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RELIABILITY OF MULTIPLE 

COMPONENT SYSTEMS 
* 

Larry Lee and W. A. Thompson, Jr. 

University of Missouri - Columbia 

Abstract.  Brindley and Thompson (1973) have introduced a 

multivariate concept of monotone failure rate. 

Here we treat a mathematical model which has arisen in bio- 

logical and engineering applications.  In a biological concext one 

refers to the theory of competing risks; in the engineering appli- 

cations the model represents a non repairable series system. The 

system fails when the first of its components fails so that not 

all component lifetimes are observable. 

Initially, we assume the components of the system to be 

independent. Then we introduce dependence in terms of sets of 

minima of independent random variables.  The resulting multivariate 

distribution of component lifetimes generalizes Marshall & Olkin's 

multivariate exponential distribution but allows for the possibility 

of monotone failure rates. 

The above dependence distribution is then derived through a 

"fatal shock" model where the shocks arrive according to a time 

dependent Poisson process. The failure rates of the component life 

times are determined by the intensity functions of the processes. 

* 
This research was supported in part by Office of Naval Research 

Contract N00014-fr?-X OUPTUM < 
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1.  INTRODUCTION 

Let X., ..., X. be theoretical failure times of k components 

of a series system; that is, if the system were to continue, the 

ith component would fail at time X..  The system fails when the 

first component fails so that failure times of the other components 

become unobservable.  Only the system failure time, U = min{X1, ..., X,), 

and the component or components which caused the failure are observable. 

The comiguration of components causing the failure is called the 

failure pattern, we describe it in more detail later. 

Problems of this type have arisen in two diverse applications. 

First, in the  context of actuarial science. Cornfield (1957), Kimball 

(1958), Chiang (1968), and Berkson and Elveback (I960) use the 

"competing risk model" in the preparation of life tables for bio- 

logical populations; Moeschberger and David (1971) discuss applications 

of the competing risk model and consider the problem of estimating 

parameters of the underlying life distributions. 

Second, problems having the same mathematical structure occur 

in connection with the reliability and safety of engineering systems. 

Marshall and Olkin (1967), Arnold (1968), and Bemis, Higgins and 

Bain (1972) are papers which appear to be motivated by engineering 

applications. 
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1.1     Survival  Times and Functions 

Let X denote survival  time,   i.e.,   the  length of  time until a 

particular functioning object  fails to  function properly.     Once the 

object fails  it  stays  in  that  state,  we are not considering it to 

be  repairable.     Except  for the  intuitive background,   in this article 

one may think of  survival  time  as meaning simply a non-negative 

random variable   (r.v.).     The  survival  function of X, 

F(x)   = P[X  >  x];        x  >   0, 

is the probability that the object survives at  least x units of time. 

As a consequence of  the  frequency  intepretation of probability, 

F(x)   is also the proportion of a large population which will survive 

till age x.     Thus,   as Grubbs  and Shuford   (1973)   have done in constructing 

a probabilistic  theory of combat,  if interactions between the strengths 

of the two armies are ignored,     then the proportions of combatants 

on each side  surviving at  time  x can be estimated by F(x). 

This article treats  two or more  survival  times  jointly,  par- 

ticularly when they are dependent.     If X and Y are  survival times, 

then 

F(x,y)   = P[X  >  x,   Y   >  y];     x,y >   0, 

is  their joint survival  function.    Joint survival  functions  for 

more  than two objects  are  defined in an analogous manner. 

Possible applications  of   joint survival  functions  are  suggested 

by the  following examples.     First,  denoting the   life  times of 

husband and wife by X and Y,   respectively,   an  insurance company 

sellirg an annuity will be  interested in the bivariate  survival 

function.     Second,   the two engines of a  twin-engine  airplane can 

fail  separately or simultaneously;  the  joint surviral  function is 
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important in safety considerations.  Third, for traffic congestion 

stud ess. one is interested in the time gaps between cars on a two 

lane or multilane highway. 

The exponential distribution 

F(x) =0,  x < 0,  F(x) - 1 - e_Xx,  x > 0 (1.1) 

has proved useful as a model for life testing, see Epstein and So bei 

(1953) , but it has a "no aging property" which is peculiar in this 

context.  If the r.v. X is exponential then 

P[X > x + A| X > x] = P[X > A] 

for all x ^ 0, A > 0.  That is, in a probability sense, residual life 

is independent of age. 

