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RELIABILITY OF MULTIPLE
COMFONENT SYSTEMS
*

Larry Lee and W. A. Thompson, Jr.

University of Missouri - Columbia

Abstract. Brindley and Thompson (1973) have introduced a
multivariate concept of monotone failure rate.

Here we treat a mathematical model which has arisen in bio-
logical and engineering applications. In a biological context one
refers to the theory of competing risks; in the engineering appli-
cations the model represents a non repairable series system. The
system fails when the first of its components fails so that not
all component lifetimes are observable.

Initially, we assume the components of the system to be
independent. Then we introduce dependence in terms of sets of
minima of independent random variables. The rrzsulting multivariate

distribution of component lifetimes generalizes Marshall & Olkin's

multivariate exponential distribution but allows for the possibility

of monotone failure rates.

The above dependence distribution is then derived through a
"fatal shock" model where the shocks arrive according to a time
dependent Poisson process. The failure rates of the component life

times are determined by the intensity functions of the processes.

*
This research was supported in part by Office of Naval Research

Contract N00014-6%-.B507—504 .
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1. INTRODUCTION

Let xl, 000 Xk be theoretical failure times of k components
of a series system; that is, if the system were to continue, the
ith component would fail at time Xi' The system fails when the

first component fails so that failure times of the other components

become unobservable. Only the system failure time, U = min(Xl, 0.0 OF Xk)'
and the component or components which caused the failure are observable.
The conitiguration of components causing the failure is called the

failure pattern, we describe it in more detail later.

Problems of this type have arisen in two diverse applications.

First, in the context of actuarial science, Cornfield (1957), Ximball
(1958) , Chiang (1968), and Berkson and Elveback (1960) use the
"competing risk model" in the preparation of life tables for bio-
logical populations; Moeschberger and David (1971) discuss arplications i
of the competing risk model and consider the problem of estimating
parameters of the underlying life distributions.

Second, problems having the same mathematical structure occur

in connection with the reliability and safety of engineering systems.

Marshall and Olkin (1967), Arnold (1968), and Bemis, Higgins and
Bain (1972) are papers which appear to be motivated by engineering

applications.
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1.1 Survival Times and Functions

Let X denote survival time, i.e., the length of time until a
particular functioning object fails to function properly. Once the
object fails it stays in that state, we are not considering it to
be repairable. Except for the intuitive background, in this article
one may think of survival time as meaning simply a non-negative

random variable (r.v.). The survival function of X,

F(x) = P[X > x]; x >0,
is the probability that the object survives at least x units of time.
As a consequence of the freguency intepretation of probability,
F(x) is also the proportion of a large population which will survive
till age x. Thus, as Grubbs and Shuford (1973) have done in constructing
a probabilistic theory of combat, if interactions between the strengths
of the two armies are ignored, then the proportions of combatants
on each side surviving at time x can be estimated by F(x).
This article treats two or more survival times jointly, par-
ticularly when they are dependent. If X and Y are survival times,
then
F(x,y) = P[X > x, ¥ > yl; X,y >0,

is their joint survival function. Joint survival functions for

more than two objects are defined in an analogous manner.

Possible applications of joint survival functions are suggested
by the following examples. First, denoting the life times of
husband and wife by X and Y, respectively, an insurance company
sellirg an annuity will be interested in the bivariate survival
function. Second, the two engines of a twin-engine airplane can

fail serarately or simultaneously; the joint survival function is
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important in safety considerations. Third, for traffic congestion
stud ¢s. one is interes*ed in the time gaps between cars on a two
lane or multilane highway.

The exponential distribution

F(x) =0, x<0, F(x) =1-e"% x>0 (1.1)

has proved useful as a model for life testing, see Epstein and Sobel
(1953), but it has a "no aging property"” which is peculiar in this
context. If the r.v. X is exponential then

P[X > x + A} X > x] = P[X > 4]

for all x > 0, &4 » 0. That is, in a probability sense, residual life
is independent of age.

