » G is added. .Next GBDGBG is presented and
matches 3.3, correctly predicting B. Now the first cycle is complete, but
since errors occurred the process starts over, and G is presented to the
system, which is now:

4.1 GB+G

4.2 D~+G
4.3 B-+D (4)
4.4 G~+B

4.5 * 5 G

*Default (or initialization) rules are always considered to make erroneous
predictions in order to accelerate the learning process.




G matches 4.4 and the correct prediction is made. But now GB is presented
and leads to an incorrect prediction, thus G B + D is added. GBD and GBDG
both elicit correct predictions but GBDGB matches G B -+ D which predicts

D instead of G. Thus D G B » G is added. After one more correct pradic-
tion the third cycle begins, but this time all predictions are correct

and thus the learning phase terminates. Figure 2 diagrams the rule acquisi-
tion process fo. this particular series, showing the first two cycles.

The rules learned are:

5.6
Snd +G
We will consider the concept of the series to be the set of non-redundant*
rules learned, i.e., the rules that can be accessed using this series as
context. We see that G B -~ D (rule 5.2) makes G B + G (rule 5.3) uncondi-
tionally redundant, and B -+ D (rule 5.5) contextually redundant (since, in
this particular series, G always occurs before B). The default rule is
always contextually redundant. Removing these redundant rules from produc-
tion system (5) gives the concept of the series as shown in production system (2).**
This learning technique will handle all letter series based on simple

repetition and thus is a theory for recognizing regularities in such series.

*See Waterman (1970) for a discussion of redundancy as applied to ordered
production systems.

**The system does not have to remove these rules since their presence cannot
affect system output. In the current implementation the rules are left im;
however, they could be removed by having the system keep track of non-firing
rules, eventually eliminating them.
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no match/5.6 created \

N

no match/5.5 created &

B

)

G B
no match/5.4 created L*\

B D G
5.6 matches/correct g

5.5 matches/5.3 created

5.6 matches/correct

Diagram of Learning Technique on GBDGBGB
for first two cycles. (Underlined letters
at tail of arrow indicate letters used as
rule left hand sides. Letter at .ead of
arrow is rule right hand side).

5.6 matches/correct
5.5 matches/5.2 created
5.4 matches/correct

5.6 matches/correct

5.2 matches/5.1 created

5.6 matches/correct
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In fact, it is an instantiation of the compound stimulus hypothesis
(Restle and Brown, 1970) in which a response is assumed to be associated
with some sequence of adjacent past events. Restle and Brown found a
positive but weak relationship between number of errors at a position and
number of previous events required to specify the next event. During
production system learning the number of c¢rrors made at each position in
the pattern tends to be proportional to the number of elements in the condi-
tion side of the rule that predicts an element for that position. This is
true because each error during learning is corrected by effectively adding
one new stimulus element to the condition side of the error-causing rule.
Now we will see how an extension of this technique can be applied to more

complex letter series extrapolation problenms.

IV. REPRESENTATION OF COMPLEX LETTER SERIES

The simplest type of letter series other than those characterized by
simple repetition are those requiring the use of predecessor and successor
operations on the alphabet or any explicitly defined ordered list of symbols.
Examples of such series are ABCDEF, AAABBBCCC, and DEFGEFGH. To represent
series of this type, the system must be able to handle the concept of varia-
bles and must be given the capability for executing both predecessor and

successor operations on the alphabet.

Production System Representation

In the production system representation of complex letter series
variables will be indicated by the symbols x1, x2, x3, ..., and predecessor
and successor operations by an apostrophe (') before or after a variable.
Thus 'x1 represents the predecessor of xl, and x1' its successor. A
variable in the condition side of a rule matches anything and is temporarily

bound to the value of what it matches, thus a bound variable can be used




in the action side of a rule.

With these refinements, the concept of the series ABCDEF can be repre-
sented as x1 -+ x1'. This rule is interpreted: if the last letter of the
series is any letter then the next letter in the series is the successor
of that letter. Initialization would be accomplished by the rule * - A.
Conversely, the series ZYXWVU can be represented as x1 -+ 'x1, with * » Z
for initialization.

