AD-AQ012 548
A SINGLE SHIR/MULTIPLE CRUISE MISSILE
ENGAGEMENT MODEL FOR FLEET AIR DEFENSE
PLANNING
William P. Cherry, et al

Vector Research, Incorporated

Prepared for:

Office of Naval Research

July 1978

DISTRIBUTED BY:

Natioral Technical Information Sen)jce
U. S. DEPARTMENT OF COMMERCE

B N




ey

s T

T IR IR R IR

R

P Sl Ul T S
,

S AR

G S 2P (D Rt T SR

-

ADAG12548

114

A SINGLE SHIP/MULTIPLE CRUISE
MISSILE ENGAGEMENT MODEL FOR

FLEET AIR DEFENSE PLANNING

. P. Cherry
. Farrell

. Miller

. Moore

O E

July 1975

PREPARED FOR: [:) [:) <::
Office of Naval Research =N
oo a1} ] @u.wﬂﬁrm

Department of the Navy JUL 15 1975
Arlington, Virginia 22217
LOBEOY
D

—

AN

] T

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

::vz-rwj_m;»;‘:y:&- _i\}ég,- VA Do e O

REPORT NUMBER
ONR-1
FR75-1

U 3 Departmer 1 of Com nerce
Springf old VA 2'.’]5'1

Vector Research, Incorporated

Ann Arbor, Michigan
S
DISTRIBUTION STATEMENT & | !

. Approved for public release;
"%" Distribution Unlimited




1 unclassified

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be enterod when the overall report Is classified)
1. ORIGINATING ACTIVITY (Corporate euthor) 28, REPORT SECURITY CLASSIFICATION

Vector Research, Incorporated unciassified
2536 Packard xoad
Ann Arbor, Michigan 48106

3 REPORT TITLE

A SINGLE SHIP/MULTIPLE CRUISE MISSILE ENGAGEMENT MODEL FOR FLEET AIR DEFENSE

2b. GROUP

PLANNING
4. DESCRIPTIVE NOTES hT_ pe of report and inclusive dates) 7
?\na eport
9. fu ’nfom.ﬂ (Fiest name, middle initial, llu.n.me)
William P. Cherry Michael H. Moore
Robert L. Farrell
Jack M. Miller
6. REPORT DATE 7a8. TOTAL NO. OF PAGES 7b. NO. OF REFS
July, 1975 125
88, CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBERI(S)
N00014-72-C-0300 ONR-1 FR 75-1
b. PROJECT NO.
{
<. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)
none

d.

10 DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

11 SUPPLEMENTARY HOTES 12. SPONSORING MILITARY ACTIVITY

‘ Office of Naval Research
Department of the Navy (Code 431)
Arlington, Virginia 22217

13 ABSTRACT

A mathematical model of an engagement between a Navy ship and a number of
anti-ship cruise missiles is described. The model is designed to be used in Navy
ptanning activities involving ship/cruise missile engagements.

The engagement model described portrays the ship's defensive weapons as
being rapid-fire guns and/or SAM systems, and allows for the portrayal of enemy
jamming or other ECM activity. User-specified notions of partial damage to the
ship's defensive weapons can also be accommodated. The outputs of the model are
probability measures that the ship and each of the cruise missiles survive as
functions of time. Inputs to the model are detailed performance characteristics
of sensor systems, weapon systems and cruise missiles. It is intended that these
inpits be supplied where necessary by engineering models, one of which is described
in this report. The model i5 analytic in nature in that the output probability

measures are obtained by numerically solving equations portraying the relationships
between the processes which make up the engagement.

S [] ’:\F:?"wtrwﬂn
d | f] L 15 i975~—-]

FORM o U N it?
DD 1 NOV 051473 | unclassified I~ Y
Secunty Classification s

| DD Qg
L [ EA N
Ju
U




gecuﬁty Classification

-;4. LINK A LINK B LINK &
KEY WORDS
ROLE wT ROLE wT ROLE wT
Anti-Air Warfare
Anti-Ship Cruise Missiles
y Rapid Fire Guns

Surface to Air Missiles
Threat Evaluation and Weapon Assignment
Partial Damage
Radar
Jamming
Analytic Modeling
Engineering Models
Operational Models
Ship Survival Probabilities
Stochastic Qutput Descriptors
Kill Rates for Rapid Fire Guns and SAMs
Weapon Assignment Probabilities
Approximation Methodology

L%

unclassified

Security Classification

PN




Rl LA IE

T ..xw;y;fwzrm‘mmm:

e < vevna,
. A ’?‘,m""“a P~

s,

Y

@y

v A

€ u g w‘ﬁl
*

o

FOREWORD

This report documenfs research conducted for the Office of Naval
Research by Vector Reseakch, Incorporated, (VRI) under contract

|

NO0014-72-C-0300. The yesearch‘igwg’;ogtjqqg}jgp of earlier activities
conducted by VRI underythe samengbntract and described in the report
entitled Development Q}‘Anaiytic Methodology for Naval Planwing Areas
(VRI report number ON%-l FR 73-1). One result of the early research was
a finding that an anglytic model of an engagement between a ship and a
number of cruise miﬂgileé would be useful as an aid to naval planning.
Such a model has bxzen developed and is described in this report. The
model is mathematical in character. This report is written for

technical personnel who will program it and assist in its application.
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1.0 INTRODUCTION

The research documented in this repcrt represents a continuation of
work begun in 1972 which had as objectives:

(1) the study of Navy planning areass

(2) the examination of current models, and

(3) the development of analytic structures.

Initial work in pursuit of these objectives focused on airborne anti-
submarine warfare and on fleet air defense; models utilized by the Navy in
conducting planning in both areas were examined. Two results of this exam-
ination were the observations that the most commonly used models were Monte
Carlo simulations and that there was a strong possibility that analytic
models could be developed as supplements to or substitutes for such models.
Following discussions with personnel at ONR and the Office of the Chief of
Naval Operations (OP 96), it was decided to concentrate activities in the
area of fleet air defense, in particular fleet air defense against cruise
missiles, because of the threat posed by such missiles and because of the
fact that existing models were of only limited applicability in studying
ship/cruise missle engagements.

The remainder of the first year's efforts were concerned with the
development of an analytic model of an engagement between a single ship
and a number of cruise missiles. In addition, preliminary work was carried
out to determine the structural requirements of a fleet/multiple cruise
missile engagement model. A hierarchical analytic structure was proposed.
In this structure one set of models, referred to as engineering models,
are used to map subsystem hardware characteristics into subsystem perform-

ance characteristics. A second set of models, referred to as operational
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models, are used to integrate subsystem performance characteristics to pro-
vide measures of total system effectiveness (of either a ship or a fleet)
in an engagement with multiple cruise missiles. The advantages of this
approach which are discussed fully in [Bonder, Cherry and Miller, 1973],
include not only economy of operation but also flexibility in that. pro-
posed hardware changes can be more easily evaluated and areas in which im-
provement is desirable or necessary can be more easily identified.

Work was carried out during the first year's contract on both opera-
tional and engineering models. A kill-rate ‘structure was adopted for the
single ship/multiple cruise missile operational model and rapid fire gun
system kill rates were developed. The extension of such a structure to
a fleet operational model was discussed and evaluated. Requirements for
engineering models were identified and modeling was carwied out in the areas
of radar power management, coherent and noncoherent detection, Doppler
discrimination and target tracking and prediction. The results of devel-
opment activities in both operational and engineering models are described
in |Bonder, Cherry and Miller, 1973].

Subsequent to the completion of the activities of the first year,
initial findings and results were reviewed, and the decision made to con-
centrate the second year of the research activity on the development of
analytic operational models of engagements between cruise missiles and
single ships. A model representing engagements between a single ship
and a number of cruise missiles was developed as a result of that effort
and is described in this report.

The single ship/multiple cruise missile engagement model is an
operational model (i.e., it maps performance descriptions for sub-

systems into measures of effectiveness of the engagement) and

I
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is analytic in character. The principal mathematical structures are sto-

chastic, and the outputs are probabilistic descriptions of measures of

\ effectiveness (outcomes of engagements) as functions of time. The elements
and processes represented in the model include:

- the ship's defensive weapon systems and weapon assignment logic,

- damage to defensive weapons,

-

R
: - in-flight destruction of cruise missiles,

- Jjammers and other ECM systems employed against defensive weapon

systems, and

SR e bR L e i

+ raid characteristics.

The engagement model requires as inputs the performance characteristics
of systems (missiles, defensive weapons, etc.) including such items as le-
thality characteristics of cruise missiles with respect to the ship (and
vice versa), tracking error characteristics of the ship's radar in an EW

; environment, etc. While it is anticipated that some of the model's inputs

LA
ar

¢ will be determined directly from existing data, it is believed that other

‘ inputs should be obtained as outputs of engineering submodels that map
physical characteristics of subsystems into performance descriptors of
those subsystems, which can then be input to the engagement model.! Accord-
ingly, in addition to the engagement model itself, an engineering submodel

that permits tracking error characteristics of radars and other sensors in

an EW environment to be determined as a function of the physical character-
istics of the radar was also developed during the second year's effort and

is documented in this report.

IWith this arrangement the effect of variations of these subsystems on the
outcome of the engagement can be examined by varying the inputs to the
submodels -- a convenient and efficient approach which may facilitate the
search for improved systems.




The remainder of the report consists of two chapters and three
appendices. The single ship/multipie cruise missile engagement model
is described in chapter 2.0. Expressions for the kill rates and weapon
firing probabilities (both of which are required for the overall model)
in terms of subsystems performance descriptors aie also developed in
chapter 2.0. Suggestions for refining the model and recommendations
for extending the model to represent multiple ship/muitiple cruise
missile engagements are discussed in chapter 3.0. An engineering
model, which may be used to generate some of the parameters involved
in the expressions’ for kill rates, is described in appendices A andB.

A system of differential equations employed in the overall model is

analyzed in appendix C.
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2.0 AN ANALYTIC MODEL OF A SINGLE SHIP/MULTIPLE
CRUISE MISSILE ENGAGEMENT

An analytic model of a single ship/multiple cruise missiie*engage-
ment is described in detail in section 2.1, together with the principal
assumptions used'in the development of the model. Expressions for "kill
rates" and "firing probabilities," which are fundamental to the model,

are developed in sections 2.2 and 2.3 respectively.

2.1 Overall Structure of the Model

2.1.1 Printipal Assumctions and Inputs 6. the Mocel

A single ship/multiple cirvise missile engdgement is viewéd as

taking place in two rhiases: an gé~ry phase in which the cruisenissiles

./

are -engageda only by-defeﬁs*vr ircraft at a-dicieace from the ship, and
//

P
a late -phase 3 wh1ch :ﬁ//uru1se missiles are engaged only by the ship's

/
defensive weapoa/ at relurave]y ciosé ranges. Because defensive air-

//
craft will.$éldom be used at the same tifé as ‘the ship's. defefsive

weapsas, the view is that no such aircraft participate in the late

‘phase of the engdgement.

The engagenent model déscribed in this report portrays oniy thé

late phase of thz engagement! of which figure 1 is an itlusteation

“

10ther models which could portray the ezriy phase of the engagement
(aircraft vs cruise miss11es) are avaiizble elsewhére,
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The Tullowing principal assumptions about this phase have been made:!
(1) The ship detects cruise missiles at deterministic. »anges from

the ship.2 Detection ranges may vary with the direction of

incidence of the cruise missiles. Upon detecting a cruise

missile, the ship initiates tracking and continually updates

its estimates of what the -position of the cruise missile will

be at future times.

(2)

The ship's defensive weapons are limited to guns and SAM sys-
tems.

The ship can redirect in-flight rounds from both guns and
SAM systems at any time prior to their arrival at the cruise

missile at which they have last been targeted.

N et e siond o F e Db AT G L PR

The ship always assigns all available defensive weapons to

AT D

that surviving cruise missile which will, if not sooner de-

stroyed, be the next to impact the ship.

PTG DTN T h RS

The above-listed principal assumptions serve to bound (and, in the case

of assumption (3), simplify) the scenario to be modeled as well as to

define some of the types of input data which wili be required by the

model. The manner in which each assumption accomplishes these objec-

tives is briefly discussed below.

s e SRy e et S R
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10ther assumptions, more minor in character than those listed here, will
be introduced and used as needed.

2This assumption, and the others as well, can be relaxed.

Methods for
relaxing the assumptions will be discussed later.
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Detection and Tracking. Since the ranges at which a ship can detect
incoming cruise missiles can be predicted with reasonable confidence,!
these ranges have been viewed as being deterministic in character. The
range at which detection of each cruise missile occurs, together with the
actual flight paths and velocities of the cruise missiles, are required
as input to the model in order to obtain the time which the ship has to
engage and destroy each missile before it impacts the ship and to fix the
geometry of the engagement.

In practice, it will be convenient to represent the actual flight
path of each cruise missile by a sequence of straight line segments and
constant-radius turns of a specified number of degrees.2 The speed of
the cruise missile is taken to be constant on each segment.

Ship's Defensive Weapon Systems. A single ship's present defenses
against cruise missiles consist of rapid-fire guns and SAM systems. The
number of defensive weapon systems, along with certain performance data
which affect their Tethality characteristics with respect to cruise mis-

siles, is required as input to the model.

1perhaps the simplest method to obtain the detection range is to use the
results of tests of the ship's missile detection radar against cruise-
missile-like objects under conditions of the type a user desires to rep-
resent in the model (e.g., presence or absence of enemy jamming, weather
conditions, the altitude of the incoming cruise missiies, etc.). Alter-
natively, the ship's detection range could be obtained from analytic
models (see, for example, [Brennan and Hill, 1964] and [Kirkwood, 1965]).
Similarly, information about flight-path estimation for incoming cruise
missiles could be obtained by testing the equipment involved or by ana-

1ytic modeling. An approach of the latter type is documented in [Bonder,
Cherry and Miller, 1973].

2procedures of this type for handling flight paths have been developed at
the Systems Research Laboratory at the University of Michigan; they are
documented in [SRL, 1969].

20 g e Ry
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Fire Redirection. On the one hand, it is sometimes possible for a

ship to redirect an in-flight SAM from the cruise missile at which it was

T TR WY B R T T T e T N AR
~

initially targeted to another cruise missile.! On the other hand, redirec-
tion of in-flight gunfire by the ship does not appear to be feasible.
Nevertheless it is here assumed for mathematical convenience and simplicity
that redirection of both gunfire and SAMs is possible. Strictly speaking, i
therefore, this assumption has the effect of making the engagement model %
described here generate an upper bound on the effectiveness with which %
real ships can fight cruise missile engagements. While an analysis of i
such engagements is possible without this assumption, it is not clear that
the additional realism thus gained would be worth the concomitant increase
in mathematical and computational compiexity.

