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ABSTRACT

Wald's theory is used to find truncated sequential test

regions for the hypergeometric distribution. These regions

are then evaluated using Aroian's direct method of sequential

analysis. Using this method, the important test properties

(operating characteristic (OC) function, average sample num-

her (ASN) function and the distribution of the decisive sample

number (DSN)) are found exactly. The tests are compared with

other similar tests (both sequential and fixed size) and

estimation of the parameter after completion of the sequential

test is treated. Numerical examples and general computer

programs are also included.
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INTRODUCTION

This report is concerned with sequential tests of the

hypergeometric distribution. The report is organized as

follows. Chapter 1 reviews the relevant literature and gives

some necessary background material. Chapter 2 describes the

construction of the sequential test regions for the hyper-

geometric distribution and Chapter 3 applies the direct method

of sequential analysis to the problem, allowing exact evalu-

ation of the test properties. Both two and three decision

test procedures are treated. Chapter 4 presents a variety of

numerical examples, including fixed size an% sequential test

plans and their respective properties. In Chapter 5, the

sequential test properties are compared with both fixed size

tests and a binomial approximation to the hypergeometric prob-

lem. Therc, the superiority of the sequential procedures (with

respect to average sample size requirements) is clearly shown.

Chapter 6 examines a method of estimation which can be performed

at the completion of a sequential hypothesis test. Computer

programs developed for these procedures are given in the

Appendix.
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CHAPTER 1[ BACKGROUND AND REVIEW OF THE LITERATURE

1.0 INTRODUCTION

This chapter introduces the hypergeometric distribution

and reviews the relevant literature. The first two sections

discuss this distribution and give examples of its proper

use. The following section pye'ents the development of fixed

size sample tests for this distribution. These tests will be

compared with the se -ential tests developed here. The last

section reviews some of the previous results with sequential

tests of the hypergeometric distribution.

1.1 THE HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution is the appropriate dis-

tribution when each element of a finite population can be

considered either a success (defective) or a failure (non-

defective) and sampling is performed without replacement from

a finite population. It is assumed that there are D defectives

in a population of size N. If a random sample of size n is

drawn from the population, the probability that it w;ill con-

tain x defectives is given by the hypergeometric probability

mass function:

2
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h (x;N,n,D) = ( n-D ,

kn (1.1)

D! (N-D) !n! (N-n)!
N!x! (D-x)! (n-x)! (N-D-n+x)!

max (O,n-N+D) <x<_min (n,D)

The cumulative distribution function, which gives the proba-

bility that the number of defectives x found in a sample of

size n is less than or equal to r is

r
P(x_<r) = H(r;N,n,D) = Z h(i,N,n,D). (1.2)

i=O

Lieberman and Owen (1961) give tables of h(x,N,n,D) and

H(r,N,n,D) for N=1(1)50(10)100.

This dissertation considers inferences about D, the number

of defectives in a finite population of known size N. Infer-

ences concerning other parameters (e.g., the population size N)

can also be made by generalizing the procedures presented here.

The hypergeometric distribution has many important appli-

cations, one of the most important being acceptance sampling.

Grant (1964) gives some discussion of this along with a table

of log factorials which are useful for calculating hypergeometric

probabilities. The hypergeometric distribution can also be

used for nonparametric tests of location and dispersion, as

explained in Owen (1962) and Gibbons (1971). In addition, it

is used for tests of significance for the equality of two

unknown binomial proportions and for tests of independence of
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two binary characteristics. These last applications arise

because the hypergeometric is the null distribution for tests

which can be formulated in terms of a 2x2 table in which one

is testing the independence of the rows and columns.

Johnson and Kotz (1969), in their book, give some fur-

ther applications of the hypergeometric distribution along

with a somewhat more theoretical development of the distribu-

tion, including the moments and the generating functions.

They also present discussion of different methods of fixed

size sample estimation and of some extensions of the dis-

tribution. A rather complete set of references relating to

the hypergeometric distribution is also included there.

1.2 WHEN THE HYPERGEOMETRIC DISTRIBUTION SHOULD PROPERLY
BE USED

There is often confusion as to when the hypergeometric

distribution should be used and when the binomial distribu-

tion should be used. As mentioned earlier, the hypergeometric

distribution should be used when sampling without replacement

from a finite population. If the population being sampled is

infinite (or is large enough to be considered so) or if

sampling is done with replacement, the binomial distribution

should be used.

The important distinction to be made between the binomial

situation and the hypergeometric situation is in the probability



of finding a defective at each inspection. An example makes

this clearer. Consider a quality control engineer who wishes

to make inferences about the number of defectives in a lot

of 100 items. First the assumption is made that the machine

which produces the items produces defects with some constant

probability. If 20 items are to be inspected and they are

inspected as they come from the machine (not necessarily con-

serutive items), the binomial distribution should be used

because the probability that a given item will be defective

is the same for each of the 20 items tested. On the other

hand, if after the lot of 100 items has been produced, a random-

sample of 20 items is selected from this lot and inspected

without replacement, the hypergeometric distribution is

appropriate. This is because the probability of observing a

defective is no longer constant for each of the items inspected.

In general, if the population is finite, tests performed

without replacement using the hypergeometric distribution will

be more powerful. The size of the increase in power is re-

lated to the ratio of the sample size to the population size

(along with the other parameters). If this ratio is less than

0.1, the difference between the tests will in most cases be

small enough to ignore. Also, if the ratio is small enough,

either distribution may be used when sampling without replace-

ment. This is of course due to the fact that the hypergeometric

distribution will approach the binomial di3tribution if N is
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j increased and D/N remains constant. If, however, these above

conditions are not met, one should use the hypergeometric
dis trilbution.

1.3 FIXED SIZE SAMPLE TESTS FOR THE HYPERGEOMETRIC DISTRIBUTION

By using the tables of the hypergeometric distribution,

one can find the fixed size sample test which has the smallest

necessary sample size and still has error probabilities which

meet the desired specifications. A procedure for doing this

is presented below.

In a two decision test there are two types of errors to

be considered. These are shown in Figure 1.1.

Decision Based on Test Results

H0  Ha

True State H0  NO ERROR I a ERROR
of0

Nature
Ha ERROR NO ERROR

Figure 1.1 Error Probabilities for a Two Decision Test

The first is called a Type I or a error and is made when

there is a decision to accept the alternate hypothesis, Ha,

when in fact the null hypothesis, H0, is true; a usually denotes

the probability of such an error. A Type II or 0 error occurs
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when the null hypothesis is accepted when in fact the alternate

hypothesis is true; 3 usually denotes the probability of a Type

II error. The following notation, however, is used here. Let

a and B denote the desired probabilities of the Type I and Type

II errors respectively and let a* and 0* denote the probabilities

actually given by the fixed size sample test.

Guenther (1969) describes in detail a method of obtaining

the desired test by using the tables of the hypergeometric dis-

tribution provided, for example, by Lieberman and Owen (1961).

The method is straightforward and is outlined below.

The simple hypotheses to be tested are

H0: D=D<N/2 (1.3)

versus H1: D=D >D0

The requirements of the desired test are:

P(accept H0 )=Jl-a if D=D0  (1.4)

if D=D 1

This expression gives two points of the operating characteristic

(OC) function. The OC function gives the probability of accepting

H0 as a function of the true state of nature. Because it is ro-

quired that the OC function be nonincreasing, it is clear that

a+a<l. An example of a typical OC function is shown in Figure 1.2.

Actually, the OC function is a step function in this case, althouqh

it is shown here as if it were continuous. This practice will be

used throughout to make the graphs easier Lo read.
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-. OC (D)

0.
SDO D1

D Truc Number of IN fecLiv;

Figure 1.2 Typical OC Curve for a Two Decision Test

The fixed size sample test plan is defined by the sample

size n* and a critical value c*. If the number of defectives

found in the sample of size n* is greater than c*, the alternate

hypothesis, H1, is accepte;; otherwise, the null hypothesis,

H0 , is accepted. The procedure for finding such a test if the

appropriate values of the probability function are available

(from tables, for example) is given by Guenther (1969) and is

repeated here for completeness.

1. Start with the critical value c*=0

2. Find the largest n, say nL' such that

H(c*;N,nL,D) l-a. This inequality will

hold for all n~nL

3. Find the smallest n, say nS , such that

H(c*;N,nsFD)1 .This inequality will be

satisfied for all nkn,



4. If nS-<nL' the plan (nS,c*) satisfies the

requirements with minimum sample size and

.* is n*.
S

5. If n >nL, increment c* by one and go to

step 3.

After n* and c* have been determined, the values of the error

probabilities can be determined as follows:

c*

a* = 1- E h(x;N,n*,D0)

x=O

= I-H(c*;N,n*,D0 )
c*

= Z h(x;N,n*,D]) (1.5)
x=O

= Ht(c*;x,N,n*,D 1 )

r

where H(r;N,n,D)= Z h(x;N,n,D), the cumulative distribution
x=0

function, is given by Lieberman and Owen (1961.) for N=1(1)50(10)00.

For values of N not contained in the table, Guenther (1973)

suggests another approach for obtaining the desired test. This

approach is improved here. Using an approximation due to Wise

(1954)?

H(r;N,n,D) ( x (i_) n-x (1.6)

where

Ir = (D -(c/2))/I(N ( (n-l)/2) (1.7)

Letting P=1-H(c;N,n,D), it becomes necessary to find a solution

for (1.6) in terms of n given N,D,c and P. Giuenther (1971)
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gives the approximation

n=.5fx2c+2 ;l P ( •/n.0.5)+c(

to be used with the binomial distribution, and solves the system
4-

of (1.7) and (1.8) iteratively, failing to realize that one can

solve for the approximate n directly. It can be shown that

n=F (N,P,c,D)

where F(N,P,c,D)=IX2 (2N+I-Di5c)+c(D-c)l/(4D-2c+X 
2 )

and X2 is the P th percentile of the chi-squared distribution

with 2c+2 degrees of freedom. Further, an approximation of the

desired test can be found by increasing c until the interval n

F (N,P,DIc)<n<F (N,P,D0 ,c) (1.10)

contains at least one integer. A first guess for the test is

then obtained by using the smallest integer in the interval for

the sample size n* and c for the critical value c*.

The computer program given in the Appendix carries out tile

above calculations to find an initial guess for c*, and then

uses the first procedure cf Guenther to find the test size n k

and the critical value c* exactly.

The fixed size sample tests used for comparisons in this

dissertation are not randomized. Randomization, if used, can

serve two purposes. When developing tests of a discrete dis-

tribution, such as hypergeometric distribution considered here,

the size of the error probabilities are often considerably less



than the desired size. Randomization can be introduced into

the test such that the probability of a Type I (or Type II) J

error can achieve exactly the desired size, i.e., a=a*

(or O=R*). This is valuable if two alternate tests are to be

compared. Also, the use of this technique may allow for a i

small reduction in the required sample size.

Randomization is accomplished, for example, by accepting

10 with probability y if c* defectives are found in the sample,

ifI1 being accepted with a probability (1-y). y is chosen such

that the probability of a Type I (or Type II) error is exactly i

the desired size. For simplicity of presentation, randomized

btests are not used here. Most of the comparisons will not be.

affected by this omission. -

11 ii

1.4 EXTENSION TO THREE DECISION TESTS

The extension of the above resuls to two-sided or three

decision tests is straightforward. The hypotheses are stated

as follows: Ae

HI D=DI1<N/2 .

versus H0 D=D0>D1 ,

versus H 2 D=D 2>D 0

In this case, there are four types of errors which can be made.

Ran is the probability of accepting H1 when H0 is true and is

the probability of accepting H0 or H2 when H1 is true. a2 is the

The three decision test is a generalization of the standard two-

sided test; that here. o and errors can be specified

for each alternate hypothesis (see Goss (174b)
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probability of accepting H2 when H0 is true and R2 is the

probabilit , of accepting I1 or H when H2 is true. These

error probabilities are shown in Figure 1.3.

Decision Based on Test Results

HI  H H21 ~02

H NO ERROR ERROR1

True State H a ERROR NO ERROR a2 ERROR
of 0
Nature

H2  82 ERROR , NO ERROR

Figure 1.3 Error Probabilities for a Three Decision Test

The fixed size sample test is found as in the two decision

test, except that there are now four constraints to be considered:

P(accept H1 )= i-a !  if D=D1

P(accept HI)= (i if D=D0
P(accept H2)= 1-8 2  if D=D2

P(accept H2= 2  if D=D 0

This gives two points on each of two of the OC curves for the

three decision test. Graphs showing typical OC functions for a

three decision test are shown in Figure 1.4.
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1.5 PREVIOUS RESULTS WITH SEQUENTIAL TESTS OF THE HYPERGEOMETRIC
DISTRIBUTION

The first suggestion of a sequential test of the hyper-

geometric distribution is found in Wald (1947) where it is gi/en

is an example of a simple case of dependent observations. HeLe

Wald shows how to perform the sequential test by using a sequen-

tial probability ratio test (SPRT). Chung (1950), Dumas (1969)i

Dumas (1970) and Ghosh (1970) also discuss the SPRT for this

distribution. Similar tests, with some modification, are used

here as explained in Chapter 2.

Chung (1950) derives approximations for the likelihood ratio

used in sequential tests of the hypergeometric distribution.

These approximations are valid when the proportion of defectives

in the population is small. He also gives some examples of their

use in acceptance sampling plans. He does not discuss the result-

ing test properties. Yang (1968) gives rules for a sequential

test of the hypergeometric distribution, but does not mention the

properties of these tests.

Dumas, in his papers, gives approximation for the boundaries

of the sequential test region. These approxiintions are based

on the use of Stirling's approximation for the factorials which

appear in the equations. He also discusses the resulting shape

of the regions and their geometric relation to the regions used

in sequential tests of the binomial distribution. Some further

comparisons between the tests of these two distributions are

given in Chapter 4.
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Ghosh (1970) notes that because the observations from a

hypergeometric distribution are not independent, the OC function

and other tesL characteristics will be "quite difficult to

determine." This is because the approximations given by Wald J

(1947) hold only when the observations are independently and

identically distributed (i.i.d.). Ghosh (1970) gives conjectural

formulas for the OC and the average sample number (ASN) which

he states might hold under certain conditions. These conjectural

formulas have not been investigated. It appears that the task of

solving these formulas is considerably more difficult than using

Aroian's direct method of sequential analysis, as is done here.

Also, the direct method uses no approximations and the results

are exact



CHAPTER 2

CONSTRUCTION OF TIHE SEQUENTIAL TEST REGIONS
FOR TWO AND THREE DECISION TEST PROCEDURES

FOR TIE HYPERGEOMETRIC DISTRIBUTION

2.0 INTRODUCTION

In this chapter, the method of finding a sequential test

region for the hypergeometric distribution is presented. Tests

are given to determine the number of defectives in a finiite

population when the population size is known. In the first

part of the chapter, one-sided, two decision tests are treated.

In the second part, the method is extended to deal with two-

sided, three decision tests. Numerical examples to illustrate

both cases are provided. The third section discusses sequential

tests of composite hypotheses and the resulting OC functions.

2.1 CONSTRUCTION OF THE BOUNDARIES FOR A TWO DECISION SEQUENTIAL
TEST

The sequential procedures developed here will consider the

s tuation when one is sampling items one at a time without re-

placement from a finite population of known size. Each item is

then classified as a defect or as a non-defect. Based on the

total number of defects observed, a decision is made to accept H0,

the null hypothesis, or Hl, the alternate hypothesis, or to take

another observation. The procedure is easily generalized to con-

sider group sampling (inspecting more than one item at each trial),

although this is not considered here.

16
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In order to test a one-sided hypothesis, the simple

hypotheses 4

H0: D=D 0 <N/2 (1
(2.1)

versus HI: D=D>D0

are specified (if D0 >N/2, one can reverse the designation of

"defective" and "effective" observations), where D is the number

of defectives in a population of size N. The sequential test h
procedure for distinguishing between these two hypotheses is

as follows. Following Wald (1947), a sequential probability

ratio test (SPRT) is carried out by calculating the likelihood
ratio at each trial. Let yi=l if a defect is observed at trial i

and 0 otherwise and let f(y,D) denote the probability of ob-

serving a defect when there are D defects remaining in the popu-
n

lation. The likelihood at step n with a sample outcome x= E Yi
i=l

is then equal to

Ln (xDi)=f(ylDil) f(Y2'Di2)"""f(Yn'Din) (2.2)

and the likelihood ratio for the simple hypothesis in (2.1) is

Ln (x,DI)  f(YlDll).f(y2 D12)...f(YnDln)n = '(2.3)

Ln (X,D0) f(y1 1D0 1)"f(y 2 1D02 ) ...f(yn,D 0 (n)

Here D.. is the number of defectives remaining in the population
13

at trial j under hypothesis H. and is dependent on what has hap-
l

pened in the (j-l) previous trials. Note that DI=D10 and-



D0=D00. The test is then carried out using the following pro-
D0 00 ' h o

cedure:

accept 10 if Ln(x,D 1 )
L (x,D 0 ) <B
n '0

accept If1 if L (x,D ) >A, (2.4)

L n(x,0L~n (x,D 0 )

take another sample if L (xDI)
B <n 1 <A.

Ln (x,D0

The values A and B, which are needed for the test, are quite

difficult to determine exactly. However, the approximate values

B=-/(l-a) (2.5)

qiven by Wald (1947) serve the purpose well (this is demonstrated

in the examples to follow). Here a is the desired probability

of a Type I error and 8 is the desired probability of a Type II

error, as explained in Chapter 1. It can be shown, for example,

that rV+$'a+ where c" and 1" are the error probabilities

actually given by the SPRT.

In the case of a discrete distribution, the likelihood ratio

of a given sample is independent of the particular order in which

that sample is observed. Therefore, the likelihood ratio at each

trial is easily computed as the ratio of the probabilities of

obtaining the observed sample. In this case,

n l = xn-x (2.6)
L (x,D0) (D0)( DO

\xIn-xI
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After expanding the binomial coefficients, the likelihood ratio

can be expressed as .

L (x,DI ) DI! (N-DI) ! (D0-x) ! (N-D0-n+x)'n 1 1.1_00 (2.7)
L (xD 0 ) D0! (N-D0 ) ! (Dl-x)! (N-Dl-n+x) !

where the factor on the left is independent of both the sample

outcome and the trial number.

Some authors (e.g., Ghosh (1970) and Chung (1950)) have

given approximations to the likelihood ratio. These approxima-

tions are seen to be unnecessary, as the expression in (2.7) is

simply and efficiently evaluated by using a table look-up of

log factorials within the computer program used to compute the

test region. The program given in the Appendix uses this method.

The log likelihood ratio is computed as

.n Ln (X,D0I) = K(N,D0,DI)+£n (D0-x) ! +£n (N-D0-n+x) '.8

L n 'xD0 ) 28
-P£n((Dl-X)!1) -9.n ( (N-D I-n+x)!)

where K(N,D 0,DI)=9n(DI')-9n(D0 !)+9n (N-D) - n((N-D 0 )!).

To carry out the test Z9nJLn(X,Dl)/Ln(XlD0)i is computed at each

trial and compared with a=tn(A) and b=£n(B).

There are two interesting peculiarities which arise in the

treatment of sequential tests of the hypergeometric distribution.

First, because we define (x) =0 if x>n, the likelihood ratio can

take on the following values
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- L (x, DI)(29=0 -, if x>D 0L (x, DO)n 0 (2.9)
-- L (x, DI

Ln (x = 0 if x<n+Di1-N

In the first case, more than D defectives have been found

and therefore H0 cannot be true and H1 is accepted. In the[ second case, not enough items remain in the population to ever

accept H1j therefore, H0 is accepted.

