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AN EXPLORATORY STUDY OF THE APPLICATION OF GENERALIZED INVERSE
TO0 ILS ESTIMATION OF OVERIDENTIFIED EQU’TIONS IN LINEAR MODELS

by

J, Daniel Khazzoom

Abstract

“In this paper, we propose a »rocedure based on the use of the Moore-
Penruse inverse of matrices for deriving unique Indirect Least Squares
(I113) estimates of the structural parameters in the overidentified case.
The procedure makes use of all reduced form estimates in deriving the
unique structural estimates. The estimator is shown to be consistent.

We derive ?he relationship between this Two-Stage Least Squares (2SLS)
esi;imator and Instrumental-Variables (I.V.) estimators. Wp also derive’
the anymptotis distr.ibution of the proposed estimator. The results of

sampling experiments are summarized.
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1, IS (¥ndirect Least Squeres) Set-up

Let the operation of an economic system be characterized by

(1.1) Y = Y P+ X c + U .

(Tm)  (Txm) (wn) (Tx6) (Gm) (Tam)
Y, X, and U are matrices of gndogenous, predetermined and random vari-
ables, respectively; B and (b are parameter matrices of fB's and vy's,
respectively. (Throughout, we follow essentislly the notations sythesized
by Dhrymes (3, pp. 172-200, 279-365] and Rao and Mitra [8, pp. 12-17].)
The dependent variable Vi is explained by m, < m current endogenous
variables and G, < G predetermined variables. We make the usual assump-

i
tions on the random matrix U. The reduced form of (1.1} is defiaed as

(1.2) Y=x(1-B)F + u(z-B) =X+ v .

By appropriately partitioning N (" indicates estimates), postmultiplying
~ lal

N by the mx 1 column [1, -B.l’ 0]' and rearranging terms, we have
the usnal recurgsive system for the estimated parameters of the first equa-

tior in (1.2):

A ”~ ~ .-‘
fi I 8 Pr |
G'lm1 Gl ol . Gll
(1'3) S A = A Y
d.a 0 Y T *
G .1 G'1
| ~ i

It is well known thet (1.3) has a unique solution in the just-identified case
(that is, when ﬁG*ml is non-singular). In the overidentified case (G*>m1, and
ﬁG*ml has full column rank) there is more than one way (although a finite
number of ways) for consistently estimating the siructursel paremeters.

Because of the difficulty in choosing among these alternative ways, ILS




has fallen into practical disuse. Other limited information eatimators
which were developed in the meantime compromise in various ways between
the estimates in the overidentified case. The procedure I propose in this
paper is a compromise in the same nature as the 2SLS. We use the Moore-
Penrose (MP) generalized inverse to derive unique ILS estimates of the
structural parameters in the overidentified case. For a discussion of the
MP inverse, see [8, pp. 50-55]. Briefly, if D is an m X n matrix, its
MP inverse, denoted by D+, is an n X m matrix which satisfies the
following four conditions: i) DD'D = D; ii) p'pp* = p%;

iii) (DD+)' = DD+; iv) (D'D)! = DD where ' denoctes conjugate transpose
and where the inner product is defined with respect to the identity matrix.
D' is unique and has the seme rank as D. A matrix that satisfies (i)

only is called a g-inverse sgnd usually denoted by D~ .}

2. ILS Estimates Using Moore-~Penrose Inverse

Denote equation (1.3) as

(2.1) D§ . =7, .

T ——

Since D has full column rank, ﬁ+ = (ﬁ'ﬁ)‘lﬁ' . if we use the MP inverse

to solve (2.1), we get
i (2.2) 1 = (5'5)" 7 o
h The vector 8 1 is unique and has the property that it is minimum

(Euclidean) norm least squares solution of (2.1). Using the fact that

= (ﬁ'ﬁ)-lﬁ, it follows that




1S 5B m}

vhich shows that & 1 in (2.2) coincides with the recursive solution of
(1.3), when the MP inverse is used to solve for § 1 and then ? 1
It can be shown that 8 1 is a consistent estimator of § 1 To

see this, note that the elements of D are congistent estimates of the

corresponding elements in the true D. Since D'D is non~singular, it

follows that

A - +
(2.3) plim § , = (D'D) ln'n.l =", =6, .

The last equality follows from the fact that in the population the system

DS y = T 1 is known to be a consistent set of equations.