Simple repetition can now be represented in a very compact manner,
i.e., consider the two simple repetition series discussed earlier. The
first, CDCDCD, instead of requiring the two rules shown in production system
(1) only requires one rule to represent its concept:

x1 x2 -+ x1. (6)
The second series, GBDGBGBDGBG, instead of requiring the four rules shown
in production system (2) also requires only one rule to represent its
concept:
x1l x2 x3 x4 x5 + x1. (7)
It should be clear that any simple repetition series of period n can be
represented by a single rule of the form:
x1 x2 x3 ... xn + xl. (8)
Now consider the more complicated series AZCXEVGT. Its concept can
be represented as:
xl x2 x1'' » '"'x2
(9)
xl x2 > x1'! 5
where double apostrophes stand for double predecessor or successor. If
we apply these rules to the series the first rule fails to match (since T
is not the double successor of V) but the second matches, predicting that

the next letter is I. If the rules are now applied to AZCXEVGTI, the first




rule matches, predicting the letter R. Thus (9) can be used to extrapolate
the series as shown below.

AZCXEVGTIRKPMNO ... (10)

Comparison with other Representations

Other programs have been written which solve letter series extrapolation
proﬁlems (Simon and Kotovsky, 1963; Klahr and Wallace, 1970; Williams, 1972;
Hedrick, 1974; Hunt and Poltrock, 1974). The Klahr and Wollace (K&W) model
represents series concepts solely on the basis of inter-period relations, i.e.,

relations between letters Occupying the same relative position in adjacent per-

. ) . 2
iods. For example, letting s stand for same, n for next, p for prior, n° for

double next, and p2 for double prior, the concept of series (10) would be:
nzpz. The number of relations s the period size (in this case 2), and

the representation is called the pattern template. Simple repetition is
represented as a sequence of m same's, where m is the period siz:. Thus the
concept of GBDGBGBDGBG is just sssss.

The Hedrick model represents series concepts as a set of unordered,
grammar-like productions which can be used to parse a given input sequence
to determine if it is an instance of the series in question. For example,
the series ABCDEF... would have a representation equivalent to the grammar:*

sl ~AB
sl + s] next(last letter of sl) .

Thus when given the sequence ABCD the system would recognize it as an

instance of sl (the series ABCDEF...), since the above rules lead to the

*This is a gross simplification of the actual representation. The rules
are condition-action pairs where the conditions are pattern matches on
both the series and an intermediate semantic net which can be modified by
the actions. Thus the model is effectively a production system implemen-
tation of a grammar,
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parse shown below. 1

5
/\
51 next sl
/\
51 next sl
/\
A ]

The Hedrick model learns the concept of a series from a set of examples
(positive instances) by creating and generalizing productions which
classify the components of the series. The model would have to be given
AB, ABC, and ABCD before it could acquire the concept of the above series.
; The Williams model is part of a more general program for inducing
performance strategies from examples taken from aptitude tests. Series
concepts are represented in a way very similar to the template representa-

tion of Klahr and Wallace. Rulcs are constructed which define the inter-

’ period relations same and next, one rule for each element in the period.

For example, series (10) would be

Rule  Relation JIteration Start Move Alphabet

1. next 2 1 2 Forward English

i 2. next 2 2 2 Backward English.

Rule 1 states that the double next (next with iteration 2) relation on the

! forward alphabet holds between letters which are 2 positions apart, starting

at position 1. Rule 2 is the same except that the starting point is

position 2 and the alphabet is the backward one. This representation is

essentially a generalization of the template representation. |
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The Hunt and Poltrock model represents series concepts on the basis of

both inter-period and intra-period relations. This model uses the same three

basic relations used by the other models: same, next, and predecessor. These

relations can be applied either to adjacent letters within a period or to letters

with corresponding positions in adjacent periods. The series concept is repre-

sented as a set of rules, one for each letter in the period, and relates each

letter to some other letter in the series. A series of period n is shown below.

5152 53...5 2, 2, 2

n'1" %3 """ zn

The model represents the series as n rules, the first relating 24 to either

sn or Sy the second relating z, to either z, or S,, etc. Thus the concept of

the ser.es AAABBBCCC would be:

z1 = next(ss)
5 z, = same(zl)
h 2 = same(zz) .

