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I.    INTRODUCTION 

The subject of internal wave generation by a body has been addressed 
1 2 3 previously by Miles   ,   Carrier and Chen   ,  and Milder   .    Each of these 

authors was concerned primarily with the far-field solutions.    Miles  used 

the method of rtationary phase to obtain analytic expressions for the far- 

tield internal-wave disturbance  in a fluid with a constant Vaisala frequency. 

Carrier and Chen used similar  techniques to obtain a far-field solution in 

which the  Vaisala frequency is constant in a finite thickness layer,   and zero 

elsewhere.     Milder soivtd the problem by numerically   nverting the  Fourier 

transform of the solution. 

The formulation of the problem used is mathematically equivalent to 

that of previous authors, except that different dependent variables are used 

in such a manner that the flow is taken to consist of the  sum of rotational 

and vortical parts.    This formulation elucidates both the physics and the 

mathematics of the problem and suggests an obvious singular perturbation 

expansion procedure leading to a set of both near-field and far-field equa- 

tions.    While the original equations are a coupled set of two elliptic partial 

differential equations in three dimensions,  the near-field expansion de- 

couples the equations  so that the dependent variables may be solved 

sequentially rather than simultaneously.    In addition,   the density gradient 

terms appear only in the inhomogeneous terms of the near-field equations, 

allowing one to use simple superposition methods to generate near-field 

solutions for arbitrary thermoclines.     The far-field equations are also 

Miles,   J, W.,   "Internal Waves Generated by a Horizontally Moving Source," 
Gecphysical Fluid Dynamics,  ^,   1971,   pp.   63-87. 

t 

Carrier,   G. F.,  and A.   Chen,   "Internal  Waves  Produced by Underwater 
Vehicles," Report 182-6001.RO-00,   TRW Systems,  Redondo Beach,   Calif., 
November  1971. 

Milder,   M.,   "Internal Waves Radiated by a Moving Source, " Report 2702- 
007,   R&D Associates,   Santa Monica,   Calif.,   February 1974. 
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simplified - they are found to be elliptic in only two dimensions and wavelike 

in the direction of freestream flow.    Th«i derivation of these equations is 

given in Section II. 

As indicated by the title,   this report considers only the solutions to 

the near-field equations.    Analytic solutions to the near-field equations Are 

given in Section III for the case of a constant Vaisala frequency in some 

finite   region,  and zero elsewhere.    The solutions in  Section III 

include the potential flow,   the first perturbation due to stratification (interval 

wave),  and the first perturbation due to 'he presence of a free surface 
(gravity wave ). 

Or.e new result of this study is a breakdown in the vicinity of the body 

ol the usual slender body assumption.    This breakdown results in a singu- 

larity behind the body which extends to infinity.    Section IV discusses the 

origin of this breakdown and outlines a technique for obtaining a set of equa- 

tions which does not have an anomalous solution.     The impact of the singu- 

larity on the predicted surface H-^turbance is also discussed. 

Section V presents,   m graphical form,   some typical surface currents 

obtained from the lengthy equations derived in Section III. 

• 6- 
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II.     PROBLEM FORMULATION 

Consider the disturbance created by a slender body moving at constant 

velocity  U      in an inviscid stratified,   infinitely deep fluid with negligible 

surface tension.     Eulenan coordinates fixed in thd body will be used so the 

flow is steady.     The body will be represented by one source sink singularity 

pair.     This is largely a matter of algebraic convenience; the solution for 

any body 01  wake which may be described by some distribution of singulari- 

ties may be obtained from the source sink solution because of the linearity of 

the proolem. 

The basic conservation equations are conservation of mass 

(PV)   =   0 (1) 

and conservation of momentum 

(V . V ) V + vp/p   tf i (2) 

In addition,   in incompressible flow each fluid particle has a density which 

remains constant as the particle travels along streamlines. 

(V • V)P   =   0 

The boundary condition at the free sur'ace is constant pressure. 

At this point,   it is convenient to introduce the vorticity 

(3) 

u VxV (4) 

The equation governing the production of vorticity may be obtained by taking 

the  curl of the momentum Eq.   (2) combined with Eqs.   (1) and (3) 

(V •  V)u> - (w •  V)V + v   0    XVP   ■   0 (*) (5) 
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Thf physical motivation for the introduction of the vorticity is as follows. 

Near the body the flow field is approximately a potential flow.     However, 

the perturbed density field created by this potential flow interacts with the 

pressure field associated with the thermocline through thp last term in 

Eq.   (51 to generate vorticity.    Once generated,   this vorticity is convected 

downstream by the flow field.    Furthermore,  Saflman4 has shown that a 

concentrated vortex pair will oscillate in a stratified medium.    In the present 

case,   it is assumed that the vorticity will remain distributed throughout the 

How rather than rolling up into two concentrated vortices.     However,  each 

pair of vortex filaments in the flow field should oscillate in a manner 

qualitatively similar to the oscillation found by Saffman,  and a sum of all 

these oscillations acting together should provide a description of the internal 

wave. 

