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Analysis of Curved Target-Type Thrust Reversers
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The reverse-thrust performance of two-dimensional and axisymmetric curved deflectors, symmetrically situated
with respect to the impinging jet, is analyzed through the use of Levi-Civita’s method, Belotserkovsky's integral
method, and the finite element method. The predicted results are shown to be in reasonable agreement with the
available experimental data. The real-fluid effects such as Coanda e¢ffect, entrainment, and the pressure ratio
are discussed in the light of the present inviscid flow nnnl_\u\K

Nomenclature
l coeflicients
A, areas of subtriangles in a triangle
A" area of a triangle
d Jet width or diameter
alr) reVerser geometry
h length of the normal, Fig. 6
ha) a function
] (-n'?
It functional of ¢
A = a parameter
n = normal axis
P = pressure
q magnitude of total velocity
r - radial distance
r, = nosele radius
R = radius of curvature
R reverser radius

L
s axis along the free surface

So nozzle setback distance

54, = clement matnix for element m
SLA™ = load matrix for element m

t = a parameter, Fig. |
ut = velocity components
5 - [ree streamline velocity
W = normalized uniform velocity in the nos/zle
W = complex potential
v = coordinate axes
B = deflection angle
S = slope of the reverser boundary. Fig. 6b
= a variable
- area coordinates
Nr reverse-thrust ratio
U - direction of velocity vector

/ = 4 multiplicr

P = density of fluid

a - a variable, Fig. 2
o = potential function
v : stream function

© a complex function

Introduction

HE fluid dynamics of a free air or liquid jet impinging
on a rigid or deformable surface poses probiems of special
interest in the analysis of impulse machinery, thrust reversers,
flip buckets on spillways. rock and metal cutting with high-
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speed water jets, false-twisting of yarns, etc. A complete discussion
of the mechanics of the flow situation would include the
compressibility and gravitational effects, boundary-layer effects
at the solid surface, and the entrainment effects at the free
surface, but in most cases these are relatively unimportant, and
it is sufficiently realistic to assume the fluid to be inviscid and
incompressible. Even with this simplification, the prediction of
the characteristics of the deflected jet may still pose exceedingly
complex problems particularly for jets impinging obliquely
upon prescribed boundaries. For example, the oblique impact
of a round jet on a plane surface has not yet been analyzed.'
Thus, the analysis is often restricted to two-dimensional or
axisymmetric situations and recourse is usually made to approxi-
mate methods of analysis where a free surface is assumed and
its sutability is assessed from approximate potential solutions
obtained through the use of various numerical techniques.

The two-dimensional counterpart of the jet-deflection problem
has been treated through the use of the powerful analytic-
function theory and successive conformal transformations.
Sarpkaya? solved the U-shaped, two-segment. deflector problem
where the turning angle between the segments is limited to 907,
Tinney et al.* extended this analysis to the case where the
turning angle between the symmetrically situated segments is
greater than 90°, Later, Chang and Conly* presented an analysis
for a bucket composed of a series of segments of arbitrary
number, lengths, and angles. However, the basic as well as
practical problem of the direct and exact analysis of jet deflection
by curved buckets remained unsolved.

The three-dimensional  counterpart of the  jet-deflection
problem has not been solved in any generality. Attempts to
formulate an exact solution have been mostly unsuccessful even
for axisymmetric inviscid flows with no body forces. The case
of a circular jet striking a plate normally was analyzed by
Schach® using approximate methods similar to those of Trefftz®
with successive adjustment of the free streamlines. Jeppson’
applied the finite difference technigue to the solution of two,
axisymmetric, potential-flow problems, namely to that of flow
from a nozzle and the cavitating flow of a jet past a body
of revolution. Other noteworthy contributions to the analysis
of the jet efflux from nossdes and orifices were made by
Southwell and Vaisey.* Rouse and Abul-Fetouh.” Garabedian,'®
and Hunt'' through the use of the relaxaticn and finite-
difference methods. Schnurr et al.'? used the relaxation method
to analyze the turning of two-dimensional and axisymmetric
jets from curved surfaces where the jet was assumed to leave
the deflector exactly parallel to the tangent at the lip of the
deflector surface. The consequence of the difference between the
actual deflection angle and the said tangent to the deflector
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Fig. 1 Tramformation planes: a) physical plane, b) H-plane, c) t-plane,
and d) ;-plane.

mentally. Thus, their analysis does not constitute a solution to
the thrust-reverser problem.

Ryhming'?studied the problem of a steady liquid jet impacting
on a plane and on an infinite axisymmetric cavity by employing
Belotserkovsky's'® integral method. As in the case of Schnurr et
al, the results of this work do not apply to the thrust-reverser
problem where there are two free surfaces and where the
asymptotic slope of the deflected jet is not parallel to the
tangent at the lip of the deflector surface.

