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PREFACE

The investigation reported herein was condiucted by personnel of
‘the Soils and Pavements Laboratory (S&PL), U. S. Army Engirieer Waterways
Experiment Station (WES), as « part of DA Project No. LA161102B52E,
"Fragmert and Projectile Penetrscion Resistance of Soils,” Task Ok, Work
Unit 013. ~

‘The research was accomplished by Mr. R. S. Bernard (WES) and
Professor S. V. Hanagud, Georgia Institute of Technology, during the
period July 1973 tc June 1974 under the supervision of Dr. J. G.
Jackson, Jr., Chief of the Soil Dynamics Division, S&PL. Messrs. J. P.
Sale and R. G. Ahlvin were Chief and Assistant Chief, S&PL, respec-
tively. SPi D. C. Creighton éxecuted the necessary computer calcula-
tions, 'and Dr. B. Rohani provided continuing support through his famil-
igrity with. previous work in this area. This report was prepared by
Mr. Berrard and Professor Hanagud.

BG E. D. Peixotto, CE, and COL G. H. Hilt, CE, were Directors of
WES during this investigation and the preparation of the xeport.
Mr. F. R. Brown was Technical Director.




/WW&@A’J‘ i wwwvﬂ*’ ’l

P
(RS comTES

E:: :3 \:’ ::‘ ¢« ‘ : PRE?ACE €@ ) e B e e 3 & & o v & B ® o s & s e & b . L o i LI ( !
AT CONVERSION FACTORS, U...S, CUSTOMARY TO METRIC (SI}) . . ‘
‘5’ hE N i I.’NITS OF MEASURMT 6 6 & e € o 6 8 o e o v » ‘e e e o s &8 & »

pa
N

P

” Ba(;kground...,.....-......«...V..).z',yg
\\“1,‘ Rurpo{se’moo.oorooo-ioooo-o;céooo-o‘o

r“
E s scopeoo . 8 2 e e e e s e e & 6 & & 6 e & e e » 9 9 v b
e N ' .

%j - PART, TI: PENETRATION THEORY o & o « « o o o o o m o 6 o o s s o
é' . Historical Background « « « « o « o o ¢ « o o o o o o ¢ o «

Cavity Expansion Theory . . « « « ¢ o ¢ ¢ o o & &
‘Penetration Theory for Spherical Projectiles . .
Penetration Theory for Axisymmetric Projectiles .
Penetration Theory for Layered Targets .« « « . :
Oblique Impact THEOTY o « o « o o o o o« o o o o o o o o o o 28 :

PART III: SOME PARAMETRIC IMPLICATIONS OF PENETRATION THEORY . . 37

The Nondimensionsal Equation of Motion . . . « ¢« + ¢ « o o & 37
The Shape of the Deceleration Curve . . « & v i o o & o o -« 40
The Relative Effects of Nose Shape and Frontal Loading on

Final Depth Of Penetration + o « ¢ + v v 4 4 b owa ate 42
Parametric leferences Between ‘Theoretical and

Emplrical Results for Homogeneous Targets o o « o o & o & L5
Penetration of Layered Targets: . « « o o o o v « o o o o & 16

PART IV: APPLICATIONS OF PENETRATION THEORY . . ¢ ¢ ¢ ¢ & 0 o L7

Page

1

u ’!
e ‘ BART I: INTRODUCTION « + o v v v o o v o o v oo wa oo 5u 5 -

- 5

6

6

8

8

8

9

. o o »
.
.
.
e is e
et
= .
n ‘

G b, . Selal
TR
EIEY

4
<o

MR St Db o g aatnat Bii o - ol i i e b
¢ " LT, 7 n LA
- 5 m————— ” 4
\ - Y
o '
.
> . s
- . b
23 -

Introduction: « o« v v ¢ o o o0 0 b e e b e e e e e e 47
Choice of Material Propertie€s . . « ¢« v ¢ o o ¢ o ¢ o o + & 'y
Penetration of ROCK « « o o o o o o o o o o o o o o s o o & 148
Penetration of Concrete . . « . v v o o v v v v v ¢ v 51
Penetration of Soft Barth « « + ¢ ¢ ¢« v ¢ ¢ ¢« 4 o o v ¢ s 53

Perforation of -a Metal Slab . t e s e e e n s e e s 5k
Oblique Impact Aga*nst Hard Earth e 4 s s s e s e e e s e

PART V: CONCLUSIONS AND RECOMMENDATIONS . . ¢ ¢« o o ¢ & o o « & 63
REFE:RENCES L] » . . * L] . . . L] . . . . L] . L] . L] ; v . L] L] . . . 6 S

APPENDIX A: SPHERICAL CAVITY EXPANSION' IN A CONCENTRICALLY
LAYERED IdEDIUbi 3 8 8 4 s = 6 & 8 e & 2 s * 2 9 & s A.l

Introduction o & e v e & * & ¢ & & & & s ° & * & 3 & s s » Al ’
Problem Formulation . . « + ¢« v ¢« v ¢ v 0 v v o 0 0 v o o e Al
Inertidl TErMS & & o o o o o o o o o o o o o o 51 o o 0 0 s Ab

Shear Terms + « ¢ o« o o o« &
Relations Among a(t) , b(t
Combined Effects . « . + .

l'..ﬂ..."..l... A8
),andh(t).....aq.. Ala




CONTENTS

suhlm&ry Of’f,ReS\iltS o 6 o ¢ s+ ¢ o 4 0 e 50 e+ e e
Special CBSES ¢ ¢« ¢ « v ¢ o ¢ o o o o s o o o s

APPENDIX B: COMPRESSIBILITY . v o s v v v o v v s
Introduction . L] . . LI ] . . ] . . . . . ’ LI 3 .

Average Dynamic Pressure in the Plastic Zone .
‘Compressibility in. the Peneétration Theory . . .

APPENDIX C: TARGET ACCELERATION . . « « « & & & « .

124

Introduction . . ¢ ¢ ¢ v v v v e b s e e .
The Effect of ‘Added Mass on Penetration Predictions

APPENDIX D: NOTATION » « v v v o s o o v v o o v u

Page




i[>
o
:
y
.
&

e L e E L T
. e —
- <

ity

CORVERSION, FACTORS, U. S. CUSTOMARY TO METRIC (SI)
‘UNITS OF MEASUREMENT -

U. 8. customary units. of mpasﬁrement uged in &hfs'fépontwcan be .con-
vertéd to metric (SI) units as follows:.

Multiply . ‘By . To.Obtain

inches : 2,54 centimetres

feet 0.3048 métres

-pounds -(mass) 0.4535924 kilograis

slug-square feet ~1.353 kilogram-square metres
pounds (mass) per cubic foot 16.018h6 Kilograms per cubic metré
slugs per cubic ‘foot 515.3788: kilograms per cubic metre
pounds (force) per square inch  6894.757 pascals

kips {(force) per square inch 6894.,757 ki;opascais

feet per second 0.3048 metres per secund

degrees (angle) 0.0174539 radians

Note: 1 kbar = 1,000 bars = 14,500 pounds per square inch
= 100 megapascals.
1 slug = 32.2 pounds (mass).




DEVELOPMENT OF A PROJECTILE PENETRATION THEORY

PENETRATION THEORY FOR SHALLOW TO' MCDERATE DEPTHS

PART I: INTRODUCTION

Background

1. The phenomenon of projectile penetration has been the object
of numerous snalytical and experimental investigations over the past
two\centuries.l Until recent years, successful analyses were of an em-
pirical .or semiempirical nature, utilizing various target resistance
functions and pseudoconstants which were inevitably drawn directly from
peretration experiments. As a result, the subject of penetration re-
mained isolated from the rest o mechanics because the relation between
tdrget constitutive properties and penetration resistance was unknown.
Nevertheless, a number of’ useful empirical equations were developed
which afforded reasonable .ectimates of penetration depth for a wvariety
of situations.l—h Unfortunateliy, the reliability of such equations is
limited to the range of test conditions for which they were deduced, and
the accuracy of prediction may dwindle significantly with extrapolation
to situations which have not been cherscterized experimentally.

2. The last decade has given rise to a more basic approach to
penetration through the use of digital computeés. In various efforts,
the details of target and projectile motion have been analyzed by means
of two-dimensionsl finite-difference techniques employing realistic con-
stitutive properties for both terget and,projectile.s-Y While a finite-
difiference solution may achieve good agreement with experimental observa-
tion, as shown in Reference T, its execution is cumbersome and costly,
thus diminishing its utility as a practical engineering tool. However,
this approach represents a powerful device for examining the details of
target and projectile behavior, indicating the relative consequences of
different simplifying assumptions, and providing a means of determining

what mechanisms are most important in the projectile-target interaction.
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3. At the present~ time, thére is a growing need for a simple
theory vhich-gtfordsArgliéblg,analyses.of the impact and penetration of
rigid projectiles such as missiles, bombs,'bulléts? shell fragments,
artillery and mortar rounds, and air-delivered mines and sensors into
targets such as scil, rock, .concrete, and metel. The results of these
analyses could be used in design and optimization, both from the offen-
sive and defensive points of viéew. In July 1973, ‘& small research ef-
fort was initiated under the sponsorship of the Office, Chief of Engi-
neers, to develop a.tractable projectile penetration theory for natural
and artificial earth targets. The general requirements were that the
theory should account for the penetration of homogeneous and layered
targets by rigiﬁ‘préjeqtiles of various nose shapes and should deal at
least approximately with oblique impact. Further, the theory should be
derived from s considerafion'of target constitutive properties without
recourse to penetretion tests‘pgg_gg, The objective was to replace
neither empirical nor finite-difference -analyses, but rather to provide
a practical tool for making reasonable predictions before the éxecution
of a penetration test or finite-difference calculation. The develop-
meénts presented In this report are the result of efforts conducted under
this program during the period July 1973 to June 1974. Report 2 will
document the extension of the present theory for application to very

deep penetration in homogeneous and layered targets.

Purpose

4. The purpose of this investigation is to build upon existing
penetration vl‘.heoryg'"12 to develop an approximate but more genersl theory
meeting the requirements stated above. The starting point for the pres-
t

ent work is the so-called "cdvity expansion theory," originally applied

to projectile penetration by Goodier.g’lo

Scope

5. Part, II of this report outlines modifications of previous

theoretical work8~12 in ‘which the effects of different nose shapes,

B i e e
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layered targets, and oblique impact are incorporated into a penetration
theory for rigid projectiles. In Part III, the modified theory is non-
diﬁénéionalized, governing parameters are determined, and results of
parameter studies are presented. Part IV contains comparisons of theo-
retical results: with experimental observations and two-dimensional
finite-difference solutions. Part V presents the conclusions and recom-
mendations. The theory of dynamic expansion of a spherical cavity in a
concentrically layered medium is developed in Appendix A. A discussion
of material compressibility as it relates to the cavity expansion theory
and the penetration theory is contained in Appendix B. The effect of
target acceleration on final penetration depth predictions is investi-

gated in Appendix C.
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PART II: PENETRATION- THEORY

Historical Background

6. The foundation for the present penetration theory was laid by
Bishop, Hill, and Mdtt,8 who applied the theory of spherical cavity ex-
pansion in a strain-hardening medium to penetration by a rigid static
punch. Goo@ierlo later extended this work and applied it to the pene-
tration of a ‘strain-hardening target by a high-velocity rigid spherical
projectile. Hanagud and R05312 modified the cavity expansion theory to
account for a compressible medium by means of a locking approximation

and employed the results in Goodier's penetration theory.

Cavity Expansion Theory

7. The theory of dynamic expansion of a sphericsal cavity sur-
rounded by concentric layers of compressible locking, strain-hardening
material is developed in Appendix A. This cavity expansion theory forms
the basis for the penetration theory discussed in the present report.
The behavior of the material in shear (Figure A2) is characterized by
the compressive yield strength Y , the modulus of elasticity E , and
the strain-hardening modulus Et .* The effect of material compressi-
bility is approximated by means of an instantaneous locking assumption
whereby material in the plastic state is presumed to be compressed to a
uniform (i.e. locked) density P, - MAs discussed in Appendix B, the
instantaneous locked density Py is a function of the instantaneous
average dynamic pressure in the plastic zone.

