
.., ., .,......._., ,,.,T_^^. ..-_-.-., -L--;r   ---:■---, 

ivxmein»« immm 

STABILITY AND CONTROL.  VOLUME II. 
CONTROL FLIGHT TEST THEORY 

Air Force Flight Test Center 
Edwards Air Force Base, California 

July 1974 

AD-A011 562 

STABILITY AND 

DISTRIBUTED BY: 

KJLTi 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 

tm^mmmttmmmmm^^^^- i.a-rna.-iiirtWi-i.ir I -  ■ 



,,. 

THIS DOCUMENT IS BEST 
QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLY, 



Uiili 

AFFTC-TIH-74-2 

to 
iß 

t 
r. 

o 
STABILITY AND CONTROL 

Volume LTof II 

Stability and Control Flight Test Theory 

• 

July 1974 

Final Report 

1 

This document has been approved for public 
release and resale; its distribution is un- 
limited . 

^•mrairnou si fÜENT A 

Approved tor public r«l«oa«i 
Distribution Unlimited 

\ 

USAF TEST PILOT SCHOOL 
AIR FORCE FLIGHT TEST CENTER 

EDWARDS AFB, CALIFORNIA 

(TV 
D D O 

'"• n!?JR\ 
siUL   3 1975 

UiilbLi/ i. —i L  i j »-.a»1 

B 

IIMII—IIIMIII llll A; -jjf.iitijsJi- ?—* 5-&3 



This handbook was submitted by the USAF Test Pilot School of the 
Air Force Flight Test Center under Job Order Number SC4000. 

This report has been reviewed and cleared for open publication 
and/or public release by the AFFTC Office of Information in accordance 
with AFR 190-17 and DODD 5230.9. There is no objection to unlimited 
distribution of this report to the public at large, or by DDC to the 
National Technical Information Service. 

This handbook has been reviewed 
and is approved for publication: 

c 

I 

WJU 
JOSEPH A.   GUTHRIE,   JR.' 

'Col<$/el,   USAF 
Commandant,  USAF Test Pilot School 

ft 

When U.S. Government"drawings, specifications, or 
other data are used for any purpose than a defi- 
nitely related government procurement operation, 
the government thereby incurs no responsibility 
nor any obligation whatsoever; and the fact that 
the government may have formulated, furnished, 
or in any way supplied the said drawings, speci- 
fications, or any other data is not to be regarded 
by implication or otherwise, as in any manner li- 
censing the holdej. or any other person or corpora- 
tion to conveying any rights or permission to 
manufacture, use or sell any patented invention 
that may in any way be related thereto. 

* 

Do not return this copy;   retain or destroy. 

mmmm sssm . — ■jjii MM!»« 



F"fT;'l"" :'M 

UNCLASfiTFTEn 

o 

SECURITY CLASSIFICATION OF TH,$ PAGE f»W»»o Data J tntered) 

REPORT ÜJCUMEMTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1.   REPORT NUMBER 

AFFTC-TIH-74-2 
2. GOVT ACCESSION NO. 1.   RECIPIENT'S CATALOG NUMBER 

4.   TITLE (•«nd Sut>tftieJ 

STABILITY AND CONTRCij 
Volume IIof II - Stability and Control 
Flight Test Theory 

S.   TYPE OF REPORT ft PERIOD COVERED 

Final 

6.   PERFORMING ORG. REPORT NUMBER 

7.   AUTHORS 8.   CONTRACT OR GRANT NUMBER'e) 

».   PERFORMING ORGANIZATION NAME AND ADDRESS 

USAF Test Pilot School 
Air Force Flight Test Center 
Edwards AFB,  California 93523 

10.   PROGRAM ELEMENT, PROJECT, TASK 
AREA ft WORK UNIT NUMBERS 

PEC 65805F 
JON  SC4000 

II.   CONTROLLING OFFICE NAME AND ADDRESS 12.   REPORT OATE 

July 74 
13.   NUMBER OF PAGES 

389 
1*.   MONITORING AGENCY NAME * ADDRESSflf different from Confrollin« Office; 1S.   SECURITY CLASS, fof 'hie report) 

I5e.   DECLASSIFICATION/OOWNGRADING 
SCHEDULE 

16.   DISTRIBUTION STATEMENT (ol thla Report) 

This document has been approved for public release and resale; 
its distribution is unlimited. 

17.   DISTRIBUTION STATEMENT (of (he «ostrect entered In Black 30, II different from Report; 

1*.   SUPPLEMENTARY NOTES 

19.   KEY WORDS (Continue on revert* elde It neceaaery and Identity by block number) 

aircraft        stall                          control systems 
flight test spins                          lateral-directional static  stability 
stability      dynamics                   differential equations 
control          maneuverability    equations of motion 
gyrations      roll coupling         lonqitudinal static stability 
20.    ABSTRACT (Continue on reveree elde It neceaaery end Identity by block number) 

This handbook has been compiled by the instructors of the 
USAF Test Pilot School for use in  ehe Stability and Control portion 
of the School's course.    Most of the material in Volume I of this 
handbook has been extracted from several reference books and is 
oriented towards  the test pilot.    The flight test techniques and 
data reduction methods in Volume II have been developed at the Air 
Force Flight Test Center,  Edwards Air Force Base, California. 

DO,: 
FORM 

AN 73 1473 EDITION OF  1 NOV 65 IS OBSOLETE UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 

'qkjÜÄJ^*****' ' 

mjjmmmm 
jMaOifl'll'. ,,**,:,<,r.;™r.^*K..:;.,ZJ!llfrlf.uri 



PREFACE 
Stability and Control is that branch of the aeronautical sciences 

that is concerned with giving the pilot an aircraft with good handling 
qualities.  As aircraft have been designed to meet greater performance 
specifications, new problems in Stability and Control have been en- 
countered. The solving of these problems has advanced the science of 
Stability and Control to the point it is today. 

This handbook has been compiled by the instructors of the USAF Test 
Pilot School for use in the Stability and Control portion of the School 's 
course. Most of the material in Volume I of this handbook has been ex- 
tracted from several reference books and is oriented towards the test 
pilot.  The flight test techniques and data reduction methods in Volume 
II have been developed at the Air Force Flight Test Center, Edwards Air 
Force Base, California. This handbook is primarily intended to be used 
as an academic text in our School,, but if it can be helpful to anyone in 
the conduct of Stability and Control testing, be our guest. 

t 
JOSEPH A.   GUTHRIE,   JR. 

'Colcfc/el,   USAF 
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CHAPTER 

DIFFERENTIAL EQUATIONS 

v» 

(REVISED MAY 1975) 

list off abbreviations and symbols 
Item 

x,y,z 

t 

P 

j 

Vyt'zt 
x  ,y  ,z 

P-   P    P 

n 

ud 

s 

L 

L-1 

X(s) ,Y(s) ,Z(s) 

A 

Definition 

variables 

time in seconds 

differential operator with dimensions of (seconds) 

constant equal to /^T 

angular constant in radians 

constant equal to lim (1 + x) -  2.71828. 
x ■+■ 0 

transient solution to differential equation 

particular (steady state) solution to differential 
equation 

the dot notation indicates differentiation with 

•  dx respect to time, as in x = 3^ 

time constant in seconds 

time to half amplitude in seconds 

damping ratio 

undamped natural frequency in radians per second 

damped frequency in radians per second 

Laplace variable with dimensions of (seconds) 

Laplace transform 

inverse Laplace transform 

Laplace transform of x(t), y(t), z(t) 

-1 

symbol used for definitions,  such as x = 5äf means x 

is defined as dx 
dT 

•   & dx 
at 

1.1 

1 
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1.1   INTRODUCTION 

The theory of differential equations is a subject of considerable 
scope, ranging from the rather simple and obvious through the abstract 
and not so obvious. One can spend a lifeime studying the subject, and 
a few people have. We have neither the time, nor perhaps the inclina- 
tion for such devotions. Our purpose is to cover those aspects of the 
theory of differential equations which are of direct application to 
work at  the  school. 

These  notes deal with  the  tools  and techniques  required  to analyze 
differential equations.     Such  techniques  are easily extended  for use  in 
the  study of aircraft dynamics.     An  aircraft  in   flight displays  motions 
similar  to a mass-spring-damper system  (figure   1.1).     The  static  stability 
of  the  airplane  is  similar to  the  spring,   the  moments  of  inertia  similar 
to the  mass,   and the  airflow serves  to damp the  aircraft motion. 

Figure 1.1 

This first section provides a review of basic differential equation 
theory.  Succseding sections deal with operator techniques, analysis of 
first and second order systems, use of Laplace transforms, and solution 
of simultaneous equations. 

3efore proceeding with our study, we shall define several terms 
which will be used in these notes. 

Differential Equation - An equation which involves a dependent variable 
(or variables) together with one or more of its derivatives with respect 
to an independent variable (or variables). 

1.2 
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Solution  - Any  function,   free of derivatives,  which satisfies  a differen- 
tial equation  is  said to be  a  solution  of  the  differential equation. 

Ordinary Differential Equation   - A differential equation which involves 
derivatives with respect to a single independent variable is called an 
ordinary differential equation. 

Order - The ntn derivative of a dependent variable is called a derivative 
of order n,  or an ntn order derivative.    The order of a differential equa- 
tion  is  the  order of the highest order derivative  present. 

Degree  - The exponent of the highest order derivative  is  called the de- 
gree of the  differential equation. 

Linear Differential Equation   (ordinary,   single dependent variable)   - A 
differential equation in which  the dependent variable  and its  derivatives 
appear  in no higher  than  the   1st degree,   and the   coefficients  are either 
constants or  functions of the  independent variable,   is  called a  linear 
differential equation. 

Linear System - Any physical  system that can be  described by  a  linear 
differential equation  is  called a  linear  system. 

General  Solution  - A solution  of a differential equation  of order n 
which contains  n  arbitrary  constants will be  called  a general  solution 
of the differential equation. 

1.2   REVIEW OF BASIC PRINCIPLES 

Before  investigating operator notation  and Laplace  transforms,   let's 
review the  more basic methods  of  solving differential equations. 

il2.1    DIRECT INTEGRATION 

To  solve  a differential equation we  seek  a mathematical expression, 
relating the   variables  appearing  in  the  differential equation,  which 
qualifies  as  a  solution under  the  definitions  given  above.     A  first 
thought or  inspiration may be:     since we   are  presented with an equation 
containing derivatives,  a  solution may be  obtained by antidifferentiating 
or integration.     This  process  removes derivatives  and provides  arbitrary 
constants. 

EXAMPLE 

Given 

£ - * ♦ « 

rewriting 

dy  =   (x +   4)dx 

1.3 
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integrating 

dy =       (x + 4)dx + C 

gives  us 

2 
y = *— + 4x + C Z~ 

EXAMPLE 

Given 

(1.1) 

W 

d y =-4- = x + 4 
dx^ 

Assume 

2 * d y _  dy 

d7      3x~ 

where 

ax 

then 

d(y') 
-air1* * + 4 

or      d(y')   =       (x +  4)dx +  c 

then 

.i   = dy „  x' 
cfx      T~ +  4x  +  C, 

integrating again 

2 
j~ T   4x  1-  u1;   dx +  C_ dy =       (y- +  4x + CJ   dx + 

giving 

1.4 

x 2 
y - g— + 2x    + cxx + c2 (1.2) 
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Jfc 
Equations 1.1 and 1.2 qualify as general solutions under the defi- 

nition stated earlier. 

Life is full of disappointments and we would soon learn that this 
direct application of the integration process would fail to work in many 
cases. 

EXAMPLE 

2xy + (x2 + cos y) g£ = 0 (1.3) 

: 
or 

;■ 

ay = 

dy = 

-2xy 

x + cos y 

-2xy dx + C 
x + cos y 

(1.4) 

o 
We cannot perform the integration of the term to the right of the 

equal sign in equation 1.4.  Equation 1.3 can be solved, however, using 
straightforward techniques.  (x^ + sin y = c is a general solution.)  We 
emphasize the word "technique" since the solution may rely upon novel 
approaches, special groupings, or "judicious arrangements" and, perhaps, 
witchcraft or conjuring.  The former require extensive experience arid 
maturity within the discipline, and the latter talents are rarely endowed 
by nature.  We shall study a few special differential equations which are 
easy to solve and have wide application in the analysis of physical prob- 
lems. 

»1.2.2 FIRST ORDER EQUATIONS 

We shall consider briefly the first order ordinary differential 
equation.  Suppose we represent such an equation by 

F(y\ y, x) = 0 

where 

y   dx 

This  is  concise notation  used by mathematicians  to denote  a differential 
equation  containing an  independent variable  x,   a dependent  variable y, 
and the  derivative  of y witn  respect  to x.     The  equation  may  contain the 
derivative  in differential   form. 

EXAMPLES 

dy _ 
cE 

=   x  +   y 

1.5 
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3x dx + 4y dy = 0 

y.    = 
x + y 

dy _ x - y cos x 
dx        sin x + y 

r 
First order differential equations may be solved by 

1. Separating variables  and integrating directly. 

2. Recognizing exact  forms  and integrating directly. 4 

3. Finding  an  integrating  factor   (fudge  factor)   which will make  the 
equation exact. 

4. Inspection,   rearrangement  of terms,   etc.,   to  use  method  1  or 2,  or 
a combination of  the  two. 

These methods  are   thoroughly  treated in  all elementary differential 
equations  texts.     A brief  review of methods  1  and 2   is  given below. 

• 1.2.2.1   SEPARATION OF VARIBLES 

When  a differential equation  can be  put in  the   form |   » 

f1(x)dx +  f2(y)dy = 0 (1.5) 

where one term contains functions of x and dx only, and the other func- 
tions of y and dy only, the variables are said to be separated.  A solu- 
tion of equation 1.5 can then be obtained by direct integration 

f1(x)dx +  f2(y)dy = C (1.6) 

where  C  is  an  arbitrary constant.     Note,   that   for  a differential equation 4 
of the  first order  there  is  one  arbitrary constant. In  general,   the  num- 
ber of arbitrary constants  is equal to  the  order of the  differential  equa- 
tion. 

EXAMPLE , 

2 
cty  =   x     +   3x  +   4 
3x y  + 6 

(y +6)   dy =   (x2  +  3x +  4)   dx 

(y + 6)dy  =        (x2  +   3x  +   4)dx + C 

2 3,2 
Y       ,    r x       .     3x 

1.6 
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•1.2.2.2   EXACT DIFFERENTIAL EQUATION 

Associated with each suitably differentiable   function of two vari- 
ables   f(x,y)   there  is an expression called its tot^l differential, 
namely, 

df - Üdx + If <* 
Conversely, if the differential equation 

M(x,y)dx + N(x,y)dy = 0 

has the property that 

(1.7) 

(1.8) 

M(x,y) = || and N(x,y) = |i 

then it can be rewritten in the form 

Ji dx + |i dy = df = 0 3x     3y J 

from which it follows that 

f(x,y) = C 

is a solution.  Equations of this sort are said to be exact, since, as 
they stand, their left members are exact differentials. 

A differential equation 

M(x,y) dx + N(x,y) dy = 0 

is exact if and only if 

3M =   3N 
3y        8x 

(1.9) 

If the differential equation 

M(x,y) dx + N(x,y) dy = 0 

is exact, then for all values of k, 

f x f y 
Ja  M(x,y) dx +Jb  N(a,y) dy = k 

is a solution of the equation. 

(1.10) 

1.7 
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Ü 
EXAMPLE 

Show that the equation 

(2x + 3y - 2)dx + (3x - 4y + l)dy - 0 

is exact and find a general solution. 

Applying the test, we find 

M  _ 3(2x + 3y - 2) _ - 
3y        3y 

W  = a(3x - 4y + 1) = ., 
9x        3x 

Since the two partial derivatives are equal,  the equation is exact. 
Its solution can be  found by means of equation 1.10. 

r x ry 
Ja (2x + 3y  - 2)dx +Jh       (3a - 4y +  l)dy = k 

(x"  +   3xy  - 2x) +   (3ay  -2y    + y) = k 

(x2 + 3xy - 2x) - (a2 + 3ay - 2a) + (3ay - 2y2 + y) - (3c*b - 2b2 + b) = k 

x2 + 3xy - 2x - 2y2 + y = k + a2 - 2a + 3ab - 2b2 + b = K 

•1.2.2.3   FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS 

We conclude the discussion of first order equations by considering 
the followino form 

% +  R(x) y - 0 3x" (1.11) 

where R(x) may be a constant. To solve, merely separate variables. 

& + R(x) dx ■ 0 
y 

integrating 

1.8 

f & s -  |R(X)   dx + C 

where 

C'   = In C 

- -   - ■■- —-—*-*—»- 
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Thus 

In y = -   'R(x)   dx + In C 

or 

y = Ce -    R(x)   dx 

If R is a constant,  then 

y = Ce'Rx 
(1.12) 

We might conclude from this result that a first order differential 
equation of form 1.11 with constant coefficients may be solved quite 
simply. This is true and the solution will always have the form of 
equation 1.12. 

EXAMPLE 

g+2y-o (1.13) 

then we have directly 

o y = Ce l~2< x 
(1.14) 

which is the  general solution.     It is quickly recognized t.iat the solu- 
tion is easily obtained by plugging the negative  of the coefficient of 
y into the position indicated by the small square. 

PROBLEMS: Set  I,  Nos.   1  and 2,  page  1.76. 

11.3   LINEAR DIFFERENTIAL EQUATIONS AND OPERATOR TECHNIQUES 

is 
A form of the  differential equation that is of particular interest 

n-1 Ady.A,a       y, ,   A_   dy   ,   . £/% (1.15) 

.   ,  A0 are all functions of If the  coefficient expressions An,  An_i,   . 
x only,   then equation  1.15  is called a linear differential equation.     If 
the coefficient expressions An,   .   .   .   , A0 cire  all constants,   then 1.15 
is called a linear differential equation with constant coefficients. 

1.9 
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EXAMPLE 
U 

dx 
xy = sin x 

is a linear differential equation. 

EXAMPLE 

<=[-y + 6  Ä +  9y - e* 
dx* 37 

is a linear differential equation with constant coefficients.     Linear 
differential equations with constant coefficients occur frequently in 
the  analysis of physical systems.     Mathematicians and engineers have 
developed simple  and effective  techniques  to solve  this type of equation 
by using either "classical"  or operational methods.    When attempting to 
solve  a linear differential equation of the  form 

Ady.A     .d       y   , n—£- +    n-1  ——4- + , n , n-1 dx dx 
+ A, i + V - f (x) (1.16) 

it is helpful  to examine  the equation 

A dny 

dx 
+  A 

an-l 

n-1 dx rwT 
+AlI+ V =  0 (1.17) 

u 

1.17  is  the  same  as  1.16  with  the  riqht hand  side  zero.     We  shall  refer 
to 1.16   as  the  general equation and equation 1.17 as the  complementary 
or homogeneous equation.     Solutions  of equation  1.17  possess  a useful 
property known  as  superposition,  which may be briefly stated as  follows: 
Suppose yi(x)   and y2(x)   are distinct so]utions of 1.17.     Then any  linear 
combination  of y^(x)   and Y2(x)   1S also  a solution  of  1.17.     A  linear 

combination would be  C^y^(x)   +  C2y2(x)« 

EXAMPLE 

ü - 5 *y + 
o7      a* 

6y = 0 

e x is a solution, and that y2<x) = e x It can be verified that y^(x) 
is another solution which is distinct from y^(x). Using superposition, 

3x 2x then,  y(x)   = c.e       + c0e       is  also a solution. 

1.10 
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o 
Equation 1.16 may be interpreted as representing a physical system 

where the left side of the equation describes the natural or designed 
state of the system, and where the right side of the equation represents 
the input or forcing function. 

One might logically pursue the following line of reasoning in 
attempting to find a solution to the problem described by equation 1.16. 

A general solution of 1.16 must contain n 
must satisfy the equation. 

arbitrary constants and 

2. The following statements are justified by experience: 

a. It is reasonably straightforward to find a solution to the com- 
plementary equation 1.17, containing n arbitrary constants. Such a 
solution will be called the transient solution. Physically, it 
represents the response present in the system regardless of input. 

b. There are varied techniques for finding a solution of the dif- 
ferential equations due to this forcing function.  Such solutions 
do not, in general, contain arbitrary constants. This solution 
will be called the particular or steady state solution. 

3. If we take the transient solution which describes the response 
already existing in the system, and then add on the response due 
to the forcing function, it would appear that a solution so written 
would blend the two responses and describe the total response of 
the system represented by 1.16.  In fact, the definition of a 
general solution is satisfied under such an arrangement. This is 
simply an extension of the principle of superposition.  The transient 
solution contains the correct number of arbitrary constants, and 
the particular solution guarantees that the combined solutions 
satisfy the general equation 1.16.  Call the transient solution yt 
and the particular solution yp. A general solution of 1.16 is then 
given by 

y = yt + yp (1.18) 

H.3.1    TRANSIENT SOLUTION 

Equation 1.13 is a complementary or homogeneous  first order linear 
differential equation with  constant coefficients.     We  recognized  a quick 
and simple method of  finding a solution  to this equation.     We  also  recog- 
nized that  the  solution was always  of exponential  form.     We  might hope 
that solutions of higher order equations  of  the  same   family would take 
the  same   form. 

Let us examine  a  second order differential equation with constant 
coefficients  to determine  if 

y = e
mx (1.19) 

is  a solution  of  the equation 

ay" + by'  + cy = 0 (1.20) 

1.11 
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mv 
Substituting y = e      we have 

2  mx   ,   . mx   ,       mx      n am e      + bme      + ce      = 0 

or 

(am2 + bm + c)emx = 0 (1.21) 

mx   , n Since e      ? 0 

2 
am    + bm +  c =  0 (1.22) 

and 

-b + y/l b     - 4ac 
ml,2 " —"Ti  (1-23) 

Substituting these values into our assumed solution we  force it to become 
a solution. 

m, x irux 
yt = C^  l    + C2e l (1.24) 

When working numerical problems it is not necessary to take  the deriva- 

tives of e  x,   if we  remember that the d y/dx    is  replaced by iu  .     This 
will be  true  for any  order differential equation with constant coeffi- 
cients . 

We have  included  the  subscript  "t"  on y  to indicate  that  1.24 
represents  the   transient  solution.     From the   foregoing it  is  seen  .      c 
we  have  succeeded in extending the method  for  first  order  complementary 
equations  to higher order complementary  or homogeneous  equations.     Again 
we  note  that we  have  traded off an  integration problem  for an  algebra 
problem  (solving equation   1.22   for the m's). 

Differential  or derivative  operators  can be  defined and manipulates 
to play the  same   role  as m above. 

If we  designate  an  operator p,  p2,   .   .   .   ,  pn  as   follows: 

d 2       d n_d MOC\ 
p = 3x-'p    =TT'   •••'!?    = —n (1'25) 

dx dx 

P(y) =% p2(y) = ^J pn(y) - ^J (1.26) dx dx dxn 

1.12 
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then 1.20 may be written 

ap2(y) + bp(y) + cy = 0 (1.27) 

or, since the derivative operates linearly (each term in succession), 

(ap + bp + c)y = 0 (1.28) 

and the operator expression (ap + bp + c) has the same algebraic 
structure as 1.22. The operator expression in 1.26 is a polynomial 
with precisely the same form as the polynomial on the left side of 
1.22, hence it is often solved directly for the constants required in 
the solution of 1.19.  In this case, the transient solution 1.24 would 
appear 

p.x ,   P„x = c,eFl + c~e 2 (1.29) 

There are cases for which 1.24 and 1.29 are not entirely satisfactory 
in providing a solution, but this will be discussed later. Tb= m's or 
p's may be real, imaginary, or complex numbers. 

EXAMPLE 

§4 + dy _ 2y = 0 
dx7  dx 

Using operator notation, 

(p2 + p - 2)y = 0 

p2 + p - 2 = 0 

p = 1, -2 

y = c,ex + c9e 
-2x 

We  shall now consider the  various  cases   for solutions  of  the  com- 
plementary   (homogeneous)   equation. 

Consider the  equation 

I 
dx 

ad4+b| + cy 0 (1.30) 

We  have  seen  above  that  the  solution of  this  differential  equation  is 
equivalent  to solving the  characteristic equation 

ap^  + bp + c =  0 (1.31) 

1.13 
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The general solution of 1.30 is of the form 

xt « Cle 
Pxx 

+ c-e 
p2x 

(1.32) 

where  c^ and 03  are  arbitrary constants,   and pi and P2  are solutions of 
the characteristic equation 1.31.     Pecall from algebra that a characteris- 
tic equation can yield complex roots,   imaginary roots,   or real  roots, 

that is,  p.   -  =   [-b +~\/b    - 4 ac]/2a) .    We will consider the  solution 

1.32   for various values of the constants in equation  1.31 and consider 
changes in the  form of the  solution which may be desirable or necessary. 

•1.3.1.1   CASE 1:   ROOTS REAL AND UNEQUAL 

If p^ and P2  are  real and unequal the desired form of solution is 
just as  is 

EXAMPLE 

Ü +   4   p- -  12y =  0 ^7     dx 

(P    + 4p  - 12)y = 0   (in operator form) 

solving 

p2  +  4p  -  12  =  0 

gives 

-4  +  /16  +  48' 
P = 

-4  +   8 
= — 

2 

or 

P = -6,   2 

and 

y = c.e         + c»e 2x 

is  the  required  solution. 

1.14 
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•1.3.1.2   CASE 2:   ROOTS REAL AND EQUAL 

If p,   and P2  are  real  and equal we  run into trouble. 

EXAMPLE 

d y 
dx 

- 4 dy 
3x" + 4y =  0 

(P -  4E > + 4)y = 0   (in o 

solving, 

P = 
4 + /IS -  16 4 

" 2" ~ 
2 

2 

Ü 

or p = 2.  But this gives only one value of p.  If we try to use 1.32 
2x all we get is y -  cje  but we need two arbitrary constants to have a 

transient solution like 1.30.  If we are really alert, we may notice 
that the operator expression (p2 - 4p + 4) can be written (p -2)(p - 2), 
or (p - 2)2, which is a polynomial expression with a repeated factor. 

2x     2x (that is, p = 2; 2 is the solution.)  We can then write y = C]_e  + C2e 
as the transient solution.  This is really no better than our first 

2x attempt, y = c^e  , since c^ and C2 can be combined into a single arbi- 
trary constant. 

y - Cje -
2X  i. „ «2X _  /„   X r.     ^2X -  „ ~2X v  c,e  = (c. + c_)e  = c,e 

To solve this problem, simply multiply one of the arbitrary constants 
2x 2x by x.    Now write:     y = c^e      + C2xe     .    We can no longer  "lump" the two 

2x coefficients of e  together. The solution now contains two arbitrary 
constants, and it is easily verified that 

2x ,    2x y. = c,e  + c-xe 

is  a  transient solution  of the  problem above. 

•1 3.1.3   CASE 3:   ROOTS PURELY IMAGINARY 

EXAMPLE 

A If 

in operator form 

(p2 + l)y = 0 

1.15 
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Solving, 

0 + /0 - 4 
P = = + /=r 

In most engineering work we refer to /^T as j, 
it is denoted by i.). Now, 

P - + j 

and the solution is written 

(In mathematical texts 

yt = c^e
3* + c2e

-:|X (1.33) 

This is a perfectly good solution from a mat- * natical standpoint, but 
it is unwieldy and unsuggestive to engineers. A mathematician by the 
r.ame of Euler worked out this puzzle for us by developing an equation 
called Euler's identity. 

e3 = cos x + j sin x (1.34) 

This equation can be restated in many ways geometrically and analyti- 
cally, and can be verified by adding the series expansion of cos x to 
the series expansion of j sin x. Now 1.33 may be expressed 

y = c, (cos x + j sin x) + c_ [cos (-x) + j sin (-x)] 

= (c. + c_) cos x + j (c, - c~) sin x (1.35) 

or 

y^ = c, cos x + c. sin x Jt    3 4 
(1.36) 

Equation 1.36 has another interesting form.  Let 

*t *,/ C3  + °4 

■ff7^' 
COS X + 

y 
sin x 

2 .   2 c3 + c4 

(1.37) 

Now consider a right triangle with sides  labeled as   follows; 

1.16 
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Figure 1.2 

Now, 

v^7^ 
» = sin 9 

i 2   L       2 
c3     +  C4 

- = cos 0 

and 

/c3
2  + c4

2 = A. 

A and  4> are arbitrary constants,  and 1.37 becomes 

y.   = A   (sin   $ cos  x +  cos   4> sin  x) 

or 

y    = A sin   (x +   $) (1.38) 

To summarize,   if the  roots  of  the  opeictor polynomial  are  purely  imagi- 
nary,   they will be numerically equal but opposite  in  sign,   and the  solu- 
tion will have  the  form 1.36  or 1.38. 

•1.3.1.4   CASF4:   ROOTS COMPLEX 

EXAMPLE 

«4 +  2   % +  2y  -  0 
dxz ax- 

in  operator  form, 

(p2 +  2p + 2)y = 0 

1.17 



u 
Solving, 

-2  +   /r^T 
p =  ^  

or 

=  -1 +  /IT 

p = -1 +  j,   - 1 -j 

and 

yt = C;Le (-1 +  j)x +      e(-l  -j)x (1.39) 

Equation  1.39  may be written 

yt - e -x ~3X i       ~-3x 
c,eJ    + c~e  J 

or,   using the  resile  1.36  and 1.38, 

yt »e 

or 

c,  cos  x + c.   sin x 3 4 

A sin   (x +  $) 

(1.40) 

(1.41) 

Note,  also,  that  1.38 could be written in the  form 

y    = A cos   (x +  e), where  9 »  <f>  - 90° 

PROBLEMS:     Set  I,  No.   3,  page  1.76;   Set II,   a only,  page 1.85. 

• 1,3.2   PARTICULAR SOLUTION 

The  particular solution,   for our work here,  will be obtained by 
the method of undetermined coefficients.     (There  are  other methods 
which may be  used.)     This method consists of assuming a solution of the 
same  general   form as the  input   (forcing  function),  but with undetermined 
coefficients.     Substition of this assumed solution into the differential 
equation  then enables us  to evaluate  these coefficients.       The method of 
undetermined coefficients applies when the  forcing function or input is 
a polynomial,   terms of the  form sin ax,  cos ax, eax,  or combinations of 
sums  and products of these.    The complete  solution of the  linear differen- 
tial equation with constant coefficients  is  then given by  1.18   (that is, 
the  solution  tc the complementary equation   (transient solution),  plus 
the particular solution). 