In the present work three methods are employed to investigate
the deflection of inviscid. incompressible curved surfaces: Levi-
Civita's method. Belotserkovsky's integral method, and the finite
clement method. The first method is applied to plane jets
impinging symmetrically on two-dimensional curved surfaces
whose shapes are specified in terms of a given jet-deflection
angle and the angle of departure at the lip of the two-
dimensional bucket. The other two methods are applied to
straight circular jets impinging on axisymmetric curved surfaces.

Plane Jets and Two-Dimensional Curved Deflectors

The past as well as the present analyses have emphatically
demonstrated that almost all of the difficulties of the analysis of
jet deflection from curved obstacles are ascribable to the deter-
mination of the initiaily unknown free streamlines. In view of
this fact a direct analysis of the problem, that is, the determina-
tion of the jet deflection angle and the position of the free
streamlines via either purely analytical or partly analytical and
partly numerical techniques is at best a difficult problem.
As propounded by Birkhoff and Zarantonello,'$ what one can
hope for is an indirect solution of the problem, ie. obtaining a
family of obstacle shapes which will yield the prescribed jet-
deflection angle and provide a familiarity between the shapes
so obtained and the range and change of direction of the free
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parameters involved in the analysis. This holds true for both
the plane and axisymmetric flows. Should one adopt a purely
numerical procedure (e.g. finite difference, relaxation, finite
element, marker-and-cell technique), it is then and only then
possible to begin with a prescribed obstacle shape and to
approach a unique solution through successive iterations,

It is well known from the free-streamline theory that whenever
the solid boundaries are composed of straight segments, then
the Q-plane also is composed of straight lines (sec, c.g., Ref. 16).
Since such a polygonal boundary can always be transformed
onto a t-planc through the use of Schwarz-Christoffel transforma-
tion, all two-dimensional jet-deflection problems of this nature
may be, at least theoretically, solved. However, whenever both
the magnitude and the direction of the velocity vary along a
rigid boundary, then the Q-plane is not in general composed
of straight lines or of lines intersecting each other at suitable
angles which would yield integrable transformations. Con-
sequently, one will either seek other methods of handling the
curved boundaries or completely abandon the direct approach
of obtaining a solution for a given geometry. The indirect
approach seeks a family of solutions for a set of jet-deflection
and departure-angle conditions and then lets the designer
choose the one best suited to his needs.

A relatively direct approach consists of rounding off of the
corners of buckets otherwise composed of straight segments.
Generally, this procedure results in a considerable complication
of the mathematical problem and requires suitable analytical
and physical simplifications. The existing methods may be
classified as follows. Rounding off of the corners a) by assuming
a constant pressure transition,!” b) by assigning a special
pressure distribution,'® ¢) by modifying the r-plane and the
corresponding terms in the Schwarz-Christoffel transformation'”
(a brief discussion of this method and the difficulties associated
with it are also described by Carrier et al.).2° and finally,
d) through the usc of spectal transformations such as Riemann-
Hilbert transformation,?'-2?  hodograph-plane transforma-
tions,?? etc. As noted previously, some of these methods require
the solution of complicated differential or integral-equation
problems and some consist in first solving the problem with
sharp corners and subsequently replacing the original boundary
with a modified one having rounded corners. Often the time
and effort required to round off the sharp corners may not be
commensurate with the need for a solution and it may be
desirable to adopt an indirect approach where the shape of the
curved boundary is not initially known but obtained as part of
the solution.

Levi-Civita's Method

Levi-Civita'*2* may be said to have solved the inverse
problem of describing the class of all two-dimensional jets
divided by curved barricrs. Although no specific solutions
have been presented, the problems of determining such flows
were reduced in special cases?*2® to the solution of nonlinear
integral equations with appropriate boundary conditions. The
method has not previously been applied to the solution of the
deflection of a two-dimensional jet from a finite two-dimensional
curved boundary. It consists of the definition of a complex
function w as

o = 0+iln(g/V; il

and the definition of the shapc or the curvature of the obstacle
in terms of the coeflicients of a polynomial representing .

For the problem under consideration, the physical z-plane
(see Fig. 1a) consists of a jet of width 2d and velocity ¥}
impinging upon a curved, symmetric, two-dimensional bucket
BAR'. The complex-potential function W is given. as usual, by
W= ¢+ip. A straightforward application of the Schwarz-
Christoffel transformation establishes a relation between the ¢-
and W-planes. Thus, one has

W= —(Vdn)[Ln(l =+ Ln(l1 + )] (2)

The parameter k in the 7-planc is uniquely related to the
deflection angle /3.
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Fig. 2 A typical representation of ((a).