8. According to Equation AT6, the compressive normal stress p

at the cavity surface is

; Cw 2
P= pS + pZ(Blaa + Bea ) - pS + PI (1)

¥ TFor convenience, symbols and unusual abbreviations are listed and de-
fined in the Notation (Appendix D).
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E i The two terms, P and Py » which appear in Equation 1 are the sepa- .
}; . rate contributions due to materisl deformation (shear) and inertia, re-
3 %; spectively. Henceforth, the shear contribution ps will be called the
k< g} "shear resistance"; and the inertial contribution Py = pz(BlaE + Bzé?)
E ‘ o will be called the "dynamic pressure" where & , & , and # are the
E ! ﬁ, radial position, velocity, and acceleration of the cavity wall, and Bl
o ;j and B2 are dimensionless inertial coefficients. For a homogeneous ma-
. ¥
;‘ t; terial (i.e. nc layering), P, » B; , and B, are identified by Equa-
Z é' tions A8T, A88, and A89, respectively. Moreover, these quantities are
} y functions of Y , E , Et , and the instantaneous locking strain
2 : €, = 1n p/p, , where p is the initial density.
; 3
i §
3 3' Penetration Theory for Spherical Projectiles
] t
% ‘h 9. While spherical cavity expansion and projectile penetration
; ?f can hardly be regarded as the same process, the penetration of a solid
§ %z target by a rigid spherical projectile (Figure 1) suggests at least a
? ’ Qg crude analogy with spherical cavity expansion. Goodier is the first
; i' investigator to apply such an analogy to projectile penetration. Con-
E §§ sidering only rigid spherical projectiles, he makes the following
3 i
3 ; assumptions:
g ! 1
X
3 3
g | b
P i %i : .
- 3, ~.
\3 b T
‘\ 2;
.:{ H j; ~
£ |
. q Y
»
} f Figure 1. Fully embedded spherical projectile
‘ 9




BT ey 7T N T T TR EN 0 S e e e s Rt S T et T T e s e ot o md el

e -~

¥
o ———rab

cram o e A v e =

a. The embedded portion of the projectile frontal surface es
seen in the above figure is in complete contact with ‘the

target.

b. During the embedding process (penetration depth q=<

projectile radius ao), the projectile-target ‘nteraction

is equivelent to a dynamic Brinell hardness test, and the
9-12

[ PNV VS

1 & al resisting force is given by Meyer's law.

f"z c. After the projectile is fully embedded (q > ao), only
normel stresses exist on the projectile frontal surface

(i.e., the effect of friction is negligible).

UM QR

10. At this point, Goodier sets about to modify Equation 1 in

PN

order to approximate the normal stress distribution on the frontal sur-
Tace of a fully embedded spherical projectile., To this end he makes two
assumptions: (a) the normal stress due to shear (i.e. shear resistance)
is constant over the frontal surface and is identical with P, in Equa-
f tion 1; and (b) Py is maximum at the stagnation point 6 = 0 and zero
at the shoulder 6 = /2 , where & is measured as shown in Figure 1.
Identifying 2, with the cavity radius & , the projectile velocity

q with the cavity radial velocity & , and the projectile acceleration

;"' § with the cavity radial acceleration & , Goodier then proposes

_ . .2
Py = pz<?laoq + ng ) cos 8 (2)

as a reasonable variation of dynamic pressure over the frontal surface
0<9 5_ﬁ/2 . 'The compressive normal stress p on the projectile

frontal surface is ‘then

¥
i " .2
g P=p, + pz(Flaoq + ByG ) cos © (3)
{‘\'
3
IS In Goodier's investigation the target is assumed incompressible such
«. thatg’lo p, =p , B, =1, and B, = 3/2 . The rationale employed by
L3 L 1 121 2
?

X Hanagud and Ross is identical with that of Goodier except that the

target is considered compressible locking such that Py >p, Bl <1,

32 < 3/2 , and the value of ps is less than the incompressible value,

10

k3
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11. Integration of Equation 3 over the frontal surface leads to

the followihg equation of motion for-a projectile. of mass M :

._ 2[ .2 . +2)
Mq_ - -"a'o [pS + 3 pz(Blan + qu )] (1},)

TN P e SO BN e s
s 3 (YOI, .

%
& Equation 4 is rearranged such that

3
% M+ g-na§ B.)g = -nae( + 2 B X3 (5}

i

% Equation A88 indicates that Bl < 1 ; consequently, the effect of target

1 L

I acceleration is small in Equations 4 and 5 when the added mass;3 for the

o

g sphere is small compared ‘to the projectile mass, i.e., when
1"3
k?% 2 3 - |
Ex

k With the ratio R defined as

, wazpz

b: =

, R, (7)

-

the effect of target acceleration on projectile loading is then small |
Vi .

s when Ra << 1 . Moreover, the quantity (2/3)na§szl probably repre-
% sents a high upper limit on the added mass term, and penetration pre-
;

dictions are improved in some cases by discarding the added mass term

(i.e. the Bl term) altogether, as shown in Appendix C. At -any rate,
E} Goodiér's dynemic pressure distribution is adequately approximated by
|
¢ .2
3 Py E.szeq cos 0 , Ra << 1 (8)
¥
A 12, Although the rationale employed by Goodier leads to fairly
i accurate predictions of final penetration depth {Appendix C), the

cos 8 distribution of Py is somewhat arbitrary. Other distrxibu-~

tions of dynamic pressure produce projectile equations of motion iden-
ticel to Equations 4 and 5. (For example, this occurs when cos 6 is

replaced by 1 - sin 6 in Equations 2 and 3.) Furthermore, the

Ak ik A o
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projectile equation of motion must be integrated with. respect to time to
obtain the final depth of penetration, so that a "correct" prediction of
final depth alone ;ndicates only that the average resisting force is
correctly predicted. Thus, there is aome flexibility in Goodier's
rationale, insofar as the distribution of dynumic pressure is concerned.
Moreover, it is this flexibility which allows extension of the cavity
expansion analogy to projectiles with nose shapes other than

hemispherical.

Penetration Theory for Axisymmetric Projectiles

13. Before generalizing the penetration theory to nose shapes
other than hemispherical, it is necessary to reevaluate Goodier's Lhree
basic assumptions. First, the assumption of complete contact between
the target and the embedded portion of the projectile nose (i.e. frontal
surface) is retained. Although this assumption is physically question-
able, it will provide an upper limit on the resisting force, at least
within the framework of the theory. Second, the dynamic Brinell hard-
ness analogy is discarded. Instead, an analogy with the cavity expan-
sion theory will be used throughout the penetration process to approxi-
mate the éormal stress distribution on the embedded portion of the
projectile nose. (This will produce a higher target resistance during
the embedding process, which will) improve penetration depth predictions,
especially for shallow penetration.) Third, friction effects are dis-
regarded et all times on the projectile nose and aft body alike. This
is a questionable assumption, although there is some evidence suggesting
that friction on the aft body is relatively insignificant.T’lh

1%, Subject to the above assumptions, Equation 1 is now modified
in order to approximate the normal stress distribution on the nose of a
projectile with an arbitrary axisymmetric nose shape. As in Goodier's
rationale, the normal stress due to shear is assumed uniform over the
nose and equal to P, - This leaves only the distribution Pr to be
determined as a function of nose shape. The problem, of course, is to

arrive at a single ratiocnale which generalizes the distribution of pI

12
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to any axisymmetric nose shape in a straightforward manner. Further-
more, the resulting effect of nose shape on final penetration depth

-should be consistent with .experimental observation.

15. One spproach is simply to guess the form of the Py distri-
bution in & manuner similar to Goodier.9’1° ‘Consider a projectile with a

fully embedded conical nose, as shown in Figure é.,_Aa in the case of &

4
I

Figure 2. Projectile with a conical nose

hemispherical nose, one might assume that p. = p (B.a a +B 62 at the
I L\"170 2

stagnation point (i.e., at the tip of the nose, z = 0). At the base of

the nose, 2z =L , one might assume that the dynamic pressure reduces to
P = pl(élaoa + Bzée) sin” ® . This value corresponds to the value of
p; ona hemispherical nose at polar angle 6 = %/2 - § when P; is

distributed according to cos™ @ (as opposed to cos 8). The variation

of p, from z=0 to z =1L could then be expressed according to
I

Py = pL<Blaoa + Bac'12> [s:‘mn $ + (1 - sin” ¢)f(z)] (9)
where f(z) is a dimensionless function which decreases sroothly from
unity at z =0 tozexroat z=1L,

16. Since the problem at hand is to make an ad hoc modification

of the dynamic pressure for different nose shapes, there is basically

13

T——— = o ——
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nothing wrong with the approach outlined above. On the other hand, the
arbitrariness in the development of Equation 9 prompts one to seek a
more fundamental scheme baséd (albeit crudely) on tle underlying physics.
The fact that the dynamic pressure which appears in Equation 1 depends
on both particle acceleration and velocity suggests that the Py d?s-
tribution for an axisymmetric projectile can be obtained by approxi-
mating the variation of particle acceleration and velocity along the sur-
face of the nose., Moreover, since most cases of practical interest
satisfy the condition Ra << 1 , the particle acceleration has only a
small effect on projectile loading, and it is then sufficient to ap-
proximate the variation of particle velocity alone.

17. 1In order to construct a reasonable distribution of particle
velocity v§ on the nose surface, one must first consider certain
physical constraints on particle motion:

a. A particle at the very tip of the nose (i.e. the stagna-
tion point) must move with the projectile velocify q.
b. The component of particle velocity v normal to the
surface of the nose must be equal to the normal component
of projectile velocity (i.e., material cannot cross the

target/projectile interface).

c. Over the nose surface vp must be continuous.
d. Finally, it is assumed that the tangential component of
particle velocity vt is zero at the base of the nose.
Relative to these constraints, only the variation of v_ along the

t
length of the nose remains to be specified. Although it is quite pos-

sible that vt is a complicated function of target properties, projec-
tile velocity, nose shape, and relative position on the nose, the pres-
ent investigation considers only the effects of nose shape and relative
position.

18. Consider first the fully embedded conical nose shown in

Figure 2. The normai component of veloeity vy is given by

v, =dsin§ (20)
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where @ is the cone half-angle.. ﬁbﬁ&dbfining

m

x -{(11)

z
L
where 2z is longitudinal distance from the nose tip and I is nome
length, the following equaticn. is. proposed for 'Vf :

)1/2

v, = (1 -x qeoef, 0<x<21 (13)

t

The resulting expression for v§ is then

1/2

2 2
Yp * ("n ¥ ”t)

= 42 - x cos® ¢)J~'/2 {13)

L3 { E .
Figure 3. Projectile with an ogival nose

19, Consider next the fully embedded ogival nose shown in Fig-
ure 3. The normal component Vo is given by

15
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5 ’ i where y 1s the half-angle for thé circumscribed cone which is tangent
Lo to the ogive at any longitudinal position z . To srrive at a func- - ,d
o
S tionsl form for A vhich is consistent with Equation 12, the effective
S ¢one length L (¥) and effective longitudinal position 2, (¥) (Fig-
"3 © ure 3) are defined by
. - R(1 - cos @ cos ¥) ..
Ly(y) = i=goef (15)
and
ze(w) z a(y) éot ¢ (16)
o where
a(y) = R(cos ¢ - cos #) (a7)
and
a = R(2 ~ cos @) (18)

The effective dimensionless cone position xe(w) is then defined as

x (9) = Ze(’#') _ cos ¥(cos ¥ ~ cos @) (19)
e = ,Lj'ﬁ) 1 - cos f-cos
In order to be consistent with Equation 12, A is taken to be
v, = é[l - xe'(tp) 1/2 cos ¥ (20)
b
Thus, the axpression..for v.p is
1/2 1/2 ;
2 2 .
v = (vn + vt) = q[l - xe(\p) cos? q;] (21)

20. By replacing a by &y s 8 by vp , and a by q in
Equation 1, the general expression for p; on an axisymmetric nose sur=~
face is

16




. -] N 2 o
Pp = 94Bi8a * 0BV = OBV s Ry << (22)

vhere YP is given by Equations 13 and 21 for,-qbnea and 'ogives, respec~
tively. Thus,
Py = p’»‘BQ(I -X cos’ ¢)&2 for cones (23)

and

p: = p.B {1 = x (y) cos® ¥- &2 for vgives (24)
vhen R <<} . Fora hemispherical nose, which is the limiting case
tor -an ogive, Equation 2l reduces to

p\LBééra(i - co:ah ) = 92,32&2(1 - sinh 8) (25)

vherée 0 =7/2 - ¢ as indicated in Figure 1. A comparison of Equa~
tions 8 and 25 is presented in Figure 4 to show that for a hemispherical

‘Co

LEGEND

Ggoopier? % equaTiON B
e PRESENT WORK, EQUATION 25

i
0 ’ n/4 /2
POLAR ANGLE 0

.