3. Relation of ILS to 2SLS and I.V. Estimator: Asymptotic Distribution

Writing in full the first equation in (1.1), we have

~

(31) yy=YB +Xy g tu =X B, +Xy, ) +u, +V B, .

ﬁ.l’ 3.1 consist of the 2nd,...,(m1+l)st column of f, and V,

regpectively. Noting

(3.2) (xﬁ.l, X,) = X ,

the 2SLS solution of (3.1) is easily seen to be

(3.3) 3.1 = {(xD)* (xB)}~2 (1(1’5)'y.1 = (D' (x'x)B} 2 ﬁ'(x'x)ﬁ.l ,

where we made use of the fect that ¥y 1= X 1 + v 1 and X'V 1= c.

Observe (3.3) is the minimum norm least squares solution of

(3.4) XD§ , = Xw o, .

By comparing (2.2) with (3.3) it is evident how the 2SLS and ILS compro-

mige between the various estimates in the overidentified case.




Both procedures solve for the minimum norm least squares estimator. The
difference is in the definition of the aorm. In the 2SLS case, the
(quadratic) norm in (3.3) is defined with respect to the moment matrix
of all the predetermined variables. In the ILS case, the norm is defined
with respect to the identity matrix, The two estimators coincide when
X'X 1is a scelar matrix, and similarly when the equation is Just iden-~
tified (D is then square and non-singular). In light of (2.2) and (3.3),
it is straightforward to infer the asymptotic distribution of the
proposed ILS estimator from the asymptotic distribution of the 2SLS esti-

matcr. For 2SLS, we have (see Dhrymes [3, pp. 190-192])

(3.5) v (3. -6 ,) v N0, o, plim 3,) ,
where
X'Z ' le
(3.6) [ ] XX [ ]
X -1 [ ]

=

(3.7) Z, = (Yl ) .

G

X
The subscript [ZEE- 1 indicates the matrix with respect to which the

inner product is defined. For ILS, we have

(3.8) i (3. -6 ,) v N0, o, plim ) ,

(3.9) Yy = {"@‘1’]‘%4 ) E{'.'rx [ ]Fw{‘

In order to arrive at wt we simply changed the norm in (3.6) so that
inner product of ﬁ+ is now defined with respect to the identity matrix

rather than (X'X). Equation (3.9) can also Le derived directly.

b
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It is algo useful to look at the results derived so far from the

point of view of I.V. estimation., If we choose the instrumental variables

P= x(x':-:)"]x'zl ,
(3.10)
Q=xExx)™

and rewrite (3.6) and (3.9) as

St -]-l R
(5.12) . C[RE T pp [7E
. t LT T LT 1
~vp 1t o 1,
('-" 12) ‘P = Qzl Q' ZIQ
e t = T . T LT |

we see that the righthand side of (3.11) and (3.12) has the standard form
of the covariance ruatrix whose probability limit appears in the asymptotic
distribution of I.V. estimators (except that in (3.12) we have MP inverse
instead of the conventional inverse), This is not a surprising result,
s8ince it is well known that 2SL3 and ILS have an I.V. interpretation,
with instruments P and Q, rcspectively, as in (3.10). Where (3.12)
departs from conventional results, however, is in the number of instrumen-
tel variables. Q has G colwms where G > m + Gy, whereas it is
standard to require the number of instrumental variables to be the same

as the number of explanatory variables in the equation (otherwise the
matrix to be inverted will not be square in the first place). Dhrymes

[3, p. 365], for example, points out that wvhen G >m, + G the ILS will

i i?
fail to yield unique estimators because of what ﬁxay be interpreted as the
attempt to use "too many" instrumental variables in estimating the struc-
tural parameters. The results we derived in this section indicate that

"too mary" instruments is not reelly a hindrance for deriving unique I.V.

5




estimates, if we are willing to work with the MP inverse. (lote

that if instead of P as defined in {3.10), we choose P = X(x'X)™x’

and substitute in (3.1%) below for this alternative choice of P, we
would get (3.4), which we already know yields the 2SLS estimator when MP
inverse is used to solve it).