The upper half of the r-plane is now transformed into the
mner region of a semicircle of unit radius (see Fig. 1d) through
the transformation given by Levi-Civita?* as

1= —hkC+o 2 3)
The circular arc in Fig. 1d represents the solid boundary
over which the direction of the velocty vector is assumed to
be prescribed and the line BCDC'B' represents the free steam-
lines where the magmitude of the velocity is known,

The functions W and «» may be written as

= (VMW /dz) = (¢/V)e 2 4)
and 1 dW
m = il.n( ‘ ) =0+iln(g'V) (5)
Vy d:
which. in terms of {, reduces to
S | L dW
= M d: 6
J v, '[( d: (6)

Defining | = rexp(io) and noting that over the bucket only
the argument and along the free streamlines only the modulus
varies, the combination of Egs. (2) and (6) yields,

2 1 |‘ oy 2K3 COS A SIN G o
d = 1-k3cos’a

and
. (20,2 m 2y
c = 1 |‘(,u-:(al A !r r ) )er r 8)
d n Kr+r )34 -1

where Eq. (7) gives the coordinates of the bucket and Eq. (8)
the coordinates of the free streamlines.

The function o is assumed, according to Levi-Civita, to be of
the form

ol = iln[(i—= DM+ D)+ ag+a +alt+ 9
where the logarithmic term can be identified as that correspond-
ing to a free jet impinging normally upon a flat plate.”® The
additional terms i, the polynomial whose coeflicients are to be
prescribed later modify the expression for » and give a suitable
camber to the rigid boundary.

Noting that a;, das. de. ... must be taken equal to zero because
of symmetry of the flow and that r = 1 over the solid boundary
and a =0 or a = n over the free streamlines, Eq. (9) may be
reduced over the bucket to

 Jcosa] n

wlo) =iln —— +
l+sina ™ 2
where plus sign is to be used for n > ¢ > n/2, and minus sign
for n/2 > o > 0. Over the free streamlines, Eq. (V) reduces to

+ay e+ ay N vagedn 4 L (10)

2r
o(r) = —tan ‘i 2 +arr+ayr +art+ ()

The coefficients «y, us. ... may now be chosen to obtain different
bucket shapes. In this study a Fourier-series representation was
used primarily because of the versatility afforded by it in
representing different bucket shapes. The evaluation of the
coeflicients requires a statement of the conditions at the tip and
the axis of the bucket. Let the jet departure angle at the tip of
the bucket be equal to +r, and the curvature at the stagnation
point be continuous. Then one has
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a4 )= —n, )= +r2-iw, wf-)=n w0 =0

The relationship between 0(a) and o may be chosen at will.
Let this relationship be represented by a simple, symmetric
variation as shown in Fig. 2. Equation (10) may now be
written as,

wla) = iln cos'a + ih(a)+ Na) 12
l+sing
where
h(a) = Y a,sinna, n=135.... (13)
and
Ma) = —(n/2)+ Y a,cosna (14)
The coeflicients «, are given by
an = [2/ta, — a;)n*)(cosn a, - cosn a;) {15)
in which a4, and o, represent the two parameters shown in
Fig. 2. For n = 0, a, = —n/2 as expected from the average value

of the function (o).
To complete the analysis one needs to evaluate the term
exp [im(m)] which appears in Egs. (7) and (8). Writing,
t,iu:(»vi =g [“ +sin ﬂ)/COS G)] ¢ -hm)(,mni (l())
and separating the real and imaginary parts, one has
¢ = (1 +sinapoos ae” M [cos Na)+isinia)]  (17)
Combining Egs. (7). (13), (15), and (17) one has
x 1 "" w 2K2(si0 @)(1 + sin )
@ :

sin No)da (18)

d nl.2 1-k*costa

and

) 2 cos? O(a)d 19
d nl., I—kiconig T F (o) da (19)

Equations (18) and (19) yicld the coordinates of the curved
boundary through the use of the appropriate values of a,
and a,. This in essence completes the application of the Levi-
Civita’s method 1o the analysis of the jet deflection from a
two-dimensional curved bucket similar to that shown in Fig. 1.

The deflection angle is evaluated by replacing in Eq. (11)
the corresponding value of r at the point C. i.c.,

r=[1-0-k%)" ]k (20

The foregoing equations have been numerically integrated for
a serics of representative values of ay and a,. The resulting
family of bucket shapes are shown in Fig. 3. A special case for
a; =031416 and 6, = 047124, and k = 0946, (ff = 68°), is
shown in Fig. 4.