Figure 4. Graphic comparison of Equations 8 and 25 for distribution
of dynamic pressure on a hemispherical nose

17




nose the pg distribution obtained by assuming a functional form for
v, is not radically different from Goodier's assumed P} distribution.
21, With the normal stress distribution having been approximated
for conical and ogival noses (the rationale outlined in. paragraphs 17-20
‘can be readily applied to other axisymmetric nose shapes), the next step
is to. obtain the resulting projectile equations of motion. This in-
volves integrating the normal stress 'Qw‘re'x" the surface of tlie nose to ob~
’ tain the total axial resisting force ‘Fz acting on the projectile.
Thus, for projectiles with conical noses, Equations 11, 13, and 22 are

substituted into Equation 1 and integrated over the surface of the nose

to obtain
’ z=L 4
Mg = -F, = ..f [i’s + pI_(z,¢)]; sin ¢ dA (z,0) (25)
2=0 :
where
aA (z,9) = on 2200, 4, (27)

cos @

Likewise, for projectilec with ogivel noses, Equations 19, 21, and 22 are

substituted into Equation 1 and integrated over the surface of the nose

to :cbtain \
y=0
Mq = -F, = - [ps + p-_,(\b’)] sin ¢ aA (y) (28)
y=p
where
an () = 2 2By (v) dz, (9) (29)

The resulting projectile equations of motion have the form

3 oo 0 2 "2
(M + wraoplB_,L)q = -'nao(ps +p 2B2fnq ) (30)

18
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The quantity fn (noge shape factor) results from the variation of Py
over the nose and thus characterizes the relative .effect of nose shape
on' the average inertial resistance of the target to penetration. For
conical noses of length L and-pase diameter D = 2ao shown in Fig-

ure 2. fn is expressed as

2
fn=l~'§""‘lzﬁ‘_ (31)
b= + 21
where
- 5L . :
£ =3 (32)

For ogival noses of length L and base diameter D illustrated in Fig-

ure 3, rn is written as

2 2 2
f =1 » =" 1B 1n (2 - €) - {38 + 2B)(B - ¢)
n 82(1 - 3)6 [
i + %» (3132 + 6B + 1)(132 - e2) - %- (135 - es)
L@eeenE- N eb@enet -] ()
where
B =S 2¢ - 82 (34)
2
g § —=—o (35)
hcz + 1

and ¢ = L/D . For ogives, the relation between the caliber radius head
(CRH) and ¢ is

CRH = £° +11‘~ (36)

An ogive with ¢ = 1/2 4is a hemisphere, for which case Equation 33 re-
duces to fn = 2/3 and the right hand side of Equation 30 is identicsl

19
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with Equetion 5. Thus, for spherical projectiles and projectiles with |
hemispherical nose shapes, the distribution of particle velocity given
by Equation 21 leads to essentially the same equation of motion as that
obtained bty Goodierg»lo and by Hanagud and Ross11 12 wvhen Ra << 1.

22. Whether one chocser to develop projectile equations of motion
based on assumed stress distributions or assumed particle velocity dis-
tributions is of little consequence in the final analysis. The impor-
tant question is whether or not the equation of motion (30) leads to
reliable predictions of final penetration depth for projectiles with
different nose shapes. Moreover, the relative effect of nose shape on
final penetration depth should lie within experimentally observed bounds.
(ForAgapth penetration, variation of nose shape from a blunt cylinder to

a sharp cone seldom increases final penetration depth by more than .a

factor of three.e) Thus, the choice of a velocity or stress distribu~
tion leading to fn is neither arbitrary nor unique, and it is no acci-
dent that variation of nose shape from a blunt cylinder to a sharp cone
reduces target inertial resistance in Equation 30 by no more than a fac-
tor of three. The tangential velocity distribution given by Equation 12
iz chosen so as to produce precisely this effect.

23. While fn

nose shape on inertial resistance to penetration for a fully embedded

is presumed to churacterize the relative effect of

nose, the embedding process itself must also be considered in order to
determine the overall effect of nose shape on penetration depth, espe-
cially for shallow penetration. Assuming that fn
acterizes inertial resistance during the embedding of the nose, the

approximately char-

equation of motion during the.embedding process is

[M + 78 (q)pz J] q = -ma (q)[

where a (q) is the cylindrical radius of the nose at the surface of

2
szafnq] , <L (37)

the target, end naz(q) is the frontal area of the projectile which is
in contact with the target for a given penetration depth q < L , as
¥hen q > 1L,

shown in Figure 5. Equation 37 is replaced by Equation 30.

20
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Figure 5. Projectile with partially embedded nose

A study of the relative effect of nose shape on final.penetration depth

is given in Part III.

Penetration Theory for Layered Targets

2., The penetration theory for laiered targats is based upon the
cavity expansion theory for a concentrically layered medium presented in
Appendix A. The physical situation to be considered is illustrated in
Figure 6. As is the case'in Appendix A, the investigation is restricted
to the two-layer situation. Physically, this means that a target may
have any number of layers so long as the projectile equation of motion
is significantly influenced by no more than two layers at a time.

25. The projectile equation of motion is assumed to have the
same form as that for a homogeneous target, Equation 30. However, ap-~
proximetions for Pg » Bl , and B2 must be obtained through an appro-
priate analogy with the cavity expansion theory for a concentrically
layered medium. The point which becomes the point of maeximum deforme~-
tion on the layer interface is denoted by H(t) and coincides with the
projectile axis of symmetry (Figure 6). The initial distance from the

2l
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Figure 6. Penetration of a layered target
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target surface to the layer interface is H.0 . A first approximation
(probably representing an upper limit) to the effective deformation of
the layer interface is then obiained by replacing the penstrating pro-
jectile with a spherical cavity of radius 2, and radial velocity

@ located at the base of the projectile nose (i.e., at depth q S L)
and assuming that the motion of the point H(t) is the same as that

of a point lying on a spherical surface of instantaneous effective

radius H - g + I and effective radial velocity 3 , concentric to
the effective cavity (a = ao). The motion of the plastic front S(t)
§ can be determined in the same way, where S - q + L 1is the instanta-
neous effective radius of the front and § is its effective radial

velocity. First approximations to Py s B1 , and 32 are then

P
b gy

PR gz
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obtained by substituting a = for a(t) , q for =, H -q+L for
hy, H-q+L for h(t), # for h, S-q+L for bt) , and
S for b in Equations AT9-A8k.

26. In direct analogy with Appendix A, H = H for 8 <E ,
i.e., the deformation of the interface is assumed negligible prior to
the errivel of the plastic front. From Equation AS5T, S - q + L is re=
lated to ao by

S-q+L=— S <H (38)

where 61 is given by Equation A53. The condition S j_Ho is now re~

placed by gq < q, where

a

- [o]
Qy = HO + 1 - 51-/3 (39)

which represents projectile penetration depth when the plastic front
reaches the layer interface. Equation 39 is structured so that S = Ho

when q =q, . When q < q, , the projectile equation of motion is

3 H)e_ 2] (1) (1), :2
M+ "aoplel q = -me_ip " + 02132 fa7], a<ay (40)

where, with the exception of Bil) and Bél) , the subscripts 1 and

2 denote first and second layer proverties, and

S 1 1 t 2
1 =1 m
3 3
a = B.E.a
+'§'81E11- [o] 3 + 3 1720 3 (hl)
Gl(H -q+L) Gl(Ho -q+L)
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(1) [, ° {5y
1) _ 1/3 _1\|.1/3 1
Bpi=1-9 +(—6,,>61 "H -q+L (k2)
1 (o]
and ) )
a (1 -8 )2 :
(1) _ (1) . 1 1 1 4/3
B = 2B + ———— . =] - §
2 1 (1-a )52/3 2 1
1771
h ( pe) |
8, -5
- 5/ ) (43)
: (H -q+0L)
o
bes J
vhere § , B, and o are defined by Equations A9C, A91l, and A93, re-
spectively. Equations 41-U3 are analogous to Equations AT9-A81.

27. After the plastic front has reached the interface, the pro-

Jectile equation of motion is

r 3
SV SN (O P! L) (%), 2
LM + “a'oplel ] = -nao [ps + ple2 fnq s Q> Gy (uh)
# #
where, with the exceptions of B:i ) and Bé ) , the subscripts 1 and
2 denote first and second layer material properties, gnd
(*) ~q+L N " c 1 & )
Py~ =2 In T3 * 9B '6'_'2'5 H-q+0L
o) 1 -/ m
m=1
-
\ = & 3m T
+221(-—-—-9-—-—S" +Ii) 1 —2-(———-‘1———8' +L) -1
2 H-q+t+L 9t2 2I\H « q + L
m=1 -
LR (h5)
3 7272
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Equations 45-UT are analogous to Equations AB82-A8L. Examining Equa-
tion A64, and substituting H-q+ L for h, H for h, S~q+L
for b, and S for b » then

(H-q+L)%=0)s-q+1) =02, q>aq, (48)

where 62 is given by Equation A6l. Equation 48 leads to

q%(H-q + L)

and

25
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Equations 49 and 50 give only crude (and p;obably upper limit) approxi-
mafions to the effective positions of the layer interface H and the
plastic front S as the projectile approaches the interface. Moreover,
Equation 50 is reasonable only when Gé <§ , i.e., when the distance
S -0+ L increases to the final value a°/62/3 as the projectile en-
ters the second layer. On the other hand, when 62 > 61 , the distance
S «.q + L decreases to the finel value 30/6;13 , in which case S
is simply located at H wuntil S ~ g + L = 30/62/3 .

28. The approximations engendered by placing the effective cavity
(€ =‘ab) at the base of the nose require some modification when gq > H ,
i.e., when the nose extends beyond the effective interface depth H , as

illustreted in Figure 7.

|",——EFFECTIVE INTERFACE
LOCATION, H(t)

a,=D/2

- - , —

Figure T. Situation when q > H

In such & situation, the frontal area in contact with layer 2 is nag ,
and the frontal area in contact with layer 1 is n(éi - aﬁ) + The
projectile equation of motion then becomes approximately

26
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3 [M #* ma_p lel q = -ma_fp g +p 2132 fn . (51)
¥ ’
K 2
3 for q > H , where
i (¥%) _ (1) HY)y, (2) H :
: B Pg T Pg l-a2 *+ g a2’ e < A (52)
-] ’i (o) 0 ;‘
i ‘
% i
N {
.: *% : L X %1
! a 2 a
o6 o) 1 o) *
F, . 2 p 2
3§ a 2
¥ (**) _ (1) 1), "2 .(2) % -
y B, =By Lot B 5, 2% (5h)
£ a L a -
2 0, 1 o
;E and
2 2
E - *% * H 2
g . o i )=pi)l-—2- +pi)—é‘, q > qQy (55)
4! a a
3 o, o}
§§
" 3 P 3
3 ' * * & %
3 \ 1 1 a3 Py 1 a3
‘ S o) 1 o]
? a2\ Py 82
(¥%) _ (%) cHY, T2 .(2) 7K
1‘:'1 BQ - 32 1l- a2 + 92’ B2 32 s Q> Qy (57)
Z‘ o) 1 o
i
g
2 (2)  L(2) (2)
§‘§ The quentities Py s Bl , and B2 are shear resistance and |
. f“}vz inertial coefficients for a semi-infinite second layer, given by
. i
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Py, =-5TIné, +3 t, g—-zma + 3 BF, (58)
. il
(2) _ %2
LN 1 ——-62/3 (59)
2

(2) 3 % | (1'”2
ERTE 2- T -ay) +_6 (60)
5

29. When the projectile nose becomes essentially embedded in the
second layer, i.e., when H -~ q + L = a, s the equation of moticn is
approximately

[é + ﬂasze iai] a = ﬂa [ (2) + %2 éz) ]

at a ®H-g+1L (61)

vhich is the same as for a homogeneous semi-infinite target having the
same properties as the second layer.

30, When q <L , i.e., when the nose is not fully embedded in
the first layer of the target, Equations 38-61 still apply except that
a, is replaced by 8 and L is replaced by q (Figure 5).