There are several small parameters which may be used to linearize 

the preceding nonlinear equations.     These small parameters will be intro- 

duced into the equations one at a time for clarity.    In the  so-called slender 

body approximation,  it is assumed that all perturbations of the flow variables 

from their nominal values (at upstream infinity) are small.    Thus,  define 

•he following first order quantities as perturbations about the nominal 

velocity U     ,   pressure p   (z),  and density p   (z). 
(JO o '    ~o 

V   =   (U^ + u,v,w) (6) 

P  ■  P0(z) + Pl (7) 

p >   po(z)   +   p1 (8, 

4 
Saffman,   P. G.,   "The Motion of a Vortex Pair in a Stratified Atmosphere," 
Studies in Applied Math,   LI(2),   June  1972,   pp.   107-119. 
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Combining Eqs.   (1) anc   (3) and substituting in Eq.   (6) gives one 

u    + v    + w     =0 
x        y z (9) 

The linearized versions of Eqs.   (2),   (3) and (5) are 

av 
Uoo 87   ^Pl/Po4 ^«V'O   =   0 

dPl dp 

oo    dx dz 

u  ^ - 4- co 9>;        p2 
0 

dp dpo- — ^xypj  ♦ VPj  x—lz 
0 T ■   0 

(10) 

(11) 

fl2 

and both vorticity production terms in Eq.   (12) are the cross-product of a 

vector in the z  direction with a general three-dimensional vector.     Thus,   the 

vorticity can have non-zero components in the x and y directions only.    This 

fact,   together with the definition of the vorticity,  Eq.   (4),   implies that the 

x and y components of the velocity vector are derivable from a potential. 

The l component of velocity consists of a linear combination of a potential 

velocity and a rotational velocity, il.     Thus,   Eq.   (6) is  replaced with 

V   =   (U      +0,0,0     f Q) 
oo        x       y       z (13) 

where U has two physical interpretations.    Besides being the vortical part of 

the w velocity,   it is also a vorticity function from which the two-dimensional 

vorticity vector may be obtained by differentiation.     (It is analogous to the 

stream function in two-dimensional flow. )    Therefore,   the vorticity compo- 

nents are given by 

y      x (14) 
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Substituting Eqs.   (13) and (14) into the y component of £q.   (12) and 

eliminating Pj and p1 using Eqs.   (10) and (11) gives one 

d Inp 

oo 'x oo   xx        U dz 
CD 

^  + n + 
[f 

oo f g XX (is; 

Although various substitutions have been made,   Eq.   (15) has the same physi 

cal significance as Eq.   (12).     The left side of Eq.   (15) is the convective 

derivative [approximated via the slender body assumption as  U    (d/lx)] of 
oo J 

the y comoonent of vorticity.     The right side of Eq.   (15) is composed of the 

vorticity production terms.     The importance of the physical basis for this 

equation will become apparent subsequently. 

Following Miles   ,   it is convenient to introduce what could be termed 

a Vaisala wave number k 

2 2 7      ? 
k" - k (z) = rr/ir 

oo 

d In p 0 

u dz (16) 

oo 

where N is the  Vaisala frequency. 

A combination of Eqs.   (.13) and (9) and of Eqs.   (15) and (16) gives the 

basic set of equations considered herein. 

^xx      ^yy      ^zz        z 

a    + k   (^  + ^ + u2 *   /g) = o 
xx VTz oo    xx  e 

(17) 

(18) 

To these equations must be added the isobaric surface boundary condition. 

Inspection of Eq.   (5) shows  this is equivalent to requiring the vorticity com- 

ponents tangent to the free surface to be zero.    In the context of the present 

10- 
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slender body approximation thm means that « is zero it the surface.    Thus, 

from Eq.   (15) the surface boundary condition on 0 is 

2 
<f>    + U     6     /g   =   0 (IQ) 
^z oorxx  e '   7' 

This completes the derivation of the equations subject to the slender body 

assumption.    Although the equations are now linear,  they are still difficult to 

solve,  and it is convenient to take advantage of the additional small para- 

meters.    Both the internal waves  (characterized by k   ) and the gravity waves 

(characterized by U^/g) are assumed to be small compared to the potential 

flow associated with the body.    (Alternatively,   the Vaisala length squared. 
2 

1/k   ,  is large compared to the body length squared,  and U    /g is small 

compared to the depth of the body. )   Accordingly,   the equations will be fur- 

ther linearized in both these parameters.     (If the terms  involving U2 /e are 6     co  ^ 
set to zero,  then the preceding equation? are equivalent to those considered 

in Refs.   1,  2 and 3).    Ir the near field [x < 0(1/k)] the potential may be split 

into the following three terms,   identified respectively with the body,  u.e 

internal wave,  and the gravity wave. 