Obviously many objects age, i.e., become more prone to tailure,

as they become older. Some actually strengthen as they get older,
e.g., some electronic circuits and many new mechanical devices.

The concept of failure rate plays a role at this point. Let
X be a non-negative random variable with density f(x), distribution

function (d.f.) F(x), and survival function F(») = 1 - F(x). The

failure rate is

£(x) = ===~ = - — (log F (x)). (1.2)

Alternatively we may write

_ x
F(x) = exp [- / r(t)dt]. (1.3)
0

The failure rate is useful and has a meaningful interpretation, for

r(x) Ax represents arproximately the probability that an object of

age x will fail in the interval [x, x + Ax].

Sy

H
H
i
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Barlow and Proschan (1965) introduce monotone failure rates as
follows.
Definition. A nondiscrete univariate distribution F(x) is IFR (DFR)

if r
o F(x+4)
F(x)
is decreasing (increasing) in x for every fixed 4 >0, x > 0 such

P(X > x + Al X > x)

that F(x) > 0.

If Fx) has a densityand F(0-) = 0, then F(x) being IFR (DFR) is
equ:valent to the failure rate r(x) of (1.2) being increasing
{decreasing).

some distributions which have been important in life studiés
are i) the exponential with constant failure rate ii) the Weibull,

with r(x) = paxa-l

and iii) the Gompertz with r{(x) = B exp(Cx);
B,C > 0. Makeham's formula, r(x) = A + B exp(Cx); B,C > 0, has

been important in the theory of life insurance.

1.2 Multivariate Exponential Distributions

Since the exponential distribution plays a crucial role in many
univariate lifetime problems, we are concerned with multivariate
extensions of it.

The simplest multivariate distribution with exponential marginals

is composed of independent exponential distributions. With the multi-

variate hazard rate defined as r(xl, 37 xk)

= f(xl, g i xk)/f(xl, hora It xk), the hazard rate of independent
exponentials is obviously constant. Basu (1971) shows that the
only absolutely continuous bivariate distribution with exponential
marginals and constant bivariate hazard rate is that of two inde-

pendent exponertials.
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Gumbel (1960) presents a bivariate discribution witn exponential
marginals and joint survival function

Gix,y) = e XY 0XY, g <5 <1; x,y>o0.

The coefficient of correlation for this bivariate distribution is
either negative or zero.

Freund (1961) studies the following model. Suppose that two
exponential lifetimes, with parameters a and B , function inde-
pendently until the first failure. At failure the remaining
lifetime becomes exponential with a new parameter, either a'
replacing o or B' replacing 8. This may realistically represent
a situation where two components perform the s.ume function, and
the failure of one component puts additional responsibility on the

remaining one.

T AT

Freund's distribution has the "no aging property"
3 F(x» + A,y + 8) = F(x,y)*F(A,8); 4,x,y > 0.
. But Fl(x), the marginal distribution of X, is IFR (DFR) if and
only if o < a'(a > o') and similarly Fz(y) is IFR (DFR) if and only
if B <B'(B > B*). Since the hazard rate r(x) of an exponential
distribution is equal to its parameter, this result is intuitive.
Note that the failure rates of the marginals can be increasing,
decreasing, cor even monotone in oppcsite directions.

Marshall and Olkin (1967) derive from three different models
a bivariate distribution which has exponential marginals and joint

survival function

F(x,y) = expl{- A¥ = A,y = Ay, max(x,y)};
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x,y > 0; AI'AZ'AIZ > 0. We call this class of distributions the
bivariate exponential distribution, BVE, and its extension to n

variables the multivariate exponential distribution, MVE.