Obviously many objects age, i.e., become more prone to failure, 

as they become older.  Some actually strengthen as they get older, 

e.g., some electronic circuits and many new mechanical devices. 

The concept of failure rate plays a role at this point.  Let 

X be a non-negative random variable with density f(x), distribution 

function (d.f.) F(x), and survival function F(J:) = 1 - F(x). The 

failure rate is 

r(x) r.  11*1 = - -£- (log F (x)). (1.2) 
F(x)     dx 

Alternatively we may write 
x 

F(x)   = exp   [-  /    r(t)dt]. (1.3) 
0 

The  failure rate  is useful and has a meaningful  interpretation,   for 

r(x)Ax represents  approximately the probability that an object of 

age x will  fail  in  the  interval   [x,   x +  Ax] . 
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Barlow and Proschan (1965) Introduce monotone failure rates as 

follows. 

Definition. A nondiscrete univariate distribution F(x) is IFR (DFR) 

if _   .. 

p(x > x + A| x > x) = Lix+AI 
F(x) 

is decreasing (increasing) in x for every fixed A >0, x ^ 0 such 

that F(x) > 0. 

If F::;) has a density and F(O-) = 0, then F(x) b«ing IFR (DFR) is 

equjvalent to the failure rate r(x) of (1.2) being increasing 

(decreasing) . 

acme distributions which have been important in life studies 

are i) the exponential with constant failure rate ii) the Weibull, 

with r(x) = pax   and iii) the Gompertz with r(x) = B exp(cx); 

B,C > 0. Makeham's formula, r(x) = A + B exp(Cx); B,C > 0, has 

been important in the theory of life insurance. 

1.2 Multivariate Exponential Distributions 

Since the exponential distribution plays a crucial role in many 

univariate lifetime problems, we are concerned with multivariate 

extensions of it. 

The simplest multivariate distribution with exponential marginals 

is composed of independent exponential distributions. With the multi- 

variate hazard rate defined as r(x1, ..., x.) 

= f(x1, ...» x, )/F(x1, ... , xv)» t^6 hazard rate of independent 

exponentials is obviously constant. Basu (1971) shows that the 

only absolutely continuous bivariate distribution with exponential 

marginals and constant bivariate hazard rate is that of two inde- 

pendent exponei tials. 
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Gumbel (1960) presents a bivariate discribution with exponential 

marginals and joint survival function 

G(x,y) = e"x"y"<5xy;  0 < 6 _< 1;  x,y > 0. 

The coefficient of correlation for this bivariate distribution is 

either negative or zero. 

Freund (1961) studies the following model.  Suppose that two 

exponential lifetimes, with parameters a  and ß , function inde- 

pendently until the first failure.  At failure the remaining 

lifetime becomes exponential with a new parameter, either a' 

replacing a or ß* replacing ß.  This may realistically represent 

a situation where two components perform the s.une function, and 

the failure of one component puts additional responsibility on the 

remaining one. 

Freund's distribution has the "no aging property" 

F(x -f A,y + A) = F(x,y)-F(A,&) ;   A,x,y > 0. 

But F.U), the marginal distribution of X, is IFR (DFR) if and 

only if a < a'(a > a') and similarly F«(y) is IFR (DFR) if and only 

if ß <ß,(6 > ß*).  Since the hazard rate r(x) of an exponential 

distribution is equal to its parameter, this result is intuitive. 

Note that the failure rates of the marginals can be increasing, 

decreasing, cr even monotone in opposite directions. 

Marshall and Olkin (1967) derive from three different models 

a bivariate distribution which has exponential marginals and joint 

survival function 

F(x,y) = exp{- X^x -   A2y - X12 max(x,y)}; 
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x,y >^ 0; ^I'^J'^IJ  - ^'  We ca^^ thi8 class of distributions the 

bivariate exponential distribution, BVE, and its extension to n 

variables the multivariate exponential distribution, MVE. 