In view of the assumption that the ship has the capability to redirect

in-flight fire from any weapon system, it is convenient to say that a weap-

on system "is firing at" a cruise missile at a particular time whenever
fire from that weapon is arriving at the cruise missile at that time.
Ship's Weapon Assignment Logic.? Although other weapon assignment
logics are available, the logic described in assumption (4) above closely
approximates one which has been used in practice. This logic has there-

fore been assumed as an initial basis for modeling.

IRedirection of a SAM is usually possible in practice until the SAM enters
a terminal lock-on phase.

2Ship's weapon assignment logics in general, and the one assumed for the
engagement model in particular, are discussed at greater length in
section 2.3.
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Notice finally that some of the above assumptions state that certain
aspects of the engagement are regarded as being deterministic instead of
stochastic. For example, assumption (1) says that the ranges at which the
ship detects cruise missiles is here taken to be deterministic, whereas
these ranges are often treated stochastically elsewhere (i.e., in cther
models). These assumptions may therefore be seen as conditioning the en-
gagement upon the indicated types of information being fixed. This con-
ditioning could be removed, if desired, by embedding the engagement model
to be described here in a richer structure in which these deterministic
aspects would instead be treated stochastically. This would entail an
increase in mathematical and computational complexity. Since much of the
complexity of the interactions between the ship and the cruise missile can
already be analyzed under the assumptions listed above, it is desirable
to postpone enrichments of the types suggested above until such time as

experience gained with the existing model indicates that they are needed.

2.1.2 Outputs and Overall Mathematical Structure of the Model

The outputs of the single ship/multiple cruise missile engagement
model are of two types:
the conditional probability that each cruise missile survives the
engagement up to time t, given that the ship has sustained a cer-
tain degree of damage at that time (the output is provided for
each time t and each possible degree of damage to the ship), and

the probability that the ship sustains each possible degree of

damage at each time t.

son pbsenh il
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The overall structure of the engagement model is based on renewal
theory. Fundamental to the model are "kill rates" and what are here
called "firing probabilities." The kill rate associated with each defen-
sive weapon system/cruise missile pair at time t is the conditional prob-
ability that the weapon system will kill the cruise missile in a small
time intervall [t, t+§), given that the cruise missile is still alive at
time t and that the weapon is firing at the cruise missile at that time.2
The firing probability p(t) associated with each defensive weapon system/
cruise missile pair is the probability that the weapon is actually firing
on the missile at time t.3

It is convenient to number the cruise missiles in the order in
which they will, if not sooner destroyed, impact the ship. Thus cruise
missile 1 is that missile which, if not destroyed, will impact the ship
before any of the other cruise missiles; cruise missile 2 is that missile
which will, if not destroyed, be the next soonest to impact the ship,
and so on. The convention here is that time is measured from zero
starting with the time at which the cruise missile 1 is detected by the
ship. The time at which cruise missile j will, if not sooner destroyed,
impact the ship is denoted by "tj,“ so that 0 <ty <ty < --- follows
from these conventions. The ship's defensive weapon systems may be numbered

in an arbitrary order.

lHere, as elsewhere in this report, 6>0 is a small time interval.

ZRecall that a weapon is said to be firing at a cruise missile at time t

if and only if lethality from the weapon is arriving at the missile at
that time.

3The reason why the firing of a defensive weapon upon a particular cruise
missile is treated stochastically will be explained later.

,,,,,,,
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Unlike the cruise missiles, the ship's defensive weapons are viewed
as being capable of sustaining partiai damage (as would happen, for example,
when guns switch to optical tracking because of damage to the radar system).
Partial damage to the ship's defensive weapons can conveniently be de-
scribed by introducing and using "damage categories" for the weapons and
“damage states" for the ship. The damage categories for one of the ship's
defensive weapons are statements that are descriptive of that weapon's
capability to continue to function in the engagement and may be chosen
arbitrarily by the user of the model. For example, the damage categories

for a weapon might he chosen as follows!:

damage
category number weapon capability
1 none (weapon destroyed)
2 marginal
3 medium
4 almost full
5 full (no damage)

The damage categories for the other defensive weapons may be chosen simi-
larly. If there are n; damage categories associated with defensive Wﬁapon
i, and if there are W defensive weapons on the ship, then there are I][ni
i=1

of

the ship's defensive weapons at any time. It is convenient to call each

combinations of damage categories that could characterize the status

such combination a damage state of the ship. Damage states are denoted

IThe terms which define the categories must, of course, themselves be
defined.
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by vectors d, where the ith component di of a damage state vector d is

the number of the damage category of defensive weapon .ystem i. The par-

ticular damage state corresponding to all of the ship's defensive weapons

being functional at full capability is denoted by u. At time 0, the ship

is assumed to be in damage state u.

The notation used is summarized below:

M=
W=

t. =
J

mj(tld) =

aokij(t|d)

pij(tld) =

number of cruise missiles in the engagement;

number of defensive weapon systems on the ship;

time at which cruise missile j will, if not sooner
destroyed, impact the ship (1 < j < M);

conditional probability that cruise missile j will

be alive at time t, given that the ship is in damage
state d at that time (1 < j <M, all d);

conditional probability that defensive weapon system
1 will ki1l cruise missile j in the interval [t, t+s),
given that cruise missile j is still alive at time t,
that the ship is in damage state d at time t and that
defensive weapon i is firing at cruise missile j at
time t (a function of t for each 1 <i <W, 1<j <M
and each d);

conditional probability that defensive weapon system
i will be firing at cruise missile j at time t, given
that cruise missile j is still alive at time t and
that the ship is in damage state d at that time (a

function of t for each 1 < i < W, 1 < j <M and each d)

.
bl
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qd(t) = probability that ship will be in damage state d at
time t (a function of t for each d);!
Lo T conditional probability that, given that the ship

is in damage state e, it will be in damage state d
after the impact of one more cruise missileZ (all e,
d).

- + . .
In addition, for each j =1, -+, M, let tj and tj denote times satis-

- =t =

. - + .
fying tj < tj < tj which are both very close to tj' Put t M+]

+ =
M1 T

The kill rates kij(tld) defined above express the lethality charac-

M+1
t

teristics of defensive weapon system i with respect to cruise missile j
at time t when weapon system i is firing at that cruise missile at that
time. Whether or not a weapon system is firing at cruise missile j at
some time depends (according to the assumed ship's weapon assignment
logic) on whether or not cruise missiles 1, 2, *--, j-1 have been de-
stroyed or have impacted the ship by that time. Therefore, since cruise
missile survival is here treated probabilistically, so too must be the
assignment of defensive weapons to cruise missiles at any time. The fir-

ing probabilities pij(t) defined above, express the probability that

1The damage state probabilities qq(~) may be interpreted as ship survival
probabilities as soon as a suitable subset of the damage states is identi-
fied with ship survival (and the complementary subset with ship non-
survival). We do not here make this association, preferring instead to
leave this to the user of the model. The q4(-) are therefore made avail-
able as outputs of the model and this is regarded as being equivalent to
outputting a ship survival probability as a function of time.

21t is assumed that the foq Are known and available as input data.
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" weapon system i is firing at cruise missile j at time t, given that cruise

missile j is still alive at that time.

Now consider a time t with 0 <t < t;. Since none of the

cruise
missiles can have impacted the ship by time t, we have
- _
4 1 ifd=u,
aqlt) = (0<t<ty) (1)
E 0 otherwise.
3 In particular,
3 _ 1 ifd=u,
: qd(t]) = . (2)
3 . 0 otherwise.

Next, choose a small 6 > 0 such that t + 6 < t]. Since none of the

cruise missiles can have impacted the ship by time t + &, and since the

ship must therefore be in damage state u at that time

W
mj(tlu) « [1-6 - igl pij(tlu)kij(tlu)] if d=u,
mj(t+6|d) =

| (3)

undefined otherwise,

: for j =1, ces, Mand 0 <t <t + § < tl‘

Equation (3) can be used to determine the mj(tld) for all d and ail t in

b,
o
g
b

the range 0 < t <ty once expressions for the firing probabilities pij(tld)

]
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in terms of the mj(tld) a;e available.! Specifically, one could use
(3) to first determine the mj(slu) for 1 < j <M. This information can
then be used to determine pij(alu) for T<i<Wand1 <Jj <M This
latter information could then be used in (3) to obtain the mj(25|u),
etc. Continuing with this "bootstrap technique" would yield values of
the mj(tlu) and pij(tlu) at any desired number of points in the range

0<tx< t]. The following diagram iilustrates the order of the computa-

tions:
1= mj(OIu) mj(alu) mj(26|u) -- - mj(t;|u)
\// / \
pij(olu) P%j(5lu) pij(25lu) - == pij(tilu)

The analysis just given, as has been indicated, suffices to deter-
mine the mj(t|d) and qd(t) only for times t < t;- We now show how to
compute these functions for times t > t]. To this end, choose
k(1 < k < M) and suppose that the following functions and quantities

have all been determined as indicated:?2

11f the manner of dependence of the firing probabilities p;;(t|d) on the
cruise missile survival probabilities mj(t|d) were simple,”it would be
possible in principle to insert these functions in (3) (which is equiva-
lent to a system of differential equations) and integrate to obtain
formulas for the mj(-ld). An approach of this type is discussed in
appendix C. One may, however, anticipate that the integration may be
difficult if the p;;(t|d) are complicated functions of the mj(-Ld) and
of the assumed weapdn assignment logic for the ship. In view of this,
it is better to plan to work with (3) in the form given by using suit-
able numerical techniques.

2This assumption is true when k = 1 as shown above (see equations (1)
and (2) and recall the bootstrap techrique applied to (3))
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(a) qd(t) for all d and al1 <t

(b) qd(ti) for all d;
(c) mj(tld) for 1 <j <M, and d and a1l t< ts
(d) mj(tild) for 1 <j < Mand a1l d;

(e) pij(tld) for 1 <i<W,1<j<M alldandan t <t

The probability qd(t:) that the ship is in damage state d at time t:

is given Ly

ag(ty) = 2 ag(ty) m(tile) 2,

(4)
for all d. 1In fact, this relation persists for all t satisfying t: <t«<
b1

%(0) = 3 a(t) m(tile) ny (5)
for ali d and al1 t satisfying t: <t«< tk+1’ In particular,
A(teer) = £t ) mltele) o, (6)

for all d. Notice that equations (4), (5), and (6) are all computable in

the sense that the left-hand side of each can be determined from the

corresponding right-hand side because all of the right-hand sides invalve

only probabilities which are, by the above assumption, known. Relation

(5) therefore shows that part (a) of this assumption remains true when k

Similarly, (6) shows that part (
remains true when k is replaced by k+1.
Next,

is replaced by k+1. b) of the assumption

note that the conditional Joint probability that:

+the ship is impacted at time tk’ and

Attt sk gt
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+the ship thereupon goes into damage state d, and
-cruise missile j(k+1 < j < M) survives until time t:z t;,

given that the ship is in damage state e at time t;, is mk(tile) o

Hence

510 - 4+ TGl 1 4D

tag(ty) + Ims(tyld) - my (5 ]d)] (7)
for j = k+1,°°*, M and all d, whereas
+ -—
mj(tkld) =0 (8)

for j=1,"°", k and all d because cruise missiles 1,-+-, k will have either
been destroyed or impacted the ship by time t:. Since the qd(t:) which
occurs on the left in (7) are given in (4) in terms of probabilities
evaluated at time t;, and since these latter probabilities (together with
those that appear on the right in (7)) are all known, the mj(tzld) on the
left in (7) and (8) are all computable.

Equation (8) persists for times t satisfying t: <tc< tk+1 because

no cruise missiles can return to 1ife once they have been destroyed or

impacted the ship:
mj(tld) =0 (9)

for j=1, --+, k, all d and all t satisfying t: <t«x< tk+]' In particular,

my(teqld) = 0 (10)

N by R
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& for j=1, ---, k and all d. Furthermore, an argument similar in every

WA TETI SR TR e G ey e

respect to that given before shows that

T

‘ W
mj(t+6[d) mj(t]d) «[1-5- izl pij(tld) kij(tld)]' (11)

poi EPAT

LR

P holds for all j = k+1, ---, M, all d and ali t satisfying t: <t«< tk+1'
E This equation can be numérically bootstrapped to compute the cruise -missile
survival probabilities mj(tld) and the weapon system firing probabilities

pij(tld) for all t in the range t: St<tg. This bootstrapping begins

Tt PTG e

with the choice t = t,, the values of the mj(t';ld)» which will then be

required in (11) being given in (7). The following diagram illustrates

SRt e

the order of the computations:

+ LY -
‘(T pold) - - e m(tld)

Ki ‘
+ 6Id) - T = Pij(tk+]|d)

In particular, the mj(tE+]id) for i = k1, -+, M and all d are produced

as a result of this procedure. Thus, equations (9), (10) and (11) show

that parts (c), (d) and (e) of the above assumption remain true when k
is replaced by k+1.

The foregoing discussion, together with the fact that the above
assumption is true for k = 1, shows by induction that this assumption

is true for all k =1, +-+, M. This is to say that the output functions
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a4 () and mj(-ld) are computable for all damage states d and all cruise
missiles 1 < j < M. The formulas for performing these computations are
those which have been developed above. The procedure may be recapped as
follows!:

Step (1). Put k = 1 and compute

1 ifd=
q4(t) = all 0 < t <t (12)
0 if otherwise
) 1 ifd=u
a4(tq) (13)

0 otherwice

Compute also? the mj(tlu) for 1 <j <Mand 0 <t <t by numerically

bootstrapping the following differential equation:
mb(t §|u) mJ(tlu) [1 -5 ‘e p1J(t|U) k1J(t|U)] (14)

Obtain, in particular, the values mj(tflu) for 1 < j <M.

Step (2). Compute

(ty) =§qe(tl-<)mk(tl'<|d) by alld, (15)

=ze; Gt m (tle) ¢y a1l d, all t, <t <t ., (16)

INotice that the computations in step {2) of the a]gor1thm should be per-
formed in the order indicated because the 49 ) which occurs in (18) must
first be computed as in (15) and the m; tklg ) which will be required to
start the bootstrapping in (21) must f1rst be obtained as in (18).