Marshall and Olkin derive the BVE through a "fatal shock"
model, a "non-fatal shock" model, and a "no aging" model. 1In
the "fatal shock" model three independent Poisson processes, with

parameters Al,Az, and A govern the respective occurrences of

127
failures of component one, component two, or both components in
a two component system. Their "no aging" model shows that,

analogous to the univariate exponential dictribution,

F(x + A,y + A) = F(x,y)F(A,40); A > 0; X,y > 0;
i.e., P[X>x + A,Y>y + AlX > x,Y>y] =P[X > A,Y > 4],
E with exponential marginals, if and only if F(x,y) is BVE. Allowing
the A's to differ, they show that F(x + B,y + 8,) = ?(x,y)?(Al, 8,)
for all positive Al and A2 if and only if X and Y are independent
exponential r.v.'s.

Marshall and Olkin find the d.f. (which has a line of singu-
larity along the main diagonal of the first quadrant) , the moment
generating function, moments, and several characteristics of the
BVE. For example they show that (X, Y) is BVE if and only if
there exist independent exponential r.v.'s U, V and W such that

X = min(U, W) and Y = min(V, W), Also if (X, Y) is BVE, then

min(X, Y) is exponential.
Marshall and Olkin also have a complete discussion of the

MVE, with survival function given by
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i<inj max(xi,xj)

= zi<j<kxijkmax(xi'xj’xl) cee

- Al...nmax(xl, 00K xk))

where the A's are non-negative and not all zero.

2. DEPENDENCE AND AGING ASPECTS OF MULTIVARIATE SURVIVAL

The theory of monotone failure rate has proved useful as a

probabilistic model of urivariate survival time, particularly in
reliability theory. The exponential distribution is important in
this theory as the boundary between IFR and DFR distributions.
In searching for multivariate extensions of the monotone failure
rate idea, the "no aging" property makes it appealing to require
that the boundary between multivariate IFR and DFR should be the
class of MVE distributions. Brindley and Thompson (1973) obtain
this result for the following generalization of the monotone

failure rate concept. A multivariate 4.f. F(xl, 200G xk) defined

on the positive orthant is IFR (DFR) if

P(x1>x1+A, CRCIY 3 ] xk>xk

P(x1 > Xp1 ooy xk > xk)

+ ) ?(xl + A, veu, X
= ﬂxl, e xk)

x ¥ &)

is decreasing (increasing) in oo eeer X for each 4 >0, and all
X)s «ees % > 0 such that F(x,, ..., %) > 0. The failure times
(non-negative r.v.'s) X;, ..., X, are jointly IFR (DFR) if the
d.f. of each subset of them Is IFR (DFR).

The point here is that it is possible for F(xl, ceer %) to

be increasing in each variable and yet some subset of Xl, = xk




-

may have a marginal distribution which is not increasing in each
sariable. For example, Freund's bivariate exponential distribution
has the no aging property and hence is IFR but, if o > a',
Fl(x) will be DFR.

In the definition of jointly IFR, the requirement that each
subset of the variables have a property is reminiscent of the
definition of independent events

Harris (1970) defines a d.f. F(x;r ««.y %) to be multi-

variate IHR if i. F(xl, a2t Iy xk) is IFR in the sense of the
previous paragraph and ii. the variables xl, 50 ] Xk possess a
positive dependzance property called right corner set increasing (RCSI).

In the bivariate case, RCSI is the requirement =hat

P(X >x'. Y>y'|X>x%x, Y >y)
be increasing in x and y. The RCSI property implies the series
bound

F(x,y) > F;(x) F,(y).

Harris obtains several results for IHR variables including the
propcrty that subsets of IHR r.v.s are IHR. This shows that
nultivariate IHR r.v.s are multivariate IFR. Gumbel's distribution
is an -'xample of IFR r.v.s which are not IHR; the series bound

need not hold.