1.18 
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A few remarks are appropriate regarding the second order linear 

differential equation with constant coefficients. Although the equation 
is interesting in its own right, it is of particular value to us because 
it is a mathematical model for several problems of physical interest. 

?I+b-g+ cy - F(x) 
dx 

(mathematical model) 

m 
d x j. m —n- + 
dt 

dx 
3t 

+ Kx = F(t)    (describes a mass spring     (1.42) 
d'mper system) 

'^♦»8S + &-«<« (describes a series LRC 
electrical circuit) 

Equation 1.42 are all the same mathematically, but are expressed in dif- 
ferent notation.  Different notations or symbols are employed to emphasize 
the physical parameters involved, or to force the solution to appear in a 
form that is easy to interpret.  In fact, the similarity of these last 
two equations may suggest how one might design an electrical circuit to 
simulate the operation of a mechanical system. 

Consider the equation 

,2 
7  ^   i.     _ 

a? al4+b^+cy= f(x) 
dx 

(1.43) 

We now must solve  for the special solution   (particular solution)  which 
results  from a given input,   f(x).     This particular solution can be  found 
by using various techniques, but we will consider only one,   the method 
of undetermined coefficients.     This method consists  of assuming a solu- 
tion  form with unspecified constants   (undetermined coefficients),  and 
solving for the values of the constants which will satisfy the given 
differential equation.     The method is be.*-t described by considering 
examples. 

•1.3.2.1   FORCING FUNCTION - A CONSTANT 

dx 
(1.49) 

The input is a constant (trivial polynomial), so we assume a solution 
2 2 of form y    = K.     Obviously,  d~K/dx    = 0,   and dK/dx = 0. 

Substituting, 

0  +  4(0)   +  3K = 6 

y    = K = 2 

1.19 
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Therefore,  yp = 2  is a particular solution.     We note that we  can solve 
the equation 

£l + 4 p. +  3y = 0 

in operator form 
2 

(p    +  4p +  3)y = 0 

or 

P = -1, -3 

and the transient solution is 

-x .   -3x yt = c^e  + c2e 

The  general solution of 1.44 may be written 

y = cne"x + c,e~3x 

transient particular 
solution (or steady state) 

solution 

•1.3.2.2   FORCING FUNCTION - A POLYNOMIAL 

EXAMPLE 
2 

ly +  4  $L +  3y =  x2  +  2x (1.45) 
d~7 dx 

Now  the   form of  f(x)   for 1.45  is  a polynomial  of second degree,   so we 
assume  a particular solution   for y  of second degree   (that  is,   let y    = 

Ax2  + Bx + C). 

Then 

dy 

and 

3-E =  2Ax +  B dx 

-^X =  2A 

1.20 
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Substituting into 1.45, 

(2A) + 4 (2Ax + B) + 3 (Ax2 + Bx + C) = x2 + 2x 

or 

(3A) x2 + (8A + 3B) x + (2A + 4B + 3C) = x2 + 2x 

Equating like powers of x, 

x2:  3A = 1 

A = 1/3 

x:  8A + 3B = 2 

3B = 2 - 8 

B = - 2/9 

x°:  2A + 4B + 3C = 0 

3C = 8/9 - 2/3 

C = 2/27 

Therefore, 

y    =  1/3  x2   - 2/9  x   + 2/27 

The general solution of '1.45  is given by 

y =  c-je'* +  c2e"3x +  1/3  x2   - 2/9  x + 2/27 

since  the  transient solution is the  same  as  for 1.44.    As a general rule, 
if tha   forcing function is a polynomial of degree n,   assume  a polynomial 
solution  of degree n. 

•1.3.2.3   FORCING FUNCTION = AN EXPONENTIAL 

EXAMPLE 

I 
dx 
1^ +  4  *L +  3y = e2x (1.46) 

2x The  forcing function is e      so we assume  a solution of the  form 

y  = Ae 2x 

1.21 
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3x" (Ae2x) = 2Ae 2x 

*  (Ae2x) = 4Ae2x 

dx' 

Substituting in 1.46, 

4Ae2x + 4(2Ae2x) + 3(Ae2x) = e2x 

e2x (4A + 8A + 3A) = e2x 

The coefficients on both sides of the equation must be the same.  There- 
fore, 4A + 8A + 3A = 1, or 15A = 1, and A = 1/15. The particular solu- 

tion of 1.46 then is ¥p = 1/15 e 2x The transient solution is still the 
same as for 1.44. A final example will illustrate a pitfall sometimes 
encountered using this method. 

•1.3.2.4   FORCING FUNCTION - AN EXPONENTIAL (SPECIAL CASE) 

EXAMPLE 

H ♦«£ ♦ * - •■ dx 
(1.47) 

I ) 

The   forcing  function  is e     ,   so we  assume  a solution  of the   form y = Ae 

Then 

dx 

and 

d       (Ae-X)   = Ae-X 

dx 

Substituting 

1.22 

Ae"x +  4(-Ae~x)   +  3(Ae"X)   = e"X 

(A - 4A +  3A)e"x = e~x 

(0)e"x = e"x 

■MM ■-'-1 i iüüa—^-^.^-.-.-..'.■: ,, i.,-i,W^-.^,,..,.... 



ijp 
Obviously,  this is an incorrect statement.    To find where we made our 
mistake,  let's review our procedures. 

To solve an equation of the  form 

(p + a)   (p + b)y » e -ax 

we solve the homogeneous equation to get 

(p + a)   (p + b)y = 0 

p = -a,   -b 

y* = c.e"ax + c-e .-bx 
2* 

If we assume y    = Ae 
P 

then 

y - Yt + Yp = cie'aX + c2e_bX + Ae =   (ci + A)e_ax + c2e"bx 

= c,e   + c2e 

- y* 

However, we have already seen that yt is the solution only when the 
right side of the equation is zero, and will not solve the equation 
when we have a forcing function. Therefore, we assume a particular 
solution. 

yp = Axe -ax 

then 

-ax -bx -ax -ax -bx 
Y = Y    + Yt = of        + c2e "A + Axe aA =  (Cj_ + Ax)e aA + c2e "Ä t yfc 

Similarly, we could have  the equation 

(p + aj)   (p - aj)   y = sin ax 

with transient solution 

y.   = c1 sin ax + c2 cos ax 

If we assume y    = A sin ax + B cos ax 
P 

then 

y = y    + y    =   (c.   + A)   sin ax +   (c2 + B)   cos ax 

■MM. •üMMMH "■*">">" - HMüih ..... 
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+ (c2 + B) cos ax 

= c, sin ax + c. cos ax = y. 

Therefore, we assume 

y - Ax sin ax + Bx cos ax 

and 

y = (c, + Ax) sin ax + (c, + Bx) cos ax ^ y. 

Note the following, however, with the equation 

(p + a - jb) (p + a + jb)y = sin bx 

u 

yt - e 
-ax 

(c. sin bx + c» cos bx) 

we can assume y = B sin bx + C cos bx 
P 

then 

y = c^   sin bx + c„e  cos bx + B sin bx + C cos bx 

-ax -ax y = (c^   + B) sin bx + (c2e 
aA + C) cos bx ft  y 

Similarly, if 

(p + a - jb) (p + a + jb)y = e -ax 

we could assume 

» -ax y = Ae 
P 

In our example above, equation 1.47, a valid solution can be found 
-x by assuming Y    = Axe     ,   then 

^    (Axe~x)   = A(-xe"x + e"x) 

and 

ax (Axe_X) A(xe'X  - 2e"X) 

1.24 
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9 
Substituting 

A(xe"x - 2e"x)   + 4A(-xe"x + e"x)   + 3(Axe~x)   = e"x 

(A  - 4A +   3A)xe"X +   (-2A +  4A)e"X = e"X 

and 

(0)xe"x + 2Ae"x = e'x 

A ■  1/2 

Thus, 

yp =   (1/2)xe -x 

) 

4> 
4*r 

is a particular solution of 1.47,  and the general solution is given by: 

y = C;Le'x + c2e"3x + 1/2  xe"x 

The key to successful application of the method of undetermined coeffi- 
cients is to assume the proper form for a trial particular solution. 
Table 1 summarizes the results of this discussion. 

PROBLEMS: Set II, 1-5, b only, page 1.85. 
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Table I 

u 

2 
Differential equation:   d y . , dy ,     £/x n       a —£ + b -p + cy ■ f (x) 

dx 

f(x)* Assume y ** 
P 

1. ß A 

ßxn 

2.  (n a positive integer) Ax + A, x   +...A ,x + A 
o     1           n-1    n 

ßerx 

3.  (r either real or complex) A 
rx 

Ae 

4. ß cos kx 
A cos kx + B sin kx 

5.  ß sin kx 

c          a    n rx      i 6. ßx e  cos kx (Ax +...+A ,x + A )e  cos kx + 
o           n-1    n 

n                    rx 
+ (B x + . . . + B .x + B ) e  sin kx 

o           n-1    n i      o n rx . , 
7.  ßx e  sin kx 

*When f(x) consists of a sum of several terms, the appropriate 
choice for yp is the sum of yp expressions corresponding to 
these terms individually. 

**Whenever a term in any of the yp's listed in this column dupli- 
cates a term already in the complementary function, all terms 
in that yp must be multiplied by the lowest positive integral 
power of x sufficient to eliminate the duplication. 

M.3.3 SOLVING FOR CONSTANTS OF INTEGRATION 

As discussed paragraph 1.2, the number of arbitrary constants in 
the solution of our linear differential equation is equal to the order 
of the equation.  These constants of integration may be determined by 
initial or boundary conditions.  That is, we must know the physical 
state (position, velocity, etc.) of the system at some time in order to 
evaluate these constants. Many times these conditions are given at 
t = 0 (initial conditions), which is frequently called a quiescent system. 

It should be emphasized at this point, that the arbitrary constants 
of the solution are evaluated from the complete solution (transient plus 
steady state) of the equation. 

1.26 
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We shall illustrate this method with an example. 

EXAMPLE 

x + 4x + 13x = 3 (1.48) 

where the dot notation indicates derivatives with respect to time (that 

is, x = dx/dt, x = d'x/dt2. We will assume that the boundary conditions 
are x(0) = 5, and x(0) =8. The transient solution is given by 

p + 4p + 13 = 0 

o 

r I 
4» 

p - -2 + /4 - 13 = -2 + j3 

x = e   (A cos 3t + B sin 3t) 

We assume 

Xp=D 

dx 

x = 0 
p 

Substituting into 1.48, we get D = 3/13 

for a complete solution 

x(t) = e"2t (A cos 3t + B sin 3t) + 3/13 

To solve for A and B, we will use the initial conditions specified above, 

x(0) = 5 = A + 3/13 

or 

A =  ^2/13 

Differentiating the complete solution, we get 

x(t)   = e"2t   (3B cos   3t  -  3A sin  3t;   -2e"2t   (A cos   3t  + B sin  3t) 

Substituting the  second initial condition 

x(0)   =  8  =  3B  - 2A 

76 B = re 

1.21 
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Therefore, the complete solution to 1.48 with the given initial conditions 
is 

x(t) = e~2t [(62/13) cos 3t + (76/13) sin 3t] + 3/13 

We have discussed the first and second order differential equation 
in some detail.  It is of great importance to note that many higher order 
systems quite naturally decompose into first and second order systems. 
For example, the study of a third order equation (or system) may be con- 
ducted by examining a first and a second order system, a fourth order 
system analyzed by examining two stcond order systems, etc. All these 
cases are handled by solving the characteristic equation to get a tran- 
sient solution and then obtaining the particular solution by any con- 
venient method. 

PROBLEMS:  Set II, Nos. 1-5, c only, page 1.85. 

11.4 APPLICATIONS 

Up to this point, we have considered differential equations in 
general and linear differential equations with constant coefficients 
in greater detail. We have developed methods for solving first and 
second order equations of the following type: 

a ^ + bx = f(t) (1.49) at 

a i-£ + b ~ + ex = f (t) (1.50) 
dt 

These two equations are mathematical models or forms„  These same forms 
may be used to describe diverse physical systems.  In this section we 
shall concentrate on the transient response of the systems under investi- 
gation, since this area is of primary interest in future studies. 

H.4.1 FIRST ORDER EQUATION 

Consider the following example: 

EXAMPLE 

4x + x = 3 (1.51) 

where 

• _ dx x " at 

Physically, we can let x represent distance or displacement, and t 
represent time.  To solve this equation, we find the transient solution 
by using the homogeneous equation 

1.28 
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4x + x = 0 

(4p + l)x = 0 

4p + 1 = 0 

p = -1/4 

Thus 

xt = ce 
-t/4 

The particular solution is found by assuming 

xp = A 

dx, 
P = 

alT 

o 

Substituting 

A =  3 

or 

x    =  3 
P 

The complete solution is then 

-t/4 J -, x = ce '  +3 (1.52) 

The first term on the right of 1.52 represents the transient response 
of the physical system described by equation 1.51, and the second term 
represents the steady state response if the transient decays.  A term 
useful in describing the physical effect of a negative exponential term 
is time constant which is denoted by ■>.,     We shall define T as 

x - - I 
" P 

Thus, equation 1.52 could be rewritten as 

x =  ce     '     +3 (1.53) 

wnere =   4, 

4P 

Note  the   following points: 

We  only  discuss  time  constants  if p  is negative.     If p  is  positive, 
the exponent  of e  is  positive,   and the  transient solution will not 
decay. 

1.29 
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2. If p is negative,   T  is positive. 

3. T  is the negative  reciprocal of p,  so that small numerical values 
of p give  large numerical values of  T   (and vice  versa). 

4. The value of t is the time, in seconds, required for the displace- 
ment to decay to 1/e of its original displacement from equilibrium 
or (steady value. To get a better understanding of this statement, 
let's  look  at 1.53. 

x = ce +3 

and  let t =  T.     Then 

-1 x =  ce +  3  =  c  - +  3 
e 

Thus,  when  t =   T,   the exponential portion of the  solution has decayed to 
1/e of its original displacement   (figure  1.3). 

x 
11 

3+c 1 = «-' =0.348 
e 

x(t)»ce"     +3 

-**t 

Figure 1.3 

Other  measures  of  time  are  sometimes  ust        > ■       .„'xbc   the  decay  of  the 
exponential  of a solution.     If we  let T^  denote   .:.~   cime  it takes   for 
the  transient  to decay  to one-half  it's  original  amplitude,   then 

T    =  0.693   T 

This relationship can be easily shown by investigating 

-at x =  c,e +  c. 

(1.54) 

(1.55) 

1.30 

m mm  mmttmm ia>Milafc^-:-     ■" '      ■     ' ■     ■■■•■■ ' r    '- ■ 



it Im M i ■; im ■ r 

n 
From our definition, T = * /».  We are looking for Tx, the value of t at 
which xt = 1/2 xt(0).  Solving 

xt  = Cf -at 

-aT, 1/2  xfc{0)   = 1/2  cx «= c^e    "*1 

e"aTl = 1/2 

In 1/2 = aT. 

I" 

if -  » 

. -in 1/2 = ,693 .   >693T 

x a a 

Let's complete our solution of 1.51 by specifying a boundary condi- 
tion and evaluating the  arbitrary constant.     Let x = 0  at t = 0. 

x = ce"t/4 +  3 

x(0)   = 0  = c +  3 

c =  -3 

Our complete solution for this boundary condition is 

x =  .3e-fc/4 + 3 

See  figure  1.4. 

X 

3 

Figure 1.4 
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»1.4.2   SECOND ORDER EQUATION 

Consider an equation of the  form 1.50.     The characteristic equation 
(operator equation)   can be written: 

ap    +bp + c = 0 (1.56) 

The roots of this quadratic equation determine the form of the transient 
solution as we have seen in paragraph 1.3. We will now discuss physical 
implications of the  algebraic property of the roots. 

1.4.2.1   ROOTS REAL AND UNEQUAL 

When   the  roots  are  real  and unequal,  the  transient  solution has 
the  form 

xf  = c;,e
plt + c_ep2t (1.57) 

1.4.2.1.1    Case  1 

When pi and P2  are  both negative,   the  system decays  and there will 
be  a time constant associated with each exponential   (figure  1.5). 

Pi*       P2* 
x}=cie       +C2e 

Pi  < o 

P2 <o 

Figure 1.5 

1.4 2.1.2   Case 2 

When pi or P2 (or both) is positive, the system will generally 
diverge (figures 1.6 and 1.7). 

1.32 

MiMüyttBka   m -■■■- 



ü 

*■ t 

Figure 1.6 Figure 1.7 
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1.4.2.1.3   Case 3 

Examples where pj   or P2   (or both)   are zero,   are usually not observed 
in practical  cases. 

• 1.4.2.2   ROOTS REAL AND EQUAL 

When pi = P2,   the  transient solution has  the  form 

pt   ,       4_„pt x.   -  c.e^    + c-te^ (1.58) 

1  I 

Vfp 

1.4.2.2.1   Case  1 

When  p is negative,   the  system will  usually decay   (figure   1.8) 
(If p  is  very small,   the  system may  initially exhibit divergence.) 

Figure 1.8 

•> t 
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1.4.2.22    Cose 2 

When p is positive,  the  system will diverge. 

• 1.4.2.3   ROOTS PURELY IMAGINERY 

When p = +  jk,  the  transient solution has the   form 

x    = c.   sin kt + c«  cos kt 

or 

or 

x = A sin (kt + $) 

x. = A cos (kt + 6) 

(1.59) 

(1.60) 

(1.61) 

The system executes oscillations of constant amplitude with a frequency 
k (figure 1.9). 

xf= Asin(kt + ^>) 

Figure 1.9 

• 1 4,2.4   ROOTS COMPLEX CONJUGATES 

When  the   roots  are  given by p = k-^ +  3^-2'   tne   f°rin of tne  transient 
solution  is 

K    I 

k, t x.   = e  1     (c,   co'5  k?t  +  c_   sin k„t) 

or 

or 

x    =  A eklfc  sin   (k2t +   d>) 

x    = A eklfc cos   (k2t  +   6) 

(1.62) 

(1.63) 

(1,64) 

The  system executes periodic  oscillations  contained  in  an envelope 
k  t given by  x =  + A e  1 

1.34 
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1.4 2.4.1   Cose 1 

When kj is negative,  the system decays   (figure  1.10). 

1.4.2.4.2   Cose 2 

When k^ is positive,  the system diverges   (figure  1.11). 

"s. kit . ^^y-'H-A«       »in(k2» + 0>) 

' 

I* 

^t +■   t 

*<1t 

\ 
X 

Figure 1.10 Figure Lll 

fe 

The discussion of transient solutions above reveals only part of the 
picture presented by equation 1.50.  We still have the input for forcing 
function to consider, that is, f(t).  In practice, a linear system that 
possesses a divergence (without input) may be changed to a damped system 
by carefully selecting or controlling the input. Conversely, a nondi- 
vergent linear system with weak damping may be made divergent by certain 
types of inputs. 

1.4.3 SECOND ORDER LINEAR SYSTEMS 

Consider the physical model shown in figure 1.12.  The system con- 
sists of an object suspended by a spring, with a spring constant of k. 
The mass may move vertically and is subject to gravity, input, and damp- 
ing, with the total viscous damping constant equal to c. 

5 
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The equation for this vibrating system is given by 

mi + ex + kx = f(t) 

The characteristic equation is given by 

2 
mp   cp + k = 0 

and the  roots  of this  equation  are 

(1.65) 

(1.66) 

-. /,c  «2 pl,2  ~ 2m t     Y^> 
-c 

m 

2m m 

2 . 
- l 4km 

(1.67) 

Let us,   for simplicity,   and  for  reasons  that will be  obvious  later 
define  three  constants 

=     c 

2^mir 
(1.68) 

the  term  c,   is  called  the  damping  ratio,   and  is  a  value which indicates 
the  damping strength  in  the  system. 

n       V m 
(1.69) 
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ö wn is the undamped natural frequency of the system. This is the frequency 
at which the system would oscillate if there were no damping present. 

">d a un Vl " < 
(1.70) 

w$ is the damped frequency of the system.    It is the  frequency at which 
the system oscillates when a damping ratio of  c is present. 

Substituting  ;and 1^ into 1.67 now gives 

pl,2 = ~ ;  wn t jun   "^  " c* (1,71) 

With these  roots,  the transient solution becomes 

xfc = c^V + c2ep2t 

— tW     t      r = e  s n     [c.   cos . öD     Vl - ?t + c- sin u z n 
vrr^t c   t] (1.72) 

or 

I 

I 

41 

-tu t x.   = A e      n    sin   1u t i   n VT cr* (1.73) 

Note that the solution will lie within an exponentially decreasing en- 
velope which has a time constant of 1/U wn) . This damped oscillation 
is shown in  figure  1.13. 

-.At-*""* 

xt. At "^ »in ((M,V'-C2t +<*>> 

► t 

Figure 1.13 
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If we divide equation  1.65 by m we obtain 

.   c   •   .   k f(t) x+-x+-x=     ' mm m 

or,   rewriting using wn and  x, defined by 1.68  and 1.69 

x + 2  x.  w     x +  u,2  x =  ^^- (1.74) n n m 

Equation 1.74 is a  form of 1.65  that is most useful in  analysing the 
behavior of any  linear system. 

A general second order physical system can be  compared with mass- 
spring-damper system.     The equation defining the system was 

mx + cx + kx =  f(t) (1.65) 

where we defined the parameters 

w    ~ \l - i  undamped natural  frequency 

-,  damping  ratio 
2   /mk~ 

From equation 1.71 we see that the numerical value of t,  is a powerful 
factor in determining the type of response exhibited by the: system. 

PROBLEMS:  Set II, 1-5, d only, page 1.86. 

Let us now consider the physical problem and analyze the various 
conditions possible. The magnitude and sign of x,, the damping ratio, 
determine the response properties of the system. 

There are five distinct cases which are given names descriptive of 
the response associated with each case. 

1. x,  = 0, undamped 

2. 0   <   x,   <  1,   underdamped 

3. x, ~ 1,   critically damped 

4. c   >   1/   overdamped 

5 .   x   <  0,   unstable 

We  shall now examine each  case,  making use  of equation  1.71 

Pi   o  =   "   <   u„   t 3w
n   y1   "    ^ (1.71) '1,2  -  "   <-   wn 
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• 1.4.3.1   CASE 1:  i • 0, UKDAMPED 

For this condition,  the  roots of the characteristic equation are 

Pl,2 = t K 

giving a transient solution of the form 

x. = c. cos w t + c_ sin u t t   1     n    2     n 

(1.75) 

(1.76) 

or 

x. = A sin (io t + i) t        n 
(1.77) 

showing the system to have the transient response of an undamped 
sinusoidal oscillation with frequency wn.  (Hence, the designation of 
wn as the "undamped natural frequency.")  Figure 1.9 shows an undamped 
system. 

Figure 1.14 illustrates typical response for differing values of 
damping ratios between zero and one. 
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• 1.4.3.2   CASE 2: 0 < £<1, UNDERDAMPED 

For this case,  p is given by equation 1.71 and the transient solu- 
tion has  the  form 

o 

xt = A e ~    n    sin   (a>     Jl -  c,      t + <|>) (1.78) 

This solution shows that the  system oscillates at the damped  frequency, 
aid,   and is bounded by an exponentially decreasing envelope with time 
constant  1/U  «n) •     Figure  1.14 shows  the effect of increasing the damp- 
ing ratio  from 0.1 to 1.0. 

• 1.4.3.3   CASE 3:   i = 1, CRITICALLY DAMPED 

For this condition, the roots of the characteristic equation are 

Pi  T  =  -  W 1,2     n 

which gives a transient solution of the form 

(1.79) 

— U    t ,      -Ü)    t x.   = c.e    n    + c-te    n (1.80) 

This is called the critically damped case and generally will not over- 
shoot.     It should be noted, however,   that large initial values of x can 
cause one overshoot.     Figure  1.14 above  shows a response when  r, = 1. 

• 1.4.3.4   CASE 4:   ? >1, OVERDAMPED 

In this case,   the characteristic roots are 

'1,2 n  -    n ,2  -1 (1.81) 

which shows that both  roots are  real  and negative.    This  tells  us that 
the  system will have  a transient which has an exponential decay without 
sinusoidal motion.     The  transient  response  is  given by 

Z   - 
xfc =  C;Le    n     L 

U 1) 
+ c2e    n 

c + JlC - 1) 

(1.82) 

This  response  can  also be written as 

xt  = C;Le-t/Tl  +  c2e-t/T2 (1.83) 

whe re   T1   and   T2  are  time constants  for each exponential term. 

This solution is the sum ox two decreasing exponentials, one with 
time constant ij an^ tne other with time constant T2« The smaller the 
value  of   T,   the quicker  the  transient  decays.     Usually  the   larger  the 
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value of c, the larger TI is compared to T£.  For the case s > 1, T2 is 
small in comparison to TI and can be neglected.  The system then behaves 
like a first order system (that is, the effect of mass can be neglected). 
This can be seen most readily from equation 1.83.  Figure 1.5 shows an 
overdamped system. 

• 1.4.3.5 CASE 5: -1< i < 0, UNSTABLE 

For this case, the roots of the characteristic equation are 

»1,2 = * ;jn t jun V* - ^ (1.84) 

These  roots are the same as  for the underdamped case, except that the 
exponential   term in the  transient solution shows  an exponential increase 
with time. 

x    = e-?wn     [o,   cos  u    J1  - x,    t + c2 sin ui    J1 -  r, t]     (1.85) 

\ 1   u 

Whenever a term appearing in the transient solution grows with time 
(and especially an exponential growth), the system is generally unstable. 
This means that whenever the system is disturbed from equilibrium, the 
disturbance will increase with time. Figure 1.11 shows an unstable system. 

• 1.4.3.6   CASE 6:    : = -1, UNSTABLE 

For this case, the roots of the characteristic equation are 

Pl,2 = + un 

and 

tt = e
(u)nt)(ci + c2 t) 

• 1.4.3.7   CASE 7:    '.< -1, UNSTABLE 

This  case  is  similar  t^.  case  4,  except that  the  system diverges. 
See   figure  1.7. 

!£■■■ 

ft 

I 4* 

1,2 

EXAMPLE 

Given 

'x +  4x =  0 

from equation  1.74 

•   =  0 

n -    n   n' 
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and 

w    = 2 
n 

The system is undamped with a solution 

x = A sin (2t + <j>) 

where A and <>  are determined by substituting the boundary conditions 
into the complete  solution. 

; EXAMPLE 

i 
Given 

x +  x +  x = 0 
I 
j from equation  1.73 

i , 
! CD =     1 n 
| 

and 

| t.  = 0.5 

we  also know  from equation  1.70  that 

ud =   un  /x>1  "    ^ =  °'87 

The system is underdamped with a solution 
I 

x = Ae"0,5t sin (0.87t + *) 
S t 
i 

EXAMPLE 

I 
Given 

I 
£ + x + x = 0 
4 

We multiply 4 to get the equation in the form of equation 1.74. 

Then 

x + 4x + 4x = 0 

and 

u) —2 
n 

t = 1 

1.42 
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s 
The system is critically damped and has a solution given by 

x.   - c e~      + c2te~ 

EXAMPLE 

Given 

x +  8x +  4x =  0 

we  get 

w     =2 n 

and 

c, = /■ 

The system is overdamped and has a solution 

-7.46t   . -0.54t x,   = c.e + c»e t        1 2 

EXAMPLE 
[          <*■*■ \ u Given 

••          • 
x  - 2x +  4x = 0 

From equation 1.74 

u     =   2 n 

and 

C  =  -0.5 

From equation 1.70 

* /. 2 
to ,   =    U       ä / 1    - 5 d         n V 

The  solution  is  unstable   (negative  damping)   and has  the   form 

x    = Aefc sin   (1.7  t +  *) 

• 1.4.3 8   DAMPING   (See   figure   1.14) 

The best damping ratio for a system is determined by the intended 
use  of the  system.     If a  fast  response  is  desired,   and the  size  and num- 
ber of overshoots  is  inconsequential,   then we would use  a small value  of 
z, .     If it  is essential  that the  system not overshoot,   and we  are not too 
concerned about  response  time,  we could attempt to use a critically 
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damped   (or even  an  overdamped)   system.     The value  c = 0.7  is often re- 
ferred to as the optimum damping ratio since it gives a small overshoot 
and a relative quick  response.     It should be noted that "optimum damping 
ratio" will change as the  requirements of the physical system change. 

PROBLEMS:     Set  II,  e  only,  page   1.86-. 

• 1.4.4   ANALOGOUS SECOND ORDER LINEAR SYSTEMS 

• 1.4.41   MECHANICAL SYSTEM 

The  second order equation we have been working with represents  the 
mass-spring-damper system of figure  1.12 and has a differential equation 
given by 

mx + cx + kx =  f(t) (1.86) 

where 

m = mass 

c = damping coefficient 

k = spring constant 

and we defined 

(1.87) 

(1.83) 

1 
j /*' 0) n V   m 

c 
; = 

2/mTc 

and thus 

2cw c 
n       m 

Equation  1.86  may then be  rewritten, 

x +  £. x +  - x =  f. (t) (1.89) mm 1 

where 

f(t) 
f, (t)   = Uvw m 

or 

X  +   2   C   w     X  +   a   2   X  =   f. (t) (1.90 
n n l 
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• 1.4.4.2   ELECTRICAL SYSTEM 

The second order equation can also be applied to the series LRC 
circuit shown in figure  1.15. 