Oblique Impact Theory

31. The investigation thus far has disregarded projectile rota-
tion which may oecur due to oblique incidence with the target. Conse-
quently, the next step involves a projectile with a conical nose of half-
angle @ which strikes the terget with an initial angle of obliquity
W, s 88 illustrated in Figure 8, The f;?;f right-~hand, orthogonal
coordinate system is fixed at the point of impact on the surface of the
target. Figure 9 shows the x,y,z right-hand, orthogonal coordinate
system fixed on the projectile nose tip. The z axis coincides with the

28
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Figure 8. Oblique impact of a pro- Figure 9. Coordinate systems
Jectile with a conical nose
projectile axis of symmetry, and at impact the projectile y axis coin-
cides with the fixed f'axis. With w as the instantaneous angle of
obliquity, the projectile may undergo rotation during the embedding
process due to asymmetric loading over the shaded portion of the nose
(Figure 10). The rotation of the projectile about its center of gravity
(CG) is now investigated, subject to the following restrictions:

a. The investigation is limited to the embedding of the nose,
and projectile-target interactions aft of the nose are
not considered.

b. The effect of angle of attack upon the stress distribu-
tion on the projectile is disregarded.

¢. The location z, of the CG is aft of the nose, i.e.
Zq is greater than I, , as shown in Figure 10.

d. The embedded surface of the nose is assumed to be every-
where in contact with the target.

e, Finally, the compressive normal stress pn on the em~

bedded surface of the nose is assumed to dbe
o 2
P, ¥ o, * 0 BT q (62)

where é is the translational velocity of the CG .
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Figure 10. Projectile with conical nose partially embedded at
angle of obliquity w

Equation 62 corresponds approximately to the average compressive normal
‘\\qtress on & partially embedded nose when Ra << 1 (Equation 37).

32. TFor computation of forces and moments acting on the projec-
tile, the cone is divided into circular bands of radius r(z) and in-
finitesimal height dz . However, in the shaded region (Figure 10),
only a portion of each band is subjected to P, » and for each band
r(z} there is a limiting azimuthal angle wmax(z) bounding the arc
over which 1 scts. Looking along the preojectile axis of symmetry in

the direction of positive 2z and considering a particular band r(z) ,
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TARGET SURFACE

HEAD-ON
VIEYW

ppcose

Figure 11. Partially embedded cone with head-on view of
circular band r(z)
one sees the head-on view shown in Figure 1l. The stress P, acts on
both sides of the band from $ =0 to ¥ = wmat , and the dashed arc
represents the portion of the band which is not embedded. (Note that

the xz plane is a plane of symmetry in Figures 9-11.) The relation be-

tween Y .» Z: W, and # is as follows:

7 -2
jo!

cos ¥ oy = 7 Ten P tan w * 1 =7 L2z, 2L {63)
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where

'z

z, = sl (6k)

1 1+ tan @ tan-w

Z

- qu—— -0
Zy®*T - tan ¢ tan w (65)

and z_ is the point where the projectile axis of symmetry (z axis)

intersects the target surface (Figure 10). The infinitesimal moment

dﬁbc about the CG due to a force aF acting -on any infinitesimal

portion. dA of the cone surface is

aM:

My, = Y x oF (66)

where ; is the mément arm. {(The moment arm ; is a position vector
from the CG to the point where the force df acts.) However, since
the- xz plane is a plane -of symmetry, tiie total vector moment MCG

about the CG must be perpendicular to the xz plane (i. e., parallel to
the y axis). Thus, one need consider only components of Y and dF

which lie in the xz plane. The x and 2z components of Y are

Yx(z,w) = z tan § cos (67
and
Yi(z) =2 -z (68)
where
z <L <z, (69)

The x and 2z components of -dﬁ acting on an infinitesimal surface
element 4dA = z dz dy/cos P are

dF = -p tan $ cos ¢ z dz ap (70)
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S aF, = p_tan $z dx ay (11) A
-: ) Thus, dﬁc(} has only one component dMCG » Which is perallel to the
X ¥y axis {4 positive moment increases ) and is given by
3 . o S 2 ) L |
3 ‘m.c(}k" 1, ~de = Yy sz =P, tavntsﬁ\(zG - 2z sec” P)z cos ¢ dz @y {12)
"5 Equations 70-T2 aré now integrated cver the .embedded surface of the nose
° fo-obtain the x and z components of the resisting force, Fx and
Fz s and the total moment MCG H
“ ¢ s
1 N \
- = o ~ ]
F, tan w £(g) ag ~< (73)
“gv. El T~ -
- &y T~
- 2, 2 2 2 ” ~ '
F, = wpz tan p ‘El + "j 'l‘max(E)E ag A (74)
&
1 op. 23 i 2
E . _-no 2.1
iy CG = tan w EG f f(a) dg - S2C ¢f f(g)s dE . (75)
& &y
B \
3 Where the factor "2" arises in Equations 73-75 due to symmetry .about
¥ the xz plane, and
V _ 2
: \ g (76)
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1/2 1
28y = (26 - 1 - 2%°) (17)
1/2
A= (l - ta.? o tan® ¢) (78)
Z ,
_le
EG =37 (79)
o
1
. (1 + tan ¢ tan w) °? zILE'L ‘
5 = (80)
L
z_ > 2 > L
o :
1 :
(L - tan @ tan w) ° z2_<_L
£, = (81)
L £
z_ » 2> L f
o
and wmax R Zl , and 22 are given by Equations 63-65, The integral

appearing in Equation T4 must be evaluated numerically. The integrals

appeering in Equations T3 and T5 are evaluated as follows:

3
: & b2
2 2
£(g) ag = |25 o(e) |+ 255 f g5, B0 (82
22 22 &
g €
: 1 1
1
) 3
2 52
2
?((1‘27 = %‘-arc sin {251 R 225 0 (83)
2
, 1 -],
£ 1
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£(g)g ag = |- & ‘g’] + :—Lgf £(g) ag , 2 #0 (85)

g

When 32 =0 , Bquations 82 and 85 reduce to:

S e T

§
& &y !
SE f £(£) 4 = [—% (2t - 1)3/2] , ¥ =0 (86) ?

2 % i
f £(£)E ag = [i—s (38 + 1)(2€ - 1)3/2] , A22=0 (87) "
&, ' &

I

33. During the embedding of the nose (zl < L , Equation 6k and

XL s
FSahi:

Figure 10), the equations governing translation of the projectile CG
are

S ey
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< e
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F,cosuw+F sinw, 0<3z <L (88)

-Q
“ At

“

v
<

M?=0,0_<_z <L (89)

RN S g,
[a0]
N

F ocosw-F sinuw, 0<z <L (90)

v
o
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where E;T;E' is the coordinate system shown in Figures 8 and 9, and
¥ and F
b'd 2
embedding of the nose, the rotation of the projectile about the CG is

are .given by Equations 73 and T4, Likewise, during the

governed by

=My, 02 <5 "~ (91)
where
I = moment of inertia about CG
@ = angular acceleration
MCG = moment about CG (Equation 75)
The rotational equation of motion (91) is limited to zl <L, and no
equation for MCG has been developed for Zq > L . Thus, the present

theory of oblique impact is limited to the prediction of obliquity w

and rotational velocity @ for O <z <L, i.e., the theory considers

1
only those rotations which occur during the embedding of the nose. A
realistic theory of deep penetration at finite angles of obliquity

should account for aft body effects which are beyond the scope of the

present work.
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PART III: SOME PARAMETRIC IMPLICATIONS OF PENETRATION THEORY

The Nondimensional Equation of Motion

3k, According to the theory developed in Part II, the equation of
motion for & projectile which impacts normal to the surface of a homoge-

neous target is
3 o 2 .2
(M + map Q.Bl)q = -nan(ps + p 2,B2fnq ) (92)
When the ratio Ra is small, Equation 92 reduces to
Mg & -ma2 ’p + p B.f q2 R << 1 (93)
n\~s £2°n > Ta

When the effect of comprezsibility is small (Appendix B), Equations A89
and A93 are approximated by

3_3.. j
B, =3 (9k)
and
Py =P (95)
Thus, Equation 93 gives way to
w2 3 .2
Mq = —ﬂan(ps +5efd ) (96)
Equation 96 is now rewritten as
2 02
a 3pf 4
M By 8 (97)
2 2 2p
na_p a 5
o's o

By defining the dimensionless quantities




.2

u = 35 (98)
v
o

and
=9
Yy EQ (99)
o

where vo is the impact velocity, Equation 97 then becomes

2 e
wi Mo - W (100)
2 3 & 2 no
Ta_p ena_p 8
o°s o's 0
where
2 2
p,B,v 3pv
6, = 1200 (101)
Py P

The quantity Go characterizes the ratio of maximum inertial resistance
to shear resistance within the context of the cavity expansion and pene-~
tration theories presented ir che present work. Since P is primerily
a function of the target yield strength Y for the elastic-plastic case
(Equation A96), Equation 101 suggests another ratio,

.2
R 9—% (102)

S

The ratio Rs is analogous to the so-called Reynolds number used in
fluid mechanics, in that it represents an order of magnitude index of
the ratio of inertial forces to shear forces in the target. Thus, the
ratio RS will henceforth be referred to as the "solid Reynolds number."
35. For meny metals and earth materisls, the pkactical range of
p, is 2 2 P, X 5Y , so that at impact (4 = vo) theiyange of R is
Go 3 RS S 3Go . Using the symbol ~ to relate quantities which are of

the same order of magnitude, it is appropriate to write

Rs ~ GO (103)
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The quantity Mq/naips in Eguation 100 represents & nondimensional

acceleration (or force). Integratving Equation 100 from y = 0 to the
final nondimensional penetration depth yp = qp/ao » the following equa~
tion results:

I | ‘

Yp = 7, in (1 + £6w)+ 2, ¥p 2 2t (10%)
where
-6R £ £
- 1l anv 1

ul—<l+fG>e ~7a (105)

n o no

1

£, = 3 for cones, and (106)

- 3/2 N
. (2 - 2¢ + ¢?) V2e - € -%- (2 - €2 - (1 - ¢) are tan (—2;—:2—-) - (- e)? Vae - €2 (107)
62 VZ: - c2

for ogives., The quantity € is defined in Part II, Equation'SS, and
; = L/D . After Equation 100 is solved explicitly for u(y) , the

following equations are obtained for the acceleration of a projectile
with a conical nose:

fV

- -3R_f_(y-2t)
Ma an

5 (r + fnGoul)e
LL

. Y22 (108)

3,2
. 2 R f y’°/hg
s arre)ize &0 Y (109)

naﬁps kz? )
Similar but more lengthy expressions can be obtained for ogives. For
Equetions 104 and 108 to be applicable, it is obvious that the projec-
tile must penetrate at least one nose length L . After having inte~
grated the approximete equation of motion (100) in nondimensional form,
it is now possible to exemine explicitly the roles of the parameters

Go s RS s Ra , and ¢ = L/D , Furthermore, while the added mass term
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nazphBl has been neglected in Equations 93-109, the ratio Ra still

appears as a parameter in the nondimensional finsl depth of penetration

= 2 1
Yy qp/a.o , Equation 10k.

The Shape of the Deceleration Curve:

36. Probably the most stringent test of the present penetrstion
theory lies in the comparison of predicted deceleration versus depth or
time with experimental observations and with the results of detailed
two-dimensional finite-difference calculations, where available, For
the moment, however, attention is focused on the shape of the decelera-~
tion curve in order to make a qualitative comparison with experimental
results. ProjJectiles with conical noses are amenable ito such an exam-
ination because of the simplicity of Equations 108 and 109, but it is
emphasized that similar results can be obtained for ogives.

