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ABSTRACT

Wald's theory is used to find truncated sequential test
regions for the hypergeometric distribution. These regions
are then evaluated using Aroian's direct method of sequential
analysis. Using this method, the important test properties
(operating characteristic (0OC) function, average sample num-
ter (ASN) function and the distribution of the decisive sample
number {DSN}) are found exactly. The tests are compared with
other similar tests (both sequential and fixed size) and
estimation of the parameter after completion of the sequential
test is treated. Numerical examples and general computer

programs are also included.
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e INTRODUCTION

i This report is concerned with sequential tests of the
hypergeometric distribution. The report is organized as
follows. Chapter 1 reviews the relevant literature and gives
some nececsary background material. Chapter 2 describes the
construction of the sequential test regions for the hyper-
geometric distriburion and Chapter 3 applies the direct method
of sequential analysis to the problem, allowing exact evalu-
ation of the test properties. Both two and three decision

. test procedures are treatecd. Chapter 4 presents a variety of

numerical examples, including fixed size an< sequential test

plans and their respective properties. In Chapter 5, the
sequential test properties are compared with both fixed size
tests and a binomial approximation to the hypergeometric prob-
lem. There, the superiority of the sequential procedures (with
respect to average sample size requirements) is clearly shown.

Chapter 6 examines a method of estimation which can be performed

at the completion of a sequential hypothesis test. Computer

programs developed for these procedures are given in the

Appendix.
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CHAPTER 1

BACKGROUND AND REVIEW OF THE LITERATURE

1.0 INTRODUCTION

This chapter introduces the hypergeometric distribution
and reviews the relevant literature. The first two sections
discuss this distribution and give examples of its proper
use. The following section pre 'ents the development of fixed
size sample tests for this distribution. These tests will be
compared with the se _-ential tests developed here. The last
section reviews scme of the previous results with sequential

tests of the hypergeometric distribution.
1.1 THE HYPEKGEOMETRIC DISTRIBUTION

The hypergeometric distribution is the appropriate dis-
tribution when each element of a finite population can be
considered either a success (defective) or a failure (non-
defective) and sampling is performed without replacement from
a finite population. It is assumed that there are D defectives
in a population of size N. If a random sample of size n is
drawn from the population, the probability that it wiil con-
tain x defectives is given by the hypergeometric probability

mass function:
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(1.1) ‘
D! (N-D) !n! (N-n)! -

N!x!(D-x)! (n-x)! (N-D-n+x)!
max (0,n-N+D) <x<min (n,D)
The cumulative distribution function, which gives the proba-

bility that the number of defectives x found in a sample of o

size n is less than or equal to r is

r
P(x<r) = H(r;N,n,D} = £ h(i,N,n,D). (1.2) o
i=0

]

Lieberman and Owen (1961) give tables of h(x,N,n,D) and
H(r,N,n,D) for N=1(1)59(10)100.
This dissertation considers inferences about D, thc number
of defectives in a finite population of known size N. Infer- )'
ences concerning other parameters (e.g., the population size N)
can also be made by generalizing the procedures presented here.
The hypergeometric distribution has many important appli-
cations, one of the most important being acceptance sampling,
Grant (1964) gives some discussion of this along with a table
of log factorials which are useful for calculating hypergeometric
probabilities. The hypergeometric distribution can also be
used for nonparametric tests of location and dispersion, as
explained in Owen (1962) and Gibbons (1971). In addition, it
is used for tests of significance for the equality of two

unknown binomial proportions and for tests of independence of
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two binary characteristics. These last applications arise
because the hypergeometric is the null distribution for tests
which can be formulated in terms of a 2x2 table in which one
is testing the independence of the rows and columns.

Johnson and Kotz (1969), in their book, give some fur-
thexr applications of the hypergeometric distribution along
with a somewhat more theoretical development of the distribu-
tion, including the moments and the generating functions.
They also present discussion of different methods of fixed
size sample estimation and of some extensions of the dis-
tribution. A rather complete set of references relating to
the hypergeometric distribution is also included there.

1.2 WHEN THE HYPERGEOMETRIC DISTRIBUTION SHOULD PROPERLY

BE USED

There is often confusion as to when the hypergeometric
distribution should be used and when the binomial distribu-
tion should be used. As mentioned earlier, the hypergeometric
digtribution should be used when sampling without replacement
from a finite population. If the population being sampled is
infinite (or is large enough to be considered so) or if
sampling is done with replacement, the binomial distribution
should be used.

The important distinction to be made between the binomial

situation and the hypergeometric situation is in the probability
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of finding a defective at each inspection. An example makes
this clearer. Consider a quality control engineer who wishes
to make inferences about the number of defectives in a lot
of 100 items. First the assumption is made that the machine
which produces the items produces defects with some constant
probability. If 20 items are to be inspected and they are
inspected as they come from the machine (not necessarily con-
se~utive items), the binomial distribution should be used
because the probability that a given item will be defective
is the same for each of the 20 items tested. On the other
hand, if after the lot of 100 items has been produced, a ran/dom
sample of 20 items is selected from this lot and inspected
without replacement, the hypergeometric distribution is
appropriate. This is because the probability of observing a
defective is no longer constant for each of the items inspected.
In general, if the population is finite, tests performad
without replacement using the hypergeometric distribution will
be more powerful. The size of the increase in power is re-
lated to the ratio of the sample size to the population size
(along with the other parameters). If this ratio is less than
0.1, the difference between the tests will in most cases be
small enough to ignore. Also, if the ratio is small enough,
either distribucrion may be used when sampling without replace-
ment. This is of course due to the fact that the hypergcomctric

distribution will approach the binomial distribution if N is
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i increased and D/N remains constant. If, however, these above
conditions are not met, one should use the hypergeometric '
|
t distrikution. {
1 1.3 FIXED SIZE SAMPLE TESTS FOR THE HYPERGEOMETRIC DISTRIBUTION i

{ By using the tables of the hypergeometric distribution,

3 one can f£ind the fixed size sample test which has the smallest

{ necessary sample size and still has error probabilities which i
meet the desired specifications. A procedurc for doing this |
is presented below.

| In a two decision test there are two types of errors to

® be considered. These are shown in Figure 1.1.

Decision Based on Test Results

| H, H,
{
. True State H, | NO ERROR a ERROR
of
Nature
f H_ 8 ERROR NO ERROR

Figure 1.1 Error Probabilities for a Two Decision Test

The first is called a Type I or o error and is made when
i there is a decision to accept the alternate hypothesis, H, .
. when in fact the null hypothesis, HO, is true; « usually denotes

the probability of such an error. A Type II or B error occurs
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when the null hypothesis is accepted when in fact the alternate
hypothesis is true; B usually denotes the probability of a Type
II error. The following notation, however, is used here. Let

o and B denote the éesired probabilities of the Type I and Type
II errors respectively and let a* and B* denote the probabilities
actually given by the fixed size sample test.

Guenther (1969) describes in detail a method of obtaining
the desired test by using the tables of the hypergeometric dis-
tribution provided, for exampie, by Lieberman and Owen (1961).
The method is straightforward and is outlined below.

The simple hypotheses to be tested are

H.: D=D<N/2

0 (1.3)
versus le D=D1>D0
The requirements of the desired test are:
P (accept H,)=§1l-a if D=D
0 0 (1.4)
B if D=D1

This expression gives two points of the operating characteristic
(0C) function. The OC function gives the probability of accepting
HO as a function of the true state of nature. Because it is re-
quired that the OC function be nonincreasing, it is clear that
a+B<l. An example of a typical OC function is shown in Figurc 1.2.
Actually, the OC function is a step function in this case, although
it is shown here as if it were continuous. This practice will be

used throughout to make the graphs easier 1o read.
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Figure 1.2 Typical OC Curve for a Two Decision Test

The fixed size sample test plan is defined by the sample
size n* and a critical value c*. If the number of defectives
found in the sample of size n* is greater than c*, the alternatc
hypothesis, Hl, is acceptew; otherwise, the null hypothesis,
HO’ is accepted. The procedure for finding such a test if the
appropriate values of the probability function are available
(from tables, for example) is given by Guenther (1969) and is
repeated here for completeness.

1. Start with the critical value c*=0

2. PFind the largest n, say n such that

LI
H(c*;N,nL,Do)zl—a. This inequality will

hold for all nsnL

3. Find the smallest n, say n such that

sl
H(c*;N,nS,Dl)SB. This inequality will be

satisfied for all n2nS

T
i
i
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4. 1If nSSnL, the plan (ns,c*) satisfies the
requirements with minimum sample size and

ad. is n*.
S

5. If ng>n, . increment c* by one and go to

step 3.
After n* and c* have been determined, the values of the error

probabilities can be determined as follows:

c*
a* = 1- £ h{(x;N,n*,D
x=0
= l—H(c*;N,n*,DO)
C*
z h(x;N,n*,D]) (1.5)
x=0

= H(C*;XIN:n*/Dl)

o

B*

r
where H(r;N,n,P)= Z h(x;N,n,D), the cumulative distribution

x=0
function, is giver by Lieberman and Owen (1961) for N=1(1)50(10)100.
For values of N not contained in the table, Guenther (1973)
suggests another approach for obtaining the desired test. This

approach is improved here. Using an approximation due to Wise

(1954),

r
H(r;N,n,D)=~L (:)“x(l_ﬂ)n—x (1.6)
x=0

. =(D-(c/2))/(N—((n-l)/2)) (1.7)

Letting P=1-H(c;N,n,D), it becomes neccssary to find a solution

where

for (1.6) in terms of n given N,D,c and P. Guenther (1973)

-
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gives the approximation
2
n=.5{x5 5.1 p(1/71-0.5)+c} (1.8)

to be used with the binomial distribution, and solves the system

of (1.7) and (1.8) iteratively, failing to realize that one can

solve for the approximate n directly. It can be shown that
n=F(N,P,c,D)

2 2 (1.9)
where F(N,P,c,D)={x (2N+l—D+5c)+c(D—c)}/(4D—2c+x )

and X2 is the Pth percentile of the chi-squared distribution

with 2c+2 degrees of freedom. Further, an approximation of the

desired test can be found by incrzasing ¢ until the interval n
F(N,P,Dl,c)<n<F(N,P,DO,c) (1.10)

contains at least one integer. A first guess for the test is
then obtained by using the smallest integer in the interval for
the sample size n* and c for the critical value c*.

The computer program given in the Appendix carries out the
above calculations to find an initial guess for c¢*, and then
nses the first procedure cf Guenther to find the test size n¥*
and the critical value c* exactly.

The fixed size sample tests used for comparisons in this
dissertation are not randomized. Randomization, if used, can
serve two purposes. When developing tests of a discrete dis-
tribution, such as hypergeometric distribution considercd here,

the size of the error provabilities are often considerably less
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than the desired size. Randomization can be introduced into
the test such that the probability of a Type I (or Type II)
error can achieve exactly the desired size, i.e., a=oa%*

(or B=B*). This is valuable if twe alternate tests are to be
compared. Also, the use of this technique may allow for a
small reduction in the required sample size.

Randomization is accomplished, for example, by accepting
uo with probability y if c* defectives are found in the sample,
“l being accepted with a probability (1-y). Yy is chosen such
that the probability of a Type I (or Type II) exrror is exactly
the desired size. For simplicity of presentation, randomized

tests are not used here. Most of the comparisons will not be

affected by this omission.
1.4 EXTENSION TO THREE DECISION TESTS

The extension of the above results to two-sided or three
*
decision tests 1is straightforward. The hypotheses are stated

as follows:

Hl: D=D1<N/2
versus HO: D=DO>Dl
versus HZ: D=D2>D0

In this case, there are four types of errors which can be made.

a, is the probability of accepting H, when H, is true and Bl is

1 1 0

the probability of accepting HO or H2 when Hl is true. is the

)

*

The three decision test is a generalization of the standard two-~
sided test; that is, separate o and B errors can be specified
for each alternate hypothesis (see Goss (1274b)

—— e e o et S
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probability of accepting H, when H

2 0

probability of accepting Hl 0

or H, when H

2

error probabilities are shown in Figure 1.3.

b
K
J

12

is true and 62 is the

is true. These

Decision Based on Test Results
Hy Hy Hy
Hl NO ERROR Bl ERROR
!
|
True State HO al ERROR NO ERROR a2 ERROR
of
Nature '
H2 82 ERROR ., NO ERROR
!

Figure 1.3 Error Procbhabilities for a Three Decision Test

The fixed size sample test is found as in the two decision

test, except that there are now four constraints to be considered:

P (accept Hl)= l-Bl
P (accept Hl)= oy
P (accept H2)= 1—82

P (accept H2\= o,

if D=Dl

if D=D0

if D=D2

if D=D0

—
Jd
-
j=
N

~—

This gives two points on each of two of the OC curves for the

three decision test. Graphs showing typical OC functions for a

three decision test are shown in Figure 1.4.
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The solid curve, decreasing with D, gives the probability
of accepting Hl as a function of the true state of nature, D.
The solid curve increasing with D gives the probability of

accepting U The dotted curve gives the probability of accept-

2°

ing H, for different values of D. The sum of these three curves

0

is of course 1. Again, these curves are really step functions
because of the discrete nature of the parameter D, but are shown
here as being continuous.

The test plan consists of the sample size n* and two critical

values c* and c*.
L 8]

accept H

accept H

accept H

This test may also be randomized by specifying probabilities Yy

and Y, for the probabilities of accepting Ho

1
0

2

if x <c*
=7L

if c*

<x<Le
L -

*
U

. o ek
if x_cU

equal to c* or c* respectively.

L U

The decision rules for the test are then:

(1.13)

or H2 when D is

!

P
S—

__.d



we

E ¥

pr——
.

14

1.5 PREVIOUS RESULTS WITH SEQUENTIAL TESTS OF THE HYPERGEOMETRIC

DISTRIBUTION

The first suggestion of a sequential test of the hyper-
geometric distribution is found in Wald (1947) where it is gZven
as an example of a simple case of dependent observations. Here
Wald shows how to perform the sequential test by using a sequen-
tial probability ratio test (SPRT). Chung (1950), Dumas (1369);
Dumas (1970) and Ghosh (1970) also discuss the SPRT for this
distribution. Similar tests, with some modification, are used
here as explained in Chapter 2.

Chung (1950) derives approximations for the likelihood ratio
used in sequential tests of the hypergeometric distribution.
These approximations are valid when the proportion of defectives
in the population is small. He also gives some examples of their
usc in acceptance sampling plans. He does not discuss the result-
ing test properties. Yang (1968) gives rules for a sequential
test of the hypergeometric distribution, but does not mention the
properties of these tests.

Dumas, in his papers, gives approximation for the boundaries
of the sequential test region. These approximations are based
on the use of Stirling's approximation for the factorials which
appear in the equations. He also discusses the resulting shape
of the regions and their geometric relation to the regions used
in sequential tests of the binomial distribution. Some further
comparisons between the tests of these two distributions are

given in Chapter 4,

N

e s e ——

e
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Ghosh (1970) notes that because the observations from a

9

hypergeometric distribution are not independent, the OC function

.-
[ N—

and other tesi characteristics will be "quite difficult to

determine."” This is because the approximations given by Wald

(1947) hold only when the observations are independently and -

identically distributed (i.i.d.). Ghosh (1970) gives conjectural

formulas for the OC and the average sample number (ASN) which o
: he states might hold under certain conditions. These conjectural

formulas have not been investigated. It appears that the task of

solving these formulas is considerably more difficult than using .-
Aroian's direct method of sequential analysis, as is done here. p
Also, the direct method uses no approximations and the results

* are cxact
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CHAPTER 2
CONSTRUCTION OF THE SEQUENTIAL TEST REGIONS

FOR TWO AND THREE DECISION TEST PROCEDURES
FOR THE HYPERGEOMETRIC DISTRIBUTIOL

2.0 INTRODUCTION

In this chapter, the method of finding a sequential test
region for the hypergeometric distribution is presented. Tests
are given to determine the number of defectives in a finiite
population when the population size is known. In the first
part of the chapter, one-sided, two decision tests are treated.

In the second part, the method is extended to deal with two-
sided, thrce decision tests. Numerical examples to illustrate
both cases are provided. The third section discusses sequential
tests of composite hypotheses and the resulting OC functions.

2.1 CONSTRUCTION OF THE BOUNDARIES FOR A TWO DECISION SEQUENTIAL

TEST

The sequential procedures developed here will consider the
¢ .tuation when one is sampling items one at a time without re-
placement from a finite population of known size. Each item is
then classificd as a defect or as a non-defect. Based on the
total number of defects observed, a decision is made to accept HO'
the null hypothesis, or Hl' the alternate hypothesis, or to take
another observation. The procedure is easily generalized to con-
sider group sampling (inspecting more than one item at each trial),

although this is not considered here.

16
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In order to test a one-sided hypothesis, the sinmple

hypotheses

Hy

D=D0<N/2

(2.1)

versus Hl: D=D1>D0

are specified (if D.>N/2, one can reverse the designation of

0
"defective" and "effective" observations), where D is the number
of defectives in a population of size N. The sequential test
procedure for distinguishing between these two hypotheses is

as follows. Following Wald (1947), a sequential probability
ratio test (SPRT) is carried out by calculating the likelihood
ratio at each trial. Let yi=l if a defect is observed at trial i

and 0 otherwise and let f(y,D) denote the probability of ob-

serving a defect when there are D defects remaining in the popu-

n
lation. The likelihood at step n with a sample outcome x= I Y;
i=1
is then equal to
Ln(xIDi)=f(yllDil).f(yZ’Diz)-..f(anDin) (202)

and the likelihood ratio for the simple hypothesis in (2.1) is

A e aZ  mae

Ln(X,Dl) _ f(yl’Dll).f(yz,Dlz)...f(yn'Dln)

(2.3)

Ln(x,Do) f(yl,DOl)°f(y2,D02)...f(yn,DOH)

Here Dij is the number of defectives remaining in the population
at trial j under hypothesis Hi and is dependent on what has hap-

pened in the (j-1) previous trials. Note that Dl=D10 and

et e s aRE

[N N




e e — i e s a  E——p— - R st/ aler e

18

DO=D00' The test is then carried out using the following pro-

3 cedure:

) accept HO if Ln(x,Dl)

.. Ln(x,DOS <B,

l ) accept Hl if Ln(x'Dl)

: n_ " 1° 24, (2.4)
‘.
L L (x,D)

- take another sample if B < Ln(x,Dl)

E Ln(x,Do)

<A.

The values A and B, which are needed for the test, are quite

3 ; difficult to determine exactly. However, the approximate values
- 1 A~ (1-8) /a B=B/ (1-a) (2.5)

given by Wald (1947) serve the purpose well (this is demonstrated
in the examples to follow). Here a is the desired probability

F / of a Type I error and B is the desired probability of a Type II

e error, as explained in Chapter 1. It can be shown, for exzmple,

| that «"+B sa+f where a” and B° are the error probabilities

actually given by the SPRT.

In the case of a discrete distribution, the likelihood ratio
of a given sample is independent of the particular order in which
that sample is observed. Therefore, the likelihood ratio at each
trial is easily computed as the ratio of the probabilities of

obtaining the observed sample. In this case,

D N-D
1 1
Ln(x'Dl) = (x )(n—x )

7 (2.6)
* L_(x,D,) DO)(N—DO>
X n-x

—~ .-
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After expanding the binomial coefficients, the likelihood ratio

can be expressed as i

1 (N- - -D_-n4x) ! f

Ln(X,Dl) - Dl.(N Dl)! _(DO x) ! (N D0 nix) i (2.7) D
Ln(x’DO) DO!(N—DO)! (Dl—x)!(N—Dl-n+x)!

where the factor on the left is independent of both the sample .

outcome and the trial number.

Some authors {e.g., Ghosh (1970) and Chung (1950) ) have
given approximations to the likelihood ratio. These approxima-
tions are seen to be unnecessary, as the expression in (2.7) is
simply and efficiently evaluated by using a table look-up of ‘s
logy factorials within the computer program used to compute the
test region. The program given in the Appendix uses this method.

The log likelihood ratio is computed as
L (x,D,)

L T R oy o '
L (.5, K(N,D,,D,)+n (‘Do x) .)+zn ((N D,-n+x) !

0 (2.8)
~%n ((Dl-x) !) -4n < (N-Dl-n+x) !)

,Dl)=f’n (Dli )-Qn(DO! Y+&n ((N—Dl) ') -4&n ((N—DO) !).

n

where K(N,D0
"o carry out the test ﬁn{Ln(x,Dl)/Ln(xlDO)} is computed at each
trial and compared with a=&n(A) and b=&n(B).