Marshall and Olkin derive the BVE through a "fatal shock" 

model, a "non-fatal shock" model, and a "no aging" model.  In 

the "fatal shock" model three independent Poisson processes, with 

parameters X »A-, and X.2, govern the respective occurrences of 

failures of component one, component two, or both components in 

a two component system.  Their "no aging" model shows that, 

analogous to the univariate exponential dirtribution, 

F(x + A,y + A) = F(x,y)F(&,A) ;  A > 0; x,y >^ 0; 

i.e., P[X > x + A,Y > y + A|X > x,Y > y] = P[X > A,Y > A], 

with exponential marginals, if and only if F(x,y) is BVE.  Allowing 

the A's to differ, they show that F{x + A^y + A2) = F(x,y)F(A1, A2) 

for all positive A1 and A- if and only if X and Y are independent 

exponential r.v.'s. 

Marshall and Olkin find the d.f. (which has a line of singu- 

larity along the main diagonal of the first quadrant), the moment 

generating function, moments, and several characteristics of the 

BVE.  For example they show that (X, Y) is BVE if and only if 

there exist independent exponential r.v.'s U, V and W such that 

X = min(ü, W) and Y = min(V, W).  Also if (X, Y) is BVE, then 

min(X, Y) is exponential. 

Marshall and Olkin also have a complete discussion of the 

MVE, with survival function given by 
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FCXj^, ..., xk) = exp(- I       Aixi - Ii<j^ij max(xi,x.) 

" ^i<j<kAijkmax(xi'xj'xl) - •'• 

- ^-j^  ^maxUj^ . .., xk) ) 

where the \'s  are non-negative and not all zero. 

2.  DEPENDENCE AND AGING ASPECTS OF MULTIVARIATE SURVIVAL 

The theory of monotone failure rate has proved useful as a 

probabilistic model of univariate survival time, particularly in 

reliability theory. The exponential distribution is important in 

this theory as the boundary between IFR and DFR distributions. 

In searching for multivariate extensions of the monotone failure 

rate idea, the "no aging" property makes it appealing to require 

that the boundary between multivariate IFR and DFR should be the 

class of MVE distributions.  Brindley and Thompson (1973) obtain 

this result for the following generalization of the monotone 

failure rate concept. A multivariate d.f. F{x,,   ..., x. ) defined 

on the positive orthant is IFR (DFR) if 

PCX, > x1 + A, ..., Xk > x. + A)   F^ + A, ..., xk + A) 

"" P(X  > x1, .. ., Xk > xk) ~~~ "  FUjy •••» \~   ~ 

is decreasing (increasing) in x., ..., xk for each A >0, and all 

x., ..., x. >_ 0 such that Fix,,   ..., Xj) > 0. The failure times 

(non-negative r.v.'s) X,, ..., Xk are jointly IFR (DFR) if the 

d.f. of each subset of them is IFR (DFR). 

The point here is that it is possible for F(x,, ..., x.) to 

be increasing in each variable and yet some subset of X,, ..., Xk 
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may have a marginal distribution which is not increasing in each 

.ariable.  For example, Freund's bivariate exponential distribution 

has the no aging property and hence is IFR but, if a > a' , 

F1(x) will be DFR. 

In the definition of jointly IFR, the requirement that each 

subset of the variables have a property is reminiscent of the 

definition of independent events 

Harris (1970) defines a d.f. FCx,, ..., x.) to be multi- 

variate IHR if i. FU., ..., x.) is IFR in the sense of the 

previous paragraph and ii. the variables X,, ..., X. possess a 

positive dependai;ce property called right corner set increasing (RCSI) 

In the bivariate case, RCSI is the requirement '^hat 

P(X > x'. Y > y'|X s x, Y > y) 

be increasing in x and y. The RCSI property implies the series 

bound 

F(x,y) > F^x) F2(y). 

Harris obtairs several results for IHR variables including the 

property that subsets of IHR r.v.s are IHR. This shows that 

nu.T tivariate IHR r.v.s are multivariate IFR. Gumbel's  distribution 

is an -xample of IFR r.v.s which are not IHR; the series bound 

need not hold. 