37. The deceleration curve has the same general shape whether
depth or time is chosen as the abscissa. The overall shape of the curve
is strongly dependent on Go ~ RS and on ¢ =L/D . This is illus-
trated in Figures 12 and 13. The increasing portion of the curve cor-~
responds to the embedding of the nose, and the decreasing portion cor-
responds to a fully embedded nose. Examination of experimental

resultslh’ls’l6

be somewhat flat after the nose becomes embedded in the target, thus

reyveals that many observed deceleration curves tend to

having the general shape of the curves in Figure 12 (at least for earth
penetration), but the rapid decay shown in Figure 13 is rarely seen.
The present penetration theory leads to reasonably accurste predictions
of final penetration depth for 0 < Rs < 100 , but only the average
value of the deceleration is correctly predicted when Rs is signifi-
cantly greater than one. Moreover, the theory apparently overpredicts
the instantaneous target inertial resistance during the early part of
the penetration process, and the magnitude of this overprediction in-
creages as RS increases from one. The net result is that the theory

tends to underpredict final penetration depths when RS is very large
at impact.
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The Relative Effects of Nose Shape and Frontal Loading
’ oﬁ.FInal Depth of Penetration ’

38. In the vontext of the present penetration theory, the effect
of nose shape is coupled with the effects of Ra and Go ~ Ré , 80 that
the final depth of penetration will not be proportional to some function

of nose shape alone. The nose performance ratio Rh is now defined as

R_ = EIL- (110)
n qp
b
where qp is the final depth of penetration for a projectile with a

given nose shape, and qpb is the corresponding quantity for an other-
wise identical blunt cylinder (z = 0). Combining Equations 104 and 110

leads to
In (1 + £ Gu, ) + 65f R
- no .l nea
B, = fn in (1 + G&fﬁ Y > L (111)
where Uy is given by Equation 105. In Figures 14-17, Rn is plotted

versus ¢ Tor cones. and ogives with Ra and G° as parameters. Fig-
ures 14 and 16 correspond to shallow penetration depths on the order

of a few nose lengths, and Figures 15 and 1T correspond to depths sev-
ersl times deeper than Figures 14 and 16. The values R, = 0.1 and
Ra = 0.001 were chosen to conform approximately to the upper and
lower limits of R_  in penetration tests conducted by Sandia Labora-

15,16

tories, and the value Ra = 0,01 represents an intermediate value.

For comparison Young's empirical correla.tion2 is included in Fig-

ures 14-17. Young's linear relation between ¢ and final depth of

penetration was deduced from earth penetration data for a variety of

g
-

ATy

projectiles and impact conditions and represents something of an overall

averasge nose shape effect.2

Bewime e

e
RIS

39. The present theory results in a nose shape effect which be-

)

s

comes more pronounced -as Ra increages. This simply means that, for

e given projectile diameter, & sharp nose is less effective for a heavy

projectile than for a light projectile as far as depth of penetration is

42
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Figure 14. Nose performance ratio for cones, "shallow" penetration
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concerned. The present theory also infers that nose shape is more
effective in shallow penetration where the embedding of the nose con-
stitutes a significant portion of the penetration process.

40. There have been various attempts to ascertain the relation
between final penetration depth and frontal loading W/naﬁ = W/A , where
W 1is the projectile weight aid A is the projected frontal area.
Young's empirical correlation, for example, infers that final penetra-
tion depth is proportional to the square root of W/A . The present
theory, on the other hand, yields an approximate linear relation between
final (dimensional) penetration depth and W/A for depths greater than
one nose length (Equation 104).

Parametric Differences Between Theoretical and
Empirical Results for Homogeneous Targets

41. Within the context of the present penetration theory, it is
evident that, for the penetration of homogeneous targe%s, final pene-
tration depth is approximately proportional to W/A and to the natural
log of the square of the impact velocity. Furthermore, the effect of
nose shape is coupled with the effects of W/A , impact velocity, and
target constitutive properties. Young's empirical equation fo» final
‘penetration depth,2 however, indicates that the final depth is propor-
tional to nose length, impact velocity, and the square root of W/A
regardless of target properties. Moreover, the relative penetrability
of the target is characterized by a single multiplicative constant which
must be derived from penetration experiments. Although Young's equation
may correctly reflect the relative effects of impact velocity, nose
shape, and W/A , it represents a statistical correlation of experi-
mental observations and offers little explanation in terms of underlying
physical phenomena, On the other hand, the present penetration theory
is based on certain assumptions about the underlying physical. processes
but produces trends somewhat different from Young's equation. Even
though the theory is "rationally" based, it may not be sufficiently

45
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realistic; a more realistic theory mi"ght: result in trends similar to

thogse exhibited by Young's equatiocn.

Penetration of Layered Targets

42, The relatively :complex treatment of the layered target in
Part II is important for predicting projectile lodding when the initial
layer thickness is comparable to the projectile nose dimensions and/or
when the layers have extremely different properties.. .On the other hand,
when: the layers are thick and have fairly similar properties, finel
depth predictions. which approximate the results of the layered target
theory can be obtained simply by using the theory foru\hoinogeneous tar=
gets and changing the material property input when the projectile reaches

a layer interface.
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PART IV: APPLICATIONS OF PENETRATION THEORY
Introduction

¢ 143, The penetration theory presented in Part II is relatively
simple compared with two-dimensional finite-differenée analyses., In
order to demonstrate in part the applicability of the theory as an engi-
neering tool, theoretical results will be compared with two-dimensional
finite-difference solutions, empirical results, and experimental obser-
vations. However, befcre these comparisons are mede, some comments are
in order:
a. Although the ratio R << 1 In all the examples to be

presented, the added mass ternm wa3

pz 1 will be retained
as an upper limit on the effect of target acceleration.

b. It willi be shown that the so0lid Reynolds number RS
provides a simple rule of thumb which indicates whether
or not the present theory is appropriste for a particular
penetration problem.

¢c. Material properties and impact conditions are given in
both U. S. customary and metric (SI) units in the text,
but graphic presentation of results is given in U. S.

customary wnits to expedite comparison with other work.

Choice of Material Properties

L. The cavity expansion theory presented in Appendix A and the
penetration theory developed in Part II are restricted to materials
which exhibit bilinear behavior in shear, as shown in Figure A2. More-
over,. ilie assumption of rate-independent shear behavior is implicit in
the theoretical development. ‘Real meterials exhibit neither bilinear
shear behavior nor rate-independence, and the guidelines to be followed
when the present penetration theory is applied to real targets are:

(a) bilinear stress-strain curves should be chosen so as to approximate

the total area under experimentally obtained stress—strain curves, uwp to

LY
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the point where complete failure occurs (i.e., where the slope becomes
negative); and (b) when predictions are to be made prior to the penetra-
tion of an untried target, it is best to make two sets of calculations
corresponding to the upper and lower bounds on Y, E , and Et . Lower
bound properties can be obtained from the results of static tests, while
upper bound properties must be estimated from the results of dynamic

tests.

Penetration of Rock

7

45. Thigpen' has performed two-dimensional finite-difference cal-
culations analyzing the penetration of & nonrigid projectile into Madera
limestone and welded tuff. The present penetration theory is applied to
the same prcblems for a rigid but otherwise identical projectile. Fol-
lowing Thigpen, the targets are idealized as compressible elastic-
plastic continua of the von Mises type (compressive yield strength Y
independent of pressure). For the range of dyngmic pressures considered
(P < pvi), the relation between pressure and density is

= p‘; + —959 (112)

pCo

Py

where Pave is average dynamic pressure in the plastic zone {Appen-
dix B), and C0 is initial sound speed. The modulus E is essentially

constant for the range of pressures examined. For the limestone,

168 pef* (2.69 gm/cm3)

©
L]

E = 3,15 x 106 psi (217 kbar)

L.37 % th psi (0.945 kbar)

=<
t

¥ A table of factors for converting U, S. customary units 2f messure~
ment to metric (SI) units is presented on page b.
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.and

4 3

€ =1.12 x 10" fps (3.41 x 10° m/sec)

For the tuff,
115 pef (1.8% gm/ci>)

1.09 x 106 psi (75.2 kbar)

©
H

=
14

3 psi (0.389 kbar)

<
!

= 5,51 x 10

and
¢, = 6.72 x 10° £ps (2.05 x 10° m/sec)

-

For limestone penetration,

-
— ¥

W= 674 1b {306 kg)

D = 8 in. (20.3 cm)

L/D = 3.0 (9.25 CRH)

and

v, = 570 fps (174 m/sec)

For tuff penetration,
\

W = 1000 b (45 kg)
D=9 in. (22.9 cm)
L/D = 2.4 (6.0 CRH)

and

v, = 695 fps (212 m/sec)

46, The predictions of the present penetration theory are com-
pared with Thigpen's results in Figures 18 and 19. Thigpen's decelera-
tion curves correspond to the motion of a particle on the projectile
axis of symmetry; in Figure 18 the particle is located 2 ft (61 cm) aft
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of the nose tip, and in Figure 19 the particle is located at the base of
the nose., The oscillation in Thigpen's deceleration curves is due to

nonrigidity of the projectile.7

It is important to observe that in
these calculations the target shear resistance is very significsnt since
the values of Rs at impact are 0.86 and 2.17 for the limestone and
tuff, respectively. Moreover, the agreement with Thigpen's results
apparently provides Justificéfion for using Py to characterize average
shear resistance to penetration, at least for homogeneous targets and

low values of RS .

Penetration of Concrete

47. Another test of the present penetration theory lies in the
comparison of theorsesticsl predicticns with those of empirical penetra-
tion equations. A fairly accurate empirical equation for the penetra-

tion of armor piercing (AP) and semi-armor piercing (SAP) bombs into

reinforced concrete is given byl7
1.5
0.215 /v
g = 222D Gﬂgo) + 0.5D + 15% : (113)
P NG

with qp in inches, W in pounds, A in square inches, D in inches,
Y in psi, and Vs in fps. Equation 113 is now used to predict the
penetration of a 2000-1b (907-kg) AP bomb into reinforced concrete,18
with Y = 5000 psi (0.345 kbvar), E = k.10 x 10° psi (283 kbar), and

p = 150 pef (2.4 gm/cm3) . For the penetration theory predictions, the
modulus Et is taken to be zero, and the value of \?\\35 the static
value (5000 psi) as in Equation 113. In addition, the pfésgure-density
curve in Figure 20 is used according to the procedure outliﬁ;axip Appen-
dix B and represents typical behavior of concrete under pressure:\\?he
bomb has D = 13.5 in. (34.3 cm) and L/D = 1.12 (1.5 CRH) . Normal
impa. v velocities range from 500 to 1500 fps (152 to 457 m/sec). Two
sets of theoretical predictions are made, corresponding to the compress-

ibie and incompressible cases. These are compared with the results
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of Equation 113 in Figure 21. Since the penetration theory predictions
are made us’ng the static value of Y , they should be regarded as upper
bounds on predicted penetration depth. The results in Figure 21 corre-

j
§{ spond to impact values of RS in the range 1 < RS < 15 , in which the
g; inertial resistance of the target begins to predominate over the shear 3
b % ?g resistance. Moreover, the agreement with Equation 113 provides some %
3 ! 1% Justification for using the theory in this range of values of RS . i
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i 48. As an example of penetration into soft earth, the normel im-
? . pect of a terminal delivery vehicle (TDV) into moist, sandy clay is con-
. 2
§ ' sidered. The target is one of the range areas at Jefferson Proving
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Ground, Indiana.’® The TDV has a total weight of 17.3 1b (7.85 kg), but

when the full length of the projectile is embedded in the target, the

projectile base separates, remaining at the target surface and reducing

the projectile weight to 13.6 1b (6.17 kg). The diameter of the pro-

E jectile is 3 in. (7.62 cm), the total projectile length is 17.T in.

;, : (45.0 cm), and the nose is an ogive, L/D = 1.45 (2.35 CRH). For the

' target, Y = 50 psi (3.45 bar), E = 3000 psi (207 bar), end E, =0,
obtained from dynamic unconfined compression tests.l9 The undisturbed
target density p = 3.88 slugs/ft3 (2.00 gm/cm3).

; velocities range from 350 to 610 fps (107 to 186 m/sec) corresponding to

.
e e oY

Y e i i A3
< y

Experimental impact

65 < Rs X 200 . Since no pressure-density curve is available for the
target, two sets of calculations are presented, corresponding respec-

tively to the incompressible case and the compressible case for

Py = 1.1p (probably representing a high upper limit on the effect of
compressibility). The theoretical predictions are compared with experi-
mental results in Figure 22. Since the experimental data are quite
scattered, it is difficult to come to any definite conclusions from this
comparison., However, within the framework of the theory, the incom-
pressibile caleculation is probably the more realistic of the two,
aljhough the predicted depths are somewhat low compared to the experi-
mental results. Viewed in this light, the results seem to indicate that

Rs ~ 100 may represent an approximate upper limit on the range of ap-

pbﬁcability of the preuent penetration theory.