The other interesting characteristic of an SPRT for the

hypergeometric distribution is that the test is always closed

A at some finite trial n,,mber. That is, there is a natural trun-

cation point where the test is terminated. This occurs because

the finite population is depleted by sampling. In cases of

independent observations (e.g., the binomial or Poisson dis-

I tribution), no such natural truncation exists and the test is

shown to be closed only as n-- (Wald ,1947).

An upper bound for this natural truncation point is

N-D +D0+1, although it can be considerably less depending on the

size of the desired error probabilities (a and 8 errors). This

follows directly from (2.9). If n=N-DI+D0, there is only one

value of x (x=D0=n+DI-N) such that neither of the inequalities

00
l~on the right side of (2.9) is satisfied. If n>N-DID one of

these inequalities will hold for each value of x and either H0

or H1 must be accepted.

In order to carry out the sequential procedure in practice,

it is usually easier to have aVailable upper and lower (integer)
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limits on the number of defectives necessary for a decision

(one way or the other) at each trial. If we let cL (n) denote

the lower limit and cU (n) the upper limit, at trial n the 3
sequential test procedure becomes:

accept H0  if xcL (n) (2.10)

accept H1  if x3>CU(n)

where x is the number of defectives observed at trial n. If

neither of these inequalities holds, another sample is taken.

If possible, the values cL (n) and cu (n) are obtained by 3
inversion of the equations

b=g(x,D0,Di~n,N)=tn InnXD)
L (x,DO)
nn 0 (2.11)I Ln (v',DI
Ln D' 1

a=g(xD 0'Dl'nN)=n Ln(x,D0 ) 

by solving for x. The values cL and cU are then expressed asI

cL(n)= [g-i(b'D0 'D1In'N)] (2.12)

C (n)= g-I(aD,D,nN) +1

where K=[R] signifies the largest integer value K such that
-1

K<R and g is the inverse function of g when solving for x.

Because of the factorials in the function g, these functions

must be inverted numerically. This is a simple procedure -.

because at each step one has very close lower bounds for the
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new critical values. That is, the value of the inverse function

x=g-1 (b,D 0 ,Dlin-l) g-1 (b,D0 ,Dln). (2.13)

Also, the values in (2.13) are generally very close together.

As a result, each critical value in (2.12) is usually obtained

with only one or two evaluations of the log likelihood ratio.

The critical values cL(n), cU(n), n=l,2,...n** define the

critical regions for the test, where n** denotes the natural

truncation point. An example of such a region is shown graphically

in Figure 2.1. Note that at trial n, if cL(n)<O, no decision in

favor of H0 is possible and if c (n)>n, no decision for H is
0 U 1

possible.

Number
of

Defects

AcceptAHp

Trial Number

Figure 2.1 Typical Two Decision Test Region
for the Hypergeometric

Distribution
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A computer program given in the Appendix carries out the above

calculations to compute the desired sequential test regions for

any desired values of N, DI, DO, a and 8.

Often n**, the natural truncation point, is much larger than

n*, the sample size of the corresponding fixed size sample test.

This undesirable situation indicates that with positive proba-

bility, the test will require samples which exceed the necessary

sample size of the corresponding fixed size sample test. Because

this probability is rather small and because this probability

(of such a large sample) is largest when the parameter beinq

tested is actually in the "indifference range" (D0<D<D1 ), the

test can usually be improved by truncation at some point n0 n*.

More complete treatment of this subject, along with suggested

truncation procedures, is given in Chapter 3.

A numerical example of the above procedure for determininj

the sequential test region is now given. The hypotheses to be

tested are

H 0D=D =25 (2.14)

versus HI: D=D =40

with a population size N=100. The desire-d error probabilities

are a=0.05 and 8=0.10. The following quantities are computed.

b=n(B)=Zn /.(./()-0.05))=-2.25129

a=Zn(A)=tn (1-0.1)/0.05=2. 89037

K(N,D 0 ,DI )=9n(40!)-Zn(25!)+Zn ((LC0-40)!)_ in((100-25)!)

=-10.9452
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." As an example, we compute the critical limits at trial n=32.

The log likelihood ratio at trial 32 with x defectives observed

jI in the sample is

L3 2 (xDI)
n L32 (x,D1) =K(10 0 ,25,40)+Zn (25-x)! + n (75-32+x)!

VZ ~(4 -x)f !)-n(60-324-x).'()16

and is tabulated for different values of x in Table 2.1.

Table 2.1
Log Likelihood Ratio

for Different Values of x
at Trial 32

L3 2 (x,D 1 )

x L32 (x,D0)

7 j -3.26
8 -2.31
9 -1.34

10 -0.34
11 0.68
12 1.72
13 2.83
14 3.91
15 5.08

It is easily seen from this table that for values of x 14,

the log likelihood ratio is greater than a=£n(A) and therefore

such points belong in the accept H1 region. For values of x<8,

the log likelihood ratio is less than b=Zn(B) and therefore these

points belong in tie accept H0 region.

When the above procedure is carried out for each trial,

one obtains the critical values needed for the sequential test.
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This was done for the example and the results are given in Table

2.2. A graphical presentation of the region is given in Figure
2.2. One should notice that at trial 67, c (n)+l=c (n). This

L U

implies that a decision must be made for either H0 or 1 and

that the test will not continue past this point. This is the

natural truncation point mentioned earlier. Note that this value

is considerably smaller than n**, the upper limit (N-D1+D0+1=86)

on the natural truncation point.

2.2 CONSTRUCTION OF THE BOUNDARIES FOR A THREE DECISION
SEQUENTIAL TEST

In this section, the procedure for developing three decision

sequential tests for the number of defectives in a finite popu-

lation of size N is given. Three decision tests are often nec-

essary in practice. This is also true for acceptance sampling.

One example of their use would be when one must distinguish among

lots of items which are of superior quality (for which some in-

centive bonus might be given), standard quality and substandard

quality. The tests given below are suitable for such applications.

A discussion of the previous work concerning sequential three

decision tests is deferred until the end of this section, after

which the reader will be more familiar with the subject.

The method used for determining the test procedure is a

direct extension of the method given for the two decision test

presented in the first part of this chapter. The numerical

example given previously will be extended to the three decision

case.
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Table 2.2
Critical Values for the

Two Decision Example

Trial n cL(n) cU(n) Trial n cL (n) cU(n)

1 * * 42 11 16
2 * * 43 11 17
3 * * 12 17
4 * * 45 12 17
5 * * 46 13 17

L 6 * 6 47 13 18
7 * 7 48 13 18
8 * 7 49 14 18

• 9 * 7 50 14 19
10 0 7 51 14 19
11 0 8 52 15 19
12 0 8 53 15 19
13 1 8 54 15 20
14 1 9 55 16 20
15 1 9 56 16 201 16 2 9 57 16 21
17 2 9 58 17 21
18 3 10 59 17 21

t. 19 3 10 60 17 21
20 3 10 61 18 22
21 4 10 62 18 22
22 4 11 63 19 22
23 4 11 64 19 22
24 5 11 65 19 23
25 5 12 66 20 23
26 5 12 67 20 23
27 6 12 68 20 23
28 6 12 69 21 24
29 6 13 70 21 24
30 7 13 71 21 24
31 7 13 72 22 24
32 8 14 73 22 25
33 8 14 74 22 25
34 8 14 75 23 25
35 9 14 76 23 25
36 9 15 77 23 26
37 9 15 78 24 26
38 10 15 79 24 26
39 10 16 80 24 26
40 10 16 81 25 26
41 11 16

27
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For a three decision test the hypotheses are specified as

HI: D=D <N/2

versus H0: D=D0>D 1  (2.17)

versus H : D=D >D(2 2 0

where D is the number of defectives in a population of size N.

At each trial, an item is selected at random without replacement

from the population and classified as either a defect or a non-

defect and one of four actions is taken. Either one of the three

hypotheses is accepted or another sample is taken. It is the

purpose of this section to develop the rules for carrying out such

a test.

To devise a three decision test, a modified version of the

Sobel-Wald procedure (Sobel and Wald, 1949) is used. Following

their treatment, two SPRTs are used simultaneously. One SPRT, say

SPRT1, is used to distinguish between H0 and H1. The other SPRT,

say SPRT2, is used to distinguish between H0 and H2 . As explained

in Chapter 1, there are now four types of errors to be concerned

with. As before, these errors are denoted al, a 1 (for SPRTI) and

al, 02 (for SPRT2). These two SPRTs are used to derive the three

decision test as follows. At each step, calculate the two likeli-

hood ratios and follow the rules:
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accept H if

Ln (x,D0) L (x,D2
0 B and n 2< B

Ln(x,Dl) 1 L (x,D ) - 2
nn 0

accept H2 if

L (x,D0 ) L (x,D )
LE x > A and n 2x> A(
L n (x , D I1 )  1 Ln (x,D O ) 2 (2.18)

accept H0 if

L (x,D0 ) L (x,D 2 )n A1  and n 2<B2
Ln (x,D I) 1 Ln(X,D) 2

n 1 n 0

otherwise, another sample is taken. Here again the values

A1 -(l-al)/8 1  A2  (1-0 2 )/a 2
(2.19)

B =
1 =al/(l- 1 ) B2 - 2/(i-12)

are used to approximate the true values Al, Bi, A2, and B2

necessary for the test. These approximations, as will be seen

from the numerical results in the next chapter, are satisfactory

and provide good tests.

When carrying out the sequential test in practice, it is

usually easier to have available itical limits on the number

of defectives necessary to accept one of the hypotheses at each

trial. For a two-sided test, we must specify four critical limits,

two for each SPRT at each trial. Let cL (n) and c U(n) denote the

lower and upper limits respectively for SPRT1 at trial n. Also,

let d L(n) and du(n) denote the same critical limits for SPRT2.

Ik . .L
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The test procedure then becomes

accept H1 if x<c L (n) and x<d L (n),

accept H0 if C U (n)_x _dL(n) (2.20)

accept H2 if x>c U (n) and x>d (n)

and otherwise take another sample.

Following the same procedure given in the first part of

this chapter, these critical values are found by inverting the

likelihood ratio equations and may be expressed as

cL(n) = [g-1(bIDI,D,n,N)]

c (n) = +1(aIDID0,n,N) +1
U 1

dL (n) = [g-1(b2,D0,Dn,N)] (2.21)

du (n) = [g-1(a2,D0,D,n,11)] +1

where a1=£n(A1 ), b1=Ln(B1 ), etc. and the other notation is the

same as that used in (2.12). The critical limits for a typical

three decision test are shown graphically in Figure 2.3.
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'I

Numberof

Defects
Accept___ H

Figre 2 D 0

fr th Hyegomti

Sampling w i ge

r fr eAccept H r

Trial N tber

Figure 2.3 Typica Three Decision Test Regionfor the Hypergeometric
Distribution

A computer program which is given in the Appendix calculates

these critical points separately for each SPRT. The region thus

found can be evaluated using the method and computer program

described in Chapter 3. The special characterisitics of the two

decision test, such as the natural truncation point, are also

present in the three decision test. Truncation of these tests

is considered in the next chapter.

We now extend the example of the test given in (2.14) and

consider a three decision test. There, the hypotheses considered

were

H: D=D0=25
0 =0 (2.22)

versus HI: D=D =40



32

Now the hypotheses being tested are:

HI: D=DI=10

versus H0 : D=D 0=25 (2.23)

versus H2 : D=D 240
2 2=

again with a population of size N=100. The desired error proba-

bilities are

Ul=0.05, 1=0.10, a2 0.05 and 0.10

We first obtain the values

bl=tn(Bl)=Zn(0.05/(l-0.1.)) = -2.89037

al=n(Al)=9.n((l-0.05)/0.l) = 2.25129 (2.24)

b 2 = Zn(B 2 )=Zn(0.l/(l-0.05)) = -2.25129

a2=Zn(A 2)=Pn((l-0.1)/0.05) = 2.39037

We now calculate the limits in (2.21) for trial n=52. The values

of the log likelihood ratio for the two SPRTs are given in Table 2.3.

It can be seen from this table that one should accept I1 i f x<7

accept H0 if 10<x<15 and accept H2 if x>19, otherwise another item

is inspected. If this procedure is carried out for each trial up

to n**, the critical values for the three decision test given in

Table 2.4 will be obtained. A graphictl presentation of the test

regions for this test is given in Figure 2.4.
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Table 2.3
Log Likelihood Ratio

for Different Values of x
at Trial 52

L5 2 (x,D0 ) L5 2 (x,D2 )

x L5 2 (x,D1 ) L5 2 (x,D0 )

6 -5.46 -14.12
7 -3.50 -12.85
8 -1.13 -11.58
9 1.21 -10.31

10 4.36 - 9.05
11 G - 7.77
12 O - 6.48
13 O - 5.18
14 w - 3.85
15 C - 2.48
16 C - 1.08
17 CO 0.37
18 C 1.88
19 CO 3.47

"20 CO 5.15

The following is a brief sketch of the different approaches

to three decision tests which have been treated in the litera-

ture. The discussion here is general in that it pertains to no

specific distribution. Ghosh (1970) and Goss (1974b) give excel-

l ent and somewhat more comprehensive treatment of this subject.

No attempt has been made to cover the many applications of these

tests. For this, the reader is referred to Wetherill (1966).

Wald (1947), in his book, gives a method of formulating a

two-sided test by using weight functions. Barnard (1947), in his

review of Wald's book, mentions an alternate method which simply

tests the null hypotheses separately, against the two alternatives.

This is done by using two SPRTs at one time. The resulting test

regions are shown geometrically in Figure 2.5.
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Table 2.4
Critical Values for the

Three Decision Example

Trial n cL (n) cU(n) dL(n) %(n) Trial n cL(n) cU(n) dL((n) du(n)

1 * * * * 42 5 9 11 10
2 * * * * 43 5 9 11 17
3 * 3 * * 44 5 9 12 17
4 * 3 * * 45 5 9 12 17
5 * 3 * * 46 6 9 13 17

6 * 3 * 6 47 6 9 13 18
7 * 4 * 7 48 6 9 13 18
8 * 4 * 7 49 6 9 14 18
9 * 4 * 7 50 6 10 14 19

10 * 4 0 7 51 7 10 14 19
11 * 4 0 8 52 7 3.0 15 19
12 * 4 0 8 53 7 10 15 19
13 * 4 1 8 54 7 10 15 20
14 * 5 1 9 55 7 10 16 20
15 0 5 1 9 56 8 10 16 20
16 0 5 2 9 57 8 10 16 21
17 0 5 2 9 58 8 11 17 21
18 0 5 3 10 59 8 11 17 21
19 0 5 3 10 60 8 11 17 21
20 1 5 3 10 61 8 11 18 22
21 1 6 4 10 62 9 11 18 22
22 1 6 4 11 63 9 11 19 22
23 1 6 4 11 64 9 11 19 22
24 1 6 5 11 65 9 11 19 23
25 2 6 5 12 66 9 11 20 23
26 2 6 5 12 67 9 11 20 23
27 2 6 6 12 68 10 11 20 23
28 2 7 6 12 69 21 24
29 2 7 6 13 70 21 24
30 3 7 7 13 71 21 24
31 3 7 7 13 72 22 24
32 3 7 8 14 73 22 25
33 3 7 8 14 74 22 25
34 3 7 8 14 75 23 25
35 4 8 9 14 76 23 25
36 4 8 9 15 77 23 26
37 4 8 9 15 78 24 20
38 4 8 10 i5 79 24 20
39 4 8 10 16 80 24 26,
40 5 8 10 16 81 25 20
41 5 8 11 16

35
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Figure 2.6 Illustration of the Independenlce of the
Sobel-Waltd Sequential Test Region
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Sobel and Wald (1949), in their paper, treat the three

decision test in detail. They use a test similar to that sug-

gested by Barnard. The difference is that each SPRT is treated

independently of the other. This would mean, for example, that

when line AB is crossed by the path shown in Figure 2.6, wc no

longer allow acceptance of H1 and concern ourselves only with

the results of SPRT2. Thus, H0 is accepted when line AC is

crossed at point p, before a shaded region is even reached.

Sobel and Wald hasten to point out that such a test, which de-

pends not only on the total sample results, but also on the

sample path (order of the observations), cannot be an optimal

one. However, the test was used in their case because the inde-

pendence of the two tests enabled the authors to derive approx-

imations for some of the properties of this three decision test.

The Sobel-Wald tests and their approximate properties are treated

in detail by Ghosh (1970). Here, we use the direct method of se-

quential analysis which can be used to find the exact properties

of any specified sequential test region.

Goss (1974b), when treatinq three decision sequential tests

of the mean of a normal distribution, compared the Sobel-Wald

test with the Barnard test. He used the direct method to obtain

exact test results for such tests. From his results, (as ono would

expect intuitively) it is seen that the test with independently

run SPRTs has a smaller expected sample size, but slightly larger

error probabilities. The differences, however, are quito small.

For this reason and because it has somewhat more intuitive appeal,
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the approach suggested by Sobel and Wald is used here, with the

modification that a decision to accept a hypothesis is allowed

if and only if one of the conditions in (2.20) is satisfied;

that is, if and only if one enters a shaded region in Figure 2.6.

Another approach to the three decision test is given by

Ariinitage (1950). In this paper, Armitage suggests using three

SPRTs simultaneously. The three SPRTs are constructed to dis-

tinguish between H1 and H0, H2 and H0 and between H1 and 112'

This is shown graphically in Figure 2.7.

In tests where ai+a2<01 +2 , (which is the case in most

practical applications), the test will be almost identical to

the Sobel and Wald type regions used above. If, however,

Ui 1 +a 2 >a 1 +B2 , regions such as the ones shown in Figure 2.8 are

obtained. In such cases, the method of Armitage might be worth

using. The test regions would be similar to those shown in

Figure 2.7. The computer program given in the Appendix is

general and may be used to evaluate such regions if desired.

2.3 TEST OF COMPOSITE HYPOTHESES AND THE OC FUNCTION

This section will consider sequential tests of composite

hypotheses. It will be shown here that the Wald SPRT, used in

Sections 2.1 and 2.2 and based on pairs of simple hypotheses,

can be used to obtain satisfactory sequential tests for composite

hypotheses. The discussion below pertains to two decision tests,

although the ideas also apply to k>2 decision tests.

When finding a fixed size sample test to choose between one

of two specified hypotheses, one must specify both the sample size
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SPRPRl 3

Figure 2.7 Armitage's Sequential Test Region

Figure 2. 8 Sobel-Wald Region when ci + 2 > 13 2
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n* and critical value c* to give the desired error probabilities,

as explained in Section 1.3 (randomization, of course, can also

be used in the test). When this special case is generalized to

a sequential procedure where stopping rules are selected for

each trial, the problem of selection of the proper test becomes

much more complicated because there are many more possible tests

to choose from. To find a sequential test, one must choose an

upper and a lower limit for the number of defectives at each trial

number and possibly n0 , a truncation point for the sequential test.

It is well known that the Wald SPRT gives optimum regions

for testing a simple hypothesis against a simple alternative under

certain conditions (Wald and Wolfowitz, 1948). Such hypotheses

are stated, for example, as

H0: D=D 0
(2.25)

versus H1 : D=D 1

as shown in Figure 2.9. The hypotheses are represented as points

if they are simple, as in this case, and as line segments if they

Simple Hypotheses

D- D1

Composite Hypotheses

Figure 2.9 Simple and Composite Hypotheses
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are composite. For our purpose, we define simple and composite

hypotheses to be hypotheses with exactly one point, and more

than one point respectively. Statistical tests between two J
alternative simple hypotheses imply that the experimenter be-

lieves that there are only two possible values for the true

state of nature. Such situations do not often occur in practice.