In an asymptotic efriciency sense, the 25LS dominates the class of I.V.
estimators whose instruments belong to the subspace spanned by the prede-
termined variables of the system. For the two covariance matrices (3.11)

and (3.12), the reletive efficiency (deleting the division of T),
- Ad!
(3.13) 0,2, = Drarlz-e(ere) e

is a p.s.d. matrix, since 1-p(p'P) P! is symmetric idempotent. To
summarize: the ILS estimator proposed in this paper, as well as the 2SLS
estimator in the overidentified case, achieves a compromise among the

various ertimates in the overidentified case by finding the (unique) minimum

norm least squares solution for § 1 in
t = pt

(3.1%) Ply , = P28, ,
t = 0O

where P and Q are defined in (3.10). The solution of {3.1h4) yields
the 2SLS estimator and the solution of (3.15) yields the ILS estimator.
In both cases, the solutions have the same structure; they differ in the

definition of the norm.

e e e e b e e e = o i v e e b i =




4. Design of the Monte Carlc Experiments

The objective of the experiments is (1) to gather evidence on the
relative performance of ILS vs. 2SLS and Limited Information Maximum
Likelihood (LIML) estimator--the two most commonly used single-equation
consistent estimators; (2) to test the hypothesis that the bins for the
ILS estimator does not depend on (a) the size of the covariance matrix
L= (cid) of the vector (utl,uta,...,utm)', (b) the sparseness of I,
and {c) the sample size; (2) to test the hypotheses that the relative
performance of ILS does not depend on the factors listed in (a) to (c).
For the purpose of this paper, I chose a structure from one of the
oxperiments reported by Cragg [2]. (Initielly, I estimated several runs
using the structure estimated by Wagner [11], but because of the special
nature of the structure used by Wagner--damped difference equations
dominated by a trend factor—I did not think the results would be of
general interest.) The rationale for using this particular strueture was
to permit o comparison of ILS with 2S5LS and LIML in a model for which the
last two estimators are known to have performed very well. The structure

is the following:

¥y, = .89y, +.16y. +4l.00x, +,Thx, +.13x h +u
1 % 3 1 e, L
¥y, = .Thy +62.00x +.96x +.T0x +.06x%,, +u
2 L L 3 % Ty 2
Y, = .29y +40.00 +.11x, +.53x_ +.56x +u
3 2, 1, A N 3

where % is a vector of 1l's. 1In conjunccion with Zl (see below),

t
this is structure 8 revorted in Cragg [2, p. 92]. In all experiments, we
estimated the parameters of the first equation only, using ILS, 2SLS and

LIML. An experiment consisted of generating 100 samples of Size T = 60,

JE T e b
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40, and 20 observations. The predetermined variables are truly exogenous
and, except for the vector of constants X, are uniformly and indepen-
dently distributed random numbers with values in [-100,100]. The values
of the exogenous variables were fixed for repeated samples of the same
size. The sample correlation matrices for the exogenous variables used in

the experiments are the following:

T=60 =40 T=20
Xa X3 xh Xs X6 32 .X3 Ih xs x6 x2 x3 xh xs x6
% 23 7.6 1 7.0 i
x), .10 -.05 -0 -.33 =02 -.24
x.{.02 .29 -.02 3] <45 ~.08 -.16 ;] .51 .33 -.19

Xg .02 .03 .01 .02 .29 .02 .15 .19 .09 .07 -.34 .15

X .03 =13 -,10 .05 -.1:1 .00 -.04 ,19 =.07 -.02 -.01 -.19 .18 -.h3 -.h3_

e

The structural disturbances were generated from mutually independeht and

normally distributed (3-dimensional) vectors with zero mean and the follow-

ing ZI's:

38,60 ] (38.60 ﬂi

I, = -5.92 36.68 ; zg =|o0 36.58 b s
-14.80 -~ 2.98 1;0.61;_J 0 0 ho.GhJ
[ 386.0 ] 13860 )
_ 5 ] o _ i

210" - 59,2 366.8 3 i:lo- | 0 366.8 -
_-1148.0 - 29.8 h06.h_ Lo 0 hos.h_%

In conjunction with each one of these L's, we carried out three experi-~
ments with T=60, 40, 20, for a total of 12 experiments. Several algo-
rithms are available in the literature for computing the MP inverse. I

