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INTRODUCTION

This report presents the resulis of an analytical study for predicting nuclear blast wave propagation
in air entrainment systems of hardened facilities. ‘This is the final repore of the study, and the information that
is presented supplements the initial repore titled Shock Wave Propagation Through Air Entrainment Systems—
Phase 1 {'].* The analvtical approach to the problem is discussed in the initial report with preliminary results
frem two computer cades. These initial computer codes differed basically in he finite-difference method that
was utilized for solution of the fundamental gas dynamics partial differential equations. One code used the
pseudowviscosity mv.thod [2) in a Lagrange formulation, and the other used a modified Lax-Wendroff two-step
2] from S. Bursicin |3, 4] in an Eulerian formulation. The solutions presented in the iniris! veport are for
one-dimensional sivock wave propagation in a constant area duct with the cffects of viscesity at the duct wall -
included.

Since the initial report was issued, the computer codes have heen madified considerably. The Lagrnge
computer cnde has been altered to include a variable crosssectional area capability and wave propagation through
a junction of three ducts. The Fulerian computer code has been changed to the original Lax-Wendroff two-step
scheme. A modification has also been made to the Eulerian code to include pseudo-viscosity in the finites
difference equations for improved stability characteristics as recommended in References 2 and 4. Both
computer codes have been refined. ‘

Following is a description of the Lagrange and Eulerian computer codes. including the background
for the finite-difference equation theory and input and output formats. The version of the Eulerian code
is for shock propagation with maximum air temperatures of 1,000°K. The Lagrange code, however, includes
equations »f state that are appropriate for air temperatires up to 24,000°K and can be used for nuclear blast
wave calculations.

LAGRANGE COMPUTER CODE DESCRIPTION

The Lagrange compuicr code is 2 one-dimensional variable area code which + 1cludes viscous effects
(at a wal). The code is suitable for computation of time-dependent flows, including normal shock waves, in
a single duct in which the cross-sectional area is cither censtant or variable, Figure 1, ynd in the multiple duct
configuration shown in Figure 2. The basic equations and finite-difference cquations used differ from those
given in Refcrence 1 due to the inclusion of 1 :riable cross-sectional area. Two tvpes of boundary conditions
can be specified at the duct system inlet: a side-on tvpe entrance with a surface shock wave specified that
passes over the entrance (see Figure 1), or simulation of a shock wave originating at the duct inlet. In both
cases the shock wave can be of constant strength or 2 wave with exponential pressure decay behind the shock
front. For the configuration of Figure 2, 2 nucicar wave can be specified on the surface. The boundary condi-
tion at the exit of a duct is specified as a rigid wall except at a T-junction.

* Numbers in brackets refer to References.
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Figure 1. Single duct configurations.
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Figure 2. Typical air entrainment system.

Basic Equations

The basic differential equations are written in the Lagrange formulation with the Lagrange variable
detined as |
|

A i
m = = dx 5
f \4 H
where A is the duct cross-sectional area, V is the volume per unit :nass, and x is the Eulerian distance coordinate.

The arca A is considered a function of x. A relationship for V follows from Equation 1 that has the form

9x
V = Aa—"n' (2)

The above equation with the definition for the velocity in Lagrange coordinates, u = x/3t, yields the equation
for conservation of mass, including variable arca, as

v du uV /d
Frar "i w) L




The inclusion of variable 1rea does not alter the form of either the momentum equation or the energy
equation. These equations are, therefore, the same as for a constant area duct, as given in Reference 1.

The mom=ntum equation is

Ju op f

TS M T A ®
and the energy equation is

de ov f 2,

E e TR T )

where p is the pressure, e the internal energy per univ mass, f 2 wall friction coefficient. and 9 the luct
diameter. The sysiem of equations is completed by the equation of state that, for the analysis presented here.

takee the form

e-—L!.- (6)
vy -1

In the alove, 7 is the adiabatic exponent for a real gus. The determination of the value of ¥ is expldined in
the section on equations of state. For purposes of computer computation, Fquations 2, 4, 5, and 6 with the
definition for the velocity u are written in fin‘te-difference form, ctilizing the pseudo-viscosity method [2}

of shuck wave treatment.

The Finite-Difference Fquations

The finite-diffcrence equations for the varialle area computer code ditfer slight!y from those for the
constant area code reported in Reference 1. The system of equations for the variable area case is given below.
In these equations superscripts represent time increments and subscripts rcpresent space increments, so that
u? denotes the velocity of the j”‘ grid point of the finite-difference mesh at the n'M time increment. Frac-
tional space increments represent centered or mesh midpoint values as ~hown in Figure 3. The finite-difference

equations are:

po -pn .l
2 r +1/2 = P2 f
. L T . ALz = 35 82 0] Wl (72)
lz(mj-llz + '“jn/z)J
xj"" = uj" + At""uj’””2 (7b)
ns+) n+1
X: - %y
ynel = nel
j=172 "‘j-]/z AJ-I/Z (7¢)
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In the above q is the artificial viscosity and P 2 p + q. The time step 3™ V2 is the average of previously .
and uewly calculated time steps. with 3" * Y being the newly caleulated time step. The symbols ay and 15 |

JAre constants.

‘The stability criterion that must be satisfied for the finite-difference equations to be stable is: .
cat 214V )
S e 2a) 4 4q] (—v- < (8
The Boundary Conditions

Inlet Boundury Conditions. In the Lagrange code two types of duct inlet boundary conditions can
be specified: a side-on type entrance or simulation of a shock wave originating at a duct «nlcr. In 2 Lagrange
formulation it is only necessary to specify the pressure at the duct inlet and the initial state of the gas in the
duct to produce a shock wave in the duct. Values of other parameters, such as velocity, density, and internal
energy behind the shock wave, are determined by the conservation equations and equation of siate. Since
the zrines of the finite-difference grid are not stationary in this formulation, a new zone needs to be established
periodically at the duct entrance to aliow for mass inflow. In establishing this new zone two state paramcters
have to be speciticd; in this case the state parameters used are the pressure and internal energy. When a shock
wave of constant strengrh is established at the duct entrance, the internal ¢nergy and pressure for a new zone
is determined uniquely by the shock Mach number. With the inlet shock Mach number specified, the initial ;
inlet pressure is determined from the refation

pn.0) = paEl » uHM2 - ;ﬁ] cl

where p(0,0) = pressurcatx = Ofort= 0,
M, = shock Mach number

P. = ambient pressure

' (y-DHY+ 1)

When specifying a st.ock of constant strength, Equation 9 is used fort 2 0.
For shock waves with pressure decay following the shock front the duct inlet pressure fore > 0is

approsimated by,

~t/1:
po,n = p, + [p(0,0) - p,le i (o

where t; is the initial slope time intercept for the wave. This simple form for the inlet pressure is adequate
for simulating shock waves that do not have a significant negative pressure phase, e.g., TNT blast waves
outside of the firchall region [5] and experimental shock tube waves after rarefaction catchup has occurred
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[1,6}. To simulate nuclear blast waves where a significant negative pressure phase occurs Equation 10 is
replaced by more appropriat= relationships such as are given in Reference 7. These relationships for a
surface wave that are used in side-on entrance caiculations are given below:

b -1 -b
P, = p, + pm(A!e e At 4 Ay ")u -1 an

where r = (t- t,)/D;
shock arrival time

D; = duration of positive pressure phase

Pswo

L

shuck peak overpressure att = 1,

The quantities A, Ay, A3, by, by, and by are constants for which values are given in Reference 7 for a 1-Mt
nuclear burst. In addition to a relationship for *he surface pressure, p,, reiationships for the dvnamic pressure,
Q,. and temperature, ., are required.

=h ~b
Q = Q,,(A,e 49 o Age "")u - w? a2)
bg
T, = Tm(ll-) (13)
%,

where w = (t-t, VD]
D} = duration of positive velocity phase
Q,, = peak dynamic pressure art = ¢,

T,y = chock temperature at e = ¢,

The quantities Ay, Ag, by, bg, and by, are constants for which values are given in Reference 7. Equations 11,
12, and 13 completely define the surface conditions in the air above an inlet from which other variables can
be obtained. The total enthalpy is required for side-on entrance simulation and is defined as

b, = ¢ +w=— + —ul (14)

(15)

Py

The parameter Z_ is a function of temperature and density and is determined as explained in the section on
cquations of state. The internal energy. ¢, is determined from

Py

X e— (16)

ST




where 7, is also a function of temperature and density. The particle velocity, u,, is computed using
kquation 12 and the definition

2
u, = -;-9-’“ €17)

Simulation of a side-on type entrance is achieved by using Equations 9 and 10 or 11 to compute the
surface pressure, p,, (point s on Firure 2) and then calculating the duct inlet pressure (point e on Figure 2)
from the empirical relation,

Pe = Py *+ 0.969(p, ~ p.)o"o‘ (18)

The ubove relationship was obtained from data in Reference 8. (In the computer program Equation 18 is
input in table form.) When a new zone is formed at the duct entrance, the internal energy of the new
zone is determined by assuming the total enthalpy at points s and e are equal. This assumnpticn yields,

1 1 2
bt

where his the total enthalpy at point s. The equation of state has been used in obtaining Equation 19. The
value of hy, is known since values for all shock parameters are known at point s; it is given by Equation 14,
The value of u, is, however, unknown and is approximated by the value calculated during the previous time
cycle. An iteration technique could be used to improve the value for u,, but a comparison of computed resuits
with experimental data showed this to be unnecessary (Reference 1). The pressure in the new zone is initially
assumed as the mean between the inlet pressure, p,., and the pressure in the second zone. The pressure, internal
energy, and velocity completely define the initial state for the new zone. This approximate method for cstab-
lishing a new inlet zone to allow mass inflow vields a result for the shock peak pressure that is approximatcly
5 high and a shock speed that is approximately 2% high. Rezoning methods will be discussed in more

detail in a separate section below.

