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ABSTRACT

In designing vehicles apable of weathering rough seas produced

Hby intense, persevering storms, some method of generating a repre-

sentation of the important effects of a random sea must be employed.
r-'j.

1 L The proposed technique models the wave amplitude as a function of

horizontal location and time and evaluates the accompanying hori-4zontal and vertical components of orbital particle velocity as a

N J function of horizontal and vertical location and time. The under-

uclying definition of a random sea is in terms of a Gaussian, station-

nl d of random process with a Pierson-Moskowitz spectral density func-

tion for the wave amplitude at some reference point. The method is

suitable for computing probability distributions for the vehicle

state variables whether -or not the vehicle dynamics are governed 
by

a linear differential equation. If the dynamics are linear, the

actual Gaussian stationary probability distriLution can be computed

through solution of an algebraic system. For the nonlinear case,

random number generation anc numerical integration produce time

averages to approximate ensemble averages in estimating any number

of statistical moments.
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GENERATION OF WAVE AMPLITUDE AND ORBITAL

PARTICLE VELOCITY FIELD OF A RANDOM SEA

Over the past several years in activities related to hydrofoil
design, G.rumman engineers have amassed a wealtb of experience in pre- i
dicting the statistics of the response of vehicles to random seas.

Most of this work has been in designing ships that use fully submerged

hydrofoils for supporL (Ref. 1). Currently, this work is being ap-

plied to the design of a buoy. We have developed a unique mathemati-

p cal representation of randon seas that allows precise modeling of dis-

tributed effects on water-supported vehicles. This representation is

far superior to the usual filtered white noise models that must rely

on such artifices as average wave celerity to estimate phase shift as

i i a function of location.

4 Our representation is an adaptation of Papoulis's approximate

Fourier expansion (Ref. 2), which leads to a mean-square almost-

periodic random process. We obtain a better wave representation by

taking N equiprobable frequencies instead of N equally spaced

iones. In fact, Gikhman and Skorokhod (Ref. 3) show that any such
scheme of choosing frequencies leads to a convergent approximation

to the random process as N increases without bound; but in prac-
tice, the equiprobable method converges faster as a function of N.

!If Figure 1 represents a typical convergence rate of the truncation

error in vehicle response statistics.

Perhaps the best way to describe the determination of the ap-

proximate random process is to develop graphically a fifth order

representation. The actual 19-knot Pierson-Moskowitz spectral

density (Ref. 4) representing a typical sea state 4 is depicted

in Fig. 2a. Figure 2b is the corresponding spectral function (the

integral of the spectral density in the notation of Gikhman and

Skorokhod). The ordinate of the spectral function is divided into
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Fig. 1 Relative Error in the Response Statistics
versus Order of the Approximation

five equal parts from its origin to its final value (which is the

v e a of the process). The center of each of these par-

titions along the ordinate determines five discrete frequencies,

m.. (The dotted lines on the figure shows how these are determined.)

The resulting approximate spectral function is a staircase with equal

height and variable width steps. To the left of each step the given

spectral function is underestimated, while to the right it is over-

estimated by the same amount. The approximate spectral density is
a train of equal strength impulses at wI, W 2, WI3 , W4' and w5"

Note that this method concentrates the frequencies near the peak

ff"of the spectral density. The actual determination of the w i's for

any N has been computerized using the Newton-Raphson algorithm.
2

Once the variance, o , the order, N, and the frequencies,

i' i = 1, 2, ..., N, are specified, the approximate random process

for wave amplitude, q, as a function of time, t, takes the form:

2
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t = [ai Cos it + b. sin it]
i i=l

EA where the a. s and b.'s are identically distributed and uncor-

related Gaussian random variables with zero mean and variance-,U2 a2/N. This random process is stationary with zero mean and auto-

correlation:

N

R (a (2 IN) LCos (0~)i=l

It is also ergodic in the mean, i.e., the time average

UIT
S = j (t) dt

-T

N a sin wiT

w .Tii=l

tends to the ensemble mean, zero, as T approaches infinity for

all sample functions, i.e.A independent of the random selection of

the ai's and b.'s. S has a Gaussian distribution with mean

zero and variance, as.

2 a.

N 111
2 2 N sin a.T

Si=l

| so I: -
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for T > Mr/2w., M = 1, 3, 5, in particular for T =
/ i S (a/Twm .~)2 For N - ,2wmin =.0.75, and a 2

m2 m
2.80. Taking M 5, T 10.5, and aS < 0.04515 so that

Pr(ISI > 0.1) < 0.027.