2Note that the mj(tld) for T<j<M all0<tc< t] and d # u are undefined.
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A4(teq) =§qe(t"<)mk~(tg e) £,y alld, (17)

I [Emk(t IE) 2 ed q (tk)

qd(t ) €
mj(t:|d) . +qd(t;){mj(t;|d) - mk(tild)}] (8)
' all k#1 < j <M, all d,
0all1<j<k,alld, 3
mi(tld) =0 all 1< <k, alld,allt ty <t < Ty (19)
ms k+]ld) =0 alll<j <k, alld. (20)

In addition, compute the mj(tld) for k+1 < j <M, all d and all t in the
range t; <t 5-tk+] by numericaliy bocteirapping the following differ-

ential equation:

mj(t+6ld) = mJ(tId) ¢ [] -6 - 'E] p-,J(tld) k]J(tId)l (2])

Obtain, in particular, the values mj(t;+]ld) for x+1 < j < M and all d.
Step (3). Increment k by 1. If k > M, stop; otherwise go back to step
(2).

The above algorithm constitutes the overall mathematical structure
of the single ship/multiple cruise missile engagement model. In order

to carry out the above procedure, however, it is necessary to first deter-

mine values for the kill rates k tld) and the firing probabilities
1.J.('cld). Although this could probab]y be done experimentally, it would

be difficult and costly to do so and would, moreover, provide only Timited

insight as to possible improvements in weapon design and employment tactics
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for the ship. These problems can be avoided by using analytic models to
predict the ki1l rates and firing probabilities in terms of parameters
which characterize the cruise missiles and the ship's defensive weapon
systems. This will facilitate using the overall model to examine promis-
ing design and tactical improvements. Models for predicting the kill
rates and firing probabilities have therefore been developed and are de-

scribed in the next two sections.

2.2 Determination of Kill Rates

The overall mathematical structure of the single ship/multiple cruise
missile engagement model described in the previous section involved certain
"kill rates" which characterize the capabilities of the ship's defensive
weapon systems with respect to cruise missiles. Each kill rate kij(tld)
was the instantaneous conditional probability that defensive weapon system
i will ki1l cruise missile j in a short time interval [t,t+s), given that
cruise missile j is still alive at time t, that the ship is in damage state
d at time t, and that weapon system i is firing at cruise missile j at
time t. It was mentioned that kill rates for both types of the ship's de-
fensive weapor systems -- gun emp]acements and SAM systems -- may be viewed
as being functions of certain parameters associated with vhe weapon systems
and the cruise missiles. The dependence of kill rates for rapid-fire gun
systems on such parameters has been described by [Bonder, Cherry and Miller,
1973]; for completeness, these ideas are discussed in section 2.2.1 bé]ow.
Expressions for the kill rates for SAM systems as functions of such param-

eters are developed in section 2.2.2.
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2.2.1 Kill Rates for Rapid Fire Gun Systems

The approach used here to determine the functional form of the kill
rates for rapid-fire gun systems involves decompcsing the process by which
such guns kill cruise missiles into several parts.

Implicit in the notion of a kill rate! k(t) for a particular gun-
system/cruise-missile pair at time t is the assumption that the killing
of the missile by rounds from the gun is probabilistic in character. If
we further assume that the killing of the cruise missile at any time t
by each of the rounds from the gun which arrive at the cruise missile at

time t are independent events, then k(t) may be written

k(t) = r(t)-SSKP(t)

where:
r(t) = rate at which rounds from the gun arrive at the
cruise missile at time t; and
SSKP(t) = single shot kill probability at time t.

Note that the rate r(t) at which rounds arrive at the cruise missile
at time t is not the same as the rate at which the rounds were fired at an
earlier time? t-tf (so as to reach the missile at time t) because of Doppler
effects arising from the motion of the missile relative to the gun. How-

ever, since the rounds from the gun travel so much faster than the cruise

missile, these Doppler effects will be small and may therefore be neglected.

The above equation for k(t) then becomes

k(t) = F-SSKP(t) (22)

YFor purposes of this and the next section, it is convenient to replace the
notation kji(t]d) for a kill rate by simply k(t). In doing this, it is
understood %hat we have in mind a particular defensive weapon system i, a
particular cruise missile j, and a particular damage state d for the ship.

2Here, t>0 represents the time of flight for rapid-fire gun rounds arriv-
ing at the cruise missile at time t.
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. where:

F = gun system firing rate ( a constant which appropriately aver-
ages the burst and ‘inter-burst periods for the gun); and
SSKP(t) = single-shot kill probatility at time t.

The firing rate F is here taken to be a basic descriptor of the gun
system. The remainder of this section is, therefore, devoted to the deter-
mination of the single-shot kill probability SSKP(t) at time t.

The method suggested here for computing single-shot kill probabilities
for rapid-fire gun systems is based on the following assumptions:

- for purposes of the computation of the SSKP(-:), the cruise missile

oo ko rdvs

is equivalent to an effective vulnerable area -- a plane area of
3ﬂ suitable size and shape in a plane perpendicular to the line of
sight between the gun system and the missile at time t;

] + a round kills the cruise missile if and only if it intercepts the
missile's effective vulnerable area;

rounds are aimed (at time t-tf) at the estimated center of the
cruise missile's effective vulnerable area at time t, but errors
in both the estimation of future position and in the delivery

points of rounds may occur.

Under these conditions, the single-shot kill probability SSKP(t) at

time t may be modeled as

SSKP(t) = A(t)-p(0,0) (23)

where:

A(t) = area of the cruise missile's effective vulnerable

¥ area at time t, and

il gl e SRR ildah
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p{0,0) = value of a probability density function of the two-
dimensional delivery error evaluated at the aiming

point.
The area A(t) of the effective vulnerable area of the cruise missile

will be a function of the dimensions of the missile, its aspect with
respect to the gun system at time t, and of the type of round (fuze or
impact) employed by the gun. In detailed simulations, it is common to
model targets such as cruise missiles as consisting of several vulnerable
components with vulnerable areas in six directions: front, left, right,
up, down and rear, relative to the natural coordinate system of the target.
Areas associated with each direction are projected first onto a plane
perpendicular to the closing velocity vector between projectile and target,
and then onto a plane perpendicular to the line of sight between weapon

and target. It has been found, however, that simple approximations (such
as a spherical représentation) to the multiple component model produce
results which are often satisfactory. It is expected that the spherical
model will suffice to determine the effective vulnerable areas A(t) of
cruise missiles, and these functions are therefore regarded as being

computable.

Consider next the intercept probability p(0,0). For each round, the

delivery error at the time of predicted intercept may be modeled as a three

Xy

dimensional random vector {)qg}in which each component X5 (i =1,2,3) is
X3

regarded as being a sunif:xij of a number of random variables Xi 5 associ-

ated with error sources which contribute to errors in the xi-dimension.

Under the assumptions that

ooy
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- for each i = 1,2,3, the xij are independent,

+ for any pair 1 < i; # iy < i3, the Xi3 and xizk are independent

for all j and k, and

+ the number of error sources which contribute to errors in each

dimension is "large,"
the distribution of the miss vector i;}nmy (by the central 1imit theorem)
be approximated as a trivariate norma?sdistribution without correlation.
To utilize the effective vulnerable area concept described above, the three
dimensional miss vector must be transformed into an equivalent vector in
the plane perpendicular to the line of sight between target and weapon.
This transformation may be accomplished by suppressing the range dimension
as described below. As will be seen, this transformation produces a bi-
variate normal distribution (with correlation) for the equivalent weapon
delivery error vector in the azimuth elevation plane.

The angle-1ike errors in elevation and azimuth are obtained by
multiplying angular errcrs by range. The assumption is made that direct
angular errors in gun pointing lead to equivalent angular errors in the
Cartesian coordinate system perpendicular to the line of sight. Sources
of the angy]ar errors include the estimates of both angles, i.e., ele-
vation and azimuth, and estimates of the first derivatives of elevation
and azimuth passed from the tracking system to the fire control computer.
These errors thus lead to equivalent errors in lead angle effects. By
assuming that errors produced by the fire control computer are negligible,
and by neglecting the rotation of the coordinate system with range, azi-
much and elevation axes in the time between prediction and tracking, it

may be concluded that azimuth, elevation and range errors produced by the

tracking system produce equal errors in gun pointing.
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Range errors in the system arise from two primary sources. The first
of these is the tracking system which provides the fire control computer
with estimates of range and the first derivative of range. The second
source of range error is the estimation of muzzle velocity. Tnis error
is modeled as described below.

Suppose that the projectile at time of predicted intercept has veloc-
ity W in the direction (0,0,R) and that the miss vector at time of predicted
intercept has component £ in the range direction. It is easily seen that
the time required for the projectile to reach the target plane is approx-
imately Z/(R-W) where R is the rate of change of range. For small values
of R relative to the value of W this time can be approximated by Z/W.

With respect to the coordinate system with axes in the directions of range,
elevation and azimuth, and by neglecting rotation the target velocity can
be expressed as (AE, ER, R) where:

A = azimuth;

A = azimuth rate of change;

E = elevation;

M e
1}

elevation rate of change;

R = range;

R = range rate of change.
The error component Z thus corresponds to errors in elevation and azimuth
given by ERZ/W and ARZ/W respectively.

The magnitude of the range error is the sum of errors due to the

tracking system, which are assumed to pass unaltered through the fire con-
trol system, and errors due to muzzle velocity variation. The latter range

error is modeled by:

T e e e i i ——— e el S e o S SRR & LT T,
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t
Range error =

vt2
f - f (gi) dv 'Y
1+ st (1 + stf)2 dv

where:

tf = projectile flight time;

V = muzzle velocity;
s = slow-down constant of projectile; and
dV = muzzle velocity error.

Under the assumptions made abewve, probability distributions must be
obtained for the following errors:

(1) range;

(2) range rate;

(3) azimuth;

(4) azimuth rate;

(5) elevation rate; and

(6) muzzle velocity.

Since normality and independence have been assumed, mean or bias and vari-
ance a;e sufficient to specify the distributions required. Note, however,
that for any engagement these parameters are functions of time.

The following form for the probability density function of the miss
vector in a plane perpendicular to the line of sight between weapon and
target incorporates the parameters listed above.

Let the total range-like and angle-like errors have variances

given by:
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Q
n

variance of total error component in range;

Q
1}

a variance of total error component in azimuth; and

Q
"

variance of total error ccmponent in elevation.

Then transforming the range error into the azimuth-elevation plane

results in variances

where:

2
o =9 + g0 =5 and

ch2*02+02-EE
E e r w2
GAZ = variance of equivalent azimuth error;

o = variance of equivalent elevation error;
A = azimuth rate;
E = elevation rate; and
W

= shell velocity at time of intercept.

Assuming a two dimensional normal distribution and neglecting correlation,

the value of the probability density function at the target center is

where:

B.2 B,2
L (2,5,

BE = bias in elevation;

By = bias in azimuth (i.e., the mean vector).

One final factor must be considered, namely, the correction necessary

to account for the dependency between the errors associated with single
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rounds fired in‘a burst, ite.,,errors common to all rounds in the burst.
The correction is obtained through consideration of the burst survival

probability, BSP, given the burst error and the single shot survival
probability SSP. Thus,

BSP = ssp"

where n is number of rounds in the burst.

For any random variable X with mean x, put ¢ = X - x. Then

Efe*] = E[eX*€] = E[e*tce® + & &7,
2

it

]

e (1 + Lvar(x)) .
2
Theréfore,

2
E[BSP] = E[exp (ngn SSP)] = exp [nanSSP] (1 + g- var (2,SSP)).

Using a Taylor series expansion for 2n(1-x) one obtains

2 2
~#nSSP = A exp [—( R] + RZ -)]
21[0102 -2-:7?—- .2—0'2_2

where R] and R2 are the components of the burst error vector, 012 and 022

are the intraburst variances and A is the target vulnerable area. Biases

are ignored. Taking expectations,

A

1/2

-SSP = 772
2n(0y24052)  (oy240,?)

where 032 and 042 are the variances associated with the bivariate normal

distribution of R1 and RZ‘ A standard calculation yields
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: (0,240,2) (0,240,2)
! var (nSSP) = (1SSP)2 L3y 1,
i 0195(204240,2) ' “(20,240,2)
e
: v implying that the appropriate correction to the integrated kill rate is
é nBSP - n2nSSP
3{' 2, 2 2, 2
’ nl (01405") (0, 7+0,€)
1 = gn {1+ D2 gm5epe 1 3 2 % 4
1 2 1/2 1/2
| 0,0,(20 2+a 2) (2 2, 2)
§ 1921493 ™9 % 7%
E s This correction should be applied over each burst period: It should
| be noted that if the higher order moments of fnSSP are large, the
:
{ approximations used here are no longer valid. However, this is rarely
i
: C the case with gun systems.
Assembling the methods and assumptions outlined above, the following
formula is obtained for the kill rate to which the correction factor

for inter- and intra-burst errors is applied:
FA(t) B B
A E
k(t) = exp |- 1/2 (— + —) :
o0 HAIIZ HI;'/Z ( Hy  He

. .2
= UAZRZ + O'Aztszz + A tf (":‘2‘)

. + A2t 2 ( 2+ op? )

012
= 2n2 24+ 2 2+ 2p2
E °ER +0EtfR2+EtfR< )

U
-7
v
+é2t.'. ( 2 + 0‘2 2)

where

= =
>
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variance azimuth sensing

variance azimuth gun-pointing
2 4 2

o3 %2

variance elevation sensing

variance elevation gun-pointing

variance azimuth rate input to
computer

variance elevation rate input to
computer

range (at intercept)

time of flight

variance in muzzle velocity

muzzle velocity

vulnerable area

average firing rate during a burst

and one interburst period

azimuth rate of target (at intercept)

elevation rate of target (at intercept) (fﬂg-)

variance range sensov (input)

(km2)

(km2)

(fadé)

(rad?)
(rad?)

(rad?)

(rad?)

(rad?)
rad?
sec?
rad?
sec’Z

(km)

(sec)

(=)

(%)
(km?)
(sec™!)

(rad/sec)

sec

(km?)

2
variance range rate input to computer (%gzz)
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= rad
b, = byy + bap * ba3 (rad)
b,y = sensor azimuth bias (rad)
ba2 = pointing azimuth bias (rad)
- . "] d
ba3 = AR bp te (rad)
b, = range sensing bias (km)
be - be] * be2 = be3 (rad)
b = sensor elevation bias (rady
bez = pointing elevation bias. (rad)
_::"].,' A
be3 ER " bpte (rad)
B} -1,
¢, = Gy tep R A te (km)
¢p = prediction error due to nonlinear (km)
flight in range direction!
Ca1. = prediction error in azimuth direction! .(km)
- -1
Cg = Cop t g R E tg (km)
Co1 = prediction error in elevation (km)
€ direction®

For the most part the parameters in the above list must be supplied by
engineering models which provide values for. the parameters as a function of
ship systems hardware characteristics, cruise missile characteristics, and
engagement geometry and time. Dur<ing the initial stages. of the project, work
was carried out to produce engineering models which predicted biases and

variances for radar systems. This work is described in appendix D to

[Bonder, Cherry and Miller, 1973].

