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ABSTRACT

This report deals with sequential tests of problems
which can be formulated in terms of a 2x2 contingency table.
All of the important cases (marginal probabilities known and
unknown and marginal populations "observable" and "not
observable") are treated. Theory for finding the sequential
test regions is developed and the exact values of the impor-
tant test properties are found using Aroian's direct method
of sequential analysis. The tests are compared with fixed
size tests and a method of estimation is presented. Numerical

examples and computer programs are included.
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INTRODUCTION

This report presents theory and methods for treating
sequentially certain problems which can be formulated in terms
of 2x2 contingency tables. The report is organized as follows.
Chapter 1 contains some preliminary material, including a dis-
cussion of the different models which arise with the treatment
of 2x2 contingency tables. Chapter 2 treats some general
topics related to sequential analysis which are common to ail
of the models considered here. Chapters 3, 4 and 5 show how
to develop sequential tests and evaluate exactly their prop-
erties, for three important models of the 2x2 contingency
tables. Numerical examples are provided and the tests com-
pared with other similar tests, both fixed size and sequential
(when available). Chapter 6 presents a method which can be
used to estimate the parameters of a 2x2 contingency table at
the termination of a sequential hypothesis test. Chapter 7
summarizes the results, discusses some possible areas for
further research and ends with some concluding remarks. Compuier
programs used to perform the necessary computations are given

in the Appendix.
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CHAPTER 1

DISCUSSION OF 2x2 TABLES AND REVIEW OF THE LITERATURE

1.0 INTRODUCTION

This chapter introduces 2x2 contingency tables and treats
some of the common methods of analysis which have been used for
them. In general, 2x2 tables are used to test independence of a
bivariate Bernoulli process. The first section discusses, in
general, the tests of independence to be considered here. The
different types of 2x2 contingency tables can be divided into
two broad groups, tables for which the marginal probability func-
tions ire known and tables for which marginal probability functions
are unknown. These cases are discussed in Sections 1.2 and 1.3
respectively. The fixed size tebt procedures for these cases
are also reviewed. Section 1.4 surveys the different types of
problems which can be formulated in terms of a 2x2 table.

Some approximate methods of treating contingency tables

(e.g., the x2

test) are only appropriate when the sample size is
sufficiently large to meet certain conditions. For small samples,
some exact methods (i.e., methods which are not based on any

asympi~iLiv approximations) have been proposed. It is these exact

methods for small samples which are treated sequentially here.
The exact methods are, in theory, equally applicable to large :

samples; however, the necessary computation becomes laborious,

if not prohibitive, with presently available computing machinery. :
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1.1 TESTS OF INDEPENDENCE

This section introduces some of the preliminaries necessary
for the treatment given here to sequential tests of 2x2 con-
tingency tables. As explained in detail below, one is interested
in testing for independence or for some degree of dependence
between the rows and columns of a 2x2 contingency table. De-
pending on the underlying probability model of the situation
being considered, the degree of dependence can be expressed in
terms of a single parameter, say 9. There is one particular value

of 6, say 6 tor which the hypothesis of independence is true.

OI
There is positive dependence in the table if 9<90 and negative
dependence if 6>90. The probability models and the particular
value of 6 to be used for each are described in the following

sections.

In a two decision test, the hypothesis might be expressed,

for example, as :

4
HO: 8 = 90 vﬂ
(1.1) '

o]
[e2}
"

8,76,

Ho is usually known as tte null hypothesis and Hl is the alterna-

tive hypothesis and may be either simple or composite. When

testing this hypothesis, there are two types of errors with which H

one must be concerncd. Thesc are shown in Figure 1.1. |

D I T T T




Decision Based on Test Results

H H

0 1
HO No Error a Error
True State
of Nature Hl, R Error No Error

Figure 1.1 Error Probabilities for a Two Decision Test

The first is called a Type I or a error and is made when

there is a decision to reject H, when it is true; the proba-

0
bility of committing such an error is usually denoted by «a.
A Type II or B error occurs when the null hypothesis is accepted
when in fact some specified alternate hypothesis is truc. The
probability of such an error is usually denoted by R. The
following notation, however, is used here. Let a and # denote
the desired probabilities of the Type I and Type II errors re-
spectively and let a' and B' denote the actual error probabilities
of the sequential tests.

When a three decision test procedure* is being used, onc of

the three hypotheses must be selected. These hypotheses can be

specified as

1 1 70
HO: 9 =6, (1.2)
H2- 0 =ez>e0

*
The three decision test is a generalization of the standard two-

sided test;

that is, separate o and B errors can be specified

for each alternate hypothesis (see Goss (1974b)).
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In this case, there are four types of errors which can be made;

e T

a. is the probability of accepting Hl when ”0 is true and B]

is the probability of accepting HO or H2 when Hl is true; @,

is the probability of accepting H2 when HO is true, and ﬂ2 is the

probability of accepting Hl or ”0 when H2 is true. These error

probabilities are shown in Figqure 1.2.

-

Decision Based on Test Results

4 H H H

f 1 0 2
] H1 No Error Bl Error
True State HO al Error No Error “2 Error
of Nature i
Hz 32 Error | No Error

Figure 1.2 Error Probabilities for a Three Decision
Test
The following sections of this chapter will treat the
individual cases which arise with 2x2 contingency tables. The
underlying probability models are discussed and fixcd size pro-
cedures are examined. In the succeeding chapters, sequential

methods for testing these hypotheses are treated.

1.2 CONTINGENCY TABLES WITH KNOWN MARGINAL PROBABILITIES

The underlying probability model of a 2x2 contingency table 1

is a bivariate Bernoulli process. This is illustrated in Figure

L213%
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Dark Eyes Light Eyes
D D _
Dark Hair E Py, Py, ]T Py
- —+
Light Hair E Py Py : P,
P1 P2 1

Figure 1.3 Probabilities in a 2x2 Table

The observations from this model are assumed to be identically
and independently distributed. Such a situation arises when one
samples from an infinite population (or from a finite population
with replacement) and the presence or absence of two attributes
is observed at each trial.

If, for example, the event D represents dark eyes and the
event E represents dark hair observed on a person selected at
random with replacement from a specified population, Pypr Pye
Pyy and Pys in Figure 1.3 are the joint probabilities of observing

the respective combination of attributes. This model is more

conveniently represented as in Figure 1.4 which expresses the

D D
E Py Py.7 P11 Py.
E | P 7Py | 1-P 7P ¥Ry, 1-p;
P, 1-p 4 1
]

Figure 1.4 Probabilities in a 2x2 Table
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model in terms of only three parameters. This notation will be
used below.

4 The test to be performed in this model is of independence
between the two characteristics being observed. The null hypothesis

of independence can be stated, for example, as

Pyp " P1.P (1.3)

or _ 'R PPy _ 0
{p 17P1y) (Py -Pyy) '

implying, for the above example, that dark eyes do not tend to
occur more often with the characteristic dark hair than with
light hair. The statements in (1.3) and (1.4) can be shown to
be equivalent.

In this section the marginal probabilities (i.e., Py and p.l)
are assumed known. Such a case might occur in the example given
above if the characteristics of hair and eye color had been studied
independently, but no information is available on the frequency
with which they tend to occur together. The underlying distribu-
tion can also be expressed as a multinomial distribution with four

cells. If the observed data from a sample of size n is represented

as in Figure 1.5,
D D
E X nl. =1 X n1
E | Ma17¥ L S R L |
" L | n

Figure 1.5 Observed Contingency Table




the probability of observing this data can be expressed as

= ) _ (1.5)
F(x,n) 4N 1iP)ysP) /P )=

-X n -X n-n l-n +x

n
1. 1 .
(1-p; =P 1*Ppq)

X
ntpy; (P} -Py) (P 1Py,)

x!(nl'-x)!(n.l-x)!(n-nl.-n.l+x)!

Because Py and p 1 are assumed known, the hypotheses to be

tested are specified as

o PSRN
(1.6}

versus Ha: pll#pl.p.l

This hypothesis is discussed in detail in Chapter 3 wherc it is

1,x) is a minimal sufficient statistic

for the state of nature (pll)'

shown that the triplet (nl ,N

An exact fixed size procedure for small samples can be con-
structed to test (1.6) by ordering the multinomial probabilities
for all of the possible occurrences under the null hypothesis and
partitioning off a critical region consisting of those points with
the smallest probabilities which favor Ha and which sum to the
desired significance level. The power of the test can be found by
finding the probability of observing a point in the critical region
under specified alternatives to the null hypothesis.

For large samples, the computation necessary for the above
tests becomes laborious. The x2 distribution provides an casy--to-
use approximation to the null distribution of the test. The x2
test is constructed in the usual manner (for the approximation of

a multinomial distribution) except that the proper number of degrees
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of freedom is three beccause the parameters P;. and p , are known.
Guttman et al. (1971) give an example of the use of the X2 approx-
imation for this case; it is also treated by Rao (1952). 1In

b Chapter 3, exact sequential tests for such hypotheses are devel-

F opad.

There are two special cases of 2x2 contingency tables with
known maraginal probabilities. The first arises when both mar-
ginal totals are random variables and only one cf the marginal
probability distributions is known. Not much treatment secms to

have been given to this case in the past. The X2 approximation

with two degrees of freedom is appropriate for large samples.
The other special case arises when one ~f the marginz) distribu-
tions is "observable." "Observable" in this case means that the
distribution from the margin can be controlled by the experimentcr
in some way and is not a random variable except in its relations
to the sample size in a sequential {est. This means that a se-
quential (or fixed size) test can be constructed such that a de-
sired proportion of units can be taken from each category of the
"observable" margin at each stage of the test. Lehmann (1959)
points out that tests which take equal numbers from each category
are asymptotically most powerful.

The case where one margin is "observable" and the other is
random with an unknown probability distribution is treated in

the next section. The case where onc margin is "observable" and

the other is random with a known probability distribution reduces

to a simple binomial distribution if one samples exclusively from




one of the characteristics of the "observable" margin. This

. test can be shown to be asymptotically most powerful (Lehmann,
1959) and can be treated sequentially by using a simple binomial
procedure. (See Ghosh (1970), p.282). The case where both

margins are "observable" is mentioned briefly in the next section.
1.3 CONTINGENCY TABLES WITH UNKNOWN MARGINAL PROBABILITTES

The treatment of 2x2 tables with unknown marginal proba-
bilities, as described in this section, has been a classical
problem in the field of mathematical statistics. It is particu-
larly .nteresting because of the controversies which have ariscn
concerning their proper treatment. A brief history of the re-
sults obtained with this well-known model is given here. The
model considered in this section is the same bivariate Bernoulli
process discussed in the last section, except that here both of
the marginal probability distributions are assumed to be unknown.
The hypothesis of independence being tested, however, is the same.
The unknown marginal probabilities P, . and p , are so-called

"nuisance parameters," causing the method of testing with small
samples to be quite different. This subject is treated in detail

in Chapters 4 and 5.