Sume discussion is in order concerning the appropriateness of Equation 18 in defining the flow losses
at the duct inlet. Equation 18 defines the static pressure change through the inlet and agrees essentially with
data from other sources thaa BRI, c.g.. TRW Systems investigation, [ITR! investigation, and the B.E.L. Deckler
and D. H. Male investigation, References 9, 10, and 11, respectively. Using the second law of thermadynamics
an expression characterizing the inlet loss can be derived if ¥ and Z are assumed constant from point s to point
¢ (Figure 2). This loss is measured by the entropy change and is given by

1{y~1) THy=1)

P
S, - S, = ZRIn (—;"—) ;i (20)
L s

where §_and S, are the entropy at point s and point e, respectively, and Z and 7 are the values at points. An
alternate form for Equation 20 in terms of the stagnation pressurss at points s and ¢ is

- 5, = zrn(Z2 (1)

Pee

S
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Examination of Equations 20 and 21 clearly shows that the flow luss through an inlet or junction is determined
solely by the stagnation pressure change; specification of static pressure change only, as by Equation 18, neglects
the density change effects. For constan' normal sh-. k waves specification of the static pressure above is correct
since all other parameters, such as density and stagnation pressure, are determined uniquely from the static
pressurc behind the shock wave. However, for shock waves that have a rarefaction behind the shock surface

or in which the air behind the shock surface is heated by radiation, e.g., a nuclear wave, the density change
should be included as indicated in Equation 20. Data currently available do not allow for inclusion of densiry
effects except for a limited amount of data in Reference 9. To specify the losses at an inlet more accurately
than is done by Equation 18 additional data are required in which the surface density (or a related state variable
such as temperacure) is varicd independently of the surface pressure,

T-Junction Boundary Condition. The T-junction (Figures 2 and 4) for the Lagrange coordinate system
is considered as three separate ducts joined through appropriate boundary conditions at the end of cach duct.
The finite~difference grid in cach of the ducts is moving, which requires the boundary zones to be modified at
cach calculation cycle. Four example, with the shuck wave moving down duct 1 into ducts 2 and 3, as shown in
Figure 4, the boundary zone of duct 1 is moving into the junction, and the boundary zones of ducts 2 and 3
are moving away from the junction; this requires the mass to be removed from the duct 1 boundary zone and
added to the boundary zones of ducts 2 and 3. This boundary zone modification (changing the mass of the
zone) is done in 2 manner that satisfics conservation of mass. In addition to conservation of mass, the conserva-
tion of energy and the flow losses through the junction are also considered. Conservation of energy is provided
by assuming a quasi-steady state flow exists which allows use of 1 constant total enchalpy; this is the same
method previously described that is used in determining flow through a duct inlet. The flow losses through
the junction are determined from experimental data (Reference 8).

The computation procedure used at the T-junction is an iterative one. A value for the static pressure
at the exit to duct 1, p{“N in Figure 4, is determined during each calculation cvele, which allows satisfaction
of the following conservation of mass relations:

A" = Am; + Amy + Amy
(22)
18" < mx 1077

where Amy, Am,, and Amy are the changes in the mass of the boundary zones of ducts 1, 2, and 3 during the
n*? time cycle, respectively. and m{ is the total mass of the boundary zone of duct 1. Through an iteration
procedure the deviation of §™ from zero is determined to within a small bound. The following auxiliary

relationships, in finite-difference form, are used to determine Am,.

Amy = -A TN ("'1"1‘} - Ll) (232)
E IS SN @
uf'n’? = ul g o ATY2a0 (23¢)

n n
Pi.N-172 - Pi N

mi

ain o= 2A 23d)
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In the above, L, is the length of duct 1, A, is the crosssectional area of the b indary zone, and other
symbols are as previously defined. The acceleration cf the N'™ interface of duct 1 at the n'" calculation

cycle (or n*P time step) is represented by Al N

10




The inlet pressures to ducts 2 and 3, p3 ; and p}, ;. respectively, are determined from the exit
pressure of duct 1 through the data of Reference 8. Losses are accounted for in the same manner as
previvusly discussed for the inlet simulation of duct 1, i.e., through change in static pressure following
a normal shock wave propagating through the junction. ‘The pressures p'z", and p','J depend upon p'|"~
through relationships similar to Equation 18 but with different empirical constants. (in the computer
program these relationships are input in table furm.) The mass transferred from duct 1 1o duet 2, Amy,
is determined in terms of p} | (and, therefore, in terms of pY. N implicitly) by the relationships given below.
The mass transferred to duct 3, Amy, is determined by relationships of identicul form but with 3, in place
of p3,; and index 2 repiaced by 3 in ather appropriate symbols.

Amy = Ayp3t)ax3t! (24a)
et = xy e ATup)/? (24b)
u'i’,”z - u'z'., . At“’”zn'z'.l (24¢)

P2,3/2 = P31
g';.| - ZAZ -—'——-—T‘-—-—'-—- (24d)

2,312 2 | comenemetmmamm". Az (24¢)

ne t 1
Prann * TeT (246)
2,312

In the above, A, is the cross-sectional area of the boundary zone of duct 2, ngzl is determined using
Equation 7b, and ?‘2'.3,2 represents p} 3,2 + q3 3,2 Utilizing Equations 23, 24, and the equivalent of
Equations 24a through 24f for Amg, Equation 22 is satisfied by iteration of the pressure p y for each
calculation cycle.

Since mass is added to the boundary zones of ducts 2 and 3 from duct 1, the mass of the three
zones involved is adjusted at each calculation cycle. In addition, the internal energy and static pressure of
the boundary zones of ducts 2 and 3 are adjusted to account for effects of the internal energy of the added
mass. Assuming quasi-steady state flow, and therefore, constant toral enthalpy, and using a mass weighted
averaging method yields the following relationships for the adjusied variables.

S'l'.’p}-uz = ";.’r}-m (25a)
ne 1
Pi,N-1/72 | 2
vl = et ¢ T ("'x'.’xl) (25b)
1.N=-1/2

11




P2,372 1 2
*1 [ 23]
a3
el 4
2
L £ LI (u';’,') (25d)
' P?‘s'/z 2 '
m','" = m] + Am, (25¢)
m'z'" = m) + Aam, (28f)
m','" = m} + Amy (25g)
1
AT (""z'"z'.’s'/z - Am, ‘3‘2) —_— (25m
my
CTPI ('“'5‘??3‘11 - -’3“‘3‘5‘3) “',%‘;‘, (250
m3
] .
_E’l‘..l:-llz = pIN-172 @sp
Pitdz = v - D3 20532 (25k)
Py = o - D€} 2500 2sh

The barred quantitics are adjusted variables, and values for Y N-1/20 eV 2 P32 3 ) 2. P} 4720 and
cg:;,z are determined from Equations 7¢ and 7. Values for other variables are obtained from Equations 23 and 24.

The mass of the boundary zone of duct 1 increases and the mass of the boundary zones of ducts 2
and 3 decrease. Therefore, a limit has to be set on the change in the mass of these zones. A rezoning method
is used that merges the boundary zone of duct 1 with the adjacent zone when the boundary zone mass
becomes one half of its original (cycle 1) value. The boundary zones of ducts 2 and 3 are divided into two
sones of equal mass when their mass becomes double the original (cycle 1) value. This rezoning method will
he discussed in more detail in the section on duct rezoning.