There are two interesting peculiarities which arise in the
treatment of sequential tests of the hypergeometric distribution.

First, because we define (2) =0 if x>n, the likelihood ratio can

take on the following values

i
i
i
5
4
1
{
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L _(x,D,)
‘L‘:'“(’{T)(l)‘) = if %D
(2.9)
Ln(x,Dl) - % Lf x<ntD. <N
Ln(x,DO) 1
‘ ég In the first case, more than D0 defectives have been found
- and therefore HO cannot be true and Hl is accepted. In the
o second case, not enough items remain in the population to ever
. accept Hl; therefore, Ho is accepted.
. The other interesting characteristic of an SPRT for the
] hypergeonietric distribution is that the test is always closed
. at some finite trial number. That is, there is a natural trun-
:? < cation point where the test is terminated. This occurs because
the finite population is depleted by sampling. 1In cases of

independent observations (e.g., the binomial or Poisson dis-

tribution), no such natural truncation exists and the test is

P

) shown to be closed only as n-»« (Wald ,1947).

‘- An upper bound for this natural truncation point is

1+D0+1, although it can be considerably less depending on the

size of the desired error probabilities (a and B errors). This

: N-D

follows directly from (2.9). I1f n=N-D1+D0,

~-N) such that neither of the inequalities

there is only one

value of x (x=DO=n+Dl

on the vight side of (2.9) is satisfied. If n>N-—Dl+D0 one of

these inequalities will hold for each value of x and either HO

or Hl must be accepted.

In order to carry out the sequential procedure in practice,

it is usually easier to have ayailable upper and lower (integer)
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limits on the number of defectives necessary for a decision
(onc way or the otner) at each trial. If we let cL(n) denote
the lower limit and cU(n) the upper limit, at trial n the

sequential test procedure becomes:

accept H if xscL(n)

0 (2.10)

accept Hl if xch(n)

where x is the number of defectives observed at trial n. If
ncither of these inequalities holds, another sample is taken.

I1f possible, the values cL(n) and cU(n) are obtained by

inversion of the equations

b=g (x,D,,D; ,n,N)=4n L (x,Dy)
Ln(x,DO)
(2.11)
Ln(x,Dl)
a=9(X,DO,Dl,n,N)=gn W

by solving for x. The values cr and cy are then expressed as

_ -1
cL(n)— [(J (erolDllnlN)] {(2.12)

D ,n,N)] +1
- )

_ -1

where K=[R] signifies the largest integer value K such that
K<R and g_l is the inverse function of g when solving for x.
Because of the factorials in the function g, these functions
must be inverted numerically. This is a simple procedure

because at each step one has very close lower bounds for the

L.,v-—j :-'-_.3 "»---:'e‘

[} Al n » L3
[A—— ) [ ) [ N ——
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new critical values. That is, the valiue of the inverse function

x=g-l(b,D0,Dl,n—l)Sg_1(b,DO,Dl,n). (2.13)

Ei i Also, the values in (2.13) are generally very close together.
S As a result, each critical value in (2.12) is usually obtained
with only one or two evaluations of the log likelihood ratio.

The critical values cL(n), cU(n), n=1,2,...n** define the

PR,
»

critical regions for the test, where n** denotes the natural

——y

truncation point. An example of such a region is shown graphically

in Figure 2.1. Note that at trial n, if cL(n)<ﬂ, no decision in

favor of HO is possible and if cU(n)>n, no decision for Hl is

’ possible.

VIR

ik

} Number
' [o] f
Defects

Accept H,

Continue
Sampling

Accept H

Trial Number

Figure 2.1 Typical Two Decision Test Region
for the Hypergeometric
Distribution
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A computer program given in the Appendix carries out the above
calculations to compute the desired sequential test regions for
any desired values of N, Dl’ DO' a and 8.

Often n**, the natural truncation point, is much larger than
n*, the sample size of the corresponding fixed size sample test.
This undesirable situation indicates that with positive proba-
bility, the test will require samples which exceed the nccessary
sample size of the corresponding fixed size sample test. Becausce
this probability is rather small and because this probability
(of such a large sample) is largest when the parameter being

tested is actually in the "indifference range" (D <D<Dl), the

0
test can usually be improved by truncation at some point n, n*.

0
More complete treatment of this subject, along with suggested
truncation procedures, is given in Chapter 3.

2 numerical example of the above procedure for determinin<g
the sequential test region is now given. The hypotheses to be
tested are

HO:

versus Hl: D=Dl=40

D=D,=25

with a population size N=100. The desirnd error probabilitiecs

are o=0.05 and B=0.10. The following quantities are computed.

b=%n(B)=2n 0.1/(1-0.05)) =-2.25129
(2.15)

a=&n(Aj=2n {(1~0.1) /0.05}=2.89037

K(N,DO,D1 )=2n(40!)-2n(25!)+2n((100—40)!)-Rn((100-25)1>

=-10.9452

U — - > v 4 T wgugg
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As an example, we compute the critical limits at trial n=32.
The log likelihood ratio at trial 32 with % defectives observed
in the sample is

n Ly, (x,Dy)
L3, (x/Dy

=K(100,25,40)+&n ((25-—x) !)+R,n ((75"32‘*'}{) g)
..21’1((40"}{) !)—R.n ((60-32.{.:{) !) (2.16)

and is tabulated for different values of x in Table 2.1.

Table 2.1
Log Likelihood Ratio
for Different Values of x
at Trial 32

L3y (%,Dy)
T
X u32(x,D0)
7 -3.26
8 -2.31
9 -1.34
10 ~0.34
11 0.A8
12 1.72
13 2.8)
14 3.91
15 5.08

It is easily seen from this table that for values of x214,
the log likelihood ratio is greater than a=2n(A) and thereforec
such points belong in the accept Hl region. For values of xz8,
the log likelihood ratio is less than b=2n(B) and therefore these
points belong in tle accept HO region.

When the above procedure is carried out for each trial,

one obtains the critical values needed for the sequential test.
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This was done for the example and the results are given in Table
2.2. A graphical presentation of the region is given in Figure
2.2. One should notice that at trial 67, cL(n)+l=cU(n). This
implies that a decision must be made for either H, or Hy and

that the test will not continue past this point. This is the
natural truncation point mentioned earlier. Note that this value
is considerably smaller than n**, the upper limit (N-Dl+D0+l=86)
on the natural truncation point.

2.2 CONSTRUCTION OF THE BOUNDARIES FOR A THREE DECISION

SEQUENTIAL TEST

In this section, the procedure for developing threc decision
sequential tests for the number of defectives in a finite popu-
lation of size N is given. Three decision tests are often nec-
essary in practice. This is also true for acceptance sampling.
One example of their use would be when one must distinguish among
lots of items which are of superior quality (for which some in-
centive bonus might be given), standard quality and substandard
quality. The tests given below are suitable for such applications.

A discussion of the previous work concerning sequential three
decision tests is deferred until the end of this section, after
which the reader will be more familiar with the subject.

The method used for determining the test procedure is a
direct extension of the method given for the two decision test
presented in the first part of this chapter. The numerical
example given previously will be extended to the three decision

case.
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Table 2.2
- Critical values for the
' Two Decision Zxample
2
1 ™ Trial n cL(n) cU(n) Trial n cL(n) cU(n)
A
- 1l * * 42 11 16
i 2 * * 43 11 17
* 3 * * 14 12 17
4 * * 45 12 17
i 5 * * 46 13 17
t. 6 * 6 47 13 18
7 * 7 48 13 18 ‘
T 8 * 7 49 14 18 r
| 9 * 7 50 14 19 ‘
’ 10 0 7 51 14 19
11 Q 8 52 15 19
i 12 0 8 53 15 19
13 1 8 54 15 20
14 1 9 55 16 20
t 15 1 9 56 16 20
16 2 9 57 16 21
17 2 9 58 17 21
18 3 10 59 17 21
’ 19 3 10 60 17 21
-7 20 3 10 61 18 22
21 4 10 62 18 22
{ 22 4 11 63 19 22
3 23 4 11 64 19 22
24 5 11 65 19 23
; 25 5 12 66 20 23
{ 26 5 12 67 20 23
27 5 12 68 20 23
28 6 12 69 21 24
5 29 6 13 70 21 24
‘ 30 7 13 71 21 24
31 7 13 72 22 24
32 8 14 73 22 25
33 8 14 74 22 25
34 8 14 75 23 25
35 S 14 76 23 25
36 9 15 77 23 26
37 9 15 78 24 26
38 10 15 79 24 26
39 10 16 80 24 26
40 10 16 81 25 26
4] 11 16
27
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; ) For a three decision test the hypotheses are specified as

H = < i
‘ Hl D Dl N/2
1 . _
versus Ho. D—D0>D1 (2.17)
i versus HZ: D=D2>D0

where D is the number of defectives in a population of size N.

] At each trial, an item is selected at random without replacement

‘ from the population and classified as either a defect or a non-
defect and one of four actions is taken. Either one of the three

x hypotheses is accepted or another sample is taken. It is the

ﬁ  , purpose of this section to develop the rules for carrying out such

; . a test.

To devise a three decision test, a modified version of the

Sobel-Wald procedure (Sobel and Wald, 1949) is used. Following

*

their treatment, two SPRTs are used simultaneously. One SPRT, say

SPRT1, is used to distinguish between H0 and Hl. The other SPRT,

say SPRT2, is used to distinguish between H0 and H2. As explained

in Zhapter 1, there are now four types of errors to be concerned
with. As before, these errors are denoted os B1 (for SPRT1) and
oy 82 (for SPRT2). These two SPRTs are used to derive the three

decision test as follows. At each step, calculate the two likeli-

hood ratios and follow the rules:
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accept H, if

1l
L (x,D.) L _(x,D,)
Ln(x DO) < B, and Lan 02) < B,
r ’
n 1 n 0
accept H2 if
-i";z—'ﬁ—"; 2 A, and E“Ez—'ﬁzi 2 A, (2.18)
n "1 n"’'"0 -
accept HO if
L (x,D.) L_(x,D,)
—“——Oy >A  and 2 _2_<¢B
Ln(x,Dl 1 L x,D0 2

otherwise, another sample is taken. Here again the values

Al =(l-al)/81 A2 =(l-82)/a2
(2.19)
By =al/(l—81) Bz==82/(l—a2)
are used to approximate the true values Al, Bl' A2, and 82

necessary for the test. These approximations, as will be secn
from the numerical results in the next chapter, are satisfactory
and provide good tests.

When carrying out the sequential test in practice, it is
usually easier to have available _itical limits on the number

of defectives necessary to accept one of the hypotheses at cach

trial. For a two-sided test, we must specify four critical limits,

two for each SPRT at each trial. Let cL(n) and cU(n) denotc the
lower and upper limits respectively for SPRT1 at trial n. Also,

let dL(n) and dU(n) denote the same critical limits for SPRT2.




30
The test procedure then becomes
accept Hl if xscL(n) and xgdL(n),
accept Ho if cU(n)zx 2dL(n) (2.20)
accept H, if x2¢;(n) and xsz(n)

and otherwise take another sample.
Following the same procedure given in the first part of
this chapter, these critical values are found by inverting the

likelihood ratio equations and may be expressed as

ey = [9710,0y,00,n )]

cy(n) = [9'1(a1 o ms 0] 1

a (n) = [g"l(b2 . N)] (2.21)
dy(n) = [g-l(az,Do,Dz,n,N)] +1

where al=2n(Al), b1=2n(B1), etc. and the other notation is the
same as that used in (2.12). The critical limits for a typical

three decision test are shown graphically in Figure 2.3.

s > - T Lo 3 - = N SRR
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Figure 2.3 Typica: Three Decision Test Region o
for the Hypergeometric
Distribution

A computer program which is given in the Appendix calculates
these critical points separately for each SPRT. The region thus %’
found can be evaluated using the method and computer program
described in Chapter 3. The special characterisitics of the two
decision test, such as the natural truncation point, are also
present in the three decision test. Truncation of these tests
is considered in the next chapter.

We now extend the example of the test given in (2.14) and
consider a three decision test. There, the hypotheses coqsidered
were
H. : D=D0=25

0

versus Hl: D=D1=40

(2.22)
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Now the hypotheses being tested are:
Hl: D=Dl=10
versus HO: D=D0=25 (2.23)
versus HZ: D=D2=40

again with a population of size N=100. The desired error proba-

bilities are

a1=0.05, Bl=0.10, a2=0.05 and 82=0.10

We first obtain the values

b)=tn(B,)=2n(0.05/(1-0.1)) = ~2.89037
a;=2n(a;)=2n ((1-0.05)/0.1) = 2.25129 (2.24)
b,=2n(B,)=2n (0.1/(1-0.05) ) = -2.25129

a2=2n(A2)=2n((1-0.1)/0.05) = 2.39037

We now calculate the limits in (2.21) for trial n=52. The valucs

of the log likelihood ratio for the two SPRTs are given in Table 2.3.

It can be seen from this table that one should accept ”l if x7,

accept HO if 10<x<15 and accept H2 if x»19, otherwise another item

is inspected. If this procedure is carried out for each trial up

to n**, the critical values for the three decision test given in

Table 2.4 will be obtained. A graphicil presentation of the test

regions for this test is given in Figure 2.4.

T ——— B P L e e
T Ll e Db i

g TN T T e ———— & ;

LR -

[P 1

eabert D e AL BN ned

b ik AR PR

;
PRIV 3

P N




Siilad

M & = o

33

Table 2.3
Log Likelihood Ratio
for Different Values of x
at Trial 52

LSZ(X'DO) LSZ(X'DZ)
X LSZ(X’DI) Lsz(x,Do)
6 -5.46 ~-14.12
7 -3.50 -12.85
8 -1.13 -11.58
9 1.21 -10.31
10 4.36 - 9.05
11 ® - 7.77
12 o - 6.48
13 o ~ 5.18
14 o - 3.85
15 @ - 2.48
16 o« ~ 1.08
17 o 0.37
18 o 1.88
19 S 3.47
20 o 5.15

The following is a brief sketch of the different approaches
to three decision tests which have been treated in the litera-
ture. The discussion here is general in that it pertains to no
specific distribution. Ghosh (1970) and Goss (1974b) give excel-
lent and somewhat more comprehensive treatment of this subject.
No attempt has been made to cover the many applications of these
tests. For this, the reader is referred to Wetherill (1966).

Wald (1947), in his book, gives a method of formulating a
two-sided test by using weight functions. Barnard (1947), in his

review of Wald's book, mentions an alternate method which simply

tests the null hypotheses separately, against the two alternatives.

This is decne by using two SPRTs at one time. The resulting test

regions are shown geometrically in Figure 2.5.
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Table 2.4
Critical values for the
Three Decision Example

Trial n cL(n) cU(n) dL(n) dU(n)

WHEHHRPREROOOOO # % % % % % % % % % % % % %

o~

Ny s
o2

VVp pPhLPLWWWWWIDN

* * * 42 5 9
* * * 43 5 9
3 * * 44 5 9
3 * * 45 5 9
3 * * 46 6 9
3 * 6 47 6 9
4 * 7 48 6 2
4 * 7 49 6 9
4 * 7 50 6 10
4 0 7 51 7 10
4 0 8 52 7 10
4 0 8 53 7 10
4 1 8 54 7 10
5 1 9 55 7 10
5 1 9 56 8 10
5 2 9 57 8 10
5 2 9 58 8 11
5 3 10 59 8 11
5 3 10 60 8 11
5 3 10 61 8 11
6 4 10 62 9 11
6 4 11 63 9 11
6 4 1l 64 9 11
6 5 11 65 9 11
6 5 12 66 9 11
6 5 12 67 9 11
6 6 12 68 10 11
7 6 12 69

7 6 13 70

7 7 13 71

7 7 13 72

7 8 14 73

7 8 14 74

7 e 14 75

8 9 14 76

8 9 15 77

8 9 15 78

8 10 i5 79

8 10 16 80

8 10 16 8l

8 11 16

35

11
11
12
12
13
13
13
14
14
14
15
15
15
16
16
16
17
17
17
18
18
19
19
19
20
20
20
21
21
21
22
22
22
23
23
23
24
24
24
25

16
17
17
17
17
18
18
18
19
19
19
19
20
20
20
21

)
e

21
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
260
20
20
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Figure 2.5 A Three Decision Sequential Test Region
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Sobel and Wald (1949), in their paper, treat the threc
decision test in detail. They use a test similar to that sug-
gested by Barnard. The difference is that each SPRT is treated
independently of the other. This would mean, for example, that
when line AB is crossed by the path shown in Figure 2.6, wec no
longer allow acceptance of Hl and concern ourselves only with
the results of SPRT2. Thus, HO is accepted when line AC is
crossed at point P, before a shaded region is cven reached.

Sobel and Wald hasten to point out that such a test, which de-
pends not only on the total sample results, but also on the
sample path (order of the observations), cannot be an optimal
one. However, the test was used in their case because the inde-
pendence of the two tests enabled the authors to derive approx-
imations for some of the properties of this three decision test.
The Sobel-Wald tests and their approximate properties are trcated
in detail by Ghosh (1970). Here, we use the direct method of sc-
guential analysis which can be used to find the exact properties
of any specified sequential test region.

Goss (1974b), when treating three decision sequential tests
of the mean of a normal distribution, compared the Sobel-Wald
test with the Barnard test. He used the direct method to obtain
exact test results for such tests. From his results, (as onc would
expect intuitively) it is seen that the test with indepcendently
run SPRTs has a smaller expected sample sizec, but slightly larger
error probabilities. The differences, however, are quite small.

For this reason and because it has somewhat more intuitive appeal,

aa A2
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the approach suggested by Sobel and Wald is used here, with the
modification that a decision to accept a hypothesis is allowed
if and only if one of the conditions in (2.20) is satisfied;

that is, if and only if one enters a shaded region in Figure 2.6.

Another approach to the three decision test is given by
Arimitage (1950). 1In this paper, Armitage suggests using three
SPRTs simultaneously. The three SPRTs are constructed to dis-
tinguish between Hl and Ho, H2 and HO and between Hl and ”2‘

This is shown graphically in Figure 2.7.

In tests where al+a2<81+82, (which is the case in most
practical applications), the test will be almost identical to
the Sobel and Wald type regions used above. If, however,
“l+a2>61+82' regions such as the ones cshown in Figure 2.8 are
obtained. In such cases, the method of Armitage might be worth
using. The test regions would be similar to those shown in

Figure 2.7. The computer program given in the Appendix is

general and may be used to evaluate such regions if desired.
2.3 TEST OF COMPOSITE HYPOTHESES AND THE OC FUNCTION

This section will consider sequential tests of composite
hypotheses. It will be shown here that the Wald SPRT, usecd in
Sections 2.1 and 2.2 and based on pairs of simple hypothesecs,
can be used to obtain sat.isfactory sequential tests for compositc
hypotheses. The discussion below pertains to two decision tests,
although the ideas also apply to k>2 decision tests.

When finding a fixed size sample test to choose between one

of two specified hypotheses, one must specify both the sample size
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Figure 2.7 Armitage's Sequential Test Region

Accept H2

Accept H
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0
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Figure 2.8 Sobel-Wald Region when &,%*a, > B,+8,




Pa——
«

o

g T ————y " S

40

n* and critical value c* to give the desired error probabilities,
as explained in Section 1.3 (randomization, of course, can also
be used in the test). When this special case is generalized to

a sequential procedure where stopping rules are selected for
each trial, the problem of selection of the proper test becomes
much more complicated because there are many more possible tests
to choose from. To find a sequential test, one must choose an
upper and a lower limit for the number of defectives at each trial

number and possibly n,, a truncation point for the sequential test.

0
It is well known that the Wald SPRT gives optimum regions

for testing a simple hypothesis against a simple alternative undcr

certain conditions (Wald and Wolfowitz, 1948). Sach hypothescs

are stated, for example, as

(2.25)

versus Hl: D=Dl

as shown in Figure 2.9. The hypotheses are represcnted as points }

if they are simple, as in this case, and as line segments if they

Simple Hypotheses

1 { ':
T T ‘
Dy D,
Composite Hypotheses
W /14994477, /71// 4744774
Do Dy

Figure 2.9 Simple and Compositec llypotheses
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are composite. For our purpose, we define simple and composite
hypotheses to be hypotheses with exactly one point, and more
than one point respectively. Statistical tests between two
alternative simple hypotheses imply that the experimenter be-

lieves that there are only twe possible values for the true

state of nature. Such situations do not often occur in practice.