Evidently, Levi-Civita's method. with the novelties introduced
into it in this study. is sufficient not only to generate a family
of suitable two-dimensional curved reversers but also to round
off the corners of buckets composed of straight segments. For
example, by letting (5, —a;) -0, onc finds that the bucket
shape generated by this method exactly approaches that
previously solved by Sarpkaya.® For slightly larger values of
(6, — ;). the coraer PQ (see Fig. 4) is rounded off. This enables
one, for example, 'o evaluate the sensitivity of the deflection
angle to the rounding off of the sharp corner on a U-shaped
bucket.

y o [" w2280 @)(1 + sin a)
_ 7 .

Y i
. L]
b 0 ‘
8 9y
a 40.8 1.288
L b N 0.974 i
[ 35.7 0.660
d 43.6 0.346

A A A

3 2 1 0
Fig. 3 Family of two-dimensional curved buckets for 5, = 0.31416.
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Fig. 4 A typical curved bucket for a; = 031416, g, = 047124, 4
0946, d = 305, b d = 1.07, and [f = 68",

The present work may be easily extended to the analysis of
the cases where the lip angle of the bucket is other than =
or the buchet has a cusp on its axis of symmetry or to the
cases where the impinging jet is not entirely free and emerges
from a prescribed noszle.

Analysis of Axisymmetric Curved Dellectors

As noted earlier, the three-dimensional counterpart of the
jet-deflection problem has not yet been solved in any generality.
The nnite-difference and refaxation techniques suffer in gencral
from convergence and accuracy problems and nearly all resort
to simple trial-and-error procedures to locate the free surfaces
and to satisfy the boundary condition that the free surfaces
be stream surfaces of constant velocity. In the following two
fairly new methods, namely Belotserkovsky's'* integral method
and the finite clement method are used to analyze representative
ANSYMMELTIC Cises.

Application of the Belotserkovsky's Method

Firstly, the coordinates s and n along and normal to the
unknown axisymmetric free surface are chosen and the flow
region is divided nto three sones as shown in Fig. 5. Zone |
represents the nozzle and the oncoming jet. Zone [ represents
the iet sheet formed over most of the bucket, and finally,
Zone M1 represents the deflected jet. Zones 1 and I, und 1l and
111 are separated by the stagnation normal and the tip normal
respectively.

Secondly. the functional forms of all the integrands appearing
in the equations of motion are assumed and the equations are
integrated to yield, through successive iterations, the relation-

U

Vi

OB =1

e 3, -
i

Fig. § A typical axisymmetric bucket and the definition of three
sones of How (SN : stagnation normal, MF : tip normal).
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Fig. 6 Coordinate axes and geometrical relations a) in Zone I,
b) in Zones Il and HI.

ships between the geometrical quantities describing the jet
boundary and the values of the flow variables on the boundaries.

Dividing all velocities by the freestream velocity V. all
pressures by 0.5p¥,2, and all lengths by the noszle radius r,, one
writes in s-n coordinates (sec Fig. 6a) with corresponding
velocity components « and ¢ the continuity and momentum
cqu;nim::' for a steady. incompressible. axisymmetric. inviscid
flow as,'”

. r( Yn—( idh+(vl+h‘) P =0 21
ds ruydn ru.dx R {re), = (20

]
.

and

h
X [ Y
bds‘ ) {ruv)dn—2(rur), % +

(Al + ;;)rilrzﬂr)k

Ty MO
‘ (2u® + p)dn+cos ‘. (l + - )pdn =0 (22)
Jo R e R
where index h means evaluation of the quantity within the
parentheses or brackets at n = h and R represents the radius
of curvature in the meridional plane of the free jet surface.
In the derivation of the above equations implicit is the condition
thatp=r=0atn=0.

A first approximation to the problem is usually obtaned
by assuming the velocities vary lincarly with 1, i.c..

=1l —u), v = (n/h, (23)

where w, and ¢, are the unknown values of v and ¢ along
the axis of symmetry in Zone I and along the rigid boundary
inZone 1l (sec Fig. 6b). Then Eq. (21) at the nos/le exit reduces to
= 3,-2 (24)
For noszles for which there is no back-pressuring effect due
to the bucket proximity: ic. for large values of s, (see Fig. 5).
onechas V, = 1, = I.
In Zone 1, Eq. (21) reduces to
ro2+w,) =3 (25)
and Eq. (22) takes the form

d " 1 (" o "
2‘“‘ ) (rurydn— R [ r(2u® + p)dn+cos U.l ( I+ R)pd” 2

- (26)
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which reduces through the use of the geometrical relationships
and Egs. 23 and (25) 10
do
A +B=0 (27)
ds
in which A and B are functions of &, w,. and 0 and were
previously given by Rybming '
In Zone 11, Eys. (21) and (22) reduce to

EQr,+r) 4 whtr,+2r) =3 (2%)
and
b
PS +0=0 (29)
ds

in which P and Q are functions of h. u,. ry. 6. and 0.**
In Zone 111, the equations derived for Zone I hold true
except that p = 0, everywhere, since 4, = 1 and