Simple repetition is handled by a set of inter-period rules. To illustrate,

the concept of GBDGBGBDGBG is shown below.

z1 = same(sl)
( z, = same(sz)
: Zg = same(ss)
24 = same(s4)
Zg = same(ss)

Initialization information, such as s1 = G, S, = B, s
S¢ = B, must also be included as part of the concept.

The Hunt and Poltrock model does not recognize multiple next or predecessor

relations; nor does it permit the description of relations between letters with

non-corresponding positions in adjacent periods. 7Thus the concept of series

(10) cannot be described. However, this is more a deficiency of the model than

of the representational technique used to describe series concepts.

P — T g a———
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The Simon and Kotovsky (S6K) model represents series concepts pri-
marily on the basis of intra-period relations. This requires a mechanism
for stepping a pointer forward through an arbitrary alphabet (the successor
operation), a mechanism for resetting the pointer to any arbitrary location
in the alphabet, and a mechanisn for constructing arbitrary circular
alphabets. The standard forward and backward circular alphabets are
initially available. Ti.» concept of the series AAABBBCCC would be:

1l = [alphabet];A
(11)
ml,ml,ml,n(ml) ,
where ml is the forward alphabet with pointer initialized to A. The n(ml)
represents the act of stepping the pointer to the next position in the
alphabet and does not represent the generation of a letter cf the series,

as do the ml's. The concept of series (10) would be:

ml falphabet];A

m2

[backward alphabet];z (12)
ml,n(ml),n(ml),mZ,n(mZ),n(m2)
Here two separate alphabets, ml and m2, are required. Simple repetition can
be handled hy creating an arbitrary alphabet from the letters comprising
one period of the series, i.e.. the concept of GBDGBGBDGBG would be:
ml = [GBDGRB] ;G
ml,n(ml)

A comparison of the PS, S&K, and KtW representations is given in
Table 1, using series taken from Simon and Kotovsky (1963). Note that in
the S§K notation inter-period relations are implicit rather than explicit,
while in the K§W notation intra-period relations cannot be described at

all. However in production system notation both can be explicitly described,

as illustrated by the first two columns of the Table.
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One advantage of using a PS representation is that it permits iritiali-
zation rules to be represented in a form identical to extrapolation rules.
Furthermore, there is a certain degree of independence between initializa-
tion and extrapolation which makes it possible to extrapolate a given
series without using initialization information. With the K&W representa-
tion this is also possible, but the system must effectively regenerate the
series from scratch in order to extrapolatc it. 7To extrapolate a series
using SGK extrapolation rules the system must obtain the initialization
information from the series (a non-trivial task) and then use it to regen-

erate the series from scratch.

Representation of Hierarchical Sequences
Sequential behavior can be analyzed in terms of hierarchical systems
(Chomsky, 1963; Restle, 1970) and we will now compare one such analysis
with a corresponcing production system analysis. Restle (1970) developed a
notation for describing a hierarchical sequence as a series of nested
operators: Ti’ R and M, which can transpose (add or subtract by i), repeat,
or mirror (reflect) sequences given as arguments. For example, T+1(3) is
(3 4) and T+3(3 4) is (34 6 7). Similarly, R(3) is (3 3) and R(1 2) is
(1 21 2)*. Thus the pattern 31 31 6 4 6 4 can be represented as
T+3(R(T_2(3))). This js equivalent to representing the pattern as a regular
binary tree.
The hierarchical pattern 31 31 6 4 6 4 can also be represented by
the following production system:
13.1  x1 x2 x3 x4 + y1'"!
13.2 xl x2 » x1 (13)

13.3 xl > '"'x1

*For a description of the '"mirror" operation see Restle (1970).
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The pattern is generated from the initial element 3 by one application of
rule 13.3 (to produce 3 1), two applications of 13.2 (to prodice 3 1 3 1)

and four applications of 13.1 (to produce 31316 4 6 4). Note that

each production rule is analogous to one of the Restle operators (or one
level in the corresponding binary tree). Hierarchical sequences based on
transposition and repetition can be described in terms of this PS notation
since these operations map directly into the predecessor, successor, and
Same relations used by the PS's in this paper.