Furthermore, in the limit as N gets large, -his process is

ergodiz in variance. This can be sho4n by forming the time average
I of the square of TI(t):

'T

2T
9-V-

0 I 2 raa. cos t cos 2Dat+bcb, sin w.t sin w.t

H i=1 j=1

rii

2 c.b. cos . t sin .t i dt

t~r~3

iil j=

iII

I
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N N
(a~-sin 2a)T

W(a'+ b.) + (a'T

. . .. s W . . W.+ ...+ .s .n ..

.. .( w - (.. 1
i=l i 1

.1.

_sin(( .- c.)T sin(. +Co.)T 1
. i~j

ni -jD.)T (wD i + o )T I
JJ N

= rn2 2M = lira W2 (ai + b 1T T--+ co

0 2
If W = a , the process would be ergodic in the variance. Note

A 2
that based on the distribution of ai, bi, W = 2N/o W has the

chi-square distribution with 2N degrees of freedom; therefore,
2 4

the mean of W is a and its variance is a IN. This proves

that lim W = a , Furthermore, the chi-square distribution sup-
N-+ co

plies a quantitative estimate of the necessary order, N, to

guarantee "practical" ergodicity in variance, given that the a.'s
and b.'s are chosen completely at random. Suppose that a 25 per-

i i cent error can be tolerated if it occurs no more than 35 percent
2 2

of j ,e time: 0.65 = Pr(0.75 a < W < 1.25 a = Pr(l.5 N < W < 2.5 N].
00

Thus N = 15 would suffice. Also, if N is taken to be 50, then

the same 25 percent error would only o:cur 8 percent of the time,

and a 10 percent error would occur with a 50/50 probability.

Of course for computer simulation of random seas, a pseudo-random

sampling algorithm can "stack the deck" by rejecting unfavorable

sets of (ai,bi)'s.

'11
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To apply the random process to simulation of buoy motion,

it is best to put the process r(t) into state variable form.

In the following, the great power of this method will be seen in

its ability to represent exactly the distributed effects of a

random sea. Water particle velocity is needed at each of 13

stations along the length of the buoy. In addition, the buoy

experiences pitch, heave, and surge. What is needed are expres-

sions for wave amplitude, I x(t), at an arbitrary horizontal iner-

tial distance, x, from the reference and for vertical and hori-

i zontal components of orbital particle velocity, W xz(t) and

U xz(t), respectively, at an arbitrary horizontal distance, x,

from the reference and vertical distance, z, below the mean water

surface.

1] Consider the auxiliary linear system

V = V ; V(0) V°

Li where
0

'U 00

and each ni is

0 ]

If the initial condition vector, V0 , has zero mean and co-

variance matrix (a 2/N)I, then the random process for wave ampli-

tude at the reference point is:

7
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(t 2  (t)

i=l1

Recall that the relationship linking wavelength, ?, to frequency,

where g is the acceleration of gravity. Therefore the wave ampli-

tude at any x is

N

2XV cos(V
O

it +nT)it +
= )(+ i- n.(/ 2 + .t

i=l *1 i

0

N

K ex( 2,Z V 2 r

co -i-. 2i-l(-t) + sin('i V 2i (t )

The vertical component of orbital velocity at any (x,z) is

0 0W ()exp' -,rZ V 0 sin'"x " C s Wt 2]

i ^ /  2i-I ( t )  (LA- 2i ( t )

i=l

Similarly, the horizontal component is

fW
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2t exp(----)Wi Vi_ 2i +
ixz i=l i "

Nr 1
:exp -im V Zi-= -cosz-- /(2) (t) + sn V(t)

fl i- 21

For the sake of discussion, suppose that 20 z-locations and

5 x-locations were required. Then the above three equations would

define an output vector with 205 components, i.e.,

W .. , W ,W , ... ,W ,U ' ... , U 201
11 l12 520 I 15 20

Wg= HV
A''

where H is a 205 by 2N matrix of constants.

For the case in which the buoy is considered to satisfy linear

small perturbation differential equations (10 in our current model),

the situation is vastly simplified. Only the stationarity of the

random process needs to be utilized. The covariance matrix of buoy

~Ls.:ate variables is time invariant, and these variables have zero
means and obey a multivariate Gaussian probability distribution.