Karl Pearson (1900) was apparently the first to treat the
problem when he suggested the x2 distribution as an approximation !
to the test of independence. This is still the accepted approach
when the expected number in each cell is sufficiently large.
There was, for a time, some controversy as to the proper number

of degrees of freedom to be used for the test. This was settled
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[ by Fisher (1922) and Yule (1922) who show that when the marginal
probabilities are unknown, the proper number of degrees of freedom

is one.
i» The use of the x2 distribution is an approximaticn to the
; true multinomial distribution which assumes the count in each

cell of the table to be normally distributed. Because of this,

it is necessary that the expected values of the entries in each
cell of the table be of sufficient size to justify this assump-
tion. In most cases an expected number of 5 in each cell is
considered sufficient for the use of the x2 approximation, al-
though this is still a matter of some controversy. A continuity
correction for the approximation can also be used. Recent treat-
ment of this subject is given, for example, by Lancaster (1969)
and Fleiss (1972).

Fisher (1935) and Yates (1934) concurrently presented a

test for 2x2 tables which is exact for small samples. The test

is based on the concept of ancillary statistics as defined by i
Fisher (1935). Briefly, the test is constructed to be conditional ¥
on the observed margins. In this case, the distribution of the ‘
observations in the table under the null hypothesis of independence {‘

reduces to the much simpler hypergeometric distribution. This

also produces a much smaller reference set from which to choose

the critical region. This test is treated more completely in

it il il o

Sections 4.2 aid 5.1.

The Fisher-Yates test (also known as Fisher's exact test)
led to a great deal of controversy among some of the most well-
known mathematical statisticians, including E.B. Wilson (Wilson,

1941), G.A. Barnard (Barnard, 1945, 1947a and 1947b) and

e Sl bt il
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E.S. Pearson (Pearson, 1947). Their basic disagreement was with
Fisher's reference set. Pearson and Barnard believed that the
test of significance should be based on all of the possible
occurrences from a given sample size. Fisher insisted on limit-
ing the reference set to only those different possible outcomes,
given the observed marginal totals. Fisher's argument, based on
the concept of ancillary statistics, as an answer to this criti-
cism, is given in Section 4.2; it is now generally agrecd that
Fisher's method is the one which shnuld properly be used for the
above model.

Barnard (1947a) surveys the different types of 2x2 tables
with unknown marginal probabilities. He divides the tables into
three groups, depending on whether the margin totals are random
variables or fixed constants. He terms these "double dichotomy,"
"2x2 comparative trial" and "2x2 independence trial," for the
cases where neither, one, and both margins are fixed (i.c.,
"observable") respectively. A brief discussion of these models
follows.

If both margins are random variables, one is intecrested in
the degree of dependence between the rows and columns. If one
of the margins is "observable" as explained in Section 1.2,
that margin's totals can be controlled by the experimentoer. This
is Barnard's "comparative trial" and can be used, for example,
to test homogeneity of the two populations with respect to some
attribute. Although it is not nccessary to do so, if the test is

is conducted such that an equal number of observations arc taken

3 s TRl
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from each category of the fixed margin, the asymptotic power
of the test for a given significance level can be shown to be a
maximum (Lehmann, 1959). An example of such a test would be
selecting n/2 people with dark hair and n/2 people with light
hair. The proportions of dark-eyed people in each category are
then compared.

If a sample of fixed size is selected from each category
of one margin, there are two parameters in the model; namely, for
the present example, the proportions of dark-cyed people with dark
hair and with light hair. The probability model is illustrated

in Figure 1.6 where
P1=P11/P) .
(1.7)

P,=(P 17Py;)/ (1-py )

Dark Eyes Light Eyes

D D
Dark Hair E Py l—pl
Light Hair E P, 1-p,

Figure 1.6 2x2 Table for Testing P,=P,

ik S

This is the common test for the equality of two unknown binomial

proportions where the null hypotheses to be tested can be

expressed as




(1.8)

or pl(l-p2)
pzil-pIF

]
—

iR
| I P17P;
I

For fixed size tests with large samples, the normal distributicn

ey

approximation can be used to test the hypotheses in (1.8).
5 “ The Fisher's exact test (Fisher, 1935) can be used for small

i samples to treat this situation. The model can_also be formu-

lated in a logistic form. This is done in Chapter 5.

Barnard (1945, and 1947a) gives a test of homogeneity which
- he claims is "more powerful than Fisher's." 1In this test, Barnard
i. considers the larger reference set of outcomes mentioned above.

I' The test's introduction was followed by some discussion (Fisher

’ (1945), Barnard (1945, 1947a, 1949)) which led to the general
consensus that Fisher's test is the one which should properly

be used. Some further treatment of this subject is given 1ir
Section 4.2 and Chapter 5, where sequential tests for thesc cases
1 are presented.

The other case delineated by Barnard is the independence
trial, where both of the margin totals are fixed. This is situation
illustrated by Fisher's famous tea-tasting experiment where a lady
is to decide whether the milk or the tea was put intou the cup
- first. In this test the lady is informed as to how many of the
e cups are in each category, and it is assumed that her ancwers will

correspond in number. This is again a test concerning the inde-

pendence of the margirial characteristics. Fisher's exact test
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is also used in this case. Because such "fixed" margin models

do not often arise in sequential analysis, they are not treated

here.

1.4 OTHER PROBLEMS FORMULATED IN TERMS OF 2x2 CONTINGENCY TABLLS

This section will survey some of the statistical problems
which have been formulated in terms of 2x2 tables. All of these
cases have been treated in the literature for fixed size tests.
Some of them can be solved sequentially with the methods given
here. Others will have to be treated in a somewhat different
manner. Some discussion of these possible extensions is contained
in Chapter 7.

The three most commonly used models for 2x2 tables are the
"double-dichotomous," the "comparative trial" and the "independence
trial," as named by Barnard and discussed in Section 1.3. These
are models with unknown marginal probabilities (for the random
margins) and have 0, 1, and 2 fixed margins respectively. The
"double dichotomous" model is used for testing the independence
of two Bernoulli processes. The use of such tests is common, for
example, in both medical and psychological research. The "com-
parative trial" is used to test the equality of two unknown
binomial proportions, or to test for independence when one of
the populations in the "double dichotomous" model is "observable"
as explained in Section 1.3. Such tests might be used, for
example, to test whether a new drug is significantly more effective

than a placebo or another standard. The "independence trial" is
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a test ot independence between two fixed marginal totals.
The first two cases can often be treated more conveniently

with a sequential test. This is especially true if the data are

—y ey ey

1 obtained, or if the test is conducted, sequentially. The sequen-

: tial tests for these cases are developed in Chapters 4 and 5
i 4 respectively. The third case has limited applicability within
' = the area of sequential analysis.
: i It is interesting to note that the fixed size test of the
; - null hypothesis for all of these cases is the same. For small
é 3: samples, Fisher's exact test (see Chapter 4) can be used, and
E .- for large enough samples, the x2 distribution with one degree
. {“ of freedom is appropriate. Two other applications of the
! { "double dichotomous” model are non-parametric tests of location
E o and for dispersion. These tests are treated, for example, by E

Gibbons (1971) and Owen (1962).

If either or both of the marginal distributions are known,
different fixed size procedures are required, as explained in
Section 1.1. The sequential procedure to be used when both

marginal probability distributions are known is developed in !

Chapter 3.

In addition to the above, other problems have been formu- 3
lated in terms of 2x2 tables or combinations of 2x2 tables. Dr. i
John Gart has been a leader in this field of application. Some
of the problems which he has formulated in terms of 2x2 tables
include tests for comparing matched proportions in crossover

designs (Gart, 1969) comparison of several proportions adjusted
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for an auxiliary variable or covariate, and test of incidence

rates when the underlying distribution can be assumed to be

Poisson (Gart, 1974).

k.




e o e Lanisladie L o

b by b e o s ik

I CHAPTER 2

SEQUENTIAL ANALYSIS AND THE DIRECT METHOD

e 2.0 INTRODUCTION

This chapter introduces and reviews some of the important
topics and considerations relating to sequential analysis which

‘- are used in the sequential tests for 2x2 contingency tables

treated in Chapters 3, 4 and 5. The first section discusses the
use of sequential analysis when testing composite hypotheses and
the basic importance of the operating characteristic (0C) func-
tion. Section 2.2 introduces the direct method of sequential
analysis which is used later to find the exact properties of the
sequential tests. The next section treats different methods of
developing sequential tests for three decision test procedurcs.
The last section explains the truncation of sequential tests to

eliminate the possibility of very large sample sizes.

2.1 SEQUENTIAL ANALYSIS AND COMPOSITE HYPOTHESES

This section will consider sequential tests of composite
hypotheses. It will be shown here that the Wald (1947) sequen- i
tial probability ratio test (SPRT), used in the following chap-

ters and based on pairs of simple hypotheses, can be used to g

obtain satisfactory sequential tests for composite hypotheses.
The discussion below pertains to two decision tests, although

the ideas also apply to k>2 decision tests.

18
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When finding a fixed size sample test to choose between one
of two specified hypotheses, one must specify both the sample
size n* and critical value c* to give the desired error probab-
bilities. When this special case is generalized to a sequential
procedure where stopping rules are selected for each trial, the
problem of selection of the proper test becomes much more com-
plicated because there are many more possible tests to choosec
from. To find a sequential test, one must partition the sample
space at each trial into three regions: one for acceptance of ”0’
one for rejection of HO and one for continuation of the sequential

test.

It is well known that Wald SPRT gives optimum regions for
testing a simple hypothesis against a simple alternative under
certain conditions (Wald and Wolfowitz, 1948). Such hypotheses

are stated, using the binomial parameter p for an example, as
H,: P=Pq versus H : P=p, (2.1)

as shown in Fiqure 2.1. The hypotheses are represented as points
if they are simple, as in this case, and as line segments if they
are composite. For our purpose, we define simple and composite
hypotheses to be hypotheses specifying exactly one point (in

the parameter space), and more than one point, respectively.
Statistical tests between two alternative simple hypotheses imply
that the experimenter believes that there arc only two possible
values for the true state of nature. Such situations do not often

occur in practice.
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Simple Hypothesis

N Composite Hypothesis o

Dy Dy

Figure 2.1 Simple and Composite Hypotheses

In most cAaces the hypotheses to be tested are composite

and are expressed in a form similar to

P=P, versus Hl: p#po (2.2)

or H_ : P<P, versus Hl: PP, 2P (2.3)

When using a statistical test, the important distinction betwecn
the simple hypotheses in (2.1) and the composite hypotheses of
(2.2) and (2.3) is that in the latter one is interested in all
of the points of the OC function over a specified range of the
parameter values given by the hypothesized states of nature.