{ i Perforation of a Metal Slab

L9, Perbaps the most stringent test which can be applied to the
penetraxionlgggory }or layered targets developed in Part II is a situa-
tion in which the first layer is thin with extremely different proper-
ties from the second layer. Such a situation exists when & steel pro-
Jectile with a diameter of 0.3 in. (0.T762 cm) strikes a 6061-T6

aluminum slab with a thickness of 1 in. (2.54 cm). This, of course, i

represents a case where the first leyer is aluminum and the second layer A

is air. Using the HEMP code, Wilkin320 has performed a two-dimensionsl
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Figure 22. Penetration depth versus impact velocity for pene-
tration of soft earth by a terminal delivery vehicle

finite-difference analysis of the perforation of l-in.-thick aluminum
slab by a 0.3-in.-diam steel projectile. The projectile has a conical
nose, L/D =1, a weight of 0.0183 1b (8.30 gm), and a normal impact
velocity of 2756 fps (840 m/sec). For the aluminum, p = 5.25 slugs/ft3
(2.7 gn/end), ¥ = 43,500 osi (3 kbar), E = 1.03 x 10 psi (710 kbvar),
and Et = 0 . The pressure~density relation is Equation 112 with
pCi = 1.24 x 107 psi (775 kbar). The properties of air are considered
negligible compared to those of aluminum, According to Wilkins, the
projectile perforates the slab with en exit velocity equal to 81 percent

of the impact velocity. This represents s projectile momentum loss of

55
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19 percent and 2 kinetic energy loss of 3k.l4 percent. The present pene~

tration theory for leyered targets has been applied to the same problem,

and the results are presented in Figures 23-26. The crucial test of the
theory lies in its ability to predict projectile kinetic energy loss
during the perforaticn process: The incompressible theory yields an
f energy loss of 54 percent, and the compressible theory reduces this to
! 52 percent, essentially the same answer. Thus, the present theory over-
é predicts Wilkins' value for the energy loss by a minimum factor of 1.51.
: Two possible sources of error are immediately apparent: First, as is
pointed out in Part III, paragraph 37, the theory apparently overpre-
dicts the initial target inertial resistance when the value of RS is

significantly greater than one at impact (in this case, Rs = 6.29 at

impact). Second, the target is always assumed to be in a compressive
state of stress; however, it is well known that because the backside of
the slab is a free surface, & finite region in the slab may be in a ten-
sile state of stress during the perforatioq\grocess, thus reducing the
overall penetration resistance.

50. Within the framework of the theory as it stands, there is
little that one can do about the suspected region of tensile stress, and
this may represent a permanent limitation on the theory. On the other
hand, the question of inertia is a bit more straightforward. Accord-
ingly, a third calculation is presented in which the target is assumed
incompressible, and the inertial terms in the projectile equation of

motion are discarded altogether. For this case, the predicted energy

loss is 32 percent, slightly underpredicting Wilkins' value of 34.U4 per-
cent;.. This does not necessarily méan that all the target resistance is
due to shear. However, it mey indicate that the theory does a better

Jjob of predicting target shear resistance than predicting target inertial

resistaence. In any case, it is emphasized that the present theory is

T abie
oD o

developed not as a perforation theory, per se, but as a penetration

A,

theory for layered targets. For most cases of practical interest, the

layers wiil have comparable densities (i.e. comparable inertial resis~

PR SN

. man s s

tance) even though other properties may b. radically different. Since

the application of the layered-target theory to a perforastion problem

. 56
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represents a very extreme case and yields fair results, the theory prcb-
ably vepresents a reasonable extension of the penetration theory for
homogeneous -targets.

Oblique Impact Against Ha;d Earth

51. At the present time, no data for oblique impact and ricochet
have been found which are appropriate for comparison with the oblique
impact theory deveiopgd in Part II, i.e., in the experimental results
found to date, there is not enough information given about projectiles
(eg., CG location and momént of inertia) to effect a reliable test of
‘the theory. Nevertheless, an application of the theory to the oblique
impact of & TDV‘against a hard earth target is made without experimental
verification and is presented as a sample calculation. Afhe projectile

characteristics are

E 3
1}

15 1b (6.80 kg)

0.0975 slug-ft> (0.132 kg-m°)

-
i

N
i

9.4 in. (23.9 cm)

o
i

3.0 in (7.62 cm)
and’

19

The target is equivalent to frozen sand found at Camp MeCoy; Wisconsin,
with

p=py = 3.91 slugs/ft3 (1.66 gm/cm3)
Y = 958 psi (66.1 bar)

60




Y

E = 6.25 x 10 psi (4.31 kbar)
and )
E =20

(These properties have teen previously used in the analysis of TDV

impact and penetration at Camp MéCoy.l9) The initial angle of obliquity

is 45 deg (0.76 rad), and the impact velocities considered are 300 fps
{91.4 m/sec) and 600 fps (183 m/sec). Initial and finsl projectile

positions are illustrated for each impact velocity in Figures 27 and 28,

demonstrating the dependence of vehicle rotation on impact velocity.

In

thq~300-fps case, the projectile undergoes & rotation.of 15.1 deg, and

the downward motion of the CG is .stopped before the nose is fully em-~
bedded. In the 600-fps case, the projectile undergoes a rotation of
4.17 deg during the embedding of the nose. The curve connecting the C

locations is the CG trajectory.

cG
~Z(IN.)

(e

Lrd
>l
e -
z
N
o
o

b =2

Figure 27. Oblique impact of TDV against hard earth
for w = 45 deg and v, = 300 fps

61

G

P N e e o e wen e = %




REpT R

o

SN

- -2

- -4

Figure 28, Oblique impact of TDV against hard earth for
W, = 45 deg and v, = 600 fps
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PART V: CONCLUSIONS AND RECOMMENDATIONS - *

52. The results presented in Part IV stand as partial evidence
that the cavity expansion theory can be used as an approximste basis for
the development of a projectile penetration theory, particularly when
the effect of shear is prédominant (i.e., for low values of the solid
Reynolds number- Rs ). However, it is emphasized that the analogy be-
tween spherical cavity expansion and projectile penetration is somewhat

fortuitous, and the present penetration theory probably reflects only

the gross features of the projectile-target interaction. Thus, the

acquisition of insight into the mechanics of penetration demends the

et

application of whatever means are available, including empirical methods

and two~dimensional finite-difference analyses.

i , L.
A At S e

53. For estimates of penetration depth, the applicability of the
present penetration thedry appears to lie in the approximate range
0 < Rs £ 100 ; but the upper bound is offered as a conservative rule of
thumb and not as an absolute limit, (Results of experimerits at high ;
values of Rs are needed in order to establish a more realistic range.) :
However, it is important to note that as Rs + 0 the probiem of dynamic
penetration reduces to that of a static punch, in which friction may be
importent. On the- other hand, -as Rs + o shear resistance becomes
insignificant such that the projectile-target interaction may reduce
essentially to a fluid dynamics problem.

54. Although some footholds have been established, the develop-
ment of the penetration theory is still in an embryonic stage; some sug-
gestions for additional work are listed below:

a. At the present time, the role of target inertia in the
projectile-target interaction is only partially under-
stood, and the degree of contact between the projectile

nose and the target has not been established. Conse-

quently, further investigation is necessary to establish

the distribution of dymamic pressure on the projectile- +

target contact surface as a functicn of projectile veloc-

ity, nose shape, and target properties. !

-y
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b. Although the cavity expansion shear resistance term Py fi 3
seems to represent a reagonasble first approximation for © ,i;

average normal stress at the projectile surface due to

,shedr in the target, some effort should be directed

s

g

toward establiéhing normal and tangentiesl stress compo-
nents on the projectile -surface due to target shear

behavior. Furthermore, the variation of these quantities

B v
Yoo 0

L an s ey, Ky "Auu«m u&\.‘ » v
sl

vif A

with nose shape, penetration depth, and confining pres-

sure should be determined.
c. The present oblique impact theory is limited to the

o TNTST b
R L

T
o
-3
N
R N

ey O
N

.embedding of the projectile nose, with all rotation

occurring in a single plane. Moreover, this work has not

PR
0y

Dox
a1

X

alem A

been verified experimentally. Future efforis should

r‘ :5,,‘

first assess the accuracy of the existing theory. Then,
if necessary, the theory can be extended to include aft
body effects end motion in three dimensions. Eventually, P

it may be possible to formulate a workable theory for .

s TR AN L s

i* deep penetration at finite angles of attack and obliquity.
N "; 3 3

; ' Howevér, it is emphasized that overcomplication is as gk
undesirable as oversimplification, and modification of

the theory should proceed one step at & time to avoid the

incorporation of superfluous details.
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KPPENDIX A: SPHERICAL CAVITY EXPANSION IN
A CONCENTRICALLY LAYERED MEDIUM

Intrcduction

1. This appendix presents an extension of cavity expansion the-
: T8
ory developed by Bishop, Hill, and Mbtt,s Goodier,lo and Hanagud and.

Rcss.12 Goodier's treatment dealt with the dynamic expansidén -of a

RN Vet

~ 0
. $

e

spherical cavity in an infinite, incompressible, elastic-plastic,

*

{ ‘ strain-hardening medium. By means of a locking approximation in which

the plastic zone is assumed to be uniformly compressed, Hanagud and Ross

Sede g et

modified the theory to account for the case when the effects of compres-

sion predominate over the effects of shear. However, the inertial terms

¥+

in the Hanagud-Ross treatment do not reduce to those of Goodier for the
incompressible case. The present work eliminates this co.tradiction and

also accounts for the effect of concentric layering.

Problem Formulstion

2. 1In Figure Al, a spherical cavity of radius a(t) is surrounded

P e T AT TG ™ WX TOAE R S e O S
]

LEGEND

h(t) 2 = CAVITY RADIUS

Vo TRt g BTl

b = RADIUS OF PLASTIC FRONT
h = INTERFACE RADIUS

t= TIME

LAYER
NO. 2

Figure Al. Spherical cavity surrounded by concentric layers
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¥ Raised numbers refer to similarly numbered items in "References" on
pp. 65-66 at end of main text.
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by two concentric layers of different materials. Both materials are

elacsiic~plastic with linear strain-hardening,g-lz as illustrated in
Figure A2.

g /

W |E{/3

- 1

w -y

AR i

uj

I

0 E/3

1

SHEAR STRAIN

Figure A2, Material behavior in shear

Both materials are incompressible in the elastic and plastic states, but
transition from the elastic to the plastic state is accompanied by a
finite volumetric strain €y - This quantity is known as a locking

strainll’12

and is introduced in order to obtain a first approximation
to the effect of compressibility. Although €y is taken to be constant
in the present analysis, it must be a function of pressure to have any
physical meaning. However, the variation of €y with pressure does not
alter the analysis or conclusions of this appendix, and a discussion of
the locking epproximation is given in Appendix B.