AtA
used Johnson and Chou's algorithm [5]. As a check, I ca'culated DD

8
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Do 4

i

for geveral of the B+ we ccuputed. The results were identical tc the ﬂ
identity matrix for at least the first six decimals.
The following meaguires of the relatiye performance were calculated
for the estimated parameters (1) aritimetic meen,? (2) mediar, (3) standard
deviation, (&) root mean square error,? (5} mmber of the estimates within
+ 19% of the true parameter, and (6) maximum absolute deviation of the
estimates from the parameters. Tre merits and limitations of several of
these measures have been discussed by several authors. See, for example,
Summers [ 9 , pp. 12-)3]; Quandt [7, pp. 96-97]; and Christ [1, pp. 4T5-476].
The consistent estimator of 011 provides at the same time what might

be viewed as & "non-predictive" measure of the overall goodness of the

egtimates. As a second measure of the overall goodness of the estimates,

I forecasted y, at (1) the sample mean value of the exogenous variables :
and (2) at the sample mean value of the exogenous variable plus one ’
standard deviation. Yo and y3 were fixed at their theoretical value
for thc ferecasts. For each experiment I calculated the mean and median

of the forecasted ¥ye As a measure of the magnitude of the overall bias

of the estimstes, I also calculated the norm, |3 - 8,,], vhere
§,y = (.89 .16 4h.00 .7h .13), and &, is the vector of the average i
of the estimates derived from the k?h estimator. A similar norm was ]
calculated for the median.

Finally, for inferential purposes, one normally needs to attach to the
estimate a“ of n & measure of the reliability of the estimate. For
LIML and 2SLS, the measure traditionally used is oz , Wwhere [o:]2 is
a consistent estimate of the variance of a* in the asymptotic distri-

*
bution of o« . The idea is that for a relatively large sample, the
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distribution of VT (aﬁ-a)/o; is adequately approxiﬁated by a normal
distribution with zero mean and unit variance. I calculated JT'(a*-a)IOZ
for all ILS estimates, and used the Kolmogorov-Smirnov test to test for
significant departure from normelity. Similar results were calculated
for 2SLS and LIML for comparative purposes.

For space limitations, I will not go into the detail of the results,
but give & summary of the results in the next section. (Details will be

made available to interesied readers upon request.)

5. Summary of the Resulteg

Relative Performance

ILS vs. 2SLS: ILS bias tends to be smaller than 2SLS bias. Esti-
mates derived from the two procedures do not appear to differ significantly
in concentration or dispersion. The overall goodness of the estimates
favors ILS over 2SLS.

ILS vs. LIML: ILS bias tends to be larger than LIML bias. (But the
norm of the bius shows the performence evenly divided te%ween the two pro-
cedures.) ILS estimates tend to be more concentrated than LIML estimates.
The overall goodness of the estimates favors ILS when a non-predictive

measure is used; the picture is mixed when a predictive measure is used.’

Effect of Sample Size, Size of I and Sparseness of ¥ on ILS Bias

The evidence is generally inconsistent with the hypotheses that ILS
bias does not depend on the sample size, the size of I, and the sparse-
ness of L. There is some indication, however, of an interaction between
size and sparseness. ILS bias does tend to decrease with sparsenéss when

the size of I is large, but not significan-ly so when the size of I 1is

10
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small to begin with. More research on the interaction between the size

and sparseness of I may yield useful results.

Effect of Sample Size, Size of I dnd Sparseness of I on ILS Reldtive
Performance

The evidence is generally not inconsistent with the hypotheses that
the relative performance of ILS does not depend on the sample size, the

size and sparseness of I.

Tests of the Reliability of ILS Estimates

i) As the sample size increases, the approximation of the distribu-
tion of /T (a*-a)/o; by the asymptotic distribution gets better. This
is true of the ILS, as well as 2SLS and LIML.

ii) For all cases considered, LIML comes out first in the total as
well as in each sample size, followed by ILS and 2SLS. (A similar result
was noted by Cragg [2, pp. 101-102] for LIMIL compared with other consistent
estimators (except Full Information Maximum Likelihood (FIML) estimstor).)

iii) There is evidence that the adequacy of the normal approximation
may depend on the size of I. With T = 20 or 40, the approximation appears
to work better when the size of I is smaller. (Cragg [2, pp. 105-1C6]
found a similar tendency for the "t-ratio" of the consistent estimates he
examined.) Generally, the same remarks apply to LIML and 2SLS.

iv) The adequacy of the normal epproximation does not appear to be
influenced by whether or not the structural disturbances are independent.
For ILS (end LIML) this was the cage regardless of sample size. For 2SLS,

this wae the case with T = 40 ard 60.