The hypotheses shown in (2.2) do not contain any specific

alternative and are the type generally specified in so-called
fixed size sample "tests of significance." Users of such tests
generally use a specified significance level (a error) and sample
size, but do not mention a specific alternative hypotheses and

therefore often do not consider the "power" of their tests.

The rationale for such a test is that there is a strong prior




belief in (or preference for) thc¢ null hypothesis, and that it
is not to be rejected unless there is strong evidence (i.c., at
the l-a confidence level) that it is not true.

By examining the Type II error (which is one minus the power
Of the test at a specific alternative), one can determince if the
significance level of the test has been set too low (or too high)
for a given sample size or if the sample size is too large (or
too small) for the required sensitivity against alternatives to
the null hypothesis. Either of these conseuguences could be costly.
It does no harm for even the "significance tester" to investigate
to which his alternatives his test will be sensitive. From this
it is seen that it is important to examine the power of a
statistical test.

In this light, the pair of hypotheses in (2.3) is considercd.

Here a range of values has been specified for H the alternative

1’
hypothesis, as well as for HO, the null hypothesis (see Figure 2.1).
The values in between Py and P constitute an "indifference zone."
For the situation where one must make a decision either for ”0
or for Hl, and there are positive costs (tangible or not) for both
types of errors, this is a more practical way of specifying the
hypothesis to be tested.

This again brings out the subtle difference between a "test
of significance" and other composite tests of hypotheses. A test
of significance might be valid, for example, for a test used in
proving some law of nature, for which it is nearly impossible to
specify all of the possible alternatives. 1In contrast, when

testing the ability of a new drug to cure a disease, the situation

is different.
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If the proportion of successful cures of a drug is to be
compared with that of a control or a placebo, the hypotheses to
be tested will usually be stated as

H.: p.=p
g =L =2 (2.4)

versus H : p,“Pp,

where Py and p, are the probabilities of a successful cure for the
control and the drug being tested, respectively (both probabilitics
being unknown). In this case, there are true costs (although they
are probably intangibie) for both types of errors; that is, for
accepting the new drug as "significantly better"* when it is not
and for rejecting it when it is "significantly better." Becausc
both of these errors are important, it is imperative that the
experimenter examine the power of his statistical test so that

the errors can be balanced if necessary. These samc ideas arc
important in the development of sequential tests of composite
hypotheses.

When developing sequential tests, it is usually necessary to
specify some specific alternatives to tte null hypothesis, so that
the proper stopping rules can be formulated to control both types
of errors and so that the test properties of the sequential test
may be assessed. If one wishes to test a composite hypothesis

such as (2.3), one must find a sequential test procedure which has

*
Here we mean a difference of practical significance, rather than

simply a difference of statistical significance.
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a satisfactory OC function over a specified range of paramctcr
values. This is usually done with respect to some additional
criterion concerning the cost of sampling.

Although the Wald procedure provides optimal tests under
certain conditions, there remains the problem of finding optimum
sequential tests for the composite hypotheses considered here.
Wald (1947) discusses this problem at some length. He comes to
the conclusion that the test of the simple hypothesis in (2.1)
can be used to approximate a test of a composite hypothesis
such as (2.3) without much loss of efficiency. This is the method
most commonly used to find regions for a sequential test of a
composite hypothesis. In Chapters 3, 4 and 5, sequential test
regions are found by specifying simple hypotheses.

One should examine the possible consequences of using such
an approximation; that is, carefully examine the OC function of
the test. If the resulting OC function is not close to the
desired OC function, the test region can be modified so that it is.

This is briefly discussed in Section 3.3.
2.2 THE DIRECT METHOD OF SEQUENTIAL ANALYSIS

The direct method of sequential analysis, given by Aroian
(1968), describes a general method whereby the exact properties
of a given sequential test region may be obtained. Since
Aroian's 1968 article, the method has been used in a variety of
applications, including tests for the mean of a normal distribu-
tion with the standard deviation known (Aroian and Robison, 1969)
and unknown (Schmee, 1974), two sided tests of the normal dis-

tribution with the standard deviation known (Goss, 1974b)
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sequential rank tests (Elfring and Schultz, 1973b), tests of the
binomial distribution (Corneliussen and Ladd, 1970 and 1971), and

tests of a normal distribution with mean known and unknown

— e o= N

(Aroian, Gorge, Goss and Robison, 1975).

Before using a sequential test procedure, one should know
or have available reasonable approximations to the actual test
properties. The most important test properties are the true «
and B error probabilities (denoted @' and B' here) and the ecx-
pected or average sample number (ASN). A typical ASN function
for a state of nature which can be expressed in one dimension
é . (e.g., the binomial parameter p) is shown in Figure 2.2. Also
of interest is the operating characteristic (OC) function which
gives the probability of accepting the null hypothesis as a

L function of the state of nature. A typical OC function for a

one-dimensional state of nature is shown in Figure 2.3. 1If the
state of nature must be defined in two dimensions, these functions
can be represented as contours or by single graphs with one param-
eter being held constant. If more than two dimensions are nec-
essary to describe the state of nature, it will be best to show

the test properties in tables. The true o and § error probabilities
for a two decision procedure are obtained directly from the OC

function as

u'=l-OC(p0)
(2.5) ‘
B'=OC(p1)

where Po and p, are the parameters specified by the null and

alternate hypotheses respectively.
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i State of Nature
Figure 2.2 Typical ASN Function
¢
1.
; oc (D)
State of Nature
Figure 2.3 Typical OC Function
- P(n) ‘
|
.11

0 4 8 12 14 Sample size n

Figure 2.4 Typical Distribution of the DSN
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Another interesting test characteristic, which is often
neglecved, is the distribution of the decisive sample number
(DSN); that is, the probability mass function of the sample size
necessary to reach a decision. This distribution is a function
of the true state of nature. From this distribution, one can
obtain the ASN, the variance of the sample number (VSN) or other
moments. The direct method is also used to find the distribution
of the DSN. A typical probability mass function for the DSN is
shown in Figure 2.4.

In general, the direct method is carried out as follows.
Once the sequential test region (i.e., the sequential test rules)
has been specified, one chooses a state of nature, which allows the
computation of the probability of accepting each possible hypothesis
at the first trial. The remaining probability, that is, the prob-
ability of being in the continuation region, is spread out among
all the possible values of the sample statistic which are included
in the continuation region. At the second trial, another sample
is taken. It is again necessary to find the probability of accept-
ing each hypothesis and the distribution of the probability of
remaining in the continuation region. Using convolutions, one may

continue this process at each succeeding trial or until the prob-

bability of remining in the continuation region is so small as to
be insignificant. This entire procedure is then repeated using ?
different values for the true state of nature, each giving a point :

on the OC function and a distribution of the DSN. This procedure

is used in Chapters 3, 4 and 5 to find the exact properties for

sequential tests of 2x2 contingency tables.

b Ll B 5k o e P
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2.3 METHODS FOR THREE DECISION SEQUENTTAL TEST PROCEDURES

In this section, the procedures for developing three decision
sequential tests are reviewed. Three decision tests are often
necessary in practice. An example of such a test would be the
comparison of two drugs where one might be interested in testing
the proportion of successful cures in a conirolled test. The hy-

potheses to be tested might be expressed as

LR

versus ﬂoz P,=P, (2.6)

versus .
Hy: PP,

where P, and P, represent the proportion of successful cures for
drug 1 and 2 respectively. One might also use such a test to
distinguish among lots of items which are of superior quality
(for which some incentive bonus might be given), standard quality
and substandard quality. The hypotheses for this case might be

specified as

= 170
v : = .
ersus HO D D0 (2.7)
versus H2: D=D2<D0

where D represents the number (or proportion) of defectives in
the lot.
The following is a brief sketch of the different approaches

to three decision tests which have been treated in the literature.
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Ghosh (1970) and Goss (1974b) give excellent and somewhat more
comprehensive treatment of this subject. The discussibn here is
general in that it pertains to no specific distribution. No
attempt has been made to cover the many applications of these
tests. For this, the reader is referred to Wetherill (1966).
Wald (1947), in his book, gives a method of formulating a
two-sided test by using weight functions. Barnard (1947c), in
i1is review of Wald's book, mentions an alternate method which
simply tests the null hypotheses separately 2against the two
alternatives. This is done by using two SPRTs at one time. The
resulting test regions are shown geometrically in Figure 2.5.
Sobel and Wald (1949), in their paper, treat the three decision
test in detail. They use a test similar to that suggested by
Barnard. The difference is that each SPRT 1is treated independ-
ently of the other. This would mean, for example, that when line
AB is crossed by the path shown in Figure 2.5, we no longer allow
acceptance of Hl and concern ourselves only with the results of
SPRT2. Thus, HO is accepted when line AC is crossed at point p,
before a shaded region is even reached. Sobel and Wald hasten to
point out that such a test, which depends not only on the total
sample results, but also on the sample path (order of the observa-
tions), cannot be an optimal one. However, the test was used in
their case because the independence of the two tests enabled tiwe
authors to derive approximations for some of the properties of
this three decision test. The Sobel-Wald tests and their approxi-

mate properties are treated in detail by Ghosh (1971). Herec, we
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use the direct method of sequential analysis which can be used
to find the exact properties of any specified sequential test
region,

Goss (1974b), when treating three decision sequential tests
of the mean cf a normal distribution, compared the Sobel-Wald
test with the Barnard test. He used the direct method to obtain
exact test results for such tests. From his results, (as one
would expect intuitively), it is seen that the test with inde-
pendently run SPRTs has a smaller expected sample size, but
slightly larger error probabilities. The differences, however,
are quite small. For this reason and because it has somewhat
more intuitive appeal, the approach suggested by Sobel and Wald
is used here, although a decision to accept a hypothesis is
allowed if and only if one enters a shaded region in Figure 2.5.

Another approach to the three decision test is given by
Armitage (1950). In this paper, Armitage suggests using three
SPRTs simultaneously. The three SPRTs are constructed to dis-
and H,, H, and H, and between H., and H,.