^ = ^Q +   ^G 
+ ko ^j + higher order terms (20) 

where k    is a typical value of k(z). 

The vorticity is first order and is associated only with the internal 

wa ve. 

fl =   k0 n   + higher order terms (21) 

Substitution of Eqs.   (20) and (2 U into the basic set Eqs.   (17),   (18) and (19) 

ßives 

V   *0   =   0; ^(surface)   =   0 (22) 

-11 
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V   ^   -   0; <(>        =   .  $        (surface) T, Cz Oxx 

"ixx   =   -   (k/ko'     6rJZ'
Ul   =r'lx   '   0'   «—« 

V    <f>    =   - Q    ; 4,    (surface)   =   0 
1 Iz       Iz 

(23 

(24! 

(25] 

where the upstream boundary conditions on il   are such that the freestream 

vorticity (internal wave) is zero. 

Note that the linearization has decoupled the equations,   and they may 

be solved sequentially rather than requiring a simultaneous solution.     The 

internal wave and gravity wave problems are,  of eourse.   completely indepan- 

dent  to first order,  and either one may be obtained without the other. 

Far downstrf.am of the body the zero order body potential will decay, 

and only the first order vorticity (which is convected downstream) will 

remain.     Thus,   the highest terms in both potential flow and vortical flow 

will be   0(k0l; consequently,  a different expansion is required far downstream 

of the body.    The far-field equations [x > 0(l/k)] are given here for com- 

pletenes.s,  even though only the near-field equations [x < 0(l/k)] are solved. 

(It will be shown that the slender body linearization as given is also not 

uniformly valid. )   To obtain the outer expansion,  it is necessary to rescale 

x in the form 

X   =   k  x 
0 

Thus,   Eqs.   (17) and (18) become,   to first order 

Cit) 

0     XX      ^y       ^zz z 

"XX  + (k/ko'2  (*z +n)   =   0 

(27) 

(281 

•12. 
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In the far field,  both the potential and the vorticity are first order 

* = k3 *i 

^ k0 ®1 

(29) 

(30) 

Substitution of Eqs.   (29) and (30) and linearization completes the specifica- 

tion of the problem considered. 

lyy        Izz        Iz 

•lXX + (k/V    ^iz^l'  =  0 

(31) 

(32) 

The  initial conditions lor *.  and O,  at X = 0 are obtained in the usual way 
5 1 1 

(see  Van Dyke   ) as the limits of #. and ft   as x — ao. 

Van Dyke,  M.,   Perturbation Methods in Fluid Mechanics,  Academic 
Press,   New York,   1964. 

13- 
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III.    NEAR   FIELD SOLUTION 

A. POTENTIAL FLOW SOLUTION 

As stated previously,  only a simple body represented by a source sink 

pair will be considered.    In addition,   it is assumed that the fluid is infinitely 

deep.     These assumptions are not fundamental but are made pr'marily to 

simplify the algebra. 

The solution to Eq.   (Z2),  neglecting the boundary condition,   for a 

single sour re at the oripin in an infinite medum is 

S(x'y'z) ■ : ; z   T   21/2 '"> 4n(x    + y    + z   ) 

Thus the solution to Eq.   (22) (including the surface boundary condition) for a 

source sink pair on the axis at x = ±i  in a fluid of depth d may be obtained by 
the method of images 

^0   =   S(x+/,y,z) -  S(x-^,y,z\ + S(x+Ü. y, z-2d)  - S(x-i, y, z-2d)      (34) 

B. GRAVITY WAVE SOLUTION 

A convenient way to solve Eq.   (23) is to transform ihe problem into 

one with cylindrical symmetry about the vertical axis.    This may be done by 

defining a new dependent variable ^ such that 

*G   =  ^xx (35) 

and by considering only a single source-image pair of the zero order poten- 

tial.     Thus,  in place of Eq.   (23),   the following problem is considered: 

(r+r)r/r +4^   ■   0;^z(r,d)   -  2S(x,y,d) (36) 

Preceding page blank 
-15- 
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2        2  1/2 

where  i   = (x     + y   ) has been substituted to emphasize the cylindrical 

symmetry  if the problem.    Equation (36) is now amenable to treatment with 

Hankel transforms given by 

00 

*(R,z)   = J   r ^{r.z) J0(rR)dr 

0 

(37) 

with the following similar form for the inversion 

00 

^(r,z)   = y R*(R,z) J0(rR)dR (38) 

The problem formulation in Fourier space may be obtained by combining 

Eqs.   (36) and (37) 

R  *   =   0; *  (R,d)   =  22 e"Rd;*(R-oo)   =   0 zz (39) 

The  solution of this equation is 

*   =  -^exp [-R(2d-z)] 
R 

(40) 

and the corresponding solution in physical space is 

4-  =  yj-   In  |2d-z + [x2  + y2 +  (2d-z)2] 
1/2, 

(41 

To obtain the solution to Eq.   (23) associated with a single source-image pair, 

differentiate Eq.   (41) twice with respect to x. 