Greeno and Simon (1974) have analyzed the problem of converting sequence
information stored as a hierarchy of operators into serially ordered per-
formance. The analysis was made on information represented in Restle's
notation and considered questions about the requirements made by the inter-
pretive process on memory storage and computaticnal complexity. Three
interpretive processes (push down, recompute, and doubling) were presented
for producing the sequence 5 6 2 3 4 51 2 from T-I(T-S(Tl(s)))’ and each
was analyzed in terms of Storage and computational requirements. One of
these processes, called doubling, involves the application of identical
operators several times in succession, as illustrated in Figure 3. This
particular interpretive process is identical to the one used to interpret
a production system repsiZentation of this pattern. Foy example, the above
Sejquence can be represented in PS form as:

14.1  x1 x2 x3 x4 » 'xl
14.2 Xl %2 = 0 8 (14)

14.3 xl » x1! .

If we map rule 14.1 into the operator T—l’ 14.2 into T-S’ and 14.3 into Tl,

we see that the sequence of rule applications which generates the series is

L s A

the same sequence given in Figure 3. Greeno and Simon found that the




Figure 3. Doubling interpretive process for
producing a sequence from
T_1(T_3(T{(5)}). (Taken from
Greeno and Simon, 1974).
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doubling interpretation process, when compared with the other two,
minimized the number of operator applications and ~nerator retrievals from
memory, while maximizing the amount of short-term memory requ:red.* Thus
we conclude that a production system represent:.cion of serial patterns
implies a process for which computaticnal complexity has been reduced at

the expense of memory requirements.

V. EXTENSION OF LEARNING TECHNIQUE
The primary interest here is in developing a simple uniform technique

for generating the concept of a complex letter series. The creation of com-
pact or minimal sets of rules is considered to te of secondary importance.
An extension of the previously discussed learning technique will now be
presented. Since series based on alphabets are used, rules must now be

' generalized before being added to the system. For example, the series ABCD
cannot be extrapolated from the rules A > B, B » C, and C - D. A generalized
version of these rules, namely x1 - x1', provides the needed predictive
power. But the need to generalize rules leads to another problem: that of
determining which relations between letters should be made explicit in the
generalization. This is a non-trivial problem because the system will
either make errors or become bogged down in backtracking if spurious rela-
tions are made explicit (Waterman, 1974). This problem is solved by
hypothesizing a period size and then making explicit only relations between
letters which occupy the same relative position within adjacent periods.
This method for limiting the search for relevant relations is called the

template strategy. Since this technique deals only with inter-period rela-

tions it creates production systems similar to those shown in column 1

of Table 1.

—_—— ' : m
*For m operators the number of operator applications was 2= - 1, operator
retrievals was m, and maximum memory capacity 2m-1,
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Example of Production System Series Extrapolation
The new production system learning technique is identical to the
earlier one with the following exceptions:

1. Only one cycle through the series is necessary, regardless
of errors.

2. New rules are added immediately above the error-causing rule,

rather than above all the current rules.

A generalized version of each rule is added to the system,

rather than a specific one, and only inter-period relations

are made explicit.

4. Period size is hypothesized, in order from 1 to n, where n
is the length of the given series. For each period size
hvpothesis one learning cycle is attempted. The cycle is
aborted and the period size hypothesis incremented wherever
(a) no relation can be found between letters occupying the
same relative position in adjacent periods, or (b) the
number of rules added exceeds the period size hypothesis.

(7]

An example using the serie< ABMCDMEF will illustrate this procedure. The
initial period size hypothesis is 1, and no rules are present. The context
A is presented to the system; since there are no rules an error results
and the rule A » B is generalized and added to the system. Since the period
is assumed to b 1 the relation between A and B is made explicit and A - B
is added as x1 » x1'. Next the context AB is presented which matches the
rule just added and C is predicted, rather than the correct letter !. Thus
a new rule must be added. However this would make the number of rules (2)
larger than the period size (1), so the cycle is aborted and starts over
with a period size hypothesis of 2 and no rules present.