1 0 2 0 1 2
This is shown graphically in Figure 2.6.

tinguish between H

To devise the three decision sequential tests used here, a
modified version of the Sobel-Wald procedure (Sobel and Wald,
1949) is used. Following their treatment, two SPRTs are used
simultaneously. One SPRT, say SPRT:i. is used to distinguish be-
tween Ho and H,. The other SPRT, say SPRT2, is used to distinguish

1

between Ho and H2. The procedure for developing and evaluating
the test properties of the three decision test procedures is
treated in detail for the special cases of the 2x2 contingency

tables in Chapters 3, 4 and 5.

i s i i b e e )
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2.4 TRUNCATION OF THE SEQUENTIAL TEST REGIONS

One disadvantage of using sequential test procedures is
that because the sample size is a random variable, it is some-
times possible for the sample size to be significantly larger
(although with small probability) than the sample size necessary
for a fixed size sample test. This section presents methods for
truncating sequential tests at some trial, say n,- This will
result in a closed sequential test whose test properties, with
respect to the ASN function, will be much improved. The price
paid for this improvement is usually quite small.

When one wishes to truncate a sequential test at some trial,
say n,, one must specify which one of the hypotheses is to be
chosen for each possible value of the test statistic (which may
be multidimensional) at trial ng- Some general rules of thumb
for doing this are given in Section 3.3. Further modification of
the region can be made on a trial and error basis, using the exact
probabilities (obtained by using the direct method of sequential
analysis) of reaching each of the decision points in the sample
space as a guide. Such careful modification, though tedious,
could be used to obtain a sequential test with test properties
closely approaching those which are desired.

Ofter when truncation procedures are put forward, the
truncs: ' .» .. int suggested is from 1.5 to 3 times n, (see, for
example, .. :d (1947)). This is probably because in the past,
very littt: was known about the exact properties of such truncated

tests. When using the direct method, however, this presents no
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T problem because the direct method is general and can be used
- to evaluate any specified test region. The sequential tests
_ presented here are usually truncated at the sample size required

for a similar fixed size test (n*) and are compared with such
i i, fixed size tests.

When a sequential test is truncated at some trial, say Ny
! o the true a and B error probabilities will increase by some,

! usually small, amount (when compared to the untruncated test).

If the size of this increase cannot be tolerated, the error prob-

abilities can be reduced in one of two ways. First, the test can

be truncated at some trial n0>n* (i.e., at some trial greater than

the comparable fixed size test). This, however, will allow the

j sample size to increase (usually with small probability) above n*.
It will also tend to a general increase in the ASN function. The
other method is to modify the test region by including more points
in the continuation region for trials n<ng. This will enable one

) to approach the a and B error probabilities of the fixed size test
with n  trials by increasing the ASN function (which will approach

0
a constant function equal to no).

All of the sequential tests for 2x2 contingency tables pre-

sented here have been truncated. Some further discussion of the

particular methods used to truncate these tests is contained in ;

Section 3.3.
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CHAPTER 3

SEQUENTIAL TESTS WHEN THE MARGINAL PROBABILITIES
ARE KNOWN

3.0 INTRODUCTION

This chapter treats sequential methods for 2x2 contingency
tables when the marginal probabilities are known. Section 3.1
discusses such contingency tables and gives their underlying
probability model. Section 3.2 describes the hypothesis being
tested. Sections 3.3 to 3.6 present the development and evalua-
tion of the sequential tests for both two and three decision test
procedures. Section 3.5 also compares the sequential tests devel-

oped here with a comparable fixed size test.

3.1 2x2 CONTINGENCY TABLES AND THE MULTINOMIAL DISTRIBUTION

The underlying probability model for a 2x2 contingency table

is depicted in Figure 3.1.

P11 P1.7P11 Py,
P 17P1) 1-p; =P 1*Py, 1-p, .
P 1=p 1

Fiqgqure 3.1 Probability model for a 2x2 contingency table

33
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As indicated in Section 1.1, this can be considered a
bivariate binomial distribution. The two marginal distributions
are independent if and only if Py117P1.P ;- One is usually inter-
ested in testing the hypothesis of independence, although tests
for any degree of association can be easily constructed. A full
discussion of these hypotheses is given in the next section.

The probability model in Figure 3.1 can also be expressed as
a multinomial distribution. The probability of obscrving the

sample shown in Figure 3.2

D D
E X L .
E n.l-x n-n.l-nl.+x n-nl.
n.l n-n-l n

Figure 3.2 Sample from a 2x2 contingency table

is then

pF(x'nl.'n.l’n’pl.’p.l’p11)= (3.1)

n -X n -X n-n -n +X
b ¢ 1. .1 1. .1
nipy, (P ~Pyy) (P 1-P1y) (1-py -P ;*Py;)

x!(nl -x) ! (n l—x)!(n-n -n, +x)!

171

Because the marginal probabilities Py and p 1 are known, the
state of nature is completely specified by Py1° That is, there

are no nuisance parameters to deal with, as is the case when one
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- or both of the marginal probability functions are unknown. The

triplet (x,n n 1) is a minimal sufficient statistic for P11

l.' L]
This can be shown as follows.

In order to show sufficiency one must show that the ratio

| Pp(x,n; »n 1in,pyPy /P ) (3.2)
PF (YIml. rm.l7nlplllpl. 'p.l)

is independent of the state of nature (see Lindgren (1968),

p.256). The probability mass function Po is as defined in (3.1).

Equation (3.2) is independent of the state of nature if

and only if
n. M.
= (3.3)
2250
and X=y

The vector (x,nl.,n.l) therefore is the minimal sufficient statistic
for the true state of nature, Pi1- Sequential tests based on this
statistic are presented in subsequent sections.

As mentioned in Section 1.1, a special case arises if one
of the marginal distributions is "observable" and one category
of that margin can be sampled from exclusively. Because one knows
the marginal probability function of the other margin, the problem

reduces to a simple binomial distribution which can be used to

“test association between the two marginal characteristics. This

greatly simplifies the problem.

If, for example, n, can be chosen to be the same as n (the

total sample size), the distribution of x is

T T
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n n, =X

N (3.4)

1) (p') X (1-p")
X

P(xlnl. IP')-" (

and x is a sufficient statistic for Pyp- The hypothesis to be

tested is

Hy: P'=Py=P
(3.5)

. t=nn?
versus Hl. p pla\fp.l

where p' is the conditional probability of obtaining an observa-
tion in cell 1 of Figure 3.3, given the observation is in ecither

cell 1 or 2. _
D D

o]}
w
o

Figure 3.3 2x2 Table Cell Numbers

This hypothesis can be treated sequentially by using a simple

binomial test (Wald, 1947).
3.2 THE HYPOTHESIS BEING TESTED

This section discusses the hypothesis being tested in a
2x2 contingency table when marginal probabilities ave known. As
mentioned in the last section, one is interested in testing inde-
pendence of two binomial characteristics. The hypothesis can be

expressed as
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| Hot P117P1.P)
(3.6)
versus H;: p) #P; P,

As indicated in Section 3.1, P1, alone exactly specifies the
state of nature in this case. Two other equivalent ways of

specifying this null hypothesis are

}

_ P
PP
(3.7)
P13 (1-Py P 1*Py;)

or t =
(Py . -Pyy) (P 17Py;!

The first is the ratio between the two values which are hypothe-
sized as being equal; the second is commonly known as the cross
product ratio and is treated in detail in Section 4.2.

Thus there are three methods of specifying the alternate
hypothesis to be tested. The ranges of variation of the param-

eters mentioned above are

[ ZaY

MIN (py /P ;)
(3.8)

P ——,
o
el
Lo )
ol +
. e
[
[
|
(=]
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A
=
-
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P g,
h.lw
|
=
=
A O g

For the purposes of testing the case with known marginal proba-
bilities considered here, specifying the alternate hypothesis

directly in terms of P is most convenient.
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A three decision test of independence for the above model

can be specified as:

Byt P11 7P Py
é versus H : p,,=p,=P P ; (3.9)
) versus H2: pll=p2>p0
Sequential tests for these hypotheses are treated in Sections 3.4

and 3.6.

3.3 THEORY FOR SEQUENTIAL TESTS WITH TWO DECISIONS

In this section, sequential tests for the two decision
hypotheses discussed in the last section are developed. It is
assumed that the marginal distributions of the bivariate Bernoulli
process are known and that items are sequentially selected at
random from a population which follows this distribution. The

hypothesis to be tested is:

Ho

P117Po
(3.10)

versus le p].‘,|.=p:l->p0

The sequential test for distinguishing between these two ?

simple hypotheses is developed as follows. Following Wald (1947),

A

the sequential test is carried out by calculating the likelihood

ratio at trial n, with a sample outcome (x,nl ,h f(see Figure 3.2).
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P.(x,n ,,n, :n,p, P +,P,)
- Lny/ing = pipratiale TPL AP (3.11)
b ) AR KAts DALY 3 IS S 2 ')
- n, =-x n ,=-x n-n, -n ,+x
x 1. .1 1.7 ™1
A i Py Py, Py (p,17Py) (1-p),"P.1*Py)
1 n, -x n ,-x n-n., -n .+x
: L 1. 1 1.7
Po (P}, ~Pg) (P -Py) (1-p; -P ;*Pg)

The sequential test is then carried out by using the following

procedure:

i accept HO if Lnl/Ln0 < B

. (3.12)
| accept Hl if Lnl/Ln0 2 A
é take another sample if B < Lnl/Ln0 <A

The values A and B, which are needed for the test, are quite

difficult to determine exactly. However, the approximate values
A = (1-8)/a, B=B8/(1-a) (3.13)

given by Wald (1947) are used. Here o is the desired probability
of a Type I error and B is the desired probability of a Type II

error.

To carry out the test procedure, it is usually more con-

venient to work in terms of the log likelihood ratio

n(Ln,/Lng)=g(x,n) +n 1,P) /P 1+Py/Py)= (3.14)

X‘Rl-(nl.-x)°R2-(n.l-x)'R3+(n-n1.-n.1+x)'R4
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where Rl=2n(pl/po)
R2=2n((p'1-p1)/(p.1-p0))

R3=En((pl.-p1)/(p1.-po))
R4=ln( (l-pl.'P.l"‘Pl)/(l‘Pl.‘P. l+p0))

With this modification, the test procedure becomes

accept Ho if Qn(Lnl/Lno)sb
accept H, if Qn(Lnl/Lno)za (3:15)

take another sample if b<£n(Lnl/Ln0)<a

where a=4n((1-8)/a) and b =¢n(8/(1-a)) and Qn(Lnl/LnO) is
shown in (3.14).