Positive dependence properties, like RCSI, will be reasonable
for studying the life times of components all subjected to the same
environment. But we may wisun to study life times subject to
different environments and there are several other types of positive
dependence which imply the series bonnd and are az intuitively

appealing as RCSI. For example, pcsitive likelihood ratio
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dependence anc. vositive regression dependence, see Lehmann (1966)
and Dykstra, Hewett, and Thompson (1973) also imply the series
bourd. Further the parallel definition of DHR is disappointing
in that the boundary between IHR and DHR consists of independent
exponential distributions

Finally, there is no reason why aging and positive dependence
need go together., If X and Y are r.v.s uniformly distributed on
the triangle with vertices (0,0), (0,1), and (1,0), then X and Y
are jointly IFR but they exhibit a negative dependence property
which we may call right corner set decreasing. Dependence and
aging are in fact orthogonal properties.

Since dependence logically need not accompany monotone failure,
such concepts need not be included in multivariate extensions of
univariate monotone failure rate. Multivariate IFR and DFR as
defined by Brindley and Thompson (1973) are strictly aging
concepts which lead to a symmetric theory, and the MVE distributions
form the boundary between them. Sets of minimums of IFR lifetimes
are IFR, and Harris' IHR distributions form a substantial subclass

of the IFR distributions.

3. INDEPENDENT COMPONENTS

3.1 Independence Model

The initial systems to be considered are those consisting

of independent components. The model is as indicated in Figure 1.
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Fiqure 1

Theoretical Failure Times for Independent Components

component 1 =]
component 2 ¥2
X
component k -~k
system U _
0 i time

Denoting the survival functions of U and Xi by G and fi(i=l, N R

we have U min(xl, 2l ol e Xk) and

k .
mF,(x). (3.1)
i=1 .

3(x)

It is well known that, for independent components, system
failure rate is the sum of component failure rates. In fact, from

(l.2) and (3.1) ]

r, (%) = - a‘-’i (log G(x)) = - % (log F, (x)).

[ ae B0

i=1

]
[{ I o -

1ri(x). (3.2)

i
The probability of tied values is zero so that the failure é
pattern is simply which one of the components causes the system
to fail.
The joint probabilities of failure time and failure pattern

are, for i=1, ..., k:

P(U>u, X, =U) = Plu <X, < r;;r;(xj)) =/ G(x)r, (x)dx. |
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The probability that the ith component causes the system to

fail is P(xi =U) = T, . say.

"= fo G (x) r; (x)dx.

An example of the utility of these ideas appears in Vesely,
Waite, and Keller (1971). They are concerned with the design of
a safety system which will shut down an atomic reactor should it
begin to go out of control. They consider a manual as well as an
automatic system and for each, they estimate reliabilities from
theoretical considerations. Estimated component reliabilities
for the manual system appear in Table 1. From this Table they
conclude that, effort to improve reliability of the manual system
should center on relays and console switches; improvement of
reliability of terminals and connectors, and wires does not pay
off in improved system reliability.

Table 1 - Manual Control System

Component NN's
Relay= (8) .6477
Conso. e Switches (2) .3076
Terminals and Connectors (27) .0262
Wires (76) .0185

The conditional survival function of system life given that
the ith component caused failure is

-1 »
G(u|xi =0 =7, [, Gx)r,(x)dx,
and the conditional density is

glulx; = U) = ni—l a(u)ri(u). (3.3)
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This is equation (2.5) of Moeschberger and David (1971). From
equations (1.3) and (3.3) we obtain

X g(ulxi=U)

F, (x) = exp[-wi 0

i dﬁ], i=l, ..., k. (3.4)

G (u)
Thus, as Berman (1963) has observed, the distribution of failure

time and failure pattern uniquely determines that of the component

lifetimes.
3.2 Proportional Failure Rates

For two series systems of independent and identical components,
k

consisting of kl and k2 components respectively, then rl(x) = El rz(x).
2

In general we say that X and Y have proportional failure rates if
there exists a constant C >0 such that

rx(x) = 6rY(x) (3.5)
for all x > 0.

The assumption of proporticnal failure rates for the component
lifetimes of a series system has occurred several places in the
literature. See Allen (1963), David (1970), Sethuraman (1965)
and Nadas (1970). We may summarize the results concerﬁiny pro-
portional failure rates as follows.