UThus, the probability distribution is completely determined by the

steady-state covariance matrix, which is computed as the routine

L solution of an algebraic system of equations. There is no need for

either random number generation or numerical integration. The com-

1puter code for this computation exists and is well tested.

On the other hand, this method of representing the random sea

is also well suited to the nonlinear case. Naturally, there are

9
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complications in the computations. Care must be exercised in
selecting a random sample for the set (ai, b-., i = 1, 2, ... , N),

!i which corresponds to a particular observed sea. Large enough N

and T must be employed. The simulation technique is of the

I Monte Carlo type in which ergodicity of the mean and variance of

both the driving process and the buoy variables are assumed. Even

U with these assumptions, the use of a finite simulation time inter-

" val implies a certain level of error in the estimation of the mean

vector and the covariance matrix,, The means of the buoy variables

are not necessarily zero, and their multivariate distribution is

not Gaussian and, therefore, not describable by a finite number of

pi statistical moments. Nevertheless, useful conclusions can still

U be drawn about the statistics of buoy response through time averages

of the response and the squared response to any particular "sample

) [ wave" generated by the above technique.

In conclusion, it is expected that use will be made of both

linear models of buoy dynamics for which precise statistical con-

clusions can be drawn, and nonlinear models, which account especially

t U for both the limited excess buoyancy and the inability of a cable to

Ioffer compressive resistance.

4

References

El 1. Rossi, M., "Optimal Design of an Automatic Control System for

r Submerged Hydrofoil Boats Operating in a Random Seaway," IEEE

Conf. Eng'g. in the Ocean Environment, Newport, Rhode Island,

September 13-15, 1972.

2. Papoulis, A., Probability, Random Variables, and Stochastic

Processes, McGraw-Hill, 1965.

10
-- . . . .. .- - 2 - . . ... II . iI



3~Gikhman, I- I- and Skorokhod, A. V., Introducti.On -to the

theory of Random Processes, W. B. Saunder, 1969 (Russian,

Nauka Press, Moscow, 1965).

4. Neumann, G. and Pierson, Jr., W. JPrinciples of Physical

Oceanography, Prentice-Hrll, 1966.

hOA

hM



UNCLASSIFIED
Security Classification -"

DOCUMENT CONTROL DATA :R & D -.

fS" urlty classitication of title, body of abstract and indexing annotation must boeentered when the overall report is classifled)
. RIGINATINGACTIVITY (Corporate'author) .2a. REPORT'SECURITY CLASSIFICATION

Grumman Aerospace Corporation 'Unclassified
2b. C.ROUP-

N/A
3. REPORT TITLE'

Generation of Wave Amplitude and Orbital Particle Velocity Field
of a Ramdon Sea

4. DESCRIPTIVE NOTES (Type of report ,and inclusive dates)

Research Memorandum
5" AU THOR(S) (First name,.middle Initial, last name)

Michael Rossi

6. REPORT DATE 7a. TOTAL. NO. OF PAGES 17b. NO. OF REFS

August 1975
8a. CONTRACT OR GRANT NO. ga..ORIGINATORIS REPORT NUMBER(S)

b. PROJECT NO. NA RM-601

C. 9b. OTHER REPORT No(S) (Any other numbars that may be aaigned
this report)

d. None
10. DISTRIBUTION STATEMENT

Approved for Public release; distribution unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None None

13. ABSsTN In designing vehicles capable of weathering rough seas produced

by intense, persevering storms, some method of generating a repre-

sentation of the important effects of a random sea must be employed.
The proposed technique models the wave amplitude as a function of

-horizontal location and time and evaluates the accompanying hori-

zontal and vertical components of orbital particle velocity as a

function of horizontal and vertical location and time. The underlying

definition of a random sea is in terms of a Gaussian, statiranary raikdom

process with a Pierson-Moskowitz spectral density function for the

wave amplitude at some reference point. The method is suitable for

computing probability distributions for the vehicle state variables

whether or not the vehicle 4yn.amics are governed by a linear differen-

'p tial equation. If the dynamics are linear, the actual Gaussian stat! 'on

ary probability distribution can be computed through solution of, an

-algebraic system. For the :nonlinear case, random number generation and

numerical integration produce time averages to approximate ensemble
averages in estimating any number of statistical moments. A

FORM143_________ _DD I,_oy.473
Security Classification



KYWORDS R-Z'. ViT VV

~~ecurityecuit Classification R LIK~A~