Because the test statistic at each trial is in three
dimensions, tables of these test plans will be quite lengthy
for large sample sizes. In particular, at each trial n one
must specify upper and lower limits on x (the count in cell 1 of
Figure 3.3) for each of the (n+l)2 different possible margin
arrangements. Another approach, which might be used when a
given test will be performed only once, is to compute either
the critical limits or the likelihood ratio at each trial in
order to decide what action should be taken. The method for
finding the critical limits which define the test region is
given next.

Letting cL(nl.,n.l,n) denote the lower limit and

(

c,(ny, /n l,n) the upper limit for x given the marginal totals

g e i i
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n, and n 1 at trial n, the sequential test procedure becomes
accept Ho if xscL(nl )N 1,n)
(3.16)
accept Hl if xzcu(n1 )N 1,n)

and take another sample if cL(nl.,n.l,n)<x<cU(n1_,n.l,n)
where x, ny N, and n are shown in Figure 3.2. The values

( n l,n) and cU(n1 /N 1,n) are easily obtained by inversion

CLify.’
of the equations

b=9(x,n1.,n.l.n.pl.,p.l,po,p1)=2n(Ln1/Lno)

(3.17)
a=g(x,n; ,n ,,n,py; 4P ;+Py/Py)=n(Ln,/Ln,)
by solving for x. These values can be expressed as
c. (n n n)=g“1 (b,n n n,p P 1/Pa/P J
LA AR A LA [l PR LA R |
= [(b+nl.(R2+R4)+n.l(R3+R4)+nR4)/(R1+R2+R3+R4))]

_1.-1
cu‘“l.'".l'""[g ‘a'"l.'".1'“'91.'9.1'%'?1)] 1 3.8

= [(a+n1_(R2+R4)+n_1(R3+R4)+nn4)/(R1+R2+R3+R4ﬂ +1

where the Ri's are defined in (3.14) and M=[K] is the greatest
integer less than or equal to K.

These sequential tests of 2x2 contingency tables can be
truncated as indicated in Section 2.4. If the test is truncated
at some n, say n,. one must choose the critical values
cL(nl.,n.l,n) and cU(nl_,n.l,n) for each of the (n0+1)2 possible
combinations of values which the marginal totals can take on at
the truncation trial n,. Some general rules of thumb are given

0
for doing this; these can be further modified in order to give
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the test the desired properties.

As a first guess, the critical values are chosen to be

!
SIS s [g ((a+b)/2'“1.'“.1'"'91.'9.1'90’914

cU(nl.,n.l,n)=cL(n1.,n.l,n)+1 (3.19)

The value (a+b)/2 is used in an effort to truncate the test

while keeping the true a and B errors in the proper proportion.
Any of the (n0+l)2 values for cL(nl.,n.l,n) may be changed

,n) such that the second equation in (3.19)

(along with cU(n N

1.77°.1
holds). Such changes will not affect the ASN function; however,
they will change the OC function. Thus, the truncation can be
used to "balance" the a and B error probabilities. In order to
make the best decision as to which points belong in the acceptance
region and which belong in the rejection region at n,, one can
examine the exact probabilities of reaching the different points,
(obtained by using the direct method of sequential analysis)

under different specified alternate hypotheses.

A numerical example of the above procedure for determining

the sequential test regions is now given. Let P, =0.5 and

p 1=0.5. The hypothesis to be tested is

Hy: Py,"Pp=Pp P 170.25 f
(3.20) 1

versus Hl: p11=p1=0'40 :

with desired error probabilities «=0.05 and £f=0.1. The test is i

truncated at trial n0=25. For this case, the critical values are
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3 Table 3.1
Critical Values for the
1 Scquential) Toeat Lx mple
’
] PL.e 0,500
E P.13 0,500 ALVWAS 0,100
POt 0.2%0 ytlas  0,0%0
TRI1AL ) N, Pie 0,400
. TS TRIAL 1 N,
0 1 2 3 4 ] N,
0 1. & -4, b 0, 6 0, ? 1, 7 1. 8 0 }
1 “2. 9 -4, % -1, & 0, 6 0, ? . 7 0 “2: 3 -2, 4
2 =2, 4 2,5 -1,5% -1, 6 0, 6 0, 7 1 2,3 -2,
3 “2s0 4 =2, 4 -2, 9% -1,5 -1, ¢ 0, &
4 2, ) 2,04 <2, 4 2,5 1,5 -4, &
S “2s 3 2,3 =2, & 2,4 2,5 -1, 5 TRIAL 2 N.g
* Nll
0 1 2
TRIAL [ N3 0 =24 -2, 4 2,59
o Nt .4 2,3 =2, 84 2, 4
0 1 2 3 4 5 6 2 2, 2,3 -2, 4
0 -1: & 0, ? 0, 7 t, 7 1, 8 2., 8 2, 9
1 1, &6 -1, ¢ 0, & 0, ? 1, 7 1, 8 2 8
2 “2:. 5 -1, 5 -1, ¢ 0, 6 0,7 1, 7 1, 8 TRIAL 3 N.g
3 ~2. 4 ~2,% -1, 9% -4, 6 0, 6 0. 7 1y 7 LI
[} “2, 4 -2, 4 <2, 9% -1,5 -3, 6 0., & 0» 7 0 1 2 3
) “2, 3 -2, 4 -2, & 2,5 1,5 -3, 6 0, 6 0 -2, 4 =2,5 1,95 ¢, %
[} “2, 3 =203 2, 4 -2, 4 2,5 - % 1, 6 1 “2. 4 -2, 4 «2, 9% -1, 8%
2 2.3 2, 4 2,4 2,8
3 213 2,3 =2, ¢ -2, ¢
TRIAL 7 N.{
NE. TRIAL 4 N.L
0 1 ? 3 ] L [ ? Nt
0 0. ? 0, 7 1, 8 1,8 2,8 2, 9 3y 9 3,10 0 1 2 3 ¢
1 1. 6 0, 7 0, ? 1,7 4.8 2, 8 2, 9 3, 9 0 2,9 -4, 5 -1, 6 0, 6 0,7
2 1.6 -1, 6 0, ¢ 0,7 1,7 4,8 2,8 2,9 1 2,4 =2,5 1,5 -1, 4 0, 6
3 -2, % -1, 5 -1, ¢ 0, & 0, 7 t, 7 1, 6 2, 8 2 2. 4 -2, 4 *2, %9 -4, 5 “3; ¢
| 4 “2. 4 <2, 5 -4, 5 -1, 6 0, & 0, 7 1. 7 1, 6 3 *2. 3 =2, 4 2, 4 2,8 1,8
5 -2, 4 -2, 4 '2. 5 -1, ] "o [ 0, 6 0 7 1‘ 7 4 '2; 3 '2‘ ; '2. 4 '2, 4 ’2. ’
[} “2: 3 -2, 4 2, 4 -2,85 1,5 :1: 6 0y & 0, 7
? *2. 3 -2, 3 =2, 4 f?u 4 -2,8% 4,5 -3, 6 0, 6
TRIAL ] N,3 ‘
Ni,
0 1 2 3 4 5 [ ? [} ;
0 0: 7 1, 8 1, 8 2,9 2,9 3, 9 0 4,10 4,13 l
1 0: ? 0, 7 1, 8 1, 8 2, 8 2, 9 3¢ 9 340 4,40
2 -1. 6 0., 7 0, ? {, 7 1, 8 2, B8 2v 9 3, 9 3'1' !
3 -1, 6 -1, 6 0, ¢ 0, ?7 1, 7 1, 8 2, 8 2, 9 LTI
¢ c2.% 1,5 -1, 6 0,6 0,7 $,7 1.8 2,8 2,9 1
s -2.46 -2,5 -1, 3% -4, 6 0,6 0.7 1+7 1,8 2,0 {
6 2,084 -2, 4 -2,5 -1, 5 4,6 0,6 0v7 1,7 1,0 {
? -2, 3 -2, 4 =2, 4 =2, 5 -3, 5 4, 6 0, © 0, 7 1, ? |
8 2.3 2,3 -2, 4 -2, 1 +2,5 4.5 176 0,6 0,7 l
TRIAL ’ N.g !
Ni.
0 1 ? 3 4 $ [ 7 (] 9 i
0 1: 8 1, 8 2, 9 2, 9 3,40 3,40 4,10 4,11 TR §Y 9,12 {1
1 0i7 1.8 1,8 2,9 2,9 3,9 3110 4,10 4,11 5,14 H
2 0, ? 0, ? 1, 8 1, 8 2. 8 2, 9 3 3,10 4,10 4,11
3 3. & 0, 7 0, 7 1, 7 1, 8 2, 8 9 3 9 320 4,10
4 -1, & “1, & o. é 0. ? 1, 7 1. 8 H 8 ?a 9 3' 9 3010 |
5 '21 ] ~1, 5 ‘lg 6 0. [} 0, ? i 7 1s & 2' ‘ 2, ] 30 9 l
(] 2. 4 -2, % <3, % -1, 6 0, 6 0, 7 1y / 1. 8 2, 8 2, 9 1
? 2. 4 -2, 4 <2, 8 -4, 5 <4, b [} 0o 7 1,7 1, § 2, 0 §
8 2.3 -2, 4 2,4 -2,% 41,5 -1, 6 0,6 9,7 1,7 1,8 H
9 "2, 3 2,3 2, & -2, 4 2,5 -4, 95 -1, 0 0, 6 0,7 1,7 )
i
44
TRIAL 10 N, L ! F
N§. g
] 1 2 3 [] H 6 7 [ ] 9 10 H
0 10 2 2, 9 2, ¢ 3,10 3,10 411 401l 9,11 5,42 6,12 6,13 i
’ 17 8 } ) 8 2. 9 7. 9 J.’.o 3.‘0 "10 ‘Ill "11 5012 .012 f
2 0;7 .8 1, R 2,9 2,9 3 9 310 410 4,31 5,11 9,12 H
3 0: ? 0. ? 1, 8 1, 8 r ] 2, 9 3, 9 3'10 4.10 ‘1’* ’011 L]
4 1, 6 0, 7 0, 7 1, ? 1, 8 2, 8 2 9 3, 9 3,10 4,10 4,11
S 1,6 1,6 0,6 0,7 1,7 §£, 8 2,8 2,9 3 ¥ 310 4,10
[ -2, ’ -3 5 '1, 4 Dl é °' 7 11 ? i 8 !' ‘ 20 ’ ;0 9 3:30 y
7 -2: 4 2,5 1,9 1,6 0.6 0,7 1,7 1,8 2,0 2,9 39 j
8 “2; 4 2, 4 2, 9% -4, 6 .4, 6 0, & 0r 7 07 4, 8 I 2, ¢ A
9 c2¢ Y 22,4 <2, 4 -2, 8 1,95 -4, 6 0y 6 0, 7 1.7 Ha 2, 8 i
10 -2, 3 =2, 8 <2, & -2, 4 2,5 -3, 5 -3, 6 0,6 0,7 4,7 3,08 {
d
43 ’i
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given in Table 3.1 for each trial up to n=10. These regions
e were computed using (3.17) and (3.18) and are truncated at
trail n, using (3.19). They were computed using the computer
E B program listed in the Appendix.
5 N The sequential test is carried out as follows. At each
trial an item is selected at random from the population. The
s : presence or absence of each of the two binary characteristics
is noted. For the observed marginal totals at trial n, the
observed value of x is compared with the proper critical limits in

the table (or otherwise computed using (3.19) if no table is

available). When one of the critical limits is met, the test
is terminated and the proper hypothesis is accepted; otherwise,
the test is continued and another observation is taken.