Equations 23 through 25 are restricted in use to the flow and shock wave directions shown in
Figure 4. i.e.. flow from duct 1 into ducts 2 and 3. This is the initial flow pattern for a shock propagating
into the system inlet. Shock reflections from the debris pit end and/or the blast valve (Figure 2) can cause
the flow directions to change. The computer code subroutine is written for the case given in detail above,
and. therefore, computations will terminate when a reflected shock wave arrives at the T-junction. Subrou-
tines cin, however, casily be added to the computer code to compute propagation of reflected shock waves
through this junction since the computation method is similar to the case given here; only the directions of
mass transfer and flow loss relationships change. The main limitation this restriction places on the use of the
computer code in its present form is the ability to compute long erugh in time to allow flow reversal in both
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the duct to the debris pit and the duct to the blast valve. For example, if the blast valve duct is long compared
to the debris pit duct, a reflected shock wave from the debris pit could arrive ac the T-junction before the shock
wave in the blast valve duct arrives at the valve. This limitation is overcome by computing two geometries, the
desired geometry to obtain the debris pit solution and a second geometry that repiaces the debris duct with a
very long constant area duct to obtain the biast valve duct solution. This method is relatively accurate since
the debris pit flow does not significantly affect the flow in the blast valve duct until a reflected shock arrives

at the T-junction (sce Results Section). In this manner the primary problem is solved which is the temperature
and pressure distribution in the ducting system up to the time flow reversal occurs at the blast valve.

Duct Exit Boundary Conditions. The boundarv condition at the exit end of ducts 2 and 3 is considered
a closed-end condition. In finite-difference form the boundary conditions are written,

QN 0 (260)

Wy =0 (26b)

where a} \ and a] \ are the accclerations of the N'™® or last interface of ducts 2 and 3, respeetively.
The Finite-Difference Grid Rezoning Methods

Changing the finite-difference grid in each duct by adding or combining zones and renumbering the
grid system—denoted rezoning—is required periodically during a calculation to allow mass flow into or vut of
a duct. For the configuration of Figure 2 rezoning is required for calculating mass flow into duct 1 and also
through the T-junction. Another type of rezoning that is employed in the Lagrange computer code is the
removal of excessively compressed zones by combining these zones with an adjacent zone. This is necessary
to control the minimum size of the time step, which is determined for each calculation cycle by the smallest
zone.

Inlet Duct Rezoning. At the inlet of duct 1 2 new boundary -=one is established whenever the first
interface has moved a distance equivalent to the mass of the initial boundary zone. To establish this zone
the state of the gas at the zonc center, the velocity of the zune interface, and the zone size have to be specified.
The zone mass is determined from the gas state and zone size, and the acceleration of the interface is deter-
mined from the zone pressure with adjacent zone pressures. The specification of initial values for these
quantities is necessarily approximate: however, test calculations with the computer code show that rezoning
causes the shock pressure to be within 5% of the correct value. The computed shock pressure is always above
the correct value, yielding a conservative answer.

The basic assumptions that are made to establish the initial vzlues for the new zone parameters are,
referring to Figure 3,33 = 0and my,, = my,,. Neglecting the friction term (which is small) in the first part
of Equation 7a and using the following refationship for the acceleration of the boundary interface,

2l = P - _2.2.'. @2n
21 Pe m) B3z
yields the relationship
P2 = i (282)
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a) = o} (28b)
Again, P}y = p3,3 + 43 The above-mentioned assumptions, therefore, imply that the acceleration of
the boundary interface does not change when a new boundary sone is created.  Of several rezoning methods

tested the above vielded the most accurate results.
The criterion for establishment of the new boundary zone is

X, 2 x} 9
2my,, [tr-ne]

where Y% * % pa—— 30m
Vo [Pe + P32
1 1 2

o = >in, '7(""')J 1)

and h, is given by Equation 14,
The initial values of parameters tfor the new boundary zone of duct 1 based on Equations 28 are as

follows:
uj = o} (322
X =0 (32b)
n l n n
P32 = 3 (Pc + P;/:) (32¢)
Pz = P, (32d)
Sz = < (32¢)
(y-1g3
V32 = —_— (32f)
- n
B3z
A x"
M3z = l‘z (329
Y32

When initial vilues have been established for the new zone parameters, all the zones of the finite-difference
grid are renumbered to include this additional zone.

T-Junction Rezoning. Since mass is flowing through the T-junction, the boundary zones at this
junction change mass with each calculation cycle. The exit boundary zone of duct 1 decreases in mase, and
the entrance boundary zones of ducts 2 and 3 increase in mass. This change in zone mass eventually requires
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that the boundary zones be altered. The procedure that is used in the computer code is similar to the duct |
inlet rezoning escribed above, i.e., a new zone is established periudically, and the finite-difference grid renum-
bered accordingly. The exit boundary zone of duct 1 is combined with its adjacent zone to form s new
boundary zon: when its mass becomes one half of its original mass. The inlet boundary zores of ducts 2
and 3 are split to form two zones when their mass becomes double the original mass.

The criterion for establishment of a new exit zone for duct 1 is

i
My-ts2 S T N-172 (33

where m;‘q 12 represents the zone mass at time zero, The relativnships for establishing values of parameters
for the new zone are given below.

n
eN-1/2N-1/2 * N-3/2 ™N-1/2

N-1/2 ® (34a)
Sn-12 Pu-1i2
1
EN-vz ® 7(’?4-:12 * "?c-m) (34b)
Dnatrz ® MN-iz * Mnoyg (34¢)
N N (34d)
uy = uy (34e)
A (xN - "ﬁ-é
YRe2 = ¢ (340)
BN-1/2
(= Den-y/2
BN-tyz = (34g)
VvV
in the above. g 1,3, etc., represents the new zone value.
The criterion for establishment of a new entrance zone for duct 2 or 3 is
my2 > 2mj,; (35)

where m§ /2 fepresents the zero time value. The relationships for establishing the two new entrance zones are
as follows.

x = x] (362)
y] = o} (36b)
\
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R (u',' X

D3z * 7 ™2

1
Qs2 * 7 M2

n
ﬂ's'/z * 932

n
,2'3'12 = P - 932

v . (v-Dg3),
Vi -
P32
n
n n . 232X
X2 = X * AZ——
XX
n n
o Az!l‘.s ‘.’522
=32 D32
n (v- g5,
Pss2

‘These relationships apply to establishing new zones at the entrance of both ducts 2 and 3.

(36¢)

(36d)

(36e)

(36f)

(36g)

(36h)

(361)

(36§

(36k)

(36

(36m)

(36n)

(360)

(36p)

Rezoning to Reduce Running Time. To aid in reducing coraputer runming time it is expedient to
avoid zones becoming excessively compressed. The calculation time step is based upon the smailest or most

highly compressed zone. When the time step becomes too small, it is, therefore, necessary to reraove the
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smallest zone (the zone upon which the time step is based) by combining this zone with an adjacent zone. A
criterion for removal of the small zone is established, and relationships for combining this zone with an adjacent
zone are formulated.

The criterion for removal of an excessively compressed zone is

A2 2 -i-m“ 37)

where At? is the initial or zero time value of A¢™* V2, The relationships to establish a new zone comprised
of the zone being removed and an adjacent zone, with xi‘ the location of interface between the zones, are:

X o a0y ' (38a)
CRL (38h)
Metzz = Mgz * Moy (38¢)

Al‘ Aﬂ - X".|

Yiyg: = Iy (38d)
fon = ‘}'—uz"‘j-u;j-"”?"u/z M 112 (386
&j"-uz - ';‘ (‘I}'-nz + ‘!;".x/z) (38¢g)
.?.j"-uz = .Bj"-uz * &f-:/z (38h)

The quantities _y_gj". g,". etc., represent values of parameters for the newly created zone, and A is the cross-sectional
area at the interface of the zones being combined. A zone is removed whenever the minimum time step, A¢™*1/2,
based on that zone becomes smal'er than one half the value of At™* 12 3t time zero as expressed by Equation 37.

‘The Equation of State Options
Twao equations of state subroutines are available ir the Lagrange computer code: (a) the equation of
state for an ideal gas that is accurate for temperatures up to 1,000°K, and (b) a real gas equation of state that

is accurate for temperatures up to 24,000°K. The basic theory upon which these subroutines are based is given
below. )
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The Perfect Gas Equation of State. The cquation of state for an ideal gas can be written in the form:

RT

where pas the pressure, R the particular gas constant, T the absolute temperature, and V the specific volume.
Because of the computational advantages offered by the use of Equation 39, mast problems of shock trans-
mission throagh gases are solved nsing the ideal gas law. Moreover, the ideal gas law yiclds simple analytical
relationships hetween the various shock parameters. The thermally and caloric. lly perfect gas is, however,
an idealization, and real gases, depending on their temperature and pressure, will deviate from it toa

varving degree. 10 has been noted from experience (References 12 and 13) thae the ideal gas law predicts

the shock tlow parameters with good aceuracy up to temperatures of LOOOYK, However, at higher temper-
Atures, the number ot particles per umit mass and, hence, the average molecular weight of the gas may change
due to molecular dissaciation, chemical reactions, and ionization. Thus, when computing flow parameters
tor shocks through gases at high temperatures and moderately high pressuses, the ideal gas equation must be
modified to include the conteibutions by additional degrees of freedom to the energy of the gas molecules
that were not excited at fow temperatures,

The Real Gas Fauation of State. The teanstational and rotational degrees of freedom of molecules

are exerted e very low temperatures up to the order of 107K, whereas the molecular vibrations absent in mono-

tomc gases are fully exerted at much higher temperatures of the order of 2.230°K for 05 and 3,340°K for Ny,
The cantrtbution by the vibrational excitation at lower temperatures can he computed by the method of
partitions deserthed in Reference 120 Thus, for a diatonic gas with no molecular dissociation and ionization
present, 3, the adubatic exponent. is 7/5 with unexcited vibrational mode, while with fully excited molecular
vibrations 3 = 7. For g monotonic gas ¥ holds a constant value of 5/3.