These must be evaluated as a function of the flight path in any specific case
under study.
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The effects of EW, in particular enemy jamming activities, are por- .
trayed in the model through the effects. of these activities on system per- E
formance measures in the above list. The basis of engineering models
capable of predicting the relationships between certain types of jamming €
and performance characteristics of radar systems is described in appendices

A and B to this report.

2.2.2 Kill Rates for SAM Systems

Recall that the kill rate! k(t) for a particular SAM system/cruise :
missile pair at time t was defined as
§-k(t) = conditional probability that the cruise missile is
killed by the SAM system-in the time interval [t,t+s),
.given that the missile is still alive at time t and
that the SAM system is firing at the cruise missile

at that time.
The probability é6-k(t) that the cruise missile is killed by a SAM from the
SAM system in the interval [t,t+8) can be taken in the form
§+K(t) = i(t)-SSKP (24)

where:

ndh

i(t) = probability that the SAM intercepts the cruise missile

in the time interval [t,t+s];

1As_jn the preceding section, the notation -k(t) is used instead of
‘kij(t d) to denqte a.kill rate because the damage state and the weapon
system 8 and cruise missile j to which it applies is understood.

e 2D e
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SSKP = conditional probability that the SAM kills the cruise
missile, given that it intercepts the cruise missile.

As the above notation suggests, and in contrast to the situation with
rapid-fire gun systems, the single-shot kill probability SSKP for SAMs is
here ascumed to be a constant:. Thé value of this constant, which may
depend on the type of cruise missile and the type of SAM but not on time,
may be estimated using existing models. It is regarded as being a funda-
mental descriptor of the engagement. The determination of the kill rate
s-k(t) is therefore reduced to determining i(t).

Since, by assumption, the actual flight paths and speeds of the
cruise missile with respect to the ship are deterministic, the flight time
the SAM requires to intercept the cruise missile at any point along its
path can be determined for the particular SAM type and cruise missile type
involved. This flight time then determines when landing must have taken
place in order for the SAM to intercept the cruise missile at that point

on its flight path. One may therefore write

t ;
i(t) = a-[ h(t-u) q(t,u) du (25) |
0

1This assumption, which can be relatively easily relaxed, seems reasonable ,
because SAMs are (unlike rounds from rapid-fire guns) guided onto targets.
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where:

h(x)s

Pr[SAM fired in (x, x + &)1,

and

g(t,u) probability density function for the flight time u
of a SAM fired to intercept the cruise missile at

time t.

Notice that the above development of i(t) exhibits the dependence of
this function upon the past in that the probability of intercept at time
t depends upon the status of the engagement at time t - u. Notice also
that neither of the functions h(-) and g(t,-) will be "smooth" because
the firing process is discrete and because the stochastic variation in
flight .imes for the SAM will normally be small. However, in a limited
sense, this model removes the discrete nature of the arrivals (or
intercepts) of the SAMs at the cruise missile.

Under the assumption that the SAM flight time has relativeiy limited
variation -- say a small-variance uniform random variable added to a

deterministic time u(t) -- the above expression for i(t) can be written

u(t)+e

i(t) =6« ./. h(t - u) 5%— du
u(t)-2

;
k!
k.
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K
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may be small, but the following analysis leads to a result identical to

the deterministic case.
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é & If it is further .ssumed, as seems reasonable, that the probability :
! 6-h(t - u) that a SAM. is fired in [t - u, t - u + &] has the constant
value!l s-ht for u in the range u(t) - 2 < u(t) + 2, the above expression
4
¢ becomes
%
{
= i(t)=s-h . (26)
¢
{
L . fro
; To determine the values of the ht for use in (26), it is necessary
to consider the process by which the SAM launching system operates. The 3
; firing process from the SAM launcher can be described by a cyclic Markov i
renewal process in which firing takes place at random intervals. As in ]
' the case of SAM flight times, the stochastic variation of these intervals
|

'As the notation suggests, the "constant” h, may ha i
i ’ ve differe
R for different times t. t "y nt values
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Suppose that there are R rails on the SAM launcher, and consider an

R state Markov renewal process with transition matrix:

e ——
1 2 3 4 o o . M
] 0 F](x) 0 0 o . . 0
2 0 0 F(x) 0 IR 0
3 0 0 0 F(x) « « » 0
R F(x) 0 0 0 0
S —

where
F](x)
F(x)

probabiiity distribution of time to reload.

probability distribution of time between firings on adjacent
rails.

Further, let

T mean reload time.

T

mean inter-firing time.
For this process, it can be shown [Cinlar, 1969], that in the limit the
rate at which firings take place is given by:

1
T'I +(R“ ])T
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Thg case of L independent launchers can be modeled by superposing the

P e

models for the individual launchers. In this case, an extension of re-

sults in [Cherry, 1972] gives

L 3
T ¥R TR ]

'y, as the rate at which firings of all the SAM systems take place. Using
a technique common to kill rate modeling, tne probability G-ht that a
5AM $s fired in the interval [t, t + &) can then be approximated by ‘the ;?

L mean rate at which SAMs could be fired:

Lt fi
A R y

B T T R S S

: where L, is the number of launchers available at time t - u (u béing the
SAM flight time yielding intercept at time t).

Finally, it should be noted that the above discussion has dealt with-
the rate at which SAMs can be fired whereas the equations introduced in
the preceding section deal with the rate at which SAM's arrive at the
cruise missile. The rate at which SAMs can be fired does not correspond
to the rate at which intercepts can occur since a Doppler effect is 3
present due to the flight times of the SAMs and the motion of the tar- ; ;
. get cruise missile. Let ;

t] = time of first intercept,

t2 = time of second intercept,

Lo T] = time of flight of first SAM, and

TZ = time of flight of second SAM. !
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Then the time between launchings is given by;

(tz - Tz) - (t] - T])

(tz - t]) = (Tz - T])
The length of the inter-intercept time period in the limit as the period
grows small is equal to the firing interval times 1 - DtTf where Tf is

the time of flight and Dt indicates differentiation with respect to in-

tercept time. The model firing rate thus becomes:

L
T + (M-1) t - DtTf)

Note that the above rate corresponds to the situation in which
guidance channel constraints are not operative. In the case in which
guidance channel constraints are operative the rate at which SAMs can

be fired corresponds to the rate at which intercepts occur. Consider the

- ftk(u)du
0

Pr(T>t] = e

non-homogeneous Poisson process with:

For this process it can be shown that the mean rate of events over a time

period [0.t] is given by

(fk(u)du)/t."

(=)

Accordingly, approximate the mean rate of kills by the expression:
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M
fl) = -y el .
J=1 t
where
f](t) = mean rate of kills in the period [0,t],
mj(t) = Pr[cruise missile j survives to time t],

M

number of cruise missiles engaged.

This expression reflects the number of kills per time unit; the rate
required is the number of intercepts. Consider a Poisson process with
parameter A and suppose that each time an event occurs in this process
it is recorded with probability SSKP. It can be shown that the recorded
event process is Poisson with parameter A-SSKP. Based on this analogy,

1

the approximation f(t) = SSKP™' - f](t) is used for the firing rate under

guidance constraints. The firing rate used thus becomes

£(t) (1 - D,T,)

for those cases in which f(t) is less than the number of guidance channels

available.

2.3 Determination of Firing Probabilities

Thevfiring probabilities pij(tld), which measure the likelihood that
each weapon system i is actually firing at each cruise missile j at time
t, may be modeled as a function of:

« whether or not cruise missile j has already been destroyed
or has impacted the ship by time t; and

the legic whereby the ship assigns defensive weapons to

surviving cruise missiles.
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It has been assumed (see the 1ist of assumptions near the beginning of

section 2.1) that the ship uses a weapon assignment logic in which all
- available defensive weapons are always assigned to the one cruise missile 3

which will, if not sooner destroyed, be the next to impact the ship. This

logic requires that the ship has the capability to evaluate the relative

threats posed by the surviving cruise missiles at any time. A conceptual

threat evaluation system that the ship might use for this purpose is '

therefore briefly discussed in section 2.3.1. The manner in which this i é

threat evaluation system could provide data for the assumed weapon l

assignment logic is discussed in section 2.3.2. Finally, expressions . ;l

for the firing probabilities which reflect the structure of the assumed ‘

weapon assignment Togic are developed in section 2.3.3.

2.3.1 Threat Evaluation

For a single ship/multiple cruise missile engagement, the relative

threat posed by each of several incoming cruise missiles may be

evaluated in terms of:!

(1) the predicted iength of time until impact;2
(2) the extent to which defensive weapon systems are already

committed to handling previously evaluated cruise missiles; and

1In the case of a multiple ship/multiple cruise missile engagement,
other factors, such as the value of each ship, should be added to the
list of items in terms of which threats should be evaluated.

2Depending on the configuration and capabilities of the defensive weapons
on the ship, the position of a cruise missile at each time may also

be important to an evaluation of the threat posed by the missile at that
time. For example, a cruise missile may be observed to be about to enter
a portion of its track which is not coverable by the ship's defensive
weapons because of, say, elevation or azimuth limitations of these wea-
pons so that the cruise missile, if not immediately engaged, will surely
impact the ship.
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(3) the extent to which defensive actions have been taken whose

outcomes have not yet occurred.

The length of time rewaining until impact is clearly relevant to
evaluating the threat posed by an incoming cruise missile. Were it not
for items (2) and (3) in the above 1list, the threats posed by incoming
cruise missiles could perhaps reasonably be ranked solely on the basis of }
remaining time to impact. Indeed, even when factors (2) and (3) are
acknowledged, one may still argue that ranking threats by remaining times

to impact regardliess of the defensive actions which may have been taken

[T e o apean g N

against some of the missiles and whose outcomes have not yet occurred

may be a conservative strategy. As (2) and (3) suggest, however, some

P oo o 1

schemes for threat evaluation are structured to account for the fact that
resources already committed to a cruise missile may, after a time lag,
result in the destruction of that missile so that no further action against
the missile would be necessary.! However, the previously-made assumption
that the ship can redirect in-flight fire as long as the fire has not
reached the cruise missile at which it was last targeted effectively as-
sumes away items (2) and (3) in the above 1list. It is therefore consis-
tent to assume that the ship uses a threat evaluation system in which the
threat-rank of each cruise missile is the same as the order in which it

will, if not sooner destroyed, impact the ship and in which the threat

Threat evaluation structures of this second type could be designed by
ranking threats by weighted remaining times to impact. The weights
assigned to cruise missiles would be functions of the probabilities
that these'missiies will survive the defensive actions already taken.
Threat evaluations weculd then be accomplished in a computational envi-
ronment involving, in addition to thc simple flight time calculations,
calculations of a more complex character.
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rank of a cruise missile, once assigned, changes only when the missile is
destroyed or impacts the ship! and does not otherwise change in time.
This assumed threat ranking procedure will be used to provide input to
the assumed ship's weapon assignment logic which is discussed in the next

section.

2.3.2 Weapon Assignment

In a single ship/multiple cruise missile engagement, the objective
of a weapon assignment logic is to assign defensive weapons to incoming
cruise missiles in such a way as to minimize some measure of the damage
to the ship (e.g., expectzd "damage", probability of impact of one or
more cruise missiles, etc.). To accomplish this objective, a weapon
assignment procedure should account for at least the following:

(1) the relative threat posed by each of several incoming
cruise missiles;

(2) the availability of defensive weapon systems; and

(3) the characteristics of the defensive weapon systems and
of the cruise missiles.

The relative threats posed by the incoming cruise missiles can be
determined by a suitable threat evaluation scheme as discussed previously.
The notion of defensive weapon system availability, as used above, in-
cludes a consideration of whether or not a given defensive weapon (to-

gether with its required support systems such as guidance links, gun

1Cruise missiles which have been destroyed or which have impacted the
ship may be said to have a null threat rank.

o
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pointing vadars, etc.) is still alive as well as a consideration of whether
or not the weapon is already in use and, if so, whether or not reassign-
ment might be protvitable. The characteristics of the defensive weapon
systems which are relevant to the weapon assignment process clearly in-
clude such factors as range, accuracy, rate of fire, time of flight for
projectiles, etc.

Two weapon assignment logics have been described by {Forsyth etal.,
1973]1. The first of these procedures has the advantage of being ex-
tremely simple. However, it appears that this procedure may, when em-
ployed against cruise missiles, result in random weapon assignments. The
second procedure is considerably more complex; it involves:? 3

ethe ranking of incoming cruise missiles by threat (the
threat ranks may change in time and may depend on defensive 3 \
actions already taken);

ethe establishment of categories of threat ranks;

ethe assignment of defensive weapons to cruise missiles
whose threat rank is in the highest threat category until
this category becomes empty (this may involve the
reassignment of defensive weapons assigned to cruise missiles
with threats in a lower category to cruise missiles whose

threats enter a previously empty higher category).

1Both of the weapon assignment procedures described by Forsyth include
some aspects of what has here been called "thr=at evaluation" and been
viewed as being distinct from weapon assignment.

2The structure of this second weapon assignment procedure resembles that
of a "foreground/background queue", and advantage of this correspondence

cog]d be taken in constructing a reasonably detailed model of the pro-
cedure. .
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The second of the above weapon assignment procedures appears to be the
more promising of the two.
In view of assumptions which have previously been made, namely,

+ that the ship uses a threat evaluation system in which
threat ranks of a cruise-missile, once assigned, change
only when the missile is destroyed or impacts the ship
(see the discussion in the previous section), and

- that the ship has the capability to redirect in-flight
SAMs and/or gunfire to-new targets as long as these
projectiles have not reached the cruise missile at which

they were last targeted (sce the ‘discussion at the beginning

of section 2,0),
the assumed weapon assignment logic is a special case of the second weapon
assignment procedure described by Forsyth in which the threat categories

of the latter consist of singleton sets.

2.3.3 Determination of Firing Probabilities

The assumptions which have been made in the preceding two subsections
about the ship's threat evaluation system and weapon assignment logic may
be summarized as follows:

« the threat rank assigned by the ship to a cruise missile is the
same as the order in which the cruise missiles will, if not sooner
destroyed, impact the ship;

« the threat rank of a cruise missile, once assigned, changes only

when the missile is destroyed or impacts the ship and does not

otherwise change in time;

TS
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- at any time during the engagement, all available defensive
weapons are assigned to the cruise missile having the highest
threat rank and remain so assigned until the missile is destroyed
or impacts the ship.