Uy = sin (00— d) (30
ty = cos {0 - 4)) n

Zones 1, 11, and I are related by the conditions pertaining
to the stagnation normal SN and the tip normal FM (see
Fig 5). Noting that at the stagnation point S, x =0, r, =0,
and 1, = 0, one has from Eq. (28), for the stagnation normal,
the condition

hecosh=15 (32)

Similarly, noting that for the case under consideration § = n/2,
(the tangent to the lip of the bucket is taken paralle]l to the
v-axis), one has, for the tip normal, the condition

W (2 cos - cos? ) — 3hrylcos -1 = 3 (33
Equation (32) defines a curve h = h(f)) on which the end points
of all possible stagnation normals have to lie, which pass through
the stagnation point S. Equation (33) defines a similar curve
on which all possible tip normals lie.

The foregoing equations were used to analyze the deflection
of axvisymmetric jets from buckets composed of a flat plate
and a quarter circle as shown in Fig. 5. The calculations were
performed as follows. First, a deflection angle /f and the noszle
velacity 1, were assumed. Then the thickness of the jet DE = d.
and the coordinates r, and ry were calculated from the equation
of continuity. Obviously, d. r,, and r, are subsequently
recalculated on the basis of the iterated value of . The point
E is connected to the point F (the lip of the bucket) by a
straightline as a first approximation to the upper free surface
and the line EF is temporarily regarded as a rigid boundary.

The governing equations were programmed according to a
standard Runge-Kutta sub-routine and then iterated as follows.
The calculations started at the tip of the noszle where 0 =0
and u, =31,-2 and proceeded along the free surface. The
coordinates of the free streamline, h, and 0 were calculated at
suitable intervals. Finally, a point was reached at which Eq.
(32). (the stagnation normal condition} was satisfied. Clearly, the
stagnation normal can intersect the x-axis at a point other than
v =0 and still satisfy Eq. (32). Thus, it was neccessary that
x =0atr, =0, ie., the stagnation point must be located on the
bucket. To this end. the velocity ¥, was iterated upon until
both conditions [Eq. (32) and v =0 at r, = 0] were satisfied.
Physically, this iteration corresponds to the first order calculation
of the back-pressuring effect of the bucket proximity on the
nozzle flow,

Integration of the Eq. (29) in Zone II begins at first with
the v, r, h 0. and R values calculated at the end of the
Zone 1. The [rec streamline calculated with these initial vatues
define a spline shift {see Fig. 7) due to the saddle-point character
of the equations at the singular point. Consequently, a sequence
of points along the initial curve defined by Eq. (32) arc chosen.
and the corresponding integral curves are calculated. Thesc,
in turn, determine an upper and a lower bound for the proper
location of the desired solution. The process is then repeated
until a sufliciently accurate bound is determined. The above
procedure requires about ten iterations. The consequence of the
saddle-point character of the equations in the vicinity of the
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stagnation normal is that there is a sector of overlap in the
Jet, going upstream and downstream from the stagnation normal.
A similar behavior has been found previously with the
Belotserhovsky method in similar situations using a first-order
scheme.'*?7 Integration in Zone I 1 terminated at the tip
normal at which Eq. (33) is satisfied.

The determination of the shape and position of the deflected
jet in Zone NI requires three kinds of successive iterations.
The first is the determination of the appropriate values of h and 0
at the tip normal which satisfy Eq. (33) and yield a sufliciently
long portion of the integral curve between the upper and lower
bounds. This iteration yields a lower free surface with sero
pressure and unit freestream velocity but the freestream condi-
tions {u, = 1,p = 0) at the upper surface are not yet satisfied
since the upper surface was initially assumed to be a solid
boundary. Furthermore, the calculated stream surface does not
necessarily coincide with the assumed lower free surface because
the assumed jet-deflection angle is either larger or smaller than
the actual deflection angle. This, in turn, requires an iteration
on fi. For this purpose, the point D is located on the calculated
lower free surface and the new valuesof vy . ry. and d are calculated
from the equation of continuity. The rotation of the upper free
surface constitutes a first-order correction to the deflection
angle fi. Then the calculations noted above were repeated until
the deflection angle did not change more than 2°. This required
from five to ten iterations depending on the initially assumed
value of the jet-deflection angle.