3. The elastic and plastic zones are separated by a spherical
plastic front of radius b(t) (Figure Al). Since b(t) is the only
radial location where compression occurs, it also represents a shock
front where density and stress are discontinuous. The equation of mo-
tion for spherical symmetryll’12 at r #.h on either side of b(t) is

then

W s, i ek SN i L Aoy i R = A e e
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where

0. = radial stress

00 = tangential stress

r = radial coordinate

9 = polar coordinate

v = radigl velocity in the elastic region
vy = radial velocity in the locked plastic region

4. The material is required to be stress~free as r =+ « , and the

discontinuity in o, at r =b is defined by

= ) (=)
Ao, =0 - o (A3)
+\
where oé ! is the limiting value of o, & r + Db in the elastic
region, and oé—) is the corresponding quantity in the locked plastic

region. The eqguation of motion is then integrated with respect to r
from r =« to r = a , accounting for the discontinuity at » =b , so

that the compressive normal stress at the cavity surface is given by
p(t) = ~0 (a,t) = Aoy + I (a,d) + I (v,=) + I_(a,) (ab)
where the momentum integrals Im‘a,b) and Im(b,w) are given by
® sz i Dv
I (asb) =/ Py Tp dr and I (b,») = P Iy ar (A5)

a b

and the general shear integral is defined by

A3
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Inertial Terms

5. Attention is now focused on the terms Aob ’

(a6)

Im(a,b) , and

Im(b,w) which embody the inertial effects in Equation Ak. Consider

first the stress discontinuity Ac

b
n
mass at b(t) requires that™ 212

pg(b - vz) =p(b-v)atr=>»

where a dot denotes time derivative. Equation AT leads to

and

M

>

H

=

=
TN
holl to]
= |
~———

Conservation of momentum at b(t) requires thatll’12

Acb = Ozvz(b ~ VQ) -pv{ib -v) at r=0»

Incorporating Equation A8 in Equation All yields

A

at r =b(t) . Conservation of

(AT)

(A8)

(A9)

(A10)

(A11)
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86, = = ——= at r=5 (A12)

»

Conservation of mass in the locked plastic region gives rise ‘t:oll»’12

£ (t)
vy(2,t) = "2 (A13)
r
and
£, (t)
vy(a,t) = 4 = ’Fa at r = a(t) (A1)
a
Thus,
£, = aaé (A15)

Likewise, conservation of mass in the elastic region demands that

vir,) = 2P (A16)
r
Substituting Equations Al3, AlS5, and Al6 into Equation A9 and evaluating

at r = b{t) obtains

2, 2.
_&aa-abb
£(y) = 220D (a17)

Consolidating the definition of D/Dt given in Equations Al and A2 with
Equations Al3 and Al6 results in

. 2
N T SN I S (116)
Dt 2 5 Dt 2 5

r r r r

By combining Equation Al8 with Equation A5, the momentum integrals
become

A5
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£t !
I (&,b) =] plm-2gjar (A19) |
T T :
f
and
by 2 !
I (b,») = ol==-2>=]ar (A20) ;
m . 2 5 {
b g r !

6. So far, the discussion has avoided explicit consideration of f
the layer interface h(t) . Hovever, the location of b{t) relative to :
h(t) determines the character of the momentum integrals Im(“‘a,b) and :
Im(b,w) as well as the stress discontinuity Aob . Denoting first and
second layer properties by the subscripts 1 and 2, respectively, examine

the situation when b < h in Figure A3 below.

LEGEND :

3 = CAVITY RADIUS
b = RADIUS OF PLASTIC FRONT

h = INTERFACE RADIUS

Figure A3, Relative location of cavity surface, plastic !
front, and layer interface when b < h

For this case,

. ol
)

I (a,b) =p —-~—=Jldr, b<h (A21)
m ) 2 5
la r r

and

v j




P 2 . »
I (0,) = p Lo 2ilar+p L _of)ar,b<n (a22)
n®s®) = Py 5-25)0rey | \F-25)

b,

Evalueting integral in Equations A21 and A22 and employing Equation Al13
in Equation A12 result in the inertial terms (Equation A¥) for b <h
as follows:

1Pe. £ VP

-%] , v<n (23)
1 b

[= )

- s (L Ly _ L2/l 1
Im(a,,b)—pzl fz(a-b)-efz(?-?) , b<h (A2h)

« SRR T PRI ST

! p p
@) = Plo (2 x)+ 2| _ L2, [Ao_2 2 B
L,(b; )’f"l(b‘h)‘”h 5 T pl(;-,; ;F)*;E , b<h (A25)

i 7. In contrast to Figure A3, Figure Ald illustrates the situation
i when b > h.

LEGEND

’O"
R

3 = CAVITY RAD!IUS
h = INTERFACE RADIUS
) = RADIUS OF PLASTIC FRONT

=
~ e _]

Figure Ali, Relative location of cav'ty surface, layer
interface, and plastic front when b > h

For this case,

.

Im(a.,b) = pgl

-2

2
)
0

rol
UJQ?O

dar + p —'Q’..g
A 2
2 r

H
21

b>h (A26)
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and

| | &S £\
-~ L(b,®) =p, Z-2% )&, b>h {427)
' b r o

Evaluating the integrals in Equstions A26 and A27 and substituting Eque-
tion Al3 into Eguation Al2 result in the inertial terms (Equation Al)
for b > h:

2P, /. fz\"a :
Ao, = b-——/ s b>h (a28)

1.2 1 1 1 1\
- = 1£"1p ———— e +p -~ o~ s b>h (A29)
3 z[ Y ( X hu) L, (hu bu)

. 2
= f_f£

Shear Terms

8. Consider the term Is(a,w) , which constitutes the effect of
shear in Equetion A4; the appropriate stress-strein relations12 are ‘ex-

pressed as

2 .
3 E(eo - er) , elastic state

. -0 = (A31)

2

(i*3

Et(ee - er) ,» plastic .state

where E and Et are elastic and strain-hardening meduli, Y is

yield strength, and cr and se are radial and tangential strains.
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The. locking assumption implies tha.tll’l2

0 , elastic state

€.+ 2y = (A32)

€ > plastic state

The quantities E s E Y , and €, are material constants. It is

) v’ . 9-12
appropriate to express the tangential strain as -
= .
ey = 1n . (A33)

where r, and r are initial and instantaneous particle positions,

respectively. Combining Equations A31-A33 yields

G, -0 = (A3L)

by 1 .
Y+2Et(1nro-3e£>, r<b

where the elastic and locked piastic regions are separated by the plas-
tic front b(t) . Note that the shear stress oo - Gr does not have to
be continuous for Equation A6 to exist; piecewise contimuity is suffi-

cient for existence.21 A discontinuity in o, ~ o, exists at r =h

since this is the material interface where thg meterial properties E ,
Et s Y , and eg are discontinuous. Another discontinuity in 00 -0
exists at the plastic front r = b(t) where the mat.rial undergoes a

sudden compression. However, when 82 = 0 in Equation A3k, there is no

discontinuity in 99 = 0. at r=b#h . Restricting attention to

situations where lezl << 3Y/2E_ reduces Equation A3b to

3Y

= b ooy 3
2(E - Et) 1n b =y, |e£| << 2, (A35)

at r = b(t) , where b, is the initial position of a particle located

at b(t) . By rearranging Equation A35, the quantity 8 is defined by
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B = In - 5§y (A3€)
(o] t
and it follows that
b = ve® (A37)
Conservation of mass in the elastic regicn requires thatg—la
r - b = ri - bg , T>Db (A38)

Substituting Equation A3T into Equation A38 and rearranging results in

r 3 3

3
lnL=-;-ln[l-b—'(l-e-3B)] » T>D (A39)
c r

9. In the locked plastic region surrounding a cavity of radius

R(t) and initial radius Ro , conservation of mass demands thatll’12
3 3\ 3 3
p<ro-no)_p£(r 83, R<r<b (A%0)
which gives rise to
R3
*
mE_te =_Laynfa-=], Re<r<u (A1)
r 3 7% 3 3
o r
where
1/3
pRg’
Ry £ R|1 - —= (Ak2)
o, R
2
and
- 1 B
g, = In s (Ak3)

1
Incorporating Equation A39 into the first of Equation A34 and integrating

to r =1r, for constant E obtains

with respect to r from r =1r 5

1
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k. 2 ar _ kb fo5 b3
! 2 f (oe-or);-;-é-BE—-g»-—g s bair, sxry<e (ALY)
T T
- ]
- |
g t
. i with the restriction that B << 1 . Likewise, employing Equation A4l in
; ‘ g the second of Equation A34 and integrating from r = r, to r= r, for
. 3 constant Y and Et results in
|
.k_
| % 2 @ 3a
‘“'] dr Ta ) 1 Ry
] | i 2[ (0g =0.) 3~ =20 In r_ §'t2"2' "\, |’
3 ) - m 2
! i ry m=1
b -
E ; ' R < < <D
b ; ir i, (AL5)

(Note: Equations ALk and A45 are evaluated in Reference 1l.) Equa~
tions A42, Ahl, and A45 now make evaluation of Equation A6 straight-

i forward. With a(t) and h(t) representing cavities relative to the

first and second layers, respectively, R, , R , and Ro are replaced
in the same order in Equation A42 by 8y » & , and a, and then by
‘ hy , h, and -ho so that

} 3 1/3 3 1/3
plao °2ho
! 8, = afl - and hy = h|l - = (ak46)
3 3
P, & pzh
1 2

where the subscripts 1 and 2 denote first and second layer properties.
10. Examining first the case where b{t) < h(t) in Figure A3
makes it possible to rewrite the shear term in Equation Al as

Is(a,w) = Is(a,b) + Is(b,h) + IS(h,w) , b<h (A4T)

Applying Equations Abk and Ak5 to Equation AWT then produces
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For the case where b{t) > h(%t) in Figure Al, Equation AWT is replaced
by
Vd

I_(a,) = I_(a,h) + I (n,b) + I (b,®) , b>h (ak9)

By means of Equations All and A4S, Equation A49 is superseded by

) é 8y Sm 8y 3m
w) = h 4 Yy _ (=2
Is(a,)—QYllna+9Etz,2 <a> (h)
1 m
m=1
z 3m 3m
+ov. mi+lyg zl (h*> (h*)
n—+=E _ = —
2 h 9 b m2 h b
m=1
+ L
3 BE, , D>h {A50)

Relations Among a(t) , b(t) , and h(t)

11, First, examine Equations A38 and AhO for the case
b(t) < h(t) . Replacing r and r, by h and hQ in Equation A38
and combining with Equation A37 yields

. -38
W - = (1 - e l)b3 , b<h (£51)
Likewise, replacing r , r , R, and Bo by b, bo , & , and a, s

o}

Al2
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respectively, in Equation A4O and combining with Equetion A37 results in
the: expression

e = 66, b<h (A52)
where
o, =38
g =l-—t-e (453)
o
4

and a, is given by the first of Equation Al6. Evaluating Equation A5l
at b =h obtains

B8
h=he 1

o @ b=nh (Ash)

Now since Bl << 1 , it is appropriate to make the approximation
h&h , bP<h (a55)
By restricting attention to cavities which expand to more than twice the

initial radius a, » it is acceptable to replace the first of Eque~
tion AL6 by

a, = a (A56)
so that Equation A52 reduces: to
a3 = 6lb3 , b<h (A5T)
and
6% = 6% , b<n (458)

12. When b(t) >n(t) , r, r., R, and R, are replaced

o
respectively in Equation ABO by b, b

o ? h , and ho . Consolideting

Al3
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the resulting equation with Equation A3T obtains

hy = 8,0 , b>h (A59)
and
nh, = 62b26», b>h (460)
where
6y =1~ -E-i— e (a61)

2
Now Equation A0 with r , T, s R, and Ro replaced respectively by

h, h0 s & 4, and &, becomes

3 3\ _ 3 3
pl(?o - a°> = pzl(h -8”), b> h, (A62)

By rearranging and combining with Equations A6 and A56, Equation A62

reduces to
o P
h3 = ag + —;h-h3 E:a3 + —;—-h3 (A63)
Py © Py @
1 1
and
20 2 s 2.
h"h = hgh, = 62b2b =a"d, b>h (a6k)

Combined Effects

13. Inserting Equations A58 and A6k into Equation Al7 produces

2.
Cla a, b< h°

(t) = (a65)
Caaaé , b>h

where

ALk
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Using Equations Al5, A58, and A65 in Equations A23-A25 results in

2
e, (1~ 6)7 /),
1 a .2 3
Ac, = =-la 4, b<h
b 62(.1- -a ) .bll o
iR 17,
I(a,0).=p. |(att +282)(1 - &Y. L4271 - a’ b <h
m 220/ = Py v) "2 Iy A o
1 b
_ , .2 a a al 1 2.2
Im(b,oo) = Cl(ab. + 28 )[pl<.b - h) + 0, | -3 cl
<ah ah) ah
X jp {5 - + 9 s b<h
1 bh hE 2 hﬁ

b
Is(a,oo) = 2Y_ 1n 2t3 -

1

0}
ot
l.._l
o
- 1
E e
ol
ey
o'l
W
2]

wherel:L

(-]

5t

n=1

B

(a66)

(A67)

(AT1)

Incorporating Equations Al5, A64, and A65 in Equations A28-A30 yields
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: o . 2y a 1 .2.2[8
Im(b,°°) =0, [cz(aa + 28°7) 3 - 5°Cod (;17)] » b>h

By utilizing Equations A56 and A59, Equation A50 becomes

® .