It should be stated here that the temperature range for which the moleculir vibrations stay fully.
excired v notvery wide, This is because the molecular dissociation and chemical reactions frequently begin
at temperatures at which the molecular vibrations contribution to internal energy reaches its classical limiting
value, A1 temperatures of the order of several thousand degrees (3.0007K), the molecules of diatonic gases
dissociate into atoms, The process of dissociation of a molzcule requires a large amount of energy, thus
Aftfecting the thermaody namic properties of the gases appreciably. At standard atmospheric density, molecular
dissociation in air is poticeable at 2.980°°K due primarily to breaking up of the 05 molecule. The internal
energy of a partially dissoctated gas s the sum of the energy of the undissociated molecules, the encrgy
contained in dissociated atoms, and the energy required to dissociate unexcited molecules. Becauvse of the
high ¢nergy required to dissociate a molecule into its atoms, the energy of dissociated gas, even for small
degrees of dissoctation, is very much greater than that in the absence of dissociation. For monotonic gases
cttects due to molecular dissociation are absent,

Another factor that changes the thermodvynamic properties of a mixzure of gases, such as air at high
temperatures, is the occurrence of chemical reactions between its constituents. Air at temperatures above
1500"K undergoes oxidation of a portion of its nitrogen to form nitric uxide. This is a reversible reaction
and requires a high activation cnergy (21,4 keal/mole). The time 1o attain equilibrium is very high at temper-
atures below 1.500"K: however. at temperatures of the order of 3.000°K and above the chemical equilibrium
i reached in 1074 seconds or less. In other words, the chemical compasition of air around 3.000K and above
contains nitric oxide as one of its components, which changes the thermodynamic properties of air somewhat.

Next, ionization of atoms or molecules of gases in air begins around 8.000“K. The degree of ioniza-
tion increases with temperature. When the air temperature is of the order of 30,000°K, all of its atoms are
singly ionized. At temperatures above 30,0007K, the air undergoes second followed by third ionization
processes. Since this investigation deals with air temperatures of 24,000°K and below, only first ionization
of air particles will be considered here. Unlike molecular dissociation, the internal energy of the ionized gas
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is a sum of the thermal energy of its purticles (atoms, ions, and electrons) and the energy 1equired to remove
electrons from the atoms and ions. The internal energy of a partially ionized gas, therefore, will be the energy
of the ionized and unionized gas particles.

To examine the behavior of thermodynamic propertics of air with temperature, three of its primary
properties, i.e., the dimensionless internal energy (¢/R T), enthralpy (h/R T), and the adiabatic exponent (),
were obtained from the data given in Reference 13, These parameters were obtained between a temperature
range of 300 and 24,000VK. A tabulticn of the data at two different densities, namely, at the standard air
density (p, = 0.001293 gm/cm’) and at 1/10 of the standard density, is given in Table 1. The variation of
the parameters ¢/R T and /R T with tempcrature is shown by the curves of Figure 5. The temperature lines
at which the contributions by various degrees of freedom become accuuntable are clearly marked on the
curves. It is obvious from Table 1 and from the curves that the encrgy functions /R T and /R T undergo
a wide variation as the air temperature increases from 300 to 24,000°K, Correspondingly, the adizbatic
exponent, v, goes through a wide variation from the classical value of 1.4 at 300K to around 1.15 at
10,00UVK. Figure 6 shows plots of ¥ versus temperature at the two selected air densities,

Table 1. Thermodynamic Propertics of Air (After Reference 13)

Thermodynamic Properties”
Temperature, T At Standard At 1/10 of Standard
(°K) Density, 0,” Dessity. 9,
¢/RT WRT Y ¢/RT hRT y

300 2.5 3.5 1.4 2.5 3.5 1.4000
1,000 2.630 163 1.38 2.63 363 1.3800
2,000 2.962 3.963 1.3378 2.966 3.967 1.3375
3,000 3.395 4.402 1.2967 3.677 4.699 1.2780
4,000 4.345 5.408 1.2447 5.311 6.445 1.2135
5.000 5.138 6.283 1.2290 5.746 6.945 1.2087
6,000 5.502 6.700 1.2178 6.517 7.784 1.1944
7.000 6.623 7.533 1.2028 8.732 10.163 1.1639
8,000 7.743 9.144 1.1808 11.67 13.349 1.1439
12,0066 12.18 14.139 1.1608 13.47 15.531 1.1530
18,000 13.04 15.323 1.1751 18.i3 20.906 1.1531
24,000 16.09 18.96 1.1781 21.83 25.432 1.1650

4 e is the specific internal energy, and h is the specific enthalpy of air.
The adiabatic exponent ¥ = h/e.
b Py = 1.293x 103 gm/cm’.
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Fipure 5. Variation of internal energy and enthalpy with temperature for air.

In the light of the foregoing discussion it is concluded that the perfect gas equation given in
Equation 39 must he modified for computing the shock flow parameters through high temperature air.
One such modification commonly used is given by |12-15}

RT
D = Z(p,T)-v—'
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Figure 6. Variation of the adiabatic exponent with temperature for air.
where Z(p,T) = f(a,al) (41)

a is the degree of molecular dissociation, and a! is the degree of particle ionization. The quantity Z, commonly
known as the “compressibility factor,” is a function of pressure and temperature of the gas. At temperatures of
1,000°K or less and moderate pressures the perfect gas equation gives satisfactory results. Thus, Z = 1.0 at
these temperatures and pressures, yielding the perfect gas equation. The quantity Z for air at a given temper-
ature and density is found from standard tables given in References 13 and 15, These are included as Table 2
for easy reference.

The Rankine-Hugoniot Relationships for High Temperature Shock Waves. When moderately high
averpressures and high temperature shocks propagate through cold air, the thermodynamic properties, such
as ihe internal energy function (e/R T), the enthalpy function (W/RT), and the adiabatic exponent (y = h/e),
vary nonuniformly with temperature (Figures § and 6). The nonuniform variation, as discussed earlier, is
attributed mainly to molecular dissociation and particle ionization. Thus, the Rankine-Hugoniot relationships,
because of their dependence upon the above parameters, change in 2 nonuniform manner. Therefore, it is not
possible to define simple analytical expressions describing the pressure, density, and temperature ratios across
the shock. There are some iterative procedures, which are based upon the tabulated value of the compressibility
factor Z and the adiabatic exponent v, which render semi-analytical expressions for the shock wave parameters
112,13, 14].

Gilmore {131 plots the density and temperature ratios (0,70 and T,/T,) across the shock in the
standard Hugoniot form, i.c.. against the pressure ratio (P,/Py) for density values behind the shock p, of 10,
1, 10'1, l()'z. 10'3. and 10} of the standard air density p, = 0.001293 gm/cm”‘. Gilmore in his plots defined
suffix 1 to refer to the quantities ahead of the shock, and suffix 2 was used for quantities behind the shock.
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The plots are based upon a normal shock wave propagating into cold air at a temperature T, of 273.2°K. The
plots also show the variation of the Mach number of shock as

u 0qa/p()py/pg = 1)
b 2/P1)(Py/py (42)
[ LY TREY

with the pressure ratio py/py. The quantity ug is the speed of the shock, and ¢y is the speed of sound in the
cold air. These Rankine-Hugoniot plots, which include the real gas effects, are given in Figure 7 for normal
shocks traveling through air at a density of 0,001293 gm/cm’.

Computations Using the Real Gas Equation of Sate. The Lagrange computer program has an
equation of state algorithm built into it. The algorithm based upon a value of the internal cnergy, e, and
the air density, p, computes the adiabatic exponent, ¥, from the tabulated values of Gilmore {131, From
known values of ¢, p, and 7 the value for the pressuce is computed using the relationship

p = pe(y -1 (43)

From the known value of p, the algorithm refines the previously calculated 4a|ucs of ¢ and p for further
computing.