The third kind of iteration was made to determine the
position and curvature of the upper free surface. As noted carlier
FE was initially assumed to be a straight rigid boundary and
thus the calculated tangential velocitics along it were not every-
where equal to unity, particularly in the vicinity of the lip of
the bucket. Then the points on the upper boundary were moved
inward, along the n-axis if u, > 1 and vice verse by an amount

An =il -1) (34)
in which /4 is an assigned multiplier and «, is the previously
calculated tangential velocity. Experience has shown that the
iteration will converge even for a very crudely assumed boundary
for a value of 2 = 0.10. As to the reason for using (u,> - 1), it
was simply for the purpose of accentuating the error and
accelerating the correction of the boundary points at which the
velocities most differ from unity. At the end of each iteration,
the corrected boundary was smoothened through the use of a
generally available CURVEFIT subroutine by passing a smooth
curve through the calculated points and recalculating the inter-
mediate points. Then all three types of iterations on the lower
and upper boundary were repeated until the velocities everywhere
were within 14+ 0.05. The results of a typical case calculated in
the manner described above is shown in Fig. 5 in which ff =
M5,

Fig. 7 Spline shift in Zones 11 and §11.
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Fig. 8 Finite clement representation of jet deflection from a hemi-
spherical reverser.

It is evident from the foregoing that the Belotserkovshy's
integral method has certain limitations. Firstly, the assumption
of a linear velocity along s and n coordinates cannot be vahid
for all bucket shapes and relative jet radii. The variation of u
near the free surface is rather large particularly for very deep
buchets. In such cases Belotserkovsky's method may produce
rather complex and physically unacceptable flow situations in
the vicinity of the stagnation point. Although no specific criteria
can be developed for the bucket shapes to which the
Belotserkovsky's method can be successfully applied, it may be
recommended on the basis of the present study that the bucket
radius be larger than 1.5r, and the bucket depth be smaller
than 2r,. Clearly. the specification of the radius of curvature
alone at the stagnation point in terms of the jet radius is
not suflicient. As to the merits of the method. it is rather
straightforward and yields, within the ranges of the parameters
recommended, results which are sufficiently accurate for the
calculation of the pressure distribution on the bucket and the
reverser thrust.

Application of the Finite Element Method

Zienkiewicz and Cheung?® proposed in 1965 the application
of the finite element method to the solution of field problems
involving the equations of Laplace and Poisson. Since then a
significant number of applications of the finite clement method
to fluid dynamics has appeared in the literature.?® The method
has recently been applied to several jet-efflux problems involving
only one freestream surface and relatively small jet contraction
by Chan*® and Chan and Larock.®!

The present analysis is devoted to a determination of the
angle of deflection, the location of the freestream surfaces, and
the velocity and pressure distributions caused by a finite curved
bucket placed symmetrically with respect to the axis of an
axisymmetric, inviscid jet issaing from a uniform nozzle.

The governing equation is then given by

bt /r+d,, =0 (35)
For an axisymmetric flow, the solution to the Laplace-field
equation satisfying the specified normal-velocity conditions (¢ ,)°
ts given by that admissible function ¢ which minimizes the
functional®?

H$) = np ” {62+ () ]rdrdx—2mp ( Pl )°rds
o oml JC

(36)

in which A4 is the half of a meridional section of the flow
and C is a portion of the curve bounding this arca where the
normal derivative is prescribed. The first integral in Eq. (36)
represents the kinetic energy of the fluid within the entire
control volume and the second integral represents twice the
work done by the impulsive pressure p¢ on the boundaries in
starting the motion from rest.

The approximate minimization of the functional I(¢) is
accomplished by dividing the ficld of interest into N triangular
elements, with corner and midpoint nodes, and writing

N
1(¢) =Y I(¢) 37
1
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The variation of ¢ within each element is represented by a
second-order polynomial. The use of higher order polynomials
leads to extremely tedious arithmetical manipulations. In terms
of the area coordinates {; = A,/A" (see Fig. 8); this leads to
D" = Ci(20 = Dby + (220 — Do+ (320~ Dby +
4010208 +40:0 35 +471 (st (38)
The velocity components are given by
" = ¢ " and v =¢," (39)
The substitution of Egs. (38) and (39) in Eq. (36) and the use
of the Rits icchnique yield,
A™MP) i = SA, - SLAT =0 (40)

in which 54,7 and SLA,” represent respectively the element-
stiffness matrix and the corresponding load matrix for a tri-
angular element. Chan and Larock®! who tabulated SA;™ and
SLA™ assumed, in the derivation of the matrix SLA™ a
constant normal velocity on a boundary side of an element.
This condition which conflicts with the linear interpolation of
the velocity field has been relaxed along the lines recommended
by Kotchergenko and Amorim®® and the coeflicients SLA™
have been corrected accordingly.

Iteration Scheme

As cited carlier, the dJeflected jet is characterized by two
initially unknow n axisymmetric freestream surfaces. Thus special
attention must be focused on finding a suitable iterative
procedure for systematically approaching the final positions
ofthe boundaries. The iteration is terminated when the boundary
conditions are satisfied within a prescribed absolute maximum
crror. The boundary condition to be satisfied is that the free
surfaces be streamlines of constant velocity.