Positive dependence properties, like RCSI, will be reasonable 

for studying the life times of components all subjected to the same 

environment.  But we may wi&n to study life times subject to 

different environments and there are several other types of positive 

dependence which imply the series bound and are a^ intuitively 

appealing as RCSI. For example, positive likelihood ratio 
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dependence and nositive regression dependence,   see Lehmann   (1966) 

and Dykstra,  Hewett,   and Thompson   (1973)   also imply the  series 

bourd.     Further the parallel definition of DHR is disappointing 

in that  the boundary between  IHR and DHR consists of independent 

exponential distributions 

Finally,   there  is no reason why aging and positive dependence 

need  go together.     If X and Y are r.v.s uniformly distributed on 

the triangle with vertices   (0,0),   (0,1),   and   (1,0),  then X and Y 

are  jointly IFR but they exhibit a negative dependence property 

which we may call right corner set decreasing.     Dependence and 

aging are  in fact orthogonal properties. 

Since dependence  logically need not  accompany monotone  failure, 

such concepts need not be included in multivariate extensions of 

univariate monotone  failure rate.     Multivariate  IFR and DFP as 

defined by Brindley and Thompson   (1973)   are  strictly aging 

concepts which  lead to a symmetric theory,   and the MVE distributions 

form the boundary between them.     Sets of minimums of IFR lifetimes 

are  IFR,   and Harris1   IHR distributions  form a  substantial subclass 

of the  IFR distributions. 

3.      INDEPENDENT COMPONENTS 

3.1    Independence Model 

The  initial  systems to be considered are those consisting 

of  independent components.    The model  is  as  indicated in Figure  1. 
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Figure 1 

ThGoretical Failure Times for Independent Components 

component 1 

component 2 

component k 

system U 
—»— time 

Denoting the survival functions of U and X. by G and F.(i=l, ..., k) , 

we have u = min(X,, ..., X, ) and 

G(x) =  n F.(x). 
i=l 1 

(3-1) 

It  is well known that,   for  independent components,   system 

failure rate  is the  sum of component  failure  rates.     In fact,   from 

(1.2)   and   (3.1), 

rn(x)   =  - ^   (log G(x))   =     E     - A   (log  F. (x)) . U dx 

=     E r.(x) 
i=l 1 

(3.2) 

The probability of tied values is zero so that the failure 

pattern is simply which one of the components causes the system 

to fail. 

The joint probabilities of failure time and failure pattern 

are, for i=l, .,., k: 

P(U>u, X. =U)=P(u<X. < min(X.) ) = Z00 G(x) r. (x) dx. i 1   j/i 3     u     i 

567 

    ~ ^u^Mm^^^.^, ,M_„J_^. 



The probability that the ith component causts the system to 

fail is P(X. = U) = IT., say. 

TT. = / G(x)r. (x)dx. 
1   0     1 

An example of the utility of these ideas appears in Vesely, 

Waite, and Keller (1971). They are concerned with the design of 

a safety system which will shut down an atomic reactor should it 

begin to go out of control. They consider a manual as well as an 

automatic system and for each, they estimate reliabilities from 

theoretical considerations. Estimated component reliabilities 

for the manual system appear in Table 1. From this Table they 

conclude that, effort to improve reliability of the manual system 

should center on relays and console switches; improvement of 

reliability of terminals and connectors, and wires does not pay 

off in improved system reliability. 

Table 1 - Manual Control System 

Component Il's 

Relays   (8) 
Conso. e Switches   (2) 
Terminals and Connectors   (27) 
Wires   (76) 

.6477 

.3076 

.0262 

.0185 

The conditional survival function of system life given that 

the ith component caused failure  is 

-1    00 

G(u|Xi   =   U)     =   TK /u     G(x)ri(x)dx, 

and the conditional density is 

g(u|xi = U)   = iTi"1 G(u)ri(u). (3.3) 
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This is equation   (2.5)   of Moesohberger and David   (1971).    From 

equations   (1.3)   and   (3.3)   we obtain 

r        fx g(u|x =U)      -I 
F. (x)  = exp -IT.  I ft  i  du,     i=l,   ...,  k. (3.4) 1 L    1J u       G(u) j 

Thus, as Berman (1963) has observed, the distribution of failure 

time and failure pattern uniquely determines that of the component 

lifetimes. 

3.2 Proportional Failure Rates 

For two series systems of independent and identical components, 
kl consisting of k.. and k« components respectively, then r.fx) = r—  r2(x) 

In general we say that X and Y have proportional failure rates if 

there exists a constant 0 > 0 such that 

rx(x) = erY(x) (3.5) 

for all x > 0. 