Theorem 1. For continuous and independent xl, OV, Xk, the
following are equivalent:

i) xl’ g 7 Xk have proportional failure rates

ii) ri(x) = H.-ru(x); 1= e | B (3.6)

1
(Byx) 14 =1, ..., k (3.7)

iii) fi(x)

iv) failure time is independent of failure pattern and
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v) there is a common transformation h so that h(Xl), Spencd! h(xK)
are independent exponential r.v.s.
Proof. Clearly ii) implies i), but also i) implies ii).

For if r, (X) = O..rﬁ(x) with Oij >0 for i # j then rU(x) = rj(x)'O..

ij J
where O.j = i Oij .and
L. S g S 1
j = 0 G(x)rj(x)dx = e.j S

The equivalence of ii) and iii) is a result of (1.2) and (1.2).

The equivalence of ii) and iv) follows from (3.3). We have

g(ulxi = U)
r,(u) = Hi - 5
: G (u)
Hence r,(u) = I, -r (u) if and only, for i=l, ..., k, g(ulxi =U) = g(u),

the density function of U.
Now iii) implies v) where the transformation h is given by

X
h(x) = / rU(t)dt.
0

Note that h is continuous and ncn-decreasing.
From (1.3),

F,(x) = @)1 = exp[-IL h(x)],

Let Y. = h(X.) and h-l(z) = inf{x:h(x)>z}. |
i i % =
Fy (y)

i

P(Y,>y) = P[h(X;}>Y]

P[xi>h_1(y)]= fi[h-l(y)]

exp{-, 91" (y) ]} = exp(-1,y),

which is the survival function of a1 expanential r.v. :

- 57 -




Finally v) implies i), since

ﬁi(X) P(Xi>x) = P[h(xi)>h(x)]

f‘Yi(h(x)) = exp{-0,h(x) }.

where h is the assumed transformation. Thus

R = _ dh
ri(x) = T [log Fi(x)] = Oi ax °

In the case of proportional failure rates we have

If some LA is small, then these equations make it appealing to
assume that the distribution of U can be well approximated by ¢
limiting extreme value distribution. For, if wi-l=n then §=§in
is the survival function of the minimum of n independent r.v.s.
all having d.f. Fi'

The possibilities appear in Table 10.2 of Thompson: (1969).
The Cauchy type limit assigns no probability to positive values
and hence is unacceptable as a distribution of failure time. The
exponential type would imply that lifetimes could be negative as
well as positive. Clearly tie limited type with lower limit zero
is the most appropriate choice of distribution. The limited type
with that limit is the Weibull which has density.
a-le-pua

w({u) = p au + P,a > 0,

4, DEPENDENT COMPONENTS

4.1 Dependent Component Model

Marshall and Olkin characterize their MVE in terms of sets of
minima of exponential r.v.s. We may use this idea as one way to

introduce dependence among component lifetimes. The components
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causing the system to fail can be indicated by a random vector
V= (Vl, 0Q0/ Vk) where Vi equals 1 or 0 according as the ith
component is or is not failed. The sample space S of values which
V can assume contains 2k—l elements since the zero vector is
excluded. If V=s where s ¢ S then we say that the system has

exhibited failure pattern s. We assume a collection of independent

and continuous r.v.s {Zs: s € S} where Zs is the theoretical time
of occurence of failure pattern s.