In most cases the hypotheses to be tested are composite and

expressed in a form similar to

HO: D=D0 versus Hl: D#DO (2.26)
1 . . >
or ho. DsD0 versus Hl. Dle D0 (2.27)

When using a statistical test, the important distinction between
the simple hypotheses in (2.25) and the composite hypotheses of
(2.26) and (2.27) is that in the latter one is interested in all
of the points of the OC function over a specified range of thc
parameter values given by the hypothesized states of nature.

The hypotheses shown in (2.26) do not contain any specific
alternative and are the types generally specified in so-called
"tests of significance." Users cf such tests generally use a
specified significance level (a error) and sample size, but do
not mention a specific alternative hypothesis and therefore
often do not consider the "power" of their tests. The rationale
for such a test is that there is a strong prior belief in (or
preference for) the null hypothesis and that it is not to be
rejected unless there is strong evidence (i.e., at the l-a con-

fidence level) that it is not true.




S e - .

42

By examining the Type II error (which is one minus the
power of the test at a specified alternative) one can determine
if the significance level of the test has been set too low (or
too high) for a given sample size or if the sample size is much
too large (or too small) for the required sensitivity against
alternatives to the null hypothesis. Either of these consequences
could be costly. It does no harm fcr even the "significance
tester" to investigate to which alternatives his test will be
sensitive. From this it is seen that it is important to examine
the power of a statistical test.

In this light, the pair of hypotheses in (2.27) is considered.

Here a range of values has been specified for H the alternative

1l

hypothesis, as well as for H the null hypothesis (see Figurc 2.9).

OI
The values in between D0 and Dl constitute an "indifference zone."

For the situation where one must make a decision for either ”0

or for H and where there are positive costs (tangible or not)

17
for both types of errors, this is a more practicdble way of speci-
fying the hypotheses to be tested.

This again brings out the subtle difference between a "test
of significance" and other composite tests of hypotheses. A test
of significance might be valid, for example, for a test uscd in
proving some law of nature, for which it is nearly impossible to
specify all of the possible alternatives. In contrast, when
testing the ability of a new drug to cure a disease, for cxample,
the situation is different.

If the proportion of successful cures of a drug is to be

compared with that of a control or a placebo, the hypothescs to
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be tested will usually be stated as HO: P,=P, Vs. Hl: P1<Pys

[

where P, and p, are the probabilities of a successful cure for

the control and the drug being tested respectively (both beirg

|

unknown). Ia this case, there are true costs (although they are

probably intangible) for both types of errors; that is, for X
*

accepting the new drug as "significantly better" when it is not

and for rejecting it when it is "significantly better." Because

TP T

both of these errors are important, it is imperative that the

Ay

experimenter examine the power of his statistical test so that
the errors can be balanced if necessary. These same ideas arc

important in the development of sequential tests of composite

T

hypotheses.

When developing sequential tests, it is usually necessary
to specity some specific alternative(s) to the ~-ull hypothesis.
Thnis is so that proper stopping rules can be formulated to
control both types of errors and so that the test properties of

the sequential test can be assessed. If one wishes to test a

——— —
o W !

composite hypothesis s-'ch av (2.27), we must find a sequential

test procedure which has a satisfactco y OC function over a speci-

fied range of parameter values. This is usually don. with respoect

to some additional criterion concerning the cost of sampling.
Although the Wald procedure provides optimal tests under

* %

certain conditions, there remains the problem of finding optimum

sequential tests for the composite hypotheses considered here.

*
Herr mean a difference of practical significance, rather than
simp a difference of statistical significance.

* %
The criterion for optimality is left open for now. More treatment
is given to this subject in Section 3.2.




e ook i el athiini Mk o 4 - - L (it e R AR Y g >
f !
>

44

In Sections 2.1 and 2.2 sequential test regions were found by
specifying simple hypotheses. Wald (1947) discusse: this problem
at some lengih. He comes to the conclusion that the tost of the
simple hypotnesis in (2.25) can be used to approximate a test of
a composite hypothesis such as (2.27) without much loss of cffi-
ciency. This is the method most commonly used to find regions
for a sequential test of a composite hypothesis.

One should examine the possible consequences of using such
an approximation, that is, carefully examine the OC function of
the test. If the resulting OC function is not close to the
desired OC function, the test region can be modified so that it
is. The numerical examples given in Chapters 4 and 5 will show !

how this is done by, for example, comparing the OC function of

a fixed size test with that of a sequential test. Although no
claim of optimality is made for the above tests, a proccdure for

finding such optimal or near optimal tests is outlined in

Section 3.2.




]

[ asall ]

-
M

CHAPTER 3
EVALUATION OF THE TEST REGIONS USING THE DIRECT METHOD
OF SEQUENTIAL ANALYSIS

3.0 INTRODUCTION

This chapter describes the evaluation of the sequantial
test regions for the hypergeometric distribution. In the first
section, the direct method of sequential analysis is introduced.
It is this method which is used to find the exact properties of
the sequential test regions given in Chapter 2. Section 3.2
explains how truncation of the regions can be used to improve
the properties of a sequential test and suggests procedures for
doing this. The following two sections explain in detail how
the direct method is used to obtain the test properties for the
two and three decision sequential test regions developed in
Chapter 2. Numerical examples for each of these cases are also

given.

3.1 THE DIRECT METHOD OF SEQUENTIAL ANALYSIS

The direct method of sequential analysis, given by Aroian
(1968), describes a general method whereby the exact properties
of a given sequential test region may be obtained. Since
Aroian's 1968 article, the method has been used in a variety of
applications, including tests for the mean of a normal distribu-
tion with the standard deviation known (Aroian and Robison, 1969),
and unknown (Schmee, 1974); two-sided tests of the normal dis-

tribution with the standard deviation known (Goss, 1974b),

45
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sequential rank tests (Elfring and Schultz, 1973); tests of
the binomial distribution (Corneliussen and Ladd, 1970 and 1971)
and tests of the variance of a normal distribution with mean known
or unknown (Aroian, Gorge, Goss and Robison, 1975).

Before using a sequential test procedure, onec should know
or have available reasonable approximations to the actual test
properties. The most important test properties are the true a
and B error probabilities (denoted o' and £' here) and the cx-
pected or average sample number (ASN), which is a function of
the true state of nature. A typical ASN function is shown in
Figure 3.1. Also of interest is the operating characteristic (0C)

function which gives the probability of accepting il as a function

0

of che true state of nature (in this case, D, thc actual number
of defectives in the population). A typical OC function is shown
in Figure 3.2. The true a and B error probabilities for a two

decision test are obtained directly from the OC function as

[l

o 1-0C (DO)

(3.1)

g' oc(p,)

Approximations to the OC and ASN functions are given by Wald
(1947). These approximations are valid only if the observations
are independent. This is not the case with the hypergeometric
distribution. Also, even if the restriction does hold, the
adequacy of these approximations varies from test to test. The

direct method of sequential analysis as explained below, will

allow one to find both the OC and ASN functions exactly.
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ASN (D)
Number of Defeclive: DD
Figure 2.1 Typical ASN Function
1. &
oc (D)
0-
Number of Defectlives D
Figure 3.2 Typical OC Function
P(n)
0.1 |-

° 4 8 12 16 Sample Size n

Figure 3.3 Typical Distribution of the DSN
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Another interesting test characteristic, which is often
neglected, is the distribution of the decisive sample number
(DSN), that is, the probability mass function of the sample sizc
required to -ome to a decision. This distribution is also a
function of the true state of nature. From this distribution,
one can obtain the ASN, the variance of the sample number (VSN)
or other moments. The direct method is also used to find the
distribution of the DSN. A typical probability mass function for
the DSN is shown in Figure 3.3.

In general, the direct method is carried out as follows.
Once the sequential test region has been specified, onc then
chooses a state of nature which allows the computation of the
probability of accepting each possible hypothesis at the first
trial. The remaining probability, that is, the probability of
being in the continuation region, is spread out among all of
the possible values of the sample statistic which are included
in the continuation region. At the second trial, another sample
is taken. It is again necessary to find the probability of
accepting each hypothesis and the distribution of probability of
remaining in the continuation region. Using convolutions, onc
can continue this process at each succeeding trial until the test
is truncated or until the probability of continuation is so small
as to be insignificant. This procedure is then repeated using
different values for the state of nature, cach giving a point on
the OC function and a distribution of the DSN. This is done for

the hypergeometric distribution in Sections 3.3 and 3.4.
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3.2 TRUNCATION OF THE SEQUENTIAI TEST REGION

One disadvantage of using sequential test procedures is that
because the sample size is a random variable, it is sometimes
possible (usually with small probability) for the sample size to
be significantly larger than the sample size necessary for a
fixed size sample test (n*). This section presents methods for

truncating sequential tests at some trial, say n This will

0°
result in a closed sequential test whose test properties, with
respect to the ASN function, will be much improved. The price
paid for this improvement, as shown in Chapter 4, is usually
quite small.

Wald and Wolfowitz (1948) show that a SPRT for a simple
hypothesis with a simple alternative and with i.i.d. observa-
tions, has the smallest ASN (at the parameter values specified
by the simple hypotheses) of all other tests with the same o and
B error probabilities. This of course also implies that the ASN
of the SPRT will be smaller than the sample size of the corre-
sponding fixed size sample test. It must be remembered, however,
that this is guaranteed to be true only for the parameter values
specified by the simple hypotheses. For parameter values which
fall between these two values, the value of the ASN of the untrun-
cated test may even rise above n*. This means that for some val-
ues of the true state of nature, the ASN of the sequential test
will be greater than the sample size required for the fixed size

test. It should be noted that this occurs for those values of
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the parameter which are in the so-called "indifference range."
This is shown in a graph of a typical ASN function in Figure 3.1.
Truncation of the sequential test at some trial number, say Ny
is often used to help alleviate these problems. It has becn
shown and will be further demonstrated here that truncation of
sequential tests will both eliminate the possibility of an cx-
tremely large sample and significantly reduce the ASN over the
space of the parameter value.

It is to be expected that some price must be paid for this
improvement in the test, which is indeed the case here. After
truncation of a Wald-type SPRT, the true a and B error probabil-
ities will usually increase somewhat. (In fact, the entire OC
function will change.) This increase is usually quite small
because the probability of such large samples is highest ncar
the middle of the "indifference range" and relatively small ncar
the values of the parameters specified in the simple hypotheses.
Because the true « and 8 error probabilities of the untruncated
SPRT are often smaller than the specified error probabilitics
(i.e., a'<a and B'<B), a small increase in these probabilitics
can usually be tolerated. Further modification of the region
near the truncation trial number (no) can be used to adjust these
probabilities to be quite close to their desired values.

Often when truncation procedures are put forward, the trun-
cation point suggested is from 1.5 to 3 times n* (¢.qg., Wald,
(1947)). This is probably because in the past, very little was

known about the exact properties of such untruncated tests. When
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using the direct method, however, this presents no problem
because the direct method is general and can be used to ecvaluate
any specified test region. From the numerical examples given

in Chapter 4, it will be seen that the truncation point can be
moved much closer to n*, while still keeping «'=~w and £'-f.
Procedures for truncating sequential tests of the hypergeometric
distribution and for comparing alternate tests arc discussed next.

Truncated sequential tests presented here will be truncatcd
at n* (i.e. n0=n*). If the desired error probabilities cannot bc
achieved when truncating at n*, and if it is necessary to do so,
n, can be moved one way or the other to help achieve the desired
error probabilities (e.qg., n, should be increased to decrcasc the
true error probabilities).

Once the trial number where the test is to be truncated has
been specified (i.e., no), it becomes necessary to determince what
shape the test region should have around ng- This has been a much
debated topic and is treated at some length by Goss for the three
decision normal distribution sequential test (Goss, 1974b) and for
the binomial distribution sequential test (Goss, 1974a). There
he compares and contrasts the "right angle" truncation and the
"wedge" type of truncation illustrated in Fiqure 3.4. Ill¢ finds
that while the differences are small, the wedge truncation has a

slightly lower ASN and slightly larger error probabilities.

o et Beaes ok

=
3
3

P e e




T LA

52
Y
.
;
. |
!
. ]
[}
'
. ! i
! !
! {
) |
1 1
"o "o
Figure 3.4 Wedge and Right Angle Truncation
|
- When comparing different types of truncation, or to be more

general, different types of test regions, one usually spccifies
some sort of optimality criteria with which alternative tests
(i.e., different test regions) can be compared. This can also
be used to optimize a test procedure. Two examples of such cri-
teria are:

1) Minimizing the maximum of the ASN function over

the parameter space.

2) Minimizing the expected sample number using a
prior distribution for the paramecter(s) bcing
estimated.

Monahan (1973) uses Bayesian decision thecory with a spccified
loss function to construct "admissible" truncated scqguential

test regions for testing the mean of a normal distribution.




When comparing alternate tests, however, it is usually
necessary to take into account the differences in the error
probabilities (or the OC function). This can be donc in onc¢ of
two ways. First, the randomization scheme described in Section
1.3 can be applied to the sequential test procedure and/or
modification of the regions can be used to adjust the error prob-
abilities. Also, an objective function can be constructed which
takes the s3ize of the error probabilities (cr to be more gcenceral,
the OC function) into consideration. The comparisons made in
Chapter 5 will be made between tests which have approximatcly the
desired a and £ probabilities. In most cases this will not ad-
versely affect the validity of the comparisons which arc made.

When truncating a discrete distribution such as the binomial
or the hypergeometric considered here, there are only a finite
number (which may be rather large) of sensible regions to usc for
a given test procedure. In the truncated regions considered hoere,
the Wald regions developed in Section 2.3 are used with thc trun-
cation rules given next.

With sequential tests of the hypergeometric (or any other)
distribution, one should truncate the test such that there are no
points in the continuation region from which only onc decision can
be made. Such points can only increase the ASN function and do
not affect the error probabilities and thereforc should be made
part of the region for accepting the appropriate hypothesis.
Point p in Fiqure 3.5a is an example of such a point. If tho

above rule is followed when truncating a typical Wald region,
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the continuation region will have a horizontal upper boundary
and 45° lower boundary. This is shown in Figure 3.5b. Onc
should note that this is the only sensible method of truncation
for dichotomou- distributions. When truncating a sequential test
for a continuous distribution, the solution to this problem is
not so clear, as there are an infinite number of points in the
sample space. The problem of "optimal truncation" needs to be
more fully explored for these cases.

When truncating a sequential test of the hypergecometric dis-
tribution, there are two decisions which must be made. First,
one must decide the trial number where the test is to be truncated.
As mentioned earlier, this can usually be at or near n*, the sample
size of the fixed size sample test. This truncation point is
denoted ng- In addition, it is also necessary to spec. "y the
critical value for the sequential test at this trial. That is,
one must determine the proper cU(n0)=cL(n0)+l. Using the chosen
ng and cU(nO) and the rules given above with the Wald regions
given in Section 2.1, the truncated test procedure is completely
specified.

It may, under certain circumstances, be desirable to further
modify the Wald regions. This can be done if one follows the
rules:

cU(n+1) = cU(n)
or cU(n)+l (3.2)
cL(n+l) = cL(n)

or cI(n)+l
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which are a generalization of the truncation rules given above
and should be true of all critical values which define the test
region. These rules simply state that the upper and lower bound-
ary points do not decrease with n and never increase by more than
one at any given trial.

In order to make the changes suggested above, one should
know the effect of the different types of modification. These

are outlined in Table 3.1.

Table 3.1
Effects of Region
Modification*
oC (D) ASN (D)
incr=ase cU(n) decrease increase
decrease cU(n) increase decrcasc
increase cL(n) increase decreasc
decrease cL(n) decrease increase

*Note, for example, if an increase is indicated in
this table, the function in some cases will remain
the same, but will not decrease.

The regions obtained by using the abhove procedure must
ultimately be judged on the basis of their exact test propertics,
which can be found by using the direct method as shown in the
next section. This usually leads to an iterative procedure to
find the proper test. Such a procedure begins by evaluating a
suggested test region to find its test properties. If the test
properties are not satisfactory, the test reqgion is modificd

using the suggestions above and evaluated again using the direct
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method. Several such iterations may be necessary to achicve
the desired test properties. This procedure is illustrated
with the numerical examples presented in Chapter 4.

When truncating a k>2 decision test, it is necessary to
truncate each of the SPRTs separately. This is illustrated in

the example given in Section 3.4.
3.3 OBTAINING THE TEST PROPERTIES OF A TWO DECISION TEST REGION

This section will explain how the direct method of sequen-
tial analysis is used to find the exact test properties for a
two decision test of the hypergeometric distribution. It will
be shown how one can obtain both the OC function and the dis-
tribution of the decisive sample number (DSN). From these, once
can also find the average sample number (ASN) and the truc «
and B error probabilities, o' and B'. The two decision test region
developed in Section 2.1 will be evaluated here as a numcrical
example.

As explained in Section 3.1, the direct method is used by
computing both the probability of making cach decision and the
distribution of prokability remaining in the continuation reqgion
at eacn trial. The probabilities at tria’ n+1 arc computed by
convoluting the probability remaining in the continuation rcgion
at trial n with the sample taken at trial n+l. This is donc for
each trial for n=1, 2,.... no. In a discrete distribution such
as the hypergeometric, this entails .umming probabilitics at cach

trial of the test. For the hypergeometric distribution, this is

PO
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illustrated with the grid shown in Figure 3.6. The critical

Ealian Abgtiedy i 12
" «

values which define this test region are given in Table 3.2.

For illustrative purposes, this region has been truncated

+ .
L
o X

{ at trial 10, using the rules given in Section 3.2. That is,
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! the critical values cL(n) and cU(n) are non-decreasing with n

and never increase by more than one at any given trial. The

- «
gy, et

probability of reaching each point which is in the region or

on its boundary is a function of the true state of nature (true

——_

number of defectives in the population, D). These probabilitics
differ from those of the corresponding hypergeometric distribu-

tion (i.e., the probability with a fixed size sample test) only

Y o
R

%‘ ' because of the difference in the number of paths available to
; reach a given point. The probabilities are computed reccursively 3
1 starting with the point at which the origin, when no samples have

to be observed; the probability of this point is, of course, 1.

The recursive formula used to compute the probabilities at cach

N rds

(hotia ey o H,,,

trial is: ){

3
E P(x,v,n+1,N)=I(x,n)P(x;D,n,N}s (N-n-D+x)/ ("I-n)
| -
+I(x-lln)p(x-1lDln:N)‘(D-X‘*])/(N'H) :
(3.3)
where
1 ifx=20
P(x,D,0,N) = 0 otherwise
I(x,n) - 1 cL(n);xa ¢, (n)
0 otherwisc
The indicator function accounts for the fact that the test tor- ;
minates when one of the critical points is rcached.
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There are two possible outcomes at the next trial from cach
point in the continuation region; each inspected item may be
either a defect or a non-defect. This is also illustrated in
Figure 3.6. When a critical point cL(n) or cU(n) is reached
at trial n, the test stops and a decision is made in favor of
either HO or Hl' Thus, the probability that the test terminatces
at trial n is the probability of reaching one of the critical
points at trial n.

Referring to Figure 3.6, an X at a point indicates a crit-
ical point for acceptance of Hy (cU(n)); an ® signifies a
critical point for acceptance of HO(cL(n)). One should note that
some critical values can never be reached (e.g., 0 defectives
observed at trial 4 and 4 defectives observed at trial 5). ‘This
is because there are no paths leaving the critical points.

After the probabilities for the points shown on thce qgrid
in Figure 3.6 have all been computed, it is an easy matter to
determine the exact test properties. Let AOn, Aln and Cn denotoe
the events of accepting HO’ accepting Hl and continuing to trial
n+l respectively. The probabilities of Aln and Aon at each trial
are then the probabilities of reaching points cU(n) and cL(n)

respectively.