Now the context A is presented; it leads to an error since no rules
are present, and the rule A > B is generalized and added as x1 - B, since
A and B are now both in the same period. Next AB is presented which matches
the rule just added and B is predicted rather than the correct letter M.
Thus the rule A B > M is generalized and added, except that here the
generalization fails since no relation can be found between A and M

(nothing higher than triple predecessor and successors are considered).
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As before the cycle is aborted and starts over with no rules present and
a period size hypothesis of 3.
Again the context A leads to an error and x1 - B is added to the
system. Then AB is presented, leading to the erroneous prediction of B.
Thus A B + M is generalized and added as xl x2 - M, since A, B, and M are
all in the same period. The set of rules is now:
15.1 xl x2 » M (initialization)
(15)
15.2 xl - B (initialization)
Here "initializat'on" indicates that these are intra-period rules needed
for initialization of the series but not for extrapolation. To accelerate
learning this type of rule is always considered to lead to an erroneous
prediction. Next the context ABM is presented, matching 15.1 which predicts
M rather than the correct letter, C. So the rule A B M - C is generalized
and added above 15.1 to produce:
16.1 x1 x2 x3 + x1'" (1)
16.2 xl x2 - M (initialization) (16)
16.3 xl - B (initialization)
where the (1) indicates that this is the firs£ rule added that counts relative
to the abort decision based on the number of rules added (only inter-period
rules are counted). Next the context ABMC is presented which matches 16.1
and correctly predicts D as the next letter. Now the context ABMCD is
presented, again matching 16.1 but incorrectly predicting 0. Thus the rule
BMCD+Mis generalized and added to produce:
17.1  x1 M x3 x1'' » M (2)
17.2 xl x2 x3 + x1'' (1)

(17)

17.3 xl x2 + M (initialization)

17.4 xl + B (initialization)
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*The default rule * + A is also needed to generate the series from scratch.
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Finally, when ABMCDM and ABMCDME are presented they elicit correct predic-
tions and the learning phase is complete. Now the entire series ABMCDMEF
is presented and the correct extrapolation, letter M, is made. The concept
of the series is considered to be the extrapolation rules (17.1 and 17.2)
plus the initialization rules (17.3 and 17.4) shown in (17).*

Rule generalization is straightforward and requires the rule, the
series, and the hypothesized period size. For example, if the rule is
B B C + B and the series is ABBCBAE with period size 3, then, as shown
below, arrows can be drawn betwesn letters whose relations are to be made
explicit.

ABB/CBA/E

Now the rule B B C - B has only one such arrow, thus only the relation
between the first and last B is made explicit. Since it is a same relation
it can be made explicit by using total generalization to get x1 x2 x3 + x1
or partial generalization to get B x2 x3 - B. Partial generalization can
only be used for two letters connected by the same relation, and never for
letters connected by predecessor or successor relations.

The learning technique just described works when only total gencraliza-

tion on same is permitted and also when only partial generalization on same

is permitted. But in the former case the concept learned for series con-
taining simple repetition is much more compact. Thus in the computer
implementation of this learning technique, total generalization on same

occurs on the first inter-period rule added to the system during each cycle,

In the current computer implementation of the extended learning technique
all initialization rules, except the default one, are learned during
the normal execution of the technique. Thus to generate complete series
the system must be given either the first letter, the default rule, or a
trivial program modification which causes automatic generation of the
default rule.
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and partial generalizatian occurs on all the subsequent rules added.
Since total generalization on same always leads to a single rule repre-
sentation of simple repetition series, this procedure is equivalent to
the heuristic: ''check to see if you have a simple repetition series

before proceeding with the more complex series extrapolation methods'.

Comparison with Other Series Extrapolation Techniques

The production system learning technique just illustrated is a method
for learning series concepts based solely on inter-period relations. In
this respect it is similar to the K§W template matching technique for
series extrapolation. There are some differences, however, First, for
template matching the series must always exhibit two complete periods or
the template will not be complete, and no predictions can be made. In the
PS technique two periods are not always required since the method auto-
matically hypothesizes that the inter-period relations not yet specified
are similar to those already learned. For example, the template technique
fails on the series AABBACB, even though this can be extrapolated
AABBACBDAEBFA. It can be thought of as the series ABABABA interleaved
with ABCDEF. The PS technique* applied to AABBACB produces the series
concept:

xl x2 x3 x4 x1 » x2'!
(18)
xl x2 x3 x4 » xl ,

from which the correct extrapolation can be made. A second difference

between the template technique and the PS technique is that the former

always finds a concept based on the shortest period whereas the latter

*For this example only, the technique consists of using only total generali-
zation on same.
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may find a concept based on some multiple of the shortest period. Even

when this occurs the predictions made by the PS technique are identical

to those made by the template technique.