Now, the theoretical failure time of the ith component is

xi = HIin (zs); i=l’ e o0 g k (4.1)

{s:siél}

and system failure time is

U=min{X.. ..., X,) = min(Z ). (4.2)
2 k S €S 9

We wish to observe that David (1973) has also suggested the model

(4.1).
For the bivariate case, the model is indicateu in Figure 2.
Figure 2 I
Theoretical Failure Times for Bivariate Dependent Components
2 | ]
(1,0) gl
s { (0,1) 201
4
(1,1) 211
X
component 1 1
component 2 ¥2
]
Byocan Y -» time

o
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Let G and ﬁs denote the survival functions of U and zs

respectively, and let Tis be the probability of failure pattern s;

G(z) = I f‘s(z) (4.3)
seS

and

mn_ =P(V=2s85) = P(zS = U) (4.4)

Let ryr Lyo and Ty be the failure rate functions of U,

xi, and Zs respectively. We have

ri(x) = I rs(x) and ;U(x) =z rs(x)

{s:si=l} §

but there will be no general expression of r,, in terms of {ri}.

U
A special case of an observation of Harris is that

{xl > Xyo oeees X > xk} = N {Zs > Ys}

s€S

where g = max(xlsl, a0l xksk), seS. Hence

F(xl, . 7 xk) = I Fs(ys). (4.5)
seS -

Note that xl, T te xk have multivariate d.f.(4.5) if and only
if there exists a collection of independent r.v.s {Zs: ¢ ¢ S)} such
that xi = min(zs). Hence, equation (4.5) is an alternative way of

{s:si=l}
representing the dependent component model of this section.

The marginal distributions of (4.5) have the same form as the

parent distribution. 1In fact
F(xl, seer Xy 0, ..., 0) = 1I Fs[max(xlsl, el xmsm, 0, ..., 0)]
seS
_ . I . Fs . [max(xlsl, Q00D xmsm)]
l, * e o g m 1, LK ] m
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where F . s (x) = it Fs(x).

Sm+l' NI Sk

However, consider generating a bivariate Weibull distribution

by taking
F (t) = exp[-pst 1

for s = (0,1), (1,0), (1,1). We obtain

%10 %01 “11

F(xl,xz) = exp 0%, =01%2 -pll[max(xl,xz)] : (4.6)

Note that (4.6) differs from the bivariate Weibull mentioned in
Marshall and Olkin (1967) and discussed in Moeschberger (1974);
the marginals are not Weibull.

For the conditional density of system failure time given

failure pattern s, using (3.3), we obtain the expression
-1-
glulv=s) = Mg Gl - r_(u). (4.7)

Using (4.7) and (1,3) we may write (4.5) in the alternative form
Y |
f(xl, el xk) = exp[-L "s-[ g=(E--l-y-:-s-)du]
seS 0o Guw

where yis = max(xlsl, o B xksk). Again, the distribution of failure
time and failure pattern uniquely determines that of the component
survival times.

Brindley and Thompson observe that sets of minimums of multi-~
variate IFR(DFR) failure times are multivariate IFR(DFR). Hence if

{Zs: s € S} are univariate IFR(DFR) then X YO Xk are multi-

1!
variate IFR(DFR). For example, component failure times having the

bivariate Weibull of (4.6) will be multivariate IFR if %07 %01

and « are all greater than 1.

11
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4.2 Proportional Failure Rates

The assumption of proportional failure rates in the model
(4.5) amounts to

= .
rs(x, e ru(x), 5 £ S. (4.8)

That is, the constants of proportionality are the probabilities of

the failure patterns. Now from (3.2) and (4.1),

ri(x) = ni . rU(x) (4.9)
where

1, = I ng =PX, =U).

o {sis;=1)

By summing (4.9) we obtain, as a generalization of (3.2},

k k

rU(x) = ﬁ ri(x)/.z s b

i=1 i=1 1

With the additional assumption of (4.8), the dependent component
model (4.5) becomes

Ul :
Flxy, veer %) = 1 [Gly)] ® (4.10)

seS
where Yo = max(xlsl, ol xksk). This is a joint survival distri-
bution, for the k components of the system, which is similar to
that of Marshall and Olkin's MVE. 1In fact, if we take G(t) = exp(-\t)

we obtain their MVE survival function:

F(xl, ceer X)) = exp[;éé T Max(x,8;, ..., X501,

The marginal distributions of (4.10) again satisfy (4.10)
only in fewer variables. The 7's have the same significance and

even the d.f.G is the same. For example
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F(xl, ceer X 0, ..., 0) = I fG[max(xlsl, veey hmsm)]} v

seS

e

S S

= | {E[max(xlsl, cevr %X 8 )1} 17" m

where ! = I T S0 the marginal

Siee+S S,...5_S offd
1 sm+l, ceer Sy 1 m m+l k

probability of failure pattern (sl, s X! sm) among the first

m components.