This can also be expressed as follows:

P(Ain,D)= ZJi(x,n)P(x;D,n,N) (3.4)
X
where J.(x,n) = 1 i1f (x,n) Aln
i .
0 otherwise

Of course, P(Cn,D)= P(Cn_l,D)—P(AOn,D)—P(Aln,n).
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3 Another interesting way to look at the direct method is to

I St |

consider the sequential process a Markov chain with absorbing
; states. Each poinct in the sample space is a state and cach hound-
ary point is an absorbing state. The transition probabilitices

from each state are a function of the true state of nature. In

1 L

order to use the direct method, it becomes necessary to find the

3 probability of absorption in each of the absorbing states. This »
will give P(AOn;D) and P(Aln;D) for n=0,1,...n0. Madsen (1974)

; uses a Markov chain technique to find the properties of a truncated :]
SPRT. ]

E. The distribution of the decisive sample number (DSN) (i.c., -

<~ the probability of the test terminating at trial n) can be cx- |

pressed as follows: -

P(n;D)=P(A0nL)Aln;D) o)
=P(A0n;D)+P(Aln;D) '

This is computed for each n up to no, the first trial where ﬁ
cL(n)+l=cU(n). This is the truncation point of the test. The
r
ASN and VSN are then computed as )
ng |
ASN(D) = I nP(n;D) (3.7) .
n=1
0 -]
0 2 !
VSN(D) = I (n-ASN(D))“P(n;D). (3.8) e
n=1

The ASN can also be expresscd as

no—l
ASN(D) = 1 + % P(Cn;D)

n=1

(3.9)
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This alternate form is given by Aroian (1975) and shows
how the ASN function "builds up" at each trial of the sequential
test.

The computer program in the Appendix computes these quan-

h

tities. If desired, the kt moment about the origin can be

computed as

n
E(mX,D) = & nXP(n;D) (3.10)
n

The O function of the test is computed as

)

ocC(p) = L P(AOn;D) (3.11)
n=1

Ac mentioned earlier, the exact « and B errors arc

u' = 1- OC(DO)
(3.12)
' 4
8 OC(Dl)-
The OC function is alsc calculated by the corputer program given

in the Appendix.

The above propsrties have been computed for the test region
obtained in Section 2.1 and truncated as in Scction 2 of this
chapter. Because of space limitations, the distribution of the
DSN is shown for only one value of D. These are shown in Tables
3.3 and 3.4. Graphs of the OC and ASN functions for the test are
shown in Fiqgures 3.7 and 3.8. These properties are tyrrical of
most sequential tests of the hypergeometric distribution. A com-
plete discussion of these test properties is deferrced until
Chapters 4 and 5, when a more complete examination of some numer-

ical examples is presented.
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Table 3.3
pistribution of the DSN for the Two Decision Example

o NUHBER OF DEFECT]VES &= 30

TRIAL P{HO) P{H1) P(T) P(CH TRIAL P(HO) P{H1)
: - 6 0.00000 0.00050 0,00050 0,99950 44  0.0303% 0.,00365
, 7  ©0.00000 0.00000 0,00000 0,99950 45  0.00000 0.,00749
. 8 0.00000 0,0005% 0,00057 0,99893 46 0.04055 0.0118]
3 9 0.0000p0 0.00194 0,00194 0,99699 47 . 3Q.00000  0,00000
N 10 0.02292 0,004472 0,02737 0.96962 48 .Senoo 0.00579
3 11 0.00000 0.00000 0,00000 0,96962 49 0.0308% 0,007464
i 12 ©0.00600 0.0021§ 0,00246 0,96746 S0 0.00000 0,00853
; o 13 0.03453 0.00519 0,0397% 0,92775 51  0.00000 0.00262
" <4 0.00600 0.00000 0,00000 0,92775 52  0.02629 0,0055%
15 0,000086 0.00236 ©0,00236 0,92539 53  0.00000 0,00854
’ 16 0.03904 0,00546 0,64450 0,88089 54 0.00000 0,00000
4 . 17  0.00000 0,0093%7 0.00937 0,67153 55 0.02276 0.00270
18 0.05970 0.0U0000 G,05970 0,81182 56 0.00000 0.00%44
; 19 0.00000 0.00360 0,00360 0,60822 $7  0.00000 ©0,00000
20 0.00000 0.0077% 0,0077% 0,80048 58  0,04954 0.0018%
5 . 21 0.04973 0.0124% 0,06218 0,73830 59  0.00000 0,00382
i 22  0.00000 0.00000 0,006000 0,73830 60 0.00000 0.0098§
23  0.00000 ©0.00453 0,00452 0,73377 61 0.01668  0,U0000
1 24 0.045i1 0.00945 0,05454 0,67923 62  0.00000 0.0017/
] 25 0.00000 ©6.0000p 0,p0000 0,87923 63 0.01983 0,00352
E 26 0.00000 0.00373 0,00372 0,67551 64 0.00000 0.00913
| 27  0.04157 0.00799 0,04956 0.62595 65 0.00000 0.00000
y 28 0.00000 0,01273 0,01272 0.61323 66  0.01330 0.00146
29 0.00000 0,00000 0,00000 0,61323 67 0.00000 0.00272
‘ 30 0.03858 0,00455 0,04309 0,57014 68  0.00000 0.00357¢
< 31 0.00000 0.00933 0,00932 0.56083 69 0.00955 0,00000
32 0.05321 0.00000 0,0532% 0.50762 70 0200000 0.00094
33 0.00000 0.00359 0,00359 0.50403 71 0.00000 0,00174
34 0.00000 0.00767  ©,60767 0,49636 72 0.00641 0.0071?
35  0.04175 0.01213  ©,05386 0.44250 73 0.00000 0,00000
36 0.00000 0.00000 0,09000 0,44250 74  0,00000 0.0005}
37 0.00000 0.00419 0,00419 0,43831 75 .0,00374 0,0308°%
! 38  0.,03673 0,00863 0,04536 0,39296 76 '0.00000 0.00099
. 39 0,00000 ©0.00000 O0,00500 0,39296 =7  0.,00000 0,00000
40 0.00000 0.060324 0,00324 C,38972 73 0.,00174  0,000%4
41 0.0332¢ 0,00693 0,040312 0.34959 : 79  0.00000 0.00028
42 0,00000 0,01086 0,01086 0,33874 80 0.00000 00,0002
3 0.00000 0.00000 0,00000 0,33874 81 0.00054 0.00014
3
E
Table 3.4

Properties of the Two Decision Test Example

TRUE D P(RQ) R{HL) ASN
20 0.997053 0,002947 21,4806
25 04962327 0,03/673 28,4823
30 0,738209 0,361791 35,7704
35 0,315228 0,684772 35,8717
40 0,084706 0,915294 29,7936
45 0,089445 0,98058% 23,6276
- 63

P(T)
0,03396
6,00749
D,0519%
0,00990
0,09370
0,03836
0,00000
0,002.7
0,03138
0,00856
0,00000
0,02546
0,00943
0,06000
0,02139
0,00387
0,02586
0,010668
0,00177
0,0233%
0,0053?
f,00000
0,0147¢
0,00275
0,00376
0,0095%
0,000°4
0,00174
0,00857
0,00000
0.,00051
0,00457
0,00099
0,00000
0,00191
0,00028
0,00023
0,00072

P(C)
0.30477
0.29/28
0,24%37
0.24537
£.24167
0.20331
6.20331
0.20065
0.16877
0,16071
0.16021
0.1547%
0.12932
0.1293¢
0.10793
0.104C06
0.99819
0.08151
0.07974
0.09640
0.0512/
0,05127
0.03¢652
0,0337/
0.03001
0.02046
0.0195?
0.01778
0.€0921
9.90921
0.00870
0,00413
0.00334
0.00514
0.00123
0.0009%
6.00072
0.00090
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3.4 OBTAINING THE TEST PROPERTIES OF A THREE DECISION TEST REGION

This section will explain how the direct method of scquen-
tial analysis is used to find the exact test properties for a
three decision sequential test for the hypergeometric distribution.
The procedure is easily extended to tests with k-3 decisions.

The same test characteristics found for the test in Sectioun 3.3
are calculated for the three decision sequential test region de-
veloped in Section 2.2.

The direct method, as applied here, is very similar to the
method used for the two decision test treated in Section 3.3.

Now, however, there are four possible events at each trial. The
events are Aln, AOn, Azn and(:n, denoting acceptance of ”l’ ”0'
Hz at trial n and continuing to trial n+l, respcctively. As with
the two decision test, it is necessary to computec the probability
of each of these events for each trial n=l,2,...,n0, where n, is
either the truncation point or that point past which the proba-
bility of continuation is small enoucgh to ignorc.

The probabilities of each of the above events arc computed
in a manner similar to that used for the two decision test region,
One must again compute the probability of reaching each point in
the sample space. These probabilities differ from the actual
hypergeometric distribution only because of the difference in

the number of paths available to reach a given point. The dif-

ference in the number of paths is due to the stopping rules of

the particular sequential test.

U
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Figure 3.9 shows in detail the grid for part of a typical

region for a three decision test. The probability of reaching

each point is again computed recursively, moving from onc

trial

to the next. When a point in the continuation region is rcached,

another sample is taken, illustrated by two arrows leaving cach

of these points. When a critical point is reached, a decision is

made in favor of one of the three hypotheses and the test

1s ter-

minated. The recursive formula used in calculating the proba-

bilities is:

P(x,D,n+1,N)=I(x,n)P(x;D,n,N) ((N-n-D+x)/(N-n))
+I(x-1,n)P(x~1;D,n,N) ((D-x+1)/(N-n))
where 1 if X=0

P(XIDIOIN) =
0 otherwise

1 if (n,x)tCn
I(x,n) =

0 otherwise
The indicator function I again accounts for the fact

the test ends when one of the critical points is reached.

After all of these probabhilities have been computed,

(3.13)

that

the

probabilities of the events Aln, Aon, A2n at each trial arc¢ then

the probabilities of reaching each of the boundary points.

P(Aln) = ﬁ Ji(x,n)P(x;D,n,N)

1 if (X,n)‘Aln

Ji(x,n) = 0 otherwise

That s

(3.14)

’
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is an indicator function used to sum the probabilities of the

. proper hypotheses. ¥
% Once these probabilities have been found, we can computce
E ) the desired test properties as follows. The distribution of the
]
i - DSN {as a function of D, the true state of nature) is ]

.

]

: D) = . ]
i \ P(n;D) P(AlnLJAonLJAZn,D) (3.15) j
3 = P(Al ;D)+P (A0 ;D)+P(A2 ;D) %
] n n n i
‘ ‘ |
3 ' ]
1 ' In a three decision test, there are really three OC functions, 3
& 4
=

each giving the probability of acceptance for one of the hypotheses.

R

The OC function for hypothesis i is found as follows:

Ny
A oc, (D) = I P(Ai_;D) (3.16)

=l

The ASN and VSN of the test (as a function of D) are then

computed as :

"o

ASN(D) = I nP(n;D) (3.17)
n=1
n

0 2

VSN(D) = I (n-ASN(D))“P(n;D) (3.18)

n=1
The expression for the ASN in (3.9) is also applicable here. The

computer program listed in the Appendix calculates the above

properties and they have been computed for the sequential test

obtained in Section 2.2 and truncated as in Scction 3.2 of this

chapter. The truncated test rerion is shown in Table 2.4. The test

properties are shown in Table 3.5. ‘raphs of the ASN and OC

functions are shown in Figures 3.10 and 3.11.
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_ Table 3.5
Test Properties of the Three Decision Example

TRUE PROB PROR PROR
D ACCEPT HI ACCEPT HO ACCEP] HP ASN

5 | 0 n 19.63061
6 ¢ 99915 00025 ) 20.9001
7 99846 00154 0 PPL.3059
8] +99 449 « 00551 0 23.89176
9 98518 01482 0 22e9D9K/
10 e96671 03329 0 2/1.3163
11 «93439 0656 0 29.1422
12 .88418 11581 . 00001 30.71436
13 . 814l 1852 . 0N00?P 32.1485
14 « 7288 27114 . 00006 33.2148
15 «63218 3611 . 00012 34.0095
16 «53231 46145 . 00024 3404121
17 0436]2 056341 -000‘8 340')/{,5
18 « 34811 « 65033 «00091 34.5022
19 . 2732 72514 00166 34,3132
20 «21036 18668 . 00296 34.92516
21 «15913 +83513 © e 00515 3442135
22 «11995 «87129 «008/6 34.3163
23 «08932 .89606 «01462 3445965
24 06614 +909973 « 02392 35.06817
25 «049 «91261 +03839 35.19317
26 «0368 +90293 06021 36.5216
27 02817 « 87909 09221 31.4199
28 «02387 «83944 « 13669  38.3169
29 «02134 .7834 . 19527 39.1193
30 «02001 +7123 « 26769 39.7258
31 .01887 ¢ 62959 « 35154 40.0498
32 «01721 « 54039 . 4424 40.0336
33 01482 « 45044 53414 39.6565
34 «0119 «36503 « 62307 3%.9341
35S . 00886 .P8815 . 10299 37.9143
36 00612 22211 Jh1Vv11 36.6598
31 00394 16161 82845 35.0a24
38 «00238 12415 «81346 33.71990
39 »00137 +09048 « 90815 32.1199
40 «00077 06499 . 93424 30.0393
41 «0N044 «04607 ¢ 95349 29,141

42 « 00026 03226 «961748 271.1011
43 «00016 +02233 91151 20643525
44 «00011 01527 98462 25.0821
45 +00007 «01033 . 9896 23.8981
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CHAPTER 4

FURTHER NUMERICAL EXAMPLES

4.0 INTRODUCTION

In the first section of this chapter, further examples
of two decision truncated sequential tests for the hyper-

geometric distribution are given. Ten example test plans have

Ly

been chosen and completely evaluated. These examples have been

sy

included to show how the tests perform over a range of different

3 parameter values. The computer program which is listed in the

Appendix was used to develop the test regions and to obtain prop-

‘ erties of the tests which are given here. This computer program 3

can be used to develop and evaluate tests of the hypergcomeiric

distribution for any desired parameter values. In the sccona

section of this chapter, an illustration is given to show how

these sequential tests are used in practice.

4.1 TEST PLAN EXAMPLES

L

All of the examples of the sequential test plans which arec

P

given here are truncated at n*, the sample size of the fixed
size sample test. The desired error probabilities arc chosen to

be u=0.05 and £=0.10. While these error probability limits are

Lo cod Al Iy

not met in all cases when using the sequential test, the true

values are always very close to the desired valuces and could have
Lbeen made closer following the region modification procedure «isn-

cussed in Section 3.2Z.
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Because of space limitations, the distribution of the DSN
is given only for the first example. For this example and the
others which follow, the fixed size test and its corresponding
OC function are given. Also, tables of the OC and ASN functions
are given for each of the sequential tests. The original scquen-
tial test region and the modifications made to it arc also shown.

In Chapter 5, using the information given here, comparisons
will be made between the sequential tests and both the fixed
size sample tests and tests which use the binomial distribution
as an approximation. There, the differences among the OC
functions of the different tests are examined and the celative
advantages of using a sequential procedure is shown. The graphs
presented here will aid the comparisons. For cach of the test
plans, three OC functions have been graphed. These arc¢ the 0C
functions for the fixed size test, for the sequential hyper-
geometric distribution test, and for the binomial approximation
to the hypergeometric distribution test. The ASN function for
the sequential hypergeometric distribution tests is also graphed.
The horizontal dotted line on the graphs represents the samgle

size of the fixed size tests.
4.2 USING THE SEQUENTIAL TEST PLANS

This section will present an example which shows how the
sequential test plans are used in practicc. The example used
here could be used, for example, in an acceptancec sampling scheme

to examine lots of automobile tires when they arrive from the

»
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Test Plan )
- Ne 30 NUHBER CF DEFECTIVES = 10
. Do 5
c1r 1S
. ALPHAS  D.050 TRIAL  P(NHD) PIHY) P(T)
BETA: 0,100 3 0.00000 C.U2958  0.029%56
S 0.00000 0.06%¢E  0,08968
THE FIXED SIZE TEST IS A3 +oLLOwS) 5 0.1CA80 0.0%00) 0,12880
SAPLE SI2F » 13 6  0.00000 0.07684  0,027648
‘ CRITICAL VALUE » ‘ 7 0.1399%  0.0>87¢  0,3A975
ALPHAs = 0,00908 8  0.00000 0.0749s  0,07698
5 BETAs = 0,0697% 9 0.08000 0.G0012  0,63000
1 10 0.08365 0.0265¢; 0,11017
11 0.00000 0.0472¢ 0,04722
FIXED SIZE YEST OC FyNCYIOMNG 12 0.05639  0.04074  0,15713
Do ACCEPT MO acCEPT vy 18 €,12522  0.0626% 0,14783
1.000000 ¢€.000002 TRUE D P(HO) Ring)
5 0.990969 0,00903
10 0.553923 0.44607 100550254 0.447746
15 0.069710 0.930292
. 20 0.000414 0.99958%
1 25 0,000000 1.000000 NUMBER OF DEFECTVES s 1%
THE ¥A.D REGION IS AS FOLLOWS! TRIAL P(HO) PtH1) P
3 3 0.00000 0.11207 0,11207
TRIAL ACCEPT WO ACCEPT wg 0.00000 0.18678 0,18678
3 1 . . 5 0,02107 0.00005 0,(2.07
2 B . 6 0.00000 0.0965% 0,09655
5 . 3 7 0.0263¢  0.313946  6,16%80
4 . 3 8 0.00000 0.14094 0,14098
s 0 A 9  0.08000 0.0000¢ 0,00000
6 0 4 10  0.01000 0.06074 0,07074
? Py 4 11 0.00006 0.07266 0,07266
s 1 4 12 0.01089 0.06C09 0,07098
i e 1 5 13 0.02425 0.0381% 0,06237
10 2 5
. 11 2 s TRUE D P{HD) R(H)
12 2 5 15 0,092554 0,90/446
13 2 3
HEGION CHANGE 12 3 5
REGION CHANGE 13 4 5
MUMBER OF DEFECT|VES » ] NUMBER OF DEFECTIVES = 20
TRIAL P(HD) P(M1) P(T)
VR;AL P(HO) PIHL) 2Ty PiC) 3 0.00060 0.28079 0,28079
s ;.goooo 0.09000 1,00000 0,00000 4  0.00000 0.3119% 0,31199
s <00000  0.00090 0,006%0 0.20000 5 0.00177 0.00002 0,00177
] 0.00000  0.00005 0,00000 0.00000 6 0.00000 0.14687 (,14687
s 0%00000 G.00095 0,000%0 0.00u00 7  0.00147 0.13057 0,13203
; 0.00000  0.00009 0,00090 0.00000 3 0.00000 0.076% 0,07696
}: g.ggggg 0.00009  ¢,000%0 0,00000 ?  0.00000 ©6.0nGCY  3,0L000
i3 0.00000 g.ooooo €,000¢0 0.00000 10 0.00013  0.02633 0,02644
12 . -00000 0,00620 ©.00000 13 0.00000 0.01574 0,0157¢
0.00000 0.000060 0,00006 0.00000 12 0.00005 0.00578  (,00584
. . [
TUE D PewD) Reve) ik ven 13 0.00017 0.0013% 0,00155
0 1,000000  o0,$00000 5,0000 sogo  TRUE O P(NHQ) RKy)
20 0,003593 0,996405
RJHBER OF DEFECTIVES » s
NUMBER OF DEFECTIVES 25
7 TRIAL  P(HO) PiHL) PrT) P(C)
r 3 0.00000 0.002¢¢ 0,00246 0.99754 TRIAL P(HI) P(H1) P(1)
4 0200000 ©.00664 0,0p68¢ 0.99070 3 0.00000 0.56650 0,56650
4 5 0.37283  0.00000 9,37233 0,61787 4 0,00000 O0.31472 0,31472
4 6 0.00000 0.09:61 0,00151 0.61646 5 0.00001  0.00003  0,00091
7 0.3:069  0,00258 0,31377 0.363859 6  0.0050C 0.23%2¢ 0,0852?
8 0.00000 0.00477 0,0n0479 0.29860 7 0.00900 0.02841 0,07841
? 0.00000 0.00000 0,000% 0,29880 8 0.06000 0.00479 0,00479
10 0.1599%  0.00035  ¢,16035 0.13845 9  G.00900 9.0%000  0.00000
11 0.00000 0.00088 0,06r048 G.13759 10 0.0630C 0.00034 0,00016
12 0.09770  0.00147  6,09925 0,03840 11 0.0630¢ 0,029,  0,00070
13 0.03627 0.0021) 0,03840 0.00000 12 0.009CC  05.06042  0,0r000
13 0.00500 0.0000C 0,00000
TRUE D P(NHD) Ring) ASN V&'
5 0.,972747% 0,02/52% 7,4388 6, 7ca0 TRUE D P{HG) viry)
25 0.000007 0,73v993