The assumption of proportional failure rates for the component 

lifetimes of a series system has occurred several places in the 

literature.  See Allen (1963), David (1970), Sethuraman (1965) 

and Nädas (1970).  We may summarize the results concerning pro- 

portional failure rates as follows. 

Theorem 1.  For continuous and independent X., ..., X. , the 

following are equivalent: 

i)  X1 , ..., X. have pioportional failure rates 

ii)  ri(x) = ni-ru(x);  i=l, ..., k (3.6) 

iii)  F^x) = [Gü(x)]ni;  i=l, ..., k (3.7) 

iv)  failure time is independent of failurs pattern and 
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v)     there  is  a conunon transformation h so that MX.),   ...,   h(XK) 

are independent exponential  r.v.s. 

Proof.     Clearly ii)   implies i),  but also  i)   implies ii). 

For if r.(X)   = 0..r.(x)   with 0..   >  0  for  i 5^  j   then rTT(x)   = r.(x)-0   . 
ij   j ij u DO 

where 0   .=10..     and 
•D       i     ID 

"j  =    ;0  G(x)rj(x)dx = Q^- • 

The equivalence of ii) and iii) is a result of (1.2) and (1.3). 

The equivalence of ii) and iv) follows from (3.3). We have 

r, (u) = n.- 
g(ulxi = U) 

G(u) 

Hence r.(u) = n.'r (u) if and only, for i~l, ..., k, g(u|x. = U) = g(u), 

the density function of U. 

Now iii) implies v) where the transformation h is given by 

x 
h(x) = / rrT(t)dt. 

0 u 

Note that h is continuous and non-decreasing. 

From (1.3), 

Fi(x) = [GU)]111 = exp[-n.h(x)]. 

Let Y. = h(X.) and h~1(z) = inf {x:h(x)>^z}. 

FY (y) = P(Yi>y) = P[h(Xi)>y] 
i 

= P[Xi>h~
1(y)]= Fi[h'

:L(v)] 

= exp{-n;h[h"1(y)]} = expl-.Ly), 

which is the survival function of an txp-mential r.v. 
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Finally v) implies i), since 

F^x) = P(Xi>x) = P[h(Xi)>h(x)] 

= F  (h(x)) = exp{-0 h(x)}. 
i 

where h is the assumed trr.nsformation.  Tnus 

r.Cx)   =- A   [logF.Cx)]   = 0.  ^ . 

In the case of proportional  failure rates we have 
_1 
TT . 

G ^ F.     ;     i=l,    ,  k. 

If some IT. is small, then these equations make it appealing to 

assume that the distribution of U can be well approximated by r 

limiting extreme value distribution.  For, if TT.  =n then G«=F.n 

is the survival function of the minimum of n independent r.v.s. 

all having d.f. F.. 

The possibilities appear in Table 10.2 of Thompson (1969). 

The Cauchy type limit assigns no probability to positive values 

and hence is unacceptable as a distribution of failure time.  The 

exponential type would imply that lifetimes could be negative as 

well as positive.  Clearly the limited type with lower limit zero 

is the most appropriate choice of distribution.  The limited type 

with that limit is the Weibull which has density, 

1   a 
. v       a-1 -pu        « w(u) = p a u  e   , p,a > 0. 

4.  DEPENDENT COMPONENTS 

4.1 Dependent Component Model 

Marshall and Olkin characterize their MVE in terms of sets of 

minima of exponential r.v.s. We may use this idea as one way to 

introduce dependence among component lifetimes.  The components 
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causing the system to fail can be indicated by a random vector 

V « (V., ..., V. ) where V. equals 1 or 0 according as the ith 

component is or is not failed. The sample space S of values which 

V can assume contains 2 -1 elements since the zero vector is 

excluded.  If V=s where s e S then we say that the system has 

exhibited failure pattern s. We assume a collection of independent 

and continuous r.v.s {Z : s t S]  where Z„ is the theoretical time s s 

of occurence of failure pattern s. 

Now, the theoretical failure time of the ith component is 

X. = min (Z );      i=l, ..., k (4.1) 

and system failure time is 

U = min{X , X, ) = min(Z ). 
1       K   seS S 

(4.2) 

We wish to observe that David (1973) has also suggested the model 

(4.1). 

For the bivariate case, the model is indicatea in Figure 2. 