Theorem 1 carries over directly to the dependent component.
model,
Theorem 2. For continuous and independent {Zs:ses}, the -

following are equivalent:

i) {Zs: seS} have proportional failure rates

-d1i) rs(x) = Hs-rU(x), seS (4.8)

i) F_(x) [éU(x)]”s , SES

iv) failure time is independent of failure pattern

and

v) there is a common transformation h so that h(Zs), seS,

are independent exponential r.v.s.

Since U = min(Zs), and the events {V=s} and {U=Zs} are
SES

equivalent, the proof is exactly as in Theorem 1 except that

(4.7) is used instead of (3.3).
As an example of Theorem 2, consider the bivariate Weibull,
(4.6). By calculating the failure rates, we see that failure time
and pattern will be independent if and only if Ay9=01 %1 Then i

from (4.8),

"107P107 (P10%Po1*P11) ¢ T01=P01/ (Po1*P10%P11) BRd T117P))/ Pyt g%y
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As in the case of independence, since one of the 7's will be
small, the equations

g ~1
s

G = Fs , SES
make it appealing to assume that the distribution of failure time
is well approximated by a limiting extreme value distribution.

The Weibull seems to be the most satisfactory of these.

In a sample of size N from (4.10), let Uj and V(j) denote the
time of failure and the failure pattern for the jth observation,
j=1, ..., N. These are the only observable quantities, and from
them we might wish to make inferences about the distribution of
component lifetimes. In such a sample, let Ns be the number of
occurences of pattern s and let ng be an observed value of Ns'

I N_=N.
SES

Because of the independence between failure time and failure
pattern, the joint density of the observations Uj and V(j),
j=1, ..., N is
N n

s
.E g(uj) I LA
j=1 seS

Incorporating the Weibull choice of G into this equation, the

joint density of the observations becomes

N
z o
- =Ps_qUs n
u. 1 e =175 . n w8

=

(pct)N
J

where p,a>0 are the parameters of the Weibull.
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Thus, with proportional failure rates, we may assume that
system failure time has a Weibull distribution“independent of
failure pattern; and we may take observed failnre patterns to
have the multinominai distribution and be independent of the
observed failure times.

If o=1, then (4.5) yields the MVE distribution studied by

Arnold (1968), and Bemis, Higgins and Bain (1972). Then

N
z u, and {Ns} are complete sufficient statistics and
i=1 i

has a gamma distribution.

U,
1 1t

N~z

5. TIME DEPENDENT FATAIL SHOCK MODELS

Marshall and Olkin derive their MVE distribution from three
points of view, including tue "fatal shock" model. In the
univariate case this model would hypothesize that shocks arrive
according to a Poisson process and that the first shock destroys
the object. Survival time would have the exponential distribution
(1.1). But the exponential has the "no aging" property which is
non-intuitive for many applications. How might we alter the fatal
shock model to allow age dependent reliability behavior? For
example, to model an IFR lifetime? One way is to allow the process
controlling the arrival of the shocks to be a non-homogeneous or
time dependent Poisson process.