75

PLC)
0.97044
0.904/0
0,799
0.2609
0.9795¢4
0,5073%
0.5¢7 1%
0.39216
0,34490
0.3H/88
0.00000

ASN
8,9493

PLC)
0.887923
0.701L5
0.68008
9.581352
0.41772
0.27674
0.27674
G.20¢00
0.,13835
0.06237
€.00000

ASM
7,2256

PLC)Y
0.71v21
0.40722
0.40%406
0,258%8
0.12¢.5
0.04957
0.,049%7
v.02313
0.0C759
0.0015%%
0,40800

[
5.0482

Py

0,43¢%0
0,33027
Sulintl
0,035%%
0.00%14
0.00¢%6
0.00( %6
0.00r00
0,00350
0.00C350
0.00000

ASN
3.7104

ySh
10,2407

YSn
9.5039

ySu
46,4130

ySu
1,1080

\ @ sovuny
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é Test Plan 2
Ns 30
3 ‘ Dos 10
D1z 23
ALPHAS  0.2%0
BETAz 0,130 é

- EVALUAT|CA OF REGJON REQUESTED

. SAMPLE S22 = 13

\ CRITICAL vatut = 6
ALPHAS ¢ 0.04508
BETAe = 0,04508

THE FIXED SIZE TEST [S 4% 1 OLLOWSS %

E
FIXED SI2E TEST OC FUNCTIONG

o

D AGCEPY M) ACCEPT wi ;
6 1.630000 0.000000 3
6 0.594796 0.005204

10 0.554923 0.045077

12 0,835732 0.164268

14 0,625501 0.374499

16 0.374499 0.625503

18 0.1:¢268 0,835732 i

20 0,045077 0.95492

22 0.005204 0.994796

"

TRUNCATE AT THE FIXED SIZE SAMFLE

iy

THE WALD REGION IS AS FOLLONWS)
TRIAL ACCEPT HO ACCEPT M1t

1 . . SIQULNTIAL TESY PROPERT] LS ]
3 . . TRUE D P(HQ) K ony) ASH Vs :
3 0 . 6 0,999267 0,000733 4,7450 4,0066 1
4 0 4 8 0,991911 0,00089 5,7193 8,4u54 3
5 1 5 10 0,952488  0.p4/512 6,8527 11,7979 3
6 : s 12 0,844078 0,15%922 7,960 13.5679 1
b 4 6 14 0,6556114 0,344389 8,7060 13,3500
[4 2 (3 16 0,4¢5591 0,274409 ?,112% 12,102¢ g
9 3 6 18 0,220718 0,77:282 8,8719 10,8041 ]

10 3 7 20 0.067975  0,91¢02% 8,1679 9.5360

. ‘ 7 22 v,027026  0.970974 7.2101 7 6405 3

12 5 8

13 3 4 ;

REGION CHANGE 9 3 7
REGION CHANGE 12 5 7
REGION THA“GE 13 6 7

i i il i
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Test Plan 3
3 H Ns 50
M D0s 2
¢t [ 12
4 . ALPHAT  9.050
1 gETAas 0,100
E EVALUATION OF REGIONM REQUESTED
; -
! THE FIXED SIZE TEST IS A I OLLOWS) ?
SAMPLE SIIE = 19
CRITICAL VALUE » 2 1
E . ALPHAs 3 0.60000 ¢
. BETAe 2 0,07689
: .
’ FIXED 31ZE TEST OC FUNCTIOMI 3

D ACCEPY HO ACCEPT i
1,00000¢ 0.000009
1.000000 0,000002 i
0,852736 0.147264
0,58808¢ 0.,41191¢
0.342265 0.657732
10 0,172928 0.827073 E
12 0,076887 0.92311)
14 0,030192 0,969804

S anO

TRUNCATE AT THE FIXED SIJE SAMPLE k

THE WALD REGJON IS AS FOLLONSI ;
SEQUENTIAL TEST PROPERTIES ;
TRIAL  BCCEPT MO ACCEPT nt TRUE D P{d0} Rint) ASn VS :
! . > 0 1,000000  0,000000 €0,0000 0.0000 1
3 . 2 2 0.970612 0,029388 12,6457 16,0443 i
H . 2 4 0.791902 0,305098 13,2354 23,0442
M o 2 3 0,544502 0,455498 12,4740 28,0010
A . H s 0,327993 0,672007 11,1096 29,7424 3
7 . H < 0,178173 0,821827 9,6327 27,5788 3
: . b 12 0,089164 0,910836 8,2877 23,1042 1
p p 3 14 0,041844 0,§58159 7,159 16,0013
10 0 3
11 0 3 1
12 0 3 1
) 13 0 3
14 0 3 ]
15 0 3
16 1 3 4
17 { 3 1
18 1 3 1
19 1 2 3
REGION CHANGE 8 -1 2 3
RECION CHANGE 9 -1 2 3
REGION CHANGE 16 0 3 \
REGIGN CHANGE 17 0 3- 1
REGION CHANGE 19 2 3 j
1
: i
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Ns
Do=
Dis

BETas

BETAe

D

REGION
REGION
REGION
REGION
REGION
REGION
REGION

AL PHaAC

50
10
20

0.0%0

0,100

SYALLATION OF REGION REOQUESTED

THE FIXED SI2E TEST |S A8 +OLLONS?
SAMPLE S12¢ ¢

- CRITICA. VALUE a
ALPHAe s

25
7

0.03688

€ 0,07408

ACCEPT KO
1,0000C0
0.9979¢5
c.96%123
0,83 554
0.623143
6.38812¢7
6.168577
0.074080
0,0225%2
0,005081

BAVEWR AL NKGUWNANRNI I I~OO:r ¢ 0o L]

CHANGE
CHAKGE
SHANGE
THANGE
CHANGE
CHANSE
CHANGE

TRUNCATE 41 Th

13

22

24
25

FIXED SIZE TEST OC FUNCTI0M¢

ACCEPT ¥y
0.000000
0.002015
0.036877
0.160446
0.376897
0.618793
0.811423
0.925920
0.977498
0,994939

FIXED SIZE SAMPLE

THE WALD REGJCY IS AS FOLLOWS{
TRIAL ACCEPT WO ACCEPT my

VOO0 DROU®INNVNOCOCOEVVRNAL S o ¢

NV A WRN >
[ X- - N % VY. 3

8l

Test Plan 4

TRUE D
[

8
10
12
14
16
18
20
22

4

SEQUENTIAL TEST PROPLRTIES

P(HO)
0,9995¢7
0,9937¢9
0.952864
0,830905
0:627703
0,401344
0,216236
0,099130
0,039739
0,014660

REHL)
0,000453
0,00620
0.047136
0,369095
0,372297
0,298656
0,/83764
0,900870
0,96026¢
0,185340

ASN
11,5104
13,5084
15,7954
17,5382
18,3016
17,9%4¢6
16,7508
15,1083
13,3937
11,8267

YSN
15.6764
27,250
36,0u806
38,7%01
38,3334
38,308Y
38,1097
35,7960
30,6930
24,4193

Yy

s e S R e el M e e ke D e« e Wbl s i e
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A L M © I A A A aChA e & ) g A1 4 . e S e "f?"""‘
\

f
3
k,
-
r 3
Test Plan S
- Ns 50
Gos 20
3 Dis 30

ALPHAs 0,050
BETAs 0,100
- EVALUATION OF REGION REQUESTED

[P

THE FIXZ0 SIZE YEST IS A§ FOLLOWSY
SAMPLE SIJE = 28
CRITICAL VALUE 3 14

PP SV

ALPHAS & 0,0264% {
BETAs » 0,08992 '
§
FIXED SIZE TEST OC FUNCTLION: ;
i
D ACCEPT HQO ACCEPT M1 f
16 0,999827 (.,000173
18 0,9°4390 0,003610
20 0,9 588 0,026412
22 0,894992 0©,105108
24 0,726855 0,27314%
26 0.486568 €,513432 §
28 0,249650 0.7%0350 |
30 0,089923 0,910077
32 0,019865 0,96013%
34 0,002056 0.997944
. THUNCATE AT THE FIXED SIZE SAMPLE
THE WALD REGIOX ]S AS FOLLUHSY ;
TRIAL AGCEPT HQ ACCEPT Hy
L] L]
; . o SEQUENTIAL TEST PROPERTIES
3 . . TRUE D P{HQ) PUNL) ASN N .
; . : 16 0,997168  0;002837 12,3499 ?6?;951
A 0 . 18 0,966983 0,013017 14,2162 35,5992
¢ ¢ 5 20 0,950912 0,04v088 16,2964 43,501y
! 3 ] 22 0,850453 0,341567 18,2756 47,00v0
0 3 M 24 0,6089213 0,310787 19,6733 45,8024 .
g 2 H 26 0.:465872 0,534128 20,0647 43,1834
10 2 4 28 0.1252092 0,747908 19,3452 40,9743
.2 3 4 30 0,10482%  0,895171 17,8019 37,3519
13 . 10 32 0,033186 0,966914 15,9182 30,79 ¢
14 4 0 3¢ 0:008720 0.991260 14,0989 22.8394
15 5 11
16 6 1
17 6 11 .
18 7 12 :
19 7 12
20 8 13
2 6 13
22 9 13
23 9 14
24 10 14
25 1 15
26 11 15
27 12 16
28 7 8

REGION CHANGE 13 3 ¢
REGIOY CHANGE 25 11 14
REGION CHANGE 26 12 15
REGIOM CHANGE 27 18 15
REGIO% CHANGE 28 14 193

m q ,  my gmmme s e m e am
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. Test Plan 6
Ne 100

. Dos ]
D1s 20
ALPHA® 0.050

. BETAz 0,300

EVALUATION OF HEGION REQUESTED

THE FIXED SIZE TEST IS AS FOLLOASE
SAMPLE SIZE = 29

CRITICAL VALUE = 3

ALPHAe = 0,02398

BETAs s 6,09926

FIXED SI2f: TEST 0C FUNCTLON:

D ACCEPT HC ACCEPY Ry

0 4,000000 0.000000

5 0,976024 0,023974

10 0,681497 0.318303

) 15 0.308944 0,691056
20 0.099263 0,900737

25 0.023853 0,976143

TRUNCATE AT THE FIXED SIZE SAMPLE

§ THE MALD REGION IS AS FOLLOWSS
TRIAL ACCFPT HQ ACCEPT Hi

I o L]
g : § SPQUENTIAL TEST PROPERTIES
4 . 3 TRUE D P(HO) PLHL) ] VSN
5 . 3 0 1,000000 0,000900 17,0000 ¢,0000
6 . 3 s 0,953815 07046185 20,9193 21,4521
7 . 3 i0 0,641494 0,358509 21,397¢ 41,4969
s . 3 13 0¢292589 0,707411 18,4645 56,6198
. 9 . 3 20 0,098854 0,901146 14,8874 52,8936
%2 : g 25 0,026264 0,273736 11,9423 39,7261
{2 . 3
13 0 3
14 1] 4
15 0 4
16 9 4
17 0 []
18 0 4
19 0 4
20 1 4
P31 1 4
22 1 4
23 1 4
24 1 4
25 1 .5
26 e 5
27 Y ]
28 2 5
29 2 3
REGION CHANGE 13 «3 3
REGION CHANGE 14 =% 4
REGION CHANGE 15 -1 4
REGION CHANGE 16 <1 4
REGION CHANGE 17 0 3
REGION CHANGE 20 Q@ 4
REGION CHANGE 25 1§ 4
REGION CHANGE 26 § 4
REGION CHANGE 27 § 4
REGION CHANGE 28 2 4
' REGIOY CHANGE 29 3 4
85
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- Test Plan 7
Ne 190
L pos 10
pgs 25
ALPHAS 0.030
o BETas 0,100
EVALUATION OF RES10N REJUESTED
- TNE FIXED SI12E TEST IS 45 FOLLOUS! THE WALD REGION IS S FOLLUMSS
SAMPLE SIIE = 3?7 TRIA ACCLPT u ACCEPT &
. CRITICAL YALUE 3 6 1 t CE 0 EPT
.- ALPHAs =  0,02845 1 . .
BETAe = 0,69251 2 . :
- 4 [} 4
N s . 4
FIXED S12E TEST OC FUNCTLONG 3 . !
* 7 . 4
8 . 4
. D ACCEPT HO ACCEPT My 9 . :
§ ¢ 1,000000 0,000000 }g . s
. 5 1,000000 0,900000 1 . H
.- 10 0,971553 0,028447 12 0 5
15 0.712933 0.287567 : 4 ;
20 0.324968 0,675012 15 0 >
' 25 0,092511 0,9074%9 1 0 :
. S0 0.012974 0,983026 ig 0 2
]
. TRUNCATE AT THE FIXED SIJE SAMPLE 1 ! ¢
20 1 6
21 1 6
22 2 6
: 23 2 8
24 2 6
SEQUENTIAL TEST PROPERTIES 25 g ;
TRUE D P(HO) PIHL) ASN YSN g; 2 !
6 1,000000 ©0,000000 12,0007 0,0000 28 H 2
8 0,999605  0,000195 16,9535 36,0472 34 3 ]
30 0,953829  0,046171 23,2090 79,9076 M 3 ;
15 0,6875.7  0;313473 26,1517 89,6052 5 3 7
20 0,325840  Q,474160 24,9430 95,1189 3 3 4
25  ©,106668  0,393332 19,7799 85,1169 2 3 ]
30 0.027316  0,972684 15,8284 81,9662 3 p 4
35 4 8
36 4 8
3?7 3 4

REGION CHANGE 17
REGION CHANGE 18
REGION CH&NGE 22
REGION CHANGE 23
AEGION Cusyre 25
REGION CHANGe 26
REGION CHENGE 27
REGION CHaNGE 28
REGIONV CH!NGE 29
REGIOY CHnCE 33
REGION Cukintz 34
REGION CHA%GE 35
REGION ChANGE 36
REGION CHANGE 37
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Bomed  freend

4

— s

TRUE
10
15
20
25
30
35

Ne 100
DOs 15

Die 30

ALPHAE 0,050

BETA® 0,100

EVALUATICK OF REGION REOUESTED

THE FIXED SIZE TEST IS AS 10LLOLS)
SAMPLE SIIE » 42

CRITICAL VALUE 9

ALPHAs 3 8,0353%

BETA® & 0,08431

FIXED SI2E TEST OC FUNCTLOMNG

0 ACCEPT HO ACCEPT iy
10 0.999915 0.000085
13 0.964692 0,035308
20 0,712860 0,287140
2% 0,322023 0,677975
30 0,084309 0,915693
35 0,012734 0,9b67266

TRUKCATE AT THE FIXED SIZE SAMPLE

SEQUENTIAL TEST PROPERTIES

D P(HO) PLHL) ASH
0,998237 U.001293 19,5472
0,953480 0;046520 25,9175
0.706232 0296769 30,0355
04338401 0,661599 28,8132
04104717 0,095283 24,1922
04023472 0.976529 19,3708

Tost Plun 8

¥YSH
51,5726
101,2009
112,3057
117,0773
110,5474
82,7037

89

THE ®WALD REGIOX IS AS FOLLJIWS)
TRIAL ACCEPT wQ

REGION
REGION

VNNODOORVVE AL LLAUWUUNNRNNEUIAMOOOOS 688 s e L3 3N 3

CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANSGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE

DONOOOWV AL O

ACCEPT M}

VO OO COBRBROIBIUNNNNOOCOCOOCOVNAT I A
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Test Plan 9
Ns 100
Gos z:
pDis 4
ALPHAs o.c:o
ctas 0,10
BVALUATION OF REGION REQUESTED
1HE FIXED S12E VEST 1S AS FOLLO¥S)
SAMPLE SIIE = 50
calTical YALUE ; " $Y)
;;?::.t. 0?6?6;3 TKE WALD REGIiON ]S AS FOLLOWSH
TRIAL ACCEPT HO ACCEPT M1
FIXED S1ZE TEST OC FUNCTLONI . é : :
3 . .
4 . °
ACCEPT HO ACCEPT ®i 5 . M
go 0,999596 0,000404 6 . 6
2% 0,968289 0,03173% : : ;
30 0,743453 0.25654%
35 0,337654 0.662346 9 . 7
40 0,076326 O.ngg;; ig g ;
4% 0,007732 O, i 0 8
S 13 1 s
TRUNCATE AT TRIAL 0 13 ! :
13 [y 9
16 Fd ]
17 2 9
18 3 10
i9 3 10
20 3 10
21 4 10
22 4 11
23 4 1%
24 5 11
25 5 12
: 26 5 12
SEQUENTIAL TEST PROPERTIES 7 6 12
21 [ 12
TRUE D P{HO) pPLHY) ASH YSN
25 0,996533  0,003467 21:8661 79,4777 §§ g S
25 0,951746 0,048254 28,4359 142.2807 3 7 3
30 0.729948 0,270052 33,8801 165,0477 32 H i
35 0,358360 0,641640 33,8326 165,9724 33 . i
49 0104832 0,892168 28;9976 144,6135 3¢ . e
43 04020934 0,979066 23,3165 108,8754 35 ; %
’ 36 9 15
37 ’ 15
3 10 15
3y 10 16
40 10 16
£} F$3 P
42 s 16
43 11 17
44 12 37
43 12 17
’ 46 13 17
47 13 18
48 13 18
49 14 18
50 9 10

REGION CHANGE 18 2 9
REGION CHANGE 32 7 14
REGION CHANLE 44 11 17
REGIOMN CHANSE 45 11 17
REGION CHANGLE 46 12 17
REGION CHAKNGE 47 13 17
REGION CHAN'E 4A 14 17
REGIOM CHANSE 49 15 17
REGION CHANGE %0 36 17
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13
¢ w
Ne 100 Test Plar 10
Dos 40
- Dis 60
5 ALPHAS 0.050
( BETAx 0,100
* EVALUATION OF REGION REQUESTED
THE WALD REGION IS AS FOLLOAS!
TRIAL ACCEPT H ACCEPT H
THE FIXED SIZE TEST IS AS FOLLOWS) 1 e . !
> SAMPLE SIIE = 40 2 ' .
CRITICAL YALUE & 20 3 . . ;
ALPHAe 3 0,03053 4 . .
d BETAe = 0,07257 5 . .
. é 0 L]
i 7 0 7
FIXED S126 TEST OC FUNCTION® s It 8 ,
¢ 1 8
11 3 9
i D ACCEPT HQ ACCEPT Ni 12 3 10 i
= 40 0,969468 - 0,030532 13 4 10 i
42 0.936909 0,063691 14 4 1 ’
: 44 0,883426 0,114574 15 5 11 !
) - 46 0,805132 0,194868 16 5 12 ,
46 0,702338 0,297662 17 6 12 :
50 0,580792 9.419208 18 6 12 !
. 52 0,451057 0,548943 19 ? 13 !
54 0,325989 0,67401} 20 7 13 ,
. 56 0,217219 0,782781 21 s 14 !
i 58 0,132135 0,867863 52 . P
! 60 0,072568 0,927432 53 9 e
- TRUNCATE AT THE FIXED SIJE SAWPLE 2 10 :
26 10 16
/ 27 11 17
28 12 17
L 29 12 18
30 13 18
SEQUENTIAL TEST PROPERTIES 3 13 18
TRUE D P(HD) PtHL) ASNH VSN 32 14 19
“ ? 0 0,953206  0;046794 2034036 89 3391 3 1 4
! 42 0,946610 0,083390 22,0433 19,2028 35 15 z
44 0,861244 0,333756 23,6398 105,9496 s 16 5
46 0,784629  0,213371 24,7794 109,1421 3 1 2
. 48 0,687792 0,312298 26,0252 109,3923 38 7 22
1 i 50 0,575563  0,424432 26,6403 107,9166 44 4 22
, ' 52 0.458909 0,543991 26,7605 105,8276 4
| 54  0,342060  0,65/940 26,3779 ? . .
5 ' bt 103,5056 REGION CHANGE 6 -1 o1
55 0usmIs  olaeiams R REGION CHANGE 28 11 17
] ) ’ 95,8461
80 0,097378 0l 902622 2219295 68,9986 RECioN CHante 11 2 0
| REGION CHANGE 40 60 20
REGION CHANGE 37 17 21
REGION CHANCE 28 g8 2%

' REGION CHANGE 39 19 23
REGION CHANGE 40 20 21
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manufacturer. Each lot contains 30 tires and it is desired to
accept the lot if 1t contains D<5 defectives (D0=5) and to
reject the lot if it contains D215 defectives (Dl=15). The «
and B errors are chosen to be 0.05 and 0.10 respectively. For
this test, Test Plan 1 is appropriace. The truncated sequential

test region and the test properties are given in Section 4.1.