2     J. 
JJJ 

2.- i y   + o ) '   [ 

where o has been substituted for 2d - z. 

1/2 ?         7        ? 
G(x,y,a)   -  j;       y        2  I     j     ^Y    LS^ ^ ^^ 

(x     + y     + o  )        la + ix    + v     + a  )   ' 
(42! 

-16- 
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The complete solution to Eq.   (23) for 0» given by a source sink pai; 

and c.n imape pair above the surface is by superposition 

<t>G   =   G(x+0.y,2d-z) - G(x-i,y,2d-z) (43 

C. INTERNAL WAVE SOLUTION (NEAR FIELD) 

Since k is a function of z only,   the general solution to Eq.   (24) may be 

obtained in analytic form for an arbitrary therrrocline.    Carrying out the 

z differentiation and the two x integrals ^n a potential which consists of a 

source sink pair and an image pair gives one 

Qj   =   (k/k r [W(x,y.z) + W(x,y,z-2d)]; d s z <  -c» (44) 

where W is defined by 

W(x,y.z)   = 
mz 

4n(y     + z   ) 
J Zl + 

1/2 1/2, 
[(x+/)2  +y2 +z2]       ' -  [(x-i)2  +y2 +z2] 

(45) 

The preceding expression is zero for x-»-oo corresponding to the assumption 

of zero vorticity or no internal wave upstream.    As X-«Oü,   the vorticity being 

generated by the body potential goes to zero and Eq.   (45) approaches a func- 

tion of y and z only.    It should be noted that if k(0) ^ 0,   then the vorticity is 

singular on the axis y=z = 0 behind the body.    This behavior arises fron, the 

fact that the slender body linearization is not uniformly valid.     This will be 

discussed further in Section IV. 

The complete solution to Eq.   (24) includes the vorticity generated by 

the body source sink pair plus the vorticity generated by the image sources. 

If the body and the thermocline are well below the surface,   the vorticity 

generated by the image sources will be negligible. 

-17- 
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Equation (44) gives the vorticity distribution beneath the free surface. 

Note that   f the method of images it used to solve Eq.   (25),   ihe image vor- 

ticity distribution above the free surface will be required to satisfy the free 

surface boundary condition on $ . 

The solution for ^. is obtained using a method analogous to that used to 

obtain 0G.     First,  define a new dependent variable X such that 

X -   * Ixx (46) 

This definition combined with Eqs.   (24) and (25) results in the following 

equation for X 

v2x.^[(k/V
2
Vz] (47) 

This problem,  like Eq.   (36),   is ax^symmetric about the vertical axis if ^ 

consist? only of sources placed along the z axis.    Thus,   Eq.   (47) may also be 

solved by Hankel transforms. 

If the functional form of the  thermocline represented here by k(z) is 

simple,   th^n analytic expressions for x can be obtained.    In general,  the 

thermocline is quite corrolicated and some «ort of numerical solution is 

requ red.    It is njt suggested that Eq.   (47) be transformed,   solved numeri- 

cally using a given k(z),  and then inverted numerically, but rather that k(z) 

be  idealized as a piecewise constant function so that analytic solutions to 

Eq.   (47 i may be obtained for each constant value of k.    The total solution is 

then obtained by either analytically or numerically summing up the solutions 

due to each constant piece of k(z). 

Accordingly,   Eq. (47) will be solved for 

a S(x,y, z) (48) 

-18- 
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and 

k   =   0; elsewhere 
(49) 

The solution for the body in the thermocline region (L. s  0 < L   ) is then X, 
id 1 

where 

mL  z 
Xl        Q   ,  2x   T~   2.3/2 

8TT(X   +y   +z   ) 

Srx  v   ■)       S(x,y.2L2-z) 
+  ^i-^i —^ ;  -oo S z  < L. 

(50) 

mz2                  x Slx^.z)       S(x'y'2Ll-z)        Sfx.y^-z) 
2       2,    2x3/2 + 2 4 " 4 

8TT(X    +y    +z   )" 

L1 . z 5 L2 (51 

mL2z 
+ scx.y.z) _ s(x'y'ZLrz) 

2       2       2  3/2     +      -r- T" " : L2 
s  ^ c» 

ön(x   +y    -f z   ) 
(52) 

The solution to Eqs.   (47) through (49) for the single source in the 

thermocline is given in Eqs.   (50) through (52).    The solution to the same set 

of equations for the case in which the body is below the thermocline 

(0 5 L    i L2) is as follows: 

S(x,y,2L  -z) S(x,y,2L7-z) 
; -oo < z < L, (53) 

mz(z-L, ) 
k2    TT"2—? Sirfx    +y    +z    ) 

1)      „    ,   S(x>y>z)       S(x>y>2L2-z) 
2,3/5   + 4 4 ; Lj < z S L. (54) 

m(L2-Ll)z 

7-rr zx 2 3/2 ; 4 ^z ^ «> 
8IT(X    +y    +z   ) 