The algorithm has a built in numerical routine to obtain a correct value of air temperature. The
method is based upon computing the air temperature from known p and p using Equation 4. Since the
quantity Z is a function of pressure p and temperature T, caleulation of temperature using Equation 40 is,
therefore, an iterative process. The numerical routine performs the required iteration accurately, using
the tabulated values (Fable 2) of Z given by Gilmore [13).
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Figure 7. Rankine-Hugoniot curves including real gas effects foJ shock waves in air.
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Table 2. Values of the Compressibility Factor Z(p, T) (After Reference 13)

. Compressibility Factor for Density Ratio, p/p,,, of~
Femperature, T .
'Ky 10 107 1! 102 03 104 103 106
1,000 1.0000 1O 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2,000 1. 0000 1.0 1.0001 1.0007 1.0017 1.0055 1.0170 1.0487
3,000 1.0023 1.40072 1.0218 10610 1.1341 1.1912 1.2069 1.2109
4,000 1.0226 1.0628 1.1241 1.1896 1.2107 1.2282 1.2715% 1.3%83
5,000 1.0728 11448 1.1990 1.2370 1.3081 1.4835 1.7752 1.9544
6,000 1.1278 1.1984 1.2669 1.4001 1.6643 1.9143 1.9864 2.0081
7.000 1.1761 1.2699 14315 1.7162 1.9384 1.9970 2.0288 2.1108
8,000 1.2390 1.4001 1.6794 1.9259 2.0010 2.0487 2.1702 2.5007
12,000 1.708 1.957 2.062 2,224 2.636 3.365 3.865 3.968
18,000 2.063 2.284 2.778 3.518 3.910 3.984 4.078 4.530
23,000 2,322 2.868 3.602 3.930 4.143 3.778 5.623 5.931

Test Calculations. To check the accuracy of the algorithm, four trial runs, using the Lagrange computer
program, for shocks traveling into still air at standard density and temperature through a straight duct were
carried out at pressure ratios of 50:55, 101:77, 502:45, and 2008:8 across the shock, The computed shock ‘
Mach number, M, and the density and temperature ratios, /04 and Ty/Ty, across the shock are given in .
Table 3. These values are also plotted on the Rankine-Hugoniot curves of Figure 7 for comparison with
Gilmore's accurate values. It can be seen from Figure 7 that the shock parameters, namely the Mach number,
and the density and temperature ratios across it are computed with good accuracy by the Lagrange comsnuter
program. For completeness, the values of the adiabatic exponent v and the compressibility factor Z are also
listed in Table 3.

Table 3. Shock Parameters Computed Using the Real Gas Equation of Seate”

Pressure Preswure shock Deminy Density Temperature ‘Temperature
HBehind Rati Mach Bchind . Behind pet Adiabatic | Compressibility :
! atio, . . Ratio, N Ratio, ;! N i
Shack. py / Number, Shock, p p Shock, Tl Expoaent, v Factor, Z i
(poinr | PPV A ocugey | @meem® | P20 | 1,00 20 ‘
743.1 50.55 6.33  {7.447x 103 | 6.079 2,399 8.32 1.33 1.00
14960 | 10177 912 [9.0s1x103 | 7349 3.876 13.45 1.28 102
7.386.0 502.48 19.94 1.341x 10°2 10.95 9.351 32.45 1.19 1.41
29,530.0 | 20048 39.98 1.399x lﬂ'z 11.42 22,470 77.97 1.19 2.26

! Pressure (py). temperature (Ty), and Jdensity (4) for the undisturbed air are taken as 14.7 psia,
24%.29K, and 1.225 x 173 gm/cm’. respectively,
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RULERIAN COMPUTER CODE DESCRIPTION

The Basic Equations

The Eulerian code compures the flow variables in a duct through which a normal shock wave is
passing, The flow variables are computed as functions of time and position. The shock wave is considered
to be transmitted into the duct by a blast wave passing over the duct entrance The computer code allows
the shock wave to traverse the duct, be reflected from the closed end of the duct, and then re-traverse the

duct in the oppusite direcrion.
The conservation equations are written in the vector form,

oy AFW)
-a-t-#—‘r)-;---tC(U)lO (44)
where vectors U, F(U), and G(U) are given by
N
Us=s|M (452)
L.'-'.
M
2
F(U) = (ﬁ‘ﬁ- . pA} 45%)
(E+p) %
[
Gy = |fra L. =) (45¢)
( 8H dx ¢

The quantitics M, N, and E are defined as follows:

M = puA

N =pA

E = p(c+l/2uz)
t = time

x = axial distance

p = density

¢ = internal energy per unit mass

p = pressure

ple,p)

pe(y - 1), for a polytropic gas
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f = wall friction coetficient
= 47,/0112pud) f
u = veloeny
T = shearstress at duct wall
A 2 duct crossesectional ares
it = duct bydraulic radius
Substitution of the vectors U, F(U), and G(U) into Fquation 44 yiclds the equations for the conservation of
mass. mortentum, and energy. The gas in the duct is considered to be inviscid (except at the duct wail) and
thermally nonconducting. Pressure, density, and internal energy are refated through the perfect gas equation
of state,

Because the tlow in the duct is time dependent, steady-state values of the wall friction coefficient, f,
cancot properly be used. in the Eulerian code, the wall friction coe“ficient is computed from

f = SI(R,)S? (46)
where R, is the Reynolds number, based on duet equivalent diameter, and $1 and $2 are empirical constants.
The Finite-Difference Equations

A twoestep integration technique, that of Lax and Wendroff (Reference 2), is used to solve the

conservation equations, Equations 44 and 45. Referring to the sketch below, all the properties at time step
nare known. The properties at time step ne 1 and location j are to be computed. j

ne3 i}
m2 -}
jonet
nel ) V—
? ‘ (=172, n+1/2) @ ® (-1/2, n+172)
" r—¢- +-
é 4 - I S - ~ Ir_‘ ~
" 2 ——
el S S
nei i T
At
n=0 ‘ Y
=0 j=t j=2 — j=1 j j* je2 j*3

Axial Distance Along Luct
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First, the properties at two intermediate steps (j=1/2, n+1/2) and (j+1/2, n+1/2) are computed from:
e e e ) - 3 ) (- )
-3 (o) ¢ F G i) (47a)
U g (O e ) - (R 6) b - o)

- 36 (U;' - U,!',,) ‘ %—' ((;;', - cj") (47b)

where F;, Gy, etc., denote F(U)), G(U)), etc., and g}, €], 82. &7 are pscudo-viscosiry factors, defined in
Equation 49. With the properties at the two intermediate steps known, the propertics at the new step
(j, n+1) are computed from

e (- )

I T 3x
| Y -
e (Do - o) - alor - o)
o 5 (ot + oxeitl) “

where g5 and g are pseudo-viscosity factors, defined in Equation 49. The pscudo-viscosity factors were
obtained following the gencralized procedure of Reference 4. This procedure yielded the following

equations:
£ * 01[(05'»1/2)2 - (‘-‘f’m)z] + ULy, (U,Pn/z - ‘j"u/z)
+ a3Ufy, (U,!'om + "j"ouz) (49a)
£ o= ‘[zaluj!'ollz + 0y <2Ufo|/z“‘j"ouz) + as(ZU}'u/z“C}'u/z)] (49b)
€2 = @y + ay + ay (49¢)
where ay = -_;. . W - Ut ($08) -

(C,!: 1 IZ) z

T: (J*' U) (l*' >' (50b)
(,n/z)
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Ly i) - o)

0 (CFOI’DI

50¢)

and ¢ = acoustic velocity.

Values of Ky, K;, and Ky of 2.0 have been empirically found to be of the proper magnitude. The
expressions for gg, g}, and g3 are obtained by replacing j Ly j=1 in Equations 49 and 50.

The stability requirement for selecting the time step is:

Ax
F(u+¢)

At = (sn)

where F is a factor greater than unity. Numerical results have shown that too small a time step results in
oscillatory solutions. Thus, the value of F should be the smallest value (>1) that will yield a stable solution.
The optimum value for F was found to be 1.5. In the computer code, the time step At is recomputed for cach
cycle, using the minimum value of lui + ¢ of the preceding cycle.

The Boundary Conditions

The pressure at the entrance of the duct is specified as a function of time in the same manner as in

- the Lagrange Code (Equation 10):

po.D) = p, + [p0.0) - ple " (52)

where p(0,t) = pressurc at x = 0, t = t. The initial pressure at the duct entrance, p(0,0), is computed (as
i= the Lagrange Code, Equation 18) from:

pO.0) = p, + 0.969(p, - p,)"30¢ (53)

With p(0,t) known, the density p(0,t) is computed from the isentropic relationship

t/y
pO.D = p(0,0) [:(‘:;’)] (54)

where 7 is the ratio of specific heats, considered constant in this study.
The initial value of density p(0,0) is computed from the Rankine-Hugoniot relationship

|’(7+n$’-+(1-n

p(0,0) = p (55)
1(7-1)1’1%‘.‘1’.+ (y+ 1)

where p, is the ambient vaiue of density. Internal energy ¢ is computed from the equation of state (Equation
43), written in the form

- p(0,t) )
e(0,¢) m (56)
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The initial velocity w(®,0) is computed from the moving normal shock relationship

w00 = uft - p(_(:t'ﬁ' (57
where u, the velocity of the normat shock wave, is computed from
0,0
-”-‘-F—l (e + (=D
u, = c,|— T (58)

where ¢, is the ambient acoustic velocity. Because a rational basis for specifving u(Q,t) a priori is not known
to *he authors, the expediency of setring u(0,8) equal to w(Ax, 1) was emploved, where Ax is the numerical
increment of x used in the numerical solution of the conservation equations.