+   R   - 
b, VV- 

E(t) 0 
+   L    -     +  e 
-W 1 |- 

where 

Fipre 1.15 

u 
L = inductance 

R = resistance 

C = capacitance 

q = charge 

i = current 

Assume q(0) = q(0) = 0, then Kirchhoff's voltage law gives 

abd 

or 

I   * 
B(t) - VR - VL - Vc = 0 

E(t) - iR - L di  1 
ar " c idt = 0 

Since 

i = d(3 1    at 

4* 
E(t) = Lq + Rq + (1.91) 
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We now define 

i— 

1 
xn  ~ M EC 

2  /E7C 

2C-     «   f n       L 

Using  these  parameters,  equation  1.91  can be written 

q  +   2c   q  +   u»   2q  =   E. (t)   =   ^ (1.92) 
^ n n  ^ l Li 

• 1.4.4.3   SERVOMECHANISMS 

For control  systems work,   the  second order equation   is 

i"     +   f   ö     +   u   0     =   vi   0. (1.9 3) 
o O O 1 

whe re 

I  =  inertia 

f =   friction 

u   =   gain 

0.   =  input 

9     =  output 

Rearranging   1.9 3  we  have 

o       I     o       I     o       1     i U.»«J 

or 

i     +  2   r.      n     +   u,  2   ü a)  2e. (1.95) 
o no no=ni 

where we   define 

wn " \ r 

f 

2   /* 
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o Thus, we see that we can generally write any second order differential 
equation  in the  form 

X+2£d)X+(D X n n f(t) (1.96) 

where each term has the same qualitative significance, but different 
physical significance. 

l.S LAPLACE TRANSFORMS 

We have developed a technique for solving linear differential 
equations with constant coefficients, with and without inputs or forcing 
functions. We have admitted that our method has limitations.  It is 
suited for differential equations with inputs of only certain forms. 
Further, the solution procedure requires that the student stay constantly 
alert for special cases that require careful handling. We accepted these 
"bookkeeping" chores because our solution procedures had the remarkable 
property of changing or "transforming" a problem of integration into a 
problem in algebra.  (That is, solving a quadratic equation in the case 
of second order differential equations.)  This was acco iplvshed by making 
an assumption involving the number e, as follows: 

G 

Given 

ax + bx + ex = 0 

Assume 

mt x = e 

(1.97) 

(1.98) 

Substituting 

2 mt , ,  mt ,  mt  n am e  + bme  + ce  =0 (1.99) 

and 

emt (am2 + bm + c) =0 (1.100) 

led us to assert that 1.98 would produce a solution if m were a root of 
the characteristic equation 

am + bm + c = 0 (1.101) 

e 
•■■' 

1 
I 

* » 
4.P 

We then introduced an operator, p = d/dt, and noted a short cut (book- 
keeping coincidence) to writing the characteristic equation 1.101 as 

ap + bp + c = 0 

which we then solved for p to give solution of the form 

x = c,eplt + c,ep2 

(1.102) 

(1.103) 

Of course,  the  great shortcoming of this method was that it di5 not pro- 
vide a solution to an equation of the   form 
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ax + bx + ex = f(t) (1.104) 

It only worked  for the homogeneous equation.     Still, we were able to 
patch together a solution by obtaining a particular solution   (using 
still another technique)   and adding it to the  "transient"  solution of 
the homogeneous equation.     It should be appreciated tha    the method of 
undetermined coefficients also provided a solution by algebraic manipula- 
tion . 

Suppose we were  adventurous enough to inquire further.    We  ask, 
"Does there exist a technique which would exchange   (transform)   the 
whole differential equation,   including the input,  into an algebra 
problem?"    The  answer is a qualified "Yes."    Fortunately,   the   "Yes" 
answer applies to the  types of equations with which we have been working. 

In equation  1.104,  x is  a  function of t.     To emphasize this, we 
rewrite  1.104  as: 

ax(t)   + bx(t)   +  cx(t)   =  f(t) 
mt 

(1.105) 

Suppose we  multiply each  term of 1.105 by e     ,   giving us 

■ •,. .   mt   ,   , •,. .   mt   ,        ,,>   mt       _ ,..   mt ax(t)e       + bx(t)e       +  cx(t)e       =  f(t)e (1.106) 

Now, a most remarkable feature begins to emerge.  It so happens that 
1.106 can be integrated term by term on both sides of the equation to 
produce an algebraic expression in m.  The algebraic expression can then 
be manipulated to obtain eventually the solution of 1.106. 

The preceding statements have omitted many details, but express the 
method of solution we now seek to develop. Our new "fudge factor", emt, 
should be distinguished from the previous technique for solving the homo- 
geneous equation, so we shall replace the m by the term, -s.  The reason 
for the minus sign will become apparent later.  If we are to integrate 
the terms of 1.106, we shall need limits of integration.  In most physi- 
cal problems we are interested in events that take place subsequent to 
a given starting time which we shall call t = 0.  Since we are unsure 
of the duration of significant events, we shall sum up the composite of 
effects from time t = 0 to time t = <=° (that should cover the field) .  So 
now equation 1.106 becomes 

ax(t) e~St dt + b x(t) e~St dt +/  c x(t) e~st dt 

f(t) e~st dt (1.107) 

Equation 1.107 is called the Laplace transform of equation 1.105. 

There is one small problem.  How do we integrate these terms? We 
now focus our attention upon this problem. 
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Si 1.5.1    FINDING THE LAPLACE TRANSFORM OF A DIFFERENTIAL EQUATION 

We now attempt to  find the  integrals of the  terms of the differential 
equation 1.107.     The big unanswered question posed by equation  1.107  is 
"What is x(t)?"   (that is,  x(t)   is an unknown).     Thus, 

r 
u x(t) e"St dt = L< x(t)>  = X(s) (1.108) 

X(s) must, for the present» remain an unknown.  (Remember that m was 
carried along as an unknown until the characteristic equation evolved, 
at which time we solved for m explicitly.)  Since 1.10 8 transforms x(t) 
into a function of the variable, s, we shall say 

c x(t) e"st dt = cj x(t 
JO 

)   e"St dt = cX(s) (1.109) 

and be content to carry along X(s) until such time that we can solve 
for it. 

Now consider the second term, b i(t).  We want to find: 

/   b x(t) e"st dt = b/   x(t) e"st dt 1: (1.110) 

To solve 1.110 we cal] upon a useful tool known as integration by 
parts, 

Recall 

r b 
udv = uv 

r» 
I vdu (1.111) 

Applying this tool to equation 1.110 we let 

-st u = e 

and 

dv = x(t) dt 

then 

du = -se   at 

J£ 
and 

v = x(t) 
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Putting these  values into 1.111 and integrating from t = 0  to t = », 

x(t)e~st dt = x(t)e"st 

i 
"     f  "x(t)[-se-stl 

0     ~/0 L J 
dt 

= x(t)e"stL  + s|0       x(t)e"st dt 

u v/ 

= x(t)e'st 0  + sX(s) 

Now 

x(t)e -stlQ  =  lim    x 
J t ■*• °° 

(t)e"St     - x(0) 

-st 

(1.112) 

(1.113) 

and we shall assume  that  the  term e f3W "dominates" the term x(t)   as 

t    ->    °° . 

-St Thus,  lim x(t)e        =0,   an£ equation  1.111 becomes 

x(t)e"Stdt = &''- x(0)   +  sX(s)   = sX(s)   -  x(0) (1.114) 

Equations  1.109  and 1.114  can be abbreviated by  using the  letter  L to 
signify Laplace transformations. 

L{ x(t)   }  = X(s) 

L{ cx(t)    }  = cX(s) 

L{ x(t)   }  = sX(s)   - x(0) 

L{ bx(t)    }  - b[sX(s)   - x   (0)] 

(1.115) 

(1.116) 

Equation  1.116  can be extended to higher order derivatives.     Such  an 
extension  gives 

L{ax(t)}  - a   [s*X(s)   - sx(0)   - x(0>] (1.117) 

Returning to equation  1.107,  we note  that we  have   found  the  Laplace 
transforms of  all  the  terms except the   forcing  function.     To solve  this 
transform,   the   forcing  function  must be  specified.     We  shall  consider  a 
few  typical   functions and illustrate,  by example,  the  technique   for  find- 
ing  the  Laplace  transform. 

EXAMPLE 

f(t)   = A =  constant 

Then 

L{A}  =/0  
a  Ae_stdt = ^. '       e~st(-sdt)   = 

A     -st — e 
s 
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n 
or 

L{A} = | (1.118) 

EXAMPLE 

f(t) = t 

Then 

L{t} =L   te~stdt 

To integrate by parts, we let 

u = t 

dv = e"stdt 

Then 

du = dt 

1 0"
st 

v = - -e 

u Substituting into 1.110 

-s-*- -te 
te 

s-dt = -H- e"stdt 

=  0 
-st =  0  + ~1 s 

i m 

or 

Lit)   = 

EXAMPLE 

1 
"2" 
s 

f(t)   = e 
2t 

(1.119] 

Then 
,   2t ,      / 2t   -st,. Lie     1  =L       e    e       dt e(2"s)tdt -r~7 

or 

T ;   2t, 1  Lf-e   } = r^-z 
(1.120) 
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EXAMPLE 

f(t) = sin at 

Then 
f  oo 
' —st 

L{sin at} = lQ      sin at e  dt 

Integrate by parts, letting 

u = sin at 

dv = e"stdt 

Then 

du = a cos at dt 

1 „-st v = - — e 
s 

Substituting into 1.111 

) 

sin t e -st _  -(sin  at) (e"st) +  -/      cos  at e"stdt 
0       SJ 0 v-> 

or 

.       sin  at e~stdt  =  0  +  - /       cos  at e"stdt 
0 s/0 

(1.121) 

-st 
The expression cos at e  dt can also be integrated by parts, letting 

u = cos at 

and 

dv = e~stdt 

du = -a sin at dt 

1  -st 
v = - e 

s 

Giving 

,  -st,,   - (cos at) (e 
cos at e  dt = — ;  

-st, a -st 
sin at e  dt 
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o 
or 

f0      cos at e"stdt = g- - | Usin t} (1.122) 

Substituting 1.122  into 1.121 gives 

L{ >in at} = 0 + - - - LCsin at} s       s T ~ T s        s 
L{sin at} 

which  "obviously" yields 

L{sin at} = -~ T 
sz + aT 

(1.123) 

Also note that 1.121 may be written as 

L{sin  at}  = — L{cos  at} s 

which yields 

L{cos at} = ~2 5- 
s + a 

The Laplace transforms of more complicated functions may be quite 
tedious to derive, but the procedure is similar to that above.  Fortu- 
nately, it is not necessary to derive Laplace transforms each time we 
use them. Extensive tables of transforms exist in most advanced mathe- 
matics and control system textbooks. 

We originally asserted that the Laplace transform was going to 
assist in the solution of a differential equation. The technique is 
best described by an example. 

EXAMPLE 

;.;■■■: 

Given 

2t x + 4x + 4x = 4e 

with conditions x(0) = 1, x(0) = -4.  Taking the Laplace transform of 
the equation gives 

s2X(s) -sx(0)- x(0) + 4 [sX(s) - x(0)] + 4X(s) =  4 

=T 

♦ 
or 

[s2 + 4s + 4] X(s) + [-s + 4 - 4] =  i 2 



Solving  for X(s), 

X(s)   =  —?—~2s +  4  . (1.124) 
(s  - 2)(s  +  2)Z 

In order to continue with our solution, it is necessary that we dis- 
cuss  partial   fraction expansions. 

PROBLEMS:      Set   III,   pagt   1.100. 

• 1.5.2    PARTIAL FRACTIONS 

The method of partial fractions enables us to separate a complicated 
rational fraction into a sum of simpler fractions. Suppose we are given 
a fraction of two polynomials in a variable, s. Suppose the fraction is 
proper (the degree of the numerator is less than the degree of the domi- 
nator). If it is not proper, we make it proper by dividing the fraction 
and then consider the remainder expression.  There occur several cases: 

• 1.5.2.1   CASE 1:   DISTINCT LINEAR FACTORS 

To each linear factor such as (as + b), occurring once in the demoni- 
nator, there corresponds a single partial fraction of the form, A/(as + b), 
where A is a constant to be determined. 

EXAMPLE 

7s - 4    -ABC ,  125> 
s(s - 1) (s + 2) - i + i~^"T + s~+~T U.l^b) 

• 1.5.2.2   CASE 2:   REPEATED LINEAR FACTORS 

To each  linear  factor,   (as  + b),   occurring n  times  in  the demoninator 
there  corresponds a  set of n  partial  fractions. 

EXAMPLE 

s2   -  9s   +   17  _ A B C ,,    ,-,, 
il-2)2(s+l)  "  TF^TT + TT^TT + "^17 (1'126) 

(where  A,   B,   and C  are  constants  to be  determined) 

• 15.2 3   CASE 3: DISTINCT QUADRATIC FACTORS 

To each irreducible quadratic factor, as^ + bs + c, occurring once 
in the denominator, there corresponds a single partial fraction of the 
form, (As + B)/(as2 + bs + c), where A and B are constants to be deter- 
mined. 
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Q 
EXAMPLE 

38 + 53 + 8 

(s + 2) (s2 + 1) 

A   . B8 + C 
+ 2   s*  + 1 

(1.127) 

• 1.5.2.4 CASE 4: REPEATED QUADRATIC FACTORS 

To each irreducible quadratic factor, as2 + bs + c, occurring n times 
in the denominator, there corresponds a set of n partial fractions. 

EXAMPLE 

10 s  + s + 36 

(s - 4) (s2 + 4) 

A   . BS + C .  Ds + E 
7 " g-TT + _2 . ; + 7T2-7TT2" (1.128) 

+ 4   (s + 4)' 

u 

(where A, B, C, D, and E are constants to be determined) 

The "brute-force" technique for finding the constants will be 
illustrated by solving 1.128. Start by finding the common denominator 
on the right side of 1.128. 

10 s2 + s + 36   A(s2 + 4)2 + (Bs + C) (s - 4) (s2 + 4) + (Ds + E) (s - 4)   = —. _  

,s - 4)(s2 + 4)2 (s - 4)(s2 + 4)2 

(x.129) 

Then set the numerators equal to each other 

10 s2 + s + 36 = A(s2 + 4)2 + (Bs + C) (s2 + 4) (s - 4) + (Ds + E) (s - 4) 

(1.130) 

and, without justifying the statement, we shall assert that 1.130 must 
hold for all values of s. Now substitute enough values of s into 1.130 
to  find the constants. 

1. Suppose s = 4,  then 1.130 becomes 

(10)(16)   + 4  +  36  =  400A 

and 

A =  1/2 

2. Suppose s = 2j, then 1.130 becomes 

-40 + 2j + 36 = -4D + 2jE - 8jD - 4E 

-4 + 2j = -4(D + E) + 2j (E - 4D) 

A- 
The real and imaginary parts must be equal to their counterparts on tne 
opposite side of the equal sign, thus 
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(D  +  E)   =1 

and 

E   -  4D  =   1 

or 

D =  0 

and 

E =   1 

3. Now  let s  =  0,   then  1.130  becomes 

36  =  16A  - 16   (C)   - 4E 

and from above 

A =  1/2,  E =  1 

hence 

36  =  8   - 16C  -  4 

and 

C =  -2 

4. Let s =  1,   then 1.130 becomes 

47  =  25   (1/2)   +   (B  - 2) (-15)   -  3 

94  =  25   -  30B  +60-6, 

or 

Th       B =   -1/2 

Then  1.129  may  be  written 

10  S    + S +  36
T = 1/2   (-L,)   - 1/2   (4-tJL)   + 

(s   -  4) (s2  +  4) 's~^~T; 1 '    '   —3 X 
s+4 (s     +   4) 

Let's  continue  with  our attempt  to solve  the  differential equation 

2t x +  4x +  4x =   4e 

We have transformed the equation (and substituted initial conditions) to 
get 

X(s)   = 
2s   +   4 

(s   -  2) (s   +  2) 
(1.124) 
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'S 
We now expand by partial  fractions 

s     - 2s +  4 

(s   - 2) (s  +  2) 
-       A _  +       g _  + 

1      s~^~T + ITT + 

(s + 2)' 
(1.132) 

Taking the common demoninator,  and setting numerators equal 

s2   - 2s  +  4  = A(s  + 2)2  + B(s + 2) (s  - 2)   + C.(s  - 2) (1.133) 

We can now substitute different values of s into this equation and solve 
for the constants.     An alternate method of solving  for these constants 
exists, however,  and we will demonstrate this new approach.     If we multi- 
ply  out  the  right side  of 1.133 we  get 

s2 - 2s + 4 = As2 + 4As + 4A + Bs  - 4B + Cs - 2C 

= (A + B)s2 + (4A + C)s + (4.* - 4B - 2C) 

Now the coefficients of like powers of s on both sides of the equation 
must be equal (that is, the coefficient of s2 on the left side equals 
the coefficient of s2 on the right side, etc.)  Equating gives 

s2 : 1 = A + B 

s1 : -2 = 4A + C 

0 4A - 4B - 2C 

Solving,  we  get 

A =  1/4 

B  =  3/4 

C  =   -3 

Substituting into  1.132,   we   get 

;(s)   = 1/4   L~T| +  3/4 1 
s + 2; -3 

s  +~2~ 
(1.134) 

• 1.5.3   HEAVISIDE EXPANSION THEOREMS FOR ANY F (i) 

#* 

• 1.5.3 1   CASE 1     DISTINCT LINEAR FACTORS 

If the denominator F(s) has a distinct linear factor, (s - a), we 
find the constant for that factor by multiplying F(s) by (s - a), and 
then evaluate the remainder of F(s) at s = a. 
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F(S)   = s - a +   ... 

u 

A =   (s  - a)   F(s) 
s = a 

EXAMPLE 

F(s)   = 7s   - 4 *+^JU +       c s(s   - 1)(s  +  2)   "  s       s   -  1       s  + 2 

A =  sF(s) 
s  = 0 

73-4 
is   - IMS + 2) 

B =   (s  - l)F(s) 
s  =   1 

7s   -  4 
s(s + 2) 

s = 0 

s = 1 

(-D(2) =  2 

7-4 
TTTTJT = l 

C =   (s + 2)F(s) 

See  case  4   also. 

s =  -2 

7s  -  4 
s(s  - 1) s »  -2 

-14   - 4 
(-2)(-3) =   -3 

'1.5.3.2   CASE 2:   REPEATED LINEAR FACTORS 

If the denominator of F(s)   has any repeated linear factors,  they 
must be treated in a special manner. 

F(s)   = Z 

(s  - a)11       (s  - a)n "~"1'       (s  - a) n~^T +   ' *' •  + TF-^-aT 

Let *(s)   =   (s  - a)" F(s) 

Then 

A =  <i>(s) 
s =  a 

B = d<j)(s)/ds 
s = a 

C = 2j d2<Ms)/ds2 

Z   k! ^^ 

s «s a 

s = a 

'Note:  This formula is good for all constants except A above, 
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where k = 1, 2,   ..., n  - 1 

where the derivatives of J7(s)   are obtained by using 

d     ,u._ vdu - udv 
a? (v>       7  

For example, 

F(S) = _JL-T4?_L!Z_ . ^ + _!__. +    c 
(s  - 2)2   (s  + 1)       s + 1_r  (s  - 2)2      s  " 2 

A =   (s +  1)   F(s) . s     " 9s "*• 17 

-1 (s  - 2)T 

Js -  -1 

1 + 9 + 17 

<-3)2 
27 

B =   *(s) - 2«  +   17 
S  +  1 

= 2 

4-18+17 =  1 

s = 2 

_ _ d»(s) 
c " -as- 

s = 2 

(s +  1)(2s  - 9)   -   (S*   - 9s +  17)(1) 
 5  

(s + ir s = 2 

-   (3) (-5)   -   (4  -  18 + 17)   _  -18 , 

See  case  4 also. 

• 1.5.3.3   CASE 3:   DISTINCT QUADRATIC FACTORS 

If the denominator of F(s) contains a distinct quadratic factor 
(s + a)2 + b^, we will again multiply F(s) by (s + a)2 + b , and evaluate 
the remainder of F(s) , 4>(s) , at s = -a + jb and use real and imaginary 
parts of <Ms) to obtain the two constants. 

F(s) = As + B 
 3 ? 
(s + a)z + bz 

4* 

Let 

♦ (s) = (s + a)2 + b2 F(s) 

and compute 

♦ + j*A " *(s) 
s = -a + jb 
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Then 

A =     l B =       r l 

For example, 

W 

F(s)   = 
4S    +r

19s  +  32 

(s  +  2)    [(s  +   3r  +   4J      (s  +   3) 
As  + B C 

TTA  '  s +T 

l>r +  j*i  =   Ms) 
_  4s    +  19s  +  32 

s  +  2 
s  =  -3 +  j2 s  =  -3 +  j2 

_   -5   -   jlO        -1   -  j2  _     -   .    .. 
"    -l * j2  ' rr-r-jT = -3 + D4 

=  -3 =  4 a =  3 b =  2 

A =   j- =   2 B  = 
-6   +   12 

=   3 

See  case   4  also. 

• 1.5.3.4   CASE 4:   REPEATED QUADRATIC FACTORS  (AND ANY OTHER CASE) 

Procedures  similar  to  those  used  in  the  previous  cases  exist  for 
this  case    but  they are   too cumbersome   for most applications.     The   follow- 
ing procedures  will  work   for  any  combination  of  linear  and quadratic 
factors: 

F(s) 10s     +   s  +   36 

(s   -  4) (s2  +   4) 

A        ,   Bs   +   C   ,      Ds   +   E 
1 ~   s~^S +     2   .    I   +   ,_2    .    .,2 (S~   +   4)' 

Put  the   right-hand  s. de  of  the  equation over a  common  denominator  and 
then  set  the  two numerators equal. 

10s2   +   s  +   36   = A(s2   +   4)2   -i-   (lis   +C) (s   -  4) (s2   +   4)   +   (Ds   +  F.) (s   -  4) 

(1.135) 

which will   be   a   true  equation   for  al]   values  of  s. 

• 15 35   PROCEDURES 

The   following   steps   may  be   done   in   any  order,   and   in   combination 
with   the   procedures   in   cases   1   through   3. 
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1. Since equation  1.135  is  true   for .^11  values  of s.   choosing specific 

values of s,   five in this case,  and substituting into equation 1.135 
will give you five equations in five unknowns, which can be solved 
simultaneously  for the constants. 

2. Expand the  right hand side of equation  1.135  and find the coeffi- 
cients of each power of s.     These coefficients must be the same on 
both sides of the equation   (that is,   s4:     B = 0;   s°:     4A -  16C  -4E = 
36) . 

3. Let s equal  an  imaginary or complex number and substitute  into 
equation  1.135.     The  real parts on both  sides  of the equation 
must be equal,  and so must the  imaginary parts. 

Examining equation  1.135,  we will  use  a combination  of procedures.     First, 
find A by  using case  1 

A    =   (s   - 4)   F(s) 10(16)   +  4 +  36  _  7.00  „  1 
A 777~T~772        4W    J s  =  4 (16   +   4) 

*•>■■■-. 

1 

I 

G 

If we  let s =   j2,   the  only non-sero term will be  the  one with D  and E. 
Letting s  be  a  complex number will  give  us  two equations  for D and E, 
which we can  solve  simultaneously. 

10(j2)2   +   j2   +   36   =   (j2D  +  E)(j2   -   4) 

-4 + j2 = -4D - 4E -j8D + j2E 

Now set real and imaginary parts equal. 

-4D -4E = -4 -8D + 2E = 2 

-2D   -2E  =   -2 -8D  +   2E  =   2 

Adding  the  two equations  together  gives: 

-10D =  0 

D =  0 

Then 

2E  =   2 

E  =   1 

4» 

To   find C,   let   s   --  0   in  equation   1.135 

36   =   16A   -   16C   -   4E   =   16(1/2)    -  16C   -   4(1) 

16C =8-4   -   36   =   -32 

C  =   -2 

16) 



To find B, let s = 1 

10+ 1 + 36 = 25A + (B +C)(-3)(5) + (D + E)(-3) 

47 = 25(1/2) - 15B - 15(-2) - 3 

15B = 12 1/2 + 30 - 3 - 47 = 42 1/2 - 50 = -7 1/2 

B = - 1/2 

An alternate way to find B is to calculate the coefficient of s4 on the 
right-h3nd side of equation 1.135, and then set it equal to the coeffi- 
cient of s4  on  the   Left hand side of the equation.     Then we  get 

A  +   B  =   0 

B  =   -A =   -  1/2 

To complete our solution, we must convert (transform) back into the 
time domain.  The operation which converts a function X(s) back to a func- 
tion of time is called the inverse Laplace transformation. 

L"1 <L{x(t) }) = L-1 {X(s)} = x(t) (1.136) 

The  inverse  Laplace  transformation  can be  solved  directly 

xlt) 
C +   j« 

2TJ X(s)estds 
, C   -   j» 

(where  C is  a  real  constant) 

(1.137) 

This  integral,   1.137,   is hardly ever used because  the Laplace  transform 
is  unique   and,   therefore,   generally X(.>)   can  be   recognized  as  the  Laplace 
transform of  some known  x(t).     In  practice,   tables  of transform pairs 
(as   found  in  most mathematics   texts)   will   suffice   to   find  the   inverse   of 
X(s)    (see   table   II,  page   1.106,   for some  transform pairs). 

Using a  suitable   transform table,   the  inverse  of 1.134   can  easily 
be   found  to give  us  a  solution 

x(t) 1/4  e2t  +   3/4  e"2t 3te -2t (1.130) 

PROBLEMS;     Set   IV,   A,   page 1.106. 

• 1.5.4    PROPERTIES OF LAPLACE TRANSFORMS 

The  Laplace   transform of some   f(t),   a   function  of  time,   is  defined 
as 

Li. f (t) I   =   F(s) f (t)e"stdt (1.139) 
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41 where 

s = o + ju> (a complex number) 

The strength of the Laplace transform is that it converts linear 
differential equations with constant coefficients into algebraic equa- 
tions in the s-domain. All that remains to do is to take the inverse 
transform of the explicit solutions to return to the time domain. Al- 
though the applications at the school will consider time as the inde- 
pendent variable, a linear differential equation with any independent 
variable (such as distance) may be solved by Laplace transforms. 

There are several important properties of the Laplace transform 
which should be included in this discussion. 

In the general case it can be shown that 

-.n 
L    LML  sn F(s)   - 

dt' n 
cn-l,,n.         n-2 df(0)   ,           .   dn"1f(0) s       r(0)   + s —rr— +   .. .   +  —r— 

dt' 

u 

(1.140) 

It is obvious that for quiescent systems   (that is,  initial condi- 
tions  zero)' 

M£|^> =  snF(s) (1.141) 

This result enables us to write down transfer function by inspec- 
tion. 

Another significant transform is that of an indefinite integral. 

In the general case 

f(t)dtJ F(s) f (t)dt t = 0+ f (t)dt t = 0+ 
n- + .. 

Equation 1.140 allows us to transform Integro-differential equations such 
as those  arising in electrical engineering. 

For the case where all integrals of f(t)   evaluated at 0+ are zero, 
our transform becomes 

'III- f (t)dt' n\    _ F(s) (1.143) 

A third useful property of the Laplace transform arises if we con- 
sider the Laplace transform of the product of some exponential and any 
other function of time. 
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L <e"at  f(t) e"at   f(t)e-S fcdt =/    °°  f(t)e-(s + a)t dt 

(1.144) 

It is  apparent that this is  the' same  form as  the  transform of  f(t), 
except tha;  the  transformed independent variable is   (s  +  a)   rather than 
s.    We  conclude  therefore  that 

L   {e"at  f(t)}  =  L{f(t) } =  F(s  +  a) (1.145) 
(s •* s + a) 

It is important to note at this point, that the transform of the 
product of two functions of time is not equal to the product of the 
individual transforms.  In symbolic form, 

L (f(t) g(t) } j  F(s) G(s) (1.146) 

The L{f(t) g(t)} must be solved for directly by the definition cf 
the Laplace transform» 

The last property we will consider is the Laplace transform of a 
pure time delay.  A pure time delay of the function f(t) can be repre- 
sented mathematically as 

f(t  -  a)   u(t  -  a) (1.147) 

,j 

where     a    is  the   length  of delay  and u(t  -  a)   is  the  unit step defined  as 

u(t  -  a)   = 
1   ,    (t  -  a)   >   0 

0   ,    (t   - a)        0 

For   such   a  time   delay 

as 
L'f (t   - a)   u(t   -  a) }   =  e I,{ f (t) } (-1 .148) 

We  shall   now demonstrate   the  usefulness   of  the   Laplace   transform by 
solving  several   example  problems. 

KXAWM.K 

f.olve   the   given  equation   for  x(t), 

x   -4   <>x  =    1 

when   x (;>)   ■    ] . 

(1.149) 
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By Laplace 

L{x} = sX(x)   - x(0) 

L{2x}  =  2X(s) 

Thus 

L{1}   =   ± 

(s  +  2)   X(s)   =  ±- +  1 

u 

I   I 
4> 

 B_ 
s  + 2" 

X(s)  =iTi±Ti2T=s1 + 

Solving, 

A =  1/2 

and 

B -  1   -  1/2  =  1/2 

x(8,   =   Ul +     ^2, xis;       — 1- - + 2 

Inverse  transforming gives 

x(t)   =  1/2   - 1/2  e~2t 

EXAMPLE 

Given 

x +  2x =   sin  t,   x(0)   =  5 

solve   for  x(t). 

Taking the  transform of  1.151 

sX(s)    - x(0)   +  2X(s) 
TTi 

and 

X(s)   = 
1 

"+T 

(1.150) 

(1.151) 

(1.152) 
(s     +   1) (s  +   2) 

Expanding  the   first  term on the right  side  of  the equation  gives 

—                  I                          -^    AS- + L    4 —£. 
(s2   +   1) (s   +  2)        s2  + 1 S  +^ 
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Taking the common denominator and equating numerators gives 

1 = (As +B)(s + 2) + C(s2 + 1) 

Substituting values of s leads to 

A - -1/5 

B = 2/5 

C =    1/5 

and substituting back into 1.152 gives 

) 

X(s)   =4ZL£+       V5_+:V5n.+ 
s*  +  1       sz  +  1 2—7 T _2 . , x mr T r+T 

Inverse transforming gives our solution 

x(t) = -1/5 cos t + 2/5 sin t + 5 1/5 e 

EXAMPLE 

Given 

x + 5x + 6x = 3e"3t,  x(0)   = x(0)   = 1 

solve  for x(t). 

-2t (1.153) 

a.154) 
, ) 

Taking the  transform of 1.154 

s2X(s)   - sx(0)   - x(0)   + 5sX(s)   - 5x(0)   + 6X(s)   = —|-«. 
S   +   3 

or 

X(s)   = s    + 9s + 21 

(s + 3)    (s    + 5s + 6) 

Factoring the denominator, 

Y,e,   _ s    + 9s + 21  
X(s)   "   (s +  3)(s + 2){s + 3) (1.155) 

's    + 9s + 21 

(s  +  3)2(s  + 2) 
(1.156) 
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o 
B 

irr (s +  3) 
y-rf (1.157) 

Finding the common denominator of 1.157, and setting the resultant 
numerator equal to the numerator of 1.156, 

s2 + 9s + 21 = A(s + 3)(s + 2)   + B(s + 2)   + C(s + 3)2 

which can be solved easily for 

A = -6 

B =  -3 

C =    7 

Now X(s)   is given by 

X(s)   = s4-T ^—2" + iT7 s +  3       (s +  3)Z       s + Z 

which can be transformed to 

x(t)   =  -6e~3t  - 3te~3t + 7e"2t 

EXAMPLE 

Given 

*x + 2x +  lOx -  3t + 6/10 

x(0)   =  3 

x(0)   =  - 27/10 

solve  for x(t). 