2 3m

Is(a")-ZYllna+9Etl - E“mz(h) o+ 2f, In g

m=}1

&8 3m

L 2:0(b L
+9E,02§ 2[(11) ~1]+382E2,b>h0
m
m=1

Summary of Results

(AT2)

(AT5)

14, For conmsistency with previous work,g"12 the compressive normal

stress p{t) at the cavity surface is expressed as
p(t) =p_+p B.ah + B 42
s 21 1 2

where

AL6

(a76)
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p, = I (a,») : (A77)
and
- ‘2 _; ot
p£l<Blaé. + B4 ) = A+ Im(a,b) + Im(b,w) (AT8)
For the case where h < ho s Pg s B, ; and B2 are given by
2 2 = 3m
- I R (2
By =B gt |6 ‘_Z 2(b)
m i
n=1l o
]
L AT b
3 BB (1 -‘h3 + 3 85, 3 b<h (&79)
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, b< ho (A81)

whers h = ho and a/b = c%/ 3 from Equetion AS5T. For the case where

b»>h , »., B, , and B, are expressed as
- o] S kR 2

2 3m
h, b T 1 /a _ b
ps-2Yllna+9Etl6 z,ﬁ(h) +2Y, 1n 3
lm=
= m
§ 3m
A eRb o -
+9Et222-h) -1 bBBzEQ, b >h {A82)
m
n=1
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a 2/a a 2 2 fa

By=1l-%*5 (h'b): o T-a Jb> P>h, (a83)

L 2 2

1 1
2
"9,2°'2(1 8,) AN
B2=2Bl+p“62(l_a) b(-.é.
g 2\ T Mo
1
o \2
- T2
au 022 ah ah p2 t- 62 (A8Y)
x |1~ + — - - = ] 5 b>h Al
MO PURRNEY § BTV S °
1 1
where
3_,.3,° .3
h® = a” + = nh {A85)
p o
Y

from Equation A63, and b is given by Equation A59. Note that at

b =h = ho , p(t) may bve discontinuous. This arises from the mathe-
matical treatment of the problem and does not necessarily correspond to
What happens is that at b = h , the speed at
which the plastic front is propagated undergoes a step change due to the

a physical discontinuity.

discontinuity in Y and E . This is an elastic effect and can occur

even if the materials are incompressible.

Special Cases

15. When both layers have exactly the same properties (i.e. the

homogeneous case), then by dropping the subscript, Equation AS57 becomes

o /3

a ,
oy {A86)
so thet Equations A79-A84 reduce to
2 - m
=2 I 00 I} :
ps—-3Y1n6+9Et6—Zm2+38E (A87)
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B, =1 e e (A88)

) o -
_ -2y
: :;;:,1;.3._ ﬂ_:iLJ & "/31-(' -8 (A89)

wkere
§ =1 . L3 (490)
Py
- Y : \
) (Agn.)
e, = in & (A92)
L pz
and

a=1-2- (A93)

15. When o = 0 , the material is incompressible, and Equa~
tions A67 and AG8 reduce to

B, =1 (Aglk)

|5

[o2]
n
ol

(A95)

9-12

Since it is usually true that Y < E and E_ << E , then

t

.2 22Y,2 .2
o, 221(1 4 Z)e & o, (196)

in agreement with Goodier.lo On the other hand, when compressibility

predomingtes over shear, B << a , and

§ =g (497)

AS

Sen m e g an e -

. ’ o
TR AR PACIPE Y

et ake

G e
wer @ R0

e




Al Db i) Lo e auictts NI SE ST it L ELAP AL A A R SRS A I S - R N - S S ot i e i e e [ CYE
,Hﬂm« 5 T ﬁmib a8 d .wmd 5 o T ” . v p X > £ " e e, . h

©

w 4
w {
i
! !
i — — W
, R & w
) < <4 i
Ao g .
v
¢
$ o0
o W
_ ©
sy
+
o
_ ~ —~
1 — «©
! ©° +
! o
m — &
) -4 ~—r (V] <
ot \) [
4 B 3
o © S
1 (5
) f1a1[aY] et
A g
\ aY] L.
M )
) o
<]
m a .
-3
5
o
[

t

in agreemen

and

- o - - P




amxwﬁm@mnmﬁﬁxiwaﬁﬁmamamﬁ‘;

L R

S

- ol

@ BT
PP,

»
¢

APPENDIX B: COMPRESSIBILITY
Introduction

1. The cavity expansion theory developed in Appendix A .and the
penetration fheory developed in Part IT both utilize the concept of
locking 'behaviorll’12 to estimate the effect of material compressibility
at any given instant. Moreover, within the context of the cavity expan-
sion theory and the present penetration theory, the incorporation of
compressibility constitutes a perturbation of the basic incompressible

9,10 In this appendix a technique for

theories set forth by Goodier.
approximating the effective locking strain €, is developed in. which
the material is first treated as incompressible in order to obtain an
apprqximgte value for the average dynamic pressure in the plastic zone.
This pressure can then be used to estimate the average volumetric strain
(i.e., the effective locking strain ez) in the plastic zone when the

material is only slightly compressible.

Average Dynamic Pressure in the Plastic Zone

2. Suppose there is a sphericdl cavity centered at the origin
with radius a(t) , radial velocity & , and radial acceleration & .
Furthermore, suppose that the cavity is surrounded by an incompressible
homogeneous material whose tehavior in shear is rate independent. The
situation is sphericslly symmetric, and the dynamic pressure P at any

r > a in the material 1322

P = ol& (aii .2 ahée
i by af + 287) - =5 (B1)

er

vhere r is the radial coordinate, p is density, and the material is
stress-free as r+» ., The average value of P in a region a <r <b

is

Bl
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b
e

Fave "5, (22)
fr dr

H
Employing Equation Bl in Equation B2 and evaluaiihg the integrals re-
sults in the expression

(B3)

ave

RAY

i 8 - ;
- i‘}

3 |

Suppose now that b represents the radius of the plastic front for an
incompressible elastic-plastic material as described in Appendix A

(where p = Py ) such that Equations A86 and A90 reduce to

2 gt/3 (Bk)
and
6 =1 -k (B5)

Equation BlW is now incorporated in Equation B3 so the average dynamic

pressure in the plastic zone a <r <b for an incompressible material
is

(afi + 2é.2)(G}/3 - 51) - é2<6I - 55{/3)

Poa=5F (B6)
1- GI

ave

oW

Equation B6 can now be used in conjunction with a pressure-density curve
to obtain a first approximation to the average volumetric strain {(i.e.
locking strain) €y in the plastic zone a <r <h as long as

Iezl << 1 . Thus, for materials which are only slightly compressible,
Equation B6 can be used to obtain a value for gy which is appropriate

B2
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for the cavity expausion theory in Appendix A. For a two-lsyer situa-
tion, Equation B6 is used in turn for gach layer. This may lead to ax
underestimation of lng for the first layer and an overestimation for
the second layer, but a reasonable approximastion to the average effect

of compressibility for both layers is obtained.

Compressibility in the Penetration Theorx

3. An upper limit on Pav for projectile penetration is obtained

ave
by replacing 4 with the projectile velocity ¢ and dropping the mate-

rial acceleration term a# (Appendix C) in Equation B6 such that

1/3 4/3
28 - 361 + GI

I
\ 1 j GI

(BT)

-3 .2
Pave =2 P

Equation BT can be used with & pressure-density curve for a given target
material to obtain an upper limit on |e£| at any velocity ¢ as long
as |62| << 1. Subject to this limitation,

a=i-£—5—ez (B8)
%
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APPENDIX C: TARGET ACCELERATION

Intrcduction

1. In Goodier's original penetration theory for rigid spherical

,projectiles,9’10 the projectile equation of motion is

<M + % nagp 2Bl>q = ..nai(ps + % 0 2132@2) (c1)
The development of this equation is discussed in Part II, paragraph 9.
The term (2/3)ﬁa§szl reflects Goodier's assumed variation of target
acceleration over the frontal surface of tlie projectile, and the quantity
(2/3)1rac3)p2 is generally known as the added mass for the sphere.13 When
R <<1 (Part IT, Equation 5), this. term has only a small effect on
penetration depth predictions; but when the added mass is compsrable to
projectile mass M (e.g., Ra 2 0.1), then the effect of this term

becomes sigrificant.

The Effect of Added Mass on Penetrstion Predictions

2. Consider the projectile equation of motion (Cl) which without

the term (2/3)1ra2p£Bl reduces %o

~

. _ 2 r o2
My = -“ao<?s + 3 zBeq ) (c2)

vhere deletion of the added mass is tantamount to disregarding target ac-
celeration. Hquation C2 is now used in CGoodier's original applications
of his rigid projectile penetration theory. The results are shown 1in
Figures C1-Ch; the solid curves correspond to Equation Cl, and the dashed
curves correspond to Equation C2. In these figures qp ig final pene-
tration depth, D is projectile diameter, vy is impact velocity, pp
is projectile dencity, and Y is target yield strength. 1In each case
discarding the added mass term improves agreement with experiment. From

these results it is concluded that the contribution of the term nagszl

CL
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Figure Ch., Penetration of aluminum target (AL 202k T3)

by alumimun gpheres, Ra = 0,75
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whi:h eppears in Pert IT, Equation 30 and elsewhere, probably represents
a high upper limit insofar as the effect of target acceleration on final
depth of penetration is concerned. Furthermore, for most applications
of the penetration theory as formulated, it appears appropriate simply
to drop the Bl term from Equation 30. However, this term is retained
as an upper limit for added mass throughout the presentation of theory
in Part II.
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APPENDIX D: NOTATION

a,é,a Rediai position, velocity, and acceleration of spherical cavity
wall, respectively

ay Projectile radius at point of contact with a layer interface
a Projectile radius at point of contact with the target surface
a Projectile radius at base of nose

A Projectile frontal .area = nai

5:' b,h Radii of spherical plastic front and concentric layer inter-
face, respectively
Bl’B2 Inertial coefficients from cavity expansion theory
C Initial scund speed
CcG Center of gravity

CRH Ogive caliber radius head

D Projectile diameter at base of nose = 2&0
E Modulus of elasticity

Et Strain~-hardening modulus
fn Fac?or relating projectile nose shape to target inertial
resistance
Fx Resisting force projected normal to projectile axis of symmetry
2 Resisting force projected along projectile axis of symmetry
G0 ratio of maximum inertial resistance to shear resistance within

the context of penetration theory-- (sz2é2/ps)
H Layer interface location
H Initial layer interface location
I Projectile moment of inertia
Momentum integral
Is General shear integral
L Nose length

Projectile mass

MCG Moment about CG
P Compressive normal stress on projectile surface
P, Average value of p over the projectile nose surface

y Component of p due to target deformetion (shear resistance)

Py Component of p due to target inertia (dynamic pressure)
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N

Average dynamic préssure in the plastic zone

Projectile penetration depth, velocity, and acceleration,
respectlyely

Final depthk of penetrab1on
Final penetration depth for & blunt -cylinder

ProJectlle penetration depth when the plastic front reaches .a
layer interface

naopz/M , added mass paremeter
Nose performance ratio

pq /Y , order of magnitude index of the ratio of inertia forces

to shear forces, referred to as the ' SOlld Reynolds nunber"
‘\

Location of plastic front \\\\

Time \\\\\\\
Radial velocity in the elastic region

Radial velocity in the plastic region \\\\\“\\\

Normal component of particlervelocity

Impact velocity

Target particle velocity

Tangential component of particle velocity

Projectile weight

Fixed space coordinates

Yield strength

Distance from projectile nose tip along axis of symmetry
Distance from projectile nose tip to CG

Point where the projectile axis of symmetry intersects the
target surface

Target compressibility =1 - p/pz
Y/2/(E - B,)

Moment arm

1~ (p/p,) exp (~38)

Locking strain = 1n (p/pz)

Radial strain

Tengential strain

L/D

Polsr coordinate or polar angle
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A See Equation T8
L. 7
a 3,146
P Initial target density
Py _ Locked target density, i e., average compressed density in the
i plastic zone
déf) Limiting value of o, &s r > b in the elastic region
oén) Limiting value of 6, as r >1b in the locked plastic region
o, Radial stress
0,  Circumferential stress

]
1) Cone half-angle
v Circumscribed cone half-angle

w,w,; Angle of obliquity, rotational velocity, and angular accelera-
tion, respéctively

0. Initial angle of obliquity

Note: A dot over any quentity denotes & derivative with respect to time.
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In sccordance with ER 70-2-3, parsgraph 6c(1)(b),
dated 15 February 1973, & fucsimile catalog card
in Lidrary of Congress format is reproduced belov.
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