A typical sample for such a test is shown in Table 3.2

Table 3.2
Typical Sequential Sample

TRIAL D E n, . n, X {
1 1 0 0 1 0
2 1 35 1 2 1
3 0 0 1 2 1 ]
4 1 0 1 3 1 ‘
5 1 1 2 4 2 1
6 0 1 3 4 2
7 0 1 4 4 2
8 1 0 4 5 2

Here each inspected item has the characteristic of being either
D or D and being either E or E. At trial 10, the observed

results are summarized in the table given in Figure 3.4.
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D D
E 2 2 4
E 3 1 4

—

5 3 8

Figure 3.4 Observed 2x2 Contingency Table

Comparing the value x=2 with the proper critical values for the
marginal totals n, =4 and n 1=5, it is seen that the test is

terminated and Ho is accepted. This sequential test region is

evaluated in Section 3.5.

3.4 THEORY FOR SEQUENTIAL TESTS WITH THREE DECISIONS

As explained in Section 2.3, sequential tests for a three
decision test procedure can be developed by simultaneously using
two SPRTs. The development here uses the same notation and under-
lying probability model as the last section. For a three decision

test procedure the hypotheses are specified as:

Hy: P117Py
versus HO: pll=p0>pl (3.21)
versus H

2° P117P27Py
In addition, the desired o and B error probabilities are specified

(for each hypothesis) along with a truncation point ng- The test

procedure at each trial n involves computing two likelihood ratios,
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one for each hypothesis, and comparing them to critical values.

The sequential test rules for the test at trial n are:

accept Hl if Lno/Ln1 < B1
and Ln./Ln, < B,,

A= e (3.22)
accept Ho if Lno/Ln1 > Al
and Ln2/Ln0 < 82
accept H2 Lno/Ln1 > Al
and Ln2/Ln0 > A2,

otherwise, the test is continued by takinc another sample and

repeating the procedure. Wald's approximations are used to

find the values Al,Bl,A2 and 82; that is,
A.=(l-a,)/B A_~(1-8,)/a
. LR z M (3.23)
Blzal/(l-Bl) Bzzsz/(l-az).
The values
a,=2n(A,) a.=4n(A,)
1 1 2 2 (3.24)
b1=£n(Bl) b2=£n(B2)

are used below.

For this case it is again possible, and usually desirable,
to compute critical values to be compared with the test statistic
at each trial. The minimal sufficient test statistic is again

(x,n1 /N 1). The use of two SPRTs means that there are four
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critical limits for each possible combination of marginal totals

| at each trial. With observed margin totals (nl ,n 1) (sce
Figure 3.2) at trial n, the test procedure is to
: t H, if <c. | )
accep 1 1 x<ep (n) yn ,yn
and X’;dL(nl‘ln.lrn)
accept H, if x2c,. (n, ,n ,,n)
0 LRl (R A o | (3.25)
and xgdL(nl‘,n.l,n)
A accept H2 if xch(nl.,n.l,n)

and xgdL(nl.,n.l,n/

and take another sample if none of these conditions is met.
Here cL(-), cU(-), dL(-), dU(-) are critical limits for SPRT 1
and 2 respectively. The critical limits for the test are com-
puted (using the same notation introduced in Section 3.3) as
for SPRT 1 (3.26)

CL(nl.’n.l’n)= Bbl+nl.(R2+R4)+n.1(R3+R4)+nR4)/(R1+R2+R3+R4ﬂ

cylny on yon)= Ba1+"1.‘R2+R4)+“.1(R3+R4)+“R4)/‘R1+R2+R3+R4ﬂ gl

for SPRT 2

S Ko St Bb2+“1.(R2+R4’+“.1‘R3+R4'*"R4)/(R1+R2+R3+R4q

dU (nl. n 1,n)= [(a2+nl . (R2+R4)+n. 1 (R3+R4)+nR4)/ (R1+R2+R3+R4)] +1 1

where a, . bi' i=1,2 are defined in (3.24) and the other notation

is the same as is used in (3.18).

ddaatacaiiat
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. Each SPRT can be truncated separately in the same manner

- outlined in Section 3.3. The critical limits used in (3.25)
can again be computed either individually as the test progresses
or in tabular form for the entire test plan. When using a three
decision test procedure one must compute two tables, one for
each SPRT. The preceding is now illustrated with an extension
of the numerical example given in Section 3.3.

Again letting p1.=p.l='5' it is desired to choose among

the three hypotheses
le p11=p1=0.10
versus H,: Ppy,=Py=p; Py =0.25 (3.27)

versus H2: p11=p2=0.40

The desired error probabilities are chosen to be al=a2=.05 and

Bl=82=0.1. The critical limits for the SPRT used to distinguish

between Ho and H2 are given in the example in Section 3.3. The

critical limits to distinguish between Ho and H2 are shown in
Table 3.3. (Note that the designation of a and B has been reversed
beacuse p1<p0.) A typical sequential sample from the 2x2 table

is shown in Table 3.4; the corresponding 2x2 table at trial 10

is shown in Figure 3.5. By examination of both sets of critical

values at each trial, one finds that H, is accepted at trial 10.

0
The properties of this sequential test region are found in

Section 3.6.
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4
] . Critical Valuern for the
, Throee Decinson Sequential Test
Py.s 0.5C0
P18 0.500 ALPHAS 0,100
POs 0,100 UETas 0,050
TataL 5 Nt 3 TRIAL 1 N,
[ Ng. Pis 0,250 N 1
0 1 ? 3 4 ] [ 1
0 3,19 2.14 1,43 0,12 ~-1,11 =-2.,10 0 ~2. 7 -2, 6
1 1) 0,12 1,01 -2,10 <2, Y -2. 8 1 -2,5 -2, 4
2 1e38 2,40 -2, 9 -2, 8 -2,7 -2.°8
3 2. % 2,8 2,7 -2,06 -2,% -2.4
4 *2, 7 -2, 6 -2, 9% -2, 4 2,3 -2.2 TRIAL 4 N. %
S *2, % -2, 4 2,3 -2,2 2,1 -2.1 Ni.
0 20 9 21 ] 4
TIaL 8 N1 1 N o G oM i _;: ;
LI 2 -24% -2, 4 -
0 1 2 3 ‘ s 6 Eh Cupd
0 5.17 4,16 L% &) 2,14 1,13 0,12 -1.,11
1 3.18 2,44 1,43 0,12 ~-1,11 ~-2,10 -2, 9 TR]AL 3 N.§
F 1.13 0,12 =-1,11¢ -2,10 2, 9 -2, 8 2.7 NL,
3 3 1431 2,10 -2, 9 -2, 8 2,7 -2, 6 -2,5% 0 1 2 3
4 “2. 9 -2, 8 2,7 2,6 2,9 -2, 4 -2, 0 “1e1y -2,10 -2, 9 -2, 8
5 “2:Y -2, 6 -2, % -2, 4 2,3 -2,2 -2 ¢ 1 2. 9 -2, 8 -2, -2 'y
k 6 “2:09 =20 & =2, Y -2, 2 2,1 2.% 2.0 2 -2, 7 <2, 6 -2, 5 .?: .
| 3 2. %5 -2. 4 2,3 -2,2
TRiaAL ? N, TRIAL 4 N1
Ni. NL.
0 1 2 3 [] 1 [ ? 0 1 2 3 .
0 719 6,10 5,87 4,16 3,15 2:14 1,13 0,12 0 1.13 0,12 =1,31 -2,10 -2, ¢
1 $.17 4,16 3, 1% 2,14 1,13 0,82 -1,11 -2,10 1 1418 -2,10 -2, 9 -2, 8 -2. ?
2 31 244 1,13 0,12 1,41 -2,10 -2, 9 -2, 8 2 <209 2,8 <2,7 -2,4 2.3
3 1,13 0,12 1,1t 2,10 -2, 9 -2, 8 =-2.7 -2, 6 3 ~2¢ 7 -2, & -2, 9 _" 4 _2' 3
4 eis18 2,30 =2, 9 -2, 8 2,7 -2, 86 2,5 -2, ¢ 4 s 2k w75 .2. 2 s
S  ~2.9 22,8 2,7 -2,6 -2,5 -2, 4 2.8 2,3 ' : Go ¥
é *2: 7 2,6 2,5 -2, 4 2,3 -2, 2 <202 -2, 1
? “2¢% -2, 4 2,3 =2,2 2,1 =2+3 00 -24=1
TRIAL 8 N,
N .
(] 1 2 3 [] 5 [ ? 8
0 924 8,20 7,19 6,18 5.47 16 315 2,14 ti13
1 7.19 6,18 5,47 4,16 3,15 2,14 1,13 0,12 ~1,1%
2 5;.'7 ‘rle 30‘5 2014 1'13 0,12 ~1,11 -?.10 '20 9
3 3;15 2,14 1.83 0,42 -1,11 -2.,10 =2, 9 -2, 8 -2, 7
4 1:13 0,12 ~=1,31 =2,10 <~2, 9 -2, 8 =~2,.7 -2, 6 -2, 9
L] “1.18 2,10 -2, 9 -2, 8 -2, 7 -2, 6 =2,%5 -2, 4 -2, 4
[} '2; 9 -2, ] '2' ? 2., 6 “2, ] -2, 4 -2 3 -2, 3 '20 F4
? -2. 7 -2, 6 *2, % -2, 4 -2, 3 <@+ 2 =2/ ¢ -2, % =2, 0
[ ] '21 ] “2, 4 '2. 3 -2. 2 -2, 1 -2, 3 «2, 0 '2;'1 '2:’1
TRIAL [ ] N.g
L}
[ ] 1 2 3 4 5 [ 7 8 [
] 11,23 $0.22 9,31 8,20 7,39 6,18 5,17 4,16 3,15 2,14
1 9,20 8,20 7,19 6,18 5,17 4,16 ,1b 2,14 1,13 0,12
e 7.19 6,18 5,47 4,16 3,19 2.14 1,13 0,12 1,18 -2,10
3 5.17 4,16 3,15 2,14 1,13 0,12 -1,11 2,10 -2, Y -2, 8
4 315 2,14 1,13 0,12 <~3,11 =-2,10 -2, 9 -2, 8 2,7 <2, 6
5 1.13 0,12 r,1,81 =~2,40 =2, 9 -2, B -2, 7 -2, 86 <2, 5% -2, 5
[} 1.18 2,10 -2, 9 -2, 8 -2,7 2,6 -1 5 -2, 4 2,4 -2,
7T 29 2,8 2,7 2,6 2,5 -2,4 -2, 2,3 2,2 -2,
8 2.7 2,6 =2,% -2,4 +2,3 2,2 “2,¢ 2.1 2,0 -2,-%
[ ] *2,9 2, 8 =2, 3 2,2 2,1 2,1 200 =2,°i c=2;%a =2,-%
TRiat 10 N.1
Ni.
0 1 2 3 4 5 [ 7 8 9 10
0 13§25 12,24 11,33 10,22 9,21 8,20 7,19 6,18 5,47 4,16 3,15
1 11323 10,22 9,4t 8,20 7,49 6,18 $ey7 4,16 3,1° 2,14 1,13
2 952‘ ’120 7.19 elle 5:’7 4,16 "15 2,14 1'1-’ 0012 -1,11
3 7,19 6,10 5,17 4,16 3,15 2,14 1013 0,12 1,18 2,10 -2. 9
4 $.1? 4,16 3,19 2,14 1,43 0:32 =181 =2,10 =2, 9 -2, &8 -2, 7
S 3015 2,14 lo" 0,12 -1,11 -2,10 2, v -2, 8 [ [}
[) 1,13 0,12 =~3,43 =2,10 -2, 9 -2, 8 -0 -2, ¢ 5 4
7 =1:18 2410 =2, 9 -2, 8 -2, 7 -2, 86 2,5 -2, 4 3 4
[ ] “2e 9 2,08 -y} -2y 0 -2, % -de § g v 2,3 1 0
9 =27 2,6 =2,8% -2, 4 2,3 -2,2 ¢ -2, 1 1
10 '2; ] 2, 4 -2, 3 2. 2 2. 1 -2, 1 =2+ U 241
4
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Table 3.4
Typical Sequential Sample