Recall that, by definition, pij(tld) is the conditional probability
that defensive weapon system i is assigned to (and firing at) cruise missile
j at time t, given that the ship is in damage state d and that cruise
missile j is still alive at that time. In view of the assumed threat
evaluation/weapon assignment logic described above, either all the ship's
available defensive weapons will be assigned to a particular cruise missile
at any time, or none will be so0 assigned. In particular, the available
defensive weapons will all be assigned to cruise missile j at time t if
and only if

+ cruise missile j is still alive at time t, and

« either j=1 or, if j > 2, cruise missile 1, ..., j-1 have

beer destroyed or have impacted the ship by time t.
Thus

m](tlu) if d=uand 0 < t < tys

o (27)
pi](tld) ={undefined  if dfuand 0 <t <t,,

0 otherwise.

Moreover, we have on the one hand pij(tld) =0 for all 1 < i < W, all d,

all 2 <j<Mandall t >t On the other hand, for all 1 < i < W, all d,

i
all 2<j<Mandall t < tj, we have

pij(tld) = Pr[i firing on j at time t|ship in d and j alive at
time t]
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Pr[i firing on j and j alive at t|ship in d at t] 3
Pr[j alive at t]ship in d at t] ,

_ Pr[1, «+- j-1 deud at t and j alive at t|ship d at t] :
Pr[j alive at t|ship in d at t]

_ Pr[j-1 dead at t and j alive at t|ship in d at t]
Pr[j alive at t|ship in d at t]

O]
_ 1
Pr[j alive at t|ship in d at t] j
%
o(}Pr[j-] dead at t and j alive at t|ship in d at t] -
+Pr{j-1 alive at t and j alive at t|ship in d at t]} ]
Oi
-Pr[j-1 alive at t and j alive at t|ship in d at t]] 4
] 1
Pr[j alive at t|ship in d at t] "
O[Pr[j alive at t|ship in d at t]
-Pr[j-1 alive at t|ship in d at t]] -

1 :
W : [mj(tld) - Mg (t]d)]

[]"'mj_'l(tld)/mj(tld)]° (28)

The third equality in the above string of equations follows from the fact

that, according to the weapon assignment logic, defensive weapon system i

will be firing at cruise missile j > 2 at time t if and only if cruise
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missiles 1, ---, j-1 are dead at that time and cruise missile j is alive
at that time. The fourth equality follows from the fact that the death
of cruise missile j-1 implies that of the preceding cruise missiles, if
any. The sixth equality follows from the fact that the aliveness of cruise
missile j-1 implies that of cruise missile j (because of the structure of
the assumed weapon assignment logic). The other equations are merely
manipulative; they express facts about conditional probabilities or, in
the case of the last two equations, the definition of the mj(-l').
Equations (27) and (28) may be used in (21) to compute the survival
probabilities mj(-ld) for the cruise missiles and the damage state
probabilities qd(-) for the ship for the case when the ship uses the threat

evaluation/weapon assignment logic which has been assumed. As indicated in

in the discussion which led to (21), the normal procedure would be to
bootstrap (21) numerically to obtain the survival probabilities mj(tld)
and pij(tld) for all time t in each time interval [tz, tk+1)' However,
the simple form of (27) and (28) suggests that it may be possible to
insert these expressions in (21) and integrate the resulting system of
equations directly, thus bypassing the numerical bootstrapping. This
approach has been examined. While it appears that the use of numerical
techniques cannot be completely avoided by using the analytic approach,
it is possible to reduce the numerical problem to a form to which simple

and well-known numerical methods can be applied. Details are given in

appendix C.
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3.0 RECOMMENDATIONS FOR FUTURE RESEARCH

The single ship/multiple cruise missile engagement model described
in the previous section has been developed to a point where computer im-
plementation and initial tryout is now appropriate. VRI feels that the
model has considerable potential as an aid to analysis of ship/cruise
missile engagements and that the model may be helpful in devising counter-
measures (e.g., improved or satisfactory weapon lethality characteristics

with respect to cruise missiles) to the cruise missile threat. VRI there-

fore recommends that computer implementation and initial tryout be scheduled.

VRI also recommends that the initial runs of the model include a varia-
tional analysis to establish the sensitivity of the model outputs tc the
inputs. A high degree of sensitivity of the outputs to the inputs will
suggest the need for accuracy in the input data so as to ensure reliabie
outputs.

In addition to establishing the extent to which submodeling may be
necessary for data generation, the initial trial runs of the model may
suggest that modifications to the existing model structure are appropriate.
Wnile it is unlikely that changes to the overall mathematical structure of
the model would be indicated as a result of the trial runs, it must never-
theless be recognized that the development of most useful models is an
evolutionary process and that structural changes made in the 1ight of ex-

perience gained in using the model cannot be ruled out.

Aside from the research which may be necessary for data generation or
evolutionary structural modification as mentioned above (the need for either

of which is not yet established), there appear to be two types of research

e o et

Spewe——— -
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which may be necessary in order for the model to realize its full potential;
these are:

- refinements - improvement in the flexibility or degree of
realism with which the model portrays engage-
ments in the scenario as presently conceived; and

- extensions - enlargements of the scenario that the model
portrays.

The most obvious example of a refinement to the existing model -- and
one which should be 2 high-priority objective of future research -- is the
portrayal of different weapon assignment logics for the ship. Indeed, the
ship's weapon assignment legic is one of the primary variables of the en-
gagement which is subject to the control of the ship, and so the degree to
which the model (as presently structured or as modified in the future) will
be useful in devising countermeasures to the cruise missile threat will
therefore be in direct proportion to the degree of flexibility the model

has in portraying different and varied weapon assignment logics.

A second refinement to the existing model is the relaxation of the
assumption that the ship can redirect in-flight gunfire and SAMs; in
VRI's opinion, however, this is definitely secondary in importance when
compared to endowing the model with the capability to portray different
and varied weapon assignment logics.

The most obvious example of an extension to the existing single ship/
multiple cruise missile engagement moael -- and one that should receive
serijous attention in the near term -- is the enlargement of the existing

model's scenario to include more than one ship. The result of research of

this type would be a "multiple ship/multiple cruise missile engagement
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model” which could be useful as an aid to planning for fleet air defense
against cruise missiles. It may be expected that such a multiple-ship
model will at least superficially resemble the singie-ship model and may
in fact have a closely parallel structure, so that the single-ship model
may be regarded as being a prototype of the multiple-ship model -- a
natural step in an evolutionary chain of models. The fact that present
Navy doctrine often calls for ships (some of enormous value in terms of
construction cost) to travel in company, together with the serious and

recognized threat posed by cruise missiles, suggests that the multiple

ship model be developed as soon as practicable.
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APPENDIX A

RADAR ANGULAR AND RANGE TRACKING ERRORS:
AMPLITUDE COMPARISON, SEQUENTIAL LOSING AND ANGLE TRACKING

A submodel for predicting values of the angular tracking errors for
gun-system radars (these are the quantities denoted by oX? and ng in
section 2.2.1) in the presence of enemy jamming is described in this
appendix. Theoretical lower bounds on the variances of angle error
estimators are derived, and some of the most commonly used error estima-
tion techniques are analyzed to determine how closely they approach
these theoretical lower limits (Cramér Rao -bounds).

More specifically, this appendix derives the Cramér Rao bound on the
variance of error angle estimators and then discusses in some detail one
implementation of such an estimator called amplitude comparison, sequen-
tial lobing. The first and second moments of the conventional sequential
lober are derived and comparisons are then made with the Cramér-Rao bound.
The derivation is largely based on an unpublished report! issued by Tech-
nology Service Corporation [Lank, Pollon, 1969].

Appendix B will discuss a second technique called amplitude compari-
son monopulse, which is also used to obtain angle error information.

The results concerning angle tracking errors can be directly used
as an input to a target tracking analysis. See, for example, appendix
D in [Bonder, Cherry, Miller, 1973].

Complex signal notation, as shown for example in [Miller, 1969] and

[Reed, 1962], is employed. The notation E(:) stands for the expectation

1The report appears in IEEE Trans. Aerospace and Elect. Sys., Vol. AES-10,
No. 3, May 1974, pp. 393-397.




of the quantity in the parenthesis while Re(-) and Im(-) stand for the
real and imaginary parts nf the indicated argument. A superscript *
denotes the conjugate of a complex number, and absolute values are
denoted by |+]|. A superscript p denotes the transpose conjugate of a

vector or matrix.!

A.1 Cramer-Rao Bound: Noncoherent Processing

It is assumed that M noncoherent received waveforms or pulses are
to be processed in order to obtain the direction and the magnitude of the
error angle, denoted by e, between the target direction and the zero track-
ing error direction (which is usually the axis of symmetry of the antenna)
in one dimension or coordinate. The purpose of this section is to derive
the Cramer-Rao lower bound on the variance of an unbiased estimator of

which utilizes the following complex observables when noncoherent pro-

cessing is employed:

o

Z AGm(s)e m g Veoom= 1M, (A1)

i

10ther notation will be introduced as needed. All notation used in this

appendix is independent of that used elsewhere in this report even though
some overlap occurs.

ek o




i vinere

P € is the error angle baiween the target direction and

the zaro tracking error direction,

1
6(-) are the normalized two-way antenna voltage paiterns

measured relative to th2 zero tracking error diresction,
A is the observable amplitude which is normalized with

respect to the antennz beam boresignt direction.

1 1]
em is the phase of the mth obsarvable, D
M is the numbar of nonconerent received wavetorms that are =
{3
processed. g
& The Vm are the signals caused by system noise and are zero mezan, ccmgplex ?

aussian random variables which are assumed mutually independent. In o

addition, the in-phase and quadrature components (real and complex parts)

s Y

- of each V” are assumed independent with the same variance 02. Under tnese

ity

conditions, the ccmplex Gaussian random variables Vm have the properties

[Reed, 1962] § 3

£ o2 x2° 4 i

E(Vme) = 20' s E(ymvm) = 8¢ -

» | "

t ¥ 1The receive pattern is not necessarily the same as the transmit pattern ?
and distinct observables may be received with the same antenna pattern. -

2The case when the phase is the same for each target signal, i.e., monopulse
processing, will be discussed in appendix B.
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and all other first, second, third, and fourth order moments are zeiro, where

az is the variance of the in-phase and quadrature noise variates,

* s the complex conjugate operation.

The complex probability density function of the Zm can be viritten as

P -] )
P = plZyse.anZ,) = Coexp [- -;— (Z-H)YK (Z- H)] , (A2)

where
) ie} _
7 = . , H=A , Vv=al|’
ie
M
2y Bylele Uy

C is a normalizing constant,
k= T EWP) =d1,
1 is the identity matrix,
p is the conjugate-transpose oparation.

There are M + 2 unknown parameters: e, A, Bs M = TyeooM.
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The 1ikelihood function can now be written as

L= anp = anc-<L [z"z - Re(ZPH) + AP Zcﬁ (a)] , (A3)
20 !

-

vinere

0
n

3]

is the real part,
all summations go Trcm 1 through i

Expanding the middle term of (A3) it is seen that the likelihood function

can be written as

—
n

&n C-—]? [ZOZ-ZAZG x cose +y sme)*’\zZC ]

20
(R4)

Making use of (A4) it is seen that the (M + 2) * (M + 2) Fisher in-

formation matrix has the form
N = (ajk)’

whare

m c “E<32"§' - Aé Z (& (£)>2 ’

H
i
i
i
'
!
I
t
;




04

312 = 2 %“Mﬁﬂ

3

() 4

2,k + 2

2
_ "L . _
a2 l\ + 2 = "’E(m;) B 0, P = .‘,. ,” Py
j+2,2 ° 0, 3=1,....M ,
Thus the information matrix N can be written as
P 0 T
N = . (A5)
0 Q
where
//311 42
p = R
\\321 422

Zan

i sadon o st
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Q 1is a M XM square matrix,

all other elements of M are zero.

If € is an unbiased estimator of ¢, the error angle between the target
direction and the zero tracking error direction, with variance 082, thzn
. ) 2
the Cramer-Rao theoram states that a lower bound ior o s when noncohrerent

processing is utilized, has the form
U , (AR6)

where U] is a vector having a one as its first element and zeros

elsawhare. Because of the form of N given by (A5) this can be written as

2 p -1
GC B_U]P U

1 . (A7)

Making use of the expressions deve1o§ed above it is seen that when

noncoharent received waveforms are processed (A7) can be written as

< 2 ) |
k[z (e,;,<e>)2][z ale)” ] -[Ze;(e.)em(s)]z)

(A8)

2 ]
9% 7R
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where R is the per pulse signal-to-noise ratio for each beam and it is

assumed that the target is located at the boresight of the beam

_2_ES‘

R =2, - 2
20 N0 J

ES is the energy in each receivad waveform and No is the one-sided power
snectral density of the system noise.
For M = 2, which is the case when two antanna patteras are usad to

derive the error angle e, it is seen that (A8) can be written as,

o —

i B

6, 6, |2 ’

1 2
[N z
0e2 2- ] - ? ]' s (Ag) E;
2R(6Z + 65) 5§ & %
&%
- ;i
,i
i
i
where ;
B
G] = G](a) R Gz_ Cz(e) . E

Equation (A9) is the one dimensional analog of equation (69), page 29,

in [Horstetter & Delong, 1969].
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A.2 Cramer-Rao Bound: Cohei. - * Processing

If we use the sama .notation as developad in the pravious saction,
then tne complex radar observables when coharant processin§ is employed
have tha form '

i A -e =
Zm = AGm(C)e (U"-"m ) + Vm, m=1,...,1 ) (A]O)

where

w is the doppler frequency (assumed very much smaller than the

transmitted center frejuency),
T are known time delays relating the times of occurrence of the Zm'

For convenience it is assumed that T = 0.

0 is the unknown phase corresponding to the first observable,

Thus there are four unknown parameters: ¢, A, w, 6.

The 1ikelihood function corresponding to (A10) can now be written as

- ~ 1 Py E - - T
L=2anC - 202 {:Z Z-2A Gm(s){ X €Oos (m;m 6) + Y, sin (u;m e)}

+ Azz:ef,| (e)] : (A11)

The elements of the & X 4 Fisher information matrix

Tt

= (aij)




have the following values

2 2 2
_ 2 L A /o
ap = -t (‘—asz> o7 Z (\Gm(€)> ’
2
3 L ] E : 2
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o4

2
= = -~ E—L =
B3 T 2 " °F < 8A3u) 0 ’

2
ay = 3y = -k (aAae) 0 .