(55) 
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If a pair of solutions Xj are superposed (corresponding to a source sink 

pair) and the  two x integrations are carried out,   subject to the conditions 

that all velocities are zero at x = -(»,   the result is 

BirFjU.y.jB.L , L-J       2/L « 
'IZ       / 

m 2       2 T  2 y     + z 
f  ■    In 

2        2 
y    i z 

y2  +l2L2-z]2 

L1Z 

2  x    2 
y    + z 

(|x+/]2+y2.z
2):/2.([x.^+/+z2) 

1/2 

x+i sinh x + 
/   ? ^ r 7T 12,1/2 (y   +[2L2-z]   ) 

-   sinh x+i 
,  2       2.1/2 
(y   +z   )   ' 

sinh x-/ 

sinh 

4 ,1/2 
([x+ir+y2

+z2)'     .([x-/l2
+y2

+z2) 
1/2 

([x + /]2 +y2 +[2L   -z]2) 
1/2 

+ ([x-/]2 +y2 +[2L  -z]2) 
1/2 

; -oo < z < L (56) 

-20- 
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SirFjfx.y.z, L^ L^) 

m 

Z 
z 

y    + z 
(C..ll2+y2

+.
2)l/2.  (Mj2^.2)l/2 

2/z' / + ^   r + y y +z 

2        2 2        2 
.        y_i_j ■     y   + z In —^—' —   +  In —= ^  

(y   +[2L1-zr) y    4[2L2-zr 

+ s'nh 

sinh x + 

[(y'+UVz)',"2. 

X   +   /   

(y    +[2L2-z]   )   ' 
- 2 sinh x + I 

,   ^       2, (y    +z   ) 

sinh 1 x-/ 

+ sinh -1 i 

4 

(y2
+[2L2-zl2)J^ 

a/2 

- 1 sinh x-l 
2; 21/2 (y    +z   ) 

1/2 
-  ([:c+/]2+y2+[2L2-z]2) 

2 

xl/2 
2([x-/]2+y2

+z2)/     -(ix.if.y2.^^^2)1/2 

- ([x-/]2
+y2

+[2L2.z]2) 
1/2 

;   Lj sz  <L2 (57) 
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m 

2t^      l 

y    + z 

y    fi 

y^lZLj-z]2 

4. 
2       2 

y    f z 

a/2 
([x + /]2+y2

+z2)'     -   ((x-/r+y2
+z2) 

1/2 

(<^i| sinh x + 1 
[ (7+üv7772 

-   sinh -I X   H-   / 

TTT 2,172" (y   +z   ) 

-i ■m Sinh 
-/ 

sinh 
-1 x-/ 

!  2x   2.1/2 
(y   +z   )   ' 

4 «2       2       2   1/2 ?       7       9   1/2 
[(x+/)   +y%z2

] -   [(x-i^+y2*«2] 

.2 .    2 1/2 
[(x+i)   +y   +(2L1-Z)2] + [(x-/)2

+y2 + (2L1-z)2] 
1/2 

L2 < z < 00 (58) 

Note that Fj  is the ^ solution for a body in a unite,   constant thermocline 

<k = constant) in an infinite medium.    That is.   no free surface or,  alternately, 

no image sources have been included. 

-22 
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A similar result for the body (source sink pair) below the constant 

thermocline may be obtained by integrating Eqs.   (53) through (55). 

2 2 
16TTF2(x.y,^ . l^.L^) y    ^{z-ZL^/ 

 = / In m 
y2+[2-2L7]

2 

+   (x + /) sinh 
-1 x   + / 

sinh 

(x-/) 

sinh 

(y2
+l-2L2l

2)"2J 

,-i 
sinh 

l(y2
+[z-2L2]2)1/2 

x-i 
..    ■,2\l/2 

.(y'+lz-ZLj]2)1 

+ [(x+/)2+y2+(z-2L1)
2]   '  ' - [(x+/)2+y2+(z-2L2)2]   ' 

.2      2 1/2 2      2 1/2 
[(x-i)   +y'i + (2-2Lir] +[(x-/r+yS(z-2L2f]       . 

oo S z  ^ L, (59) 
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8iTF2(x,ytZ,L1,L2) 

m ■   |   In  -     Y2^'2     ,    + 
Zi"-Ll' 

*(¥) sinh x + i 
(y2

t[ '.-^Fpj 
- sinh -1 x+/ 

2 '   2 1/2- 

-(¥) 
sinh 

(y   +z  ) 

-l sinh i 

I 
^7?72 (y   +z1')' 

1/2 
♦  [(x+i)2+y

2
+z

2]   '      .  [(x+/)2+y
2 + (z.2L   .Y 1/2 

[Cx-i)2*y2
+.