(1.158) 

Transforming 1.159  and solving for X(s)   gives 

Mb 

$ 

4* 

X(s) 
3s3 +  3.38^  + 0.6s  +  3 _ A + 

s2   (s2  + 2s +  10) S 

B     ,          Cs  +  D __. +  _»  
s s     + 2s +  10 

where 

A = 0 

B = 0.3 

C =  3 

D =  3 

LIT 



Thus, 

x(s, = ?-i
3 + -, 3s + 3 

s s"  + 2i  +  10 
(1.160) 

4 ) 

To make  our inverse  transforming a bit easier,   let's  rewrite  1.160  as 

(s +  1) X(s)   = ^! +  3  5 j- 
(s -» ir + 3 

(1.161) 

which is readily transformable to 

-t x(t) = 0.3t + 3e  cos 3t (1.162) 

PROBLEMS:     Set  IV,   B,   page  1.106. 

• 1.5.5   TRANSFER FUNCTION 

Before  beginning simultaneous  differential equations,  we  shall de- 
fine  the  transfer  function  of  a system.     Consider the   following equation 
with  initial  conditions  as  shown. 

ax + bx +  ex =   f(t) 

x(0)   =  x(0)   =  0 

If we  take   the  Laplace   transform of  1.163,  we  get 

as2X(s)   +  bsX(s)   +  cX(s)   =  F(s) 

or 

X(s) 
Flu 

(1.163) 

(1.164) 

as     +  bs  +  c 

Since equation  1.163   represents  a  system whose  input  is   f(t)   and whose 
output  is  x(t),  we  shall  define 

X(s)   =  output  transform 

F(s)   =  input,  transform 

We  can  then  define   the   transfer  function  of  the  system,   TF,   as 

TF X(s) 
FTST 

(1.165) 

For  our   exa  pie, 

TF  = ; i. ] 6 7) 
as'   +   bs   H 

168 



n 
Note that the denominator of the transfer function is algebraically the 
same as the characteristic equation of 1.163. We have already seen, in 
paragraph 1.6.1 on operator notation, that the characteristic equation 
completely defines the transient solution, and that the total solution 
is only altered by the effect of the particular solution due to the input 
(or forcing function). Thus, from a physical standpoint, the transfer 
function completely characterizes a linear system. 

The transfer function has several properties which we wish to ex- 
ploit. Sucpose that we have two systems characterized by the differen- 
tial equations 

ax + bx + ex = f(t) (1.168) 

and 

dy + ey + gy = x(t) (1.169) 

From the equations it can be  seen that the  first  system has  an input 
f(t),  and an output x(t).     The second system has an input x(t)   and an 
output y(t).     If we  take  Laplace transforms at 1.168  and 1.169 we get 
(assuming all  initial  conditions  are equal  to  zero) 

(as    + bs + c)   X(s)   =  F(s) (1.170) 

o and 

(ds2 + es  +  g)   Y(s)   =  X(s) 

Finding the  transfer  functions, 

X(s) 1 
TF1 " fTiT 

(1.171) 

(1.171) 
as    +   bs +  c 

TF2   "   XW " ds    + es  +  g 
(1.173) 

Now,  both of  these  systems  can be  represented schematically  as  shown  in 
figure  1.16. 

F(«r TF] 

SYSTEM 1 

-*-X(s) 

X 

X(s). TF2 

SYSTEM 2 

Figure 1.16 

Y(s) 

1.69 



Suppose  that we now wish to find the output,  y(t),   of system 2 due 
to the input,   f(t),  of system 1.    Our first inspiration might tell us 
that the  logical  thing to do is to find x(t) ,  but this is not necessary, 
We can  "link"  the  two systems using the transfer functions,   as shown in 
figure  1.17. 

F(0" ■0 X(sl TF2 ■*-Y(s) 

F(*h TF3 -^Y(s) 

TF3 = (TFD(TF2) 

Figure LIT 

The  solution we  seek,  y(t),  is then given by the inverse transform 
of Y(s) ,   or 

or 

Y(s)   = 

Y(s)   = 

TF. 

TF, 

F(s) 

j T'- F(s) 

(1.174) 

(1.175) 

This method of solution can oe logically extended to include any 
numbor of systems we desire. 

1.6 SIMULTANEOUS LINEAR DIFFERENTIAL EQUATION 

In many physical problems, the mathematical description of the sys- 
tem can most conveniently be written as simultaneous differential equa- 
tions with constant coefficients.  The basic procedure for solving a 
system of n ordinary differential equations in n dependent variables 
consists in obtaining a set of equations from which all but one of the 
dependent variables, say x, can be eliminated.  The equation resulting 
from the elimination is then solved for the variable x.  Each of the 
oth r dependent variables is then obtained in a similar manner. 

We shall consider two procedures for solution of simultaneous 
linear differential equations, using determinants. 

Consider the system 

dt dt y •■ (1.177) 

dx 
dt 

+   3x y =  0 (1.178) 

no 
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ö 
Using operator notation,   they become 

2(p - 2)x +   (p - l)y = efc 

(p +  3)x + y = 0 

(1.179) 

(1.180) 

• 1.6.1   SOLUTION BY MEANS OF DETERMINANTS AND OPERATOR NOTATION 

Recall that  for a determinant of second order the value of the 
determinant is  given by 

a        b 

c d 
= ad - cb 

And then rewrite these equations in the following form 

pl x + P2Y = fl(t) 

(1.176) 

(1.131) 

P3 x + p4y = f2(t) (1.182) 

I 

where the p's denote the polynomial operators which act en x and y. 

Our solution for x can be given by Cramer's rule 

P3  . P4 

fl(r- 

f2(t) 

(1.183) 

Jv 

and our solution for y can be expressed as 

Pl P2 

y 

p3      p4j 
i 

fx(t) 

f2(t) 

(1.184) 

To solve  the  system given by equations  1.179  and 1.180,  we write 
these equation  in determinant  form 

2(p - 2) (p  -  1 

(P +  3) 

which is expanded to 

(p2  +  1)   A -••   -e* 

(p  -  1) 

1 

(1.185) 

(1.186) 

.71 
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giving a solution 

x(t) = c. cos t + c2 sin t - 1/2 e (1.187) 

Solving for y, 

2(p - 2)     (p - 1) 

(P + 3)       1 

which can be expanded to 

(p2 + l)y = 4efc 

giving a solution 

y(t)   =  c3  cos  t +  c.   sin t  + 2e 

2(p - 2) 

(P +  3) 

(1.188) 

(1.189) 

(1.190) 

We know by examining  1  187  and  1.190  that extraneous  constants  are pres- 
ent,  and to eliminate  them we substitute back  into equation 1.178  and 
see  that 

(J2  +   3c1 +  c3)   cos  t +   (3c2   - c1  +  c4)   sin t =  0 (1.191; 

Since  1.191 must hold  for all values  of t,   the  terms  in parenthesis  must 
vanish,   giving 

c-  =   -(3c,   +  c„) 

and 

c4  =  cl  "   3c2 

When  these   values  are  substituted  in  1.190,   we  obtain  the   general  solution, 

• 1.6.2    SOLUTION BY MEANS OF LAPLACE TRANSFORMS 

A very effective  meanr  of handling  simultaneous  linear  differential 
equations   is  to  take   the   Laplace   transform of  the  set of equations and 
reduce  the  problem  to  a  set  of  algebraic equations which  can be  solved 
explicitly   for the  dependent  variable  in  s.     This  method  is  demonstrated 
below. 

Given   the   set  of equations 

3   ci!| +   x  +   i-l +   3y   =   f(t) 
dt dt 

(1.192) 

17? 

) 
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y 
2l4+x + i4+2y = q(t) 

dt dt 

where x(0) = i(0) = y(0) = y(0) = 0, find x(t) and y(t). 
Laplace transform of this system yields 

(3s2  +  1)   X   (s)   +   (s2  +  3)   Y   (s)   = F(s) 

(2s2  +  1)   X   (s)   +   (s2  + 2)   Y   (s)   =  G(s) 

(1.193) 

Taking the 

(1.194) 

(1.195) 

From the previous section,  we can solve  for X(s)   by rewriting these 
equations in determinant form,   again by Cramer's rule 

(3s2 + I)    (s2 + 3) 

(2s2 + 1)    (s2 + 2) 

X(s) 

F(s) 

G(s) 

(s" + 3) 

(s2 + 2) 

(1.196) 

I  ^ 

I 

i    W 

Since we are using Laplace transforms instead of operators, however, we 
can take this equation one step further.  We can now solve explicitly 
for X(s), giving us 

X(s) 

F(s) 

G(s) 

(3s'  +  1) 

(2s"   +  1) 

(s*   +   3) 

(s'   +  2) 

(s*  +  3) 

(s^  +  2) 

(1.197) 

■    ?v 

In  a similar manner, 

Y(s) 

(3s"   +   1) 

(2s"   +  1) 

(3s"   +  1) 

(2s     +   1) 

F(s) 

G(s) 

(s"   +   3) 

(s*   +   2) 

(1.198) 

173 
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For the particular inputs f(t) = t and g(t) = 1, 

X(s) 

1 
~7 s 

1 
s 

(s* + 3) 

(s* + 2) 
-s3 + s2 - 3s + 2 

(s" - 1) 

Expanded as a partial fraction 

X(s) 

2,  4 s   (s 

ABCS  + D,        E F 

7   ■    "^TIT   i_rT   Tmr 

i) 

-s3 +  s2  -  3s  +  2 

s2(s4   -  1) 

Solving for A, B, etc., we have 

s        s  + 1 

which yields a solution 

7/4    1/4 
s + 1  s - 1 

(1.399) 

(1.200) 

x(t) = -2t + 3 - 7/4e-t - l^e1 + 1/2 sin t - cos ^ 

A similar appioach will obtain the solution for y(t). 

In the case of three simultaneous differential equations, the 
cation of Laplace will yield the proper solutions. 

P,(s) X(s) + P2(s) Y(s) + P3(s) Z(s) = F1(s) 

Q1(s) X(S) + Q2(s) Y(s) + Q3(s) Z(s) = F2(s) 

R. (s) X(s) + R^(s) Y(s) + R,(s) Z(s) = F., (s) 

(1.203) 

(1.202) 

appli- 

(3 .201) 

(3.204) 

(1.205) 

J 

where 

X(s) = 

\ R2      R3 

Y(s) and Z(s) will have similar forms, 

PROBLEMS:  Set V, page 1.119. 

1.14 

(1.206) 
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1. 

3. 

4. 

5. 

6. 

7. 

10. 

11. 

12. 

Table II 

LAPLACE TRANSFORMS 

?(■) 

X,      e"St f(t)dt 

sn F(s) - 3n-1 f(0+) - sn"2 f•(0+) 

- ... - ffr-» (0+) 

n! 
n+1 (n - 1,  2,   ...) 

+ a 

(s + a)' 

(s + a) n+1 (n - 1,  2,   ...) 

(s + a)(s + b) 

(s + a)(s + b) 

a i b 

a 4 b 

(s + a)(s + b)(s + c) 

2^2 s        +      a 

f(t) 

f(t) 

f(n)   (t) 

-at 

te •at 

j\    at t    e 

1 , -at        -btx (e        - e      ) b•- a 

1 .    -at      ,   -bt, (ae        - be      ) a - b 

(b - c)e"at -  (a - c)e~bt » (a - b)e~ct 

(a - b)(b - c)(a - c) 

sin at 

1.7b 
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Table  II   (Concluded) 

13. 

14. 

15. 

16. 

17. 

IS. 

19. 

20. 

21. 

22. 

F(s) f(t) 

s 
"y"""'"2 
s  + a 

cos at 

2 
a 

'1         2 
s(.-, + a ) 

] - cos at 

3 
a 

2, 2 j.  2N s (s + a ) 
at - sin at 

9 3 2a 
, 2 .  2.2 
(s + a ) 

sin at - at cos at 

2as 
"/ 2""'"2.2 
(s + a ) 

t sin at 

9  2 Zas 

/• 2 u. 2,2 (s + a ) 
sin at + at cos at 

2   2 
s - a 
2   2 2 t cos at 

2  2 
Or -a')s 

2   2  2 
b2) 

(a2 * b2) co; at - cos bt 

b 

(s + a)2 + i.2 
"at  ,  w c   sin bt 

s + a 
2   2 

(s + a) + b 
e   cos bt 

1.76 
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0 
H PROBLEM SET I 

1.  Solve for v . 

dx 
x  + Ax + sin 6x 

b. A. 
d*2 

e   + sin a: x 

d37 c. -J 
dx 

d.  v 4* + 3x2 dx 

e.  (x - l)2 ydx + x  (y + l)dy 

U 
2. Test for exactness and solve if exact. 

2 2 
(y - x)dx +  (x - y)dy 

b.  (2x + 3y)dx + (3x + y - J)dy 

c.  (2xyA ey + 2xy3 + y)dx +  (x2yV - 'V -  3x)dy  «  0 

d.    I!u.Uip]y c.  by 1/y    . 

I      § 

3.    Solve for    y      usinp, operator notation. 

a.     5y'    +    6y 

b.     y'"    -    5y"    -    24y' 

!        S: 
c.    y"    +    12y'    +    36y 

4w 

d.     y"     +    25y" 

e.    y"    +    4y'    +    13y 

1.77 
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1.8   SOLUTION TO PROBLEM SET I 

la.      -f- —       dx x      +    Ax    +    sin 6x 

By direct integration 

Jdy  »  f< (x + Ax + sin 6x)dx + C 

x  ,  „ 2    cos 6x  , „ y  =  -v + 2x  - —-r~   + C 

-i e   + sin w x 

By direct integration 

/*" 
(e  + sin (u x)dx + C. 

-x    cos u  x  ,  _ _c   -  — + Q 

dy  =   (-e  •-  -- + C )dx 4 C„ 

*±"-f-X-  + CjX + C2 

1.78 
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lc.  y" 

By direct integration 

Jdy"  - J, x dx + C, 

H   + Cl 

Jar   -  /< <T + Ci)dx + C2 

42 + C1X + C2 

I O 
fdy  -  J< (fj + c!x + c2)dx + C3 

8   C.x' 

336 + "V + V + C3 

1 *■■ 

Id,  ,£ * 3»2 

Separate Variables 

lydy      -      f-3x2 dx    +    C 

-x      +    C 

1.79 
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le.  (x - l)2 ydx + x2 (y + l)dy 

Separate Variables 

Ü 

JL + JL dy i^^dx 
x 

ja ♦ i; 

f,x - 2x + lv.  ,  . _!( _ )dX + C 
J x 

-((i.l + -A)dx + c 

y + Iny  ■ -x + 21nx + -   + C 
x 

2 2 
2a.  (y - x)dx + (x - y)dy  »  0 

M  -  (y - x) N  ■  x  - y 

-— ■  2y 
3y     y 

3N 
3x 

2x 

9y    3y 
^>Not Exact 

2b.  (2x + 3y)dx + (3x + y - l)dy - 0 

2x + 3y 3x + y - 1 

1.80 
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9 
3y 3x 

_3M 
3y 

.3N 
3;ic 

Exact 

Ja (2x3 + 3y)dx   +Jb  (3a + y - l)dy - k 

(l/2x" + 3xy)|a   +    (3ay + l/2y    - y)Jb    -k 

(l/2x4 + 3xy)  -  (l/2aA + 3ay) +  (3ay + l/2y2 - y)  -  (3ab + l/2b2 - b) - k 

l/2xA + 3xy + l/2y2 - y - k + l/2a4 + 3ab + l/2b2 - b    -    k 

l/2x4 + 3xy + l/2y2 - y    -    k 

u 4 v 3 2 4 v 7  2 
2c.       (2xy V + 2xy    + y)dx   +    (x y ey - x"y    - 3x)dy    - 

o    4 y .  ->    3 . x,       2*y       22      , M   «■ 2xy e    + 2xy   +    y N-xye'-xy    -3x 

—   ■ 2x(4y e' + y e')    +    6xy      +    1 

_3N 
3x 

2xyV    -    2xy2    -    3 

3M     ,     3N 
3y    f    3x 

Not Exact 

2d. (2xey + —   +   --3-)dx +  (x2ey - *^ 
7       y y 

>y 
y 

■4* 

(2xey    +   —    +    K) (x2ey 3xN 

1.81 
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iä   .    2xey    -    2x   .   i_ 
2y zxe 2 4 

y        y 

M K   2xey  _   2x  _   3_ 
3x *xe 2 4 

y        y 

3N 3N 
3y      -    3x ■   —        ^ Exact 

x y     -, . .2 
(2xey + 1*   +   l_)dx   +   ^  (a2ey    _    al   _    3a)dy   _    k 

y y3'~    '    b 
y        y 

(XV   +   j!+   ^)X   +    (a2ey   +   I   +   a)V   _   R 

y      a • yJ    b 

y       3' 
y 

y    -    ¥ 
y 

b 3' 
b^ 

«V  +  £+   *_  .   k  +   a2eb   + l+  *_ 
y       y3 b       b3 

3a. 5y'    +    6y    =    0 

5p    +    6    =    0 

Yt    -    Ce 
-6/5x 

1.82 
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3b.  y"  •    -    5y"    -    24y'    -    0 

p3   -    5p2    -    24p    -    0 

p(p    - 5p - 24)    -    0 

P(p - 8)(p + 3)    -    0 

p    -    0,  8, -3 

yt    "    Cl    +    C2e8X   +    C3e"3X 

o 3c.      y"    +    12y'    +    36y    =    0 

1 

p      +    12p    +    36    -    0 

(p    +    6)(p    +    6)    ■=    0 

p    -    -6, -6 

yt    *    Cle C2XC 

I 

1.(1 
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3d.      yIV   +    25y" 

p4    +    25p2      -      0 

p2  (p2 +25)      -      0 

p      -      0,  0, +5j 

yt      "      Cl    +    C2X    +   C3 sin  *5x + ^ 

Q 

or 

y       -     C.    +   C.x   +   C. sin 5x   +   C5cfs 5x 

v     i 

3e.      y"    +    4y'    +    13y 

p      +    Ap    +    13 

(p + 2)'    +    9 

p    +    2      -      +3j 

-2    I    3j 

yt      -     Cie"2x sin (3x + 0) 

or 

-2x y        ■      e        (C^  sin 3x + Cj ccs 3x) 

1.84 
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1.9 PROBLEM SET II 

Given: 

1.  *y" + 36y  -  6 + t 

2.  y  + 5y + 6y 3e -3t 

3.  y  + Ay + Ay  ■  cos t 

A.  2x + Ax + 20x  -  6t + 

5.  3x + 2x -Ae ■2t 

I § 

Find: 

a. The transient solution. 

b. The particular solution. 

c. Substitute the following boundary conditions to eliminate arbitrary 
constants. 

1) For problem 1 above 'y'(O)  -  ■— , y(0)  -  | , y(0) - y(0) - 0 

2) For problem 2 y(0)  -  -6, y(0)  -  1 

3) For problem 3 y(0) g, y(0) 10A 
25 

A) For problem A x(0) 22 
10 

, x(0) 

5) For problem 5 x(3)  -  -0.1A 

1.85 
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d. Find a , w. , c , T where applicable. 

e. Describe the system damping where applicable (I.e. underdamped, overdamped, 
etc.). 

£. SKETCH the total response (I.e. total solution). 

1.86 
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1.10 SOLUTION TO PROBLEM SET II 

1^  y  + 36y 6 + t 

I u 

or 

h 2 
a.  p  + 36p   -  0 

p2 (p2 +36)  -  0 

p  -  0, 08 +6J 

yt  "  Cl + V + C3 Sin (6t + *J 

y   -  C, + C-t + C4 sin 6t + C& cos 6t 

b. Assume 

At + B 

Checking the transient solution we see both of these same 
terms. We must multiply by the independent variable until 
we do not duplicate terms in the transient solution. 

4* 

<4m 

3     2 
At  + Bt 

3At  + 2Bt 

6At + 2B 

6A 

1.81 
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Substituting into the original differential equation, 

0 + 36(6At + 2B)  -  6 + t 

216At + 72B  -  6 + t 

Equating like coefficients, 

216A 

72B 

1 
216 

_1 
12 

216    12 

c) y = yt + y 

t3   t2 
(i)  y  -  Cx + C2t + C3 sin (6t + 0) + 216 + 12 

t3    t2 
(2)  y  -  C  + C2t + C4 sin 6t + C 5 cos 6t + -~   + yj 

Using (1) 

C2 + 6C3 cos (6t + 0) + 72 + ! 

■36C3 sin (6t + 0) + —   +   - 

-216C3 cos (6t + 0) + ■   ~ 

) 

5   i 

1.88 
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Substituting boundary conditions 

y (0)  - 216C3 cos 0 -f ^ 
_1 
36 

C cos 0 

y(0) -36C3 sin 0 + |  -  ^ 

C sin 0  -  0 

C. sin 0  -  C- cos 0 

sia 0 cos 0 

I i   I 

Using (2) 

45° 

3    .2 

216 T 12 

t3    t2 
C  + C.t + C4 sin 6t + Cc cos 6t + jrr   + TJ 

C- + 6C4 cos 6t - 6C5 sin 6t 
+ 72 + £ 

-36C4sin 6t - 36C5 cos 6t 
+ 36 + 6 

-2I6C4 cos 6t + 216(5 sin 61+-^ 



.) 

y  (0)  -  -216C, + 
4 T 36 

_1 
36 

c4    -  0 

y(0) -36C5 + i 

y(0) 

y(0)      -    c. 

216    12 

Numbers d) and e) do not apply. 
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i 
i 

u 
2. y + 5y + 6y 3e -3t 

a)  p  + 5p + 6 

(p + 3)(p + 2)   -  0 

p  -  -3, -2 

-3t b) Assume y  » Ae   (forcing function and all its derivatives) 
P 

Cross check with y . Since y appears in y multiply by t in 

order to eliminate the duplication. 

•'* v* Ate •3t 

-3Ate-3t + Ae'3t 

9Ate'3t - 3Ae"3t - 3Ae"3t 

9Ate"3t - 6Ae"3t 

Substituting into the original D.E. 

e"3t  [(9At - 6A)    +    5(A - 3At)    +    6At] 
.   -3t . e 

e~3t   (-A) 3e 
■3t 

I  § 
<> 
O 

A       -      -3 

-3t y       -     -3te 
P 

1.91 
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c)  y  -  cie_3t + C2e"2t ' 3te"3t 

-3Cle-
3t - 2C2e"

2t + 9te"3t - 3e"3t 

Substituting the boundary conditions 

.) 

y(0) Cl + C2=->C2 1 - c. 

y(0) -6 -3CX - 2C2 - 3 

-3 -3C1 - 2 + 2C 

Cl  = l 

(1 - 3t)e -3t 

From the homogeneous equation 

y + 5y + 6y 

2     , 
u)    =6 
n 

2?o 

5 
27T 1.02 

u,      ■  is undefined 
d 

The system is overdamped and non-oscillatory. 

1.92 
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u 

i   t v./ 

f) 

3.      y   +   4y   +   4y cos t 

a)     p     +   4p   + 

(P + 2)' 

-2, -2 

Cle"2t   +   C2te"2t 

b)    y„ A1  sin t    +   A- cos t 

■ • 

y„ 

A.  cos t    -    A« sin t 

-A.  sin t    -    A. cos t 

1.93 
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Substituting into our original D.E. 

; 

(-Ax - 4A2 + 4AX) sin t + (-A,, + 4AX + 4A2> cos t COS t 

I I 
(3AX - 4A2) sin t + (4Aj + 3A2> cos t  -  cos t 

Equating like coefficients 

3A1 -    4A2 

Al "      U 
Al 

4 
25 

4AX + 3A- 

4 3 
TT sin t + jr  cos t 

y  + y 

c) y  =  Cie~
2t + C2te"

2t + 2j sin t + y| cos t 

y(0)  .  Cl + -J  -  ff 

y(t) 

y(0) 

-2C1e    + C2e 

■If      +    C   * — 1 1 C2    25 

2C2te"
2t -l  y*- cos t 

25 
sin t 

M + C2 
104 
25 

1.94 

58 
25 

-2t  W   -2t  ,  4 ,    ,3 
• .  y  ■  e    '-,r te    + 25 sin c + 5? cos £ 
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o 

o 

d) y + 4y + 4 

4.  2x + 4x + 20x 6t + | 

Place in "Standard Form" x + 2x + lOx  -  0 

a) x + 2x + lOx 

p  + 2p + 10 

(P v iy  + 9 

-1 t    3j 

4. *' 

e-t (C, 6ln 3t + C, cos 3t) 

1.95 
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b)  Assume  x   ■  At + B 
P 

x   -  A 
P 

Substituting 

5.96 

0 + 4A + 20At + 20B 6t + f 

20A 

/  - -TZ 
3 

10 

4A + 20B  -  r 

Xp  "  10 C 

X^  +  X 
t   p 

c)  x(t) e_t (C sin 3t + C, cos 3t) + r^ t 

x(t)  -  -e-t (Cx sin 3t + C2 cos 3t) + e_t (3Cj cos 3t 

- 3C2 sin 3t) -i j| 

x(0) 

x(0) 
27 
10 

27 
10 

-C2 + 3C;l + 

-3 + 3C, 

10 

10 
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u 

.*.    x(t)     •      3e_t cos 3t   +   ■— t 

d)      x   +   2x   +   lOx     -     0 

fid 

2;u 

1  o - XT7 

:•    3? m 

■■■;■■ 

4> 

1 1.9T 
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5.  Given 

v 

3x + 2x -4e -2t 

a)      3p + 2 

•2/3 

xt  -  Cle 
-2t/3 

b)  Assume 

x   -  Ae 
P 

-2t 

-2Ae 
■2t 

Substituting 

-6Ae"2t + 2Ae"2t  -  -4e~2t 

x   ■  e 
P 

_-2t 

c)  x  -  Clt"
2t/3 ,   *"2t 

Substituting the boundary condition 

x(3) -0.14  -  ^(0.14) + .002 

-.142 
.14 

-1.01 »  -1 

1.98 
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x(t) -2t/3    .      -2t -e +   e 

d)      From the transient solution 

-2t/3 xt     «     Cle 

1.5 

e)    N/A 

u 

1.99 
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1.U   PROBLEM SET III 

Given:      C.x   +   C2x   +   C.x     •     f(t) 

Find:        X(s) 

Ü 

When: 

n #2 #3 H #5 

Cl  " 
3 1 A 2 1 

C2  - 
1 -2 3 A 6 

C3  " 
6 5 -1 7 9 

x(0) - 0 -1 3 -1 2 

x(0) - 0 9 -2 0 -1 

f(t) - sin 6t e_t sin 3t t3 - t sin 2t -At 
6e   + 6t cos At 

2 - cos2t 
A 

1.100 
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Ü 

1.12 SOLUTION TO PROBLEM SET Hi 

In general for a second order D.E. 

Cj'x + C2x + CjX  -  f(t) 

Take the Laplace Transform 

u 

Cx [s^X(s) - sx(0) - x(0)] + C2 [sX(s) - x(0)] + C3X(s)  -  F(s) 

(C^2 + C2s + C3)X(s)  -  F(s) + CjSxCO) + 0^(0) + C2x(0) 

F(s) + C^sx«» + C^(0) + C2x(0) 
X(s) 

<C18     +   C28   +   C3) 

This equation can be used for any second order D.E. with constant coefficients. 

6 

1.    Given 

C2      * 

* 

.     5: 

"I * 

x(0)      -      x(0) 

f(t)      -     sin 6t 

1.101 
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From transform pair 12, F(s) 
s + 36 

X(s) 
(s2 + 36)(3s2 + s + 6) 

2. Given: 

"3 

x(0) 

x(0) 

-t 
f(t)  -  e  sin 3t 

From transform pair 21, 

F(s) 

X(s) 

(s + 1)' + 9 

s    + 2s + 10. 

s    + 2s ->• 10 

s    +    11 

s      -    2s    +    5 

1.102 

Obviously,  this can be reduced  to a simpler form, but that's not necessary 

for this exercise. 

u 
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3.    Given: 

C2 * 3 

C3 
■1 -1 

x(0) - 3 

i(0) - -2 

f(t) M t3    - t sin 2t 

I 
From transform pairs 5 and 17, 

u F(s) 4s 
2 2 (s^ + ur 

6s4    -    As5    +    48s2    +    96 

8   (s    +4) 

■4 P 

1.103 
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1.104 

4.    Given: 

3 

x(0) 

x(0) 

u i 

f(t) 
-4t 6e +   6t cos At 

From transform pairs 6 and 19, 

F(s)  .  _§_- + 6(8« - 16) 
s + 4    / 2 x iA\2 

(s + 16) 

F(s) 
6s4 + 192s2 + 1536 + 6s3 + 24 s2 - 96s - 384 

(s + 4)(s2 + 16)2 

F(s) 6sA    +    6s3    +   216s2    -    96s    +    1152 

(s + 4)(s2 + 16)2 

X(s) 
F(s)    -    (2s + 4) 

2s2    +    4s    +    7 
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S.    Given: 

"3 

x(0) 

1 

6 

9 

2 

x(0) 

f(t) 

-1 

2 - cos 2t i   -   J cos 2t 

From transform pairs 3 and 13, 

u F(s) 

F(s) 

X(s) 

t G) * i (/+ J 

2s   + 8 - s 

s(s2 + 4) 

F(s)    +    (2s + 11) 

s2 + 6s + 9 

1 
4 

»2 + 8 

s(s2 + 4) 

•4 * 

1.105 
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1.13 PROBLEM SET IV 

A. Expand by partial fractions: 

1) 
5s  + 29s + 36 

(s + 2)(s2 + As + 3) 

2) 
2s  + 6s + 5 

(s2 + 3s + 2)(s + 1) 

3) 
2sA + 7s3 + 27s2 + 51s + :i7 

(s3 + 9s)(s2 + 3s + 3) 

4) 
7sA - 3s3 + 56s2 - 17s + 107 

(s - l)(s2 + A)2 

B.  Solve by Laplace: 

1) y + y  -  5 ,   y<0) 

2) y + y  -  e"3t ,   y(0) 

3) x + 2x sin t  ,   x(0) 

A) x + 2x + ^x  »  2 sin 3t  ,   x(0) x(0) 

5) x + 5x + 6x 3e ■3t x(0) x(0) 

6) x + 2x + lOx 3t + | ,   x(0) 

x(0) 
27 
10 
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LM   SOLUTION TO PROBLEM SET IV 

A. 