Thus by using the same prccedure as employed in the previcus section it can
bz shown that the lower vound of the variance of an unbiased estimator

of ¢, the error angle between the target direction and the zero tracking
error direction, is also given by (A8 ) for the case of coherent pro-
cessing. fherefore, the Cramar-Rao lower bound is the same if either non-

conerent and coherent processing is used to cbtain an estimate of the error angle.

A fra

If th2 signal-to-noise ratio is high enougn, then well-designad 3
processors should acnieve about the same performance, in terms of estimator
variance, for either non-coherent or coherent radar systems. This point is
noted, for example, on page 28 of the paper by [Hofstetter and Delong, 1969].

Therefore, from this point on ve shall cnly discuss angle estimation for

noncoharent radar systems.
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A3 Discuscion of (e Two-Beam Lt ‘mater

Expression (A9) «ives the Cram3r-Rao lower bound on the variance
cf an unbiased estimator of the tracking errcr angle e when two received
vaveforms are used to derive the tracking error signal. If M received
waveforms are processed for each of tvio antenna beem positions then it is
easiiy shown that the expression for the lTower bound must be mcdified to

read

_ _2
G, 6
— 3 =
02 > ! —3——-—5—- (A12)
© 7 2 [ + 63 § &
LB B

whaere tha notation given in the pravious sections is used. Almost all
operational tracking error estimators use the received signals from

two antenna beam positions to derive tracking error information and the
remainder of this paper will only be concerned with such two beam estimators.
From this point on it will also be assumed that each antenna beam is
symmetric about its boresight direction and that the bzams are squinted

or offset by tne same amount on either side of thaz zero tracking error
direction (which is usually the syrmetry axis of the antenna). The same
antenna pattern (referenced to the toresight divection) is assuvad for

each of the baams., Tne angle bzcwzen the zers-tracking error diroction.

and the antenna buam borosiant divactieons witl be denotad by 6. A icture

of the gromatry involved is given in Tiqure Al
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i
1 ;{’Z“g “2_ Zerc Tracking Error Direction
Z

Girection of Arriving Signal

. Boresight of

// Boresignt of
Beam number 2 —2_:,

Beam number 1

Antenna
Bzam number 2

Antenna

. “Z_Beam number |
AN

/\
i\
(\
\

\

\
Y

» A1l angles are measured in the counter-clockwise direction

» ¢ is the Lracking error angle
8 is the antenna beam squint or offset angle
P(-) is the normalized two-way antenna voltage pattern measured
with respect to the beam boresight
Gl(') and Gz(-) are the nermalized two-way antenna voltage patterns
of beam number 1 and beam number 2, respectively, measured

with respact to tha zero tracking error direction.

FIGURE Al: TWO-BEAM GEOMETRY




From figure Al it is seen that

Gl(e) = P(§ +¢), Gz(e) = P(-6 + e). (A713)

e now assume that ¢ is a small angle so that P(6 + ¢) and P(-§ + ¢) can

te approximated by thz first two terms in the Maclaurin expansion to

obtain

G(e) = P(s+e)= P{s)+eP'(s} ,
(A14)
Gz(e) = P(-6 +¢) = P(-5) + P'(-¢).
From the syrmetry of an antenna beam it follows that
P(-s) = P(s) , P'(-8) = -P'(8) , (A15)
so that (A14) becomes
6(e) = Pls +¢) = P(3) + eP' () ,
(A16)
Gz(s) = Pl-c +2) = P{OY - (P (8).
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I w2 now substitute (A16) into (A12) the following expression is

obtainad

2
2 1 1 ]
% % BR (P'R)) = Bep (A17)

In this equation Ben is the Cramer-Rzo lower bound on the variance of an
unbiased estimate of the tracking error e vhen the conditions illustrated
in fiqure Al are satisfied.

To illustrate the type of result that is obtainad we shall assume
that the normalizad main lobz of the one-way antenna voltage pattern can
be approximated by a Gaussian beam shape and that the normalized tuo-way

pattern can be represented as

2

Pp) = exp —2K(%1> : (A18)

1
vinere vy js the half-power beamwidth and K= 2 ¢n 2 = 1.3863. As will
be shown, the assumption of a Gaussian beamshapa leads to a very simple
result and is perfectly adequate for most radar system investigations.

7 we now substitute (A18) into (A17) the following expressien is

obtainad for the lcwer bound

4 2
v s
o5 (__;7 exp [4K (—f—) ] (A19)
L) \ 14 'l

1
This rizans that P (i. %} > o
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112 next determin2 that valus of § which minimizes tha right hand side of
equation (A20). If we denote this optimal squint or offset angle by
859 thea by differentiating the right hand side of (A20) with respect

to 6 it can be determined that

"

o 2\[2

(=]
b

= (0.4247)¢, (A21)

1 Furthermore

Exp ('%’) s

' P(so)
| i) = (- ) ew P
|

If we now substitute (A21) into (A20), the following expression is

obtained for the lower nound when the optimal squint angle 8, is chosen

)2
o > e ()

321R *in 2
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¥y is the half-power beamwidtn of the one-way pattern,
M is the number of pulses processed per beam position,
R is the per pulse signal-to-noise :measured relative to the nose

of a beam.

Most angle processors come close to achieving the lower bound given
by ( A22 } and for most analysis purposes it is adequate to use this lover
bound as the variance of an estimate of ¢, the tracking error angle. The
next section will discuss one technique that is utilized for computing the
tracking error angle. As will be shown, this method, called sequential
lobing, asymptotically achieves the variance given by ( A22 ) with increasing

signal-to-noise ratio, R.

A.4 Amplitude Comparison, Sequential Lobing Angle Estimation

One method of cbtaining the direction and the magnitude of the error
angle batw2en tha target direction and the zero tracking error direction
(which is usually the axis of the anterna) in one dimension or coordinate
is by alternately switching the antenna beam between two positions (see
figure Al). The difference in amplitude between the voltages obtained
in the two switched positions is a measure of the angtlar displacement of
the target from tha zero tracking error direction or switching axis. The

sign of the difference determines the direction that the switching axis

must be moved in order to align the axis with the direction of the target.
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Two additional beam positions are utilized to obtain the angular
error in the orthogonal coordinate. Thus a two-dimensional sequential
lobing radar might consist of a cluster of four feed hours or ports
illuminating a single antenna, arranged so that the right-left, up-down
sectors are covered by successive antenna beam positions. A cluster of
five feed horns might also be employad, with the central feed usad for
transmission while the outer four horns or ports are used for receiving.
High power RF switches are not needed in the latter arrangement since only
the receiving beams, and not the transmitting beam, are switched.

In this section we shall derive the statistical properties of the
usual sequential lobing angle estimator that can bz implemented by the use of
eaveloga detectors. The discussion will concern a one-dimensional, two-beam

system of th= typ2 shown in Tijure Al. Each beam is assumed symmetric about

its borzsicht direction and the bean

(72]

zre assured to be squinted or offset
by the same amount on either side of tha zero tracking error direction.

The analysis will first consider the case where only one received wavefors
is processed per beam positicn. The case where mulitiple waveforms or pulses
are processed per beam position is discussed in the latter portion of the
section. The analysis will employ the same notation and termminolegy as used

in the preceeding sections.

A small tracking error will be assumed so that we can use the approximations

P(6 + €) = P(s) +eP'(s) ,

(A23)

P(- 6 + €)= P(s) - eP'(s) ,
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where

P(-) is the two-way normalized antenna pattern for each beam,
§ is the beam squint or offset angle,

€ is the tracking error angle (assuwed small).

Because of beam symmetric we have

P("é) = P(G) ’

(A24)
Pr(-s) = - P'G)

A.4.1 One Waveform or Pulse Processed Per Beam Position

Cre frequantly used error angle estimator, when one pulse is processed

ner beam position, has the form

| 2 2
Z,| -7
|Z,]" + IZ]I

where the normalizing constant a is chosen so that when there is no

noise present we have
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We shall first derive an expression for a.

From the preceeding sections, it is seen that when no noise is present

vi2 have

AP(§ + <) ,

AP("& + E) £y

]

L7 ?
!.‘:{_?. i- — »..!.f.}..i.-- = I~ .P_.'__ ,:: )
v Y T Y T
1o il
and thus
- P(s)
a = - 770 .

Whan a Gaussian shaped main lcbe is assumed of the form discussed in
section A.4 and when § is selected to obtain the smallest Cramé?-Rao

1
Tower bound, then the constant a has the value

(A27)

(A28)

(A29)
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[\
a= 5 = (0.2123)y; (A30)

where ¥y is the half-power beamwidth.

We shall next determine the density function and the mean and variance
of the estimator ¢ given by (A25) vihen noise is present. It is first noted
that the probability density functions of IZ]I and IZzl , which will be

denoted by fl(r) and fz(r) respectively, are

f!(r) = J%- exp [:-Eizf (r2 + A2p2(5 + a):] I {;35 (rAP(s + ei] ,

(A31)

i 2 2, .
AONE expf (P B >)] Io[‘—g (reotes + e)ﬂ,
g - 2a o

i .
Sae equziion (A21).
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where 0 <r and I (+) is the modified Bassel function of first type and
order zero. Equation (A30) expresses tre classical result that IZ]l
and 122} have a Rice distribution. If we now define the random variable

s, for 0 < s, with density function g(s), as

~N

1z, |
s = *rz'ﬂ' ’ (A32)

then from page 53 of [Miller, 1954] it is seen that g(s) can be expressed

as

g(s) = “(‘]_fff)‘z exp [* (R]s2 + R,)/(1 + sz)]

2
(R] + st ) ZSJRﬁI2

1+ x I
" (1 + ) o | 11+ )

ZSNJ R]P2 2s P"IRZ

(1 +5%) (1 +¢7)

15}
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Ii(') is the modified Bessal function of first type and order ona,

2.2
R] = .A__.P_i%j...e.)_ = sz(a + C) ,

26

2,2
R = A P ("6 + €1 = RPZ(’G + €) ,
2 202

K

7 s is the per pulse sicnal-to-noise ratio for each
2

beam when it is essumed that the target is located

at the boresight of the beam,

It is seen that the random variable s is the ratio of two independent Rice
variates since the additive Gaussian noise associated with each pulse or
waveform that is processed is assumed independent.

Ve next define the modified signal-to-noise ratio R0 as

25y, (A34)

where & is the beaw squint or offset angle zero tracking error directicn.
Ro can b2 considered as the effective signal-to-noise ratio cue to tha

squinting of the antenna beams.

~ 1

)
Waan a fGaussian shapad n.ain loba is assumed and wiien § is chosen to hz the
optimal squint angia defined in tne previous szctinn, then

-1 ..
R =g 0 = (D,00]0100,
R, (niarn
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We now sea that the estimator € can be expressed as

€= a §;—:—l 0<s (A35)
s+ 1 -

vhere the density function of the random variable s is given by (A33)
In order to find the probability density function of ¢ the following

identities will ba neadad.
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e
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where th2 latter four identities utiiize small angle approximations which
are valid since the error angle ¢ is assumed small.

If ve now make the change of variable from s to € given by (A35)
end utilize the above identities it can be shown that the probability

density function of ¢, denoted by h(c), can be written as

0 - & ol [ 1] 8]

»
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for

-a < €< 3. (A36)

In order to compute the moments of the estimator € we shall find its

momant generating function G(s) which is definad as

6{s) = /exp(ss)h(a)dé . (A37)




Making the change of variable € = a cos ¢ it is seen that the moment

genecating function can b2 expressed as

w
G(s) = %' (1 + Ro) exp (—Ro) J/. sin ¢ exp (= cos ¢)IO(B sin ¢)dé
0

w
+ %-(i)nb exp (-R ) j[ sin ¢ cos ¢ exp (= cos ¢)I (8 sin ¢)ds
o

w
+ %-B exp (-Ro) J{ sin 2¢ exp (a cos 9) I](B sin ¢)ds , (A38)

0

vinere

2 2 2 2, ., 22
Rﬂ-zmoshxs . (A39)

~
Q
+

™
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The three integrals given in equation (A38) are evaluated in the annex
to this appendix, and the moment generating function G(s) can ultimately be

evaluated as

1+PR -
G(s) = g-—ilf312 e e (e¥ - e7Y)

2y

Rg + eROS

2y

+

-R
e © [(eY +e’Y) - lY-(eY - e’Y)] , (A40)

whare y is given by (A39). It is easily checked that G(0) = 1 which must
hold since h(e) is a density function.

Now
E(e) = (%;—) o (A41)

which after some algebraic manipulation is evaluated as

. \ ' 1 . e"2R0>
E(e) = € 1 - 5 + - . (A42)

2
0 2Ro

i

om e < b .
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flotice that € is a biasad estimator for moderate to small values of the

modified signal-to-noise ratijo Rg» for example,

1

5’ E(E) (0.82)6 Py

]

hen R
vin o

and

whan R 20, E(¢) (0.95)e .

As Ro + « , i.e., as the noise goes to zero, it is seen that the

estimator ¢ bacomes unbiased.

One common viay that is utilizad to remove this bias is to use the

estimator E] instead of the estimator € where

2 2
- lzzl - lZ]i
C] = a > 7 ’ (A43)

1Z,l * 1z,] +b

ol

and b is a properly chosen compensation term. The analysis of this estimator
and the selection of an "optimal value" of b is quite difficult and will
not be pursuad further in this report [see Lank, Pollon, 1959].

Instead we shall consider the unbiasad estimator £, vinere

>
i
—

i
WJ[_‘
-+

e
no H
pie]
o m'
T
&
I
A
m>

s v1=1 4, 12 :
— 7,17 - 17,1
- a [} . P!' + th;g;__QZJ | SN ) (A44)



87

The estimator E2 has the disadvantagel that an estimate of Ro, the
modified signal-to-noise ratio, is neceded for its implementation. It is
seen, however, that the estimator is not very sensitive to errors in
estimating Ro over a large operating signal-to-noise ratio range. From (A40)
it is seen that the variance of 22 decends on the value of ¢ being estimated.
For convenience we shall only compute the variance of £ for the value
e = 0. However, since the estimator Ez js only suitable for estimating
small error angles, the variance for non-zero values of e will be closely

approximated by the variance of the "¢ = 0" case.