At the end of the duct, » = L; the rigid wall boundary condition can be imposed as u(L,t) = 0.
Within the framework of the aumerieal integration scheme, this was accomplished by means of a virtual station
bevond the end of the duct, Tocated at L+ Ax. By setting u(L + Ax, t) cqual to ~u(L - Ax, 1), the proper
houndary condition at x = L was obtined.

NUMERICAL RESULTS

Lagrange Computer Code

The results from the Lagrange computer code are presented in Reference 1 for the particular case of a
constant area-duct. A summuary of these results is reproduced in Figures 8 and 9, in which computed daca are
compared with the shock tube experimental data of Reference 0. These comparisons show the degree of
accturacy of the computer code when a constant friction factor is used and demonstrate the effect of wall
friction on shock wave attenuation.

Computed results, which include the variable arca option, are presented in Figure 10, Shock wave
pressure change through i ducet cross-secttonal area increase is given for outlet-to-inlet-area ratios up to 10,

Fhe analvtical curve is compared with Stanford Research Institute shock tube experimental data {16} and
with data from the 300-ton ENT blast experiments of EVENT DIAL PACK {51, The duct diameter at the
inlet to the area change was 2 inches in the SRE experiments and 24 inches in the DIAL PACK experiments.
‘The comparnon demonstrates the adequacy of the computer code to predict shock strengeh change with duct
APC INCTCISE,

Pressure-versus-time waveforms are presented in Figure 11 for the Lagrange Code solution with a
comparison to results from the Fulerian Code (discussed in i following section). The reflected wave at the
closed end of the duct is also shown in the tigure. The overpressure of this reflected wave 1s approximately
107 below the value estimated by Rankine-Hugoniot relationships. Studies have shown, however, that the
incident wave and retlected wave overpressures at a rigid boundary computed for 1 shock wave of constant
strength by the Lagrange Code agrees well with Rankine-Hugoniot values: this implies a small reflected wave
inaccuracy for waves with rarcfaction behind the shock.

The computed resules using the Lagrange Code for the case of a 1-Mt nuclear surface wave are given in
Figure 12, The air entrainment svstem is a typical configuration exeept for possible variations in the scale. The
location of the inlet was selected as 1,500 feet from the center of the nuclear burst. The required svrface wave
parameters were obtaned from Reference 7. The pressure and temperature vadues shown in the figure depict
the state of the air in the svstem at a time of 0.0108 second after arrival of the nuclear wave at the inlet. The
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Figure 10. Effect of area change on shock pressure.
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Figure 11. Pressurc-time wave forms.
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Figure 12. Typical computed results—~Lagrange code, 0.0108 second after arrival of shock
wave from 1-Mt nuclear explosion.

shock wave and cold-hot gas interface (contact surface) locations are shown as a line boundary. The computer
program, however, spreads the shock wave over approximately five finite-difference grid mesh lengths, due to
the pseudo-viscosity technique used, and spreads the contact surface also over approximately five mesh lengths.
The shocks are accurately located through utilization of the maximum value of the pseudo-viscosity parameter,
and this is the location shown. The contact surface location shown is the location of the zone interface across
which the leading downstream temperature jump occurs and is the location were the total temperature jump
will occur (neglecting diffusion effects) in the actual case. Figure 12 is an example of the computer predictions
at a particular time and not the complete results of the computer output. For example, for this calculation the
time history of all parameters was available at several locations in the system. These time histories are not
shown because they would not add significantly in presenting a sample calculation. The computer code com-
plete output capabilities are explained in Appendix A.

When a reflected shock wave reaches the T-junction (Figure 12), the computer program terminates
computation because the T-junction programming will not allow reversal of the direction of the inlet or exit
velocities at this junction. This fact, however, does not seriously limit the capabilities of the computer code.
As examination of Table 4 shows, the area expansion ratio for the debris pit inlet has negligible cffect on the
flow parameters in the inlet duct and in the duct to the blast valve. Therefore, any given problem can be
calcu’ated in two steps as follows: step 1, calculate the inlet duct and debris pit flows vsing the configuration
shown in Figure 1b; step 2, calculate the blast valve duct flow by using the configuration shown in Figure 2
with the debris pit duct and debris pit replaced by a constant area duct. This constant area duct should be
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sufficiently long to allow the reflected wave in the blast v.ive duct to reach the T-junction prior to the time
when a reflected wave in the constant area duct would reach the T-junction. This allows sufficient completion
of the primary shock propagation problem in the blast valve duct. The debeis pit solution (step 1), however,
will be conservative since the pressure toss through the T-junction, which is approximately 20%, will not be
included. Neglected in the abwe procedure is the interaction of primary and reflected shock waves, e.g., the
effects of a reflected wave from the debris pit propagating into and down the blast valve duct, Computation
of shock wave interaction is not considered important since flow reversai will have taken place in ail ducts
prior to any shock interactions for the configuration of concern, and solution of the primary problem will

have been completed,

Table 4. Effect of Area Expansion Ratio of Debris Pit on
Inlet Duct Flow and Blast Valve Duct Flow”

interface
Parammeters at Shock Parameters Paramerers
Shock Exit to Inlet Duct in Blast Valve Duct in Blast
Arca .
. . Propagation Valve Duct
Expansion b
Fime
Ratio b u u
P T (em/ P T (emise X AT X
0, cmised Oy, cmisee . O .
tpsin | (VK) <1rh wpsia) | (UKD <10 (cn | (YK) (em)
1.0 000880 247 3.693 8.27 82.6 546 5.05 480 | 2,964 | 317
5.0 0.00867 240 3,693 8,44 81.3 553 4.98 458 | 2,956 316
10.0 0.00832 250 3.692 8.4+ 81.3 545 4.99 448 | 2,937 295
16.0 (LOOKK 234 3.664 875 80.9 543 5.01 480 2,747 | 319

4 Configuration of Figure 2 with 1-Mt nuclear surface wave at 1,500-foot radius,
b Number of computation cveles was 1,000 for all cases.

Eulerian Computer Code Results

The Fulerian Code results are given for a constant area duct onlyv. The variable area option for this
conde 18 not accurare and should not be used. For variable area problems the Lagrange Code is more appro-
priate. Since the fagrange Code was in agreement with experimental data, the output of the Eulerian Code
wis compared te the Lagrange Code resules to verify the Eolerian Code accuracy. This comparison is
presented i Figure T, The time waveforms for overpressures are given at four locations in a duct through
which an attenuating shock wave is propagating. The Eulerian solution agrees well with the Lagrange solution
exeept for an overshoot at the shock front. This overshoot ir characteristic of the Lax-Wendroff finite-
ditference scheme that is used 121, The shock front is steeper in the Eulerian solution, and the shock speed
is somewhat faster than in the Lagrange solution This difference in shock speed is attributed to the pressure
overshoot which atfects shock front attenuation due to rarefaction decay.

Studies concerned with reflected shock waves at a rigid boundary show the reficcted wave to have the
characteristic overshoot. But the reflected pressure after the overshoot agrees with Rankine-Hugoniot relation-

ship predictions.
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A description of the input and output parameters that are used in the Eulerian Code with information
on obtaining a Code listing is given in Appendix B.

CONCLUSIONS AND RECOMMENDATIONS

Both the Lagrange computer code and the Eulerian computer code presented are shown to be
adequate for predicting shock wave propagation in a constan’ area duct.  For shock wave prediction in
a variable area Jduct the Lagrange Code should be used. Both codes adequately predict shock wave reflec-
tion from a rigid boundary and are suitable for cither constant strength shock waves or shock waves with
a rarefaction region with exponential pressure decay behind the shock front.  For shock wave prediction
in an air entrainment system consisting of debris pit and blast valve ducts (Figure 2) the Lagrange com-
puter code should be used, in which case the simulated surface wave can be of 1 "It nuclear explosion
or TNT explosion origin,
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INTRODUCTION

Appendix A

LAGRANGE COMPUTER CODE DESCRIPTION

The Lagrange computer code is similar in basic structure to the WUNDY code reported in Reference 17,
which was baszd on the KO<CODE of the University of Califernia Radiation Laboratory [18]. The basic stru.-
ture of the Lagrange Code and the input and output formats are described below. The computer code listing
and card deck can be obtained by requesting a program tape from the Computer Center, Code 1.06, CEL. All
quantities in the code are given in cgs units except for printout of pressure which is given in psia.

CODE BASIC STRUCTURE

The computer code consists of 2 main contro! subroutine with several auxiliary subroutines. A list of
these subroutines with a description of each function follows.