1) 
5s*    +    29s    +    36 

(s + 2)(s2 + 4s + 3) 

5afc + 29s + 36 
(s + 2)(s + 3)(s + 1 

A       +   -^   +   -5- s + 2 s + 3    "    s + 1 

u 
A(s + 3)(s + 1)    +    B(s 4- 2)(g + 1)    +    C(s + 2)(s + 3) 

(| + I)(l+'2)(|+J5 

Setting numerators equal: 

58*    +    29s    *    36 A(s + 3)(s + 1)    +    B(s + 2)(s + 1)    +    C(s + 2)(s + 3) 

let s 45-87+36      -      B(-l)(-2) 

2B 

let s 29    +    36 C(l)(2) 

4 *» 

2C      -      12 

1.107 
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O 

let -2 20-58   +    36     -     A(l)(-1) 

5a     +_J9s__+    36_ 

(s + 2)(s2 + As + 3) 
1=21 

8   +   2 S   +  3 8  +   1 

2) 28      +    6s    +    5  

(s2 + 3s + 2)(s + l> 

2s     +    6s    +    5 
{n + 2)(s + l)(s + 1) 

2s     +    6s    +    5 

(s + 2, (s + l)2 

_A_   +   _!_   +   ___C  
8 + 2 9 + 1 (s + I)2 

A(s + 1)      +    B(s + 2)(s + 1)    +    C(s + 2) 

(s + 2)(s + l)2 

Setting numerators equal: 

2s      +    6s    +    5 A(s + 1)      +    B(s + 2)(s + i)    +    C(s + 2) 

let s 2-6    +    5      -      C 

let s 8-12    +    5 

1.108 
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o 

let s^O 5      -      A   +   B(2)    +   C(2) 

1    +    2B   +    2 

2s      +    6s    +   5 

(s + 2)(s + l)2 8+28+1 <s+l)2 

3) 
2sA -f 7s3 + 27s2 + 51s + 27 

(s1 + 9s)(s2 + 3s + 3) 

2s4 + 7s3 + 27s2 + 51s + 27 

P(S
2
 + 9)(s2 + 3s + 3) 

i } 

A ,, B« + C ■  — + —«      + 
8    s2 + 9 

Ds + E 

s  + 3s + 3 

Find the common denominator and set numerators equal: 

2s4 + 7s3 + 27s2 + 51s + 27  «  Al«2 + 9)(s2 + Is + 3) + (Bs + C)(s)(s2 + 3s + 3) + 

+ (Ds + E)(s)(s2 + 9) 

let    s 27  -  "7A 

let 3J 162 + (-189j) - 243 + 153j + 27  -  (3Bj + C) 

4 *• 

41> 

(3j)(-9 + 9j + 3) 

-54 - 36j  -  (54B - 27C) + (-81B - 18C)j 

1.109 



a 

Since the real part on the left must equal the real part on the right, 

(7)   -54  -  5AB - 27C 

and the imaginary parts must also be equal 

(7)   -36  ■=  -81B - 18C 

from (T) C  -  +2 + 2B 

substituting into (Y) 

-36  =  -81B - 18(2 + 2B) 

0  =  -117B 

B ^ 0 

C  -  2 + 2B 

C  =  2 

let     s 2 - 7j - 27 + 51j + 27 - A(8)(? + 3j) + (jB + C) 

(j)(2 + 3j) + (jD + E)(j)(8) 

2 + 44j 16 + 24j + 4j - 6 - 8D + 8jE 

-8 + 16j  *  -8D +  (8E)j 

Setting real and imaginary parts equal, 

-8D 

1.110 
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u 
D     -      1 

16      -      8E 

2s4   +   7s3   +   27s2   +   51s   +   27 
L.*~2 

8     +     2 

8+9 8+38  +   3 

4) 
7s4 - 3s3 + 56s2 - 17s + 107 

(s - l)(s2 + A)2 (s - 1) 
Bs + C Ds 4 E 

2 2 2 
(s    + 4) (s' + 4) 

( A(s2 + 4)2    +    (Bs + C)(s - l)(a2 + 4*,    +    (Ds + E)(s - 1) 

,* - 1)0? + 4)2 

Setting numerators equal: 

7s4 - 3s3 + 56s2 - 17s + 107    -    A(s2 + 4)2 + (Bs + C)(s - l)(s2 + 4) + (Ds + E)(s - 1) 

Let s      -     +1 7-3   +    56-17    +    107      -      25A 

150     -      25A 

Multiply it out 

7s4    -    3s3   +    56s2    -    17s   +    107      -      6(a4 + 8s2 + 16)    +    (Bs4 - BS3 + 4Bs2 

4 ¥ 
4Bs - Cs    + 4Cs - 4C)    +    (DE    + ES - Ds - E) 

1.111 
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Equating like coefficients, 

_4 
6   +    B   r.-r>B      -      1 

\   ) v./ 

-3 0    -    B   +    C -2 

56 48    +    4B    -    C    +    D    -^ D 

-17 -4B   +    4C    +    E    -    D 

:>E 

B. 

1)      y    +    y y(0) 

(s + 1) Y(s) 

Y(s) 
s(s + 1) 

A(s + 1)    +    Bs 

^  + -JL_- 
S 8   +   1 

A(s_+_1)_+ jte 
s(s + 1) 

Y(s) J. 
+ 1 

ZiO. 5    -    5e -t 

1.112 
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1 
o 

2)  y + y 

sY(s) 

Y(s) 

-3t 

y(0) + Y(s) 

1 

y(0) - l 

l "  m 
i 

(s + l)(s + 3)       8 + 1 

NOTE: We will use partial fractions on only part of the expression, since 

1 we have an inverse transform for s + 1 

u 

T  + 
B 

(s + l)(s + 3)      s + 1   s + 3 

1  -  A(s + 3) + B(s + 1) 

-1 

-3 

;    JL 2A- 

A(s + 3) + B(s + 1) 
<s + l)(s + 3) 

1/2 

-2B -1/2 

Y(s) 1   + _J72_ i/2 
S + l      fe + 1     6 + 3 

Y(8) 3/2 1/2 
s + l    s + 3 

y(t)  -  3/2 e-t - 1/2 e"3t 

3)  x + 2x  -  sin t   x(0) 

sX(s) - x(0) + 2X(s)  - 
s2 + l 

1.U3 
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x(«) 
Transform available so do not 

(a' + l)(s + 2) 
s + 2    include in partial fraction 

expansion. 

) 

(8* + i)(s + 2) 

As + B     C    „  (As + B)(s + 2) + C(s + 1) 

s2 + 1    8+2 (s2+l)(s+2) 

1 "      (As + B)(s + 2) + C(s + 1) 

5C 1/5 

8-0 2B + C    ;>B 2/5 

3A + 3B + 2C _  >A -1/5 

v,a^  .  -1/5 s     2/5     5 1/5 X(8)     T~7 +  2 7 . + s + 2 s + i.    s + 1 

x(t)  «  -1/5 cos t + 2/5 sin t + 5 1/5 e 
-2t 

A)  x + 2x + 9x 2 sin 3t x(0)  -  x(0)  -  0 

(s' + 2s + 9) X(s) 
s2 + 9 

X(s) 
(s2 + 9)(s2 + 2s + 9) 

As + B      Cs + D 

s2 + 9    s2 + 2s + 9 

1.114 

6  -  (As + B)(s2 + 2s + 9) + (Cs + D)(s2 + 9) 

6  •  9B ♦ 9D 
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ö 
3j (3Aj + B)(-9 + 6j + 9)    -    (3Aj + B)(6J) 

s      -      1 

A 

B 

D 

-18A   +    6Bj 

-1/3 

0 

2/3 

12A   +    (C + D)10 

12  (-1/3)    +    IOC    +    10  (2/3) 

1/3 

x(8)      .     Z&L*     +    1/3 « ± 2/3 
s   + 9 s   + 2s + 9 

u \i 
X(8) 

-1/3 8 1/3 (s + 2) 

s2 + 9 (s + l)2 + 8 

-1/3 s   +     1/3 (8 + 1)    + 1/3 

a2 + 9 (s + l)2 + 8 (s + l)2 ♦■ 8 

x(t) -1/3 cos 3t    +   1/3 e_t cos 2/2t   +   V(6,/2 $* sln 2/2 * • 

5)      x   +   5x   +   6x     -      3e -3t x(0)      -     x(0) 

s2 X(s)    -    »x(0)    -    x(0)    +   5sX(s)    -    5x(0)    +   6X(s)      - 3 

s + 3 

(s' + 5s + 6) X(s) s + 3 +      8     +     6 s   + 9s + 21 
s    +    3 

4 V 

1.116 
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X(s) 
s* + 9s + 21 s' + 9s + 21 

(s + 3)(s' + 5s + 6) (s + 3)'(s + 2) 
-A-   +   — »    +   _<L. 
8 + 3 (s + 3)2 8 + 2 

o 

s2    +    9s    +    21      -      A(s+3)(s+2)    +    B(s + 2)    4    C(s + 3)~ 

s     -      -3 9    -    27    +    21      -      -B B      -      -3 

-18+21 C      -      7 

21      -      6A   +    2B   +    9C A     -      -6 

-3t          ,    -3t    ,    , -2C 
x(t)      -      -6e *x    -_ 3U..1 -±-7A  

6)    x   +    2x    +    lOx 3t    +   |    ,    x(O) 3      ,      x(O) 
27 
10 

s2X(s)    =    sx(0)    -    x(0)    +    2sX(s)    -    2x(0)    +    lCX(s) 2    +    IL? 
2 s s 

(s4 + 2s + 10) X(s) 3    +    'ill    +    8X(0)    +    2x(0)    +    x(0) 
2 s 

\   ♦   ^   ♦   *   ♦   •   -   To 

3s3   +    33/10 «2__+_A/W «"-.-+ _3 

X(s) 
Cs + D 3s3   +    33/10 s2 + 6/10_s_+ 3    _      A   +    B_   + 

" sVT IsTlO) S s2 (s2 ♦ 2s + 10) 
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3s3   +   ~ a2   +   j| s   +   3   -   Aa(s2 + 2s + 10)    +   B<»2 + 2s + 10) + (Cs + D)s2 

!   I 
4 *■ 

4P 

3     -      10B B     "     15 

3   +   |§   +   Y§   +   3    -    A(13) + jl (13) + (C + D) 

or        13A   +   C   +   D 

•      +      J -3j    -   |§   +   j| j    +    3     -     Aj(-l + 2j+10)    + 

+   jfc (-1 + 2j + 10)    +    (CJ + D)(-l) 

Setting Imaginary and real parts equal 

U 
To    •    * + 15 -  c 

and 

3   +    9A 

3 „    ,   27 n 
IS    "    "2A   +  To   "   D 

-2A   +    3 

substituting into 

13A   +    C   +   D     -      6 
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13A     -      3   +    9A   -    2A   +    3      -      6 

A     -      0 

then 

and 

o 

xc.)    -    ^+  -j^±± 3/10 +    3 8  +  1 

s    + 2s + 10 
2 2 

(s + 1)      +    3* 
i    I 

1.118 
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1.15 PROBLEM SET V 

Solve the following problems using Laplace Transforms. 

1. x + 3x - y  -  1 

x + 8x + y  ■  2 

x(0)  -  y(0)  -  0 

2. x - 3x - 6y  -  e 

y + x - 3y   -  1 

-2t 
x(0)  ■  y(0) 

'     I; 
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1.16   SOLUTION TO PROBLEM SET V 

1.     x    +    3x    -     y    '     1 

x    4     B,\    4     y    =     2 

X(O)     -     y(O) 

Ü  I 

SX(s) x(O)    4     3>(s)    -    Y(s)    -    i 
s 

sX(s)    -     x(0)    4     ,«tt(s)    +    sY(s)    -    /(O) 

(s    4     3)     X(s)     -     Y(s)     =    J 

(s    4     8)    X(s)    +    sY(s)    -    4 

s    4     3 

S     4     8 

•V(s) 

-1 

! 4 2 S   +    2 
1    +   —    ■  

s s 

+    3 

+    8 

Yfs)    = 

s + 3 

s 4   8 

;(s + 3) J(. 4-  8) s - 2 
s 

I s    4-    3        -1 

s    4-    8 s 
=    s    4-  3s 4 s 4 4     4s    4-    8 

1.120 
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ü 
A(s'    +    4s    +    8)    +    s(bs    +    C)    -    s    +    2 

s    =    0:    8A   =    2 s*:A   +    B«0 s:    4A   +    C    =    1 

u 

X(s) 

A    -..!/* 

1/4  +  _r.i/i_s.._,. 
s (s 4 2)2 + 4 

B   •    - 1/4 C    -    0 

1/4 1/4 
s + 2 

(s + 2)' + 4 (s +  2)' + 4_ 

x(t)    =    1/4 I 1 - e"2t  (cos 2t - sin 2t)I 

Us) 

2 

s - 2 A    +        Bs + C 

s(s2 + 4s + 8) S s2 + 4s + 8 

A(s' 4   Is + 8)    +    s(Bs + C)    =    s - 2 

i t 

s = 0:     8A    =    -2 s":    A + B    =    0 s:    4A    +    C    =    1 

A    -    -1/4 B    =1/4 C    =    2 

Y(s)    =    1/4 
Cs + iy + 4j 

1/4 -1   .      __s_± A 
(s 4 2)' + 4 (s + 2)' + 4 

[" -2t. 

2.     x    -     3x    -    6y    -    e 

y    +     x    - 3y     -     1 

y(t)    =    1/4 1-1    +    e '"'(cos 2t + 3 si 

-2t 

in  ?t)J 

x(0)     =    y(0)     =    0 

.    1 f. 
1.121 



(s - 3) X(s) -6Y(s) 
8  +  2 

sX(s)    +    (s - 3) Y(s) 

s-3       -6 

s 8-3 

X(s) s + 2 

1 
8 

-6 

_   o 

s-3    „    6 
8 +   2 8 

s    + 3s + 12 
8(8  +   2) 

s-3       -6 

S S   -   3 

Y(s) 
8-3 

8  +   2 

1 
s 

8-3     _ 8 m        -8-6 
8 s + 2    "    s(s + 2) 

s-3       -6 

s s-3 

-s- 6s    +    9    +    6s    »a2    +    9 

X(s) 
s(s + 2) (s* + 9) 

ü   +     6 
8 8   +   2 

Cs + D 

s    + 9 

A(s + 2)(s2 + 9) +    Bs(s2 + 9)    +    (Cs + D)(s) (s +2) s" + 3s + 12 

s    =    0:    18A   -    12 -    -2:    -2B(4 +9)    -    4-6+12 

A = 2/3 •26B    -    10 

B_-1-5/13 

A    +    B   +    C    ■    0 s:    9A   +    9B   +2D    -    3 

1.122 

C    =    5/13    -    2/3    -   ^-^ ;    2D    -    3 - 6 + |f   - *Lz 39      - |j 
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* *■ 

11 c  -  -w -if 

x,s)    .   ±12-    5/13_   . 11/398   + ^/13_. 
*{s) s 8+2 2in2,„ 8+9 8+9 

x(t)    -    2/3   -    5/13e"2t - 11/39 cos 3t + 1/13 sin 3t 

Y(s) 
-s-6 

s(s + 2) (s* + 9) 
A   + 
8 8  +   2 

B Cs + D 

a2 + 9 

A(s + 2)(s2 + 9) + Bs(s2 + 9) + (Cs + D) (s) (s + 2)    - 

s - 0:    18A s    -    ~2:    -2B(13)    -    -4 

'  u A   -    -1/3 B    *    2/13 

s - j3:     (J3C + D)(j3)(o + j3) - -j3 - 6 

J3(j6C + 2D + J3D - 9C)    -    -j3 - 6 

-18C - 9D - 127C + j6D    -    -6 -j3 

+18C + 9D - +6 6D -27C - -3 

6C + 3D 27C - 6D    -    3 

12C + 6D - 4 

27C - 6D - 3 

39C    -    7 

3D - 2 42 78 - 42    .36      12 
39    "        39 " 39 * 13 

1.123 



\*.^ 

39 D    - 
13 

1.124 

Y(8)    =   ZUI   ., _2/JL3 7j39e_ 4/13 

y(t)    =    -1/3   +    2/13e"2t    +    7/39 cos 3t   +    4/39 sin 3t 
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CHAPTER 

EQUATIONS OF MOTION 

l ) 

(Ravisad Novambar 1973) 

2.1 INTRODUCTION 

These notes are written as a general classroom text for the theoreti- 
cal approach to Stability and Control in the course curriculum of the USAF 
Test Pilot School. 

The theoretical discussion will, of necessity, incorporate certain 
simplifying assumptions.  These simplifying assumptions are made in order 
to make the main elements of the subject more clear. The equations 
developed are by no means suitable for design of modern aircraft, but the 
basic method of attacking the problem is valid. Now that analog and digi- 
tal computers are available, the aircraft designers* more rigorous theo- 
retical calculations, modified by data obtained from the wind tunnel, often 
give results which closely predict the flying qualities of new airplanes. 
However, neither the theoretical nor the wind tunnel results are infallible. 
Therefore, there is still a valid requirement for the test pilot .in the 
development cycle of new aircraft. 

2.2 TERMS AND SYMBOLS 

There will be many terms and symbols used during the stability and 
control phase.  Some of these will be familiar, but many will be new.  It 
will be a great asset to be able to recall at a glance the definitions 
represented by these symbols.  Below is a condensed list of the terms and 
symbols used in this course: 

2.2.1 Terms 

Stability Derivatives 

-m„ 
3Cm m 
3 a 

Nondimensional quantities expressing the variation 
of the force or moment coefficient with a distur- 
bance from steady flight. 

(2.1) 

3C  n 
3 t (2.2) 

Stability Parameters - A quantity that expresses the variation of force 
^ moment on aircraft caused by flight or by a dis- 
turbance from steady flight. 

_ pUSc fc   U 
3Cm, 

y 
(Change in pitching moment caused (2.3) 
by a change in velocity) 

2.1 
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o Sc L      = j—— C (Change in lift caused by a      (2.4) 
q   J'L q change in pitch rate) 

Static Stability - The initial tendency of an airplane to return to steady 
state flight; after a disturbance. 

Dynamic Stability - The time history of the respc.ise of an airplane to a 
~       '       disturbance, in which the aircraft ultimately returns 

to a steady state flight. 

Neutral Stability - 

a) Static - The airplane would have no tendency to move from its 
disturbed condition. 

b) Dynamic - The airplane would sustain a steady oscillation caused 
by a disturbance. 

Static Instability - A characteristic of an aircraft such that when dis- 
turbed from steady flight, its tendency is to depart 
further or diverge from the original condition of 
steady flight. 

Dynamic Instability - Time history of an aircraft response to a disturbance 
in which the aircraft ultimately diverges to depar- 
ture or destruction. 

Flight Control Sign Convention - Any control movement or deflection that 
~  "    ~~~ causes a positive movement or moment on 

the airplane shall be considered a posi- 
tive control movement.  This sign conven- 
tion does not conform to the convention 
used by NASA and some reference text 
books.  This convention is the easiest 
to remember and is used at the Flight 
Test Center, therefore, it will be used 
in the School. 

Degrees of Freedom - The number of paths that a physical system is free 

2.2 
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2.2.2 SYMBOLS 

Symbol Definition 

a.c. Aerodynamic Center:  A point located on the wing chord 
(approximately one quarter of the chord length back of 
the leading edge for subsonic flight) about which the 
moment joefficient is practically constant for all 
angles of attack. 

C Chorciwise Force:  The component of the resultant aer - 
dynamic force that is parallel to the aircraft reference 
axis, (i.e., fuselage reference line). 

c Mean Aerodynamic Chord:  The theoretical chord for a 
wing which has the same force vector as the actual 
wing (also MAC). 

c.p. Center of Pressure:  Theoretical point on the chord 
through which the resultant force acts. 

D Drag:  The component of the resultant aerodynamic force 
parallel to the relative wind.  It too must be specified 
whether this applies to a complete aircraft or to parts 
thereof. 

F Applied force vector. 

F ,F ,F        Control forces on the aileron, elevator, and rudder, 
respectively. 

F ,F ,F        Components of applied forces on respective body axes. 

G Applied moment vector. 

Components of applied moments on respective body axes. 

Angular momentum vector. 

Hinge Moment:  A moment which tends to restore or move 
a control surface to or from a condition to equilibrium. 

Components of the angular momentum vector on the body 
axes. 

Moment of Inertia:  With respect to any given axis, the 
moment of inertia is the sum of the products of the mass 
of each elementary particle by the square of its distance 
from the axis.  It is a measure of the resistance of a 
body to angular acceleration. 

i, J,k Unit vectors in the body axis system. 

G ' X 
G   , 

Y 
G 

z 

H 

HM 

Hx' 
! 

H 
Y 

H 
z 

i 
- 
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o 

Symbol 

xy' yz' xz 

N 

P,q,r 

R 

S 

Uo 

u,v,w 

X,Y,Z 

x,y,z 

a 

I 

W6r 

0) 

Definition 

Moments of inertia about respective body axes. 

Products of inertia. 

Lift: The component of the resultant aerodynamic force 
perpendicular to the relative wind.  It must be speci- 
fied whether this applies to a complete aircraft or to 
parts thereof. 

Aerodynamic moments about x, y, and z body axes. 

Normal Force: The component of the resultant aerodynamic 
force that is perpendicular to the aircraft reference 
axis. 

Angular rates about the x, y, and z body axes, respec- 
tively. 

Resultant Aerodynamic Force: The vector sum of the lift 
and drag forces on an airfoil or airplane. 

Wing area. 

Component of velocity along the x body axis at zero 
time (i.e., initial condition). 

Components of velocity along the x, y, and z body axes. 

Aerodynamic force components on respective body axes 
(Caution: Also used as axes in "Moving Earth Axis 
System" in derivation of Euler angle equation.  Differ- 
entiation should be obvious), 

Axes in the body axis system. 

Angle of attack. 

Sideslip angle. 

Deflection angle of the ailerons, elevator, and rudder, 
respectively. 

Euler angles: pitch, roll, and yaw, respectively. 

Total angular velocity vector of an aircraft. 

2.6 
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2.3 OVERVIEW 

The purpose of this section is to derive a set of equations that 
describes the motion of an airplane.  An airplane has 6 decrees of freedom 
(i.e., it can move forward, sideways and down and it can rotate about its 
axes with yaw, pitch, and roll).  In order to solve for these 6 unknowns, 
6 simultaneous equations will be required.  To derive these the following 
relations will be used. 

o 

START WITH NEWTON'S SECOND LAW 

F d 
dT (M V) 

externally 
applied force 

linear 
momentum 

G d 
at (H) 

externally 
applied moment 

angular 
momentum 

(3 linear degrees 
of freedom). 

(3 rotational degrees 
of freedom). 

Six Equations for the Six Degrees of Freedom of a Rigid Body, 

I 
Equations are valid with 

respect to inertial space only. 

1 
OBTAIN THE 6 AIRCRAFT EQUATIONS OF MOTION 

(2.5) 
" X 

= m (Ü + q w - r v) 

Longitudinal F z = m (w + p V - q u) (2.6) 

G 
y 

= q I 
y 

- pr (I  - I ) r    z    X 
+ / 2   2, T 

(P  " r > Xxz (2.7) 

(2.8) F 
y 

= m (V + r u - p w) 

Lateral - 
Directional 

G 
X 

= P i 
X 

+ qr (Iz - ly) - (r + Pq) Ixz (2.9) 

G z 
= r I z 

+ pq <Iy - V + (qr - P) ixz (2.10) 

Tne  Left-Hand  Side   (LHS)   of  the equation  represent»  the  forces  and 
moments   on  the  airplane while  the  Right-Hand  Side   (RHS)   stands   for  the 
airplane's  response  to  these  forces  and moments.     Before  launching  into 
the  development of  these  equations  it will  be  necessary  first  to  cover 
some  basics. 

2.S 
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2.4 BASICS 

24.1 Coordinate Systems 

There are many coordinate systems that are useful in the analysis 
of vehicle motion.  In accordance with general practice, all coordinate 
systems will be right-hand and orthogonal. 

True Inertial Coordinate System 

EARTH 
Location of origin: unknown 
Approximation for space dynamics: the center of 
the sun. 

Approximation for aircraft: the center of the 
earth. 

Figure 2.1 

(  1 
The Earth Axis Systems 

MOVING 
EARTH 
AXES 

XY PLANE IS 
HORIZONTAL 

FIXED EARTH 
AXES 

Location of Origin 

Fixed System; arbitrary location 
MDving System; at the vehicle eg 

The Z axis  points toward center 
of the earth. 

The xy Plane 
parallel to local horizontal. 

rJhe Orientation of the X axis is 
arbitrary; may be North or on the initial 
vehicle heading. 

Figure 2.2 

NOTE:        There Jre two *arth axis systems, the fixed and the moving. 
An example of a moving earth axis system is an inertial 
navigation platform.  An example of a fixed earth axis is a 
radar site. 
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Moving Earth Axis System« 

These coordinate systems are fixed to the vehicle, 
different types, e.g., 

There are many 
u 

Body Axis System. 
Stability Axis System. 
Principal Axis System. 
Wind Axis System. 

The body  and  the  stability axis  systems  are  the  only  two  that will be  used 
during  this  course. 

Body Axis System 

The Ihit Vectors are I j k. 

The Origin is at the eg. 

The x z plane is in the vehicle plane 
of symmetry. 

The positive x axis points forward 
alcng the vehicle horizontal 
reference line. 

Figure 2.3 The positive z axis points downward 
toward the bottom of the vehicle. 

Stability Axis System 

vBODY=vSTAB 
i.e., THE STABILITY *^PLANE 
REMAINS IN THE VEHICLE PLANE 
OF SYMMETRY 

Figure 2.4 

'Ihe unit vectors are I , i , k . 
     s  s  s 

The origin is at the eg. 

The positive x axis points forward 
coincident with" the initial position 
of the relative wind. 

The x z plane must remain in the 
vehicle plane of symmetry» hence this 
stability axis system is restricted to 
symmetrical initial flight conditions. 

The positive z axis points downward 
toward the bottom of the vehicle. 

2.8 
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o 2.4.2 Vector Definitions 

The Equations of Motion describe the vehicle motion in terms of 
four vectors.  The components of these vectors resolved along the body 
axis system are shown below. 

F - Total Linear Force (Applied) 

F = Fr+Fj+FR" x    yJ   z 

G  - Total Moment   (Applied) 

G = Gr+GT+GR" 
x Y z 

aerodynamic   other sources 

G    ,    .=L   r + M   T+N   k~ aerodynamic   aero    aeroJ   aero 

I 

aerodynamic J 

NOTE:  Control deflections that tend to produce positive 6L,, 7)2,   or 
71,   are defined at USAF TPS to be positive. 

VT - True Velocity 

u V = ui + vj + wk 

where 

u =  forward velocity 
v =  side  velocity 
w = vertical  velocity 

a   - Angle  of Attack 

For small  a  and  ß 

VT  cos   3 ^ Vm 

or 

a ~ sin 

w_ 
Vl 

-1  w_ 
Vn 

6   - Sideslip Angle 

B   =  sin"1   <§-> 

For  small   3 

v 
VT 

/ 

Figure 2.5 

CAUTION - OTHER DEFINITIONS ARE POSSIBLE 
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öT - Angular Velocity 

öT = pr + qj" + rk~ 

where 

p = roll rate 

q = pitch rate 

r = yaw rate 

2.4.3 Euler Angles - Transfonnation from the Moving Earth Axis 
System to the Body Axis System 

There are several reasons for using Euler angles in this development. 
Some of them are: 

1) Effect of aircraft weight is related to the body axes through 
Euler angles. 

2) When an inertial navigation system (INS) is available, data can 
be taken directly in Euler angles,  p, q and r can then be deter- 
mined through a transformation. 

Euler angles are expressed in terms of YAW U), PITCH (9) and ROLL ($) . 
The sequence (YAW, PITCH, ROLL) must be maintained to arrive at the proper 
set of Euler angles. 

u 

Figure 2.S 

2.10 
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o j[  - Yaw Angle - The angle between the projection of x body axes 
onto the horizontal plane and the initial reference 
position of the X earth axis.  (Yaw angle is the 
vehicle heading only if the initial reference is 
North). 

0 - Pitch Angle - The angle measured in a vertical plane between the 
__ ^    body axis and the horizontal plane. 

4> - Bank Angle - The angle, measured in the yz plane of the body 
— system, between the ~y body axis and the horizontal 

pl«ne. 

Angular Velocity Transformation - The following relationships, de- 
.   . rived by vector resolution, will 

be useful later in the study of 
dynamics. 

p = $  - y\t  sin e 

q =  6 cos $ + 'p  sin 9 cos 6 

r — i cos $ cos 9 - 8 sin ;• 

(2.11) 

(2.12) 

(2.13) 

u 

The above equations transform the angular rates in the moving earth 
axis system (^,e,4>) into angular rates about the body axis system (p, q, 
r) for any aircraft attitude.  For example, it is easy to see that when 
an aircraft is pitched up and banked, the vector  J" will have components 
along the x y and z body axis (figure 2.7).  Remember, v     is the 
angular velocity about the  Z axis of the Moving Earth Axis System (it 
cau be thought of as the rate of change of aircraft heading) .  Although 
it is not shown in figure 2.7, the aircraft may have a value of  8  and 
I .  In order to derive the transformation equations it is easier to 
analyze one vector at a time.  First resolve the components of I    on the 
body axes.  Then do the same with  e  and  I .  The components can then 
be added and the total transformation will result. 

Figure 2.7   Components of «|» Along   >,  y , and 5. Body Axes. 
The \ and  V  Axes of the Moving Earth Axis System 
Are Not Shown. 

* *. 
«> 
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Derivation  of fht Angular Voiocit-- Transformation 

Step 1 - Resolve the components of 
for any aircraft attitude, 

i>    along the body axes 

It is easy to see how i*    reflects to the body axii- by starting 
with an aircraft in straight and level flight and changing the aircraft 
attitude one angle at a time.  In keeping with convention, the sequence 
of change will be yaw, pitch and bank. 

First, it can be seen that the Z  axis of the Moving Earth Axis 
System remains aligned with z  axis of the#body axis system regardless 
of the angle  ip; therefore, the effect of ty  on p, q, and r does not 
change with yaw angle, 

Figure 2.8 

2.12 
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V'\ 

^ X 

Figure 2.9 z 

0 

4# 

Next, consider pitch up, in this attitude,  <j» has components on 
the x and z body axes. 

p = - v  sin e 

r     =     -ii  cos 6 

The  Z axis is still perpendicular to the y body axis, so q is not 
effected by  ^  in this attitude. 