A production system learning technique based on intra-period relations

has not yet been developed, but might prove to be a promising area for

continued research.

One of the major problems with this approach is the

difficulty during the learning phase of distinguishing between relevant

and spurious intra-period relations. Both the Simon-Kotovsky and Hunt-Poltrock

models dealt with this problem with a certain degree of success, thus the heur-

istics they used should provide useful guidelines for an adaptive production

system implementation.

Computer Implementation of Production System Learning Techniques

Both the basic learning technique (applied to simple repetition series)

and the extended learning technique (applied to series using circular alpha-

bets) have been realized as computer programs written in the PAS-II system

(Waterman and Newell, 1973). Each program is a short production system

which can modify itself by adding new production rules. The rules added by

the system represent the concept of the series being learned. A complete

description of these self-modifying production systems is given elsewhere

(Waterman, 1974).

Examples of series concepts learned by SC1, the program employing the

basic learning technique, are shown in Figure 4. Both Figure 5* and

Table 1 (first column) contain series concepts learned by SC2, the program

employing the extended learning technique. Here redundant rules have been

*The series in Figure 5 were taken from Williams (1972).
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Series

AABAABA

ABACABA

GBDGBGBDG

BBABCBBBBA

Concept
B + A
AA-+B
A~ A
C-A
BA=-C
B+ A
A+ B
DGB~>G
GB-~+D
D~+G
G- B
BBBB~+A
BBB~+B
CBB=+3B
(Gl 3
AB~C
A~->B

B+ B"

Figure 4.

Predictions

AAB

CAB

BGB

BCB

Series Concepts Learned by the
SC1 Series Extrapolation Program.
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10.
11.
12.

13.

14.
15.

le.
17.
18.

19.

Series

CDCDCD
AAABBB
ATBATAATB

RSRTRURV

ABMCDMEF

DE FGEFGtf
QXAPXBQXA

ABCDABCEA

MABMBCMCDM

URTUSTU

MNLNKNJ

ABYABXAB

RSCDSTDE

NPAOQAPR

MNOMOOMPO

WXAXYBY
JKQRKLRS
PONONMNM

CEGEDEHNEEE

Concept

xl x2

X1 x2 x3

X1l x2 x3 x4 x5 x6

R x2 R
xl x2

x1l M x3 x1'!
xl x2 x3

xl x2 x3 x4

x1l x2 x3 x4 x5 x6

C x2 x3 x4 C -

x1l x2 x3 x4

M x2 x3 x4 x5 x6 M

X1l x2 M x4 x5 x6 x1'' x2'!
X1 x2 x3 x4 x5 x6 x1'"!

xl x2 x3 x4 x5 x6

Ux2x3U
xl x2 x3

xl1 N 'x1
x1l x2

B x2 x3 B
xl x2 x3

xl x2 x3 x4

xl A x3 x1!
xl x2 x3

M x2 x3 M
xl x2 x3

x1l x2 x3

xl x2 x3 x4

xl x2 x3

x1 E x3 x4 xI!
xl x2 x3 x4

Figure 5. Series Concepts learned by the SC2
Series Extrapolation Program.

-

L

v

x1

x1!'

x1

xa!

x1

M
x1!

xl!

'x2
x1

x1!

A
x1!

x2'!
x1

x1!

28.
Prediction

cnc
ccc
ATA

RWR

MGH

FGH
PXB

BCF

DEM

TTU

NIN

WAB

TUE

AQS

MQO

YAWA
LMS
LML

IEF




295

eliminated from the concept descriptions. Figure 6 contains more diffi-
cult series concepts learned by SC2. The S&K program, or any program
based on intra-period relations, would tend to have difficulty with
these series. Note that series 4 in Figure 6 is another that the K&W
template matching procedure would be unable to solve.

Even though the SC2 program is an extension of SC1 they do not always
make the same predictions, particularly when given ambiguous series. For
cxample, given the series ABBA, SC1 makes the simple extrapolation:
BBA..., or simple repetition of period 3. However, SC2 (and the KGW pro-
gram) would find a more complex extrapolation of peviod 2, i.e., CZD...
For unambiguous simple repetition series, SC1 and SC2 always make the same
predictions, but SC2 produces a simpler concept after a much greater compu-

tational effort.