11
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6. Concluding Remarks

A referee thoughtfully observed that the attraction of the proposed
method is not so much in its possibly superior small sample behavior, but
rather in the possibility of obtaining estimates of the structural para-
meters without recourse to the data once thg reduced form is estimated.
The reduced Torm estimate is all the real world has to give. The struc-
tural constraints ar> the result of theory or intuition. The method
proposed "keeps these two sources of ‘information' nicely apart. It is
one step further on the way to unscrambling the curious mixture of induc-
tion and deduction which is so characteristic of applied econometrics."

As a follow-up this work will be extended to examine ex*ensively the
sensitivity of the estimates to alternative specificat.on of the structural
constraints end to deel with other uspects of the Monte Carlo experimenis
that I have not dealt with at this stage (including th~ effect of multi-
collinearity among the exogenous variasbles).

A second extension relates to the instrumental varisble aspact, which
I only touched on in this paper. The use of MP inverse opeias the way to a
family of 1.V. estimators in the overidentified case, which have the same
structure but diffe~ in the definition of the norm. For example, by pre-~
multiplying both sides of (3.15) by X'X, we derive the equation of
another I.V. estimator (different from ILS) with X as the matrix of
instruments. (We have also seen that in the overidentified case 2SLS can
be derived by using X(X'X)™ X' instead of the traditional x(x'x)‘lx'zl,
as the matrix of instruments, if we are willing to work with the MP inverse.)
The behavior of several I.V. estimators in the overidentified case and

the question of what constitutes an appropriate norm will be investigated.

12
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Footﬂot;es

‘Recently Swamy and Holmes [10] and Fisher and Wadycki [4] used g-inverse
to generalize 2SLS, k class, and 3SLS estimators so that they can be
applied to large econcmetvic models when the sample size is smaller than
the mumber of predetermined variables. Unfortunately, the procedure
proposed by the suthors does not generalize these estimators as claimed.
When G > T end rank (X) =T, these estimators simply to not exist.
When X has full row rank, X will (winimally) satisfy conditions (i)-
(111) in the text. Jts general expression is X = {X'X)X', (see [8],
Theorem 3.2.2, p. 49}. It follows that XX = I, since X(X'X)-X'A is
invariant for any choice of (X'X)". Hence, the general solution II for
the systematic part of (1. 21-—name1y fl = X7 + (I-X"X)W, vhere W is
an arbitrary G X m matrix—ig also the general expression for the least
squares estimates of the reduced form, which will always satisfy

= X(X'X)"X'Y = ¥, when X has full row rank. In the jargon of 2SLS,
there is just no way in which the matrix of endogenous explanatory vari-
ebles that appear in the equaiion of interest can be purged of its stochas-—
tic component, because Y = = Y. For a similar reason, the k-class and
35LS estimators do not exist. The exception occurs when perfect multi-
collinearity exists among the predetermined varigbles such that rank
X) < 'P. But this is not the general case of large econometric models, as
Fisher and Wadycki [4, p. 463] recognize.

[

Some people may question the validity of this measure, unless it is known
that the corresponding moment in the population exists. Recent results by
Mariano [6] show the 23LS estimates possess the first two moments for the
models we astimated. In light of (2.2) and (3.3), it is reasonable to
infer the same is true of the IS estimates we derived for the same models.
The results in the literature do not show LIML possesses a first-order
poment. Hence for ILS and 2SLS I used the mean and root mean square error
along with the rest of the measures, but for LIML I confined myself to the
non-parametric measures.

37t is interesting to note the performance when the covariance is Z.
This is structure 8 taken from Cragg [2] and for which 2SLS and Knﬂ:esti-
mates performed well in Cragg's experiments. ILS does better than 25LS
by every summary measure. In comparison with LIML, ILS bias is larger
than LIML bias (but the norm of ILS bias is smaller in two out of three
cases). ILS estimates tend to be more concentrated around the parameters
than LIML estimates. To put these results ir perspective, I also compared
2SLS and LIML. 2SLS bias is larger than LIML bias; so is the norm of the
bias. Cragg's results showed a slight edge in favor of 2SLS [2, p. 96,
experiment 12]. The two measures of concentration and dispersion do not
agree on the relative performance of 25LS vs. LIML.
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