Finally, bank the aircraft, leaving the pitch as it is. 

r = i/i cos 0 cos </> 

Figure 2.10 
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All of the components are now illustrated.  Notice that roll did 
not change the effect of $ on p.  The components, therefore, of ^ in the 
body axes for any aircraft attitude are: 

p = - I  sin e 

Effect of * only.     q = i>  cos 6 cos $ 

r =  ii  cos 6 cos i 

Step 2 - Resolve the components of 9 along the body axes 
for any aircraft attitude. 

Remember 9  is the angle between the x body axis and the local 
horizontal.  Once again, change the aircraft attitude by steps in the 
sequ.nce of yaw, pitch and bank and analyze the effects of 9. 

*». / 

Figure 2.11 

It can be seen immediately that the yaw angle has no effect. Like- 
wise when pitched up, the y body axis remains in the horizontal plane, 
therefore,  9*  is the same as q  in this attitude. 

q = 9 

Now bank the aircraft, 

Figure 2.12 '/ = 9  cos 4>     ~x_^.- 

2.14 
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n It can be seen from figure 2.12 that the components of 9 on the body 
axes are 

q = 6 cos $ 

r ■ - 8 sin <|» 

Notice that  p is not affected by  6  since by definition 
on an axis perpendicular to the x body axis. 

is measured 

Step 3 - Resolve the components of along the body axes. 

This one is easy since by definition  4.  is measured along the x 
body axis.  Therefore,  $  affects the value of p only, or 

P = I 

The components of  ^,9, and I  along the  x, y, and  z  body axes 
for any aircraft attitude have been derived.  These can now be summed 
to give the transformation equations. 

p = { - i sin e 

u 

1; 

q = 9 cos $ + <p sin $  cos 9 

r  =  i>  cos   <J>   cos   e   -  6   sin   <J> 

2.4.4 Assumptions 

The following assumptions will be made to simplify the derivation 
of the equations of motion.  The reasons for these assumptions will become 
obvious as the equations are derived. 

Rigid Body - Aeroelastic effects must be considered separately. 

Earth and Atmosphere are Assumed Fixed - Allows use of Moving Earth Axis 
~ System as an "inertial reference". 

Constant Mass - Most motion of interest in stability and control takes 
place in a relatively short time. 

The x z Plane is a Plane of Symmetry - This restriction is made to simplify 
the RHS oF ^he equation.  It allows the cancellation of certain terms 
containing products of inertia.  The restriction can easily be removed oy 
including these terms. 

2.5 RIGHT-HAND SIDE OF EQUATION 

Tne RHS of the equation represents the aircraft response to any 
forces or moments that are applied to it. Through the application o 
Newton's Second Law, two vector relations can be used to derive the : 
required equations.  These are the linear force and moment relations 
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2 5.1 Line» Force Relation 

The vector equation for response to an applied linear force is 

f=d_(mV)_ (2#14) 

V- 

dt 

or the change in momentum of an object is equal to the force applied to 
it. 

This applies, of course, only with respect to inertial space.  There- 
fore, the motion of a body is determined by all the forces applied to it 
including gravitational attraction of the earth, moon, sun, and even the 
stars.  In most cases, the practical person disregards the effect of the 
moon, sun, and stars since their influence is extremely small.  When con- 
sidering the fo.ces on an aircraft, the motion of the earth and atmosphere 
can also be disregarded since the forces resulting from the earth's rota- 
tion and coriclis effects are negligible when compared with thr-   large 
aerodynamic and gravitational forces involved.  This simplifies the 
derivation considerably.  The equations can now be derived using either 
a fixed or moving earth axis system.  For graphical clarity consider a 
fixed earth axis system.  The vehicle represented by the dot has a total 
velocity vector that is changing in both magnitude and direction. 

a 

-*>) 

Figure 2.13 

From vector analysis, 

dV, 

dt XYZ 

dV, 

dF 
T 

X V„ 
xyz 
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u Substituting this into equation 2.14, and assuming mass is constant, 
the applied force is, 

F = m 5 dt 
+ a) X V„ 

xyz 

which in component foim is 

F = m üi + vj~ + wk + 

i T k 

P q r 

u V w 

i > 

Expanding 

F = m [üi + vj + wk + (qw - rv)i - (pw - ru)J + (pv - qu)k] 

Rearranging 

F = m   [(ü + qw  -  rv)i +   (v + ru  - pw)j  +   (w + pv  - qu)k] 

Now since 

F =  Fi+FT+Fk x yJ z 

These three component equations result: 

Fx = m (ü + qw - rv) 

Fy = m (v + ru - pw) 

F  = m (w + pv - qu) 

(2.15) 

(2.16) 

(2.17) 

HP 

2.S.2 Moment Equations 

Once again from Newton's Second Law, 

G = d(H) 
dt 

(2.18) 

or the change in angular momentum is equal to the total applied moment. 

Angular Momentum 

Angular momentum should not be as difficult to understand as some 
people would like to make it. It can be thought of as linear momentum 
with a moment arm included. 
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time, 
Consider a ball swinging on the end of a string, at any instant of V-V 

Figure 2.14 

and 

Linear momentum = mV 

Angular momentum = mrV (axis of rotation must be specified) 

Therefore, they are related in the same manner that forces relate 
to moments. 

Moment = Force • r 

Angular Momentum = Linear Momentum • r 

and just as a force changes linear momentum, a moment will change 
angular momentum. 

Angular Momentum of an Aircraft 

Consider  a  small  element of mass  mj_,   somewhere  in  the  aircraft,   a 
distance  r,   from the  eg 

Figure 2. IS 

2.18 

■MMI 



•: 

The airplane is rotating about all three axes so that 

u = pi + qj + rk 

and 

rx = XjT + yxJ + Zjk 

The angular momentum of m^ is 

Hmi = mx (r1  X Vx) 

(2.19) 

(2.20) 

(2.21) 

and 

dr, 
Vl  dt 

(i.e., in the inertial frame) 
XYZ 

From vector analysis 

dr.. 

dt 

ar, 

XYZ dt + u) X r. 
xyz 

(2.22) 

i   ) 

Since the airplane is a rigid body ri does not change.  Therefore the 
first term can be excluded, and the inertial velocity of the element m^ is 

V,  = u, X r. 

Substituting this into equation 2.21 

ml 
m, (r, X oi X r, ) 

(2.23) 

(2.24) 

HP 

This is the angular momentum of the small element of mass m^.  In order 
to find the angular momentuu of the whole airplane, v.ake the sum of all 
the elements.  Using notation in which the  i  subscript indicates any 
particular element and n  is the total number of elements in the airplane, 

where 

then 

H =   l     mi [r. X ui X r. ] 
i=l    1       X 

m. - scalar 
l 

r. = x.i + y.j + z.k 
l   l   J i l 

i   j   k 

P  g  r a. X r. = 
l 

x. y.   z 11    l 

(2.25) 

(2.26) 

\2.21) 
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In an effort to reduce the clutter, the subscripts will be left off.  The 
determinant can be expanded to give, 

a 
to X r = (qz - ry)i + (rx - pz)J + (py - qx)k 

therefore, equation 2.25 becomes 

i      J k 

H =  Im   x      y z 

(qz-ry) (rx-pz) (py-qx) 

So the components cf H are 

(2.28) 

(2.29) 

Hx = Imy (py - qx) - lir.z (rx - pz) 

H = Zmz (qz - ry) - Iisx (py - qx) 

Hz  =  Imx   (rx  - pz)   -   Imy   (qz  -  ry) 

(2.30) 

(2.31) 

(2.32) 

Rearranging the equations 

Hx = pirn (y2 + Z2) 

Hy = qlm (z + yf) 

H = rrm (x2 + y2) 

Define moments of inertia 

Ix = Zm (y  + z ) 

2    2 Iy = Im (x + z ) 

I, = Im (x2 + y2) 

These are a measure of resistance 
to rotation - they are never zero 

qlmxy - rlmxz 

rlmyz - plmxy 

plmxz - qlmyz 

•*tS2l 

(2.33) 

(2.34) 

(2.35) 

Figure 2.16 
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© 
Define products of inertia 

xy mxy 

I = I myz yz     J 

I = I mxz xz 
Figure 2.17 

FOR THIS EXAMPLE 

These are a measure of symmetry.  They are zero for views having a line 
of symmetry. 

The angular momentum of a rigid body is therefore: 

H = Hi + Hj +Hk x    yJ    z (2.36) 

So that 

H = pi  - ql x    x    xy rl xz 

H = ql  - rl   - pi y    y    yz  r  xy 

H = rl z    z pi   - ql c  xz  ^ yz 

(2.37) 

(2.38) 

(2.39) 

Simplification of Angular Moment Equation for Symmetric Aircraft 

A symmetric aircraft has two views that contain a line of symmetry 
and hence two products of inertia that are zero.  The angular momentum of 
a symmetric aircraft therefore simplifies to: 

H =   (pi     -   rl     )i   +  ql   ]   +   (rl     -  pi     )k r   x xz y z xz (2.40) 

Wxv   °> 

Figure 2.18 'x/'yyO) 

>   V 
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Derivation of the Three Rotational Equations U 
The equation for angular momentum can now be substituted into the 

moment equation.  Remember 

r   - dH G " dt (2.41) 
XYZ 

This is in the inertial frame, 
the equation becomes: 

Expressed in the fixed body axis system, 

G = dH 
dt u X H 

xyz 
(2.42) 

which is 

G = Ki + Hj+Hk + x    yJ    z 

1 j k 

p q r 

H 
X 

H 
y 

H z 

(2.43) 

Remember 

H = (pi  - rl  )i + ql j  + (rl  - pi  )k v  x    xz       y       z    xz' 
(2.44) u 

Since the body axis system is used, the moments of inertia and the 
products of inertia are constant.  Therefore, by differentiating and sub- 
stituting, the moment equation becomes 

G =(PTx- rIxzU +*V +<rIz" Plxz)k + 

Therefore, the component equations are, 

l 

P 

3 

q 

k 

r 

(pi  - rl  ) ql (rl  - pi  ) v  x    xz  ^ y   z    xz 

(2.45) 

G  = pi  + qr(I - I ) - (r + pq)I x  v  x  ^  z   y        ^  xz 

G = ql  - pr(I - I ) + (p2 - r2)I y  ^ y *      z   x    v xz 

G  = rl  + pq(I - I ) + (qr - p)I z    z  ^ y   x    M   c    xz 

(2.46) 

(2.47) 

(2.48) 

This completes the development of the RHS of the ^lx equations listed on 
page 2.6.  Remember the RHS is the aircraft response or the motion of the 
aircraft that would result from the application of a force or a moment. 
The LHS of the equation represents these applied forces or moments. 
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9 2.S LEFT-HAND SIDE OF EQUATION 

2.6.1 Terminology 

Before launching into the development of the LHS, it will help to 
clarify some of the terms used to describe the motion of the aircraft. 

Steady Flight - Flight in which the existing motion remains steady with 
time, i.e., no transient conditions exist. 

Symmetric Flight - (Longitudinal Motion) - Flight in which the vehicle 
plane of symmetry remains fixed in space. 

v =  0 

(ß  =  0) 

p = r = 0 

(<t> and l    =    0) 

Asymmetric Flight - (Lateral Motion) - Flight in which the vehicle plane 
of symmetry does not remain fixed in space. 

v fi     0 

(ß  * 0) 

p and/or r /     0 

(<|> and/or $ ^ 0) 

o 
2.6.2 Some Special-Case Vehicle Motions 

Unaccelerated Flight 

(Also called straight flight or equilibrium flight.) 

Fx = ° F  = 0 
y 

F  = 0 z 

Hence, the eg travels a straight path at c nstant speed, 
equilibrium does not mean steady state.  For example, 

Note that 

F =m(u+qw-rv)=0 

could be maintained zero by fluctuation of the three terms on the right 
in an unsteady manner.  In practice, however, it is difficult to predict 
that non-steady motion will remain unaccelerated and hence the straight 
motions most often discussed are also steady state. 

» * 

Steady Straight Flight 

F  = 0 z 

G  = 0 
y 

F  = 0 
y 

G = o x 

Gz = 0  p = q 
 '      > , 

Excluded by 
custom 

On the average 

Trim Points, Stabilized Points 

Steady Rolls or Spins 

F  = 0 x 

F = 0 z 

G  = 0 
. y 

G  = 0 x 

G  = 0 z 

On the average 

By custom this is 
not called straight 
flight even though 
the eg may be 
traveling a 
straight path 

Steady Developed Spins 
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Accelerated Flight (Non-Equilibrim Flight) 

One or more of the linear equations is not zero, hence the eg 
is not traveling a straight path.  Again the steady cases are of most 
interest. 

u 

Steady Turns Symmetrical Pull Up 

An unbalanced horizontal force Here an unbalanced z  force is 
results in the eg being con- 
stantly deflected inward toward 
the center of a curved path. 

constantly deflecting the eg 
upward. 

This results in a constantly 
changing yaw angle.  By the 
Euler angle transform, 

q =  e 

F  A; mqw 

p = - ye (assumes small 6) and 

q = l  sin <p  cos e = i>  sin <J> F  ä -mqu 

r = v cos 0 cos 6 = i>  cos $ 

and hence 
This is a quasi-steady motion 
since ü and w cannot long 
remain zero. 

Fy = m (i/ cos <p) u 

Fz = -m (y1 sin (j>) u   (assumes j-9 
is very very 
small) 

Includes moderate climbs and 
descents. 

2.6.3 Preparation for Expansion of the Left-Hand Side 

The Equations of Motion relate the vehicle motion to the applied 
forces and moments , 

LHS 

Applied 

Forces and Moments 

RHS 

Observed 

Vehicle Motion 

= mu 

G  =  pi 
x    r x 

+ 

+ 

etc. 

The RHS of each of these six equations has been completely expanded in 
terms of easily measured quantities.  The LHS must also be expanded in 
terms of convenient variables, to include Stability Parameters and 
Derivatives.  Before this can be accomplished, however, the following 
topics must be discussed and understood. 
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ü 2.6.4 Initial Breakdown of the Left-Hand Side 

In general, the applied forces and moments can be broken up accord- 
ing to the sources shown below. 

Source 
Aero- 
dynamic 

Direct 
Thrust Gravity 

Gyro- 
scopic Other 

-1 < z 

g 
o z 
w 

F 
X 

X Xm X 
g 

0 *oth 

F 
2 

Z ZT Z 
g 

0 Zoth 

GY ?n MT 0 M gyro oth 

«i a P 
UJ U 
1- W 
< S 
-1 Q 

Fy 
Y YT Y 

g 
0 oth 

G 
X £ Lm 0 L gyro loth 

G z n NT 0 N gyro oth 

= mu + 

= mw + 

= ql  + 
y 

= mv + 

= Plx + 

- (2.49) 

- (2.50) 

- (2.51) 

- (2.52) 

- (2.53) 

- (2.54) 

I 
> V 

1.  Gravity Forces - These vary with orientation of the weight vector. 

<q = -mg sin 0   Y„ = mg cos u sin ! mg cos 6 cos * 

2. Gyroscopic Moments - These occur as a result of large rotating masses 
such as engines and props. 

3. Direct Thrust Forces and Moments - These terms include the effect of 
the thrust, vector itself - they usually do not include the indirect 
or induced effects of jet flow or running propellers. 

4. Aerodynamic Forces and Moments - These will be further expanded into 
Stability Parameters and Derivatives. 

5. Other Sources - These include spin chutes, reaction controls, etc. 

2.6.5 Aerodynamic Forces and Moments 

By far the most important forces and moments on the LHS of the 
equation are the aerodynamic terms.  Unfortunately they are also the 
most complex.  As a result, certain simplifying assumptions are made and 
several of the smaller terms are arbitrarily excluded to simplify the 
analysis.  Remember we are not trying to design an airplane around some 
critical criteria.  We are only trying to derive a set of equations that 
will help us analyze the important factors affecting aircraft stability 
and control. 
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Choice »f Axi» System 

Consider the aerodynamic forces on an airplane 

L 

x body axis 

►    v stability axis 

<^ZlR.W. 

u 

Figure 2.19 

Summing forces along the x body axis 

F  = L sin a   - D cos a x (2.55) 

Notice that if the forces were summed along the x 
would be 

stability axis, it 

F  = - D x (2.56) 

Obviously, it would simplify things if the stability axes were used for 
development of the aerodynamic forces.  A small angle assumption will 
enable us to do this.  Let's assume that  a  is always small enough so that 

cos a c 1 

sin a £2 0 

ubinq this assumption, equation 2.55 reduces to equation 2.56.  Whether 
it be thought of as a small angle assumption or as an arbitrary choice of 
the stability axis system, the result is the same.  The complexity of 
the equation is reduced.  This of course would not be done for preliminary 
design analyses, however, for the purpose of deriving a set of equations 
to be used as an analytical tool in determining handling qualities, the 
assumption is perfectly valid, and in fact, is surprisingly accurate 
for relatively large values of a. 

Therefore, the aerodynamic terms will be developed using the sta- 
bility axis system so that the equations assume the form, 

"DRAG" 

"LIFT" 

"PITCH" 

"SIDE" 

"ROLL" 

"YAW" 

-D + X,,, + X  + X . , T   g   oth 

-L + Zm + Z  + Z'  . T   g   oth 

A* + M- + Mg,ro + Moth 

Y + YT + Yg + 'oth 

Jf   + K   *   L     + CA^    T    qyro 

71   + N,., + N     + ' L T   qyro 

oth 

oth 

= mu + 

= mw + 

= ql  + H y 
= mv + 

= pi  + r x 

= rl + z 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 
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Expansion of Aerodynamic Terms 

A stability and control analysis is concerned      he question of 
how a vehicle responds to certain perturbations or in^uus.  For instance, 
up elevator should cause the nose to come up; or if the aircraft hits 
some turbulence that causes a small amount of sideslrp, the airplane 
should realign itself with the relative vvind.  Intuitively, it can be 
seen that the aerodynamic terms are going to have the most effect on the 
resulting motion of the aircraft.  Unfortunately, the equations that re- 
sult from summing forces and moments are non-linear.  As a result, exact 
solutions to these equations are impossible.  Therefore, a technique to 
linearize the equations must be used so that solutions can be obtained. 
In order to do this the small perturbation theory is introduced. 

Small Perturbation Theory 

The small perturbation theory is based on a simple and very popular 
technique used for linearizing a set of differential equations.  In a 
nutshell, it is simply the process of expanding the equations using a 
Taylor series expansion and excluding the higher order terms.  To fully 
understand the derivation some assumptions and definitions must first be 
established. 

The Small Disturbance Assumption 

u 
The aerodynamic forces and moments are primarily a function of the 

following variables: 

Temperature and Altitude 

Accounted for by p, M, R 

2.  Angular Velocities 

Accounted for by p, q, r, 

3.  Control Deflections 

Accounted for by 5 , 6 , 6   , 
6    cl    IT 

4.  Position and Magnitude of the Relative Wind 

Accounted for by the components u, v, w of true velocity, or 
alternately, by: 

w 
V~~ ' 
T 

v 
v~ 

In  general,   the  time  derivatives  of   these  variables  could  also  L< 
significant.      In  other words: 
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VARIABLE 

D 

L 

m 

Y 

71 

i Are a  i 
/ Function* 

of 

u   a   ß 

p  q  r 

6      6      6 
ear 

P   M  R     ■•> 

FJ.K   i'   DERIVATIVE 

U a e 

p - 

SECOND DERIVATIVE 
u 

u - - - - 

assumed constant 

This rather formidable list can be reduced to workable proportions 
by making the assumption that the vehicle motion will consist only of 
small deviations from some initial reference condition.  Fortunately, 
this small disturbance assumption applies to many cases of practical 
interest, and as a bonus, stability parameters and derivatives derived 
under this assumption continue to give good results for motions somewhat 
larger. 

The variables are considered to consist of some initial value plus 
an incremental change, called the "perturbated value." The notation for 
these perturbatec? values is sometimes lower case and sometimes lower case 
with a bar. 

p = p    + p 
o        r p = P0 + p 

U  =   Ü     +   u 
o 

u   =   U      +   Ü" 
o 

It has been found from experierce that when operating under the 
small disturbance assumption the vehicle motion can be thought of as 
two independent motions each of which is a function only of the variables 
shown below. 

1.  Longitudinal Motion 

(D, L,7/i)       =  f (U, a, '., Q  6, (2.63) 

Lateral-Directional Motion 

(Y, Z ,71)    = 3, 8, P, R, o , 5 ) (2.64) 

Initial Conditions 

It will be assumed that the motion consists of small perturbations 
about some initial condition of steady straight symmetrical flight.  From 
this and the definition of stability axes, the following can be stated: 
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} Vm = U = constant 
T   o 

V = 0 
o 

ßo = 0 

W = 0 
o a  = constant 

o 

P  = Q  = R  = 0 
o   o   o 

, M, R , aircraft 
configuration. 

= constant 

2.6.6 Expansion by Taylor Series 

As previously noted, the longitudinal motion can be assumed to be 
a function of five variables, U, a, a, Q, and <5e.  The aerodynamic forces 
and moments can therefore be expressed by a Taylor's expansion. 

For example: 

L = 

\ * w 4° 

, 3L . 
3 a 

, 3 L , • + — A a 

J.   1   ^L      A,,2 + I 772" AU 
dU 

J.   1 32L  , 2 
+ 2 —Z na 

d a 

L 

da 

+ |S AQ    + - 

e 

(2.65) 

But we have decided to express the variables as the sum of an initial 
value plus a small perturbated value 

U = U  + u  where  u = U - U  = AU 
o o (2.66) 

Thare fore 

a L _ d L 
dir ~ w~ • AU o 

Zero 
ill 2V 
:<u /u 

/.o 
dL 
3u' 

(2.67) 

aid the first term of the expansion becomes 

du   U - MT u (2.63) 
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Similarly: 

3Q AQ = 3q q (2.69) 

We also elect to let n  = Aa, a  -  Aa and Se = A6 . 

2  2 Dropping higher order terms involving u , q , etc., equation 2.65 now 
becomes 

, 3L     SL     SL • , 3L   , 3L  . 
L = L  + ^- u + -— a + — a + 7— q+ 7-7— * 

o   3 u     8a     . • ^ q 3 6   e 3a ^      e 
(2.70) 

The lateral-directional motion is a function of B, ß, p, r, 5a, 6r, 
and can be handled in a similar manner.  For example, the aerodynamic 
terms  jr rolling moment become: 

oC  ^-o   36  " •  P   3 p P   "■ - 3 r 35  a a 

+ iK 6 36  r 
r 

(2.71) 

This development can be applied to all of the aerodynamic forces and 
moments.  The equations are linear and account for all variables that 
have a significant effect on the aerodynamic forces and moments on an 
aircraft. 

The equations resulting from this development can now be substituted 
into the LHS of the equations of motion. 

2.6.7 Effects of Weight 

The weight force acts through the eg of an airplane and as a result 
has no effect on the aircraft moments.  It does affect the force equations 
as shown below. 

Figure 2.20 

L 

\ 

\ 

Thrust Line        j^ ' 

pr   ; 

t ^y 

^ 

K' 

i X.                                  Horizon 

'            7-k (Distance Between 
Thrust Line and eg) 

\ 

II  sin   0 
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u The same "small perturbation" technique can be used to analyze 
the effects of weight.  For longitudinal motion, the only variable to 
consider is G.  For example, consider the effect of weight on the x axis, 

' 

X  = -W sin 8 
g 

(2.72) 

Since weight is considered constant, 6 is the only pertinent variable. 
Therefore, the expansion of the gravity term (Xg) can be expressed as 

3X 
X  = X   + r-r^ (X  = initial condition of :; )  (2.73) 

For simplification and clarity, the term Xg will hereafter be re- 
ferred to as drag due to weight, (D .).  This in essence incorporates 
the same small angle assumption that was made in development of the aero- 
dynamic terms, however, as before, the effect is negligible.  Therefore, 
equation 2.73 becomes 

Dwt = D   + |° a wt    owt   39 

Likewise the Z force can be expressed as negative lift due to weight 
(Lw ), and the expanded term becomes 

I u 
Jwt = L 

>wt 
+ w 9 

The effect of weight on side force is dependent solely on bank angle (., 
Therefore, 

Y  = Y   + — <f> 
Wt    O .    3$ wt 

These then are the component equations relating the effects of gravity 
to the equations of motion and can be substituted into the LHS of the 
equations. 

2.6.8 Effects of Thrust 

The thrust vector can be considered in the same way.  Since thrust 
does not always pass through the eg its effect on the moment equation 
must be considered (figure 2.20).  The X component would be 

X  = T cos L 

Tne Z component is 

Z  = -T sin c 

*+ 
*> 

The pitching moment component is, 
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where Zfc is the perpendicular distance from the thrust line to the eg. 
For small disturbances, changes in thrust depend upon the change in for- 
ward speed and engine rpm.  Therefore, by a small perturbation analysis 

T  + o 
3T 
3u U + 

5T 
35 rpm r.pm (2.74) 

Thrust effects will be considered in the longitudinal equations only 
since the thrust vector is normally in the vertical plane of symmetry 
and does not affect the lateral-directional motion.  When considering 
engine-out characteristics in multi-engine aircraft; however, the asym- 
metric thrust effects must be considered.  Once again, for clarity, Xx 
and Z-r will be referred to as drag due to thrust and lift due to thrust. 

Thus: 

DTHRUST= (To + UU +  W—  «rpm) (cOS £> rpm  r 
(2.75) 

LTHRUST = -<To + ?£ U + T6  «rpm5 (sin e) rpm  r 
(2.76) 

MTHRUST = (To + f£ U + i  5rPm) 
(Zk> rpm      r 

(2.77) 

.. J 

2.6.9 Gyroscope Effects 

For most analyses, gyroscopic effects are insignificant.  They begin 
to become important as angular rates increase, (i.e., p, q, and r become 
large).  For static and dynamic stability analyses, angular rates are not 
considered large.  In the area of spins and maximum roll rate maneuvers, 
they are large and definitely affect the motion of the airplane.  There- 
fore, for spin and roll coupling analyses, gyroscopic effects will be 
considered.  However, in the basic development of the equations of motion, 
they will not be included. 

2.7 REDUCTION OF EQUATIONS TO A USABLE FORM 

2.7.1 Normalization of Equations 

Now that the linearized expressions nave been derived, we begin the 
process of putting them in a more usable form.  One of the first steps 
in this process is to "normalize" the equations.  Initially, the reason 
for doing this will not be apparent.  It is a necessary step in the 
simplification of the equations, however, and the rationale will become 
apparent later. 

In order to do this each equation is multiplied through by a "nor- 
malization factor".  This factor is different for each equation and is 
picked primarily to simplify the first term on the RHS of the equation. 
The following table presents the normalizing factor for each equation. 
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o 
1 

Equation 

"DRAG" 

"LIFT" 

"PITCH" 

"SIDE" 

"ROLL" 

"YAW" 

Normalizing 
Factor 

1 
m 

mU 

mU 

First Term is Now 
Pure Accel or a ß 

D  XT - + —-  + - 
m  m = u — 

L    -T 
mU mU + - w 

Units 

l-^yl  (2.78) 
sec 

+ — l~l   (2.79) 

p.  + -1 + - - 
y   y 

Y     T —-— + —— + 
mU   mU o    o 

£♦:* — 

q —    1^2"]  (2.80) 
sec 

+ — [££l]   (2.81) 
sec 

P + —   [^jl  (2.82) 
sec 

71 T 
z    z 

= r + —   [^_]  (21.83) 
sec2     ! 

■ 'I 

2.7.2 Stability Parameters 
■ 3L 

Stability parameters are simply the partial coefficients (—, etc.) 

multiplied by their respective normalizing factors.  To demonstrate this, 
consider the aerodynamic terms of the lift equation.  By multiplying 

equation 2.70 through by the factor =rr~i   we get 

L 
mU 

JL- + L_ 
mU   mU o ,  o 

)L  ,  1  BL 
  U + -rr—  i u    mU i a 

1 oL   •   1  9L     1  ciL  ,  ,rad, 
mU  , •    mU  Sq    mU  3 6  "e  sec' 

, ° ''•'* ,       i  °   J   ^_°   e; 
(2.84! 

L. L^ 

The indicated quantities are defined as stability parameters and the 
equation becomes 

_L_ = _2_ + L U + L < + L.<; + L q + Lx      [^±] 
mU   mU    u     <     -     qM    ^   sec1 

Q        O fe= 

(2.85) 

Stability parameters have various dimensions depending on whether they 
are multiplied by a linear velocity, an angle, or an angular rate 
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VrTJ U 4h]   - 1^' L« Is-eT1 ° '"<" = ISifl' 

L. [none] a [**i] = [Ä a sec    sec 

The lateral-directional motion can be handled in a similar manner.  For 
example, the normalized aerodynamic rolling moment becomes: 

£-£♦£. *Ä7-£pP-«£rr-eV- r 
r I-^-y]   (2.86) 

sec 

whore 

£l  «U^- [-L_]f etc, I    up 
X sec 

These stability parameters are sometimes called "dimensional derivatives" 
but we will reserve the word "derivative" to indicate the non-dimensional 
form which can be obtained by rearrangement.  This will be developed later 
in this chapter. 

2.7.3 Simplification of the Equations 

By combining all of the terms derived so far, the resulting equations 
are somewhat lengthy.  In order to economize on effort, several simplifica- 
tions can be made.  For one, all "small effect" terms can be disregarded. 
Normally these terms are an order of magnitude less than the more pre- 
dominant terms.  These und other simplifications will help derive a con- 
cise and workable set of equations. 

2.7.4 Longitudinal Equations 

Drag Equation 

The complete normalized drag equation is 

m 

Aero  Terms 
 A  

+  Du   +  D*-i   +  Du  +  Dq  +  D. -> j u q 6 
„1 

♦V m 

Thrust Terms 
A  

T   + il u + 
O 3 U 

3T 

rpm rpm 
(cos ,-; =    U    +    (.]' rv (2.87) 
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ü Simplifying assumptions 

T D   Üo , 

m        mm 
(Steady State) 

,3T  ^ 3T 
(3U-U + TT rpm 

& ) COS E rpm = 0 (Constant rpm, -— is small) 

3.  rv = 0 (No lat-dir motion) 

The small perturbation assumption allows us to analyze the longitudinal 
motion independent of lateral-directional motion. 