50

D E nl. X
1 1l 1 1 1 1
2 1 1l 2 2 2
3 1l 1 3 3 3
4 1l 1l 4 4 4
5 1 1l 5 5 5
6 1l 1l 6 6 6
7 0 0 6 6 6
8 1l 1l 7 7 7
9 1 1 8 8 8
10 1 1 9 9 9
D

9

E 1

10

Figure 3.5 Observed 2x2 Contingency Table
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3.5 EVALUATION OF THE TWO DECISION TEST REGIONS

This section describes the evaluation of the sequential
test plans for 2x2 contingency tables. The direct method of
sequential analysis, as outlined in Section 2.2, is used to
find the exact values of the important test properties. It
will be shown below how to compute the OC function and the
distribution of the decisive sample number (DSN). From these,
one can also find the ASN function and the true a and [ ecrror
probabilities, a' and RB'. The two decision test procedure
obtained in Section 3.3 is evaluated as a numerical example.
The results given here are extended in the following section to
treat exact evaluation of test plans for a three decision test
procedure.

As explained in Section 2.2, the direct method is used by
computing both the probability of making each decision and the
distribution of the probability remaining in the continuation
region at each trial. The probabilities at trial n+l are com-
puted by convoluting the probability remaining in the continua-
tion region at trial n with the sample taken at trial n+l. This
is done for each trial n=1,2,...n0, where n, is the truncation
trial at which the sequential test is terminated. In order to
use the direct method, these probabilities are computed for ecach
possible value of some statistic which is both sufficient and
transitive. Transitivity of a statistic S implies that the

distribution of S at trial n depends only on the value of § at
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trial n-1 and the data observed at trial n. A transitive sta-
tistic is necessary to compute the probability of the values of
the test statistic from one trial to the next. The minimal

sufficient statistic (x,nl_,n.l) is also (obviously) transitive

and is used here to compute the probabilities necessary for the

direct method.

E Each point in the sample space at trial n can be denoted

by (x,n1 /N 1). From each point (x,n1 /N 1) which is in the

continuation region at trial n, the statistic will take on any

one of four values at trial n+l, namely (x+l,n, +1,n l+l),

1
(x,nl.,n.l+l), (x,nl.+l,n.l) or (x,nl.,n'l) with the probabilities

shown in Figure 3.6.

[ S < e

-

(x+1. nl.+l, n.1+10 n+1) {pll}

(xony *#Ln 1on4d)  {(p) Py

(Xemy om q00)

Gemy on 40t (e 3-py )}

(x,ny +n_5,0tl) {‘l"Pl.‘P.l‘Pll’}

Figure 3.6 Possible Outcomes at Each Trial
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The procedure begins at trial 0 where the only possible
"outcome" is (x=0,n1.=0,n.1=0) which therefore has a probability
of 1. The probabilities of reaching each point (x,nl.,n.l) at
trial n for n=1,2,...n0 are computed recursively starting with
this point at the origin.

As shown in Figure 3.6, the probabiiity of reaching each
point inside or on the boundary of the sequential test region is
a function of the true state of nature. Because the marginal
probabilities Py. and p , are assumed known, the state of nature
is completely specified by Py, alone. The operating character-
istic (OC) and the average sample number (ASN) are functions of
the true state of nature and one can specify as many points as
necessary or desired at which to evaluate the properties of the
sequential test.

After choosing a particular value for the state of nature,
the probability of reaching each point in the sample space is
computed. This is done by convoluting the probability remaining
in the continuation region at trial n with the sample taken at
trial n+l. This is done in the following manner.

Let Ain denote the event of accepting hypothesis Hi’
i=0,1 and Cn the event of being in the continuation region at

trial n. That is
A0n= ,(x,nl.,n.l,n)|x5cL(n1_,n-1,n)f

(3.28)
Al = ;(x,nl.,n.l,n)|x3cU(n1.,n.l,n);

C =
n

(x,nl‘,n.l,n)ch(nl_,n.l,n)<x<cU(n1 ,n.l,n)f
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The recursive formula used to find the probabilities for each
point in the (x,n1 n 1,n) space is:
Pg(x/ny 4m_1s0i Py P 1/ )=

(3.29)
I(x-l,nl.-l,n.l-l,n-l)PS(x-l,nl.-l,n.l-—l,n-l;pl.,p.l,pll)pll

*xony o0 y-len-l)Bg(x,n) .0 y-l.n-lipy P 3Py} (P 3-Pyy)
rdoeny Sdon entl) Belnony Shon, cnmLing B g 0Py )Ryl SR )

+1(x,ny o0 n-1)Pg(x,ny ,n y,n-1;py ,P 1,P1;) (1-P ;+P;;)
where

l if x%x=n, =n .=0
Pg{xyny 4n 1,0ip) 4P y/Pp4)=

1. .1
0 otherwise
1 if (x,nl_,n.l,n)ccn

I(x,nl N 1,n)= {
© 0 otherwise

The indicator function I accounts for the fact that the test
terminates when one of the critical values is reached. Of course,
the probability of all of these points need not be computed; one
need only compute the probabilities of those points which are
inside or on the boundary of this four-dimensional sequential test
region (other points have probability zero).

It should again be noted that the probahility of reaching

any point (x,n, ,n l,n) in the sample space, for a fixed size

1.

sample of size n is a multinomial distribution; that is,

Pplx,ny yn yinpy 4P 1/P1y)= (3.30)
n, -x n -X n-n., -n +Xx
X 1. ! 10 .1
nipy; (Py -Pyy) (P 1-Py;) (1-py -P y*P;;)

x!(nl.-x)!(n 1—x)!(n—nl -n . +x)!

1
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The probability of reaching this point under the sequential

test rules, as computed from (3.29), can also be expressed us

Ps(x'“l.'".1’"'91.'p.1'911)= (3.31)
n -X n l-x X

X .
K(x,ny »n y,n)py, (P) ~Ppy) (P 1-Pyy) (1-p; -P ;*Py;)

where x4=n-nl.-n.l+x and K(x,nl.,n_l,n) is the number of admissable
paths to the point (x,nl.,n.l,n). This leads to a computational
simplification whan one desires (which is usually the case) to

find these probabilities for several or many different values of
the true state of nature. If one computes (using (3.29)) the
probability of reaching a point (s,nlo,n.l,n) under the sequential
test rules for a specified state of nature Pyyr the probability

of reaching that point under the same sequential test rules, but

with true state of nature q,4 is

Ps(x'"l.'“.1’“'91.'9.1’q11)= (3.32)

Ps(x'nl.’n.]_;n'p]__’p,l'pll) PF (X,nl.,n.l;n:pl.rp_qull)
PF(xlnl.In.l;nlpl.lp.lipll)

PF(-) is, of course, relatively easy to compute. This simplifi-
cation is used in the computer programs (which are listed in the
Appendix) for finding the sequential test properties.

It is desired to compute the OC function and the distribution
of the DSN for different specified values of the state of nature.
From these, it is a simple matter to find the ASN function and

the true a and (¢ error probabilitics.
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The probabilities of each of the events Ain,i=0,1 are
computed for each specified state of nature Pyp- This is done

as follows:

P (AL )=

n'P11

n n IU
220 n §=o xErp Ji (%eny on o) Polx,ny unoyinepy 4P 40Py)

(3 28)

n

where IL=MAX(0,n1 +n 1-n)

IU=MIN(n1 )

.1
1 if (x,nl.,n.l,n)sAln

Ji(x,n 0 otherwise

1.0 =

The indicator functions Ji’ i=0,1 are used to sum only those
probabilities which are on the boundary of or outside the sequen-
tial test region. Once these probabilities have been computed,
the distribution of the DSN can also be computed.