To carry out the sequential test, the following procedure is

followed. At each stage of the test 3 tire is selected at
random (without replacement) from those remaining in the lot.
The total number of defectives which have been observed is then
ccnpared with the critical limits which define the test rcgion.
This is continued until one of the critical limits is reached.
A typical sequential sample which might be obtained for
tnis case is shown in Table 4.1, along with the critical limits.
This is shown graphically in Figure 4.11. For this particular

sample, only 1 defective has been found at the 7th trial. A

decision is therefore made in favor of HO and the lot is accepted.
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Table 4.1
Typical Sequential Sample
Trial cL(n) X cU(n)

1 * 0 *

2 * 0 *

3 * 1 3

4 * 1 3

5 0 1 4

6 0 1l 4

7 1 1 4

8 1l 4

9 1l 5

10 2 5

11 2 5

12 3 5

13 4 5
5 VRV
Number / !
of Accept Hl / !
Defectives / I
4 L VIR, ~ S, - A0S -j . ° . . 9’0},

/
/ 4
7/ /

3 ——————X—-—)‘, . . . . . ) . }5

i [l 1 1 1 A

8 9 10 11 12 13

Trial Number n
Figure 4.11 Graphical View of the Sequential Test
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CHAPTER 5

COMPARISON WITH OTHER TESTS

5.0 INTRODUCTION

In this chapter, two types of comparisons are presented.
In the first section, comparisons between the fixed size sample
and the sequential tests of the hypergeometric distribution are
given. 1In the second section, sequential tests for the hyper-
geometric distribution are compared with similar tests for the
binomial distribution. The purpose of the first section is to
show the relative superiority (with re~pect to the expected sample
size) of the truncated sequential test when ccapared to fixed
sizc sample tests for the same hypothesis. The second section
shows the possible consequences of using Wald type regions for
the binomial distribution to develop approximate sequential tests

for the hypergeometric distributio:.

~

>.1 COMPARISON WITH FIXED SIZE SAMPLE TESTS

In this section the fixed size tests described in Section
1.3 will be ~ompared and contrasted with the sequential tests
given in Section 2.1 and truncated as in Section 3.2. There
will be frequent references to the tables and graphs given in
Chapter 4. The OC functions for these two tests will be examined
along with the ASN function of the truncated sequential test.
From this, it will be quite casy to see the relative gain in
cfficiency (with respect to the expected sample size) obtained by

using the sequential test.

97




TR~

98

The fixed size tests used here were developed as described
in Section 1.3. They are the (non-randomized) tests with minimum
sample size such that the limits on the desired error probabil-
ities are met. From examination of the OC function for these
fixed size tests (these OC functions and their graphs are given
in Section 4.1), it is seen that these error probabilities are
usually quite a bit smaller than the desired error probabilities.
This will have to be taken into consideration (in a subjective
manner) when making the comparisons presented here.

The graphs for each example test plan in Section 4.1 show
the OC functions fo2r both the fixed size sample test (dashed linc)
and the sequential test (solid line), as well as for the binomial
approximation test (dotted line), which is explained in the next
section.

Table 5.1 gives the true a and B errors for each of the tests,
along with the sample size for the fixed size test (which is also
the truncation point for the sequential test) and the naximum
value of the ASN function for the sequential case. The following
observations can be made about these example test plans.

The most important advantage gained by using a sequential
test procedure is an overall reduction in the amount of sampling
required to come to a decision. This advantage is again demon-
strated here. The maximum of the ASN function for each of the
test plans ranges between 25 and 33 percent below the sample size
of the fixed size test. There is no doubt that thesc tests will
result in a considerable saving with respect to sampling costs.

There is, however, a small price to be paid for this saving.

$ g~ W e | ‘JJi

| Ao B S

R |
s

ld
a




99

9L°9z  ¥L60°0 89%0°0 Ov  92L0°0 S0£0°0 09 0¥ 00T oT
Z9°VE  LLLOO €8Y0°0 05 €9L0°0 LTE0°0 ov Sz 00T 6
SZ°0€  ¥HOT°0 S9¥0°0 Zv  £¥80°0 €S£0°0 0f ST 00T 8
ST°9Z L90T°0 Z9%0°0 LE $260°0 ©820°0 sz 0T 00T L
8L°TZ 6860°0 z9¥0°0 62 £660°0 0$20°0 0z S 00T 9
S0°0Z 8Y0T°0 T6v0°0 82z 6680°0 #920°0 0 0% 0S S
0£°8T T660°0 TLH0°0 Sz TPLO'O 69£0°0 0z OT  0S b
PZ°€T  2680°0 ¥620°0 6T  69L0°0 0000°0 2T 2 0S €
IT°6  6L80°0 SL¥0°0 €T TISY0°0  0SP0°0 0z 0T Ot z
¥6°8  S260°0 S2z0°0 €T L690°0 €£600°0 ST § o¢ T

*mevzwmmO 9 0 xU 9 ¥ Tg % « # uerd

389, Tetrausnbssg

3S9L 92ZTS POXTJ

s3s9] Tetrausnbsg pue
92TS P3XTJ 943 Fo uosTtaedwo)
T°S @Tqed




1: 100

1

The a and B error probabilities of the fixed size tests
» are never any larger, and are usually somewhat smaller, than |
the desired error limits. The a and B errors for the sequential
test, while somewhat larger than those of the fixed size test,

are in all cases quite close and rarely above the desired limits.

. Examination of the graphs of the OC function also illustrates

SR

A this point. From the graphs, it is again seen that the error

probabilities have increased somewhat, but that over all, the

OC curves are very similar. This is the price paid for the sample
i size advantage described in the last paragraph. m
| It should be pointed out thz2{ randomized tests meeting the
required error probability limits, which may have slightly smaller
, sample sizes than do the fixed size tests presented here, can

usually be found. This type of test is not r~ften used in practice

; and tends to be somewhat of a theoretical contrivance. Even when

compared to such randomized tests, the sequential tests are usually

superior.

5.2 COMPARISON WITH SEQUENTIAL TESTS OF THE BINOMIAL DISTRIBUTION

a em naea o e

In this section, the Wald regions for tests of the binomial i

distribution are examined. First, the physical characteristics
of these regions are compared with the regions for the hypergeometric
distribution which were found in Section 2.1. Then the binomial

regions are used as approximate tests for the hypergeometric dis-

tribution.
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For completeness, the well-known method of determining the
regions for a sequential test of the binomial distribution
(Wald, 1947) is briefly reviewad here. The same notation devel-
oped in Chapter 2 will be used.

The probability mass function of the binomial distribution
is

f(x.n.p)=(§)px(l-p)n_x 0sx<n (5.1)
This is the limiting distribution of the hypergeometric dis-

tribution if N approaches infinity and D/N remains constant.

The likelihood ratio used to test the hypothesis

H.: p=p
0 e (5.2)
versus Hl: p=pl>pO
is
L(x;py,n) _ pr(l-p,)07%¥
—r - = 1 (5.3)
L(x,po,n) po (l_po)n-z{

where x is the number of defects observed after n trials. Fol-
lowing the same procedure given in Chapter 2, tle rules for the

test are

accept HO if L(x;pl,n)/L(x;pO,n)sB

accept Hl if L(x;pl,n)/L(x;po,n)zA

(5.4)

and otherwise take another sample. The log likelihood ratio

function is found to be
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g(x,po,pl,n)=2n(L(X.plln)/L(x,pO,n)) (5.5)
=x-2n(pl/p0)+(n-x)-ln((l-pl)/(l—po))
The critical values for the log likelihood ratio are then
b=%n(B)=2n(8/ (1-a)) (5.6)

a=4n(aA)=Ln((1-B8) /ua)

We then find the critical values for acceptance and rejection at
each trial from the inverse function g-l when solving for x.

The equations for these are

ky (n) Lq"l(b,po,pl,n)] (5.7)

= [ b-ntn((1-p;)/ (1-py)) /20 (p, (1-p ) / (B, (1-p)) )]

kU (n)= L'9'-.1 (apporpl rn)] +1
= [la=nsn (-p))/ -pg)) /20 (py (1-py)))] 41

where K=[R] is again the greatest integer less than or equal to [R].
The inverse functions in (5.7) are linear in n and can there-

fore be represented by two parallel lines with slope
s=((l-po)/(l-pl)/ln(pl(l—po)/(po(1-p1))) (5.8)

and intercepts

I =an(8/(1-a))/2n(p; (1-py)/ (py (1-p;))) (5.9)

1y=2n((1-8)/a)/an(py (1-py)/ (py (1-p;)))

An example of these two lines, which define the boundary of the
sequential test regions, is shown in Figure 5.1l. In the cxamples

which follow, the critical limits kL(n) and kU(n) are computed




Test
Statistic

% Accept Hl

Continue
Sampling

Accept Ho

/////// Trial Number n

Figure 5.1 Typical Wald Region for the Binomial Distribution

and compared with the critical limits of the sequential tests of
the hypergeometric distribution, cL(n) and cU(n).

When using the binomial test regions to approximate the test
for the hypergeometric distribution, one must make a decision as
to which values to use for Py and Py - Some approximations for
hypergeometric distribution are given, for example, by Johnson
and Kotz {196%2). These approximations are dependent on the sample
size n and their use in a sequential test would be as complicated
as the exact test is. For this reason Py and p, are taken here
to be

p,=D,./N
00 (5.10)

pl=D1/N
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For large N and small n, these are good approximations and would

Lo Y

likely be the values used in practice. Equation (5.7} is used
to construct the binomial test regions, with the following modi-

fications. First, if DO+1 defects are observed, the test is ter-

1 is accepted, as it is then known that HO cannot be

true. Also, the test is truncated, again following the procedure

minated and H

given in Section 3.2. No other modifications are made to the
test regions.

Table 5.2 gives the critical .imits for both the truncated
hypergeometric test plan (cL(n) and cU(n)) and the binomial ap-
proximation to this test (kL(n) and kU(n)) for Test Plan 3 (from
Section 4.1) where n=50, Dy=2 and D1=12. This same information
is given for Test Plan 5 in Table 5.3.

Because these two distributions are the same at the first

trial, the critical values will be the same for n=1. The main

difference betw:ien these two tests is that the hypergccometric

distribution test regions tend to shrink in widtb, especially from

above. The average distance between cL(n) and cU(n) decreases
with n until the truncation point is reacn2d4, while the average
distance between kL(n) and kU(n) remains the same except at the
points where the test is truncated. The shrinking of the hyper-
geometric distribution test region is due to the finiteness of
the population. Also, the binomial regions usually cend to be
shifted by a small amount from the hypergeometric test region.

The effects of this are shown in the numerical results to follow.
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Table 5.2

Binomial and Hypergeometric Test Regions
for Test Plan #3 (N=50, D0=2, Dl=12)

Trial ¢, (n) cU(n) kL(n) kU(n)
1l * 1 % 1
2 * 2 * 1
3 * 2 * 1l
4 * 2 * 1
5 * 2 * 2
6 * 2 * 2
7 * 2 * 2
8 * 2 * 2
9 * 2 * 2
10 0 3 4] 2
11 0 3 0 2
12 0 3 0 2
13 0 3 0 2
14 0 3 0 3
15 0 3 0 3
16 0 3 0 3
17 0 3 0 3
18 1 3 1 3
19 2 3 2 3
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Table 5.3
Binomial and Hypergeometric Test Regions

for Test Plan #5 (N=50, D,=20, Dl=30)

Trial CL(n) CU(n) kL(n) kU(n)
1 * * * *
2 * * * "
3 * * * *
4 * * * *
5 * * * *
6 0 * 0 6
7 1 7 0 7
8 1 8 1 7
9 2 8 1 8
10 2 8 2 8
11 3 3 2 9
12 3 9 3 9
13 3 9 3 10
14 4 10 4 10
1» 5 11 4 11
16 6 11 5 11
17 6 11 5 12
18 7 12 6 12
19 7 12 6 13
20 8 13 7 13
21 8 13 8 14
22 9 13 9 14
23 ] 14 10 15
24 10 14 11 15
25 11 14 12 le
26 12 15 13 16
27 13 15 14 16
28 14 15 15 16

106
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Table 5.4 summarizes the results of using the binomial
regions as an approximation. The actual a and 8 errors, along
with the maximum values of the ASN function, are given for each
test plan in Section 4.1.

It is seen from Takle 5.4 that in almost all of the examples,
either the true a or the true B error is quite a bit larger than
what was desired and that error in the opposite direction 1is
smaller than what was desired. This can also be seen in the
shifts in the graphs of the OC function for the approximate tests,
as shown in Section 4.1. This seems to indicate that the test
approximation is, in a sense, biased. There seems to be no sig-
nificant difference between the maximum values of the ASN function
for these tests. This is reasonable, as the tests are truncated
at the same trial.

The above observations indicate two things to the user of
these sequential tests. First, the binomial regions do not,
in general (except for cases where the population -~ize N is large
when compared with a typical sample size of the test procedure),
provide adequate tests for the hypergeometric distribution. Also,

the importance of finding the exact test properties to compare

with the desired values is clearly shown.
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CHAPTER 6

ESTIMATION OF THE NUMBER OF DEFECTIVES
| AFTER TERMINATION OF THE SEQUENTIAL TEST :

freed Rl Sl

s

X 6.0 INTRODUCTION

Nl

*
! .
[
; In this chapter, a method whereby one can obtain a point
F ol
; L estimator and/or cuonfidence intervals for the number of defectives
§
!

in a finite population is discussed. The estimation is to be

}

At
M
[

performed after sequential tests, such as those discussed in

»

Chapter 2, have been terminated.

PR N

In generai, there are two basic types of sequential estima-

tion to be considered. Firgst, there is the problem of sampling

sequentially until ectimates with the desired degree of precision

AR
. b . .

have been obtained. This might be expressed, for example, by
specifying the maximum allowable confidence interval lengti.

Another type of estimation is often required when one would like

RNV S WS SREIVES A S 2 e 8

} to estimate the parameter in question after completion of a se-

e

guential hypothesis test. This latter type of estimation is con-
V. sidered here.
{ A brief outline of the history of sequential estimation is
! | presented here first. This is followed by a descrintion of a
{ general method of estimation {given by Schmee (1974) and Goss
(1974b) ) which may be used after a sequential test. The following
sections show how this method is applied to sequential tests of the

hypergeometric distribution. A numerical example is also given.

AN~ Dot sy B .~ b e o
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6.1 HISTORY OF SEQUENTIAL ESTIMATION

This section presents a brief overview of some of the
approaches to sequential estimation which have received atten-
tion in the past. More comprehensive overviews of . 7quential
estimation are given, for example, by Johnson (196i), Wetherill
(1966), Goss (1974a) and Schmee (1974).

The first results with sequential estimation were obtained
by Tweedie (1945) and Haldane (1945) who use an inverse binomial
sampling technique. Wald (1947), in his book, gives some struc-
ture to the problem and suggests an approach which he admits is
not optimal. While the problem was not solved by Wald, his work
seems to have led to the later results given hy Anscombe (1953)
and Cox (1952a and 1952b). These procedures, which deal with
generalized boundaries, were also explored by Wolfowitz (1946),
Blackwell (1947), Savage (1947) and Knight (1965). Dixon and
Mood (1948) apply the "up-down" method to sequential estimation,
and Anscombe (1953) reviews the early nethods of sequential es-
timation. Most 0f these early efforts were primarily aimed at
estimation rather than hypothesis testing followed by estimation.

Armitage, in his discussion of Anscombe's paper (Anscombe,
1953), points out that in general, the suggested sequential esti-
mation techniques are not any better than the standard fixed size
procedures. He also stresses the need for methods of estimation
to be performed after sequential tests of hypotheses. The follow-
ing is a brief review of the work which has been done with such

methods.
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Girschick et al. (1946) give a simple method of finding
the unique unbiased estimator (UBE) for a binomial SPRT. For
tests of the binomial parameter, Armitage (1958) compares the
mean square error of the maximum likelihood estimator (which is
unbiased in a fixed size test, but not necessarily in a sequen-
tial test) with the variance of the UBE and gives a method of
finding confidence intervals which meet the classical probability
statement, and which are dependent on the stopping rules. Aroian
and Oksoy (1972) present a Bayesian procedure for estimation and

for finding confidence intervals. The procedure is to be used

at the completion of a sequential life test. A generalization of
this procedure is due to Schmee (1974) and Goss (1974c) and is
the basis of the estimation procedures develop2d here.

To complete our overview of sequential estimation, the Bayces-
ian approaches should be mentioned. This subject is treated by
Wetherill (1966) and DeGroot (1970). Box and Tiao (1973) discuss

the sequential nature of Bayesian methods of estimation.
6.2 THE GENERAL METHOD OF SCHMME AND GOSS

The method of estimation presented here is similar in nature
to the method given by Aroian and Oksoy (1972). Schmee (1974) and
Goss (1974c), in thzir respective dissertations, give a general
method of finding point estimates and confidence intervals which
can be easily applied to sequential methods. Schmee (1974) appliecs
the method to sequential tests of the mean of a normal distribution

with variance both known and unknown. Goss treats the two-sided
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test for the mean of a normal distribution with variance known
(Goss,1974b) and tests of the binomial distribution (Goss,1974a).
A description of the methcd follows; it is applied to tests of
the hypergeometric distribution in the following sections.

In order to present the method in a general fashion, it is
best to consider estimation of a continuous parameter from a
continuous distribution (e.g., the mean of the normal distribution).
When estimation is to be pexrformed for a discrete parameter or
from a discrete population, the appropriate integrals will become
summations and probability density functions will become proba-
bility mass functions.

When the direct method of sequential estimation is used,
one computes the probability of reaching or crossing each point
on the region's boundary (assuming a test in discrete time), for
different values of the true state of nature. The method for
doing this is treated in Chapter 3. Let P(Anle) and P(Rnlﬂ)
represent the probability of accepting and rejecting Ho respectively
at crial n if 6 is the true state of nature. These probabilities
are easily found by using the direct method. If we take a Baycsian
view of the situation and assume a uniform prior for 6 (over all
possible values of 8), a "pseudo-posterior" (in the sense that it
is not based on a sufficient statistic ) distribution for 0 can be

found by using Bayes' Formula.

P(Anle)
P(ola)) = TP (A_]67d0
0 (6.1)
P(ean) - p(Rnle)

gp(Rn[e)de

E x ¥ ’
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The first equation is used if the hypothesis is accepted at
trial n; the second one is used if the hypothesis is rejected
there. Although this method is valid for certain distributions
(e.g., the binomial and hypergeometric), there can be both
theoretical and practical objections to it in other cases.

The first objection is that if there is more than onc out-
come contained in the events An or Rn’ that information might
be lost by grouping the outcomes into one event. The seccond
objection concerns the restriction to the uniform or "non-
informative" prior distribution. This is especially true with the
so-called "improper prior"” which ranges between plus and minus
infinity and cannot be made to integrate to one (Box and Tiao,
1973). Both of these objections are eliminated with the more
general method developed by Schmee and Goss.

The general method makes use of all of the available infor-
mation and allows the use of any specified prior distribution.
Let P(8) denote the prior density of 6 and let f(x,n|f) denote
the density of x given 8, where x is the sequential sample ob-
tained up to trial n (where HO is either accepted or rejected)
and 9 is the true state of nature to be estimated. If T (x)
is a sufficient statistic for 6, no information is lost by con-
sidering instead the density g(T(x),nle). Note that this density
conciders all possible values of the sufficient statistic which
are possible at the termination of the sequential test. The
density g(t(x),n|0), is obtained via the direct method. The

posterior is then computed as
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_  _glr(x),n|6)p(6)
P(O]T(x) ,n)= fg(T(x),n|6)p(6)d6 (6.2)
)

where the denominator is a normalizing constant used to make the

posterior integrate to one. In a Bayesian sense, this posterior

is sufficient in that it contains all of the prior information

and all of the information obtained from the sequential sample.
Using the posterior density, one can compute Bayesian con-

fidence intervals for the parameter 6. For example, (9,0)

where 0 and 8 are determined by

£
/p(8lT(x),n)de = y/2

ép(elT(x),n)de Y/2

gives a 100(l-yv)% Bayesian confidence interval for the statc of
nature 6. An interval of shortest length can be found by fi.ding
6 and 8 such that

8
JP_(8]T(x),n)do = (1-y) (6.4)
g D

-~

and g—é is a minimum. The expected value of the posterior

E(8) =fePn(e|T(x),n)d9 (6.5)

-y

can be used as a point estimator for 6. The mode or median of
the posterior distribution can also be used for this purpose.
Other percentiles of the posterior distribution might also be of
interest,

Schmee (1974) gives some discussion on the choice of a prior

distribution (often a point of controversy). Box and Tiao (1973)
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also treat this problem at some length. Here, the uniform prior
is used, although another, more appropriate prior could be speci-

fied by the user of these procedures if desired.
6.3 INTERPRETATION OF THE POSTERIOR DISTRIBUTION

In order to interpret the posterior distribution given in
(6.2), one should take a Bayesian view of the situation. To do
this, consider D, the state of nature, to be a random variable.