1t can now be shown that

- -2Rqa."
0 0 Ro

s=0
e=0
Therefore, since
- P{s) - np?
a = - zp 3 ’ RO RP (5) >
it follows that
2
a 1
— = = B . (A46)
(%) wie'(a))

Whicih is not presont in the estimater .




a8

How from equation (A17) of the previous section it is sean that Bep is the
Cramar-Ra0 Tower bound on the variance of an unbiased estimator of ¢ when
ona pulse or received waveform is processed per beam position (i.e., when
H=1).

Finally, we obtain from (A45) and (A46)

- -2R -2R
y. Bae”% L 0-e"
. i 2R, RS
Var(czle =0) =B =+ Y (A47)
' 1 (1 - e°70)
1« +
Ro 2R ]

- 0

Frem (A47) it is seen that Var (Ezla = 0) approaches the Cramér-Rao lower
bound with increasing signal-to-noise ratio Ro However, even for small

values of Ro the estimator EZ is remarkably efficient. For example,

when R, = 5,  Var (Ezle = 0) = (1.]3)BCR .
1t is of interest to note that if the bias precent in the biased estimator
€ given by expression (A42) can be “"Tived with" than the variance of this
estimator is less than the Cramér-Rao lower bound on the variance of an

unbiased estimator.

A.4.2 M Waveforms or Pulses Processed Per Beam Position

th2 preceding an2ly=¥. 1es assurad that one puise or received weveform

is proszseed parobeam position. IF i pulses are prenessad per brem posiiien,
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tnen expression (A12) indicates that tha estimator 22 should b2

mrodified to read

-1

2 2
M .
2R 7.1 - 12,
E:%[l-ﬁl.+ﬂ_:2£__‘_’.). Z:IZJZ hz*
2 0 ZRO

j=1 lzzjl + lz]jl

(A48)

vinere |Z]j| and 'ZZjI , for j = 1,...,M, are the envelope detected outputs
from beam 1 and beam 2, respectively. This expression, which gives an un-
biased estimate of ¢, has a variance reduced by a factor of M with respect
to the estimator when only one pulse or pattern is processed per beam
p-oition.

Frequently the estimator e vihere

2
s .oy Z[‘Zzﬂ ‘- 12,5 |]
3 ZUZ?J! 2, 12,5 | 2]+ b

’ (A49)

and k is a normalization censtant and b is a bias cempensation term is
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used instead of 22 givan by (A48).  The reason 7or using the estimator

23 is to avoid the possibility of dividing by a very small number if the
anplitude of tha target return signal is small. HNo analysis of the
estimator 23 will be given in this regort. A preliminary analysis is given

in [Lank, Pollon, 1959] under the assurption that M is large enough so that

PR DT

can be approximated by Gaussian randcm variables (utilizing the Central
Limit Theorem) for the purpose of computing moments. Also, no analysis

will be given in the report on how well the above estimators operate in

tha presence of a fluctuating target signal. The analysis given above has

assumad that the amplitude of the received target signal remains essentially

constant over &ll the pulses that are processed.
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A.5 DISCUSSION

Section A.4 of this report derived the Cramér-Rao lower bourd on the
variance of estimating the error angle between the target direction and tha
zero tracking error direction. A very simple expression was obtainad for
the case of a two-beam sysiem wnere eazch beam is squinted at the same angle
on either side of the zero tracking error direction. The expression
obtained assumed that the main lobe of each of the two beams has the sama

shape and that the normalized two-way power pattern can be approximated by

2
\

P() = exp -ZK(.-*"J') s (A50)
A

where v is the half-power beamwidth and K = 2¢n2= 1.3863. The expression
obtained also assumed that the two beams were squinted at an optimal angle
from the zero tracking error direction so as to achieve the best possible
lower bound. It wias shown in section A.4 that this optimal squint or off-

set angle 8, could be expressed as

6 = —== - (0.4247)s, . (AS1
° T 2Vx ' ’
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linder the above conditions, the following inequality was obtained

o5 > — . (A52)

where

¥ is the half-power beamwidth (radians) of the one-way voltage pattern,
M is the number of pulses or received waveforms processed for
each of the two beam positions,
R is the per-pulse signal-to-noise ratio measured relative
to the nose of the béam,
o~ is the variance of any unbiased estimator € of the tracking

error angle .

The derivation of equation (A52) assumed that the noise variates added
to the output observables are inaependent, zero mean, complex Laussian
random variables whose mements ara given by (A3).

Most error angle processors ccme close to achieving the lower bound
given by equation (A52) and for most analysis purposes it is adequate to
use this lower bound as the variince of an estimate of ¢, the tracking
error angle. Section A.5 discussed amplitude comparison, sequential
lobing which is one common technique used to accomplish error

engle estimation. Undar conditions of modarate signal-to-noise ratio,
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this estimation procedure approaches the variance given by the Cramér-Rao
bound. The procedure can be implemented by the use of envelope detectors and
is sequential in nature, that is, the signal pulses occur sequentially in
time. The two antenna beams are produced by using two separata horns or
ports to feed the antenna.

Another technique that is commonly used to accomplish error angle
estimation is called amplitude comparison monopulse. This procedure is
not discussed here and the reader is referred to the papers referenced in
section A.8 and to appendix B. The method employs a simultaneous-lobing
technique in which the RF signals received from two offset or squinted
antenna beams are combined so that the sum and difference signals are obtained
simultaneously. The sum and difference signals are then processed to obtain
both the magnitude and direction of the error signal. All the information
necessary to determine the angular error is obtained on the basis of a
single pulse, hence the name monopulse.

An amplitude comparison monopulse system is less susceptible to
errors caused by target cross section Tluctuation since the returns from
both antenna beams are received at the same time. This type of estimator
also achieves a variance which approaches the Cramér-Rao bound with in-
creasing signal-to-noise ratio. A derivation of the statistical properties
of this estimator will be given in appendix B.

For most radar systems the output error signal e is used to control a
tracking servo which positions the two squinted or offset antenna beams
so that the new zero tracking error direction corresponds to the predicted

target position when the next sequence of tracking pulses are emitted.
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The direction of zero tracking error is changed by either physically moving
the antenna, as is done for the conventional tracking radar, or by
electronically moving the beams, as is done when a phased array radar
is employ=d. The tracking servo is usually either of the constant
velocity or constant acceleration type. The analysis of such 2 ccnbination
is given in [Swerling, 1954]. OFf course, the new zers tracking error
direction wili not exactly correspond to the true target direction because
of noise effects in estimating the previous error angle (see eguation (A52)
and because of serve noise. If the noise power is large enough it may
happen that the variance of the estimate of the tracking error ¢ may be
so large that there is a "significant" probability of the new zeio tracking
error direction being widely separated from the actual target direction.
In this case the squinted antenna beams will not be positioned properly to
detect the next set of targat returns and the tracking process will be
interrupted. This is one effect that intense noise jamming attempts to
accomplish in addition to increasing the tracking angle variances.

Equation (A52) can be used to evaluate the effect of CW noise jamming
on an amplitude comparison, sequential loLing, angle tracker. The value
of R in (A52) must ba interpreted as tha signal-to-jamming power ratio.
The jamming power is computed after taking account of the beam gain in
the direction of the jamming emitter. Usually the jamming enters through
tha antenna sidelcbes whare the antenna gain is greatly ieduced as compared
to the main lob2 gain. The signal-to-jamming ratio wust take account of
any ECCM capabilities prasent in the radar, for example, adoptive sidelode

cancellation which places nulls in the receive antenna pattern in the
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receive antenna pattern in the diraection of the noise sources. An
additional study would be required to analyze the effect of CWW ncise jamming
on an amplitude comparison monopulse system since the derivation of {A52)
assumed that the observables contained independent vhite, additive Gaussian
noise. Such would not be tha case in a monopulse system where the returns
from both offset beam positions are obtained siimultaneously. Another tyne
of jamming that may be present is large amplitude, short duration, pulse
jarming. The effect of such jamming is not considered in this report.

When two or more targets are presant, the radar tracking system must
be capable of distinguishing between them if either one is to be tracked
accurately. Without range or velocity differences, the conventional
angular tracking methods cannot separate targets when they are separated
by much less than one beamwidth. The theory and design of such multiple
angle tracking radars is given in [Lank, Pollon, 1968] and [Pollon, 1968]
and is not considered in this report. These references derive the form
of the data processor and analyze the variance of the multiple angle

estimates and their relationship to the Cramér-Rao lower bound.
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ANNEX

The following expression is derived on pages 98-59 of [Miller, 1954]

=
. e .
(sin ¢) expic COS ¢)I(n‘2\/2(8 sin 4) dd
0

(n-1)/4

W ? -
= 4—-:—'—!- -—2-—-——-2-3 I(n-])/Z (V a" + 82) [A]]

vhere Ik(-) js the modified Bessel functiun ~f Tirst type and order k.

If we let n = 2 in this expression and use the identity

then we obtain the expression

L

j{ sin ¢ exp(e cos @) I (8 sin 3) do

0
exn\Je 6 /- exp \- Jo +8 [A2]
I e
n + B

N

s -



100

Siailarly, if we let n = 4 ja expression [A1] and use the identity

® . cosh(Z sinh(Z
7 ) - SO s

-
7 _ -z
= 57 |e"+te —%(e-e)J,

then we obtain the expression

L

L
/sin2¢ exp{e cos ¢) I](B sin ¢)dg
(]
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inally, if we differentiate =quation [A2] with respect to «

v2 obtain the expression

®

[sir. $ cos ¢ expla cos ¢)IO(B sin ¢) d¢
)

o iy [elR) oo (VFF)

{a” +87)

b | (7)ol

[A4]
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APPENDIX 8
RADAR ANGULAR TRACKING ERRORS: AMPLITUDE
COMPARISON, MONOPULSE, ANGLE TRACKING

B.1 Introduction

A variation of the model described in appendix A for predicting
angular tracking errors for the radar tracking the cruise missile in
the presence of eneny noise jamming is described in this appendix. The
variation described in this apnendix differs from that of appendix A in
what is assumed about the radar's method of angular tracking; in appendix
A it was assumed that the radar uses a method called "amplitude comparison,
sequential lobing," whereas in this appendix it is assumed that the radar
uses another method called “amplitude comparison, monopulse." This
second method employs a simultaneous-lobing technique in which RF signals
received from two offset or squinted antenna beams are obtained
simultaneously so that they have the same phase. An advantage of this
method is a smaller bias with the same signal-to-noise ratio.

The form of the maximum 1ikelihood angle error estimator is derived
for the case where the radar uses the amplitude comparison, monopulse
method. It is shown that this estimator can be implemented with a phase
detector. In addition, the first two moments of the monopulse maximum
likelihood estimator are derived and a comparison made with the Cramér-Rao
Tower bound. The probability density function of the estimator is not
obtained. The bias of the monopu’se estimator is less than the bias of

the sequential lober as derived in appendix A.
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The same complex signal notation used in appendix A is used in this
appendix. The notation E(-) stands for the expectation of the quantity
in the parenthesis while Re(-) and Im(-) stand for the real and imaginary
parts, and |+| stands for the absolute value. A superscript p denotes
the transpose conjugate of a vector or matrix and a superscript * denstes
the conjugate of a complex number.

The short bibliography started in appendix A is continued in Section

B.5.

B.2 Likelthord Eruationg and Mcxirwm Likelihood Estimator

This section will derive the likelihood equations and the form of the
maximum likelihood estimator when a simultaneous-lobing technique is used
to derive error angle information. In this method the RF signals received
from two offset or squinted antenna beams are combined so that the sum and
difference signals are obtained simultaneously. A1l the information
necessary to determine the angular error is obtained on the basis of a
single pulse received through the two antenna beams, hence the name
amplifude comparison, monopulse is employed.

It will be assumed that each antenna beam is symmetric about its bore-

sight direction and that the beams are squinted or offset by the same amount

on either side of the zero tracking error direction (which is usually the
axis of symmetry of the antenna). The same antenna pattern (referenced to
the boresight direction) is assumed for each of the beams. The angie
between the zero-tracking error direction and the antenna beam boresight

direction wiil be denoted by §. A picture of the geometry involved is

given in figure Al of appendix A.

btk h, St
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We shall first discuss the case when cne received waveform or pulse
is simultaneously received by the two squinted antenna beams. The following
two complex observables are utilized in the derivation of the maximum

1ikelihood estimator:

2, = ALG, (c) + 6, ()] e'® + vy, (81)

Z, = A6y (¢) - Gy ()] €' + vy,
where

G](-) and Gz(-) are the normalized two-way voltage patterns of beam
number 1 and beam number 2, respectively, measured with respect
to the zero tracking error direction,

A is the amplitude of the received pulse normalized to the antenna
beam boresight direction,

e s the angle between the target direction and the zero tracking
error direction,

6 is the phase of the received signal.

The Vm are the signals caused by system noise and are assumed to be zero
mean, complex Gaussian random variables which are mutually independent. In
addition, the in-phase and quadrature (real and complex parts) of each Vm
are assumed independent with the same variance oz. Under these conditions,

the complex Gaussian random variables Vm have the properties [Reed, 1962]
* _ 5,2 *2 4
E(vam) = 2¢ . E(vam) = 8 |, (B2)

and all other first, second, third, and fourth order moments are zero, where

PR it
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02 is the variance of the in-phase and quadrature noise variates,

* is the complex conjugate operation.

An amplitude comparison monopulse system is less susceptible to errors
caused by target cross section fluctuation than a sequential lober since the
returns from both antenna beams are received at the same time. This
technique is particularly useful where puise-to-pulse cmplitude fluctuations
due to target variations or interference signals can degrade conical or
sequential scanning tracking techniques. The phase shifts through the RF
and IF portions of the system must be carefully equalized to maintain the
equal phase relationship in both channels that is indicated by equation
(B1). In addition, the tolerances between the receiving horns and the
comparator section of the feed assamhly must be verv closely controlled.
This,appendix will not discuss the degradatien in tracking performance caused
by a phase unbalance in the two channels.