Subroutine

MAIN
BDY1
BDY123
BDY2
DATEXP
EQST
EQS1
EQS3
GENR
GEOM
HTEMP
HYDR
NUBDY
ouT
ouT2
ouT3
ouT4
REZ}

Function

Controls main logical flow and reads input data

Specifies motion of interface at Guct inlet for low temperature wave
Specifies motion of interfaces at T-junction

Specifies motion of interface at a duct exit

Data source for duct inlet losses

Controls equation of state subroutine acquisition

Equation of state for ideal gas (T < 1,000°K)

Equation of state for real air (T < 24,000°K)

Initializcs problem

Calculates cross-sectional area and zone volume

Calculates Z for EQS3

Computes hydrodynamic motions

Specifies motion of interface at duct inlet for 1-Mt nuclear wave case
Prints normal output, pressure, etc., in cach zone at fixed times
Accumulates data on main shock front in each duct

Accumulates pressure, ctc., versus time at fixed positions

Punches cards from which the problem can be continued

Removes excessively compressed zones
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Subroutwe Fuungtion

REZEN] Adds » zone at duct entrance for mass inflow
REZENT Controls enteance tone size at T-junction
REZEX1 Controls exit zong siz¢ &t 1-juncrion
TIMEST Calculates time szep

CODE INPUT QUANTITIES AND FORMATS

The input data symbols, including the data eard number on which they appesr, and the data format
arc given in Table A-1. The data appears on & parsicular sard in the order in which itis given. A sam‘plc dnt;.l
card lisring i9 given in Table A-2 fuca 1,300-Co0t redius locanon from a 1-Mt auglear burst wicth an au eotratn-
et geometry as shown in Figure 12,

CODE OUTPUT VARIABLES AND FORMATS

The cutput of this computer code consists of printout of the input dara, correcred input data, oumn
subroutine printout, OUT2 subroutine printout, and QUT3 subioutine prinfout. The OUT4 subroutine punches
cards. ‘T give 2 full vutpue would be too lengthy: therefore, only 4 sample output from printout of the input
date and OUTI at cycle 500 are given in Tables A-$ and A4, respectively. The daca in Tables As2 theough A-4
tre for the prablem of Piguts 12, The program was run ¢a a CDC 6600 computer. tad it requiced ® cose storage
of 165,000 and 2 running time of 119 seconds.

The normal output is provided by the OUT} subroutine, which prints out the velocity, displacement,
and several state vasiables for each zone at dasired times. The princour is controlied by the quanuty NPR The
variables printed out every NPR cycles of compuration are given in Table A-5.

An auxiliary output is provided by the OUT3 subroutin, which prints oue variables ac desired locations
In the duct versus time. The concrol variable $(1, ) specifics the locasion ac which che varisbles given in ‘Table A-6
are printed out.

Table A-1. lapur Quantities

Nf::u Format Symbol Definition

1 7A10 ALIST() Problem idemification

2 7A10 ALIST(I) Probiem identification continued

3 1215 NPROB Problem aumber
IMAXL Total number of ducts, 1 o7 3
INTAPE # 0, no dava input from tape 18
INCOPS = 0, no extra input from cards

continued
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Number

Format

1218

1215

1215

7E10.4

Table A-1. Continued

Symbol
NQuIt
NPR
NTAPE
KOPT

KOUT2

KOUT2A
KouT2s

KOUT3A
KOUT4

KREZ1

NC(1)
through
NC(12)

NC(6)
NC(7)

NC(13)
through
NC(24)

NCO1D)
EBI

T
DTMIN(2)
DTRATE

STABIL
ucuT
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Definition
Total number of cycles to run
Print after every NPR cycle
= 0, do not write tape 18
= 1, side-on type entrance
= 0, wave originates at duct entrance

= 0, do not call QUT2 (usually 4 when
OUT? is used)

Store data every KOUT2 cycles

Controls coupling between OUT2 and
OUT3; usually zero

Store P-T data every KOUT3 cycles

Punch continuation cards at KOUT4
cycles

= (0. REZ1 not uscd
= 1, REZ1 used

Control variabies, all zero except NC(6)
and NC(7)

= 1, print NC(6) times per decade in time

= 1, use special pseuderviscosity
Control variables, all zero except NC(17)

= 1, print GRAMS instead of PDYN
= 0, not now used

= 0, start with time zcro

= 0, usc built-in time step

= 0, use built-in time step change rate of
1.4

= 0, use built-in stability constant of 0.81

= 0, use built-in velocity cutoff value of
1x 102 em/sec

continued




Card

Number
——————

8

10

Format
——

Tel0.4

K104

7E10.4

7E10.4

7Ei04

515

RE10.0

Table A-1. Continued

Symbol
vendsstaanamy

Al
through
AS

B1
through
B7

bp
pDU
TS
8
PSO
QSO

TMPSIH
TMPS2
FILLAG

TLIST(1)
through
TLIST(6)

I =1
NEQST()
JCALGOD

NZONES(1)
KOUT3(1)

GAMMAICH
OUTBDY(1)
EINIF(1)
UINI'T(1)
DINIT(1)
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Definition
S ————

Surface wave constants

Surface wave exponents

Pusitive pressure phase duration
Pusitive velocity phase duration
Shock arrival time

Time of maximum temperature
Initial value, nuclear wave pressure

Initial value, nuclear wave dynamic
pressure

Surface temperature constant
Surface temperature constant
= 1, use NUBDY subroutine
= 0, use BNY1 subroutine

All zero, printing controlled by NPR

Duct identification
Number of ¢quation of state in duct 1

Number of tast interface currently being
caleulated in duct 1

Total number of zones in duct 1

Store P-T data at KOUT3 locations in
duct 1

Gamma used in duct |

Length of duct

Initial internal energy in duct |
Initial velocity in duct 1

Initial density in duct 1

continued
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Table A-1. Continued

Namber Format Symbol Definition.
FRICT(1) Friction factor in duct |
CINQ(1) 2.0, pseudo-viscosity constant, duct U
AINQ(1) 0.2, pseudo-viscosity constant, duct 1
15 6E10.0 DO(1) Diameter for X(1,}) < X1(1)
. DI(1) Lincar rate of change in diameter
D2(1) = 0, not used
D3(1) = 0, not used
Xun Begin linear diameter change at X1(1),
duct 1
X2(1) End linear diameter change ar X2(1), duct 1
16 6E10.0 §(1,1) Positions in duct 1 to collect P-T data
through by OUT3; zero if not used
5(1,6)

Note: Repeat cards 13 through 16 forl = 2, IMAXL.

Last card Is NEXT = 1, read new set of data

# 1, stop: end of computarion

Table A-2. Data Card Listing—Problem of Figure 12.

NUCLFAER AURGT o SHOCK ukB24,7, Clame2 b7,
ACFLe C971 /7

| o) 3 [} n Sen % 2 1
1 in [} 13 Su9 1
!

0 n [ 1 1 1 [} ] [ ] 9
0 [ 4 ' t [ 0 [ [} (4 0 L]
“e 400 v *00 Je s0n o, 90 0. "o 9. .09
le% Ul 3. =t S.& -3t 2 =] 6.8 -0}
249 0P c.) *0) te3 407 1,5 002 3.5  +02 2,197 00 0o .00
[XY4 0N Lo% AN He “12 2,1 =01 8,89 en? 2, *gA
Zeb *03 4. L1 I Y ean
Oe onp ., *ar ne NN n, *0n Os e 9, 0y

1 3 < ¢ 2
tes onp u,% 002 241 48 419 A, 600 1,22% «Ad 1,6 «02 2. e0n 2, =01
b *0Y o, °ny fe eah n, *40 0o *00 9, .0n
Ssh 001 «o”S *02 (o .00

2 3 s 3e k)
las *NN 4,% *A2 ekt 099 o, €00 1422% «03 1,4 -02 2. *00 2. -0t
b °01 2. *80 O 19 =, *09 9, o0l 1,8 .02
3. Nt 241 *n2 402 LRt

3 3 LI L] 2
Tasa €00 1% 0] 2,988 419 r, “0n 1,22% =03 1,6 <07 2, 00 2, 01

&o 01 L, *ge A, N *00 0. +«0N 0, .00
(YL} ) &, en? a, eng
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Table A-3. Printout of Input Data Problem of Figure 12,

PAINTOUT OF INITIAL o7 STanlg

MICLESR MURST , $nOCK wSe2e,?,  Nlavep /T,
MILe AO/1T/1Y

“ONOH teas  InTAPF  JCO0S  agult NPR  NYARE nowT
1) b} 0 ] s%e L L) 7 )
ROUTP NQUTPS mOUTZR aCUTIE  xOUTs AP
] e [ te L1T) [
MEIL)  ACIDY  ACIIY  ACI&)  ACISY  ACIAY  WE(TH  NCID)  NCEO)  NCUIE)  NEI1E)  NCILPY
. [} . ] ] ' ] L] [ [} ] L]
NPEE3)  NCTIOD  NCLISH MCII6)  NCILT)  RCLTEY  NCIION  NCI29)  NCI21D  NCI2D2Y  NEI2D)  NCI24)
¢ k] [} 1 ) [] [} L] [} ] o L]
(L1} 14 crRin ) rreare SragfL weur
() [ O [ 3 N Ao [ Y