The grid is divided into two major regions. The first region
consists of elements whose coordinates are fixed once for all
(see Figs. 8 and 9). This region is well within the interior of the
flow and is not expected to be intersected by the freestream
surfaces. The second region, i.c. the moving grid. consists of
elements whose coordinates are recalculated each time the free
surface is moved. The movement of the grid is made in such a
manner that each element maintains a shape more or less
compatible to its original shape. The grid inside the exiting
Jjet (along FE in Fig. 9) is relocated by moving cach middle
node to its correct position between two opposite nodes on
each side of the jet, (sce Fig. 8). In regions of high velocity.,
relatively small triangles and in regions of rather low velocity,
larger triangles are used. The examp’c shown in Fig. 8 contains
288 elements and 683 nodal points. The bandwidth was 60.

Iteration of the free surfaces began with the assumption of a
deflection angle f§ and the sketching of the two free surfaces
as carefully as possible on the basis of past experience. Then
the assumed boundaries were regarded as rigid boundaries. The
nozzle length was varied from 2r, to 6r, and the jet length FE
from 0.6r, to r, in various programs with no noticeable difference
in the results. The thickness of the jet DE = d, and the radial
coordinates r, and r, (see Fig. 9) were calculated from the
equation of continuity by assuming V, = 1. Obviously, d, r;,
and rp are subsequently recalculated on the basis of the iterated
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Fig. 9 Half meridian plane of et flow and the two grid system.
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Table 1 The comparison of sumerical and experimental results for axisymmetric thrust reversers

Reverser f(dep)  filexper) & nalexper)®  nelexperf  Noszle pressure
1y R.r, S, (theory) (present) (theory)  (Ref. 34) {present) ratio

Fig v 190 010 185 10 0.76 08t 0.7% 2

big 9 1 80 040 2013 i3 077 082 0.80 2

Fig v 1.70 00 468 9 065 O.X1 0.74 2

Fig. v 60 0.80 50.5 47 .52 0.74 060 2

Fig Y 1.50 0% 611 57 0w 06l 044 1%

Fig 9 1.80 0 80 352 R} 073 075 18

Fig § 1%0 Q80 445 40 069 073 2

Fig 5¢ 1.80 0 %0 432 40 07 0.73 2

With a boattail

With 4 sharp-edied straight noszie

Through the use of Belotserhovshy's method
¢ Through the use ol the hinite clement method

vilues of ¥, The point E is connected to the point F by a
straight line as a first approximation to the upper free surface.
The first run through the computer calculates the velocity at C
(sce Fig. 9% 1e. at the lip of the noszle. It tums out to be
larger than unity (the correct value is Ve = 1), since V, is assumed
to be equal to unity. ¥, is immediately corrected, to a first-order
of approximation, by writing
PA = "u li__(”jl y__ ”V.u n 41

which is used in all subsequent iterations. Then ry, ry, and d
are recalculated as in the case of the application of the
Belotserkovsky's method.

The procedure which has enabled the assumed boundaries to
converge in a systematic manner to their final positions may
be described as follows. Let the velocity at an arbitrary point
along the assumed boundary be V. Then the boundary is
moved inward. along a line normal or nearly normal to the
boundary, if ¥, > 1 and vice versa by an amount

An =iV -1 (42)

In these calculations, the multiplier 2 was taken equal to 0.015.
At the end of a given number of iterations, the velocities
along one or both boundaries may approach values other than
unity because the assumed deflection angle is not necessarily the
correct one. Clearly, the deflection angle adjusts itself at the
end of cach iteration but this adjustment is rather small (about
0.2°). "Thus, for a large correction in f, say 20°, about 100
iterations are nceded. Instead. five iterations were carried out
for the assumed deflection angle and then f# was incremented
by 2°, clockwise or counter-clockwise dependi:g on whether
the velocities in the upper free surface was smaller or larger
than unity. When the velocities everywhere were within 1 £0.05,
{t was no longer incremented by 2° and the number of iterations
was increased to 25. The caleulations were terminated when the
velocities everywhere were within 1+0.015. The entire iteration
for a given noszle-reverser geometry required approximately
30 mins on an 1BM-360 67 computer. The program was written
in FORTRAN and double-precision arithmetic was used.

Examples and Results

The method and the procedures described above have been
used to analyze the characteristics of axisymmetric-jet deflection
from hemispherical (see Fig. 8 as well as fairly shallow (sec
Fig. $) target-type thrust reversers. This type of reversers give
the desired amount of reverse thru t without affecting the engine
operation and lend themselves stowage with a minimum
amount of boattail or base drag.