Figure 2 

Theoretical Failure Times for Bivariate Dependent Components 

Z10 

'01 

11 

4L -» time 

572 

MUMMMiMtfii 



Let G and F denote the survival functions of U and Z s s 

respectively, and let -n    be the probability of failure pattern s; s 

G(z) = H Ffz) 
seS s 

(4.3) 

and 

TT  = p(V = S) = P(Zö  = U) s s (4.4) 

Let r-p, i.,   and r be the failure rate functions of U, 

X., and Z respectively,  We have 

ri(x) = Z rs(x)  and ^(x) = I rs(x) 

{s:si=l} 
S 

but there will be no general expression of r^. in terms of {r } 

A special case of an observation of Harris is that 

{Xj^ > x^ ..., Xk > xk} = n {Zs > ys} 
seS 

where y = max^.s.., ..., x. s. ) , seS, Hence 

F{x1, ..., x ) = n F (y ). 
seS 

(4.5) 

Note that X,, ...» X. have multivariate d.f.(4.5) if and only 

if there exists a collection of independent r.v.s {Z :  s e S] such 

that X. = inin(Z ).  Hence, equation (4.5) is an alternative way of 

{s:s.=l} 

representing the dependent component model of this section. 

The marginal distributions of (4.5) have the same form as the 

parent distribution.  In fact 

F{x1,   ..., xm, 0, ..., 0) =  11 Fs[max(x1s1, ..., XjS / 0, ..., 0) ] 
seS 

n        F 

i mi m 

[max(x1s1,   ...,   x  s   ) ] 11 mm 
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where  Fe       c (x) =     n      F (x). 
S. i    • • • i    s s 
1      m     sin+l' ••" sk 

However, consider generating a bivariate Weibull distribution 

by taking 
as F (t) = exp[-pct 
ö] 

for s = (0,1), (1,0), (1,1).  We obtain 

a10     a01 alll 
F(x1,x2) = exp <\-P1o

xl  ~PÜ]X2   -P11[inax(x1,x2) ]   (    . (4.6) 

Note that (4.6) differs from the bivariate Weibull mentioned in 

Marshall and Olkin (1967) and discussed in Moeschberger (1974); 

the marginals are not Weibull. 

For the conditional density of system failure time given 

failure pattern s, using (3.3), we obtain the expression 

g(u|v=s) = TT ■1G(u) • r (u) . (4.7) 
s s 

Using (4.7) and (1.3) we may write (4.5) in the alternative form 

Ffx,, ..., x.) = exp[-Z  TT J   gju|V=s)d j 
1      k       ses  s 0  G(u) 

where y = max(x,s1, ..., x, s.).  Again, the distribution of failure 

time and failure pattern uniquely determines that of the component 

survival times. 

Brindley and Thompson observe that sets of minimums of multi- 

variate IFR(DFR) failure times are multivariate IFR(DFR).  Hence if 

{Z :  s e S} are univariate IFR(DFR) then X. , ...» X. are multi- 

variate IFR(DFR).  For example, component failure times having the 

bivariate Weibull of (4.6) will be multivariate IFR if a-.«» ani' 

and ou, are all greater than 1. 
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4.2 Proportional Failure Rates 

The assumption of proportional failure rates in the model 

(4.b) amounts to 

rs(x) = 7rg • ryU) ,  s e S. (4,8) 

That is, the constants of proportionality are the probabilities of 

the failure patterns.  Now from (3.2) and (4.1), 

ri(x) = Tii • ^(x) (4.9) 

where 

■n.   =      Z TTS = P(X. = U). 
1   {s:s.=l}   1 

By summing (4.9) we obtain, as a generalization of (3.2), 

k      k 
rTT(x) = Z r. (x)/ Z TT. , 
u     i=l 1   i=l 1 

With the additional assumption of   (4.8),   the dependent component 

model   (4.5)   becomes 

F{x1,   ...,   xk)   =     n     [G(y  )]   S (4.10) 
seS 

where y = max(x1s1, ..., x. s. ) .  This is a joint survival distri- 

bution, for the k components of the system, which is similar to 

that of Marshall and Olkin's MVE.  In fact, if we take G(t) = exp(-Xt) 

we obtain their MVE survival function: 

F(x1, ..., xk) = exp[-XZ TT max(x1s1, ..., x^s^ ] . 
SES 

The marginal distributions of (4.10) again satisfy (4.10) 

only in fewer variables.  The IT'S have the same significance and 

even the d.f.G is the same.  For example 
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PCX,,    ...,   x   ,   0,   ...,   0)   =     11   ^GfmaxCx^,,   ,..,   x  s   )]} 
ses 

TT' 
S«  • • • o 

n {G[max(x1s.,   ...,  x s )]} m 

11 mm s. /   • • • > s 1 m 

where   TT
1 = Z TT ,   the marginal 

1 m    s   .,     ...,   s,        1        m m+1        k m+1, k 

probability of failure pattern (s., ..., s ) among the first 

m components. 