It is also necessary to specify a prior distribution for D. ‘This
can be (and often is) a uniform distribution covering all possible
values for the state of nature. Such a prior distribution is
called a "non-informative" prior. When a Bayesian approach is
used, the sample likelihood and the prior distribution arc com-
bined by using Bayes' formula to obtain a posterior distribution
expressing all of the available information about the state of
nature.

Some statisticians would object to this approach, claiming
that the parameter to be estimated is a fixed value and that
only the sample from the population is subject to random fluctu-
ation. One who follows the Bayesian approach, howaver, arquces
that with the information from the sample and the prior dis-
tribution which expresses the prior beliefs about the paramcter
in question, a posterior distribution can be found which contains
all of the available information about the state of naturc. While
arguments still persist as to which of these apprcaches is the

proper one, the latter one will be used here for purposes of
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estimation. Some justification for taking this approach follows.

The best justification for considering the unknown paramcter,
say D, a random variable, is that in many cases, it is in fact
random in a sense. Consider, for example, a situation wherc lots
of 100 transistors are to be accepted or rejected depending on
an indication from a sequential sample about how many defectives
are in the lot. Even if one is unwilling to consider the numbcer
of defectives in a given lot a true random variable, the postecrior
distribution can still be used to express the relative "degrecc of
belief" for different values of the parameter.

Besides the justification given above, the Bayesian pro-
cedure allows one to easily obtain both point and interval csti-
mates for any parameter. In addition, the posterior distribution
itself is available and because this is a likelihood procedurc
and the distribution sample space is countably finite, our
estimates depend only on the observed data (and the assumed prior)
and are independent of any stopping rules.

The proponents of the classical approach to estimation do
not argue against using Bayes' theorem per se, but rather against
considering the unknown parameter a random variable, and with
the specification of a prior distribution based on subjective
probability. The effect that the prior distribution has on the
posterior, however, can be minimized by using the "non~informativc"

prior discussed in the last section.
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6.4 ESTIMATION WITH THE HYPERGEOMETRIC DISTRIBUTION

This section treats sequential estimation when sampling is
from a finite population. The estimation is to be performecd
after the completion of a sequential test of a hypothesis, as
explained in Section 6.2. Johnson and Kotz (1969) mention some
fixed size sample methods for this distribution. Also, a mecthod
of finding confidence intervals when sampling from a finite popu-
lation is given by Katz (1971). Some of these methods could be
applied to the situation here; however, the Bayesian approach, as
explained above, is used instead.

The following explains how the general method outlined in
Section 6.2 is applied to sequential tests of the hypergeometric
distribution. The probability mass function of the hypergcomctric

distribution is
<D> (N—D)
h(n;N,n,D)= X/ _An—X (6.6)

D! (N-D)! n
N! (D-x)! x

! (N-n)!
I (n-x)! (N-D-~n+x)!

This is the probability of observing x defects in a fixed sizc
test with sample size n. For a sequential test, the probability
of observing x defectives at trial n is always less than or c¢qual
to the probability obtained in (6.6). This is due to the stopping
rules of the test and their effect on the number of "admissible"
paths to a point in the (n,x) space.

The probability of reaching the point (n,x) under the scquen-

tial test rules is
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. _ D! (N-D)! (N-n)! (6.7)
hs(x,N,n,D)—K(n,x) N! (D-x)! (N-D-n+x)!

where K(n,x) is the number of "admissible" paths to point (n,x),

3 as dictated by the sequential procedure. K(n,x) is in general
quite difficult to determine directly; however, the direct mecthod,
as explained in Chapter 3, will allow one to easily compute the
probabilities in (6.7).

For each decision point (n,x), fi.e., a point at which the

Ay T RPTTe

test is terminated and a decision is made in favor of one of the

2ok

hypotheses) it is desired to obtain the posterior distribution
for D, the number of defectives in the population. Following

the procedure outlined in Section 6.2, a prior distribution for

i SN L

D is assumed. Here, a uniform prior will be used so that

1

M) e

P(D)= _(T]Tl_)- 0<D<N (6.8)

5 Of course, any desired prior could be substituted for this.
Using (6.2) and (6.7),
hs(X7NInrD)P(D)

1 P(D x,n)= - : -
f' d )J;hs(x,N,n,J)P(J) (6.9)
L
‘ - f(x,N,n,D)
i rf(x,N,n,J)
F J
i
‘ where f(x,N,n,D)= (N-D) !

! (D-x)! (N-D-n+x)!

and » is the number of defectives observed at trial n.

The denominator in (6.9) is a normalizing constant used to

force the posterior to sum to one. The posterior in (6.9) is
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independent of any stopping rules and is easily evaluated
directly. This gives the desired posterior probability mass
function. As explained in Section 6.2, this distribution is
interesting in itself, but it is also useful to find quantities
such as the expected value or the mode of the distribution and
confidence intervals for the number of defectives in the popu-
lation. This is done as follows.

The expected value (or mean) of the posterior distribution
is found by using (6.9) and changing the integration in (6.5)

to a summation.
D = E(D) = gD~P(D|n,x) (6.10)
which can be shown (Zacks, 1971) to reduce to
D = (x+1) (N+2)/ (n+2) -1 (6.11)
It should be pointed out that the estimation procedure

described here is equally valid for the k>2 decision test. The

procedure to be used is exactly the same as it is for the two ;

decision test. This is because the estimates depend only on
the observed data and not on the particular stopving rules of
the test {the stopping rnles do, however, dictate points in the
(n,x) space at which the test might terminate). In fact, the
same procedure is also directly applicable to fixed size pro-

cedures.
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6.5 NUMERICAL EXAMPLE

Presented here, as an example, are the numerical results
! of the estimation procedure for Test Plan 1 from Section 4.1.

4 Table 6.1 shows the posterior distribution for D, the expected
1 value of this distribution, confidence limits for D and the
actual confidence level. These are given for each decision

point on the boundary of the sequential test region.
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Table 6.
Estisates end Confidence Intervals
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P

10n0C

128

10100 0000000000000 0000000000000000000000 0000 0000CEINtstaNcetercnesesossosseed
1020Ce
10300
1040Ce
1050Ce
106UCe
1070Ce
JO0BUCe
10900
1100Ce

1110C00000neerssctsssstsnetesesossnnieccdaalaissastassacessnesdnsascesosessses

1120C
1130
1140
1150
1160
1170
1180
1190
12060C
12190
1220
1230
12490
125¢
1260
127y
128y
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1429
1430
1440
1450

1

44

15

43
21

ONE SIDLD SEOQUENTIAL TEST OF THE HYPERGEOMETRIC DISTRIRUTION

HILLIAM O, MEEKER, JR

INSTITUIE OF ADHINISIPATION AND MANAGEMENT
UNJON CULLECE

SCHENECTABY, NFW YORK 12308

JULY 1974

NIMENSTON X(200),Y(200)

OPTIUN LUAD

EOUEVALENGCE (A,ALPHA), (R,BETA)
FILENAME TINPUT, TOUT

LOCICAL LEV,LDSN,LEST

INTEGFR X,Y

INTFGFR FV,EST,NSK

DATA INPUT,IQUT/S0,66/
PRINTI,"INPUT: N,00,D1,ALPHA,BFTA,MO"
INPUT=""

[nyT=»*"
READCINPUT,21)XN,DU,D1,ALPHA,BETA, XMO
{F(XH.N.,0.0) GO TO 99
PRINT,*INPUT: EValL,DSN,EST"
HEADCINPUT,21)EV,DSN,EST
FORMAT(1011)

fout=""

INPH[=""

Ino=pn

In1=01

R=XN
HRITE(TOUT 1IN, 100, 1D1,ALPHA,BETA
FORMATC(//7/7%1N= ", 15/% 0= ", 14/" D1z ", 14/
& % ALPHA= ",F6.5/" RETAz ",F6.3)
FORHAT(6F10.0,311)

FORMAT(Y)

LFV=,FALSE,

LDSN=.FALSF.

LEST=.FALSE.

IF(FY.EN.1)LEV=. TRUE,
IF(NSN.EG,1)LDSN=.TRUE.
IF(ESTLEN.I)ILEST=, IRUE,
IFCLEV)PRINT 11




T

1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590¢C
1600C
161uC
1620
1630C
1640C
1650C
1660C
1671nC
1680

S R TN ¢ e———y ST T

11

12
14

1690 10

1760

. 1710 72

1720

1730 20

17490

1750 73

1760

1770 40
1780 74
1790 30

1800C¢
18102
18200
1830

1840 112

1850
1860
1870
1880
18990
1900
1910
1929
1930
1940
1950
1960

1212

789

T g MY Y e TG T TR Tan: AMRabivE L T~

§ORBAT(" EVALUATION OF RFGION REQUESTFD*)
IFCLEV.AHD.LOSRIPRINT 12

FORHAT(" DISTRIRUTION OF THE DSN RFOUFSTED™)
IFCLEV.ANDL.LESTIPRINT 14

FORHMAT(" FSTIMATION OF PARAMETFR REQUESTED™)
PRINT,"INPUT: DL, DU, INC"
RFANCINPUT,21)0L, DU, DY

IF(DI.EQ.N.0) GO TO 98

1F(PL.GT.DU) GO JO 9K

iny=o1

Inb=npiet.

IpL=nL+1.

MO =XHN

GO TO FIND IME SHALLEST FIXED SIZF TEST
CALL FIXSIZ(N,IDU,1D1,ALPHA,RETA,NEST, IDL,INU, D]

HA<KO NATURAL TRUNCATION
H)=0 FIXED SI1ZE TEST

HO>0 TRUNCATIUN AT MO
IF(HN)Y1IN, 21,40
HOA=N
PRINT 72

FORMAT(“OTWUNCATE AT THE MATURAL END OF THE TEST")
60 Tu 30

HN=NEST

PRINT 73

FORMAT("0TRUNCATE AT THE FIXED SIZE SAHPLE"™)
G0 Y0 30

PRINT 74,MD

FORMAT("OTRUNCATE AT TRIAL ",15)

CONTINUE

FIGURE WALD REGION FOR NESIRED SEOQUENTIAL TEST

CALL REGION(X,Y»A,B,10n: D1,N,M0)
CONTIMUE

PRINT,"INPUT: REGION CHANGE"
READCINPUT,21)X], XJ, XK
FORMAT(7FI0.0)

11=x1

IF(11.LE.0) GO TO 235

JJI=Xd

KK=XK

X(11)=JJ

YCI1)=KK
WR'TECIOUT,789)11,JJ,KK
FORMAT(® R{GION CHANGE",413)
60 10 112
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1970 235 CONTINUE

1980C

1990C GO TO EVALUATE RFGIOH AND ESTIMATE PARAMETER IF DESIRED
2n00cC

2010 IF(LFVICALL EVAL(X,Y,LEST,N,LDSN,HD,INL,IDVU,IDI)

2020 Go To 1

2030 98 PRINT 9999

2040 9999 FOKHAT(" ess [APUT ERRUR #ee™)

2050 99 PRINT 999

2060 999 FORMAT(™ ENDR OF RUN")

2070 $TO0P

2080 £END

2090 SURROMTINF FIXSTZ(N,iON, 101, ALPHA,BFTA,NEST,LIDL, 1DV, IDT)
21000 ~ewmoccccmoncace e I e LRI SR L LR e
2110¢C

2120¢C THIS SUHRQUTINE DFTERHIMNES THE UNRAMOQMIZED FIXED SIZF 1FST
2130C HAVING THE SHALLEST POSSIBLF SAMPLF SiZk WHILE STILL
2140¢C MEETING THE SPECIFIED ERROR PROBABILITY LIMITS,

215¢¢C

2160C ~wwercccccrcncae. LR e e EL T S P R T T Rl
217vC DATA tOUT/66/

218n FILENAME TOUT

2190 DATA IBLNK,[STK/1H ,1He/

2200 HARK= JHLNK

2210 [OUT="">

2220 FH=FLANG(N)

2230 FIXNDOSELNG(INO)oFLNR(N=-iDO)-FN

2240 FIXDLI=FLNGCID1)+FLNR(N=-IN1)~FN

2250 AHz1,-ALPHA

22600

2270C FIHD FIRSY FSTIMATE USING METHOD OF GUENTHER

2200C

2290 NEST=CHEST(N, 100, 1D3,ALPHA,BFTA)

2300C

2310C TRY 17

2320C

2330 CALL TRY(AN,BETA,100,1ID1,FIXDO,FIXD1,N,H4,NEST, IC,ALPHAP,RETAP)
2340 1F(H4)2640,2640,2840

23%uC

2360C CONDITIONS MET--REDUCE SAHPLE SIZE

2370C

2380 2840 NEST=NLST-1

2390 CALL TRY(AM,BETA,INO,INL,FIXDO,FIXDI,N,H4, NEST,IC,ALPHAP,RETAP)
2400 IF(H4)2R40,2640,2840

241n0C

2420C CONDITIONS NOT MET-~INGCREASE SAHPLE SIZE

2430C

2440 2640 NEST=NESTel

24%0 IF(NEST=N)296N,2960,2680

2460C

2470C METHOD FAILS~-USE DEFAULT VALUFS
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5

LA

2480C
2490
2500
2510
2520

2680

2530 296¢

25440
2550
2560
257y
2580
2590
2600
2610
2622
2630
26040
2650C
2660C
2670C
2680
2690
2700
2710
2720
2734
2740
2750

2760
49

16

689

33

22

276U %6

2770
2780
2790
2800¢C
2610C
286200
2830C
?2640¢C
2850¢
2860C
2870¢C
2881
2891
2900
2910
292uC
2930
2940
2951
296490
297y
2980

16

A AR A V i o
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MARK=[ISTk

Ic=tno

NEST=N~-]D1

GO T0 2760

CALL TRY(AM,BFTA,1D0,10b1,FIXDO,FIXD1,N,H4,NEST, IC, ALPHAP,BETAP)
IF(H4)2700,2640,2760

ALPHAP=1,.~ALPHAP

FORKAT(///* THF FIXEN SIZE TEST IS AS FOLLOWS:",1X,A1/" SAMPLE SIZ
&t = *, 157" TRITICAL VALUE = ", [5/" ALPHAs = ",F10.5/
8" BETAe = ",f10.5)

MRITECTOUT,49)RARK,NEST. 1C,ALPHAP, HETAP

ICG=1C*1

WRITECIOUT,16)

FORMAT(//7" FIXED SIZE TEST OC FUNCTIOH:"//)

WRITECIOUT,689)

FORHAT("™U D ACCEPT HO ACCEPT H1™)

CALCULATE THE OC FOR THE FIXED SIZE TEST

8O0 22 1=1DL, 1DV, 1D}

ID=1-1

51=a.

N0 38 ICP1=1,ICG

iIci=IcPL-1 ’
S1=S1+THYPEFR (N,NEST,10,1CT)
$?2=1,-51

HRITFCIOUT,S56)1D ,51,S2
PORMAT(1X,15,2F10.6)

KF TURN

END

SUBROUTINF REGION(X,Y,A1,R1,1D0, IN1,N,H0)

THIS SUBROUIINE FINDS THE REGIONS FOR A ONE SIDED TFST 0F THE
HYPERGEOMETRIC DISTRIRUIION

LOCTIGCAL XNG, YNG, 0

iNTEGER U

IBTFGER X,Y

DIRENSION X(HO), Y(HO)

DAYA FOUT/Z66/

FILENAME TOUT

jopuiz="

XLUSFLNGCTINL)*FLNG(N=IN1)=f LNG(N=-INN)-FLNG(IEO)

HRITECIOUT,16)

FOHHAT(//7/" THE wALD REGION IS AS FOLLOUWS:I™/
& /" RIAL AGCEPT W0 ACCEPT HLI"™)

-

-

-
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PR,

2990

3000
JoioC
Ju20C
Ju3ec
3J040C
wu50C
Josn

3070

Jvgo

Juon

3100

3110

3120

3130

3140

3150

J160 2380
3170

3100
J19uC
Jz2noc
3210C
3220 2440
3230 2540
J249

32%0

3260 2720
32706

J2R0

3290

33nn 2800
Js10

33720

Jssn

3340 33
3350 2900
3360C
J370C

REL T
Json 2980
3400

J4a10

3420 321
34350

3440 123
3450

3460

3470

3480 41
3490

AzALOG((1.~A1)/AL)
H=ALOG(R1/(1.~A1))

INCREHENT TRIAL NUMRER
U5 [S THE UPPER L[MIT(+1) ON THE NUMBER OF DEFECTIVFS
LY IS THE LOWER LIMIT(+1) ON THE NUMBER OF DEFECT]VES

no 22 ts1,M0
L5=(HAX0(0,I=-NelD1~1))e1
IFCT 0T 1)ILSsHAXO(LS,X(1=-1))
Us=1+2

O=OFLLSE'

no 33 K=L5,U5

X2=K~1

1F(X2.GE.1=-NeID 1) GO TO 2380
y‘ =-10535

30 TO 2540

IF(K2.LE.I1DO0 ) GO TO 2440
XL=1.FE35

co TO 2540

FIGURE LIKLIHUOD RATIH AND PROPER ACTION

132

XI =XLO*FUNG(N~IDU~1+K2)+FLNG(IDO-K2)=FLNG(IN1~K2)=FLNG(N=IN1=-14K2)

JF(XL.LE.R.OR. K. NE.L5) GO TO 2720
X{})=z~1

N=,THRIE,
IF¢0) GO TO 2R0N
JF(Xl..LE.B) GO TO 2800
X{{)=x2=1

nN=, IRUE,
IF(XL.LT.A) GO Tu 33
IF(K?2.CT. {) 60 TO 2900
Yt1)r=k2
GO Tu 2980
CONT{NUE

Y{i)=-1

PRINT PEG}ON BOUNDRY POINTS

XHG=X([)sEUe=1
YNG=Y(1).Elle=1
IF(I-46)123,323,123
XC1)=(x(1)s¥(1))/2,
YCI)=X(1) e
IF(XNG.AND.YNG) GO TO 10
IFCXNG) GO TO 11

IFCYNG) ¢ TO 12
HRITECIOUT,42) 1, XCT1),YCD)
FORMAT(LIX, 14,4X,14,7X,14)
GO Tu 20
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3500 10 WRITEC(]OUT,42)1
3s51¢c 42 FORMAT(1X,14,7X,1Hv,30X,1He)

3520 60 Tn 290
X530 11 HRITECIOUT,43)1,Y(})
3540 60 T0 20
Sh5n 12 WRITECIOUT,.44)1,X(1)

3560 43 FORMAT(1X,14,7X,180,7X,14)
357y 44 FORHAT(1X,§4,4X,14,10X,1He)

Jsaec

359acC CHECK FUR NATURAL END OF TEST
Jéennc

3610 20 IF(Y(1).E0.X(1)+1) GO TO 40

o2y 22 CONTINUE
3630 40 RETURN

3640 END

3650 FUNCTION CHEST(N, JDR, 1U1,ALPHA,8ETA)

3600f weenremcnacncarcocrnomvoremrres T meen s r e ot e e e e e
3670C

3680C FICURE APROX SAMPLE SJZE USING METHOD NF GUENTHER MODIFIED BY
36900 MFEKER

3700C

371Y6 ~eveevcecmcocnns ccececreecrccecacmaen cmmmmne cecmrrececeaccmcc e e ————————
3720 XN=N

3730 on=1on

3744 b1zt

3750 XH=1.-BETA

37616 c=0n.

3770 1 =C: 1,

3780 IF(C.GT.01+1) GO TO 92

3790 TL=XYVAL (XN, 01,C,XB)4,9999999

3810 JusXAVALCXN, DN, G, ALPHA)

3810 IFCIL.GT.IU) 60 T6 1

3R20 92 CHEST=IL

430 RE TIRN

JIn4n END

3850 SUBFUMTINF TRY(AM,BETA, DN, ID1,F1XDO,FIXD1, M, 4, NEST, IC,S1,S52)
38670 ~wemvermccamcancaac. eedeemamemrmseemeeeeseseNccmmsmeetamame . ——————————
3u7uc

JsdocC TEST '0 SEE IF NEST IS A LARGE ENOUGH SAMPLE SIZE TO MfET
3890c ERROR LIMITS.