The geometry of the nozzle-reverser combination is uniquely
defined by the ratios R,/r, and s,/r, (see Figs. 5 and 9) once
the bucket and nozzle shape are decided upon. It is clear, at
least from the experiments®* that there is a unique combination
of Ryr, and s,/r, for which the reverse thrust is maximum,
The determination of this combination and the calculatien of the
resulting thrust constitute the essence of the practical problen.

In the aircraft industry, the efliciency of a thrust reverser 1s
expressed in terms of a “reversc-thrust ratio” ng defined by the
ratio of the actual reversedjet thrust to the forward jet thrust
of the nozsle alone. In other words, g is given by

ne = (npr.2V, Vicos f/(npr V) = (V/Vj)cos § - (43)
Evidently, nx = yg(R./r,.s,/r,) since both V, and fi depend on
R,/r, and s,/r, for a family of geometrically similar reversers.
In passing it should be noted that the error made in the
calculation of 74 by assuming the jet leave the deflector exactl
parallel to the tangent at the lip of the deflector, ie. oy
writing ff =0, as was done by Schnurr et al, wouid be
(assuming V, remzins relatively unaffected) nearly proportional
1o (1 -cos fi). This error could be rather large particularly for
large angles of deflection and its correction through the use of
another arbitrary parameter such as the “spillage coeflicient”
introduced by Schnurr et al.'? is not justified. Evidently, the
correct calculation of thrust requires the determination of the
deflection angle.

The results of the finite element analysis and their comparison
with those obtained experimentally are presented in Table |
togcther with thosc obtained through the usc of the
Belotserkovsky's method. The experimens! values of ng are
somewhat larger than those obtained numerically. There are
several reasons for this difference; the two most important
ones being the Coanda effect (see, ¢.g.. Ref. 35) and the nossle
pressure ratio. The Coanda effect, ic.. the tendency of a jet to
attach to adjacent surfaces (in this case to the outer surface
of the nozzle) because of the entrainment deprivation, decreases
the deflection anglc and thereby increases the reversed thrust.
In the experiments conducted by Steffen et al.** the outer
surface of the nozzle v-as streamlined in the form of a boattail
to decrease entrainmeat and thus to increase nyg. In fact, as
noted by Stefien et al., “the pressure reductions on the boattail
were large enough to account for as much as 2079, of the
.everse-thrust ratio.” Thus the relatively large differences between
the ng values experimentally obtained by Steffen et al. and
those predicted numerically are primarily attributable to the
Coanda effect.

The present experiments werc conducted with a straight,
sharp-edged nozzie (r, = 1.32 to 1.57 in, R, = 2.5 in.) and the
effect of the jet attachment has been minimized. This has
resulted in a closer agreement between the computed and
experimental values of yg. In passing it should be noted that
the Coanda effect is not necessarily desirable, in spite of its
contribution to the reverse thrust, for it may causc an unstable
flowfield and destructive vibrations.

The noszle-pressure ratio or the actual velocity in the noszle
causes variations in i, primarily because the entrainment reeds
of the deflected jet and hence the Coanda effect increase with
increasing jet velocity. Consequently, ng increases (about 10
percentage points) over a range of nozzle-pressure ratios from
17103

Table 1 shows that the relative spacing of the nozzle and the
reverser size significantly affect the flow reversal. Evidently, i
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mercases with an increase in hemisphere diameter and reaches
a manimuny of about 8O, for R, r, =18 and s,/r, =040
This nearly corresponds to an optimum nozzle-reverser spacing.
Extensive experimental data obtuned by Steffen et ab$*3°
with various types of reversers clearly show that at spacings
greater than that required for optimum performance, 5, may
drop as much as 2P, Closer spacings do not noticeably
affect the reverser performance but result in decreased flow
rate for a given total noszle pressure or i increased pressure
for a given flow rate because of the increased blochage or
back-pressuring effect of the reverser

Conclusions

Though the equations for jets impinging on curved surfiaces
are not tegrable i a closed form, the behavior of their
solutions 1s predictable threugh the use of numerical methods.
For two-dimensional cases, the Levi-Civita method provides a
variety of bucket shapes and enables one to round off the
sharp corners of buckets otherwise composed of straight
sepments. For these cases. the finite element method could also
provide direct solutions for prescribed boundary shapes.

The Belotserkovshy and finite element methods may be used
with confidence for the analysis of an anikymmetric Laplace
field where one or more parts of the boundary arc to be
determined as part of the solution. In particular, these methods
are capable of predicting the dealized-performance charac-
teristies of axisymmetric thrust reversers Evidently, some of the
practical problems associated with thrust reversal, such as the
reattachment of the jet to the nacelle of the engine. hot-gas
reingestion. interaction of the deflected jet with the ambient
stream, noise intensification, ete., require additional analytical
and experimental investigation.
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