Theorem 1 carries over directly to the dependent component 

model. 

Theorem 2.  For continuous and independent (Z :seS}, the • 

following are equivalent: 

i)  {Z :  seS} have proportional failure rates 

J.i)  rs(x) = HgTytx), seS (4.8) 

iii)  Fs{x) = [GyCx)]^ , ses 

iv)  failure time is independent of failure pattern 

and 

v)  there is a common transformation h so that h(Z ), seS, 
s 

are independent exponential r.v.s. 

Since U = min(Z ), and the events {V=s} and {U=Z } are 
seS s s 

equivalent, the proof is exactly as in Theorem 1 except that 

(4.7) is used instead of (3.3). 

As an example of Theorem 2, consider the bivariate Weibull, 

(4.6).  By calculating the failure rates, we see that failure time 

and pattern will be independent if and only if ai n=0'ol=:ail*  Tllen 

from (4.8) , 

7T10=P10/(P10+P01+P11)' 7T01=P01/(P01+P10+P11)' and 1Tirpii/(poi+pio+pii) 
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As in the case of independence, since one of the IT'S will be 

small, the equations 

_   _  S 
G = F    , ses 

s 

make it appealing to assume that the distribution of failure time 

is well approximated by a limitina extreme value distribution. 

The Weibull seems to be the most satisfactory of these. 

In a sample of size N from (4.10), let U- and v*^' denote the 

time of failure and the failure pattern for the jth observation, 

j^l, ..., N. These are the only observable quantities, and from 

them we might wish to make inferences about the distribution of 

component lifetimes.  In such a sample, let N be the number of 
s 

occurences of pattern s and let n be an observed value of N . 
s s 

E  N =N. 
ses s 

Because of the independence between failure time and failure 

pattern, the joint density of the observations U. and V ^ , 

j=l, ..., N is 

N n 
n g(u.) •  II  TT  

s 

j=l   ^   seS  s  ' 

Incorporating the Weibull choice of G into this equation, the 

joint density of the observations becomes 

N 

M N     ,   -p. ,u.a       n 

j=l  J seS s  ' H.J-U 

where p,a>0 are the parameters of the Weibull. 
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Thus, with proportional failure rates, we may assume that 

system failure time has a Weibull distribution independent of 

failure pattern; and we may take observed failure patterns to 

have the multinominal distribution and be independent of the 

observed failure times. 

If a=l, then (4.5) yields the MVE distribution studied by 

Arnold (1968), and Bemis, Higgins and Bain (1972). Then 

N N 
I    U.   and  {N   }  are complete  sufficient  statistics and    E    U. 

i=l       ^ S i=l       ^ 

has a gamma distribution. 

5. TIME DEPENDENT FATAL SHOCK MODELS 

Marshall and Olkin derive their MVE distribution from three 

points of view, including tue  "fatal shock" model.  In the 

univariate case this model would hypothesize that shocks arrive 

according to a Poisson process and that the first shock destroys 

the object.  Survival time would have the exponential distribution 

(1.1).  But the exponential has the "no aging" property which is 

non-intuitive for many applications.  How might we alter the fatal 

shock model to allow age dependent reliability behavior? For 

example, to model an IFR lifetime?  One way is to allow the process 

controlling the arrival of the shocks to be a non-homogeneous or 

time dependent Poisson process. 

A description of the time dependent Poisson process can be 

found, for example, in Parzen (1962).  Let N(t) be the random 

number of shocks to the object in time t. The times at which the 

shocks occur are T., T , ... where 0<T.<T2<... .  The inter 
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arrival times between shocks are 

112   2   1'    '  n   n   n-1 

Axioms of the Poisson process are: 

Axiom 0.     N(0)   = 0. 