3v0uc H4z=1 IF CONDITJONS ARE MET, 0 OTHERW]SE

3910¢

J920C ~=~-~ mecemmcerccaa secccmns e hAd bbbt et Sttt dndedeiedededefdudedetededuiadetode St
393u FG=FLNG{N-NEST)+FLNG(NEST)

3940 FIXADD=FGeF [ XDO

3950 FIXABI=FGFIXDL

3960 si=0,

3970 §2=0,

3980 M4=1

399n 17=HAXO( O, NEST+fD0=N)*1

4000 16=HIND{ LNV, NFST)+1

T
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4010
4020
4030
4040
4059
4060
4070
4080

DR e A L S e R A e S A el b A -——wﬁwﬁ
N

. 134

vo 22 §237,16

IC=1=-1

S2=S2+EXP(FIXADL-FLNG(INI=-IC)~FLNG(N=ID1~-NEST+IC)-FLNG(IC)
&-FLNG(NEST~1C))

ST=S14EXP(FIXADOB=FLNG(INU-IC)=-FLNG(N=TNRO-NEST+IC)~FLNG(IC)
8-FLNGINEST~IC}))

IF(S2.GT.RETA) GO TO 3500

JIF(S1.GT.AH.AND.S2.LE.RETA) GO TO 3540

4090 22 CONTINUE
4100 3500 M4a=Q

4110 RETURN

4120 3540 1C=1-1

4130 RETURN

41490 END

4150 FUNCTION XNVAL(XN,D,C,PRNB)

4160 XNVAL=CHISN(1,2.¢C+2,,PROR)

4170 XNVAL=(XNVAL®(2.¢XN*1,oD+,580)¢Co(2,00-C))/(4.0D=2,0CoXNVAL)
4180 RETURN

4190 END

4200 SUBRQUTINE EVAL(X,Y,EST,N,DSNH, M0, iDL, 1DV, IDI)

4210C

42720C ~~=v-~ e ER e PR e DL e L et L LT
4230C

4240C THIS SUBROUTINE EVALUATES THE REGION FOR A SEQUENTIAL TEST OF
4250¢C THE HYPERGFOUMETRIC DISTRIBUTIUN (ONF SIDED TEST).

4260C FSTIMATION OF THE PARAMETER IS OFFERED AS AN OPTJON
4270C

4280C ~~wrmecce-a “rcacnccan=- LR T T cneen- e e L T R e R
4290C

4300 INTEGFR X,Y,D

4310 RFAL N1,N9,N2

4320 LOCICAL NOW

4330 LOGICAL NSN,EST

4340 FIIFNAME JOUT

4350 DIKENSION HMARK(50)

4360 DIHENSTON THULD(Y0)

43710 DIHENSION XCHD), Y(HO)

4380 DIWENSION A(200),B(200)

4390 NINENSION PROB(200)

4400 ENUI vALENCE (NPO'NT,NP)

4410 FOUI YALENGECXMEANY: * LHMEAN(L))

4420C

4430C NPS IS THE MAXIMIH NUMBRER OF DFCISION POINTS

444n0C HMAX IS THF HAXJHUM POPULATION S12F

4450C

4460 DATA ISTEP/9/

4470 1oUT=""

4480 IFC.N0T.DSNINRITE(IOUT,432)

4490C

4500C INCKENEMT TUE DEFECTIVF NUMHER

4510C




"

4520
4530
4540
4550 4921
4560 432
4570 43
4589
4590
4600
4610
4620
4630
4640
4650 77
4660C
4670C
4680C
4690
4700
4710
4720
4730
4740 88
4750
4760C
4770C
4780C
4790 25
4800
4810
48?2¢0C
4830C
4840C
4850 26
44560
4r70
4R850
4890
4900
4916 27
4920
4930 20
494¢6C
4950C
4960C
4970 2560
4980
4990
5010
50t0
5020

Do 22 In=sIDL,IDU,1DT

ERNIED!

FF(NSNIWRITECIUUT,4921)D

FOKMAT(//7/% NUMBER OF UEFECTIVES = *,15/)
FORMAT(54H0 TRUE D P(HO) P(H1)}
FORHAT(46H0 TKIAL P(NN) P(H1) P(T)
IF(NSNIWRITE(INU],43)

A9=0,

ro=0,

N9 =0,

v9=n,

NP=0

Do 77 §=1,H40

A(l)=n,

IHCREMENT THE TRIAL NUMBER

D0 33 1=1,H0
N1=1

13=1+3

N2=N1aN1l

pn A8 J=1,HM0
B(J)=0,
IF(1-1)25,25,26

FIGURE PROBS FOR FIRST STeP

B{2)=FLOAT(D)/t LOAT(N)
H(1)=1.-8(2)
GO To 3540

RQUNDRY POINTS

LP1=x(l-1)

LP2=Y(1-1)

LPC=x(])

Led4=x(])

LPY9= MAXD(0,LP1)¢1
IF(LP?.EN.~1) GO TO 28
LPHZMINDCLP2,] )1

GO Tn 2560

LP8=]+1

HOVE PROBS 10 THE NFXT STEP

no I4 J=LP9,LPS8
N=MAX0C(ID=J,0)
O1=zl=101

S=0/01
BCJI=R(J)I*A(S)e(2,~S)
B(Je1)=R(Je1)4A(J)sS

ASN
p(C)

)

VSN
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I3

E - ) 5030 34
f 5040
L - 5050
5060
5070
1 5080 51
5090C
5100€
5110C
- 5120
5130
- . 5140
5150 222
5140
5170 52
. 5180 53
r 5190
- 5209
% e 5210
7 5220 3180
N 523u¢
s 5240C
- 5250C
5260 3181
- . 5270
5280 3338
5290
5300 54
. 5910C
h 5320C
5330C
5340
5350
5360
5370
5380 356
5390
5400 445
5410 449
5420 3500
5430C
5440C
5450C
5464
5470 3540
5480 996
5490 33
5500 3580
5910
5520 229
5530

CONTINUF

P6=0,

P7=0,

IF(LPC.LE.LP1) GU TO 52
IF(LPC+1)51,52,51
LP=MAXO(U,1L.P1+1)¢1

ACCEPT POINTS

LPC1=LPC+1

vo 222 J=LP.LPC1
P6=PO6+H(J)

8(J)=0.

A9=AQ4P6
lr(LP4'1)53;5"53
L1=LP4s1
IF(LP4,GT.LP2,AND,LP2,6E,1) GO TO 54
L?2=L1
IF(LP4-1LP2)3160,3181,3181
L2=LP2+1

REJECT POINTS

Do 333 JsL1,L?
P7=P7+8(J)
BeJI=N.
KO=RO+P7
PAzP]+P6

ACCUMULATE FXPFCTED VALUES

NO=NQepPASNT

VO=V9+PAENZ

IFC.NNTLUSh) GO TO 3501
1F(N9)350,3540,356

Pty=t.~R9=-A9
“RlTE(IOUT:445)11P60P79PR.P10
FORMAT(1X,15,4F10.5)

FORMAT(3X,2016)
IF(LP1.EN.-1,0R.LP4.EN.=1) GO 10 3540

CHEGCK FOR NATURAL END OF TEST

IF(LP4=-LPC.LE.1) GO TO 3580
no 995 J=1,13

A(JI=R(J)

CONTIHUE

VO=V9=-hN9e N9

Hh=1

CONTINUE

IFC.NOTL.USN) GO TD 3680

P alne
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3640
401
22

4212

5770 17

P cmarnca- PR e L R T R P T PR L L A L L L DL

SUBROMTINE CLOXMEAN, IDI, INt 1L, 1U,PROB,P,NT,ND,N)

WRITEC10UT,432)

WRITEC(1OUT,401) D,A9,R9,N9,V9
FORMAT(1X,16,2F12.6,2F12.4)
CONTIHUE

IFC.NOT.EST) GO TO 99

NO 216 NI=2,H0

KT0=1

IF(XINT).LE.X(NT=1)) GO TO 4212
ND=X(NT)

60 T0 4213

IF(Y(NT).FQ.~1) GO TU 216
IF(Y(NT)oGT.Y(NT=1 4 AND.Y(NT~1).NF.~1) 0 TO 216
ND=Y(NT)

KT0=2

Fihi CONFIDENCE INTURVAL
CALL CI(XH,IDL,IDY, 1L, 1U,PROB,PP,NT,ND,N)

HRITECIOUT,16)IND, NT, XH, 1L, 1U,PP
FORMAT(//1%X,14," DLFECTIVES AT TRIAL ", 14,

g * ESTIMATE= ",F7.3/" LONWER LIM
g1T= ", 14," UPPER LIMIT= ", 14/" CONF IDERCGE LFVEL= ",F6.4)

WRITE(IOUT,17)

FORMAT( /" POSTERIOR DISTRIRUTION OF D"/)
1S=1=18TLP

1S=1S+|STEP

[F=15+1S1FP=-1

IE=MINOCIE, IDU)

U0 426 1K=]S,1E

IHOLDCIK)=TK=1
WRITF(I0UT,449)(THOLDCT),1=1S,1E)
WRITECIOUT,21%)(PROR(1),1=1S, IE)
FOKMAT(AX,20F6,3)

WRITE(IOUT,1316)

FORMAT(1H )

IFCIELNFLIDY) GO TO 1

WRITECIOULT,1319)

FORMAT(LIX,H0(1H=))

IF(KTN.EN.1) GU TO 4212

ChikTiNUE .
HE JoRN

EN

TH1S SUBKOUTINE FIMDS THE SHALLEST CONFIDENCE INTERVAL

FOR THE TRUF NUMBER UF DEFECTIVES

NIMENSION PROB(200)
DATA CIL/.1/

NI SIS B S R S R Y S S°U ﬁ

e
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6050
ALY
6070
6080
60990

6100 999

6110
6120
63130
6140

6150 77

6160

6170 H8

6180

6190 22

6200
6210

6220 1

6230
6240
6250
6260
6270
6280
6290
6300
6510
6320
6330
6340
6350
6350
6370
6380C
6390C
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6510
6520
6530
6540C

99

20

21

2?

P=0.

XMEAN=O,

INU=N=NT+ND+1

InL=nD+1

nn 999 1=3,10L
PPUBCI)=VU,0

PSIM=0,0

po 77 1=10L, 10U

Jzi=1
PRURLT)SEXP(FLMNG(I)SFLNGIN=J)=FLNG(J~ND)-FLNGB(N=-J=NTeND))
PSUM=PSIIHePROR( )

no a8 I=10L, 1DV
PROB(1)=PRUR(T)/PSUH
ho 22 1=1DL, IDY
XMEANSXMEANSPROB(I)eFLOAT(]-1)
tu=inu

IL=1
IF(PROB(IL).LT.PROB(IVU)) GO TO 2
PH=P+PROUCIU)
IF(PH.GT,CIL) GO TO 99
P=PH

fu=]i-1

G0 10 1

PH=P+PROB(IL)
IF(PH.GCT.CIL) GO TO 99
P=PH

1t=1L+1

G0 TO 3

Pz1,=P

Tustu=-1

tL=1L-1

KF TURN

END

FUNCTION TO RETURN THL NATURAL LOG FACTORIJAL
FUNCTION FLMG(J)
DIMENSION F(105)
BATA MARK/Y/
IF(MARK)20,20,21
FILNG=F(Jel)
RF TURN
F(1)=n.
Fr2)=n.
ne 22 1=3,103
FOIISF(I=1)+ALUGIFLDAT(]I=-1))
CONTINUE
MARK=D
GO 10 20
END

ern o e T = T R T
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1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1230
1240
1250
1260
1270
- 1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
16430
1440
1450

REM

REMBBERIERGRRS NIRRT ITRINIIIIT0I 00000600000 00 05T I 0000201020 200000 00 06 0000 I I
PEM»

REM= THIS PROGRAM WILL EVALUATE A THREE DECISION

REM» SEQUENTIAL TEST REGION. THE REGION MAY BE TRUNCATED.
REM#» THE TEST REGION §S TO BE READ FROM FILE

REMs REG0%>. THE ASN AND OC FUNCTIONS ARE PROVIDED., THE
REM»® DISTRIBUTION OF THE DECISIVE SAMPLE NUMBER MAY BE

REM# PRINTED AS AN OPTION,

REM»

REM#

REM» WILLIAM O, MEEXKERs JR,

REM= INSTITUTE OF ADMINISTRATION
REM» AND MANAGEMENT

REM» UNION COLLEGE

REM» SCHENECTADYs NEW YORK 12308
REM#» JULY 1574

REM#»

REM2

RENERERRAREA SR RBRRRERRRRARRERRERRRRENRARSRRBREENRIERRRRER RS RRR

REM

DEF FNZ(X)=INT(X%100000,+,5) /100000,
g;? AS13)

NT "CHARACTERISTICS OF A GIVEN HYP.JGEOMETR "
PRINT moms ASTERTSTICS IC TEST REGIOW
READ DO4D1+D54N
PRINT
FILES REGON>
DIM 2(101,4)

READ 1,1

P M e e e
:g: READ prexon FROM FILE :1
MAT QEAD llvz

LET 77=

FOR [=1 To 100

LET XII11=71141)

LET Yi{I)=7(1,2)

LET Ull)=701,3)

LET v(I3=71144)

NEXT 1

LET M1=72(101,1)

LET M222[101,43)

LET MO=M] MAX M2
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:, 140

- 1460 PRINT wy=wgN
1470 PRINT
1480 LET 01=0 ‘
1490 PRINT "DO YOU WAMNT TO SEE THE DSN»3 i
1500 INPUT As :
1510 IF AS <> »YES* THEN 1720
1520 LET 0l=]
- 1530 GOTO 1840

1540 PRINT ,
- 1550 PRINT |

1560 PRINT *TRUE"3TAB(13);"PROB";TAB(26)3"PROB"} |
1 . 1570 PRINT TAB(38);"PROB"
1580 PRINT » Dn3TAB(11)3"ACCEPT H1"3TAB(24) ;"ACCEPT HO"3}
. 1590 FRINT TAB(36)3"ACCEPT H2";TAB(53) 3"ASN";TAB(65) $"VSN®
3 1600 REM-- -

‘ 1610 REM SPECIFY TRUE DEFECTIVES

N 1620 REMaca—_- ——
. 1630 FOR Cz=Dp TO D1 STEP DS
K- . 1640 LET A9:=R9=B9=y9=N9=0
- 1650 MAT A=2ER
.- 1660 IF 0120 THEN 2140
<~ = 1670 PRINT
. 1680 PRINT
i_ 1690 PRINT »NUMBFR OF DEFECTIVES="3D

. 1700 PRINT "TRIAL"3TAB(13)3"PROB";TAB(26)3"PR0OB"}
1710 PRINT TAB(38):"PrOoB":iTAB(52) s"TOTAL";TAB(64) $*PROB"
. 1720 PRINT "NUMBER"ITAR(11)3"ACCEPT HLI";TAB(24)3"ACCEPT HO"3
1730 PRINT TAB(36)3"ACCEPT H2"3TAB(52) $"PROB¥}
3 1740 PRINT TAB(62)3*CCNTINUE"
? - 1750 REMecccmeeaa. -_—
1760 PREM SPCCIFY TRIAL NUMBER

- 1770 REMecmcccececamacmaa= ————
3 1780 FOR Mlz] TO MO

. 1790 LET N2:=N1laN}l
1800 NMAT B=ZgR
1810 IF N1>1 THEN 2280
f 1¢20 LET Bl2)=p/N
1830 LET B(1)1=1-B(2)
3 1840 GOTO 3880
E 1850 LET Pr=xX(N1~1}
- 1860 LET P4=yIN1-1])
1870 LET P5=0 MAX P}
1880 1F Piz==~]1 THEN 2400
1890 LET ”8=pP4 MIN NI
1¢00 GOTO 2440

: 1910 LET P8=N]
1920 REMencmenmmocc oo e m——e -
4 1930 REM FIGURE PROBABILITIES AT THE “EXT STEP

1940 REMevcrcmrmarccccnccrrrrcrerccccrmertomnmmrn.
1950 FOR J=p9 70 P8
1960 LET 5=(0 MAX (D=J))/(NaHlel)




K it ying

—_—

-

b

vy T

1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470

s AR AP Y, S Al e 1 i S

R Saah Silahane o it

LET BlJel1=BlJsl14A1JeL R (1=5)

LET B(Je21=BlJe214A[Js1 ]85

NEXT J

REM — - -
PEM ALLOW PRINTING OF INDIVIDUAL PROBABILITIES
REH—----- - - -

LET ASzwiw

IF As$ <> nY® THEN 2820

FOR 1=0 TD Nle2

IF Bl1411=0 THEN 2740

PRINT N13136I1e1)

NEXT 1

REMecmee= ———

P T e T L L

REM FIGURE PROBABILITIES OF TERMINATION
REMecnee-~

LET P3=yuINl)

LET P4=vINl)

LET Pl=xINl)

LET p2zyviNl)

LET p5=zp6=P8=0

IF P3<P2 OR P3z=-]1 OR P2=-1 THEN 3140
REMcmccnmn-mn
REM FIGURE PROBABILITIES FOR ACCEPT
REM-------—-----—--’---n---- ------ E Y e L TP L L
FOR J=p2 1O P3

IF T7=1 THEN 3060

PRINT nyrsJsBiJel

LET P6zP6+BlJe1)

LET BlJ+11=0

NEXT J

LET B9=B9+P6

IF Pl=z-1 THEK 33640

REMecmvnvcccncncnne= ———— e

REM FIGUPF PrOBABILITIES FOR REJL
REM-------—-—---—-——----———o—---—----—-—----—-----
FOR J=(0 4AX X{41~11) TO p1

IF T7=1 THEN 3280

PRINT »x"3J3EfJelt

LET P5z=pPSeBl el

LET gluye+li=0

NEXT J

LET A9:=A9.P5

IF P4=a1 THEN 3640

LET L1=L2=P4

IF P4 >= Y{N1~1} THEN 3500

LET L2=y(N1=1)

REM------------——--ﬂ-—---- -------- e R G S N T D AL P M ap D W
REM FIGURE PRCBABILITIES FOR REJU

FOR JzL1 70 L2

IF T7=1 THEN 3560
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2480
2690
2500
. 2510
2520
- 2530
2540
1 . 2550
2560
- 2570
2580
1 , 2590
2600
3 2610
- 2620
; 2630
. 2640
2650
2660
y 2670
. 2680
2690
2700
2710
2720
. 2730
2740
- 2750
2760
2770
2780
2790

A

y

- satin e a i i { e i

PRINT wyr:J3BlJel

LET PB8=PB4+BlJe1)

LET BlJ+11=0

NEXT J

LET R9~R9+P8B

LET P9=p5+Pb+Pl

LET v9=y9.N2apPa

LET N9=N9+N1#P9

IF 01=0 THEK 3840

IF N9=0 THEN 3880

REM--------O-—— - -

REM PRINT DSN IF DESIRED

REM------ - o0 0o on o LD T L L L L L
PRINT N1STAB(11)3FNZ(P5)3TARB(24)3FNZ(P6);TAB(36)IFNZ(P8)3
PRINT TAB(50) :FN7Z (P9) iTAB(62) iFNZ(1=-R9-A9-B9)

IF Pi=a]l DR P2=~1 OR P3=-] OR P4=-1 THEN 3880

IF P2~P1 <= 1 AND P4-P3 <=z 1 THEN 3920

MAT A=8

NEXT N1

LET V9=V9-N9.2

IF 0120 THEN 4080

PRINT

PRINT

PRINT »TRUE"$TAB(13)3"PROB*;TAB(26):"PROB¥S

PRINT 7AB(38):"PPOB"

PRINT » Cwn3TAB()1)3$"ACCEPT HL"iTAB(24) s"ACCEPT HO"}
PRINT TAB({36)3"ACCEPT H2#;TAB(53) s"ASN";TAB(65) 3 "VSN®
PRINT D3TaB(11)2FNZ(A9)3TAB(24)3FNZ(B9)

PRINT TAE(36)3FNZ2(R9)ITAB:50) $FNZ(N9)3TAB(62)3FNZ(V9)
NEXT D

OATA 20460444100

END

Bin Mt L - et
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