4.  qw £S 0 (Order of magnitude) 

5.  D», D , and D„  are all small, 

The resulting equation is 

•[D a + D u + DQe] = u a     u    ö 
(2.88) 

Rearranging 

u  +  Da   +  Du  +  D,6  =  0 
a u 6 

(2.89) 

w 

Lift Equation 

The complete lift equation is 

Aero Terms 

r 

-fr- +La   +  L-a   +  Lu   +   Lq  +  LI      & 
mU a a u q 6       e 

o ^ e 

Gravity Terms 

r 

wt 
mU 

+  L 

~\ 

m 

i 
l 

mU 

Thrust  Terms 
 A 

T + |i u + |?— * o       3u 3 6 rpm rpm 
(sin  i ) w  +   pv   - qu 

Ü 

» i 
. i. 
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Simplifying assumptions 

L 
Lo    °w   To 

1-     " SO- + fnU 5D- sin e = ° (Steady State) 
o    o     o 

3 T     BT 3T 2*  3u U + 3^  6rpm = ° (Constant rpm, ,_ is small) 
rpm  r 

3. Löe = 0 (Order of magnitude) 

A W 4. {r= a 
o 

5. pv = 0 (No lat-dir motion) 

6. g£=q (u-ü0) 

Thus 
• • 

- L a - L•a - L u - L q - L.  6  = a - q (2.90) 
"      e 

v  I 

Rearranging 

L a - (1 + L«) a - L u + (1 - L ) q = L.  6       (2.91) a a      u q      o  e ~       e 

Pitch Moment Equation 

%l2. +    7n  a + 7n-'<x     +    TM.   u + Tn,     i  + % q + Thrust Terms I        a       )        u       6   e     q y e 

(I  - I )   ,   I          2, z    X:'   (p  - r ) , = q _ pr  + -*--  I 2) 

y       y   J 

This can be simplified as before.  Thus 

q - M ■, - m.i - m u - m q = n?k   « (2.93) ^      a       a       u       q       *.e  e 

Now there are three longitudinal equations that r"-" easy to work with. 
Notice that there are four variables ■'■, i, a, and q but only three 
equations.  To solve this problem, ° can be substituted for q. 

q = 6  and  q = >' 
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ö Therefore the longitudinal equations become: 

u 

DRAG 

(6)   I    (U)   I 

I 

(a) 

+ D a a I = o 

I 

(2.94) 

LIFT     (1-L ) G|  - Luu  I- (1 + L.) a   - \* t  *  L&     6g        (2.95) 
I I        ' ,     e 

PITCH   0 - M ei . ?n u i - ^z.a - ?n u  \ =Ms a   ' u a       a 
II I 

6 e e (2.96) 

There are now three independent equations with three variables.  The 
terms on the RHS are the inputs or "forcing functions".  Therefore, for 
any input 5e, the equations can be solved to get e, u and a  at any time, 

Lateral-Directional Equations 

The complete lateral-directional equations are as follows: 

Side  Force 

Y 
-£- +  YJ   +  Y.J   +  Y  p  +  Yr   +  Y.      6+YA      5^ 
mU 6 ß p^ r 6 a     a 6       r o a r 

x      wt + v  .»  - v +  ru - pw + m Y * * Ü o o 
(2.97) 

Rolling Moment 

I rf ü p^ r 6     a 6     r 

I     -  I I 
p   +  qr   (—j ±-)    -   (r   -  pq)    j  

x x 
(2.98) 

Yawing Moment 

^ +    7?.,-   +    71 ••   ♦      ftp  +     /?rr  +    /Z^a  +     ^   o 

I     -   I I 
r   +  pq   (   yT       X)   +   (qr   - p)   ~ (2.99) 
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In order to simpliiy the equations, the following assumptions are made: 

1.  A wings level steady state condition exists initially.  Therefore, 

°^o'    ^o' Yo' and Yo  are zero- wt 

2.  p = <*>, p = (9 ~0, see Euler angle transformations, 
P9 2.7) 

3.  The terms Y-B, 7t-&,    &£"al  and Y5  6  are all small. p     P     P       a a 

4.  g-. * G 
o 

(a is small) 

r   ru 5. ,--r (U = Uo) 

w = q = 0 (no longitudinal motion) 

Using these assumptions the lateral-directional equations reduce to: 

(S) 

S IDE   p -Y , |3 
FORCE     p VV 

ROLLING  - c£ft + V- o^ J 
MOMENT       l I       P 

YAWING 
MOMENT *,«-! 

xz 
•r-  /^p* 

(r) 

+ (1-Y )r r YS 6r r 

=— r- aO r' = e*Lc 6  + c£^ - I       r 1    5  a     5  r x a       r 

+ r 7lf X*   5a + ^ 

(2.100) 

(2.101) 

(2.102) 

Once again there are three unknowns and three equations.  These equations 
may be used to analyze the lateral-directional motion of the aircraft. 

2.7.5 Stability Derivatives 

The parameteric equations give all the information necessary to 
describe the motion of any particular airplane.  There is only one prob- 
lem.  When using a wind tunnel model for verification, a scaling factor 
must be used to find the values for the aircraft.  In order to eliminate 
this requirement a set of non-dimensional equations must be derived. 
This can be illustrated best by an example: 
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o EXAMPLE 

Given the parametric equation for pitching moment, 

q      U      a      a      6  e ^ e 

Derive an equation in which all terms are NON-DIMENSIONAL. 

The steps in this process are 

1.  Take each stability parameter and substitute its coefficient rela- 
tion, i.e. , 

u 

"l q  iy 5 q  iy 

a (c i p u2 sc) m 2  
ä q 

C  is the only variable that is dependent on q, therefore, 

2.  Non-dimensionalize the partial term, i.e., 

3C m ,   ,.    . dimensionless 
T has dimensions =  -5-7  = sec 3 q rad/sec 

(2.103) 

(2.104) 

To non-dimensionlize the partial terms, there exist certain compensating 
factors that will be shown later.  In this case the compensating factor 
is 

[ft] 
2U   [ft/sec] = sec 

Multiply and divide equation 2.104 by the compensating factor and get 

check 

M 
pU  2   Sc 

0 

c 
2U 

0 

(   ^ 
2U 

0 
V 

3C m 
3   q 21 

y 
•This term is now dimensionless 

oC m 

3 (§3-) 20" 

dimensionless 
': t/sec~ 
ft/sec 

dimensionless 
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This is called a stability derivative and is written 

3C_ m 

*   3(2U > o 

- by definition 

3.  When the entire term as originally derived is considered, i.e., 

7n pU  Sc 
o       c ,q - -^ w-   . C   • q 

O     q TT 

It can be rearranged so that 

„      p U  Sc 

"^ 21  ' Cm   2Ü" M       y      q    o 

Define 
A  cq   [ft/sec] ,.    .  , q = 2U^ [ft/sec) ^mensionless 

.*. The term becomes 

pu 2 Sc 
j% q =   °  C q 

q^1    21     m , 
y  ,q L 

L, 
->- Dimensionless variable 

Dimensionless stability derivative 

•Constants 

But q is expressed as 6 in the equation.  To convert this substitute 
do , 
ar for *• 

eg _ c  d( ■:•) 
2~Ü~  2U  dt " o    o 

Then, 

Define D = -c  d( } 

2U  ~~3F o 

D can be considered to be a dimensionless derivative and acts like an 
operator. 
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ö therefore 

A c  d 6 
q = D e = 2TT~ 3t *i,e"' dimensionless derivative of e) 

o 

4.  Do the same for each term in the parametric equation. 

"£u  I  3u   I 
y     y 

3U 

Since both Cm and U are functions of u, then 

; 

pU 2 Sc / äC   2Cm 

21 3 u    U 

u but Cm = 0 since initial conditions are steady state.  The compensating o ^ 
factor for this case is —- 

PU   Sc   /.)C  \  /'^\ :. in* =   °        /   m wu 21 

A 
C       u m u 

I 8 

5.  Once all of the terms have been derived, they are substituted into 
the original equation, and multiplied through by 

21 

pU       SC o 

which  gives 

21 .. A 
—J-— ■   - c     D■• - c     u - c     n.  - c    . = c      >^ ,,   2   „ m m m • m me p U        Sc q u 
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The first term is non-dimensional, however, it can be changed to a more 
convenient form.  Multiply and divide by 

4U rr 
c    d 

c    d(e) 
2u       dt o 

2U dt 

= D 

Therefore, the term becomes, 

j  D 
y 

and the final equation is, 

2 A 

(l  D - C  ) - - C  u - (C  D - C y      m       m      m-    m J        q        u       a 
= C m v  e 

e 

The compensating factors for all of the variables are listed below. 

A:  ;ular  Rates 
Compensating 

Factor Non-Dinensional   Angular   Rates 

p -   rad/sec 2U 
pb 
2Ü~ 

D   : 

c;   -   r ad/'sec 2U 1        2U o 

rad/sec 2U 
rb 
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Angular Rates 

ß = rad/sec 

a = rad/sec 

u = ft/sec 

Compensating 
Factor      Non-Dimensional Angular Rates 

= D ß b ß ..      fo 
2U 2U o o 

c A IC 

2U -X 2U o o 

1 A u u 
U U 

= D 

a - no change 

ß - no change 

l    I 

These derivations have been presented to give an understanding of where 
the equations come from and what they represent.  It is not necessary to 
be able to derive each and every one of the equations.  It is important, 
however, to understand several facts about the non-dimensional equations. 

o 
1. 

2. 

4. 

Since these equations are non-dimensional, they can be 
describe any aircraft that are geometrically similar. 

used to 

Stability derivatives can be thought of as if they were stability 
parameters.  Therefore, Cm refers to the same aerodynamic charac- 
teristics as M , only it is in a non-dimensional form. 

Most aircraft designers and builders are accustomed to speaking in 
terms of stability derivatives.  Therefore, it is a good idea to 
develop a "feel" for all of the important ones. 

These equations as well as the parametric equations describe the 
complete motion of an aircraft.  They can be programmed directly 
into a computer and connected to a flight simulator.  They may also 
be used in cursory design analyses.  Due to their simplicity, they 
are especially useful as an analytical tool to investigate aircraft 
handling qualities and determine the effects of changes in aircraft 
design. 
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Bo tic Fere« Relations 

To aid in developing the stability derivatives from the basic force 
relations, the following table is provided. 

2.U 

LONGITUDINAL MOTION 

Equation Coefficient 

Normaliz- 
ing 

Factor Parameters 

Drag 
1   2 

D = jpU  S CD 
1 
m D  (D requires special derivation) 

(Dk , D- and D are insignificant) 
' e   J     ^ 

Lift 
1   2 L = ±-kV S CL 

1 
mU o 

L  L. L I.     L 
u i     q • M  e 

Pitch Jft =  I c U2 S c C '"2         m 
1 
I 
y 

in 7n m m m 
U  •-< x     q  5e 

Linear Velocity Angles Angular Rates 

Independent 
Variables 

u e q 

Compensating 
Factors 

1 
U 
0 

None 

s 
c 
2TT o 

LATERAL-DIRECTIONAL MOTION 

Equation Coefficient 

Normaliz- 
ing 

Factor Parameters 

Side 1   2 
Y -  t c V     S C 1 

mU 
Y . Y  Y  Y 

p  r 
^     r 

(Y- and Y^  art insignificant) 
a 

Roll X = i- : U2 S b C 

Yaw 
yi     l  2 

j /2 = i- ■ u s b c 
2 ii 

£, f   £   £<    Z 
■     p  r 

(uo , is insignificant) 

77,   ?L   7L   71.     7L 1 a   r 

(//:   is insignificant) 

Independent 
Variables 

Compensating 
Factors 

Angles _  Angular  Kates 

■>        i        i' p r 

None 
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u Non-Dimemiorol Derivative Equations 

A list of the non-dimensional derivative  equations is presented 
below. 

NON-DIMENSIONAL LONGITUDINAL EQUATIONS 

(e) (u) (a) 

Drag (2uD  +  CD   +   2CD  )u;   +     % a 

Lift (2uD   - C     D) 6   | -      (CL     +  2CL   ) u -   (2uD  +  CL-a   D      | =  C       ^ 

q , I        +CL)a | 

Pitching 
Moment 

i D  - C  D) 8, -  C  a 
y     m        m 1 q  i u 

(C  D + C  )o|= C_ &. 

81 
l  =  *T 

2m 
oSc 

D -  °  d( 1 
o 

NON-DIMENSIONAL LATERAL-DIRECTIONAL EQUATIONS 

I  I 

Rolling 
Moment 

(3) (;) 

r;ide (2uD - C    )S     | -     (C    D + CL  ) 4 
force 8 P o 

Yawing " Cn  8 

Moment 6 

81 

pSb 

81 

cSb 

81 

7T 

xz 

P Sb 

I 

+      (i   D2   -  C     D)| 
X P 

(iv D    + Cn D»* 

n -    b    d(.  > 
o 

2m 
FSS 

(r) 

+      (2.   - C     )r   |=  C        5r 
r       , 6r 

(i     D + c,   )r|=  C,        £     +  C       5 
i   a    c« r 

a r 

+     (i  D  - C    )r*= C       6     + C       « z n       '       n.     a n. r S 6 
l a r 
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CHAPTER 

LONGITUDINAL STATIC STABILITY 

• 3.1  DEFINITION   OF   LONGITU- 
DINAL   STATIC   STABILITY 

Static stability is the 
reaction of a body to a disturbance 
from equilibrium.  To determine the 
static stability of a body, the 
body must be initially disturbed 
from its equilibrium state.  If 
when disturbed from equilibrium, 
the body returns to its original 
equilibrium position, the body dis- 
plays positive static stability or 
is stable.  If the body remains in 
the disturbed position, the body 
is said to be neutrally stable. 
However, should the body, when dis- 
turbed, continue to displace from 
equilibrium, the body has negative 
static stability or is unstable. 

Longitudinal static stability 
or "gust stability" of an aircraft 
is determined similarly.  If an 
aircraft in equilibrium is momen- 
tarily disturbed by a vertical gust, 
the resulting change in angle of 
attack causes changes in lift co- 
efficients on the aircraft.  (Ve- 
locity is constant for this time 
period.)  The changes in lift 
coefficients produce additional 
aerodynamic forces and moments in 
this disturbed position.  If the 
aerodynamic forces and moments 
created tend to return the air- 
craft to its original undisturbed 
condition, the aircraft possessses 
positive static stability or is 
stable.  Should the aircraft re- 
main in the disturbed position, it 
possesses neutral stability.  If the 
forces and moments cause the air- 
craft co  diverge further from 
equilibrium, the aircraft possesses 
negative lone itudinal static sta- 
bility or is unstable. 

\ 

• 3.Ä   ANALYSIS   OF   LONGITU- 
DINAL   STATIC    STABILITY 

Longitudinal static stability 
is only a special case for the 
total equations of motion of an 
aircraft.  Of the six equations of 
motion, longitudinal static sta- 
bility is concerned with only one, 
the pitch equation, that equation 
describing the aircraft's motion 
about the y - axis. 

<K Pr(Iz~ I ) + <p' r2)I xz 
(3.1) 

The fact that theory pertains to 
an aircraft in straight, steady, 
symmetrical flight with no unbal- 
ance of forces or moments permits 
longitudinal static stability motion 
to be independent of the lateral and 
directional equations of motion. 
This is not an oversimplification 
since most aircraft spend much of 
the flight under symmetric equilib- 
rium conditions.  Furthermore the 
disturbance required for stability 
determination and the measure of 
the aircraft's response takes place 
about the y - axis or in the longi- 
tudinal plane. 

Since longitudinal static 
stability is concerned with resul- 
tant aircraft pitching moments 
caused by momentary changes in 
angle of attack and lift coeffi- 
cients, the primary stability 
derivatives become Cma and CmcL« 
The value of either derivative is 
a direct indication of the longi- 
tudinal static stability of the 
particular aircraft. 

To determine an expression 
for the derivative, Cm^r ,   an air- 

3.1 
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craft in stabilized, equilibrium 
flight with horizontal stabilizer 
control surface fixed will be 
analyzed.  A moment equation will 
be determined from the foices and 
moments acting on the aircraft. 
Once this equation is nondimension- 
alized, in moment coefficient form, 
the derivative with respect to CL 
will be taken.  This differential 
equation will be an expression for 
CmcL and will relate directly to 
the aircraft's stability.  Indi- 
vidual term contribution to sta- 
bility will in turn be analyzed. 
A flight test relationship for 
determining the stability of an air- 
craft will be developed followed 
by analysis of the aircraft with 
a free control surface. 

•   13   THE   STABILITY    EQUATION 

To derive the longitudinal 
pitching moment equation, refer to 
he aircraft in figure 3.1.  Writ- 

ing the moment equation using the 
sign convention of pitchup being a 
positive moment and assuming a 
small angle of attack a so that 
cos u ~ 1 and sin a s: a; 

If an order of magnitude 
check is made, some of the terms 
can be logically eliminated because 
of their relative size.  Op can be 
omitted since 

T 
w 
10 

N w 
100 

Macip is zero for a symmetrical 
airfoil horizontal stabilizer 
section.  Rewriting the simplified 
equation: 

M CG \\ 
+ c z w w M  + M, ac   f Vi (3.3) 

It  is  convenient  to express 
equation  3.3  in nondimensional 
coefficient  form by dividing both 
sides of  the equation by q  S  c www 

■*CG 
q S   c 
www 

NX C Z 
w w w w ac 

q. S   c q  S   c www Trf   W  V 

u 

q S   c nw w w 

T T 
qS   c 
TJ  W  W 

(3.4) 

FIGURE 3.1 

M 
CG N X    + w w 

CZ    - w w M      f ac v-T + cThT ac,„ (3.2) 

3.2 
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u Substituting the following coeffi- 
cients in equation 3.4: 

CG 

CG   % wcw coefficient 

M ac 

total pitching moment 
coefficient 

wing aerodynamic 

ac 
„    pitching moment 

qSc     ..... . 
T* w w coefficient 

•£   fuselage aerodynamic 
s    pitching moment co- 

"""'"••  efficient 

wing aerodynamic nor- 
mal force coefficient 

h 
www 

N 
w 

q S 
^w w 

w        w 
c  - cN — + cr ■— mCG    N c      c c 

v^ 
c  + c 

ac    f 

(3.6) 

Equation 3.6 is referred to as the 
equilibrium equation in pitch.  If 
the magnitudes of the individual 
terms in the above equation are 
adjusted to the proper value, the 
aircraft may be placed in equilib- 
rium flight wnere Cm_ = 0. 

Taking the derivative of equa- 
tion 3.6 with respect to CL and 
assuming that Xw, Zw, VJJ , and HT 
do not vary with CL, 

qTST 

Cw 
Cc " q S 

W W 

tail aerodynamic nor- 
mal force coefficient 

wing aerodynamic 
chordwise force co- 
efficient 

dC 
"CG 

dC. 
5i i + !fc 5t 
dCL c    dCL c 

WING 

dC 
ac 

dC. 

Equation  3.4 may now be written: 

X Z 
c       -   cv -- +  c  —  -   c       + c m__            N c c c              m             m. CG ac            f 

VT 
q S c nw w w (3.5) 

where C  and cw are  used  interchange- 
ably  to  represent  the mean  aerody- 
namic chord of  the wing.     To have 
the  tail  term in  ter; s of  a  coeffi- 
cient,  multiply and divide  the  term 
t>y qTsT 

q S  c 
Trf w w 

q S ST T 
qTST 

dC 

dC. 

dC., 

—- v n dC.       H T 
L 

FUSELAGE TAIL 

(3.7) 

Equation  3.7   is  the  stability equa- 
tion and is  related to  the  stability 
derivative Cm    by  the  slope of  the 
lift curve,  a. 

dC  n 
da 

dC  n 
dC, 

(3.8) 

Equation 3.6 and equation 3.7 
determine the two criteria neces- 
sary for longitudinal stability: 

1. The aircraft is balanced. 

2. The aircraft is stable. 

Substituting tail efficiency fac- 
tor n„ = qT/q and designating tail 

volume coefficient V(1 = i  ST/cwSw, 

Equation (3.5) becomes: 

The final condition is satis- 
fied if the pitching moment equa- 
tion may be forced to CmcG -  0 for 
all useful positive values of Cjjt 
This condition is achieved by 

3.3 
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= trimming the aircraft so that mo- 
ments about the center of gravity 
are  zero   (i.e., MQQ = 0) . 

The second condition is 
satisfied if equation 3.7 or dCmcG/ 
dCL has a negative value.  From 
figure 3.2 a negative value for 
equation 3.7 is necessary if the 
aircraft is to be stable.  Should 
a gust cause an angle of attack 
increase and a corresponding in- 
crease in CL, a negative QnCG should 
be produced to return the aircraft 
to equilibrium, or CMc = 0.  The 
greater the slope or the negative 
value, the more restoring moment 
is generated for an increase in CL. 
The slope or dCm/dC^ is a direct 
measure of the "gust stability" of 
the aircraft. 

FIGURE 3.2 

+c_ 

NOSE DOWN 

LE2S STABLE   A C 

MORE STABLE AC 

If the aircraft is retrimmed 
from one angle of attack to another, 
the basic stability of the aircraft 
or slope dCm/dCL does not change. 
Note figure 3.3. 

FIGURE 3.3 

However, if the eg is changed 
or values of Xw, Zw, and V"H are 
changed, the slope or stability of 
the aircraft is changed.  See equa- 
tion 3.7.  For no change in trim 
tab setting, ehe stability curve 
may shift as in figure 3.4. 

FIGURE 3.4 

.; 
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3.4    EXAMINATION    OF    THE 
WINO,   FUSELAGE,   AND    TAIL 
CONTRIBUTION   TO   THE 

STABILITY   EQUATION 

The Wing Contribution to 
Stability: 

The lift and drag are by defi- 
nition always perpendicular and 
parallel to the relative wind.  It 
is therefore inconvenient to use 
these forces to obtain moments, for 
their arms to the center of gravity 
vary with angle of attack.  For 
this reason, all forces are re- 
solved into normal and chordwise 
forces whose axes remain fixed with 
the aircraft and whose arms are 
therefore constant: 

3.« 
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FIGURE 3.5 

RESULTANT 
AERODYNAMIC 
FORCE 

X BODY AXIS 

Assuming the wing lift to be 
the airplane lift and the angle of 
attack of the wing to be the air- 
plane's angle of attack, the follow- 
ing relationship exists between the 
normal and lift forces (figure 3.5) s 

L cos a + D sin a (3.9) 

Making an  additional assumption that: 

cL
2 

Cr = Cn    ..  + —=-   and if 1 "parasite  KJR e 

Cn    ..is constant with change "parasite 
in CL: 

dC„  2CT 
Then dCT   IT® e 

If the angles of attack are small 
such that cos a -  1.0 and sin o = a, 
equations 3.13 and 3.14 become: 

5 
dC, 

N 1 + Cra 
da 

L      TT® e        dC, 

+    C, D    d 
da 

(3.15) 

I      1 

C    -    D cos a   -    L sin a (3.10) 

Therefore,   the coefficients are 
similarly related: 

dC, 2    c-d4i0 dC. iBL e     L       D   dC, 

a-C da 
L dC, (3.16) 

CN    -    CL cos a   +    CD sin a (3.11) Examining  the  above equations 
for relative magnitude, 

Cr    -    C    cos a    -    C    sin a (3.12) 

The stability contributions, dC^/dCL 
and dCc/dCjj, are obtained: 

dCM        dC, An, 

L L Li 

+ dc[ Sln a + CD dt[ C0S a 

(3.13) 

Cn   is on the order of 0.3 

CL   usually ranges from .2 to 
2.0 

a    is small, ~ .2 radians 

3=-  is nearly constant at .2 
dC.     ,. L  radians 

Ti^Re 
is on  the order of   .1 

Making  these substitutions,   equa- 
tions  3.15 and  3.16  become 

dcc dcn r     da     . .    __    cos  a _  C    —    sin a 
L L Li 

dC, 
. r      da sin a-C,   -r~r    cos a 

L at 
(3.14) 

dC„  ^ 
dC. 1 -.04 +  .06 

-    1.02   »     1.0 (3.17) 
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dC. .1 C. .012 - .2 - .2C, 

- (.2 + .1 CJ (3.18) 

By definition the coefficient 
of moment about the aerodynamic cen- 
ter is invariant with respect to 
angle of attack. Therefore, 

dCm ac 
dCL 

= 0 

Rewriting the wing contribution of 
the stability equation 3.7, 

dC X w 
dC, 

WING 

(.2 + .1 C.) —  (3.19) 
L  c 

From figure 3.5 when a in- 
creases, the normal force increases 
and the chordwise force decreases. 
Equation 3.19 shows the relative 
magnitude of these changes. The 
position of the eg above or below 
the aircraft chord (a.c.) has a 
much smaller effect on stability 
than does the position of the eg 
ahead or behind the a.c.  With the 
eg ahead of the a.c., the normal 
force is stabilizing.  From equa- 
tion 3.19, the more forward the 
eg location, the more stable the 
aircraft.  With the eg below the 
a.c, the chordwise force is sta- 
bilizing since this force decreases 
as the angle of attack increases. 
The further the eg is located below 
the a.c, the more stable the 
aircraft or the more negative the 
value of dCjn/dCL.  The wing contri- 
bution to stability depends on the 
eg and a.c relationship shown in 
figure 3.6. 

FIGURE 3.6 

WING CONSTRUCTION TO STABILITY 

DESTABILIZING 

STABILIZING 
DESTABILIZING 

STABILIZING 

II 

For  a  stable wing  contribution   to 
stability,   the aircraft  should be 
designed with  a  high wing  aft  of 
the center of  gravity. 
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Symmetrical Wing Contri- 
bution. 

Fighter type aircraft and 
most low wing, large aircraft have 
cg's very close to the top of the 
mean aerodynamic chord.  Zw is on 
the order of .03.  For these air- 
craft, the chordwise force contri- 
bution to stability can be neglected. 
The wing contribution then becomes: 

dC 

dC, 
UNG 

w 
c 

(3.20) 

The Flying Wing. 

In order for a flying wing 
to be a usable aircraft, it must 
be balanced (fly in equilibrium at 
a useful positive CL) and be stable. 
The problem may be analyzed as 
follows: 

FIGURE 3.7 

For the wing in figure 3.7, 
assuming that the chordwise force 
acts through the eg, the equilibrium 
equation in pitch may be written: 

MCG NX (3.21) 

Writing the equation in coefficient 
form, 

CG 

w 

c (3.22) 

For controls   fixed,   the  stability 
equation becomes, 

dC 
CG 

dC, 

dC 
ft 

dC, 
w 
c 

(3.23) 

Equations 3.22 and 3.2 3 show that 
the wing in figure 3.7, is balanced 
and unstable.  To make the wing 
stabTe7_ör—d"Cm/dCL negative, the 
center of gravity must be ahead of 
the wing aerodynamic center. Mak- 
ing this eg change, however, now 
changes the signs in equation 3.21. 
The equilibrium and stability equa- 
tions become: 

mCG       N 
w 
c ac 

dC 
CG 

dC. 

dC, X  N _w 
dC,  c 

(3.241 

(3.25) 

The wing is now stable but unbal- 
anced. The balanced condition is 
possible with a positive Cm  . 

Three methods of obtaining 
a positive Qn _ are: ac 

1.  Use a negative camber air- 
foil section.  The positive 
Cm  will give a flying wing 

ctC 
that  is  staole  and balanced 
(figure  3.8). 

FIGURE 3.8 

NEGATIVE CAMBERED FLYING W'NG 

Ck 

ac RW 
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This type of wing is not realistic 
because of unsatisfactory dynamic 
characteristics, small eg range, 
and extremely low C^ capability. 

2. A reflexed airfoil section 
reduces the effect of camber 
by creating a download near 
the trailing edge. Similar 
results are possible with an 
upward deflected flap on a 
symmetrical airfoil. 

3. A symmetrical airfoil section 
in combination with sweep and 
wing tip washout (reduction 
in angle of incidence at the 
tip) will produce a positive 
On--, by virtue of the aero- 
dynamic couple produced be- 
tween the down loaded tips 
and the normal lifting force. 

Figure 3.9 shows idealized 
Cm  versus Cj_, for various wings 
in a control fixed position. Only 
two of the wings are capable of 
sustained flight. 

The Fuselage Contribution to 
Stability; 

The fuselage contribution ic 
difficult to separate from the wing 
terms because it is strongly in- 
fluenced by interference from the 
wing flow field.  Wind tunnel tests 
of the wing body combination are 
used by airplane designers to obtain 
information about the fuselage in- 
fluence on stability. 

A fuselage by itself is al- 
most always destabilizing because 
the cen ;er of pressure is usually 

3.8 
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ahead of the center of gravity. 
The magnitude of the destabilizing 
effects of the fuselage requires 
their consideration in the equilib- 
rium and stability equations. 

dC. m 
di_L 

Positive quantity 
Fus 

The Tail Contribution to 
Stability; 

From equation 3.7, the tail 
contribution to stability was found 
to be: 

dC 
dC 

N„ 

dC 
4 

dC, Vl (3.26) 

ail 

For small angles of attack, the 
lift curve slope of the tail is 
very nearly the same as the slope 
of the normal force curve (i.e., 
CNT ~ CL ). 

dC, dt\ 

*T 

Therefore: 

% 

!*rail 

VT 

da, Tail 
(3.27) 

(3.28) 

An expression   for  otm  in  terms of  CL 

is required before solving for 
dCNT/dCL, 

Fl' JRE 3.10 

TAIL ANCLE OF ATTACK 

From figure 3.10, 

iw + 1T (3.29) 

Substituting equation 3.29 into 
3.28 and taking the derivative with 
respect to CL, where a = dCL/d<» 

N~       /da       \ 
T       /  w    dc 

dC. M dC, 

— aip 

w 

dCl 

ck 1 
da a ITA        (3.30) w 

upon factoring out l/aw, 

dCK N„ 

dC. w \ 

dc' 
~T~ i 
dai (3.31) 

Substituting equation 3.31 into 
3.26, the expression tor the tail 
contribution becomes, 

dC 

dC 
4 ail 

3.32) 

The value of aT/aw i-s very nearly 
constant.  These values are usually 
obtained from experimental data. 

The tail volume coefficient, 
VJI , is a term determined by the 

geometry of the aircraft.  To vary 
this term is to redesign the air- 
craft. 

cS ( 3 . * 3) 

The further the tail is located 
aft of the eg (increase .■]>) or the 

greater the tail surface area (S>j ) . 

the greater the tail volume coeffi- 
cient V|[ which increases t be tail 

contribution to stabi'it*'. 

3.9 
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The expression, n-p, is the 
ratio of the tail dynamic pressure 
to the wing dynamic pressure and 
n-p is greater than unity for a prop 
aircraft and less than unity for a 
jet.  For power-off considerations, 
nT = 1.0. 