In most cases the hypotheses to be tested are composite and

expressed in a form similar to

H0: D=D0  versus H1 : D/D0  (2.26)

or H : DD0  versus H : D;D >D (2.27)
0 0 1 1 0

When using a statistical test, the important distinction betweun

the simple hypotheses in (2.25) and the composite hypotheses of

(2.26) and (2.27) is that in the latter one is interested in all

of the points of the OC function over a specified range of the

parameter values given by the hypothesized states of nature.

The hypotheses shown in (2.26) do not contain any specific

alternative and are the types generally specified in so-called

"tests of significance." Users of such tests generally use a

specified significance level (a error) and sample size, but do

not mention a specific alternative hypothesis and therefore

often do not consider the "power" of their tests. The rationale

for such a test is that there is a strong prior belief in (or

preference for) the null hypothesis and that it is not to be

rejected unless there is strong evidence (i.e., at the 1-(y con-

fidence level) that it is not true.
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By examining the Type II error (which is one minus the

power of the test at a specified alternative) one can determine

if the significance level of the test has been set too low (or

too high) for a given sample size or if the sample size is much

too large (or too small) for the required sensitivity against

alternatives to the null hypothesis. Either of these consequences

could be costly. It does no harm for even the "significance

tester" to investigate to which alternatives his test will be

sensitive. From this it is seen that it is important to examine

the power of a statistical test.

In this light, the pair of hypotheses in (2.27) is considered.

Here a range of values has been specified for Il, the alternative

hypothesis, as well as for H0 , the null hypothesis (see Figure 2.9).

The values in between D0 and D1 constitute an "indifference zone."

For the situation where one must make a decision for either 110

or for H1 , and where there are positive costs (tangible or not)

for both types of errors, this is a more practicdble way of speci-

fying the hypotheses to be tested.

This again brings out the subtle difference between a "test

of significance" and other composite tests of hypotheses. A test

of significance might be valid, for example, for a test used in

proving some law of nature, for which it is nearly impossible to

specify all of the possible alternatives. In contrast, when

testing the ability of a new drug to cure a disease, for example,

the situation is different.

If the proportion of successful cures of a drug is to be

compared with that of a control or a placebo, Lhe hypotheses to
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j
be tested will usually be stated as H: pl=P2 vs. Hi: pl<P 2,

where p1 and P2 are the probabilities of a successful cure for

the control and the drug being tested respectively (both beirg

unknown). In this case, there are true costs (although they are

probably intangible) for both types of errors; that is, for

accepting the new drug as "significantly better" when it is not

and for rejecting it when it is "significantly better." Because

both of these errors are important, it is imperative that the

experimenter examine the power of his statistical test so thdt

the errors can be balanced if necessary. These same ideas are

important in the development of sequential tests of composite

hypotheses.

When developing sequential tests, it is usually necessary

to specify some specific alternative(s) to the -ull hypothesis.

Tnis is so that proper stopping rules can be formulated to

control both types of errors and so that the test properties of

the sequential test can be assessed. If one wishes to test a

composite hypothesis s-ch aL (2.27), we must find a sequential

test procedure which has a satisfacto'y OC function over a speci-

fied range of parameter values. This is usually don(_ with respect

to some additional criterion concerning the cost of samplinq.

Although the Wald prooedure provides optimal tests under

certain conditions, there remains the problem of finding optimum

sequential tests for the composite hypotheses consideied here.

Herr mean a difference of practical significance, rather than
simp a difference of statistical significance.

The criterion for optimality is left open for now. More treatment
is given to this subject in Section 3.2.
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In Sections 2.1 and 2.2 sequential test regions were found by

specifying simple hypotheses. Wald (1947) discusse!. this problem

at some length. He comes to the conclusion that the tst Of the

simple hypotnesis in (2.25) can be used to approximate a test of

a composite hypothesis such as (2.27) without much loss of effi-

ciency. This is the method most commonly used to find reqions

for a sequential test of a composite hypothesis.

One should examine the possible consequences of usinq such

an approximation, that is, carefully examine the OC function of

the test. If the resulting OC function is not close to the

desired OC function, the test region can be modified so that it

is. The numerical examples given in Chapters 4 and 5 will show

how this is done by, for example, comparing the OC function of

a fixed size test with that of a sequential test. Althouqh no

claim of optimality is made for the above tests, a procedure for

finding such optimal or near optimal tests is outlined in

Section 3.2.



I. CHAPTER 3

EVALUATION OF THE TEST REGIONS USING THE DIRECT METHOD
OF SEQUENTIAL ANALYSIS

3.0 INTRODUCTION

This chapter describes the evaluation of the sequential

test regions for the hypergeometric distribution. In the first

section, the direct method of sequential analysis is introduced.

It is this method which is used to find the exact properties of

the sequential test regions given in Chapter 2. Section 3.2

explains how truncation of the regions can be used to improve

the properties of a sequential test and suggests procedures for

doinq this. The following two sections explain in detail how

the direct method is used to obtain the test properties for the

two and three decision sequential test regions developed in

Chapter 2. Numerical examples for each of these cages are also

iven.

3.1 TIlE DIRECT METHOD OF SEQUENTIAL ANALYSIS

The direct method of sequential analysis, given by Aroian

(1968), describes a general method whereby the exact properties

of a qiven sequential test region may be obtained. Since

Aroian's 1968 article, the method has been used in a variety of

applications, including tests for the mean of a normal distribu-

tion with the standard deviation known (Aroian and Robison, 1969),

and unknown (Schmee, 1974); two-sided tests of the normal dis-

tribution with the standard deviation known (Goss, 1974b),

45
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sequential rank tests (Elfring and Schultz, 1973); tests of

the binomial distribution (Corneliussen and Ladd, J970 and 1971)

and tests of the variance of a normal distribution with mean known

or unknown (Aroian, Gorge, Goss and Robison, 1975).

Before using a sequential test procedure, one should know

or have available reasonable approximations to the actual test

properties. The most important test properties are the true a

and B error probabilities (denoted a' and f,' here) and the ex-

pected or average sample number (ASN), which is a function of

the true state of nature. A typical ASN function is shown in

Figure 3.1. Also of interest is the operating characteri:;tic (OC)

function which gives the probability of accepting 110 as a function

of che true state of nature (in this case, D, the actual number

of defectives in the population). A typical OC function is shown

in Figure 3.2. The true a and 3 error probabilities for a two

decision test are obtained directly from the OC function as

CE' = I-OC(D O)
(3.1)

$3' = OC(D I )

Approximations to the OC and ASN functions are given by Wadl

(1947). These approximations are valid only if the observatiornl:

are independent. This is not the case with the hyperqeometric

distribution. Also, even if the restriction does hold, the

adequacy of these approximations varies from test to test. 'I'h

direct method of seq uential analysis as explained below, will

allow one to find both the OC and ASN functions exactly.
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Another interesting test characteristic, which is often

neglected, is the distribution of the decisive sample number

(DSN), that is, the probability mass function of the sample size

required to 7ome to a decision. This distribution is also a

function of the true state of nature. From this distribution,

one can obtain the ASN, the variance of the sample number (VSN)

or other moments. The direct method is also used to find the

distribution of the DSN. A typical probability mass function for

the DSN is shown in Figure 3.3.

In general, the direct method is carried out as follows.

Once the sequential test region has been specified, one then

chooses a state of nature which allows the computation of the

probability of accepting each possible hypothesis at the first

trial. The remaining probability, that is, the probability of

being in the continuation region, is spread out among all of

the possible values of the sample statistic which are included

in the continuation region. At the second trial, another sample

is taken. It is again necessary to find the probability of

accepting each hypothesis and the distribution of probability of

remaining in the continuation region. Using convolutions, one

can continue this process at each succeeding trial until the t",$

is truncated or until the probability of continuation is so small

as to be insignificant. This procedure is then repeated using

different values for the state of nature, each qivinq a point on

the OC function and a distribution of the DSN. This is done for

the hypergeometric distribution in Sections 3.3 and 3.4.
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3.2 TRUNCATION OF THE SEQUENTIA1 TEST REGION

One disadvantage of using sequential test procedures is that

because the sample size is a random variable, it is sometimes

possible (usually with small probability) for the sample size to

be significantly larger than the sample size necessary for a

fixed size sample test (n*). This section presents methods for

truncating sequential tests at some trial, say n0. This will

result in a closed sequential test whose test properties, with

respect to the ASN function, will be much improved. The price

paid for this improvement, as shown in Chapter 4, is usually

quite small.

Wald and Wolfowitz (1948) show that a SPRT for a simple

hypothesis with a simple alternative and with i.i.d. observa-

tions, has the smallest ASN (at the parameter values specified

by the simple hypotheses) of all other tests with the same a and

8 error probabilities. This of course also implies that the ASN

of the SPRT will be smaller than the sample size of the corre-

sponding fixed size sample test. It must be remembered, however,

that this is guaranteed to be true only for the parameter values

specified by the simple hypotheses. For parameter values which

fall between these two values, the value of the ASN of the untrun-

cated test may even rise above n*. This means that for some val-

ues of the true state of nature, the ASN of the sequential test

will be greater than the sample size required for the fixed size

test. It should be noted that this occurs for those values of
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the parameter which are in the so-called "indifference range."

This is shown in a graph of a typical ASN function in Figure 3.1.

Truncation of the sequential test at some trial number, say nO ,

is often used to help alleviate these problems. It has been

shown and will be further demonstrated here that truncation of

sequential tests will both eliminate the possibility of an ex-

tremely large sample and significantly reduce the ASN over the

space of the parameter value.

It is to be expected that some price must be paid for this

improvement in the test, which is indeed the case here. After

truncation of a Wald-type SPRT, the true a and R error probabil-

ities will usually increase somewhat. (In fact, the entire OC

function will change.) This increase is usually quite small

because the probability of such large samples is highest near

the middle of the "indifference range" and relatively small near

the values of the parameters specified in the simple hypotheses.

Because the true a and 8 error probabilities of the untruncated

SPRT are often smaller than the specified error probabilities

(i.e., a'<a and '<0), a small increase in these probabilities

can usually be tolerated. Further modification of the region

near the truncation trial number (n0 ) can be used to adjust th,,(,

probabilities to be quite close to their desired values.

Often when truncation procedures are put forward, the trun-

cation point suggested is from 1.5 to 3 times n* (e.q., Wald,

(1947)). This is probably because in the past, very little wa.

known about the exact properties of such untruncated tests. When
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using the direct method, howevEr, this presents no problem

because the direct method is general and can be used to evaluate

any specified test region. From the numerical examples given

in Chapter 4, it will be seen that the truncation point can be

moved much closer to n*, while still keeping W'' and W-"-

Procedures for truncating sequential tests of the hypergeometric

distribution and for comparing alternate tests are discussed next.

Truncated sequential tests presented here will be truncated

at n* (i.e. n0=n*). If the desired error probabilities cannot be

achieved when truncating at n*, and if it is necessary to do so,

n0 can be moved one way or the other to help achieve the desired

error probabilities (e.g., n0 should be increased to decrease the

true error probabilities).

Once the trial number where the test is to be truncated has

been specified (i.e., n0 ), it becomes necessary to determine what

shape the test region should have around no. This has been a much

debated topic and is treated at some length by Goss for the three

decision normal distribution sequential test (Goss, 1974b) and for

the binomial distribution sequential test (Goss, 1974a). There

he compares and contrasts the "right angle" truncation and the

"wedge" type of truncation illustrated in Figure 3.4. le finds

that while the differences are small, the wedge truncation has a

slightly lower ASN and slightly larger error probabilities.
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Figure 3.4 Wedge and Right Angle Truncation

When comparing different types of truncation, or to be more

general, different types of test regions, one usually specifies

some sort of optimality criteria with which alternative tests

(i.e., different test regions) can be compared. This can also

be used to optimize a test procedure. Two examples of such cri-

teria are:

1) Minimizing the maximum of the ASN function over

the parameter space.

2) Minimizing the expected sample number using a

prior distribution for the parameter(s) beinq

estimated.

Monahan (1973) uses Bayesian decision theory with a sp(-cified

loss function to construct "admissible" truncated sequential

test regions for testing the mean of a normal distribution.



When comparing alternate tests, however, it is usually

necessar-y to take into account the differences in the error

probabilities (or the OC function). This can be done in onQ of

two ways. First, the randomization scheme described in Section

1.3 can be applied to the sequential test procedure and/or

modi.fication of the regions can be used to adjust the error prob-

abilities. Also, an objective function can be constructed which

takes the size of the error probabilities (cr to be more genoral,

the OC function) into consideration. The comparisons made in

Chapter 5 will be made between tests which have approximatcly the

desired ai and P, probabilities. In most cases this will not ad-

versely affect the validity of the comparisons which are made.

When truncating a discrete distribution such as the binomial

or the hypergeometric considered here, there are only a finite

number (which may be rather large) of sensible regions to use for

a given test procedure. In the truncated regions considered here,

the Wald regions developed in Section 2.3 are used with th trun-

cation rules given next.

With sequential tests of t y g t (..

distribution, one should truncate the test such that there are no

points in the continuation region from which only one decision c.in

be made. Such points can only increase the ASN function and do

not affect the error probabilities and therefore should be made

part of the region for accepting the appropriate hypothesis.

Point p in Figure 3.5a is an example of such a point. If the

above rule is followed when truncatinq a typical Wald region,
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the continuation region will have a horizontal upper boundary

and 450 lower boundary. This is shown in Figure 3.5b. One

should note that this is the only sensible method of truncation

for dichotomou, distributions. When truncating a sequential test

for a continuous distribution, the solution to this problem is

not so clear, as there are an infinite number of points in the

sample space. The problem of "optimal truncation" needs to be

more fully explored for these cases.

When truncating a sequential test of the hypergeometric dis-

tribution, there are two decisions which must be made. First,

one must decide the trial number where the test is to be truncated.

As mentioned earlier, this can usually be at or near n*, tHie sampLe

size of the fixed size sample test. This truncation point is

denoted n0. In addition, it is also necessary to spec.:y the

critical value for the sequential test at this trial. That is,

one must determine the proper cU (n0 )=cL (n0 )+l. Using the chosen

n and c U(n 0 ) and the rules given above with the Wald recjions

given in Section 2.1, the truncated test procedure is completely

specified.

It may, under certain circumstances, be desirable to furl-her

modify the Wald regions. This can be done if one follows the

rules:

cU (n+l) = c (n)

or c (n)+l (3.2)

c L (n+l) = c L (n)

or c, (n)+l
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which are a generalization of the truncation rules given above

and should be true of all critical values which define the test

region. These rules simply state that the upper and lower bound-

ary points do not decrease with n and never increase by more than

one at any given trial.

In order to make the changes suggested above, one should

know the effect of the different types of modification. These

are outlined in Table 3.1.

Table 3.1
Effects of Region
Modification*

OC(D) ASN(D)

increase c U(n) decrease increase
decrease cU(n) increase decrease

increase cL (n) increase decrease

decrease c (n) decrease increase

,L

Note, for example, if an increase is indicated in
this table, the function in some cases will remain
the same, but will not decrease.

The regions cbtained by using the above procedure must

ultimately be judged on the basis of their exact test properties,

which can be found by using the direct method as shown in the

next section. This usually leads to an iterative procedure to

find the proper test. Such a procedure begins by evaluatinq a

suggested test region to find its test properties. If the test

properties are not satisfactory, the test reqion is modified

using the suggestions above and evaluated again using the direct



57

method. Several such iterations may be necessary to achieve

the desired test properties. This procedure is illustrated

with the numerical examples presented in Chapter 4.

When truncating a k>2 decision test, it is necessary to

truncate each of the SPRTs separately. This is illustrated in

the example given in Section 3.4.

3.3 OBTAINING THE TEST PROPERTIES OF A TWO DECISION TEST REGION

This section will explain how the direct method of sequen-

tial analysis is used to find the exact test properties for a

two decision test of the hypergeometric distribution. It will

be shown how one can obtain both the OC function and the dis-

tribution of the decisive sample number (DSN). From these, ono

can also find the average sample number (ASN) and the true ,

and B error probabilities, a' and 8' The two decision test relion

developed in Section 2.1 will be evaluated here as a numerical

example.

As explained in Section 3.1, the direct method is used by

computing both the probability of making cach decision and the

distribution of probability remaining in the continuation reqiol

at eacn trial. The probabilities at trial n+1 are computed by

convoluting the probability remaining in the continuation relion

at trial n with the sample taken at trial n+l. This is done for

each trial for n-1, 2,.... n . In a discrete distribut ion such
0

as the hypergeometric, this entails .umming probabilities at each

trial of the test. For the hypergeometric distribution, this is
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illustrated with the grid shown in Figure 3.6. The critical -

values which define this test region are given in Table 3.2.

For illustrative purposes, this region has been truncated

at trial 10, using the rules given in Section 3.2. That is,

the critical values cL (n) and cO (n) are non-decreasing with n

and never increase by more than one at any given trial. The"

pr,bability of reaching each point which is in the region or

on its boundary is a function of the true state of nature (true v
number of defectives in the population, D). These probabilities

differ from those of the corresponding hypergeometric distribu-

tion (i.e., the probability with a fixed size sample test) only

because of the difference in the number of paths available to

reach a given point. The probabilities are computed recursively

starting with the point at which the origin, when no samples have

to be observed; the probability of this point is, of course, 1. 4

The recursive formula used to compute the probabilities at- each

trial is:

P(x,j,n+l,N)=I(x,n)P(x;D,n,N). (N-n-D+x)/(*C-n)

+I(x-l,n)P(x-l,D,n,N)0(D-xil)/(N-ri)

(3.3)

where w 1 if x = 0
P(x,D,0,N) = i 0 otherwise

I(x,n) c L (n)Ux cu(n )

0 otherwise

The indicator function accounts for the facL that the test ter-

minates when one of the critical points is reached.
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There are two possible outcomes at the next trial from each

point in the continuation region; each inspected item may be

either a defect or a non-defect. This is also illustrated in

Figure 3.6. When a critical point c L(n) or c U(n) is reach(d

at trial n, the test stops and a decision is made in favor of

either H or H Thus, the probability that the test terminates0 V*

at trial n is the probability of reaching one of the critical

points at trial n.

Referring to Figure 3.6, an X at a point indicates a crit-

ical point for acceptance of H1 (cU(n)); an 0 signifies a

critical point for acceptance of H0(cL(n)). One should note that

some critical values can never be reached (e.g., 0 defectives

observed at trial 4 and 4 defectives observed at trial 5). This

is because there are no paths leaving the critical points.

After the probabilities for the points shown on the grid

in Figure 3.6 have all been computed, it is an easy matter to

determine the exact test properties. Let AO , Al and C denote
n n 11

the events of accepting H0, accepting H1 and continuing to tril.l

n+l respectively. The probabilities of Al and AO at each trialn n

are then the probabilities of reaching points c (n) and c (n)
U L

respectively.

This can also be expressed as follows:

P(Ai ,D)= ZJ. (x,n)P(x;D,n,N) (3.4)

x

where Ji(x,n) Ii if (x,n) , Ai n

(0 otherwise

Of course, P(C nD)= P(C 1 D)-P(AO ,D)-P(AI ,n n- ' nn'
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Another interesting way to look at the direct method is to

consider the sequential process a Markov chain with absorbinqg

states. Each point in the sample space is a state and each bound-

ary point is an absorbing state. The transition probabilities

from each state are a function of the true state of nature. In

order to use the direct method, it becomes necessary to find the

probability of absorption in each of the absorbing states. This

will give P(AO n;D) and P(Aln ;D) for n=O,l,...n 0. Madsen (1974)

uses a Markov chain technique to find the properties of a trunated

S PRT.
.J

The distribution of the decisive sample number (DSN) (i.e.,

the probability of the test terminating at trial n) can be ex-

pressed as follows:

P(n;D)=P(AO Vn Aln; D) n n(3.()

=P(AO n ;D)+P(Al n ;D)

This is computed for each n up to n , the first trial where
0

cL(n)+l=cU(n). This is the truncation point of the test. The

ASN and VSN are then computed as

n0

ASN(D) = E nP(n;D) (3.7)
n=l

n 2

VSN(D) = Z (n-ASN(D)) P(n;D). (3.8)
n=l

The ASN can also be expressed as

n0-10
ASN(D) 1 + X p(C ;D) (3.9)

n=l n
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This alternate form is given by Aroian (1975) and shows

how the ASN function "builds up" at each trial of the sequential

test.