VI. CONCLUSION

A learning technique has been presented for finding regularities in
sequential patterns. It consists of nothing more complex than forming an
ordered set of hypotheses about which pattern  contexts lead to which new
pattern elements. The learning system starts with very general hypotheses,
i.e., rules which apply to particular classes of patterns. As these rules
are proven erroneous their generality is reduced by adding new rules above
them which apply to subclasses of these patterns. More specifically,
learning proceeds by first assuming that only one element in a particular
pattern context is relevant and then, as this is proven false, falling
back to the less general assumption that other elements in that pattern
context are also relevant. When the learning phase is complete, the system
has learned which pattern elements are relevant given any particular

pattern context.
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Series Concept Predictions
1. ABCCDEFFG xl x2 x3 x4 » x1'"! HII
2. DDCCDDBDEAD x1 D x3 'xl »-D FZD

D x2 x3 D~ x2!
xl x2 x3 » 'x1

BADBADCE xl x2 x3 x4 'x1 = x2'"! ZGB
xl x2 x3 x4 - 'x1

(73]

4. AAABBBCACBD X1 A x3 x4 a5 x6 x1'' > A BEA
xl B x3 x4 x5 x6 x1'' - B
xl x2 x3 x4 x5 x6 » x1"'

ABCBCDCDEF C x2 x3 x4 C x2'' » x3'! CFG
xl C x3 x4 x1'!'
xl x2 x3 x4

— -
v
v
(]

v

xlll

i 6. ADUACUAEUABUAF x1 UA x4 x5 x6 'x1 UA
i UAXx3 x4 x5 x6 UA
A x2 x3 x4 x5 x6 A

xl U x3 x4 x5 x6 'xl

x1l x2 x3 x4 x5 x6

x4 UAA
' -

x3
X2 4

L2 2 R A

x1

Figure 6. Difficult Series Concepts Learned
by the SC2 Series Exatrapolation Program
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The preceeding remarks apply to both the basic learning technique
and to the extension of that technique. However in the extension of the
basic learning technique an additional generalization process is present.
This is the process of characterizing the relations between elements of
the pattern in a very general way before adding the rule containing these
pattern elements to the system. Here a specific rule is made more general
subject to constraints imposed by the current strategy for recognizing
relations. Only one such strategy (the template strategy) was presented
in this paper. As mentioned earlier it involved hypothesizing a period
size and only recognizing relations between corresponding elements of
adjacent periods. However by making the strategy for recognizing relations
a little more sophisticated it should be possible to create a single unified
program which can lzarn series concepts based on both inter-period and
intra-period relations.

The production systen learning technique was presented primarily as
an artificial intelligence implementation of sequence extrapolation, rather
than as a model of human problem solving. In fact, comparison with Restle's
work indicates that the learning technique may more closely model human
sequence prediction than sequence extrapolation, even though the two are
very closely related. Since both extrapolation and prediction require
pattern acquisition, it might be useful to examine the implications of
this learning technique for a general theory of human serial pattern acqui-
sition. First, it implies that some portiun of human long term memory is
organized in the form of a production system or set of condition-action

rules. Second, it implies that these rules have an order imposed on them,

i.e., given any rule, one can find the next rule in the list. However,
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(2]
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this ordering does not imply that conditions on rules are accessed serially,.
The matching of production rule conditions against data in short term
memory is considered to proceed in parallel*, leading to a set of rules
whose conditions match the data. A single rule is chosen from this con-

flict set on the basis of relative location in long term memory, and its

actions are executed. Thus response latency is not necessarily propor-

tional to production system size. Third, the learning technique implies a
memory for the locations of rules recently fired. This follows from the
necessity of incorporating new rules into the system in front of error-
causing rules. Finally, it implies that learning serial patterns involves
a liberal use of memory capacity in order to reduce computational complexity.
It is felt that this learning technique can be generalized to other
induction-type tasks. A similar, though much simpler, technique has already
been used in a production rule simulation of verbal learning (Waterman,
1974). Another similar, but more complex, technique has been used in a
production system program which learns heuristics for draw poker (Waterman,

1970).

AR . . .
*This 1s currently implemented as a simple serial process,
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