As illustrated in sections A.2 and A.3, the likelihood function L

associated with (B1) can be written as

- 1 2
L=1InC - 552 |W-K] (B3)
where
C is a normalizing constant,
4 [G](s) + Gyle)
W= s K=A
72 lG](E) = Gz(e)

The unknowns in equation (B3) are e, A and ».

e'e.
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. Now, -f P(-) 1s the normalized two-way antenna pattern measured with
respact to beam boresight and § is the offset or squint angle associated
with each beam, then as shown in appendix A the following relationships

are approximately true when the tracking error angle ¢ is small,

bk

G](e) = P(s + €) = P(8) + eP'(8),
‘i Gz(e) = P(-6 + ¢) = P(§) - eP' (8)

It will also be assumed that the slope of the antenna pattern is almost
constant in the vicinity of the offset angle & and that we can use the

following relations for a symmetric pattern:

P(S) = P(-S), P'(S) = - P'(-S) (84)

Using the above relationship it is seen that equation (B3) now becomes:

] 2
L=1nC - 5‘0‘2 IH'KI s

where
C is a normalizing constant,
2 P(s)
W= , K=2A e'®
!2 EP'(G)

The three likelihood equations have the form:

% 3l

= Al: = .a.L =
68 - 0, BA 0’ 0 . (BS)

26
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The first equation of (B5) leads to the expression

] .
e = ey RelZee 19, (86)

where Re(:) stands for the "real part of." The second equation of (B5)

leads to the expression

A= omrey Relzie™™) | (87)

where it is assumed that terms involving ¢2 and ¢ times the voltage in the
difference channel can be neglected compared to the other terms.

Combining (B6) and (B7) we obtain

b Re (Z,e”1%)

€ 0] ) (88)
Re (Z,e”'®)
where b is defined as:
- P(s)
b P'(s)
The last equation in (B5) leads to
Im(Zfe°i6) =0, (B9)

where Im(.) denotes the "imaginary part of" and again terms involving ¢

times the voltage in the difference channel are neglected. It is easily

seen that (B9) leads to
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so that from (B8) the maximum likelihood estimates for ¢, which will be

denoted by &, can be expressed as

bRe(ZZZ] )

g = -—'T—TZ—— . (B]O)

It is easily seen that ¢ is consistant, i.e., if no noise is present then

E(e) = ¢ . (B11)

If we note that
Re[(Z2 + iZ])Z]*] = Re(ZZZ]*) . (812)

ther it follows that (B12) can be written as

.. blz, + iz, | . (2, + iz;) (813)
[Z,7 ]Zn + 1Z ] TI_I

Under conditions of small error angle ¢ and moderate to large sigral-to-

noise ratio in the sum channel it follows that

122 + 7, .

(B14)
1Z,|

so that an estimator frequently used as an approximation to (B13) is
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(Zz + iz]) * (5
¢ = bRe X . B15
|72 ¥ 30T I5] )

The estimation given by (B15) is very easy to implement with a phase
detector used to obtain the term ¢f the form Re(ab*).

The estimator given by (B10) was first discussed in this form by [Mosca,
1969]. The estimator computes an angle estimate once per pulse. A simple
stretching or “"boxcar" operation followed by low pass filtering supplies d-c

inputs to the antenna servo amplifiers. Additional references related to

this estimator are given by [McGinn, 1966], and [M~fstetter and Delong, 1969].

The likelihood function (B3) can also be used to derive the Cramer-
Rao lower bound on the variance of an unbiased estimator of e, the tracking
error angle. Following the procedure given in appendix A and using the
small error angle simplifications given by (B4) it follows that the lower

bound can be written as

2, 1 [ 1 V2., (B16)
% = R \P{EY] T PR

where °§ is the variance of any unbiased estimator of ¢ and BCR is the

Cramér-Rao lower bound and the signal-to-noise ratio R is defined as

2
R = -ZA-;. (B17)
o]

Equation (B16) can also be written as

e +->on:-]
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where Rs is the signal-to-noise ratio in the sum channel, i.e.,

202
_ A°P°(s)
R = ...2_.02_(___ ] (819)

Equation (B18) indicates the bound on the performance of an unbiased
angle estimator as a function of the sum channel signal-to-voise ratio,
RS, and a factor b which depends on the slope of the antenna pattern
and the beam offset or squint angle §. References in addition to those

listed above which discuss the variance of monopulse estimators are

[Blackman, 1971], [Lipman, 1971], [Kerr, 1968], [Sharenson, 1962],
[Manasse, 1960], [Nester, 1962] and [Urkowitz, 1964].

B.3 Mean and Variowce of the Angle Estimator

We shall next determine the mean and variance of the estimator given by

(B10), namely

A= D Re(zZ*) . (820)
Since Z] and Z2 have the joint density function indicated by (B3), the sim-
plist way to determine the mean of (B20) is to convert to polar coordinate

Z] = re . Z2 = rpe R (B21)




TFET

i

112

with Jacobian r]rz. In these new coordinates, the estimator becomes

r
Aop 2 -
2 =b M cos (o2 e]), (822)

and the expression for the mean of & becomes
o« g

o 2n 2%
E(e) = ‘/"/;rzéf\"]srz,epez) do,de,dr,dr, ,

O 0 070

where £ is given by (B22) and f(r],rz, 075 02,) is the joint density function
in polar coordinates. Rather than provide all details of this integration

we shall instead indicate the key steps.

The integration with respect to 0] and 6, can be performed using the

identities
2n
/ dycos (y-0)exp[acos (y-0)] = ZNI](a), (B23)
0
2n
][ dysin(y-0)explacos(y-0)] = 0, (B24)

0

S T2
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where 11(-) indicates the modified Bessel function of first type and order

1. Equation (B23) is the standard definition of the modified Bessel function
and (B24) can be directly integrated after making the change of variable

vy = a cos (y-0).

The integrations with respect to r and ro are performed using the

identities
/tixx2 e'“le (yx) = Lo.F (2‘2'12-)
1Y ganhyiescsgg) » (825)
(4]
'C!X2 Y Y2
dxe I, (vx) =15 1H(a) (B26)
0

where ]F] (+4+,+) is the confluent hypergeometric function. A listing of
such integrals can be found in [Miller, 1964 appendix 1].

We can convert the hypergeometric functions to more recognizable forms

by using the identities

i e va il
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R (2:23x) = e, (827)

171 (5250 = 1, (828)
which can be found in [GPO, 1964, page 509].
The final result after performing all the integrations is

E(e) = e[1-exp(IR.)] (829)

where Rsis the signal-to-noise ratio in the sum channel given by (B19).

This equation corresponds to equation (20) of the paper by Mosca, which was

not derived, and is also the same as equation (30) in a report by McAulay.

The McAuley report derives this equation in an entirely different fashion.
Equation (B29) shows that ¢ is a biased estimator, however, the bias is

negligible when the signal-to-noise ratio RS is moderate to large. Comparing

equation (B29) above with equation (25) of the paper by Lank and Pollon, which

gives the analogous expression for an angle tracking radar employing sequential

lobing,1 one sees that the bias for the amplitude comparison monopulse is

much reduced over that of a sequential lober, for small to moderate

signal-to-noise ratios; the processing of phase information in an amplitude

comparison monopulse rather than only envelope information is the cause of this

improvement.

on o 27 2m

2y »2
E(E ) ‘ﬂﬂ Y']Y'z(t- )f(r]’rZ,e-l’ez)de]dazdrldrz’ (830)
00 0 O

1
Also derived in appendix A.
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and is easily seen to be infinite. The quickest way to show tnis is
to note that the existance or nonexist: ace of the second moment is
not affected by the fact that a signal is present. Thus, when (B30)
js integrated with only noise present, the result is that the
second moment is infinite. The basic reason is that the denominator
of the integrand has a singularity at ry = 0. This result was noted
in the paper by Mosca.

The effect of the singularity is to make the "tails" of the

density function of & slightly too high so that th2 second moment does not
exist. A similar phenomenon happens, for example, for the quotient of
two normal distributions which results in a Rayleigh distribution for
which no moments exist.

However, the behavior of the estimator & can be very closely
approximated near the value ¢=0 (which is of most interest) by a
random variable with a finite second moment.

It can be shown that, under most conditions, lZ]lz can be approximated
by

12,12 = ar?p%(s) = Je(z,)1% . (831)

Thus, as an anproximation to & we can utilize the computationally simpler

estimator ¢ given by

t=b Rgffgfllz ’ (B32)
E(z,)|

P
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to evaluate the operation of ¢. It is seen that all moments of

exist. The computation of the first moment of ¢ results in

E(2) = ¢, (B33)

where we utilize the fact that Z] and Z2 are independent and that
E(Re(ZZZ]*)) = Pe(E(ZZZ]*)). The variance of ¢ is

bz 52 1
Var(t) = m [] + ;Z + -"E] ’ (834)
S
S

so that for small error angles, ¢, and moderate to large signal-to-noise
ration Rs’ we can approximate the variance by
2
b

Var(t) = —, (835)
4RS

which is the Cramer-Rao bound given by (B18). The computation of (p34)
uses the fact that

2 _1 1
E [Re(Z,2,%)]° = 5 RE(Z)2,*7,7,%) + 5 ReE(Z,2,1%,1,%),  (B37)

and the moment theorem of Reed.

The key assumption for the approximation of & given by (B32) is that
the angle estimator is operating in a situation where the total power in
the sun channel can be closely approximated by the signal power only.

Of course (B32) cannot be used in an operational estimator since the signal

power is actually unknown to the angle estimator and only the total power

C
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in the sum channel can be measured. Operationally, the way to produce
an angle estimator for which all moments exist (similiar, for example,

the angle estimator when sequential lobing is employed) is to add a

oo

small positive bias, a, to the denominator of (B20) so that it becomes

. Re (ZZZI)

- (B38)
43 (‘Z]I + u)Z

A1l moments for ;a exist since the denominator is always greater than

zero. The analysis of ;a is quite involved and has not been undertaken.
Depending on the operating range of Rs expected, the normalizing constant
b can be chosen so that ;a is unbiased. The use of such a bias term might
be desirable in order to limit the estimated value of ¢ when several signals
interfere in the sum channel.

It can be shown (see [Cramér, 1946], pp 500-504) that as RS increases
the maximum 1ikelihood estimator e given by (B20) becomes asymptotically
unbiased and is an asymptotically normal and asymptotically efficient

estimator of ¢, i.e., the variance approaches the Cramér-Rao lower bound.

T is means that ¢ and also ; can be approximated by a normal distribution
with mean ¢ and variance BCR = %; in the vicinity of the mean. Precisely
how far out on the tails of the n:rmal density function this approximation
holds has not been investigated, but the approximation should be very
adequate in the vicinity of €. This is the region of interest in most

applications which involve the correction of smal® tracking errors.
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APPENDEX €
THE DIFFERENTIAL EQUATIONS: AN ANALYTIC APPRGACH

The overall mathematical structure of the single ship/muitiple cruise

missile engagement model involves the solution of a sequence of systems of

differential equations

W
m.(t4s]d) = m;(t]a) - [1-6;51 py; t1d) kij(tld)] (1)

for t: <t«< e kt+1 < j < M and all d. There is one such system for

each of M1 time intervals [t:, tk+1)' The assumed ship's weapon assignment

logic led to expressions for the firing probabilities of the form

m1(t|u) ifd=uand 0 <t <t
Ry (t|d) = {undefined ifd#fuand 0 <t < 20
0 otherwise

and, for 2<j <M, (c2)

[]-mj_](t[d)/mj(tld)] 1< <W,
(t|d) = alldand 9 <t < t,
p'ij - J

0 lf_iiw,alldandtztj

As has beer explained, equations (C1) and (C2) can be used in tandem

(i.e., by what has here been called the "bootstrap technique") to compute

-3

the cruis2 missile survival probabilities mj(-ld).

e B S i
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It is interesting to note that it is possible to analyze the systems
(C1) and (C2) te a certain extent using only analytical methods. For
some purposes - - such as obtaining information about the structure of the
solution to (C1) and (C2) but not necessarily the solution itself -- these
# analytic metheds may suffice and be more convenient than the usual solution

procedure involving numerical bootstrapping. The purpose of this appendix

is to briefly describe the analytic approach to (C1) and {C2).
To describe the analytical approach to working with (C1) and (C2), it

suffices to discuss the case of one of the time intervals -- say
+

t, < t< t,, for some fixed k with 1 < k<M -- and one of the damage #
states d; the analysis for the other time intervals and damage states is the
same.
Writing the differential equations (C1) in the more customary form d
dm,(t|d) W
—l = -m(t|d)-z p,.(t]d)-k,:(t]d)
dt LR B I 1 3
and inserting the expressions (C2) for the firing probabilities pij(tld)
gives Q
dm,(t|d) W
= N =M. . .
il URICDENCIREERICD i

aj(tld)‘[mj_] (tld)'mj(tld)] (C3) j

. +
for j=k+1, +++, M and te sttty where

W
aj(tld) =i£]kij(t|d)
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R

for j=k+l, ++-, M and t: <ttt The initial condition for the system

isthe one which applies to the time interval [t:. tk+1] namely!?
(t|d) = m,(t) |d) when t=t, k#1 < j < M
mj | - Illj k €| k’ — J -

The equations in the system (C3) have a special form, they are often called
L “first-order 1inear" equations.

It is convenient to write (C3) and (C4) in a more compact form by

using vector notation. Put

mk+](t|d)
Tt|d) )
mM(tid)
| M (ty 1)
m(ty |d) = )
my(t 1)
3y (t1d) -2y 4y (t]d) 0 -
A(t) - 0 ak+2(tld) 'ak+2(t|d) sess
° 0 0 ay(tld)

1The values mj(tzld) may be computed from (18) in the usual way.
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1 Then (C3) and (C4) may be written

%g—ﬁt) = A(t) T(t), (c5)

TTTNSAL

“m(t]d) = m(t;|d) when t=t,.

If A(t) were a constant matrix -- say A(t)=A for ali t in the range

t: Sttty - then the unique solution to the system (C5) would be!l

TR

w(t|d) = exp[A(t-t,)]-m{t;|d)  (tf <t < t,).

Since A is a band-diagonal matrix, the computation of the exponential matrix
woulid be straightforward.

More generally, when A(t) is not a constant matrix (this is the case most
likely to arise in practice), it may be shown (see, e.g., [Bellman, 1970])

that the unique solution to (C5) is
— — + -
m(t|d) = X(t)-m(t,]d) (b <t <tryy)

where X(t) is the unique matrix satisfying

&) < age) x(e),

1
—
.

+
X()

1 . -y — -’.'_
In particular, m(tk+]|d) would be given by m(tk+]|d) = exp[A(tk+]-tk)]-m(tkld)
and these values of the mj¢;+1|d) would be used in computing the mj(t:+]|d)

in the usual way for the next time interval.
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The matrix X(t) may be computed using the so-called “method of successive

approximations":

X(t) = lim X (t)
N0

where

Xo(t) =1

t
X (t) = 1 +/;kA(s)Xn(s)ds n=0,1,2+++.

Notice finally that the above described "analytical approach" does not
completely avoid the use of numerical techniques because the method of
excessive approximations is inherently numerical in character and because
the computation of the kernel matrix A(t) (for use in C6) will normally be

accomplished numerically.