The computer program in the Appendix computes these quan-
kth

tities. If desired, the k moment about the oriqin can be

computed as
nO

k, 0 k (-0E(n ,D) = E n P(n;D) (3.10)
n=l

The OC function of the test is computed as

no0

OC(D) = Y P(AO n;D) (3.11)
n=l

As mentioned earlier, the exact q and f errors are

1' = 1- OC(D O0

(3. 12)

= OC(D) .

The OC function is also calculated by the corputer Droqram (liven

in the Appendix.

The above properties have been computed for the test re(qion

obtained in Section 2.1 and truncated as in Section 2 of this

chapter. Because of space limitations, the distribution of the

DSN is shown for only one value of D. These are shown in 'lel

3.3 and 3.4. Graphs of the OC and ASN functions for the tst are

shown in Figures 3.7 and 3.8. These properties are tir.ical Of

most sequential tests of the hypergeometric distribution. A Com-

plete discussion of these test properties is deferred until

Chapters 4 and 5, when a more complete examination o[ s;one nuriu'r-

ical examples is presented.



Table 3.3
Distribution of the DSN for the Two Decision Example

NUMBER OF DEFECTIVES 0 30

IRIAL P(HO1 P(H1) P(T) P(Ci TRIAL P(O) P(M1) P(T) P(C)

6 0.00000 0.00050 0,00050 0.99950 44 0.0303 0.00365 0,03396 0.30477
7 0.00000 000000 0.00000 0.99950 45 0.00000 0.00749 0.00749 0.29128
8 0.00000 0.0005Z 0,00057 0.99893 46 0.04055 0.0113 0,05191 0.24531

9 0.00000 0.00194 0,00194 0,99699 47%14.00000 000000 000000 0.24537

10 0.02292 0.00442 0,02737 0.96962 48 ub.Z-!'I00 0.0079 0,00370 0.24167
11 0..00000 0.0000 0,00000 0,96962 49 0.03089 0.00744 0,03836 0.20331
12 0.00000 0.00214 0,00216 0,96746 50 0.00000 0,00009 0,00000 0.20331
13 0.03453 0.00519 0;03971 0.92775- 5i 0.00000 0.00261 0,002,7 0.20065
14 0.00600 0.00000 0,00000 0.92775 52 0.02629 0.0055Y 0,03158 0,16877

15 0.00000 0.0023§ 0,00236 0,92539 53 0.00000 0.00854 0,00856 0.16071
16 0,03904 0.00546 0,04450 0.88089 54 0.00000 0.00000 0,00000 0.16021
17 0.00000 0.00931 0000937 0.87153 5 0.02276 0.00270 0,02546 0.13475
18 0.05970 0.00000 0,05970 0,81182 56 0.00000 0.00543 0,00543 0.42932
19 0.00000 0.00360 0-,0o360 0,8o822 57 0,00000 0.00000 0,06000 0.12932

20 0.00000 0.0077 0,00775 0,80048 58 0.01954 0.0018Z 0,02119 0.10193

21 0,04973 0,0124 0,06218 0,73830 59 0.00000 0.00381 0,00307 0.10406

22 0.00000 0.00000 0,00000 0,73830 60 0.00000 0.00584 0,01596 0.0819

23 0.00000 0.00454 0,00452 0,73377 61 0.01668 0.U0000 0,01668 0.0R151

24 0.04511 0.00945 0,C5454 0,67923 62 0,00000 0.00171 0,oo177 0.07974

25 0.00000 6.0000P 0;00000 0;67423 63 0.01983 0.00354 0,02335 0.05640

26 0.00000 0.0037? 0,00372 0,67551 64 0.00000 0.00514 0,00512 0.051?/

27 0.04157 0.00799 0,04956 0,62595 65 0.00000 0.00000 o,00o0o 0,05127

28 0.00000 0.0127? 0,01272 0,61323 66 0,01630 0.00146 0,01476 0.03652

29 0.00000 0.00000 0,00000 0,61323 67 0.00000 0,0027 0,00275 0.0537/

30 0.03858 0.0045; 0P,04309 0.57014 68 0.00000 0.00374 0,00376 0.030n1
31 0.00000 0.00934 0,00932 0.56083 69 0.00955 0.00000 0,00955 0.0?046
32 0.05321 0.00000 0.05321 0.50762 70 0O00000 0.0000q 0,00004 0.0195?

33 0.00000 0.00351 0,00359 0,50403 71 0.00000 0.00174 0,00174 0.01778

34 0.00000 0.00767 0,00767 0.49636 72 0,00641 0.0071n 0,OC857 0.C0921
35 0.04175 0.0121Z 0,05386 6".44250 73 0.00000 0,0000P 0,0000U 0.00921
36 0.00000 0.00000 0,00000 0.44250 74 0 o00000 0.0005; 0,00051 0.008M0
37 0.00000 0.00419 0,00419 0,43831 75 .0.00374 0.0)08 0,00457 0.00413

3. 0!.03673 0,00864 Q..04530 9,39296 76 '0.00000 0.00097 0,00099 0.00314

39 0.00000 0.O000 0,00000 0.39296 -7 0.00000 0,00000 0,00000 0.00314

40 0.00000 0.00321 0,00324 C,38972 73 00o74 0,0001g 0,00191 0.00123

41 0.03321 0.0069- 0,04012 0.34959 79 0.00000 0.00024 0,00028 0.00095
42 0,00000 0.01086 O Lk086 0.33874 80 0100000 0.00024 0,00023 0.00072
43 0.00000 00000p 0,00000 0,33874 81 0.00054 0.00014 0,00072 0.00000

Table 3.4
Properties of the Two Decision Test Example

TRUE D P04O) R11) ASN

20 0,997053 0l02947 21,4806
25 0,962327 0,93/673 28,4823
30 0,738209 0,461791 35.7704
35 0,315228 0,484772 35,8717
40 0,084706 01915294 29,7936
45 0,0194A5 0,?8U5$ 23,6276
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3.4 OBTAINING THE TEST PROPERTIES OF A THREE DECISION TEST IEGION

This section will explain how the direct method of sequen-

tial analysis is used to find the exact test properties for a

three decision sequential test for the hypergeometric distrLbution.

The procedure is easily extended to tests with k-3 decisions.

The same test characteristics found for the test in Section 3.3

are calculated for the three decision sequential test region de-

veloped in Section 2.2.

The direct method, as applied here, is very similar to theM

method used for the two decision test treated in Section 3.3.

Now, however, there are four possible events at each trial. The

events are Aln, AG , A2n and c n , denoting acceptance of II,, 110,

H2 at trial n and continuing to trial n+l, respectively. As with

the two decision test, it is necessary to compute the probabilily

of each of these events for each trial n=l,2,...,n 0, where n () is

either the truncation point or that point past which the proba-

bility of continuation is small enough to ignore.

The probabilities of each of the above events are computed

in a manner similar to that used for the two depcision i,,-I rqionl.

One must again compute the probability of reaching each oiit in

the sample space. These probabilities differ from the actul

hypergeometric distribution only because of the differenoe in

the number of paths available to reach a given point. The dif-

ference in the number of paths is due to the stopping rules of

the particular sequential test.
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Figure 3.9 shows in detail the grid for part of a typical

region for a three decision test. The probability of reachinq

each point is again computed recursively, moving from one trial

to the next. When a point in the continuation region is reached,

another sample is taken, illustrated by two arrows leaving each

of these points. When a critical point is reached, a decision is

made in favor of one of the three hypotheses and the test is ter-

minated. The recursive formula used in calculating the proba-

bilities is:

P(x,D,n+l,N)=I(x,n)P(x;D,n,N)((N-n-D+x) /(N-n)) (3.13)

+I(x-l,n)P(x-l;D,n,N)((D-x+l)/(N-n))

where 1 if X=O
P(x,D,O,N) =

0 otherwise

I(xn) 1 if (n,x)sC n

0 otherwise

The indicator function I again accounts for the fact that

the test ends when one of the critical points is reached.

After all of these probabilities have been computed, the

probabilities of the events Aln' AO, A2 at each trial are hen

the probabilities of reaching each of the boundary points. 'TIdt'h. ;,

P(Ai ) = E J. (xn)P(x;D,n,N) (3. 14)n '
x

where 1.(x,n) = 10 if (xn)fAi n
J 10 otherwise
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is an indicator function used to sum the probabilities of the

proper hypotheses.

Once these probabilities have been found, we can compute

the desired test properties as follows. The distribution of the

DSN (as a function of D, the true state of nature) is

P(n;D) = P(Al UAO UA2 ;D) (3.15)

= P(Al n;D)+P(AO ;D)+P(A2 ;D)nn nl

In a three decision test, there are really three OC functions,

each giving the probability of acceptance for one of the hypothses.

The OC function for hypothesis i is found as follows:

no

OC (D) = E P(Ai ;D) (3.16)
n1

The ASN and VSN of the test (as a function of D) are then

computed as

no0

ASN(D) = E nP(n;D) (3. 17)
n=l
nO0 0 2

VSN(D) = Z (n-ASN(D)) P(n;D) (3.18)
n=l

The expression for the ASN in (3.9) is also applic-ib o horo. 'Ph"

computer program listed in the Appendix calculates the above

properties and they have been computed for the sequential test

obtained in Section 2.2 and truncated as in Section 3.2 of this

chapter. The truncated test reqion is shown in Table 2.4. 'he tost

properties are shown in Table 3.5. 'iraphs of the ASN and OC

functions are shown in Figures 3.10 and 3.11.



Table 3.5

Test Properties of the Three Decision Example

IRUE PROS PRO PROn
D ACCEPT HI ACCEPT 10 ACC.PI HP ASJ
5 1 0 0 19.,361
6 .99915 .00025 0 P(). 9
7 .99H46 .001t)4 0 P.3259
8 .99449 .00:5:l 0 23.916
9 .98t!8 .01482 0 2ZI. 9H /
10 .96671 .03329 0 21.3/63
!1 .93439 .0656 0 29.1422
12 .881418 •1 531 .00001 30.1N36
13 .81417 .1852 .OOOOP 32.1h8b
14 .728R .21114 .00006 3:3.2148
15 .63218 .3611 .0001P 34.009s
16 .53231 .46145 .00024 34 • /d 2 1
17 .43612 t)6341 .000,8 34. 541t
18 .34817 •6t033 .00091 34.:)022
19 .2732 .72514 .00166 34.313?
20 .21036 .78669 .00296 34. P' 16
21 .15973 •.83)13 .0051 I 34.2 *I 3t
22 .11995 .87129 .008/6 34.3163
23 .08932 .89606 .01462 3/4. 965
24 .06614 .90993 .02392 3!.30681
25 .049 .91261 .03839 35.1P37
26 .0368 .90293 .06021 36.5276
27 .0281 .87909 .09221 31.4199
28 .02387 .83944 .13669 38.3169
29 .02134 .7834 .19527 39.1193
30 .02001 .7123 .26769 39.7258
31 .01887 .62959 .351t)4 40.0498
32 .01721 .54039 .4424 40-0336
33 .01482 •45044 t)3414 39.6t)65
34 .0119 .36503 .62307 39.9347
35 .00886 .P8815 .10299 31.9143
36 .00612 .22211 .7/17/ 36,6599
31 .00394 .16161 .82845 35.'424
38 .00238 .1241s .87346 33. I96
39 .00137 .09048 .9081b 3!.1 /99
40 .00071 .06499 .93424 30.o393
41 .00044 .04607 .9t349 29.141
42 .00026 .03226 .96148 2*1•1017
43 .00016 .02233 .9/151 26.3:2t)
44 .00011 .01527 .98462 25,0821
45 .00007 .01033 .9896 23.8981
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CHAPTER 4

FURTHER NUMERICAL EXAMPLES

4.0 INTRODUCTION

In the first section of this chapter, further examples

of two decision truncated sequential tests for the hyper-

geometric distribution are given. Ten example test plans hav

been chosen and completely evaluated. These examples have beon

included to show how the tests perform over a range of differont

parameter values. The computer program which is listed in the

Appendix was used to develop the test regions and to obta in prop-

erties of the tests which are given here. This computer pro(qram

can be used to develop and evaluate tests of the hypergeometric

distribution for any desired parameter values. In the secona

section of this chapter, an illustration is gi-.ren to show how

these sequential tests are used in practice.

4.1 TEST PLAN EXAMPLES

All of the examples of the sequential test plans which are

given here are truncated at n*, the sample size of the fixed

size sample test. The desired error probabilities are chosen to)

be a=0.05 and =0.i0. While these error probability limits are

not met in all cases when using the sequential test, the true

values are always very close to the desired values and could have

been made closer following the region modification procedure (II:,-

cussed in Section 3.2.
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Because of space limitations, the distribution of the DSN

is given only for the first example. For this example and the

others which follow, the fixed size test and its corresponding

OC function are given. Also, tables of the OC and ASN functions

are given for each of the sequential tests. The original sequen- ]
tial test region and the modifications made to it are also shown.

In Chapter 5, using the information given here, comparisons

will be made between the sequential tests and both the fixed "

size sample tests and tests which use the binomial distribution

as an approximation. There, the differences among the OC

functions of the different tests are examined and the relative

advantages of using a sequential procedure is shown. The graphs

presented here will aid the comparisons. For each of the tes"t

plans, three OC functions have been graphed. These are the OC

functions for the fixed size test, for the sequential hyper-

geometric distribution test, and for the binomial approximation

to the hypergeometric distribution test. The ASN function for

the sequential hypergeometric distribution tests is alzo graphltd.

The horizontal dotted line on the graphs represents the samw,;e

size of the fixed size tests.

4.2 USING THE SEQUENTIAL TEST PLANS

This section will present an example which shows how the

sequential test plans are used in practice. The example used

here could be used, for example, in an acceptance sampling scheme

to examine lots of automobile tires when they arrive from the

, N • J
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Tc.t POlan I

No 30 NUMBER CF DfFLCTIVS 1 10
D0: 5

ALPAs:0.050 TRIAL P(HO) P(mi PIT) PIC)
BETAS 0.100 3 O.OCO00 0.02950 0.029q6 0.97044

4 0.00000 0.0656C 0.06568 0.90416
THE FIXED SIZE TEST IS AS IOLLWSI 5 O.ICA8C 0.0300D 0.110n0 0.79"91
SAMPLE SIZF - 13 6 0.00000 0.0768d 0.0768 0. 16-9
CRITICAL VALUE . 4 7 0.13599 O.OWT7 0.1A975 0.57954
ALP4A* x 0.00903 8 O.OCOO 0.076-)d 0.07698 0.50.'45
BETA. a 0.06971 9 0.01,0(0 0.0001D 0.41000 0.5C'

10 0.08305 0.01634 0.11017 0.30/18
11 0.OCcoO 0.04124 0.04712 0.34496

FIXED SIZE TEST OC rUNCToh! 12 0.0;o39 0.06074 0.-i713 0.184ji

0 ACCEPT HO ACCEPT i 13 0.12522 0.0646k 0.14793 0.00000

0 1.000000 C.O000o2 TRUE D P(NO) pf'*1) ASN VSN5 0.990969 0.0O9O3j 10 0.550254 0.A4?746 8.9493 10.2407
10 0.553923 0.44607/
15 0.069710 0.93029:
20 0.000414 0.999580
25 0.000000 1.000000 NUMBER Or DEFECTIVES 15

THE WAD REGION IS AS FOLLOJSI TRIAL P(HO) P11i4) PIT) PIC)
3 0.00000 0.11207 0.11207 0.88793

TRIAL ACCEPT NO ACCEPT 1 4 0.00000 0.19676 0.10678 0.701U5

1 * 5 0.02107 0.00000 0.02107 0.68008
2 * * 6 0.00000 0.0

9
65-1 0.09655 0.585"2

3 *3 7 0.02634 0.13944 0.16580 0.41172
4 a 3 8 0.00000 0.14091 0.14098 0.27074
5 0 4 9 0.00000 0,00001 0.00000 0.27674
6 0 4 10 0.01000 0.06074 0.07074 0.20600
7 1 4 11 0.00000 0.07264 0.07166 0.13335
B 1 4 12 0.01089 0.06C09 0.07098 0.06'31
9 1 002425 0.03011 0.06237 0.00000

10 2 5
11 2 5 TRUE 0 P|HO) R(111) ASJ VSd
12 2 5 15 0.092554 0,90/446 7.2256 9.5639
13 ? 3

REGION CHANGE 12 3 5
REGION C.4ANGE 13 4 5

o THMBER OF DEFECTIVES * 20P.UiBER OF DEFECT IVES * 0

TRIAL PING) P(42) PIT) PIC)TRIAL P(H0) PlwI) PIT) PIC) 3 0.00000 0.2807? 0,28079 0.71Y21
5 1.00000 0.09000 1,00000 0.00000 4 0.00000 0.31199 0.31199 0.40722
6 0.00000 0.00000 0.00650 0.00000 5 0.00177 0.00007 0.00177 0.40546
7 0.00000 0.0000; 0.00000 0.00000 6 0.00000 0.14681 0,14657 0.25meI3
8 0 0000 0.00001 0.00000 0.00000 7 0.00147 0.1305? 0.13203 0.12c,5
9 0.00000 0.00007 0,00010 0.00000 3 0.00000 0.0)696 0.07696 0.049!7

10 000000 0.00000 C.04010 0.00000 9 0.00000 O.OnOcO 0.0000 0.049157
!1 0.00000 0.00000 0,000co 0.00000 10 0.00013 0.02634 0,02644 O.0251312 0.00000 0.00000 0.000o0 0.00000 11 0.00000 0.01574 0,01574 0.00759
13 0.00000 0.00000 0.00000 0.00000 12 0.00005 0.00570 0.005q4 0.00155

TRUE D PIRO) RINI) ASN 13 0.00017 0.0013b 0.0.155 .O0000

0 1.000000 0,100000 5.0000 0000 tRUE 0 PING) RIHI) AS'? VSfj

20 0,003595 0,996405 5,0482 4.4136

JHGE" OF DEFEVCv 5

NUMBER Or DEFECTIVES s 25

TRIAL PIRO) P(HJ) PIT) PIC)

3 0.0000o 0.00244 0,00246 0.99754 TRIAL P(MO) P(41) PIT) PI)
4 0100000 0.00660 0.00684 0.99070 3 0.00000 0.56650 0.56650 0.4W'50
5 0.37283 0.0oooo 0.37213 0.61787 4 0.00000 0.3147 0.31472 0.11PI7
6 0.00000 0.00101 0.00111 0.616q6 5 0.00001 0.000n O.Oc0o1 0.11'

!

7 0.3:069 0.00258 0.31377 0.30359 6 0.00000 0.:35?4 O0,OP,2 0.035-,5
8 0.00000 0.00479 0.0n479 0.29860 7 0.00300 0.02841 0.07841 0.00!,14
9 O.OUO00 0.00000 0.0000 0.29860 8 0.00000 0.00479 0.00479 0.000$610 0.15999 0.00034 0.16035 0.13845 9 .00000 3.0%00: O .OCoO 0.0016

11 0.00000 0.00016 0.0p 6 0.13759 10 0.0030C 0.00014 0.0036 O.OOt30
12 0.09770 0.0014? 0.09924 0.03840 11 0.00300 O.OD2,7 0.000 0.0000013 0.03627 0.0o21 0.03840 0.00000 12 0.00000 O.OOu 0,0.O000 O.OGO

13 0.0000 O.O000C 0.00000 0.00000
TRUE D P11O) 901lt) ASN VS.