Axiom 1.  Independent increments: for all choice of indices 

t- < t. < ... < t the random variables u   i        n 

N(t1) - N(t0), N(t2) - iHt^ ,   ...   ,   N(tn) - NCt^j^) 

are independent. 

Axiom 2.  For any t>0, 0<P{N(t) >0}<1. 

Axiom 3.  For any t £ 0 

,.   P{N(t-i-h) - N(t) > 2}_ n 
tt*    P{N(t+h) - N(t) = 1} u- h-^0 

Axiom 4.  For some function vft), called the intensity function, 

,.   1 - P{N(t+h) - N(t) = 0}_ ... iim  r  = o(t; . 
h-0 ^ 

These axioms imply that N(t) has generating function 

y(z.t)   = exp[A(t) (z-1)] 

where 

A(t) =/ v(x)dx. 

Since 

P(T1 > t) = P(N(t) = 0) = e"^5 

we see that there is a one-one correspondence between the process 

and the distribution of T, . 
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The function X (t) has the interpretation A(t) = E[N(t)].  If 

v(t) is constant we obtain the ordinary or homogeneous Poisson 

process where Mt) = v * t. 

The time dependent Poisson process can be transformed into 

a homogeneous Poisson process.  In fact, the process {M(u) , u ^ 0} 

defined by 

M(u) = N(A"1(u)),   u > 0 

is an ordinary Poisson process with 

E(M(u)] = E[N(A"1(u))] = A(A~1(u)) = u. 

If shocks to an object are fatal then the survival time of 

the object is the arrival time of the first shock; X = T. .  If 

shocks arrive according to a time dependent Poisson process then 

the survival function for the object is 

F{x) = P(T1 > x) = exp(-A(x)). 

The failure rate of X is the intensity function of the process: 

r(x) = - 33? (log F(x)) = v(x) 

Hence by specializing the intensity function, the fatal shock 

model yields all of the usual univariate life distributions and 

failure properties as special cases.* 

The neatness of this result was not inevitable; it is a 

consequence of the particular model assumed. Renewal theory is 

another common way of modeling reliability problems.  But as 

* Conversations with Larry Crow and Lee Bain led to this observation, 
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Gnedenko, Belyayev, and Solovyev (1969, p. 105) point out one 

must be careful to distinguish the failure rate of X from the 

renewal density of the process. 

Proceeding now to the multivariate case, we see that the 

distribution (4.5) can be derived from a fatal shock model.  We 

k 
consider that 2 -1 independent random shock processes are operating 

and that a shock occurring in the process labeled (s., ..., s.) 

destroys those components i, for which s.=l. The r.v. Z of 
i s 

Section 4.1 is the time of occurence of the first shock in the 

process  labeled  s.    As before,  with X.  defined by   (4.1),   the 

joint  survival   function   (4.5)   results. 
If shocks arrive according to time dependent Poisson processes 

then   (4.5)  becomes 

F(x1,   ...,   x.)   = exp[-    I   j        v   (t)dt] (5.1) 
seS     0 

where ys = max (x^, ..., x^) , r. e S, and vg(t) is the intensity 

function of the process labeled s.  Also v (t) = r (t), the failure s      s 

rate of Z . s 

We have already seen that the time dependent Poisson process 

can be made homogeneous by transformation.  In the fatal shock 

model, when can we perform a single time transformation so that 

all shock processes are homogeneous? Answer: in the case of 

proportional failure rates. 

To see this, first suppose that r (x) = IT  r^x), s e S. 

Let X(t) = f  rrT(x)dx and Me(u) = N (A~1(u)), s e S.  We have s      a 

E[Ms(u)] = E[Ns(X'
1(u)] =   fX      (U) vs(x)dx = ns X (A 1(u)) = Irl- 

and the M (u), s e S are all homogeneous Poisson processes. 
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Conversely, suppose M (u) = N (h(u))/ s e S are independent s s 

homogeneous Poisson processes. 

P[h'1{Zc)   >  u]   = P[Zc  > h(u)] 
9 S 

= P[N   (h(u))   = 0]   = P{Mc!(u)   =  0) s s 

= exp   (-0su). 

Theorem 2  then states that  {Z   :   s  e  S}  have proportional failure 

rates. 
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