M a2 2] [ 1)
1.5000008 01 PN TTIT I 1 9.309000L-01 3 290090801 4.000000F=0]

[ 1] L a) L T3 a8 ne (1]
2,9000002409 2.1040000C0 20 1.209000€002 1.500490¢C 002 3,%5000000402 2.1970008¢00 '

ne 1] 1 ™ L4 1] cse
12000090000 2:.500e00F 000 Qe0n9080E=02 IR LTLLLI LY 1 4,8000000+97 2:.0000000%00

ooy, . Tuesy FLAN
2.0000002001 D.004000€ens |.08n000Ee 00

\(3{})
e [ %o L LD [ 13
1T AMPOST  JCMC NIONES  xOuTY
1 b} . 19 2
2 3 ® "w L]
? 3 [} 84 ?
Sanms| outaoy CINIY UINTT niNet (L1144 cIng atwq
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Table A-5. OUT1 Subroutine Printout Variables

Printout Variable

DT

JDT

PS

as
TEMPS
Z8
GAMMAS

HTS
DS
ES

I

J

X))
UL )
XAV ))
bt )]
EL))
PQ(L))
Lp
X))
GRAMS(1,})
TEMP(1,))
DIA(L )
DTZ)(L))
GAMMA, ])
ZiL D

Description

Duct with smallest time step
Zone with smallest time step
Surface pressure

Surface dynamic pressure
Surface temperature

Surface compressibility factor
Surface value of gamma
Surface value of total cmhrzlpy
Surface density

Surface internal energy
Number of duct

Number of interface
Ristance to interface
Velocity of interface
Distance to zone center
Density

Internal energy

P+Q

Pseudo-viscosity

Pressure

Zone mass

Temperature

Duct diameter

‘Fime step in duct 1 at zone J
Adiabatic exponent gamma

Compressibility factor




Table A-6. OUT3 Subroutine Printout Variables

Printout Variables Description
| Duct number
L) Positions P-T data collected
NCYCLE Number of computation cvcles
T Real problem time
PSicLL}) Pressure, psia
OVPSIl, )) Overpressure, psi
PDYN({,)) Dynamic pressure, psi
DU Density
ua) Velocity of interface
TEMP(1,}) Temperature
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Appendix B

EULERIAN COMPUTER CODL INPUT AND OUTPUT PARAMETERS

The input and output parameters are presented for the Eulerian computer code. A tape of the code
for listing and card punching is available upon request from the Computer Center, Code 1.06, CEL.

COMPUTER CODE INPUT PARAMETERS

The input parameters are listed in Table B1.

Symbol
PO

TO

RO

GO

R2

G2

AL, A23i), A3(i),
AKi)i = 1,4

XB(1), XB(2), XB(3)

B1, B2, B3, B4

XIN
XFIN
DELX
A

ALPHA
BETA
Si.s2

Table B-1. Eulerian Code Input Parameters

Ambient pressure, Ib/in.2

Ambient temperature, °R

Ambient specific gas constant, ft/°F
Ambient specific heat ratio

High temperature specific gas constant, ft/°F
High temperature spevific heat ratio

Constants in equation for duct radius in duct section i,
ri) = A1) + A2 x + A3() x* + A4i) x?; all zero
except A1(1) for listing given in Appendix B.

Maximum x values in the 1st, 2nd, and 3rd sections of
the duct; all greater than XFIN for listing given in
Appendix B.

Constants in the equation for overpressure transmitted
into the duct: p(0,0) = p, + BI(p, - p,)2; (B3 and B4
are not currently used)

X value at duct entrance; use XIN = 0

X value at end of duct, ft

Ax, finite-difference mesh size, ft

Mach number of nuclear blast wave as it passes over
duct entrance

. ~t/t;
t;, time constant; p(0,t) = p, + [p(0,0)~p_ Je '
Not used

Constants used in computing friction factor, f;
f = SUR,)S?
continued
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Symbol

xxiy
K1, K2, K3

1D

h g
NEND
NTIME

IWRTTP
IWRTXP

NF

NWRT

Iwp

Symbol

—

Table B-2. Continued
Definition

F, constant used in computing time increment;
At = Ax/F(U + C)

Constants used in the computation of the pseudo-
viscosity factors, usually 2.0

= 1, if duct is rectangle of unit width
= 2, if ductis circular

Not used

Initializing parameter, set NEND = |

Maximum value of n, i.c., number of time steps to be
computed

Output is printed cvery IWRTTP time step

Output is printed every IwpTXPh space step for every

IWRTTP™M time step

= (), if friction factor, f, is zero

= 1, if friction factor, f, is computed from f = Sl(Re)sz
Number of time steps that must be computed before the
pseudo-viscosity factors take on their full value: for

n <ITL., the pseudo-viscosity factors are proportional
to n/ITL.

The maximum value of pressure at a given value of axial
distance; printed out every NWRT? space step

Properties behind the nuclear blast wave; printed out
every iWPt? time step

COMPUTER CODE OUTPUT PARAMETERS

‘The output parameters are listed in Table B-2,

Table B-2. Eulerian Code Output Paramcters

TIME

Elapsed time from appearance of shock wave at duct
entrance, scc

Axial distance, ft

continued
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Svinbol
ndm——

X/1.

RO
Y
YY1

U
AREA
AREA/AREAL

MACH NO
P
P/PO

RHO/RHO

T/TO

X

X/D

P/PO

Table B-2. Continued

Nondimensional axial distance, normalized with respect
to duct length

Density, Ibm/ft’

Duct radius of half-height, ft

Nondimensional duct radius or half-height, normalized
with respect to initial value

Velocity, ft/sec
Duct area, fi?

Nondimensional duct area, normalized with respect to
initial value

Mach number
Pressure, Ibsin.?

Nondimensional pressure, normalized with respect to
ambient value

Nondimensional density, normalized with respect to
ambient value

Temperature, °F

Nondimensional temperature, normalized with respect to
ambient value

Number of space increment

lth

Valuc of X at the I'" space increment, ft

Nondimensional axial distance, nurmalized with respect to
initial duct diameter or height

Maximum value of nondimensional pressure at X(1),
normalized with respect to ambient value

Maximum value of pressure at X{(1), ibtin.2
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BASIC NOMENCLATURE
A Duct cross-sectional area
Ay-Ag Constants, Lagrange Code
a Acceleration
2y, 2y Psevrdo-viscosity constants, Lagrange Code
. b -b, Constants, Lagrange Code
¢ Acoustic velocity
D Duct diameter
D, Duration of positive pressure phase, nuclear
wave
D; Duration of positive velocity phase, ‘nuclcar
wave
¢ Spevific internal energy
E Variable defined as pte + 1/2u?)
F Stability constant, Eulerian Code
F(U) Function of vector U
f Friction factor !
|
2 Pseudo-viscosity factor, Eulerian Code |
g; Pscudo-viscosity factor, Eulerian Code
' Pseudc viscosity factor, Fulerian Code
2o Pseudorviscosity factor, Eulerian Code
£ Pseudo-viscosity factor, Eulerian Code
g2 Pseudo-viscosity factor, Eulerian Code
G(U) Function of vector U
h Specific enthalpy
|
\
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Total enthalpy per unit mass

Duct hydraulic radius

Pscudo-visgusi(y constant, Fulerian Code
Lnct length

Lagrange variable, mass per zone

Mass change per zone. Lagrange Code
Shock wave Mach number

Variable defined as p u A, Eulerian Code
Variable defined as p A, Eulerian Code
Pressure

Pressure at pasition x at time ¢

Variable defined as p + q, Lagrange Code
Pseudo-viscr-sity, lLagrange Code
Dynamic pressure

Particular gas constant

Reyvnolds number

Friction factor constants, Eulerian Code
Specific entropy

Time

Shock arrival time

Initial slope time intercept

Time increment

Particle velocity

Shack wave velocity

Variable vector, Fulerian Code
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Superscripts

Volumie per unit mass
Distance along duct, Eulerian variable
Distance increment

Compressibility factor for real gas
Pseudo-viscosity parameter, Eulerian Code
Adiabatic exponent

Small quantity

Defined as (y = 1)/(y + 1)

Density

Density at position x a¢ time t
Defined as (¢~ 1,)/Dy

Shear stress at wall of duct

Defined as (¢ - t)/D;,

Downstream of shock
Upstream of shock
Ambient condition value
Duct inlet value

Net point location
Initial value

Surface value

Number of time increments
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