5 0,977475 0,02/523 7.4386 6.7,4d TRUF 0 PING) k("1) ASN VSf4
25 0.000007 0,79V993 3.7104 1.1086

75



1 76

07.1
,- -4 ,{ ,-l,- , Il ,

Ai 0 '44 " I I

I. I

!z0

I

S0 N

0 ,I 0

$ 4 U J S

OO I

4d J 0(J U ,. .l,~

oiau Q

X,- V f ZJ 1 0

0 CL . I
14o >1 0I

o N .
- -,4 ., 14 A

j HC

as' () 44 U) 0

S4

X ,J.3004"Iof ; I'l

0- _n

-H Ht

.I e

E 0i :i
0~O~O 4



Ii

Tost Plan 2
Ni 30
Do: 10
D1 23
ALPHAs 0.050
BETA: 0.130
EVALUATIh OF REGION REOUEbTED

THE FIXED SIZE TEST IS A 1OLLOW!-.
SAMPLE SIZE a 13
CRITICAL V;LUE 9 6
ALPHA. 9 0.04508
BETAO 2 0.04508

FIXED SIZF TEST OC FUNCTION,

D ACCEPT NO ACCEPT W1
6 1.030000 0.00000P
8 0.594796 0.005204

10 0.954923 0.045077
12 0.835732 0.164260
14 0.625501 0.374499
16 0.374499 0.625504
18 0.1!4268 0.83573?
70 0.045077 0.95492J
22 0.005204 0.994794

TRUNCATE AT THE FIXED SIZE SAPFLE

THE WALD AEGION IS AS FoLLOWS,

TRIAL ACCEPT HO ACCEPT HI1 9 &$I)QUENM"AI TF,!,'I" P11ItO IrItI"J,S

2 a TRUE D P(HO) k llI AS VSN
3 0 & 6 0.999267 0.0011733 4.7450 4.0166
4 0 4 0.991911 0,IV01089 5,7193 8.4v54
5 1 5 10 0,952488 0,0411)? 6,8527 11, 77!p
6 1 5 12 0,844078 0,1%5'922 7.9609 13.56797 2 6 14 0.655611 0,441389 8.7'60 13.3300r 2 6 16 0,4i5591 0.,74409 9,1125 12.10219 3 6 18 0,220718 0,'7'f?2 8.8719 10,0o41

10 3 7 20 0.067975 0,91 025 8,1679 9.5360
!1 4 7 22 0,027026 0.977974 7.2101 7 6405
12 5 8
13 3 4

REGION CHAsGE 9 3 7
REGION CHAGE 12 5 7
REGION HAIGE 13 6 7
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jTest Plan 3

N. 50
DO. 2
0A 12
ALPHAs 0.050

BET4 0.100

EVALUATION OF REGION REOUESTED

THE FIXED SIZE TEST IS Al IOLLOWSI
SAMPLE SIZE 3 19
CRITICAL VALUE a 2
ALPAdA x 0.00000

BETA* 2 0,07669

rXED SIZE TEST OC FUNCTIONI

0 ACCEPT NO ACCEPT UI
0 1.0000oo 0.000000
2 1,000000 0.000009
4 0.852736 0.147266
6 0.58808t 0.411911
8 0.342265 0.657732

10 0.172928 0.a2707q

12 0.076887 0.923110
14 0.030192 0.96980d

TRUNCATE AT THE FIXED SITE SAMPLE

THE WALD REGION IS AS FOLLOWSI

SEQUENTIAL TEST PRIOPERTIE:S

TRIAL ACCEPT 140 ACCEPT NJ TRUE D POO) Rt-1) ASN VS.
1 * 0 1,000000 0,000000 i0.0000 O.OUOO
2 * 2 2 0,970612 0.029388 12.6457 16,0443
3 * 2 4 0,79190? 0,400098 13.2354 23.0442
4 a 2 6 0,544502 0.45549a 12.4740 28.0616

S * 2 8 0,327993 0,W7007 11,1096 29.7424
6 * 2 :0 0,178173 0,421627 9.6327 27.5/83

12 0,089164 0,910836 8.2877 23,1U42
9 3 14 0,041041 0.t58159 7,1591 18,0013
9O o 3

10 0 3
11 0 3

12 0 3
13 0 3

14 0 3

15 0 3

16 1 3
17 1 3
18 1 3

19 1 2
REGION CHANGE 8 -1 2

REGION COANGE 9 -1 2
REGIO CHANGE 16 0 3
REGION CHANGE 17 0 3.
REGIO CHANGE 19 2 3
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Test Plan 4
He 50

DO= 1

AL~ 0.050
BEtA3 0.100CVALb 'ION OF REGION REOUESTED

THE FIXED S|ZF TEST IS AS IOLLOISI

SAMPLE SIZE 9 25CRITICA. VALUE a 7

ALPHA* 9 0,03688
BETA# C 0,57408

FIXED SIZE TEST OC FUNCTION1

D AZCEPT N0 ACCEPT N1
6 1.000050 0.000000
8 0.9979E5 0.00201

10 0.961123 0.03687/
12 0.83 554 0.160440

14 0.623193 0.376807
16 0.3812C7 0.618794
18 0.188577 0.811424
20 0.0740e0 0.925920
22 0.0225C2 0.97749824 0.005061 0.994934

TRUNCATE AT TPE FIXED SIXE SAMPLE

THE WALD REG|Ci IS AS FOLLOWSI

TRIAL ACCEPT NO ACCEPT HI SCFMUCIAI. TEST PR(')LRT~fU'h
1 0 u TRUE D PIO) RIHI) ASH VSN3 * 6 0,999547 0,000453 11,5104 15.6/64
4 4 8 0,993799 0,006201 13.5884 ?7. 25054 5 10 0.952864 0.04/136 15,7954 36.0o80
6 5 12 0,830905 0,469095 17,538? 38./11016 14 0,627703 0,072297 18,3016 38,3J347 16 0o401344 0,o90656 17,9546 j8.3u89 0 18 0.216236 0,/8764 16.7508 38,1097

5 0 6 20 0.099130 0,900870 15.1083 35.7if0
11 1 6 22 0.039739 0.960261 13,3937 30.6y3U12 1 6 24 0,014660 0,785340 11.8267 24.4193

13 2 6
14 2 7

15 2 7
16 3 7
17 3 7
18 3 8
19 4
20 4 8
21 4 8
22 5 9
23 5 924 5 9

23 4 5
REGION CHANGE 13 1 6
REGION CHANGE 16 2 7
REGION :4ANSE 19 3 8
REGION SHAhSE 22 4 8
REGION CHANSE 23 5 8
REGION CHANGE 24 6 8
REGION CHANGE 25 7 8
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Test Plan 5

N. 50
DO: 20
01u 30
ALPHA* 0.050

BETAs 0,100EVALUATION OF REGION REOUESTED

THE FIXED SIZE TEST IS A5 FOLLOWSI
SAMPLE SIZE v 28
CRITICAL VALUE * 14
ALPHA.* 0,02641
BETA. * 0,08992

FIXED SIZE TEST OC rU4CTIOHi

0 ACCEPT NO ACCEPT Ut
16 0.999827 6.000173
18 0.90 090 0,003610
20 0.9 586 0.026412
22 0,894392 0.105100
24 0,726855 0.77314$
26 0.48656e C,513432
28 0.249650 0.750350
30 0,089923 0.91007Z
32 0,019865 0.960135
34 0,902056 0.997944

TRUNCATE AT THE FIXED SI;E SAMPLE

THE WALD REGION IS AS FOLLOUSI

TRIAL ApCEPT HO ACCEPT HI

2 * SE.,UENTIAL TEST PftOPERTIrs
3 3 TRUE D P(HO PINI) ASN VSN
4 * 16 0,997168 0;00283? 12:3499 26.298;
5 18 0,986983 0,013017 14.2162 35.59e6 0 20 0950912 0,04Y088 16,2964 43. ,.1V2? 0,850433 0,441567 18.2756 47,0056
8 1 8 24 0,689213 0;310787 19;6733 4

5.82
4

9 2 8 26 0,465572 0,534126 20,0647 43,lUe4
10 2 8 28 0,252097 0,747908 19,3452 40,914j
11 3 9 30 0,104829 0,895171 17,8019 37,3315
12 3 9 32 0,033186 0;966514 15,9162 30,7 4
13 4 10 34 0,008720 0,?91280 14,0980 22.8394
14 4 10
15 51
16 6 1
17 6 11
18 7 12
19 7 12
20 8 13
21 8 13
22 9 13
23 9 14
24 t0 14
25 11 15
26 11 15
27 12 16
28 7 8

REG10 CHANGE 13 3 9
REGION CHANGE 25 11 14
REGIO CHANGE 26 12 15
REGION CHANGE 27 13 15
REGION CHANGE 28 14 15
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Teat Plan 6

Nm 100

DI 20
ALPHA. 0.050
SETAx 0.100
EVALUATION OF REGION REOUESTED

THE FIXED SIZE TEST IS AS iOLLOaSI
SANPLE SIZE a 29
CRITICAL VALUE * 3
ALPHAs s 0.02398
BETA* 3 0,09926

FIXED SIZE TEST OC FUNCTIONS

D ACCEPT HO ACCEPT 01
0 1.000000 0.000000
5 0.976024 0.023974

10 0.681697 0.318304
15 0.308944 0.691056
20 0.099263 0,900731
25 0.023853 0.976141

TRUNCATE AT THE FIXED SIZE SAHPLE

THE HALO REGION IS AS FOLLOWSI

TRIAL ACCFPT HO ACCEPT Hi
I a a
2 2 3 SEUENTrAL TEST PRPERRTIES
4 0 3 TRUE D PIHO) pfH11 AS" VSN
5 * 3 0 iloOOOoo O ;OO030 17,0000 0.00006 a 3 5 0,953815 0;j46185 20,9193 21.4321
7 3 10 0,641491 0,450509 21;3971 41.49698 * 3 15 0,292589 01707411 18;4645 56.61989 a 3 20 0,098854 0,901146 14:8874 52.8936

10 * 3 25 0,026264 0;,73736 11:9423 39,7201
11 a3
12 3
13 0 3
14 0 4
15 0 4
16 a 4
17 0 4
18 0 4
19 0 4
20 1 4
21 1 4
22 1 4
23 1 4
24 1 4
25 1 . 5
26 1 5
27 1 5
28 2 5
29 2 3

REGION CHANGE 13 -1 3
REGION CHANGE 14 -1 4
REGION CwANGE 15 -1 4
REGION CHANGE 16 -1 4
REGION CHANGE 17 0 3
HEGION CHANGE 20 0 4
REOION CHANGE 25 1 4
REGI04 CHANGE 26 1 4
REGION CHANGE 27 1 4
REGION CHANGE 28 2 4
REGIO CHANGE 29 3 4
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Teat Plan 7

NS 100
DO: 10
DI 25
ALPHAS 0.050

-- BETAs 0.100
EVALUATION OF RESIO% RE3UESTED

THE FIXED SIZE TEST IS AS fOLLOS1 THE WALD REGION IS AS FOLLUwS1

SAMPLE SIZE a 37 TRIAL ACCLPT HO ACCEPT II

CRITICAL VALUE 1 6
ALPHA* 0.02845 a a
BETA* a 0,09251 2 a a

3 * 3
4 a 4

FIXED SIZE TEST CC FU;CTZONI 5 46 4

6 a 47 *4
8 *4

0 ACCEPT HO ACCEPT Mi 9 4

0 1.000000 0.000000 10 * 4
5 1.O0000 0.00000 11 5

10 ~ ~12 05
10 0.971553 0.025447
15 0.712933 0.?7067 13 0 5

20 0.324988 0.675012 14 0 5

25 0.092511 0.9074!9 15 0

30 0.01;974 0,983C26 16 0 5
17 .

TRUNCATE AT THE FIXED SI;E SAMPLE 18 1 6
19 1 6
20 1 6
21 1 6
22 2 6
23 2 6
24 2 6

SEQUENTIAL TEST PROPERTIES 25 2 7

TRUE D P(HO) pIHI) ASV VSN 26 2 7

0 11000000 0.000000 12.000D 000000 27 2 7

5 0,999605 0,000395 16.9536 36,0572 26 3 7

10 0,953829 0.046171 23.2090 79,9076 29 3 7

15 0,68750 0,412473 26,*517 89.6052 30 3 7
20 0,325810 0,74160 24.0430 95,1189 31 3 7

25 0,106668 0.893332 19;7799 85,1164 32 3 7

30 0,027316 01172684 15.8284 61,9862 33 4 8
35 4 8

36 4 8
37 3 4

REGION CHANGE 17 0 5
REGION CHANGE 18 0 5
REGION CHANGE 22 1 6
REGION CHANGE 23 1 6
qEGION c"A4Nr 25 2 6
REGION CHAGc 26 2 6
REGION CHANGE 21 2 6
REGION CHANCE 28 2 7

REGION CRINGL 29 2 7
REGIO's CHOPJCE 33 3 7
REGION C iAf.GE 34 4 7
REGION CHANjGF 35 4 7
REGION ChANGE 36 5 7
REGION CHANGE 37 6 7
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Test Plan 8

No 100DO 15 THE WALD REGION IS AS FOLLJuSI

Dim 30
ALPHAs 0.050 TRIAL ACCEPT Ho ACCEPT IIt
BETA* 0.100 1
EVALUATION OF REGION REOUESTED 23 0

- 4 04
S * S

THE FIXE: SIZE TESI IS AS IOLLO.S; 6 . 5
SAMPLE SIZE a 42 5
CRITICAL VALUE a 9 8 5 5
ALPHA* O 0,03531 9 5
BETA. m 0,08431 10 * 6

11 0 6
12 0 6

FIXED SIZE TEST OC rUNCTIONI 13 0 614 O 6

15 1 6
16 1 7

O ACCEPT HO ACCEPT Ri 17 1 7
10 0.999915 0.000085 8 1 7
15 0.964692 0.035305 19 2 7
20 0.712860 0.287140 20 2 7
2! 0.322025 0.677975 21 2 8
30 0.084309 0.915691 22 2 8
35 0.012734 0,9b7266 23 3 824 3 a

TRUNCATE AT THE FIXED SIZE SAMPLE 25 3 926 9

27 4 9
29 4 9
29 4 9
30 4 9
31 4 9
32 5 10
33 5 lO34 5 10

SEOUENTIAL TEST PROPERTIES 35 6 1036 6 1037 6 11
TRUE D PIHO) P(HII ASH ¥SN 38 6 11

10 0,998707 0,001293 19;547t 51,5726 39 6 1115 :6953480 0046520 25,9175 101.2009 40 7 11
20 01706231 0,298769 30.0355 112,3067 41 7 11
25 0,338401 0,461599 28,8132 117,0,73 42 5 6

:430 0,04717 0;09 63 24:1922 110,5474 REGION CHANGE 11 -1 6
35 0,023471 0978529 19'.3708 82,7037 REGION CHANGE 15 0 6

REGION CHANGE 19 1 7
REGION CHANGE 23 2 8
REGION CHANGE 24 2 8
REGION CHANGE 27 3 9
REUION CHANGE 32 4 10
REGION CHANGE 36 5 10
REGION CHANGE 37 6 10
REGION CrANGE 3A 6 10
REGION CHANGE 39 6 10
REGION CHANGE 40 7 10
REGION CHANGE 42 9 10
REGION CHANGE 41 8 10
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Test Plan 9
No too

Go, 25
Dig 40
ALPHAE O.SO
BETA' 0,100

EVALUATION or REGION REoUESTED

TwE FIXED SIZE TEST IS AS FOLLOVSI

A SAPLE SIZE 50
CRITICAL VALUE a 16
ALP.4A. * 0.03171

ETTHE ALO REGION IS AS FOLLOWS
[ TRIAL ACCEPT NO ACCEPT NJ

FIXED SIZE TEST OC FUNCTIONI I C H2

0 ACCEPT HO ACCEPT 01 5

20 0.999596 0.000404 6 6

25 0.968289 0.031711 7 7

30 0:743453 0.256547 6 7

35 0.337654 0.662346 9 * 7

40 0.076326 0.923674 11 0 7

45 0.007712 0.99228 
12 0 8

.13 1 8

TRUNCATE AT TRIAL 50 13 1
14 1 9

_ 16 2 0
17 2 9

18 3 10
19 3 10
20 3 10
21 4 10

22 4 11
23 4 11

24 5 11
25 5 12
26 5 12

SEQUETIAL TEST PROPETI'ES 27 6 12

TRUE 0 PIHO) p(HI) ASH VS" 28 6 12

20 g,996533 0;003467 21:8661 79,4777 29 6 13

25 0,951746 0,048254 28;4359 142.2807 30 7 13

30 0.729948 0,270052 33;0801 165,0477 31 7 13

35 0,358360 0,641640 33.8326 161,9724 32 a 14

40 0,104832 0,891168 28:9978 144,6135 33 8 14

45 0.020934 0,979066 23;3165 101,8754 34 8 14
35 9 14
36 9 15
37 1 15
38 1O 15

39 10 16
40 10 16

42 .1 16

43 1i 17
44 12 17
45 12 17
46 13 17
47 13 18
48 13 18
49 14 18
50 9 10

REGION CHANGE 18 2 9
REGION CHANGE 32 7 14
REGION CHAN.C 44 11 17
REGIOP8 CHA1rE 45 11 17
REGIOi CIIA SE 46 12 17
REGION CHANGE 47 13 17
REGION CHAN 4A 14 17
REGIO,1 CHA.GE 49 15 11
REGION CHANGE 50 16 17
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No 100 Test Plar. 10

DO: 40
01 60
ALPHAS 0.050

( BETAS 0.100
EVALUATION OF REGIO QEOUESTED

THE WALD REGION IS AS IOLLO-ISI

TRIAL ACCEPT HO ACCEPI HI
THE FIXFO SIZE TEST IS AS IOLLOWSI 1
SAMPLE SIZE a 40 2 a
CRITICAL VALUE * 20 3
ALPHA* * 0,03053 4

-B BETA S a 0,07257 5 0

6 0
7 0 7A, FIXED SIZE TEST OC fUNCTIONI 8 1 8
9 1 8

10 2 9
11 3 9

0 ACCEPT HO ACCEPT Ml 12 3 10i 40 0.969468 .0.030532 13 4 10
42 0.936909 0.063091 14 4 11
44 0.883426 0.116574 15 5 11
46 0.805132 0,194868 16 5 12
46 0,702338 0.297662 17 6 12
50 0.580792 0.419200 18 6 12
52 0,451057 0.548943 19 7 13
54 0,325989 0.674014 20 7 23S56 0,217219 0,782781 21 a 1456 0,132135 0:667865 22 8 14
60 0,072568 0.92743 13 9 15

24 9 15TRUNCATE AT THE FIXED SIJE SAMPLE 25 10 16

26 10 16
27 11 17
28 12 17

29 12 1830 13 to
SEQUENTIAL TEST PROPERTIES 30 13 1B31 13 18

TRUE 0 PIHO) PCHI) ASIJ VSN 32 14 19
33 14 1940 0,953206 0;046794 20;4036 89,2391 34 11 2042 0,916610 0;08390 22;0433 99,2o28 35 15 20

44 0,861244 0,138756 23:6398 105,9496 36 16 21
46 0,784629 01215371 24,1794 109,1421 37 16 2148 0,687702 0,31298 26;0251 109,3923 38 17 22
SO 0,57556a 0,424432 26;6403 17,9166 39 17 22
52 0,456909 0,543091 26;7605 105,8276 40 11 12
54 0,342060 0,651940 26,3779 103,5056 REGION CHANGE 6 -1 -1
56 0,240412 0,759588 255432 10C,474/ REGION CHANGE 28 11 17
56 0,158179 0t841621 24;3532 9528481 REGIO CHANGE 11 2 9
60 0,097378 0102622 229295 88,9986 RE'ON CHANGE 13 3 10

REGION CHANGE 40 60 20
REGION CHANGE 37 17 21
HEO%, CeN CE 3 ! 2:
REGION CHANGE 39 19 21
REGION CHANGE 40 20 21
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jmanufacturer. Each lot contains 30 tires and it is desired to

accept the lot if it contains D55 defectives (D0=5) and to

reject the lot if it contains D215 defectives (D1=15). The a

and a errors are chosen to be 0.05 and 0.10 respectively. For

this test, Test Plan 1 is appropriace. The truncated sequential

test region and the test properties are given in Section 4.1.