The probability mass function of the DSN is

P(n;pll)=P(A0n\JAl )=P(A0n )+P(Aln ) (3.34)

n‘P11 PPy iP1y

This is computed up to Ny the truncation point where

cU(nl.,n.l,n)=cL(n1.,n.l,n)+l for all possible combinations of
n, and n 1° The ASN function is then computed as
"o
ASN(p11 =n§lnP(n;pll) (3.35)

Other moments of the distribution of the DSN can also be

found. The variance of the DSN is




Y

57

n
P 2 .
VSN(pll)—ngl(n ASN(pll)) P(n,pll) (3.36)

Similarly, the kth moment about the origin can be expressed as

Mo

E(nk;pll)=n;1nkP(n;pll) (3.37)

Defining Cn to be the event of being in the continuation
region at trial n, the ASN function can also be expressed as

-1

"o
ASN(p,q)=1+ Z, P( ). (3.38)

1 Cn;pll

This alternate form is given by Aroian (1975) and shows how
the ASN function "builds up" at each trial of the sequential
test. The OC function of the sequential test is computed as

N

OC (p,,)=_Z,P (A0 ) (3.39)

niP11
and the true o and B error probabilities are

a'=l-OC(p0)
(3.40)
'=
OC(pl)
The computer program listed in the Appendix finds both
*he OC and ASN functions Sfor a given sequential test region.

Also computed is the probability of continuing to trial n,

from trial n,-1(P(C_ )Y. This is the most important point on

-1
0
the CDF (actually one minus the CDF) of the distribution of the
DSN and gives the probability that the test will be terminated

at trial n the truncation point. 1In general, this probability

ol
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v+ 11 be large if the ASN is also large. It is a good measure
to help one decide if the sequential test has been truncated
too soon.
The test properties have been found for the sequential test
region obtained in the numerical example given in Section 3.3.

The hypothesis being tested is
HO: pll=p0=0.25

versus HI: p11=pl=0.40

with desired error probabilities a=0.05 and 8=0.1.

These properties were computed using the computer program
given in the appendix and are displayed in Table 3.5a. Graphs
of the OC and ASN functions are shown in Figure 3.7. It can be
seen that the ASN function varies between 8.73 and 15.63 and
that the true a and R erro. probabilities for this sequential
test are a'=0.057 and B'=0.085, which are very close to the desired
values.

In some cases, the true a and B error probabilities ob-
tained from a given test plan turn out to be different than what
is desired (here, a'=0.057-0=0.05). In such cases, modification
of the test region at the truncation point can be used to achieve
the desired error probabilities. Certain points can be moved from
the region for acceptance of Hl to the region for acceptance of
HO. This can be done in a systematic manner by examining the

probability of reaching the points in question, under the truc

states of nature specified by Ho and Hl (these probabilities are
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Pya

0.2300
0,2400
0.2500
0.2600
0.2700
0.2800
0.2900
0.3000
0.3200
0,3400
0,3600
0.3700
0,380¢
0.3900
0.4000
0,4100
0.4200
0.4300

P13

0.2300
0,2400
0.2500
0.,2600
0,2700
09,2800
0,2900
0.3000
0.,3200
0.,3400
0,3600
0,3700
0,3600
0,3900
0.,4000
0.,4100
0,4200
0,4300

Table 3.5a

Test Properties for the
Two Decision Example

P(Ho)

0.97390
0.9§084
0.94278
0.9185%
0.84709
0.84750
0.79925
0.74234
0.608/7
0.45103
0.29959
0.24222
0.17339
0.13434
0.08542
0.056u8
0.03510
0.03087

P(Hl)

0.02609
0.03913
0,05722
0,08144
0.112914
0.,15250
0.20075
0.25765%
0.39423
0,54897
0.70040
0.,76777
0.82661
0.87565
0,91457
0.9439%
0.96489
0.97912

Table 3.5b

ASN

8,73

9.41
10,13
10.69
11.67
12.44
13.19
13.89
15,02
15,63
15.58
15.30
14,87
14,30
13.63
12,88
12.10
11.31

Test Properties for the
Two Decision Example

(Favoring Ho)

P(Ho)

0.98415
0.97672
0.96640
0.95237
0.94370
0.90939
0.87849
0.84013
0.74853
0.60613
0.45168
0.37226
0.29545
0,22459
0.16185
0.10987
0.0§942
0.04027
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P(Hl)

0.01585
0,02328
0,03360
0,04763
0.06630
0.09060
0.12150
0.45986
0.,26107
0.3938%
0.54832
0.62774
0.,70455
0.77564
0,8381¢4
0.89012
0.93058
0.95973

ASN

8,73

9.41
10.13
10.89
11.67
12,44
13,19
13.89
15.02
15.63
15.58
15.30
14,87
14,30
13.63
12,08
12,10
11,31

P(C )

no-l
0,03671
0.05196
0.07091
0,09345
0,11900
0.14652
0.17450
0.20097
0.,24061
0.24941
0,22026
0,19333
0.16112
0.12666
0.09309
0.,06323
0,03905
0,02144

p(Cn -1)
0.03671
0,05196
0.07091
0.09345
0.11900
0,14652
0,17450
0.20097
0.2406%
0.,24941
0.22026
0.19333
0.16112
0.12666
0.09309
0,06323
0.03905
0,02144
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obtained by using the direct method of sequential analysis).
This type of modification will of course result in some loss of
power. Table 3.5b shows the test properties for the previous
numerical example with the region modified in this manner.

It is seen that a' is reduced from 0.057 to 0.034 and that the
power (1-B') is reduced from 0.915 to 0.838. It should be noted
that the ASN function and P(Cno_l) remain the same for such
modifications. Such procedures for region modification are used
in succeeding numerical examples and are treated more fully in
Chapter 7.

In order to show the relative superiority of this sequential
procedure, the above results are now compared, for the one-sided
test procedure, with a similar fixed size sample test. The fixed
gsize test with sample size n*=20 is used. The critical region
(for rejection of HO) for this test was found by including in it
all of the points which favor Hl and have the smallest proba-
bilities summing to 0.057, the true a error probability of the
sequential test. The power function for this fixed size test
is shown in Table 3.6. It is seen from this that the sequential
test has both higher power and an ASN function which is uniformly

less than the fixed size sample number, n*=20.




.31
.32
.33
- 314

K .35

.36
} .37
: .38
.39

Lana, b i
g - o Wi

£

.41
.42
.43
.44

.45

Table 3.6

Power Function for the Fixed Size

Sample Test (n*=20)

P(H)ipy;

.0136
.0186
.0250
. 0333
.0438

.0571
.0737
.0942
.1193
.1495

.1854
.2274
. 2757
.3300
: 3902

.4552
. 5238
.5942
.6644
.7322

.7952
.8513
.8987
.9363
.9640

.9823

)
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3.6 EVALUATION OF THE THREE DECISION TEST REGIONS

This section describes the method whereby one can obtain
the test properties of the three decision sequential test regions
found in Section 3.4. The evaluations performed here are similar
to those in the previous section; the preliminary information
presented there is not repeated here. Again, the OC function
and distribution of the DSN are found, from ;hich one can casily
obtain the ASN f .nction and the true a and [ error probabilitices.

At each trial, an observation is taken and either one of

the three hypotheses is accepted , terminating the test, or the

TN

test is continued by taking another observation. This can bc

continued up to trial n the truncation point.

: 0’
l Let Ain denote the events of accepting hypotheses Hi at

trial n, i=0,1,2 and Cn the event of continuing to trial n+l.

(Note: P(C0)=l, P(Cn )=0.) There will be an OC function asso-
0
ciated with each of the three hypotheses giving the probability

of accepting Hi under a specified state of nacure Py Each

point in the sample space can again Be denoted (x,n, ,n .,n).

1.77.1

Each of these points is a member of one of the above-mentioned

sets, that is,

Al = {(x,nl.,n.l,n)|x§cL(nl',n.l,n) and x:zd; (n; ,n ,n) !

L

AO = {(x,nl.,n.l,n)Ixzcu(nl.,n_l,n) and xzd; (n, ,n ,n)}

Ltes s, (3.41)

n'l,n)lxzcu(nl',n.l,n) and x:d, (n

A2n= {(x,n ,nhl,n)}

1.’ 1.

or the continuation region, Cn
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Again, it is necessary to find the probability of 1caching
each point in the sample space under the specified sequential
test rules and different states of nature; that is, Ps(x,nl.,n.l,n)
Using the same general procedure outlined in the last
section, these probabilities are found recursively using the

following formula
PS(x'nl.’n.l;pl.’p.l'pll)= (3.42)
I(x-l,nl.-l,n.l—l,n-l)Ps(x-l,nl.—l,n.1-1,n-—l;pl.,p.l,pll)p11
+I(x'nl.'l'".l’"'l)Ps(x'nl.'l'n.l'n'l;pl.’p.l’pll)(pl.—pll)
+I(x,nl_,n.l-l,n-l)Ps(x,nl.,n.l-l,n-l;pl.,p.l,pll)(p.l—pll)

BRI Ls LR slxany T oS LRy R NG R e R R )

where

1 if x-nl.=n-l=0

P.(x,n, ,n .,0;p;, /P ,+/P,,)=
S 1.7°.1 1. 1711 0 otherwise

0 if (x,n.l,nul,n—l)rcn

and I(x,n, ,n l,n-l)=

1 1 otherwise

Here the indicator function I accounts for the fact that the test
terminates when the test statistic leaves the continuation region.
The simplification for computation of these probabilities given in
the last section is also applicable here.

The probability of each of the events Ain, i=0,1,2 is computed

for each trial n=1,2,...,n0. This is done as follows

kst N il i peasad o




65

P(Aln,pll)=
n0 n0 IU
n1£=0 o §=o x=ap, Ji (¥eny on pemPgixyngy un oyunipy 4P qePpy)

1 if (x,n, ,n ,,n)cAl
Lo ot n (3.43)

1 0 otherwise

and IL=MAX(0,n, +n l-n)

1

IU=MIN(nl.,n.l)

The probability mass function of the DSN can be expressed as

2 2
P(nipy,)=P(YyAi )= E P(AL ip;,) (3.44)
and is computed for n=l,2,...,n0. The ASN function 1is then
Mo
ASN(p,,)=_Z,nP(n;p, ) (3.45)

Other moments can similarly be expressed as in (3.37).

th

The OC function of the i hypothesis gives the probability

of accepting that hypothesis as a function of the true state of

nature and is computed as
n

Oci(p11)=nélp(Aln'pll) (3.46)
The true a and B error probabilities for each SPRT are found as

ai=0Cl(pO) Bi=OC0(pl)
(3.47)

@,=0C, (py) B5=0Cy (py)

The above properties, along with the probability of continuation
to trial n,, are computed by the computer program listed in the

Appendix.
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For the numerical example concerning the three decision
test given at the end of Section 3.4, the hypotheses being tested

are

Hl: p=pl=0.10

versus HO: p=p0=0.25 (3.47)
versus H2: p=p2=0.40

with desired error probabilities a1=a2=0.05 and Bl=82=0.1.

The exact test properties for this example are given in Table

3.7a. The OC and ASN functions are graphed in Figure 3.8.

Table 3.7b shows the test properties for the same sequent<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>