A description of the time dependent Poisson process can be
found, for example, in Parzen (1962). Let N(t) be the random
number of shocks to the object in time t. The times at which the

shocks occur are Tl, 12, .+ Where 0 < Tl < 12 < ,.. . The inter
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arrival times between shocks are

T, =1

1 T, =1

1’ 2

2-T1' oo ey Tn=Tn-Tn-1' ees e &

Axioms of the Poisson process are:
Axiom 0. N(0) = 0.
Axiom 1. Independent increments: for all choice of indices

to < tl < ... < tn the random variables

N(tl) - N(to), N(tz) = N(tl)’ cse 4 N(tn) - N(tn_l)
are indepenient.
Axiom 2. For any t > 0, 0 < P{N(t) > 0} < 1.

Axiom 3. For any t < 0

1i- P{N(t+h) - N(t) > 2}
heo FIN(t+h) - N(t) =

Axiom 4. For some function v(t), called the intensity function,

lim Lo PAN(E#h) - N(8) = 0}
h0 h

These axioms imply that N(t) has generating function

¥Y(z,t) = exp(A(t) (z-1)]

where t

A(t) =.f v (x)dx.
0

Since
P(T, > t) = P(N(t) = 0) = e M (H)
we see that there is a one-one correspondence between the process

and the distribution of Tl.
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The function A(t) has the interpretation A(t) = E[N(t)]. 1If
v(t) is constant we obtain the ordinary or homogeneous Poisson
process where A(t) = v ¢ t.

Tre time dependent Poisson process can be transformed into
a homogeneous Poisson process. In fact, the process {M(u), u > 0}
defined by

M = NA ), u>o
is an ordinary Poisson process with

EMw] = EINA ()] = 20" w) = u.

1f shocks to an object are fatal then the survival time of

the object is the arrival time of the first shock; X =T If

1.
shocks arrive according to a time dependent Poisson process then
the survival functior for the object is

F(x) = P(T; > x) = exp(-A(x)).

The failure rate of X is the intensity function of the process:
- d = =
r(x) = - = (log F(x)) = v{x).

Hence by specializing the intensity function, the fatal shock
model yields all of the usual univariate life distributions and
failure properties as special cases.*

The neatness of this result was not inevitable; it is a
consequence of the particular model assumed. Renewal theory is

another common way of modeling reliability problems. But as

3 . g
Conversations with Larry Crow and Lee Bain led to this observation
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Gnedenko, Belyayev, and Solovyev (1969, p. 105) point out one

must be careful to distinguish the failure rate of X from the

renewal density of the process.
Proceeding now to the multivariate case, we see that the

distribution (4.5) can be derived from a fatal shock model. We

consider that Zk-l independent random shock processes are operating
and that a shock occurring in the process labeled (sl, Iod; sk)
destroys those components i, for which si=l. The r.v. Zs of
Section 4.1 is the time of occurence of the first shock in the
process labeled s. As before, with xi defined by (4.1), the

joint survival function (4.5) results.
If shocks arrive according to time dependent Poisson processes

then (4.5) becomes

F(xl, ceer X ) = exp[- I _[ vs(t)dt] (5.1)
SES

where Yg = max (xlsl, S IOy, xksk), s € 8, and vs(t) is the intensity

function of the process labeled s. Also vs(t) = rs(t), the failure
rate of Zs'

We have already seen that the time dependent Poisson process
can be made homogeneous by transformation. 1In the fatal shock
model, when can we perform a single time transformation so that
all shock processes are homcgeneous? Answer: in the case of
proportional failure rates.

To see this, first suppose that r, (x) =1 ry (x), s € S.

s

t
Let X (t) [ ry (x)dx and M (u) = N (A~ (u)), s € S. We have
‘0

E[M_(u)] = E[N_ (A L) = f* Ly vg(x)dx = I A L)y = m_u;

and the Ms(u), s € § are all homogeneous Poisson processes.
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Conversely, suppcse Ms(u) = Ns(h(u)), 8 € S are independent

f homogeneous Poisson processes.

p[h'l(zs) > ul = Plz_ > h{u)]

PIN (h(u)) = 0] = P(M_(u) = 0)

exp (-Bsu).

Theorem 2 then states that {Zs: s € S} have proportional failure

rates.
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