To carry out the sequential test, the following procedure is

followed. At each stage of the test a tire is selected at

random (without replacement) from those remaining in the lot.

The total number of defectives which have been observed is then

cc-ipared with the critical limits which define the test region.

This is continued until one of the critical limits is reached.

A typical sequential sample which might be obtained for

this case is shown in Table 4.1, along with the critical limits.

This is shown graphically in Figure 4.11. For this particular

sample, only 1 defective has been found at the 7th trial. A

decision is therefore made in favor of H and the lot is accepted.
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STTable 4. 1

Typical Sequential Sample

Trial cL (n) x cU(n)

1 * 0 *
- 2 * 0 *

3 * 1 3
4 * 1 3
5 0 1 4

6 0 1 4
7 1 1 4
8 1 4
9 1 5

10 2 5

11 2 5
12 3 5
13 4 5

Numberof Accept H 1

Defectives /

II

4------ X---

3/ 3, *I i

1 2 3 4 5 6 7 8 9 10 11 12 13

Trial Number n
Figure 4.11 Graphical View of the sequential Test

II
iI
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CHAPTER 5

COMPARISON WITH OTHER TESTS

5.0 INTRODUCTION

In this chapter, two types of comparisons are presented.

In the first section, comparisons between the fixed size sample

and the sequential tests of the hypergeometric distribution are

given. In the second section, sequential tests for the hyper-

geometric distribution are compared with similar tests for the

binomial distribution. The purpose of the first section is to

show the relative superiority (with rp'pect to the expected sample

size) of the truncated sequential test when c¢e.pared to fixed

size sample tests for the same hypothesis. The second section

shows the possible consequences of using Wald type regions for

the binomial distribution to develop approximate sequential tests

for the hypergeometric distribution.

5.1 COMPARISON WITH FIXED SIZE SAMPLE TESTS

In this section the fixed size tests described in Section

1.3 will be .-ompared and contrasted with the sequential tests

given in Section 2.1 and truncated as in Section 3.2. There

will be frequent references to the tables and graphs given in

Chapter 4. The OC functions for these two tests will be examined

along with the ASN function of the truncated sequential test.

From this, it will be quite easy to see the relative gain in

efficiency (with respect to the expected sample size) obtained by

using the sequential test.

97
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The fixed size tests used here were developed as described

in Section 1.3. They are the (non-randomized) tests with minimum

sample size such that the limits on the desired error probabil-

ities are met. From examination of the OC function for these

fixed size tests (these OC functions and their graphs are given

in Section 4.1), it is seen that these error probabilities are

usually qaite a bit smaller than the desired error probabilities.

This will have to be taken into considecation (in a subjective

manner) when making the comparisons presented here.

The graphs for each example test plan in Section 4.1 show

the OC functions f'er both the fixed size sample test (dashed line)

and the sequential test (solid line), as well as for the binomial

approximation test (dotted line), which is explained in the next

section.

Table 5.1 gives the true a and 0 errors for each of the tests,

along with the sample size for the fixed size test (which is also

the truncation point for the sequential test) and the maximum

value of the ASN function for the sequential case. The following

observations can be made about these example test plans.

The most important advantage gained by using a sequential

test procedure is an overall reduction in the amount of samplin;

required to come to a decision. This advantage is again demon-

strated here. The maximum of the ASN function for each of the

test plans ranges between 25 and 33 percent below the sample size

of the fixed size test. There is no doubt that these tests will

result in a considerable saving with respect to sampling costs.

There is, however, a small price to be paid for this saving.
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r
The a and 8 error probabilities of the fixed size tests

are never any larger, and are usually somewhat smaller, than

the desired error limits. The a and 8 errors for the sequential

test, while somewhat larger than those of the fixed size test,

are in all cases quite close and rarely above the desired limits.

Examination of the graphs of the OC function also illustrates

this point. From the graphs, it is again seen that the error

probabilities have increased somewhat, but that over all, the

OC curves are very similar. This is the price paid for the sample

size advantage described in the last paragraph.

It should be pointed out thet randomized tests meeting the

required error probability limits, which may have slightly smaller

sample sizes than do the fixed size tests presented here, can

usually be found. This type of test is not rften used in practice

and tends to be somewhat of a theoretical contrivance. Even when

compared to such randomized tests, the sequential tests are usually

superior.

5.2 COMPARISON WITH SEQUENTIAL TESTS OF THE BINOMIAL DISTRIBUTION

In this section, the Wald regions for tests of the binomial

distribution are examined. First, the physical characteristics

of these regions are compared with the regions for the hypergeometric

distribution which were found in Section 2.1. Then the binomial

regions are used as approximate tests for the hypergeometric dis-

tribution.
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For completeness, the well-known method of determining the

regions for a sequential test of the binomial distribution

(Wald, 1947) is briefly reviewed here. The same notation devel-

oped in Chapter 2 will be used.

The probability mass function of the binomial distribution

is

f(x,n,p)= (np (l-p) n-x 0Sx~jn (5.1)

This is the limiting distribution of the hypergeometric dis-

tribution if N approaches infinity and D/N remains constant.

The likelihood ratio used to test the hypothesis

H0: (5.2)

versus H1 : p=pl>P 0

is

L(x;pl,n) p (I-pl ) n-x
L(x;P0,n )  Po(1-Po )n-  53

where x is the number of defects observed after n trials. Fol-

lowing the same procedure given in Chapter 2, the rules for thc

test are

accept H0 if L(x;pl,n)/L(x;p 0 ,n)B

accept H1 if L(x;pl,n)/L(x;p 0 ,n)?A

and otherwise take another sample. The log likelihood ratio

function is found to be
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- g (x,p0,pl,n=Zn (L (X,pl,nl/L (x,P0,n)) (5.5)

=x-£n (pl/P0) +(n-x) • n ((l-Pl) /(l-P0))

The critical values for the log likelihood ratio are then

b=Zn (B) =Zn (a/(l-)) (5.6)

a=£n (A) =kn ( (1-a) /a)

We then find the critical values for acceptance and rejection at

each trial from the inverse function g when solving for x.

The equations for these are

kL(n)= Ig- q b,p 0 ,pl,n)]  (5.7)

o = [(b-nln((l-Pl)/(1-P 0 ))/£n(Pl(l-P0 )/(p 0 ( - p l ) ) )1

ku (n)= [g1 - (aP 0 ,pl,n)] +1

= [a-n~n((l-Pl)/(l-p0))/£n (pl(l-Pl))] +1

where K=[R] is again the greatest integer less than or equal to [R].

The inverse functions in (5.7) are linear in n and can there-

fore be represented by two parallel lines with slope

s=((l-P0 )/(l-Pl)/£n(Pl (l-P) / (P0(l-Pl)) )  (5.8)

and intercepts

I L=£n ( /( i-) )/£n (Pl ( l - p 0 ) / (P0 ( l-Pl ) ) )  (5.9 )

Iu=£n ((l-8)/a)/£n (Pl(l-P0) / (P0(l-p])) )

An example of these two lines, which define the boundary of the

sequential test regions, is shown in Figure 5.1. In the examples

which follow, the critical limits kL(n) and k u(n) are computed

kU
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Test
Statistic Accep

x1

/ ~Continue
~sampling

I 1 Accept H 0

/ Trial Number n

10

Figure 3.1 Typical Wald Region for the Binomial Distribution

and compared with the critical limits of the sequential tests of

the hypergeometric distribution, cL(n) and cU(n).

When using the binomial test regions to approximate the test

for the hypergeometric distribution, one must make a decision as

to which values to use for p0 and pl. Some approximations for

hypergeometric distribution are given, for example, by Johnson

and Xiotz (1969). These approximations are dependent on the sample

size n and their use in a sequential test would be as complicated

as the exact test is. For this reason p0 and p1 are taken here

to be

P0=D0/IN (5.10)

Pl =D 1/N
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For large N and small n, these are good approximations and would

likely be the values used in practice. Equation (5.7) is used

to construct the binomial test regions, with the following modi-

fications. First, if D0+1 defects are observed, the test is ter-

minated and H1 is accepted, as it is then known that H0 cannot be

true. Also, the test is truncated, again following the procedure

given in Section 3.2. No other modifications are made to the

test regions.

Table 5.2 gives the critical 7.imits for both the truncated

hypergeometric test plan (cL(n) and cU(n)) and the binomial ap-

proximation to this test (k L(n) and k u(n)) for Test Plan 3 (from

Section 4.1) where n=50, D0=2 and D1=12. This same information

is given for Test Plan 5 in Table 5.3.

Because these two distributions are the same at the first

trial, the critical values will be the same for n=l. The main

difference betw.een these two tests is that the hypergCOm,-tric

distribution test regions tend to shrink in width, especially from

above. The average distance between cL (n) and c u(n) Cecreases

with n until the tiuncation point is reaciued, w'ile the average

distance between kL (n) and ku (n) remains the same except at the

points where the test is truncated. The shrinking of the hyper-

geometric distribution test region is due to the finiteness of

the population. Also, the binomial regions usually cend to be

shifted by a small amount from the hypergeometric test region.

The effects of this are shown in the numerical results to follow.



I Table 5.2
Binomial and Hypergeometric Test Regions

for Test Plan #3 (N=50, D0=2, D1=12)

Trial cL(n) CU(n) kL(n) k (n)
u

1 * 1 * 1
2 * 2 * 1

' ,3 * * 1
4 * 2 * 1
5 * 2 * 2

6 * 2 * 2
7 * 2 * 2
8 * 2 * 21 9 * 2 * 2

10 0 3 0 2

11 0 3 0 2
12 0 3 0 2

* 13 0 3 0 2
14 0 3 0 3
15 0 3 0 3

16 0 3 0 3
17 0 3 0 3
18 1 3 1 3
19 2 3 2 3
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J Table 5. 3

Binomial and Hypergeometric Test Regions
for Test Plan #5 (N=50, D0 =20, D1=30)

T Trial cL(n) C U(n) k L(n) ku(n)

- 1 * * * *
2 * * * *

-- 3 * * * *
4 * * * *
5 * * * *

6 0 * 0 6
7 1 7 0 7

t8 1 8 1 7
S9 2 8 1 8

1 0 2 8 2 8

11 i 3 9 2 9
12 3 9 3 9

S13 3 9 3 10
4. 14 4 10 4 10

I 5 1ii 4 1i

16 6 ii 5 I1
17 6 ii 5 12
18 7 12 6 12
19 7 12 6 13
20 8 13 7 13

21 8 13 8 14
22 9 13 9 14
23 9 14 10 15
24 10 14 11 15
25 1i 14 12 16

2b 12 15 13 16
27 13 15 14 16
28 14 15 15 16

106
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Table 5.4 summarizes the results of using the binomial

regions as an approximation. The actual a and ft errors, along

with the maximum values of the ASN function, are given for each

test plan in Section 4.1.

It is seen from Table 5.4 that in almost all of the examples,

either the true a or the true P error is quite a bit larger than

what was desired and that error in the opposite direction is

smaller than what was desired. This can also be seen in the

shifts in the graphs of the OC function for the approximate tests,

L. as shown in Section 4.1. This seems to indicate that the test

approximation is, in a sense, biased. There seems to be no sig-

nificant difference between the maximum values of the ASN function

F for these tests. This is reasonable, as the tests are truncated

at the same trial.

The above observations indicate two things to the user of

these sequential tests. First, the binomial regions do not,

in general (except for cases where the population :ize N is large

when compared with a typical sample size of the test procedure),

provide adequate tests for the hypergeometric distribution. Also,

the importance of finding the exact test properties to compare

with the desired values is clearly shown.
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CHAPTER 6

ESTIMATION OF THE NUMBER OF DEFECTIVES
AFTER TERMINATION OF THE SEQUENTIAL TEST

6.0 INTRODUCTION
i

In this chapter, a method whereby one can obtain a point1-
estimator and/or confidence intervals for the number of defectivesI

-_ in a finite population is discussed. The estimation is to be
Iperformed after sequential tests, such as those discussed in

Chapter 2, have been terminated.

In generai, there are two basic types of sequential estima-

1 tion to be considered. First, there is the problem of sampling

sequentially until e-timates with the desired degree of precision

.I have been obtained. This might be expressed, for example, by

specifying the maximum allowable confidence interval length.
, Another type of estimation is often required when one would like

to estimate the parameter in question after completion of a se-

quential hypothesis test. This latter type of estimation is con-L sidered here.

A brief outline of the history of sequential estimation is

presented here first. This is followed by a description of a

* Igeneral method of estimation (given by Schmee (1974) and Goss

(1974b)) which may be used after a sequential test. The following

sections show how this method is applied to sequential tests of the

hypergeometric distribution. A numerical example is also given.

109
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6.1 HISTORY OF SEQUENTIAL ESTIMATION

This section presents a brief overview of some of the

approaches to sequential estimation which have received atten-

tion in the past. More comprehensive overviews of . -uential

estimation are given, for example, by Johnson (1961), Wetherill

(1966), Goss (1974a) and Schmee (1974).

The first results with sequential estimation were obtained

by Tweedie (1945) and Haldane (1945) who use an inverse binomial

sampling technique. Wald (1947), in his book, gives some struc-

ture to the problem and suggests an approach which he admits is

not optimal. While the problem was not solved by Wald, his work

seems to have led to the later results given by Anscombe (1953)

and Cox (1952a and 1952b). These procedures, which deal with

generalized boundaries, were also explored by Wolfowitz (1946),

Blackwell (1947), Savage (1947) and Knight (1965). Dixon and

Mood (1948) apply the "up-down" method to sequential estimation,

and Anscombe (1953) reviews the early xi.ethods of sequential es-

timation. Most of these early efforts were primarily aimed at

estimation rather than hypoLhesis testing followed by estimation.

Armitage, in his discussion of Anscombe's paper (Anscombe,

1953), points out that in general, the suggested sequential esti-

mation techniques are not any better than the standard fixed size

procedures. He also stresses the need for methods of estimation

to be performed after sequential tests of hypotheses. The follow-

ing is a brief review of the work which has Deern done with such

methods.



Girschick et al. (1946) give a simple method of finding

the unique unbiased estimator (UBE) for a binomial SPRT. For

tests of the binomial parameter, Armitage (1958) compares the

mean square error of the maximum likelihood estimator (which is

unbiased in a fixed size test, but not necessarily in a sequen-

tial test) with the variance of the UBE and gives a method of

finding confidence intervals which meet the classical probability

statement, and which are dependent on the stopping rules. Aroian

and Oksoy (1972) present a Bayesian procedure for estimation and

for finding confidence intervals. The procedure is to be used

at the completion of a sequential life test. A generalization of

this procedure is due to Schmee (1974) and Goss (1974c) and is

the basis of the estimation procedures develope-d here.

To complete our overview of sequential estimation, the Bayes-

ian approaches should be mentioned. This subject is treated by

Wetherill (1966) and DeGroot (1970). Box and Tiao (1973) discuss

the sequential nature of Bayesian methods of estimation.

6.2 THE GENERAL METHOD OF SCHMME AND GOSS

The method of estimation presented here is similar in nature

to the method given by Aroian and Oksoy (1972). Schmee (1974) and

Goss (1974c), in th3ir respective dissertations, give a general

method of finding point estimates and confidence intervals which

can be easily applied to sequential methods. Schmee (1974) applies

the method to sequential tests of the mean of a normal distribution

with variance both known and unknown. Goss treats the two-sided
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:3
test for the mean of a normal distribution with variance known

(Goss,1974b) and tests of the binomial distribution (Goss,1974a).

A description of the methcd follows; it is applied to tests of

the hypergeometric distribution in the following sections.

In order to present the method in a general fashion, it is

best to consider estimation of a continuous parameter from a

continuous distribution (e.g., the mean of the normal distribution).

When estimation is to be performed for a discrete parameter or

from a discrete population, the appropriate integrals will become

summations and probability density functions will become proba-

bility mass functions.

- When the direct method of sequential estimation is used,

one computes the probability of reaching or crossing each point

on the region's boundary (assuming a test in discrete time), for

different values of the true state of nature. The method for

doing this is treated in Chapter 3. Let P(AnI) and P(RI0)

represent the probability of accepting and rejecting H0 respectively

at crial n if 0 is the true state of nature. These probabilities

are easily found by using the direct method. If we take a Bayesid

view of the situation and assume a uniform prior for 0 (over all

possible values of 0), a "pseudo-posterior" (in the sense that it

is not based on a sufficient statistic ) distribution for 0 can be

found by using Bayes' Formula.

P(AI n0)
P(nIA) fP(A ni)dO

e (6.1)

P(O(R n) = P(RjnO1)
fP(Rn JO)dP (8 Rn ) 0
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The first equation is used if the hypothesis is accepted at

trial n; the second one is used if the hypothesis is rejected

there. Although this method is valid for certain distributions

(e.g., the binomial and hypergeometric), there can be both

theoretical and practical objections to it in other cases.

The first objection is that if there is more than one out-

come contained in the events An or R n , that information might.

be lost by grouping the outcomes into one event. The second

objection concerns the restriction to the uniform or "non-

informative" prior distribution. This is especially true with the

so-called "improper prior" which ranges between plus and minus

infinity and cannot be made to integrate to one (Box and Tiao,

1973). Both of these objections are eliminated with the more

general method developed by Schmee and Goss.

The general method makes use of all of the available infor-

mation and allows the use of any specified prior distribution.

Let P(8) denote the prior density of 8 and let f(x,nIO) denote

the density of x given 6, where x is the sequential sample ob-

tained up to trial n (where H0 is either accepted or rejected)

and 0 is the true state of nature to be estimated. If T(x)

is a sufficient statistic for 0, no information is lost by con-

sidering instead the density g(T(x),nlO). Note that this density

considers all possible values of the sufficient statistic which

are possible at the termination of the sequential test. The

density g(t(x),nIO), is obtained via the direct method. The

posterior is then computed as
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g(T(x),n 8)p(8) (6 2)P(8 IT (x) ,n)= (6.2)fg(T(x) n I Op(OdO

where the denominator is a normalizing constant used to make the

posterior integrate to one. In a Bayesian sense, this posterior

is sufficient in that it contains all of the prior information

and all of the information obtained from the sequential sample.

Using the posterior density, one can compute Bayesian con-

fidence intervals for the parameter 0. For example, (0,0)

where 6 and 0 are determined by

6P(8 T(x),n)dO =y/2- (6..")

fP(8IT(x),n)d8 = y/2

gives a 100(l-y)% Bayesian confidence interval for the state of

nature 0. An interval of shortest length can be found by fi,.Ainq

0 and 0 such that

fP (OJT(x),n)dO = (l-y) (6.4)8n

and 0-0 is a minimum. The expected value of the posterior "

E(8) =fOPn(O1T(x),n)d8 (6.5)

can be used as a point estimator for 0. The mode or median of

the posterior distribution can also be used for this purpose.