2)1/2M(«.i)24y2*(..2L2^
l/2 

.   z(z-L) 
2x   2" y   +z 

1/2 
[(x^.y2,.2]1    ^[(x-/)2^2.^^2 

L     <   7  <   f 
1 " z - ^2 (60) 

8TTF2(x'y'z'Ll'L2        <L2-Li,z 

m 2x   2 
y   +z 

2/ + [(x+/)2+y2
+z

2] 
1/2 

[(x.i)2
+y2

+.
2J1/2 ; L_ < z < CD (61) 
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The complete solution to Eq.   (25) (including the free surface boundary 

condition) in terms of the functions defined previously for the body within a 
finite thermocline is 

* j      FjCx.y,«,^.^)+ F1(x,y,2d-«,L1,L2)+F2(x,y,»,2d-L2.2d-L1) 

+  F,(x,y,2d-z,2d-L-,2d-L1); L    < 0  £ L0 fc <i 1 1 2 

and the general solution for the body outside the thermocline li 

(62) 

^   ■   ^(x.y.z.L^L^ + F^x.y^d-z.Lj.^) + F2(x(/,z,2d-L2.2d-L1) 

+  F2(x,y,2d-z,2d-L2,2d-L1);    0 £ L1  < L2 (63) 

The last two terms in both Eqs.   (62) and (63) may be negligible in most cases 

of practical interest because of the sepa. c^on of the the-mocline and the 
sources. 

If the thermocline is variabla with depth,  a solutk i may be obtained by 

approximating the thermocline as a piecowise constant function and summing 

(either analytically or nunrerically) relevant solution» zf Eqs.   (62) and (63), 

One advantage of this method is that the summation need only be carried out 

for the specific variable of interest at the location of interest.    For example, 

if values of the surface current are required,  expressions for the velocity 

at the surface may be obtained by differentiating Eqs.   (62) and (63) and 

evaluating the result at z = d.    The numerical quadrature (to take account of 

the variable density) is then a two-dimensional quadrature to obtain a two- 
dimensional result. 
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IV.    SINGULARITY BEHIND BODY 

The near-field solution,  obtained in Section III,  was found to be singu- 

lar on the axis behind the body.     This section contains a brief discussion of 

why the model predicts this physically impossible result, and a procedure is 

suggested which could correct this deficiency in the model equations. 

The source of the singularity may be identified by considering the 

physical significance of the vorticity Eq.   (5).     The first term in Eq.   (5) is 

the convective derivative of the vorticity,  i.e.,  the rate of change of the 

vorticity along streamlines in the flow.     The second term is a vortex 

stretching term which can change the magnitude of the vorticity by stretching 

individual vortex filaments.    The third term in Eq.   (5) is a vorticity produc- 

tion term associated with gradients in pressure and density.    Now,   consider 

the effect on the vorticity equation of introducing the slender body assump- 

tion.    The x component of this vector equation is Eq.   (15).    The convective 

derivative has become simply the partial derivative with respect to x,   the 

stretching term is higher order and has been dropped,  and the production 

term is given by the right-hand side of Eq.   (15). 

The cause of the singularity in vorticity on the axis behind the body is 

now obvious.    The vorticity on the streamline should be computed by inte- 

grating along the y=z=0 axis upstream of the body,  along a body streamline 

passing over the body,  and then along the axis behind the body (fo- an axi- 

symmetnc potential flow).    However,  in the present slender body model this 

vorticity is computed by integrating along the axis right through the body. 

Since in the present case the body is modeled by a source sink pair on the 

axis,  this integration passes through two singular points.    Note that previous 
12   3 studies which employ the slender body assumption   '   '     suffer from the sam?? 

deficiency. 

Preceding page blank 
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The singulanty may,   In principl«,  be removed from the solution of the 

slender body equations by generating a separate expansion valid in the im- 

med.ate vicinity of the body.    The major feature of thi. near-body expanse 

.s that the convective derivative of the vorticity may be directed along the 

streamlines of the zero order potential flow which go around the body. 

Although this step is s.mple in principle,  the resultant equations are quite 

complex and therefore have not been solved.    In addition,  it seems pointless 

to carry out an expansion valid near the body for inviscid flow.    In any real 

fluid,   there will also be a boundary layer growing on the body,  in which 

vort.city is diffused away from the wall.    An mvestigation of the flow field 

near the body which neglects the boundary layer appears to be academic 

A consideration of the boundary-layer flow is beyond the scope of the present 
work. 

The typical solutions presented in Sechon V show that for most practical 

cases the effect of the singularity in the flow has a negligible effect on the 

surface solution.    Thus,   it i. concluded that unless there is a specific 

mterest in the flow field in the vicinity of the axis behind the body,  the near 

-ody expansion outlined in this section is an unnecessary refinement. 

.28- 
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V.    TYPICAL NEAR-FIELD SURFACE VELOCITIES 

This section presents,  in graphical form,   values of the velocity at the 

surface for two cases:   one in which the body is above the thermocline,  and 

one in which the body is within the thermocline.     To simplify interpretation 

and also to facilitate a comparison with published far-field results   ,  only 

thermoclines which are constant and non-zero in a finite region will be dis- 

cussed here.     (However,   it should be noted that non-constant thermoclines 

may be treated    asily by summing or integrating the solutions in Section III. 

This summation is possible in the near field because the thermocline behavior 

appears only in the inhomogeneous terms of the inner expansion. ) 

The relevant physical parameters for the two cases considered are 

summarized in Table  1.    Recall that the body is modeled by a source sink 

pair and therefore  the zero order body shape is a Rankine ovoid (provided the 

free surface is neglected). 

First consider the s irface velocity component parallel to the freestream 

flow,  generated by a body above the thermocline (Case 1 in Table 1).    The 

u component of velocity is found to be symmetric in both x and y  (the direction 

of freestream flow and the cross-track direction,   respectively).     This 

symmetry applies to both the stratification and free surface perturbations as 

well as to the zero order potential flow.     The stratification contribution to 

the u velocity goes to zero far downstream because the vorticity generating 

this disturbance must line up with the freestream far from the body.    Figure 1 

shows the variation of u with x in the plane directly above the body.    (Recall 

that x=y=0 is directly above the center of the body. )   The main contribution to 

the velocity arises from the potential flow,  with a significant correction 

being made by the stratification contribution.    The contribution generated by 

relaxing the approximation that the free surface is a plane is negligible for a 

body at this depth.     Figures 2,   3 and 4 are plots of u as a function of y at 

those stations in Fig.   1 where u is nominally a maximum,  zero and a mini- 

mum.    The free surface contribution is so small that it is not included in 

.29- 

  ■ - - m 



I"'    ' ' ii**mm~~m ^ww^^^w^wwi^p^ *mmm*mrrw 

Table  1.     Physical Parameters 

Body  Dimensions; Length   ■   300 ft 

Diameter   =   30 ft 

Thermocline Characteristics; Top   =   164 ft deep 

Bottom   =  492 ft deep 

k  =   0. 002 ft"1 

Velocity of Body: 5 ft/sec 

Case  1.     Body Above  Thermocline Body depth   =   145 ft 

Case 2.     Body In Thermocline: Body depth   =   183 ft 

• 30 
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figures subsequent to Fig.  Z showing the x and y velocity components. 

Figures 1 through 4 show that the maximum x component of surface current 

occurs directly above the center of the body.    The maximum negative values 

are in the y=0 plane and occur about 100 ft fore and aft of the body stagnation 
points. 

Symmetry conditions require that the y component of velocity be iden- 

tically zero at y = 0; thus.   Fig.   5 shows the surface cross-track velocity as 

a function of x at y =  100 ft.     This curve shows the expected behavior of zero 

stratification contribution upstream,   growing to some asymptotic value far 

downstream.    This is the expected manifestation of the trailing vorticty 

which the stratification generates.    Figures 6,   7 and 8 show the y velocity 

component as a function of y at the same x stations behind tho body used for 

the x velocity plots.    These figures all indicate that the peak disturbance is 

about 100 ft from the y=0 plane; thus.   Fig.   5 is roughly the peak value of 

the cross-track velocity as a function of x. 

The vertical surface velocity is shown in Figs.   9 and 10.    The only 

contribution to this velocity is the gravity ,/ave contribution and,  as pre- 

viously noted,  the magnitude is very small.    For bodies closer to the sur- 

face,  a larger disturbance of the same general character would occur.    The 

peak disturbance occurs on the y=0 axis with a maximum (minimum) velocity 

almost directly above the af^   forward) stagnation point. 

Now consider the case of the body in the thermocline.    The stratifica- 

tion is unchanged out the body is now 19 ft below the top of the thermocline 

rather than 19 ft above it.    Figures  11 and 12 show the x component of the 

velocity in the y = 0 and x = 0 planes,   respectively.    If these two figures are 

compared wit'   Figs.   1 and 2,  the potential component of the velocity is found 

to be reduced       magnitude and spread out in both .he x and y directions for 

the deeper body.     (This is a function of depth only since the zero order 

potential is independent of stratification. )    The stratification contribution to 

the velocity has the same general behavior as the potential contribution; it is 

also reduced in magnitude and spread out.    Thus,   there is no obvious 

■35. 
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anomalous behavior of the stratification generated velocity associated with 

the fact that for this case the singularity behind the body is present.     Since 

the stratification contribution to u remains small and well-behaved,   it is 

concluded that the total velocity predictions in Figs.   11 and 12 are realistic 
and accurate values. 

Figures 13 and 14 are typical plots of the y component of surface 

velocity for the body in the thermocline.    A comparison of these curves with 

Figs.   5 and 6 shows decreased velocities and spreading in the y direction. 