Other percentiles of the posterior distribution might also be of

interest.

Schmee (1974) gives some discussion on the choice of a prior

distribution (often a point of controversy). Box and Tiao (1973)
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also treat this problem at some length. Here, the uniform prior

is used, although another, more appropriate prior could be speci-

fied by the user of these procedures if desired.

6.3 INTERPRETATION OF THE POSTERIOR DISTRIBUTION

In order to interpret the posterior distribution given in

(6.2), one should take a Bayesian view of the situation. To do

this, consider D, the state of nature, to be a random variable.

It is also necessary to specify a prior distribution for D. This

can be (and often is) a uniform distribution covering all possible

values for the state of nature. Such a prior distribution is

* called a "non-informative" prior. When a Bayesian approach is

used, the sample likelihood and the prior distribution are com-

bined by using Bayes' formula to obtain a posterior distribution

expressing all of the available information about the state of

nature.

Some statisticians would object to this approach, claiming

that the parameter to be estimated is a fixed value and that-

only the sample from the population is subject to random flu-tu-

ation. One who follows the Bayesian approach, however, argues

that with the information from the sample and the prior dis-

tributi.on which expresses the prior beliefs about the parameter

in que 3tion, a posterior distribution can be found which contains

all of the available information about the state of nature. While

arguments still persist as to which of these approaches is the

proper one, the latter one will be used here for purposes of
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estimation. Some justification for taking this approach follows. 3
The best justification for considering the unknown parameter,

say D, a random variable, is that in many cases, it is in fact

random in a sense. Consider, for example, a situation where lots

of 100 transistors are to be accepted or rejected depending on I-
an indication from a sequential sample about how many defectives

are in the lot. Even if one is unwilling to consider the number

of defectives in a given lot a true random variable, the posterior j

distribution can still be used to express the relative "degree of

belief" for different values of the parameter. A
Besides the justification given above, the Bayesian pro-

cedure allows one to easily obtain both point and interval esti-

mates for any parameter. In addition, the posterior distribution

itself is available and because this is a likelihood procedure

and the distribution sample space is countably finite, our

estimates depend only on the observed data (and the assumed prior)

and are independent of any stopping rules.

The proponents of the classical approach to estimation do

not argue against using Bayes' theorem per se, but rather against

considering the unknown parameter a random variable, and with

the specification of a prior distribution based on subjective

probability. The effect that the prior distribution has on the

posterior, however, can be minimized by using the "non-informative"

prior discussed in the last section.
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6.4 ESTIMATION WITH THE HYPERGEOMETRIC DISTRIBUTION

This section treats sequential estimation when sampling is

from a finite population. The estimation is to be performed

after the completion of a sequential test of a hypothesis, as

explained in Section 6.2. Johnson and Kotz (19b9) mention some

fixed size sample methods for this distribution. Also, a method

of finding confidence intervals when sampling from a finite popu-

lation is given by Katz (1971). Some of these methods could be

applied to the situation here; however, the Bayesian approach, as

explained above, is used instead.

The following explains how the general method outlined in

Section 6.2 is applied to sequential tests of the hypergeometric

distribution. The probability mass function of the hypergeometric

distribution is

D) N-D
x n-x)h (n;N,n,D)= n (6.6)~n

D! (N-D)! n! (N-n)!
N! (D-x)! x! (n-x)! (N-D-n+x)!

This is the probability of observing x defects in a fixed size

test with sample size n. For a sequential test, the probability

of observing x defectives at trial n is always less than or equal

to the probability obtained in (6.6). This is due to the stoppinl

rules of the test and their effect on the number of "admissible"

paths to a point in the (n,x) space.

The probability of reaching the point (n,x) under the sequen-

tial test rules is
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h (x;NnDI=K(nx) D! (N-D)! (N-n)! (6.7)
s N! (D-x)! (N-D-n+x)!

where K(n,x) is the number of "admissible" paths to point (n,x),

as dictated by the sequential procedure. K(n,x) is in general

quite difficult to determine directly; however, the direct method,

as explained in Chapter 3, will allow one to easily compute the

probabilities in (6.7).

For each decision point (n,x), (i.e., a point at which the

test is terminated and a decision is made in favor of one of the

hypotheses) it is desired to obtain the posterior distribution

for D, the number of defectives in the population. Following

the procedure outlined in Section 6.2, a prior distribution for

D is assumed. Here, a uniform prior will be used so that

P(D (N+l) O-D<N (6.8)

Of course, any desired prior could be substituted for this.

Using (6.2) and (6.7),

h (x;N,n,D)P(D)
P(D x,n)= s

~h s(x;Nnj)P(j) (6.9)

f(x,N,n,D)
Ff (x,N,n,j)F3

(N-D)!where f(x,N,n,D)= (D-x)! (N-D-n+x)!

and x is the number of defectives observed at trial n.

The denominator in (6.9) is a normalizing constant used to

force the posterior to sum to one. The posterior in (6.9) is
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independent of any stopping rules and is easily evaluated

directly. This gives the desired posterior probability mass

function. As explained in Section 6.2, this distribution is

interesting in itself, but it is also useful to find quantities

Lsuch as the expected value or the mode of the distribution and
confidence intervals for the number of defectives in the popu-

-lation. This is done as follows.

The expected value (or mean) of the posterior distribution

is found by using (6.9) and changing the integration in (6.5)

I to a summation.

D = E(D) = ED-PDn (6.10)

which can be shown (Zacks, 1971) to reduce to

D = (x+l) (N+2)/(n+2)-1 (6.11)

It should be pointed out that the estimation procedure

described here is equally valid for the k>2 decision test. The

procedure to be used is exactly the same as it is for the two

decision test. This is because the estimates depend only on

the observed data and not on the particular stopping rules ofI the test (the stopping r'iles do, however, dictate points in the

(n,x) space at which the test might terminate). In fact, the

same procedure is also directly applicable to fixed size pro-

cedures.
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6.5 NUMERICAL EXAMPLE

Presented here, as an example, are the numerical results

of the estimation procedure for Test Plan 1 from Section 4.1.

Table 6.1 shows the posterior distribution for D, the expected

value of this distribution, confidence limits for D and the

actual confidence level. These are given for each decision

point on the boundary of the sequential test region.
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1:40
1020C

1030co ONE SIDLOD SEOUENTIAL TEST OF THE HYPERGEOMETRIC DIS7RIA1ITION
1040C*
1050Cs WJILLIAM 0. MEELR, -'q
106UC* INSTITUIE OF ADIIINISI.'4TI(OU AND MANAGL-HrrNT
1070C* UNION CULLECE

-~ 0fluC. SCHENECTADJY, NFW YORK 123U8
109cC: JULY 1974

112uC
1130 flIENsIO)N XC?U0),Y(2011)
1140 OPTION LOAD
1150 LOIIIVALENCE (AALPHA). CRAETA)
1160 FILENAME INPUT.IiJ11T
1170 LOGIC:AL LEV#LPSN*LEST
1180 INIFGFR XDY
1190 JUTFGFN FV.ESY*DSN
1200C DAIA INPUI.o0UT/50,66/
1210 1 PRINI,"INPIIT: h,UO,01.ALPHA,48FTA.mn"
1220 INI'IIT=""
1230 IflUT:"".

1. 1240 HEAI)C INPUT.21)XN,D0,fll,ALPHARETADXMO
1250 IF(XN.60.0.0) GO TO 99
1260 PRINTD"INPU7: EVAL,OSN,EST"
127u READ(ItdPUTp21)kV#DSNpEST
128u 44 FORMAT(1 11
1290 IOUT=""
1300 INPIJI:""
1310 100:00
1320 1 PI 01
2330 N:XN
1340 WRITE(IOUTel5)NPIDOuIDIALPHA,8ETA
1350 15 FORMAT(///"1N= *,15/" i-0= ",14/0 Dl= "o14/
1360 & " ALPHA= "*F6.J/" tRETA= "*r6.3)
1370 43 FORMAT(6F10U,11)
1380 21 FORIIAT(V
1390 LFV=.FALSE.
1400 LDSN=.FALSF.
1410 LEST=.FALSE.
1420 IFIFV.EO.1 )LE V=.TRUE.
1430 Ir(nSpJ.E0.I)LDSNz.TRIIF.
1440 irFST.EO.I)LFST=.TRIIE.
1450 IF(LEV)PRINr 11
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1460 it IOHHAT(m EVAL;UATION OIF RI-GION REOurSTFVO")
1470 ir(LEV.AND.LJSNdI'RINT 1?

1480 12 FORHiAT( fIRIHIJTInJ oF THE DSN RFOUESTLD")
1490 ir(LEV.AND.LL-SI)PRI'JT 14
1500 14 FOPMAT(" FSTIIATION OF PARAMI-TFR REQUESTED")

1510 PRINT,"INPIT: IL#PU#INC"
1520 RFA1( IhPlUT,21 )I1LDUvD I
1530 IF(DI.EO.0.0) GO TO 98

1540 IF(DL.GT.Pt) C-0 10 9H

1570 IDL:I1L..
1580 "AI:~t
1590C
160 JC Gol TO FIND 14E SMALLFST FIXED SIZF TEST

161 11C
16ZOl CALL FIXSI1(N,1DU,ID,ALPIIA,RIETANtST,IDLIUIlIl.
1630DC
1640C ?1f<O NATURAL TRU'4CAIION
1650C "11=0 rIXEII SIZE TFST
1660C M0>0 lRIJNCAIIUN Al HO0
16711IC
1680 I F ( Mn )10l, 211,o4 A
1690 10 iMfl=N
1700 PRINT 72
1710 72 FARMAT("OTIJNCATE AT TilE NATURAL END oF TlE: TEST")
1770 G0 To 3n
1730 20 1IOZNESI
1740 PRINT 73
1750 73 FORNAT("OTRUNCATE AT THE FIXED SIZE SAMPLE")
1760 GO TO 30
1770 40 PRINT 74,MO

1780 74 ArnlMAT("OTRIINCATE AT TRIAL ",15)
1790 30 CONTINUE
80ocC

1810C FIGURE WALD) REGION FOR DESIRED SEQUENTIAL TEST
182 0C
1830 CALL REGiflti(X#YA,Rl,InhI- 01.11,80)
11140 112 CONT I PUE
1850 PRINT,"INPUT: REGION CHANGE"
1860 READUINPUlT,21)XI*XJ*XK
J870 1212 FOR'IAT(7Flfl.U)
1880 11I:x 1
1890 IF(II.L.E.0) GO TO 235
1900 .ij=XJ
1910 KK=XK
1920 X(II):JJ
1930 Y(11)=KK
1940 HR' TE CIOIIT#769) IIJJ, KK
1950 789 FORMAT( PIGION CIIANGE%#413)

1960 GO TO 112
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1970 ?35 CONTINUE
1980C
1990C GO TO EVALUATE RFGION AND ESTIMATE PARAMETER IF DESIRED
P0O0C
2010 IV(LFV)CALL EVALCXYLESFNLDSNMOIL#IDU.IDI)
2020 GO To 1
20j0 98 PRINT 99QQ
2040 9999 FORIAT(" d*. INPUT ERROR *0.")
2050 99 PRINT 999
2060 999 FORMAT(" E1O Of HUN")
2070 STOP
2080 END
2090 SURRIlITINF FIXSIZ(N, iD,I11ALPHAHFTANESTIL, Inu, II)
?10DC .......................................................................
2110C
?120C TillS SIIHRUTINE DFTERHINFS THL IINRANDOOI7ED FIXEO SIZE IFST
2130C HAVING IHE SMALLEST POSSIHLF SAMPLF SiZE WHILE STILL
2140C HEEIING THE SPECIFIED EROR PROlAIJILITY LIMITS.
2150C
2160C -----------------------------------------------------------------------
2170C DATA IOUT/66/
2180 FILENAME IOUI
2190 DATA IRLNK,ISTk/1H INl*/
2200 ARK=ItILNK
2210 1O1T=""
2220 FN=FLNG(N)
2230 FIXOr=FLNG IDO)*FLNGf N-iDn )-FN
2240 FIXDI=FLNG(I1)FLNfl(N-ni1)-FN
2250 AM=1.-ALPHA
2260C
2270C FIND FIRST FSTIMATE USING METHOD OF GUENTHER
2200C
2290 NESTzCIIEST(N, IDfIDIALPIIABFTA)
2300C
2310C TRY IT
2320C
2330 CALL TRY(AItOIETA.IDO.iD1,FIXnO,FIXD1,NDH4,NESTICALPHtPRbTAP)
2340 IF(M4)2640,26402840
235uC
2360C CONDITIONS MET--REDIICF SAMPLE SIZE
2370C
23RU 2840 NEST=NLST-1
2.390 CALL TRY(AHBFTA, IDOInlFIXDO,FIXDINM4,NEST1 ICALPHAP.RFTAP)
2400 IF(M4)2840,2640,280r
2410C
2420C CONDITIONS NOT MET--INCREASE SAMPLE SIZE
2430C
2440 2640 NEST=NEST+I
2450 IF(NES1-N)296n,2960,2680
2460C
2470C METHOD FAILS--USE DEFAULT VALUFS
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2491UC
249U 2680 tARK=ISTk
2500 1 C=IflD
2510 NFSI:N-I0l
252n U0 TO 2760
2530 2960 CALL ruYcAMeF1A,I0,Ihl,FIXn0,FIXD1,N,i14,NFST,IC,ALPHAP,HETAP)
2540 IF(M4)2760#2640#2760
?550 2760 ALP'HAP=1.-ALPHAP
2560 49 FOHSM/// THF FIXEn SIZE TFSI IS AS FOLLOWS:",1X#Al/" SAMIPLE SIZ
2570 L ", 15/" CR IlIICA L VAL UE **15/" A LPHA. ",FloJ.5/ w

2580 &" BETA*. ".FlD.5)
2590 wRITECICIIT,49)IARK,NEST.ICALIHAP,HETAP
2600 ICG:,IC.I.
2610 WR[TIhCIOUT,16) -
26231 16 FORMATC//" FIXED SIZE TEST OC FUNCT10N:*//)
2630 WPITE(IOUT#689)
?b40 689 FCRIIAW(" D ACCEPT 110 ACCEPT Hi")
2650 C
?660C CiLCULATE THE CC FOR THE FIXED SIZE TESt
267 DC
?680 00 ?2 I=I0LIDUIDI
2690 ID=Il
27n0 S =0 .
2710 DO 3J1 I CPI 1 aiCG
?720 ICI=ICPI-1
273ff .13 51 =SI+71AYPFR (ND NEST. JoICfl
2741 S2=1 .- Sl
215n 22 WRITF(IflUT,56)Iln SIS?
2760 56 FORMAT(lX#,I5.2F10.6)
2770 RFTIIRN
2780 END
2790 S1IIUT I NF REG ION(X, YA1,P, I DO. I DI N,8O

282C

2830C NiIS SURROUlINE FINDS T11F RIGIOiNS FUR A 1oNE SInFln riSr OF THF
?f$4 UC HYPERGEOMETRIC DISTRIIIUl IN
?85oc
?1160C -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2870 C
2ttRtl LOG'ICAL XNG,YNG,0
P2t$91 IkHTECFi 05
2900 IISTFGFR XY

2910 njmtENSION xctI),Y(HO)
2920C 11AIA iOUT/66/
7930 FiIENAlIE lOUT
2940 IOL:""
295n1 XLU=FLtvG(IIJI),FLNGCN-lI1I-I LNG(N-II)n)-FNG(i',)
2960 WPITF:(OUT#16)
2970 16 FORMAT(/// Tlih WALD REGION IS As FDLLtJUS:"/
29R0 M . RAL ACCEPT hn ACCEPT HI")
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2990 A=ALOG((l.-Rl)/A1)
300U H=ALUGCR1/(1.-A1))
3010C
3112 0C INCREMIENT TRIAL NUMARE~
3030C 115 IS THE IJPPhR LIMITC.1) ON THE NUMRER OF DEFECTIVFS
3040C L5 IS THE LOWER LIMET(#1) ON THE NHMOER OF DEFECTIVES
;,u5oc
30611 130 22 1:1.110
3070 5CiO(INID-),
3080 IN 1.GT.1)L5zHAX0(L5.X(I-1))

-,30901 U5=1+?

3100 O:.FI.LSE.
3110 0)0 33 K=L5,U5
3120 X2=K-1
31-30 F(K2.GE.1-N*ID 1) GO TO 2380
3140 Yi=-l.E35L 3150 ';0 TI) 2540
3160 2380 IF(K2.LE.ID0 ) GO TO 2446
3170 XL=l.E35
3100 GO TO 2540
3190C

* -3200C FIGURE LIKIINUD HAITI) AND PROPER ACTION
321IJC
3220 2440 X1 =XL0,FLNG(N- 100- 1 K2 ).LlG( I DK2 )LN(I 01-KZ V.LNG(N-Ifll-t#K2)
3230 2540 IrcXL.LE.R.OR.K.NE.15) 0O TO 2720

32150 0=. TPIIE.
326n 2720 irta) 611 TO 2800
3270 Ir(Xi..tE.R) GO TO 2800
32A0 XU[)=K2-1
3290 0=.TPUE.
33011 ?800 irCXL.LT.A) GO) To 33
3i10 ir(K?.GT. 1) GOl TO 2900
339o Yi 1)=1(2
3.j31 GO TO 29A0
3340 33 Ciln I 1UE
3J1J)0 2900 Y(I)=-1
336UlC
3370C PRINT PEION OJOUNDRY POINTS
3383 C
3J911 2980 XtIG=X(I)*EU*-1
3400 YP6G=Y(I).EO.-1
3410 IF(I-MD)1?3,J?1,123
3490 321 X(I)=(X(I)#Y(I))/2.
3430 YfI)=Y(I)#t
3440 123 IF(XNG.ANfl.YNG) GO TO 10
3450 IF(XNG) GO rO It
3460 IF(YNG) (;0 TO 12
3470 WPI ThlIOIT,41 )I, XCI),Y( I)
3480 41 FOYiHAT(1X,14#4X.14#7X#14)
3490 GO TO 20
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3500 10 |RITE(IOIJT,42)1
351C 42 FORMAT(1X,14,7X,1HtlT0X,1H.) .
3 top0 GO Tn 20 .

.5. 11 WRITE(IOUT,43)I#Y(l)
3540 GO TO 20

7obil 12 WRIT{IOUT,44)iX(I)
3560 43 FORAT(1, I4,7X,1He, 7X,!4)

357U 44 FORMAT( I X, 4,4X 14,.1OX,IH)

3590C CHECK ruR NATURAL END OF TEST
3600C
3610 20 if'(Y(I).EO.X(I)+l) GO TO 40 ,

3o2u 22 CONTINUE
3630 40 RETURN
364o END
365U FUNCTI1O CHEST(NIDA,II JALPHA,.9ETA)
36601: .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3670C
3680C -ICuURP APROX SAMPIE SIZE USING HET;,3D nF GUEfNTHER MuODIIED BY
3690C MEEKER
3700C
3710C- -------------------------------------------------------------------------
3720 XN:N
3730 Do0ion
374o UI :II1
3750 XH=l.-BE T,
37611 C=n.
3770 1 CC, I.
7FW IV(0.OT.I'1) (0 TO 92

379U IL:X'JVAL(Xr,O0 1CXR )4.9999999

3"100 I= X.AVAL ( YN, On. C, ALPHA)
3810 IF(IL.(;r. lI) Go 10 1
3W20 92 CHiSI:IL
3H30 HE TURN
38411 END
3850 SIIIP01 loth- TRYCAHHE TA, IOn, IDlr1xDo, r'xl,P.4,NEST, IC,StsS2

380C TEST '0 SEE IF N4EST IS A LARGE ENOGUH SAMPLE SIZE TO MEET
3890C EUROR LIMITS.

390|1C M4:1 Ir CONIIIiONS ARE MET. 0 OTHERWISE
3911C
3920C .-------------------------------------------------------------------...
3930 fG:FLNG(N-NEST)4rLNG(NEST)
3940 FIXAnln:rG4FIXDD
3950 FIXAII1 :ru rlXl
3960 SI : 0.
3970 S5:Oo
3980 M4:1
3991) 17:MAX0(0lESTl;0O0-N)+1
4000 16=MIN0(nIfolNFST)+
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4010 D0 22 1:17.16
4020 IC=I1
41130 S2:SP*.EXP(FIXAD1.FLNo( Ifl-IC)-FL'GN-Iul1-NEST.IC)-FLNGC IC)
4040 9-rLNr.(NEST-IC))
40150 s1~sl'ExPriXAO0-FLNG( iIo-IC)-rLNG(N-InO-NFST.IC)-rFdoc IC)
4060 &-FLN(;(NEST-IC))
4070 ircS2.Gr.RETA) GO TO 3500
4080 IF(Sl.GT.AN.AND.S2.LE.RETA-, GO TO 3540
4090 22 CONTINUE

-~4100 35001 M4=0
4110 RETURN
4120 3540 IC=I-1
4130 RETURNE
4140 END
4150 FutiCTION XNVAL(XNDC,PROB)
4160 XNVAL=CHISO(1.2.oC*2. DPROR)
4170 XNVAL=(XNVAL&(2..XN*1..D,.5.C)+C*c2.oO-C) )/(4..D-2..C.XNVAL)
4180 RE TURN
4190 END
4200 SUBROUTINE EVAL(XY.ESTN.DSt4,NOIDL,IDU.IoI)
4 210 C
42?OC-------------------------------------------------------------------------
4 230 C
424UC THIS SUIBROUITINE EVALuJATES THE REGIoN FOR A SEOUENTIA. TFST Or
4251uC THE HYPFRCFUMl:TRIC IIISTHIHUTION (ONF SIDED TFST).
4260C I-STIIATION Or THE PARAME-TER IS OFFERED AS AN OPTION
4 270DC
4280C-------------------------------------------------------------------------
4 29 0C
4.3U0 INTEGFR XoYO
4310 RFAL N1,N9,.
4320 LOU ICAL NOW
4330 LDGICAL I)SNEST
4340 F II FNA~E I1Oil1
4350 flIMhi'SION MARK(50)
4360 O1IIWNSION IHULD(I50)
4370 0IMI -NSION XCH),vY(MO)
4380 IJ1hEJSION AC200),B(200)
4390 nI11E4SION PROR(200)
4400 f:OIIIALENfCE (01 014TNP)
4410 FOUlVALENCE(XMI-AN%;' ',MEAN(1))
4420 C
4430C NPS IS THE HAXIMIIM NUMBEIR Or lFCISION POINTS
4440lC NMAX IS THF MAXIMUM POPULATION NIZF
4450DC
4460 DATA ISTEP/9/
4470 lOUT:""
4480 irC.NOI.DSN)WRITE( IOUTa43?)
4490C
4500C INChiENEHI TllE DEFECTIVF NIJNHER
45 10C
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4520 (J0 22 lD=IDL#lI)UPIDI
4530 D= 1 [-i
454U IrcnSN)WHITE(IJIJT,4921)D
4550 4921 FORMAT(///" NIII48ER OF DEFECTIVES " ,15/)
4560 432 FORHAT(54H0 TRUE 0 PCHO) P(HI) ASN VSN
4570 43 FORMATC46HO TRIAL PC(110) PCH1) P(T) P(C)
4580 IFCOsN)wRI TEC(91,I43)
4'590 A9=0l.J
4600 R(9zfl
4610 N9=0.
4620 y9=fl.
46.10 NP=O
4640 DO 77 1=1,910
4650 77 A(I):fl.
4660C
4670C INCREMENT THE TRIAL NUMBER
4680C
4690 DO 3.3 1:1.10
4700 NiZ!
4710 13=1+3
4720 N2=NI*Nt
473u DO so J=l,tlo
4740 88 BCJ)=O.
4750 IF(1-1)25,25,26
47601C
4770C FIGURh PRORs FOR FIRST STEP
47SUC
4190 25 A(?):FLOAT(O)/iLOAT(N)

4810n 00 TO~ 3540
482)uC
483uC ROUNI)RY POIN~TS
4fi40C
4850 ?6 LPI:X(I-1)
4860 LP?=Y(I-t)
0,70 LPC=X I )

S4R80 104:Y(I )
4890 LP9= 'AXPCO,LPI)*1
490n ir(LP?.EO).-1) SO TO 28

4950C H~:IOVP2,IS 10 THE NFXT STEP

4960C

5000 S=O/Ot
5010 (~)n~)AJI*.1*-S)
50120 H(J,1):fl(.i41)#A(J)GS
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-- 5030 34 CONTINUF
5040 P6=0.
5050 P7=0 .
5060 IF(LPC.LE.LPI) 0GO TO 52
5070 IF(LPC*1151#5?*51
50n,3 51 LP=MkXOCUt.Pl41)#1
5 090 C
5100C ACCEPT POINTS
51113C
5120 LPCI=LPC.1
5130 11O 22? J=LP.LPCi
5140 P6=P6.IiC(J)
5150 222 BCJ):0.
51650 A9=A9#P6
517c 52 iF(LP4*1,53,54,53
5180 53 Li=LP4*1
51913 IFCLP4.GT.1P2.AND.1P2.GE.1) 00 TO 54
5200u LP=Ll
5210 IF(LP4-LP2)3l8AsJl81.3181
5220 31R0 L?=LP7+l
52JUG
5240C RE~JECT PO!NTS
5?5uC
5260 3181 Do 333 JzL1,L?
5270 P7=P7.RCJ)
5280 333 I3(J)=fl.

5290 RQ=R9.P7
5400 54 PR=P1.P6

5:I?OC ACCUMULATE FXPFCTEO VALUES
5 3.10n C
5440 NcQ:Ng*PR*Nl
531i0 VQ=V9.PR*N2
5360 CFPJJ. 0N in 35011
5370 IFCN9)356,3540,356
5380 356 Plfj~t.-R9-A9
85390 I4HITE( IoUT,445)1.P6,P7#Pfl#P1O
5400 445 FnFMAT(lXP15D4ri0.5)
5410 449 FORHATC3X2016)
5420 4500 IF(LPI.EO.-1.OR.LP4.EO.-l) GO TO 354U
5430C
5440C CHIECK FOR *NATURAL ENOf OF TEST
5450C
5460 IF(1P4-LPC.LE.1) 60 TO 3580
5470 3540 flU 996 J=1,13
5480 996 A(J)=RCJ)
549U 33 C 0N T I N U
5500 35t0 Y9:V9-N9oN9
5510 ijflj
5570 ??9 ent4rINIIE
5530 irC.NO1.DSN) Go in 368o1
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5540 WRITE(IOUT.43?)
5550 3680 WRITE(IOUT#401) 01 A9#R9oN9pV9 7
5560 401 FOHIAT(lX#I6#2Fl2.6#2F12.4)
5570 27 CONTINUEJ
558i) IFC.NOT.I-ST) GO TO 99
55 90 1DO 216 NT:2tlfl
5600 KTO:1
5610 IFCX(NT).LE.X(NT-1)) 60 TO 4212
5620 Nfl:x(NT)
5630 GO TO 4213
56411 4212 IF(Y(N1).FO.-l) GO TO 216

5650 IFCY(N4T).GT.YCNT-1..AND.Y(NT-1).NF.-1) *0 TO 216

5660 ND:=YCNT)
* 5670 KTO=?
* 5680C

569oC Finol CONFIDENCE INTl RYAL
5700C
5710 4213 CALL CICXM,II)L,IDUILIIIPRORPPNTND,N)
5720 WRITE(IOIJT,16)tDNTXMII.,IU,PP

* 5730 16 FOP14AT(//IX, 14," DLFECIIVFS AT TRIAL *,I4#
5740 & ESTIMATE= "aF7.3/0 LOWER LIM
5750 &IT= 1,14," UPPER LIMIT= ".14100 CONFIDENCE LFVEL= ",F6.4) -

576o IRITF.(OIT,17)
5770 17 FOPHAT( /" POSTERIOR DISTRIBUTION OF D"/)7
5780u IS=1-tSTIP
579u 1 IS=ISISTEP
5800 IF=1S.ISIFP-1
581n1 IF.:MINO(JF,IDUt)
582') 00 426 IK=IS.IE
58311 426 1110L j)(JIK) =I K -1
5b40 WPITr.](IT,449)(JNOLO(I),I=IS, IE)
5850 wPITE(IOIJT,215)(PROR(I),I=ISIF)
58i61 215 FOkMAT(6X,20F6*3)
5 ft7 I hRI T F ( 1oI p T13 16)
5880 1316 FOR'IATC1i )
5890 ircIF.hF.inu0 GO TO 1
5900 WRITE(InUT,1319)
5910 1319 FOI"IAI(IA,tIO(tH-))
5'9211 IF(KTO.EO.1) GO TO 4212
5930 2i6 CflorINUE
5940 99 RE I lHN
5950 END
59f50C-- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

5970C

598U1C THIS SURROUTIN FIVDS TMF SMALLEST CONrF~.cE INTERVAL

5990C FOR THlE TRUF NUMIJER uF DEFECTIVES
60DUC

6020 S1IIRU1I NE C IC(XHEAN, I III I .I L, IU, PRO, P, NT, ND.N)
6030 DIMFNSION PRUR(200)
61140 GAIA CIL/.1/
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60'50 Pzo.
6 If6 0 XM41AN=O.

6070 InU=N-NT*ND+1
6080 1I)L = NO +1
61190 DO 99Q 1=1,101

-- 6100 999 ppUsCI)=v.0
6110 PSI'IM=0.fl
6120 D0 77 1:IDI,IDU
6130 J=I-1
6140 PP(JR( I ) zrXP( fLf-G (J)F1NG N-J )-rLNG J-ND)-FLNG N-J-NT+NDl
6150 77 PSIJm=PSIJN.PRUPCI)
6160 DO0 88 I=IDL,I1PU
6170 h8 PROPqI()=PRlR(I)/PSUm
6180 FPO 22 ]InfL, IPU
6190 22 XHEAN=XMEANPRU8(J)*FLtJA7(I-1)
6200 1 If= I 11
6210 11:1
6220 1 IF(PR08(IL).LT.PROBC1U)) 00 TO 2
6230 PH:pPHOII(IU)
6240 IF(PH.GT.CIL) GO TO 99

6250 pzpH
6260 1 U= 111-1
6?70 GO TO 1
628U 2 Ptf=P+PUOHC(I L

6290 lrcPH.GTCclL) GO TO 99

6S300 PZPH

6,320 on To 1
6330 99 P=1.-P
6340 IIl 1-1
6350 IL:IL-1
6 J 50 NF!IN

63570 F NO
6.18 0 C
6J90C r',NCrlotl 10 RETURN 111L NATURAL LOG FACTORIAL
6400 fIlNrt iON FLAIOCJ)
t-410 IIMFNSION F(105)
6420 IIATA MARK/Il
6430 IF(PARK)20,?U,?l
6440 20 FINC=F(.1)
6450 HFIIJRN
6460 21 F(lhOn.

6470 F'2):fl.
6480 Do 22 1=30103
6490 F CI )=( 1-1) ALUG(FLOAT( I-I))

6500 22 CONTINUE
6510 tIARK=A
6520 GO TII 20
6530 END
6540C
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1000 REM

1020 PEM.
1030 PEMC THIS PROGRAM WILL EVALUATE A THREE DECISION
1040 REM* SEoUENTIAt TEST REGION. THE REGION MAY BE rRUNCATED.
1050 REM. THE TEST REGION IS TO BE READ FROM FILE
1060 REM* REnOil>. THE ASN ANO OC FUNCTIONS ARE PROVIDED. THE
1070 REM* DISTRIBUTION OF THE DECISIVE SAMPLE NUMBER MAY BE
1080 REM* PRINTED AS AN OPTION.
1090 REM*
1100 REM*
1110 REM* WILLIAM 0. MEEKER, JR#
1120 REM* INSTITUTE OF ADMINISTRATION
1130 REM* AND MANAGEMENT
1140 REM* UNION COLLEGE
1150 REM* SCHENECTADY* NEW YORK 12308
1160 REM. JULY 1974
1170 REM.
1180 REM.
1190 RElI..... **....,*...,*.....,. .,................
1200 REM
1230 DEF FNZcX=INT(X*1O000.,+.,5/Iooooo,
1240 DIM AS33
1250 PRINT "CHARACTERISTICS OF A GIVEN 4YP.-GEOMETRIC TEST REGIOn
1260 PRINT "TWO SIDED TEST"
1270 READ DODID(5N
1280 PRINT
1290 FILES REGON>
1300 DIM Z(101.4)
1310 READ #1,1

1320 REM ......
1330 REM READ PFGION FROM FILE #1
1340 REM ......
1350 MAT READ £l;Z
1360 LET T7=1
1370 FOR I= To 100
1380 LET XII|)=ZI7 l]
1390 LET YIIl=7(i,21
1400 LET UtII3=7I,3)
1410 LET Vtl1=711,41
1420 NEXT I
1430 LET mIz(I01,1
1440 LET "2=Z1 1 01, 3 1
1450 LET PO=41 MAX M2
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_ 1460 PRINT NN=*;N
1470 PRINT
1480 LET 01=0
1490 PRINT "DO YOU WANT TO SEE THE DSN"|
1500 INPUT AS
1510 IF AS <> "YES" THEN 1720
1520 LET 01=1
1530 GOTO 1840
1540 PRINT
1550 PRINT
1560 PRINT "TRLJE";TABU(3);"PROB";TAB(26);"PRBI
1570 PRINT TAB(38);-PROBN
1580 PRINT " D";TAB(IL);"ACCEPT HIN;TAB(24);"ACCEPT HO0
1590 PRINT TAF(36);"ACCEPT H2';TAB(53);NASN";TAB(65);"VSN-
1600 REM ------------------------------------------------
1610 REM SPECIFY TRUE DEFECTIVES
1620 REM ................................................
1630 FOR D:DO TO DI STEP D5
1640 LET A9:R9=B9=V9=N9=O

* 1650 MAT A=ZER
1660 IF 01=0 THEN 2140
1670 PRINT
1680 PRINT
1690 PRINT "NUMBER OF DEFECTIVES=:"D
1700 PRINT NTPIAL-;TAI33);-PROB";TAB(26);"PqOBP;
1710 PRINT TAB(36I;"PPOU";TAB(52);"TOTAL";TAB(64);"PROB"
1720 PRINT "NUMBER";TAB01)W"ACCEPT HI";TAB(24)"ACCEPT HO";
1730 PRINT TAB(36);"ACCEPT H2";TAB(52);"PROBw;
1740 PRINT TAB(62);"CCNTINJUE"
1750 REM ------------------------------------------------
1760 PEM SPECIFY TRIAL NUMBER
1770 REM ------------------------------------------------
1780 rOR tll:l TO PO
1790 LET N2=NIANI
1800 PAT B=ZER
1q1O IF NI>1 THEN 2280
ld2O LET B(21=D/N
1830 LET BCI=I-Br2I
1840 GOTO 3880
1850 LET PI=XINI-lI
1860 LET P4=VINI-I
1870 LET Pc,=O MAX PI
1880 IF P1:-i THEN 2400
1890 LET 08=P4 MIN NI
1900 GOTO 2480
1910 LET PB=Nl
1920 REM ------------------------------------
1930 REM FIGURE PROBABILITIES AT THE 'EXT STEP
1940 REM ------------------------------------------
1950 FOR J=P9 TO P8
1960 LET S=(O MAX (D-J))/(N-Nil,)

.---
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1970 LET B(J.11=BIJ*ll1AIJ*II*(1-S)
1980 LET B(J.ZI=BIJ#21+AIJ+1].S
1990 NEXT J
2000 REM ...........................................
2010 PEM ALLOW PRINTING OF INDIVIDUAL PROBABILITIES
2020 REM ...........................................
2030 LET AS=oNw
2040 IF AS <> "Y" THEN 2820
2050 FOR I=0 TO N1+2
2060 IF B11.11= THEN 2740
2070 PRIt!T NI;1;BII*I1
2080 NEXT I
2090 REM --------------------------------------------------------------------
2100 REM FIGURE PROBABILITIES OF TERMINATION
2110 REM -- -------------------------------------------------------------
2120 LET P3=UINIl
2130 LET P4 =VINI1
2140 LET PI=XINII
2150 LET P2=YINlJ
2160 LET P5=P6=P8=O
2170 IF P3<P2 OR P3=-i OR P2=-l THEN 3140
2180 REM -- --------------------------------------------
2190 REM FIGURE PROBABILITIES FOR ACCEPT
2 2 0 0 R E M . .... ... .... .... .... ....- - -
2210 FOR J:P2 TO P3
2220 IF T7=1 THEN 3060
2230 PRINT "Y-IJ;BiJ*Ii
2240 LET P6:P6.Brj.1)
2250 LET BIJll:O
2260 NEXT J
2270 LET B9:Bg9P6
2280 IF Pl=-I THEN 3360
2 2 9 0 R E M ...............................................
2300 REM FIGUPF PFOBABILITIES FOR REJL
2310 REM ...............................................
2320 FOR J:(O 4AX XIlI-lI) TO PI
2330 IF T7:1 THEN 3280
2340 PRINT "X":J;EIJ*1I
2350 LET P5:P5*BfJlI
2360 LET (tj.ll=0
2370 NEXT J
2380 LET A9=A9,P5
2390 IF P4=-I THEN 3640
2400 LET LI:L2=P4
2410 IF P4 >= YINI-1I THEN 3500
24:0 LET L2:YINI-lI
2430 REM -----------------------------------------------
2440 REM FIGURE PROBABILITIES FOR REJU
2450 REM ...............................................
2460 FOR J=Ll TO L2
2470 IF T7:1 THEN 3560



J142

2480 PRINT wV":J;B[J*ll
2490 LET P8=P8,BLJ*tl
2500 LET e(J,11=O
2510 NEXT J
2520 LET R9-R9P8

-- 2530 LET P9=P5,P6+PEi
2540 LET V9:V9,N2*P9
2550 LET N9-N9,N1*P9
2560 IF 01=0 THEN 3840
2570 IF N9=0 THEN 3880
2580 REM ---------------------------------------------
2590 REM PRINT DSN IF DESIRED
2600 REM .............................................
2610 PRINT Nl;TAB(11):FNZ(P5);TAB(24);FNZ(P6);TAB(36);FNZ(PO);
2620 PRINT TAB(50);FII7(P9);TAB(62);FNZ(I-R9-A9-B9)

2630 IF P1:-I OR P2:-i OR P3:=- OR P4=-1 THEN 3880
2640 IF P2-PI c= 1 AND P4-P3 <= 1 THEN 3920
2650 MAT A=B
2660 NEXT Ni
2670 LET VS=V9-N9.2
2680 IF 01=o THEN 4080
2690 PRINT
2700 PRINT
2710 PRINT "TRUE";TAB(13);"PROB";TAB(26);"PROB"I
2720 PRINT 7AB(38);"PPO8"
2730 PRINT " C";TAB(II);"ACCEPT Hl";TAB(24);"ACCEPT H0"|
2740 PRINT TAe(36);"ACCEPT H2";TAB(53);"ASN";TAB(65);"VSN"
2750 PRINT D;TAB(11):FNZ(A9);TAB(24);FNZ(B9)$
2760 PRINT TAF(36);FNZ(R9);TAB;50);FNZ(N9);TAB(62);FNZ(V9)
2770 NEXT D
2780 DATA 20,60,4,100
2790 END