Again,   there are no obvious anomalies,   and the similarity of ^e two sets of 

curves lends credence to present predictions.    However,  for the y component 

of the velocity,   the total velocity is the  stratification contribution far down- 

stream.     Thus,  an error caused by the singularity is more important here. 

To further study the effect of the singularity in the thermocline,  the contri- 

bution to the present surface current from the thermocline layer one body 

diameter thick (30 ft) centered at the body was computed.     The contribution 

of this  stratified layer to the velocities in Figs.   11 through 14 is slightly 

less than ten percent of the given stratification contribution.     This repre- 

sents an upper bound on the possible error associated   with the singularity. 

The contribution of the singularity should properly be removed by cutting 

out a circular region about the axis; the present calculation cut out the plane 

region bounded by y =  ± 15 ft.    It is therefore concluded that Figs.   13 and 14 

ore valid predictions of the surface velocity,   and any error associated with 

the singularity is expected to be substantially less than ten percent of the 

values shown. 

Figure  15 is a semi-logarithmic plot of the curve illustrated in Fig.   14, 

The log scale more clearly shows that v asymptotes to zero from negative 

values.     (Computations were made much farther out in y than are shown and 

no further zeros were found. )    The stratification contribution to u also has 

zero crossings as a function of both x and y,  although these are not discernible 

on the scale of Figs.   11 and 12.    One further point should be noted; the value of 

v for the  symmetric bodies considered here at x=0 is exactly half the asymp- 

totic value as x yxj.    Thus,   Figs.   6,   14 and 15 can be interpreted as plots of 

v/2 for x—oo. 
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Fig.   15.    y-Component of Surfare  Velocity in x=0 Plane 
(Body in Thermoclinc) 
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VI.     CONCLUSIONS 

The near-feld disturbance created by a slender body in a stratified 

fluid has been investigated.    This problem was made tractable by showing 

that the governing equations admit a singular perturbation expansion with 

one expansion valid near the body and one far downstream of the body.     The 

near-field equations resulting from this expansion are substantially simpler 

than previously published equations and are solved analytically.     The far- 

field equations are also derived for completeness and are found to be simpler 

than the more general set.    Previous investigations of this problem have 

assumed that the free surface  is a plane; the perturbation equations which 

result from relaxing this assumption are derived and solved analytically. 

An immediate new result arising from the analytic solution is the 

appearance of a singularity on the axis behind the body.     The  reasons for the 

existence of the singularity and techniques for removing it are discussed. 

It is ultimately concluded that the singularity has little impact on the pre- 

dicted values of surface disturbance.    However,  a knowledge of the existence 

of this singularity may be important when flows of this type are calculated 

using numerical schemes,  which cannot treat singularities without special 

provisions. 

Typical calculations have been made using the analytic solutions,  and 

these results are presented in graphical form.    The disturbance at the sur- 

face is broken down   into three components:   zero order potential flow, 

stratification contribution,  and gravity wave contribution.     For the particular 

cases considered,   the dominant surface disturbance is generated by the zero 

order potential flow,  with significant corrections being made by the stratifi- 

cation effect.    For bodies at such depths as 150 ft the gravity wave effect is 

completely negligible; thus,  the usual assumption of a plane free surface is 

justified. 
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ACRONYMS AND SYMBOLS 

depth of the body (or source) beneath the free surface 

internal wave function defined by Eqs.   (56) through (61) 

gravitational acceleration 

gravity wave function defined by Eq.   (42) 

unit ve'tor 

Bessel function 

Vaisala wave number defined by Eq.   (16) 

one-half the separation of the source sink pair creating the 
disturbance 

bound of constant thermocline region 

source-strength constant appearing in the fundamental solution 
to Laplace's equation 

pressure 

radial coordinate measured from the z axis 

coordinate in Fourier space 

source solution to Laplace's equation defined in Eq.   (33) 

x component of perturbation velocity [Eq.   (6)] 

cross-track velocity component 

vector velocity 

vertical velocity component 

internal wave solution function defined by Eq.   (45) 

coordinate parallel to the flow direction 

rescaled x variable defined in Eq.   (26) 
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ACRONYMS AND SYMBOLS (Continued) 

y 

z 

V 

; 

n 

4 

p 

o 

( 

X 

cross-track coordinate 

vertical coordinate 

symbolic vector differential operator 

z component of vorticity 

y component of vorticity 

resca.-ed tar-field vorticity function defined in Eq.   (30) 

x component of vorticity 

density 

velocity potential defined in Eq.  (13) 

rescaled far-field velocity potential defined in Eq.   (29) 

dummy variable defined by Eq.   (46) 

dummy variable defined by Eq.   (35) 

Hankel transform of  I)I 

vector vorticity 

vorticity function defined by Eq.   (14) 

Subscripts 

G perturbation associated with gravity wave 

perturbation associated with internal wave 

nominal value used as a basis for perturbations; reference value 

first order perturbation quantity; solution with body in thermocline 

solution with body outside thermocline 

oo refers to freestream value 
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