The term (1 - d /da) is an im- 
portant factor in the stability 
contribution of the tail.  Large 
positive values of dc/da produce 
destabilizing effects by reversing 
the si~i of the term (1 - dt/da) 
and consequently, the sign of dC^/ 
dCLTail* 

For example at high angles of 
attack the F-104 experiences a 
sudden increase in dc/da.  The term 
(1 - dt/da) goes negative causing 
the entire tail contribution to be 
posic_ve or destabilizing, causing 
aircraft pitchup.  The stability 
of an aircraft is definitely in- 
fluenced by the wing vortex system. 
For this reason the downwash varia- 
tion with angle of attack should 
be evaluated in the wind tunnel. 

The horizontal stabilizer 
provides the necessary positive 
stability contribution (negative 
dCnj/dCL) to offset the negative sta- 
bility of the wing and fuselage com- 
bination and to make the entire 
aircraft stable and balanced (figure 
3.11). 

FIGURE 3.11 

CONTRIBUTIONS TO STABILITY 

The stability equation 3.7 may now 
be written as, 

V, 

V 
N 

X 
N 

X 

X 

*^V ' 

wy 

-'-'- 
Vv ,"— " 

dC 
 n 
dC. 

dC 

dC, 
'Fus 

I" f da 

w 

(3.33a) 

The Power Contribution to 
Stability: 

The addition of a power plant 
to the aircraft may have a decided 
effect on the equilibrium as well 
as the stability equations.  The 
overall effect may be quite compli- 
cated.  This section will be a 
qualitative discussion of the power 
effects.  Tne actual end result as 
to the power effects on trim and 
stability should come from large 
scale wind tunnel models or actual 
flight test. 

The power effects on a pro- 
peller-driven aircraft which in- 
fluence the static longitudinal 
stability of the aircraft are: 

1. Thrust force effect - effect 
on stability from the thrust 
force acting along the pro- 
peller axis. 

2. Normal force? effect - effect 
on stability from a force nor- 
mal to the thrust line and in 
the plane of the propeller. 

3. Indirect effects - power 
plant effects on the stability 
contribution of other parts 
of the aircraft. 

^ 
v _   Dv —!■■"■ «. r 1  H. -~r* 
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FIGURE 3.12 

PROPELLER THRUST AND NORMAL FORCE 

Writing  the moment equation  for the 
power   terms  as: 

CG TZT    +    NpXT 

In coefficient form, 

zT x. 
c   = cT — + c. — 
\c     X  c       ^p c 

(3.34: 

(3.35) 

The direct power effect on the air- 
craft's stability equation is then: 

able from propeller 
estimates in manufac 
decreases with incre 
Coefficient of thrus 
CL is nonlinear with 
large at low speeds, 
tion of these two va 
imately linearize C-p 
ure 3.13). The sign 
positive. 

performance 
turer's data, 
ase in velocity, 
t variation with 
the derivative 
The combina- 

riations approx- 
versus CL (fig- 
of aCm/dCL is 

FIGURE 3.13 

COEFFICIENT OF THRUST CURVE RECIPROCATING 
POWER PLANT WITH PROPELLER 

dC 
tn 

dS   zT 

dCL power 
dCL    c 

dCN      x 
+   __E   -2 

aCL     c 

he  sign c. f dCm/dCLnnwoT 

(3.36) 

then depends 

on the sign of the derivatives dCw / 
dC;, and dOx>/dCL. 

We shall first consider the 
dGp/dCL derivative.  As speed varies 
at different flight conditions, 
throttle position is held constant. 
Consequently, Cy  varies in a manner 
that can be represented by dCT/dCL. 
The coefficient of thrust for a 
reciprocating power plant varies 
with CL and proueller efficiency. 
Propeller efficiency which is avail- 

Ct 

The derivative, dCy /dCL/ is 
positive since the normal propeller 
force increases linearly with the 
local angle of attack of the pro- 
peller axis, j'p. 

I h 
'he   direct power effects   are 
stabilising   if   the  eg   is   as 

f 

f 3.11 
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shown in figure 3.12, or where the 
power plant is ahead and below the 
eg. 

dC dC.   c dCT 

dC dcTzT 
(3.37) 

s ewer 

The indirect power effects 
must also be considered in evaluat- 
ing the overall stability contri- 
bution of the propeller power plant. 
No attempt will be made to deter- 
mine their quantitative magnitudes; 
however, their general influence on 
the aircraft's stability and trim 
condition can be great. 

1. Increase of Angle of Downwash, 
E : 

Since the normal force on the 
propeller increases with angle of 
attack under powered flight, the 
slipstream is deflected downward 
netting an increase downwash at the 
tail.  The downwash in the slip- 
stream will increase more rapidly 
with angle of attack than the down- 
wash outside the slipstream.  The 
derivative de/da has a positive in- 
crease with power.  The term (1 - 
de/da) in equation 3.32 is reduced 
causing the tail trim contribution 
to be less negative or less stable 
than the power-off situation. 

2. Increase of HT = (qT/qw) : 

The dynamic pressure, q_, of 
the tail is increased by the slip- 
stream and "T is greater than unity. 
From equation 3.32, the increase of 
rim with addition of a power plant 
increases the tail contribution to 
stability.  However, if the tail is 
carrying a download at trim and if 
it should move into a high velocity 
region of t-^e slipstream at higher 
CL, more ol a noseup moment would 
be present as CL increased, causing 
an obvious destablizing effect. 

Both slipstream effects men- 
tioned above may be reduced by lo- 

cating the horizontal stabilizer 
high on the tail and out of the 
slipstream at operating angles of 
attack. 

Power Effects on Jet Air- 
craft. 

The magnitude of the power 
effects on jet-powered aircraft 
are generally smaller than on pro- 
peller-driven aircraft  By assum- 
ing that jet engine thrust does not 
change with velocity or angle of 
attack, and by assuming constant 
power settings, smaller power effects 
would be expected than with a simi- 
lar reciprocating engine aircraft. 

There are three major contri- 
butions of a jet engine to the 
equilibrium static longitudinal 
stability of the aircraft.  These 
are the direct thrust effects, the 
normal force effects at the air duct 
inlet, and the indirect effect of 
the induced flow at the tail. 

The thrust and normal force 
contribution may be determined from 
figure 3.13a. 

FIGURE 3.13n 

TEST THRUST AND NORMAL FORCE 

Writing the equation, 

CG IZT    +    NTXj, (3.38) 

or 

c T *T 
mCG    =       tfc"    ZT      +    \T      (3.39) 

3.12 
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With the aircraft in unaccelerated 
flight, the dynamic pressure is a 
function of lift coefficient. 

q = 
W 

CLS (3.40) 

Therefore, 

"CG IT- CL + \ T   (3'41) 

Ir thrust is considered indepen- 
dent of speed,* then 

dC 
 B 

dC. 
r Z

T 
dC, 

T   T 

dC. 
-^ (3.42) 

The thrust contribution to stability 
then depends on whether the thrust 
line is above or below the eg. 
Locating the engine below the eg 
causes a destablizing influence, 
and above the eg a stabilizing 
influence. 

The normal force contribution 
depends on the sign of the deriva- 
tive dCNip/dCL.  The normal force 
Nrp is created at the air-duct inlet 
to the turbojet unit.  This force 
is created as a result of the momen- 
tum change of the free stream which 
bends to flow along the duct axis. 
The magnitude of the force is a 
function of the mass airflow rate, 
Wa, and the angle aT between the 
local flow at the duct entrance 
and the duct axis. 

M  - Wa \r NT - — V  aT (3.43) 

With an increase in aT, NT will in- 
crease, causing dCftm/dCr, to be posi- 
tive.  The normal force contribution 
will be destabilizing if the inlet 
duct is ahead of the center of 
gravity.  The magnitude of the de- 
stabilizing moment will depend on 

For aircraft which hove large thrust variation with airspeed, the 
pitching moment coefficient n:ust be calculated for different 
values of the aircraft's lift coefficient. 

the distance the inlet duct is ahead 
of the center of gravity. 

For a jet engine to definitely 
contribute to positive longitudinal 
stability, (dC^/dCL negative), the 
jet engine would be located above 
and behind the center of gravity. 

The indirect contribution of 
the jet unit to longitudinal sta- 
bility is the effect of the jet 
induced downwash at the horizontal 
tail.  This applies to the situation 
where the jet exhaust passes under 
or over the horizontal tail surface. 
The jet exhaust as it discharges 
from the tail pipe spreads outward. 
Turbulent mixing causes outer air 
to be drawn in towards the exhaust 
area.  Downwash at the tail is di- 
rectly affected.  With the exhaust 
below the tail surface, the downwash 
is increased, causing the tail term 
to be less stabilizing. 

From the above discussion it 
can be seen that  several factors 
are important in deciding the power 
effect on stability.  Each aircraft 
must be examined individually.  This 
is the reason that aircraft are 
tested for stability in several con- 
figurations and at different power 
settings. 

• 3.5 THE NEUTRAL POINT 

The stick-fixed neutral point 
is defined as the center of gravity 
position at which the aircraft dis- 
plays neutral stability or where 
dCm/dCL =0. 

The symbol h is used for cen- 
ter of gravity position where, 

CG 

c 
(3.44) 

\ 
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The stability equation for the 
powerless aircraft is: 

dC 
 jr 
dC, 

1> - h 
n (3.49) 

J 

dC 
 n 
dC, 

dC 

dCT 

Fus 

*T u li       de 

~ T Vl   I1 ~ da 
w 1 

(3.45) 

Looking at the relationship between 
eg and a.c. in figure 3.14, 

The stick-fixed static stability 
is equal to the distance between 
the eg position and the neutral 
point in percent of the mean aero- 
dynamic chord.  "Static Margin" 
refers to the same distance but 
is positive in sign for a stable 
aircraft.. 

FIGURE 3,14 

eg AND A.C. RELATIONSHIP 

X X 
w ,   ac 
— = h  
c c 

(3.46) 

"Static Margin" h (3.50) 

It is the test pilot's responsibil- 
ity to evaluate the aircraft's 
handling qualities and to determine 
the acceptable static margin for 
the aircraft. 

• 3.6 ELEVATOR POWER 

As previously mentioned, for 
an ö^rcraft to be a usable flying 
machine, it must possess stability 
and must be capable of being placed 
in equilibrium (Cm  = 0) throughout 

the useful CL range (balanced). 

Substituting equation 3.46 into 
equation 3.4 5 and setting dCm/dCL 
equal to zero, 

dC 
 n 
dC, 

0 - h 
ac 
c 

dC 

dC, 

"* V n  I 1   d£ - VHnT 11 - — 
w 

Fus 

dal  (3.47) 

Solving for h which is hn, 

For trimmed or equilibrium 
flight, Cm  must be zero.  Some 

means must be available for balanc- 
ing the various terns in the moment 
coefficient of equation 3.51, 

:   = c., — + c„ zw + c 
CG c      ac 

+ C 
m£ - aTaTVHnT (3.51) 

jac 
c 

dC 

dC. 
Fus 

L   3l   If l, dE + T  VT j1 " dJ 

(3.48) 

Substituting equation 3.48 back 
into equation 3.47, the stick- 
fixed stability derivative in terms 
of eg positions becomes, 

Several possioilities are available. 
The center of gravity could be 
moved fore and aft or up and down 
thus changing Xw/C or Zw/C.  How- 
ever, this would not only affect 
the equilibrium lift coefficient 
but would also change the stability 
dCm/dCL in the stability equation 
3.52.  This is undesirable. 

3.14 
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Ü dC  n> 
dC, 

dC„ X   dC„ Z    dC  N _w ,  C _w     » 
dC  c   dC. c   d 1CL CL Fus 

w du (3.52) 

The pitching moment coefficient 
about the aerodynaiu:^ renter could 
be changed by effectively changing 
the camber of the wing by using 
trailing ecge flaps as is done in 
flying wing vehicles.  On the con- 
ventional tail-to-the-rear aircraft, 
trailing edge wing flaps are in- 
effective in trimming the pitching 
moment coefficient to zero. 

The term daT/d6e in equation 
3.53 is termed elevator effective- 
ness and is given the shorthand 
notation r.  The elevator effective- 
ness may be considered as the equiva- 
lent change in effective tail plane 
angle of attack per unit chance in 
elevator deflection.  The relation- 
ship between elevator effectiveness 
T and the effective angle of attack 
of the stabilizer is seen in figure 
3.15. 

FIGURE 3.15 

CHANGE IN EFFECTIVE ANGLE OF ATTACK 
WITH ELEVATOR DEFLECTION 

i 

i 

The remaining solution is to 
change the angle of attack of the 
horizontal stabilizer to achieve a 
cm™ = 0 without a change to the 
basic aircraft stability.  The con- 
trol means is either an elevator 
on the stabilizer or an all moving 
stabilizer (called a slab).  The 
slab is used i.i most high speed air- 
craft and is the most powerful means 
of longitudinal control. 

Movement of the slab or ele- 
vator changes the effective angle 
of attack of the horizontal sta- 
bilizer and, consequently, the lift 
on the horizontal tail.  This in 
turn changes the moment about the 
center of gravity due to the hori- 
zontal tail.  It is of interest to 
know the amount of pitching moment 
change associated with a degree of 
elevator deflection.  This may be 
determined by differentiating equa- 
tion 3.51 with respect to 5e. 

dC 
—-  = C diS      m, e      6 ■ -vv H T d6 

a, - ANGLE ATTACK OF TAIL 

a. - ANCLE ATTACK OF SLAB 
^: 

As seen, elevator effectiveness is 
a design parameter and is determined 
from wind tunnel tests.  Elevator 
effectiveness is a negative number 
for all tail to the rear aircraft. 
The values range from zero to the 
limiting case of the all moving 
stabilizer (slab) where i equals 
(-1).  The tail angle of attack 
would change plus one degree for 
every minus degree the slab moves. 
For the elevator stabilizer combina- 
tion, the elevator effectiveness is 
a function of the ratio of overall 
elevator area to the entire hori- 
zontal tail area. 

(3.53) 

%■ 

4 «■' 

This change in pitching moment co- 
efficient with respect to elevator 
def1 action Cm<5e is referred to as 
"elevator power." It indicates the 
capability of the elevator in pro- 
ducing moments about the center of 
gravity. 

• 3.7   STABILITY   CURVES 

Figure 3.16 is a wind tunnel 
plot of Cm  versus Cj_, for an aircraft 
tested under two eg positions and 
two elevator positions. 

3.15 



FIGURE 3.16 

eg AND Se VARIATION ON STABILITY 

-S.-io* 

Cm 0 

AFT eg 

Assuming the elevator effectiveness 
and the e'evator power to be con- 
stant, then equal elevator deflec- 
tions produce equal moments about 
the eg.  Points A and B represent 
the same elevator deflection corre- 
sponding to the Cm  needed to main- 

tain equilibrium.  The pilot selects 
elevator deflection of 10 degrees. 
In the aft eg condition, the air- 
craft will fly in equilibrium at 
point B.  If the eg is moved forward 
with no change to the elevator de- 
flection, the equilibrium point is 
now at A or at a new C^.  Note the 
increase in the stability of the 
aircraft (greater negative slope 
dCm/dCL). 

If the pilot desires to fly 
at a lower Cj, or at A and not change 
the eg, he does so by deflecting 
the elevator to 5 degrees.  The sta- 
bility level of the aircraft has 
not changed (same slope). 

A cross plot of figure 3.16 
is elevator deflection versus CL 
for Cm = 0.  This is shown in fig- 
ure 3.17. The slopes of the eg 
curves are indicative of the air- 
craft's stability. 

FIGURE 3.17 

8,VERSUS CL «9 
20% 

3.8    FLIGHT   TEST 
RELATIONSHIP 

The stability equation 3.52 
derived previously pertains to 
theoretical applications and text 
book solutions.  The equation has 
no use in flight testing.  There 
is no aircraft instrumentation 
which will measure the change in 
pitching moment coefficient with 
change in lift coefficient or angle 
of attack.  Therefore an expression 
involving parameters easily measur- 
able in flight is required.  This 
expression should relate directly 
to the stick-fixed longitudinal 
static stability dCm/dCL of the 
aircraft. 

The external noment actir? 
longitudinally on an aircraft is: 

M f(a, a, q, V, 6 ) (3.54) 

Assuming further that the aircraft 
is in equilibrium and in unacceler- 
ated flight, then 

f(a, 6e) (3.55) 

3.16 
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Therefore, 

*M    -    f    A«    +   f-        A6 
e 

and 

C-Ca+C      6      -0 m m me a o 

where     Ac.     =  a   -   a_  =  a 

(3.56) 

(3.57) 

A6e   =   5„   _   6p     =6, 

assuming    oD = 0 

6e^ =  ° 

• 3.9   LIMITATION   TO   DIORII 
OF   STABILITY 

The degree of stability toler- 
able in an aircraft is determined 
by the physical limits of the longi- 
tudinal control.  The elevator power 
and amount of elevator deflection 
is fixed once the aircraft has been 
designed.  If the relationship be- 
tween 6e required to maintain the 
aircraft in equilibrium flight and 
CL is linear, then the elevator 
deflection required to reach any 
CL is, 

"Zero Lift 

d6 
 e 
dC. L (3.61) 

The elevator deflection required 
to maintain equilibrium is, 

C    a m a 
(3.58) 

Taking the derivative of  &B with 
respect to Cj,, 

dC 

dCT 

■n    da 
do"   dCT 

dC  n 
dC, 

(3.59) 

In terms of the static margin, the 
flight test relationship is, 

da 
 e 
dC, (3.60] 

The elevator stop determines 
the absolute limit of the elevator 
deflection available.  Similarly, 
the elevator must be capable of 
bringing the aircraft into equilib- 
rium at CL,. 

Recalling the flight test 
relationship, 

d6 
 e 
dC, 

dC 
 IT 

dCT 
!3.62) 

Max 

Substituting equation 3.6? into 
3.61 and solving for dCm/dCL 
corresponding to CL, Max 

6 
ero Lift "Limi J 

dC 
Hi ax Max 

o 
e 

!3.63) 

The amount of elevator required to 
fly at equilibrium varies directly 
as the amount of static stick-fixed 
stability and inversely as the amoun, 
of elevator power. 

Given a maximum CL required for 
landing approach, equation J.6 3 
represents the maximum stability 
possible, or defines the most for- 
ward eg movement.  A eg forward of 
this point prevents obtaining maxi- 
mum CL with limit elevator. 

3.17 

tamtmmm OWitt. 



iipM111.»»n iiin,mBaim,i i- iym*,w.u!w -^wpBBWPiy re . ^MMWlWBWWMMI^pp^p^WgWPWWpB 

If a pilot were to maintain 
the Ci».   for the approach, the 
value of dQn/dCL corresponding to 
this CL   would be satisfactory. 
However, as is the case, the p.!lot 
desires additional CL to maneuver 
as in flaring the aircraft.  Addi- 
tional elevator is required.  This 
requirement then dictates a dCm/ 
dCLM  less than the value required 

for %iax only' 

In addition to maneuvering 
the aircraft in the landing flare, 
the pilot must adjust for ground 
effect.  The ground imposes a 
boundary condition which affects 
the downwash associated with the 
lifting action of the wing.  This 
ground interference places the hori- 
zontal stabilizer at a reduced 
angle of attack.  The equilibrium 
condition at the desired CL is dis- 
turbed .  To maintain the desired 
CL, the pilot must increase 5e to 
obtain the original tail angle of 
attack.  The maximum stability dC^/ 
dCL must be further reduced to 
obtain additional 6e to counteract 
the reduction in downwash. 

The three conditions that 
limit the amount of static longi- 
tudinal stability or most forward 
eg position are: 

a. The ability to land at high 
CL in ground effect. 

b. The ability to maneuver at 
landing CL (flare capability). 

c. The total elevator deflection 
available. 

Figure 3.17A illustrates the limita- 
tions in dCm/dCLMax. 

3.10    STICK-FREE    STABILITY 

The name stick-free stability 
comes from the era of reversible 
control systems and is that varia- 
tion related to the longitudinal 
stability which an aircraft would 

possess if the longitudinal control 
surface were left free to float in 
the slip stream.  The control force 
variation with a change in airspeed 
is a measure of this stability. 

If an airplane had an elevator 
that would float in the slip stream 
when the controls were free, then 
the change in the dynamic pressure 
pattern of the stabilizer would 
cause a change in the stability 
level of the airplane.  The change 
in the stability contribution of the 
tail would be manifested by the float- 
ing characteristics of the elevator. 
Thus, the stick-free stability would 
depend upon the elevator hinge mo- 
ments, control friction, or any 
device that would affect the moment 
of the elevator. 

An airplane with an irrevers- 
ible control system has very little 
tendency for its elevator to float. 
Yet the control forces presented to 
the pilot during flight, even though 
artificially produced, appear to be 
the effects of having a free ele- 
vator,  If the control feel system 
can be altered artifically, then 
the pilot will see enly good hand- 
ling qualities and be aHle to fly 

FIGURE 3.17a 

LIMITATIONS ON dC   /dC, 
uMax 

8, 

S. LIMIT 
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what would normally be an unsatis- 
factory flying machine. 

Stick-free stability can be 
analyzed by considering the effect 
of freeing the elevator of a tail- 
to-the-rear aircraft with a revers- 
ible control system.  In this case 
the stick free stability would be 
indicated by the stick forces re- 
quired to maintain the. airplane in 
equilibrium at some speed other 
than trim. 

The change in stability due 
to freeing the elevator, is a func- 
tion of the floating characteristics 
of the elevator.  The floating char- 
acteristics depend upon the ele- 
vator hinge moments which depend 
upon the change in pressure distri- 
bution over the elevator associated 
with changes in elevator deflection 
and tail angle of attack. 

The analysis will look at 
the effect that pressure distri- 
bution has on the elevator hinge 
moments, the floating character- 
istics of the elevator, and then 
the effects of freeing the elevator. 

For 3  standard stable tail to 
the rear airplane, the pressure dis- 
tribution would produce a rownward 
load on the tail. 

FIGURE 3.18 

When the elevator is deflected the 
pressure distribution is changed. 

FIGURE 3.19 

When the stabilizer angle of attack 
is changed the pressure distribution 
is also changed. 

FIGURE 3.20 

When the pressure distribution is 
changed, the hinge moments are 
changed.  In order to deflect the 
elevator, the pilot had to apply 
a force to the stick and create a 
moment on the elevator hinge. 
The elevator hinge rroment the pilot 
applied is now balanced by a moment 
caused by the pressure distribution 
on the control surface, and the 
elevator remains in the deflected 
position. 

The pilot normally pulls back 
on the stick in order to produce 
a pitchup moment on the airplane. 
The hinge moment produced tends to 
move the control such that a posi- 
tive moment on the airplane results. 
Therefore, the hinge moment is called 
positive.  The pilot applies a posi- 
tive moment to move the elevator. 
The pressure distribution produces 
a negative moment that opposes that 
of the pilot. 

A plot of the pilot's hinge 
moment to deflect the elevator 
would be: 

FIGURE 3.21 

(,'ILOT  PRODUCED! 

3.19 
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The hinge moment produced by the 
pressure distribution would be as 
shown in figure 3.22. 

FIGURE 3.22 A H. FLOAT 

(PRESSURE DISTRIBUTION 
PRODUCED) 

When the stabilizer angle of attack 
(CXT) is changed, the pilot must 
produce a control force in order to 
keep the elevator from floating in 
the slip stream. 

Normally as the angle of 
attack is increased the elevator 
would tend to float up and the 
pilot would have to apply a negative 
push force in order to keep the 
stick from moving. 

The hinge moment produced by 
the pilot to maintain trim deflec- 
tion would be: 

FIGURE 3.23 

He 

 aT 

PILOT PRODUCED 

The hinge moment produced by the 
pressure distribution to float the 
elevator would be as shown in fig- 
ure 3.24, 

FIGURE 3.24 
He 

■8. 

If we consider the moments 
produced by the pressure distribu- 
tion on the elevator only, then we 
could analyze the floating char- 
acteristics of the elevator. 

The hinge moments can be put 
in coefficient form in much the same 
manner as the airplane's aerody- 
namic moments.  The He Restore Slope 
due to elevator deflection in co- 
efficient form would be: 

3C 

3T   Restore   -   Si 
e 6 

(3.64) 

The Hepioat slope due to angle of 
attack change in coefficient form 
would be: 

Ja" Float = S, 
e a 

(3.65) 

Examining  a  floating elevator,   it 
is  seen  that   the  total  hinge moment 
is  a  function of elevator deflec- 
tion,   angle of  attack,   and mass 
distribution. 

3.20 
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f(6e, oT, w) (3.66) 

If the elevator is held at zero 
elevator deflection and zero angle 
of attack there may be some residual 
aerodynamic hinge moment ChQ• 

T^e 
total hinge moment where W = weight 
of the elevator would be: 

°h o 

aT + Cu 6  + \   - 
a      h6 e    qS c 

(3.67) 

The weight effect is usually 
eliminated by mass balancing the 
aievator.  Proper design of a sym- 
metrical airfoil will cause ChQ to 
be negligible. 

When the elevator assumes its 
equilibrium position the total 
hinge moments will be zero and solv- 
ing for the elevator deflection at 
this floating position. 

°h 
«  a„ 

'Float 
(3.68) 

The stability of the aircraft with 
the elevator free is going to be 
affected by this floating position. 

If the pilot desires to hold 
a new angle of attack from trim, he 
will have to deflect the elevator 
from this floating position to the 
position desired. 

The floating position will 
greatly affect the forces the pilot 
is required to use.  If the ratio 
Cha/Ch6 

can be adjusted, then the 
forces the pilot is required to use 
can be controlled. 

If Cha/
Ch5 is small, then the 

elevator will not float very far and 
the stick-free stability character- 
istics will be much the same as 
those with the stick-fixed.  But Cn,s 
must be small or the stick forces 

required to hold deflection will be 
unreasonable.  The values of Cha and 
Chß can be controlled by aerodynamic 
balance.  Types of aerodynamic bal- 
ancing will be covered in a later 
section. 

FIGURE 3.25 
ELEVATOR FLOAT POSITION 

ORIGINAL 
RELATIVE 

WIND 

■=1 ^,Vt 

DEFLECTION 

• 3.11    »TICK-FREE   STABILITY 
EQUATIONS 

Stick free stability may be 
considered the summation of the 
stick-fixed stability and the con- 
tribution to stability of freeing 
the elevator. 

dC dC 

dC, dC, 
JStick-Free "Stick-Fixed 

dC 

Freeing Elevator 

(3.69) 

Solving   first  for   the effect  to 
stability of  freeing   the  elevator, 

dC dC      d6 
m        e 

iCL 
d&      dC 

Free Elev. 

d6 
 e 
dC, 

(3.70) 

The  stability  contribution  of   the 
free elevator  depends  upon   the 
elevator  floating  position.     Equa- 
tion   3.68   relates   this  position. 

'Float 

"h 

°h. (3.71) 

3.21 
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Substituting  for a>p   from figure  3.10, 

"Float h6 
(3.72) 

Taking the derivative of equation 
3.72 with respect to CL, 

d6  e 
dCL 

I"- 
j a 
a 

(3.73) 

in Solving for dCm/dCL^   „1 ? m/  -"-"Free Elev. 
equation 3.70 and substituting the 
expression for elevator power, 

VVi (3.74) 

dC 
 i 

dC, 
-     _ 

Free 

*T 
T VT 

w 

,      dell 

Elevator 

(3.75) 

Substituting equation 3.75 and equa- 
tion 3.33a (dCm/dCLF-  J into equa- 
tion 3.69, the stick-free stability 
becomes 

dC 
m 

X             dC 
w               m 

dCL Stick Free 

aT 
- r Vx 

w 

c        dC 

|         da 

Fus 

F depends on the relative magnitudes 
of T and the ratio of Chu/CUl5 .  An 
elevator with only slight floating 
tendency has a small '.'ha/Ch<5 giving 
a value of F around unity.  The 
stick fixed and stick free stability 
are practically the same.  If the 
elevator has a large floating ten- 
dency (ratio of Cha/Qi,5 large) , the 
stability contribution of the hori- 
zontal tail is reduced materially 
(dCm/dCLpree is less negative). 

For instance, a ratio of Cha/Cftö = 
-2 and a T of -.5, the floating 
elevator can obviate the whole tail 
contribution to stability.  Gen- 
erally, freeing the elevator causes 
a destablizing effect.  With ele- 
vator free to float, the aircraft 
is less stable. 

The stick-free neutral point, 
hr' 
dCm/dCLFree 
as in the stick-fixed case, the 
stick-free neutral point is, 

»n, is that eg position at which 
is zero.  Continuing 

X 
h' --& 

n        c 

and 

dC 

dC. 
"Fus 

+ t Vi 
w 

da 

(3.77) 

dC 

dC. h - h' 
n 

(3.78) 

Free 

The  stick-free  static margin  is 
defined  as, 

Static Margin    -    h'  - h n 
(3.79) 

(3.76) 

The difference between stick-fixed 
and stick-free stability is the 
multiplier in equation 3.76, (1 - 

t Cha/Ch6)/ called the "free ele- 
vator factor" and which is desig- 
nated F.  The magnitude and sign of 

3.12    STICK-FREE    FLIGHT 
TEST   RELATIONSHIP 

As was done for stick-fixed 
stability, a flight test relation- 
ship is required that will relate 
measureablo flight test parameters 
with the stick-free stability of 

1.22 
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the  aircraft dCm/dCL Free" This 

relationship may be developed with 
reference to figure 3.26. 

where Ch5_6T represents the tab 

contribution for an elevator with 
tab 

i 

FIGURE 3.26 
ELEVATOR-STICK GEARING 

(PILOT) 

where 

(AERODYMANIC 
PRESSURE) 

The pilot holds a stick de- 
flected with a stick force Fs. The 
control system transmits the moment 
from the pilot through the gearing 
to the elevator.  The elevator de- 
flects ana the aerodynamic pressure 
produces i hinge moment at the ele- 
vator f. it exactly balances the 
moment produced by the pilot with 
force Fs. 

d6 

e   e    ... dCT   L   (3.35 zero lift     L 

a - i + i - e 
w   w   T 

Equation 3.8 3 may be written, 

A 

B 

(3.86) 

h    n    OL   w   T     ht e 
o    a 6 

CLCh 6     dC 
e     m 

+ V 6T "  C      dC 
6      Free 

(3.87) 

F I    "    -    G'H 
s e 

(3.80) 
Rewriting equation 3.87 with thü 
above s ub s t i t utions, 

}    1 

If   the  length  i   is   included with 
the gearing,   the  stick  force becomes, 

ra  "■     G", (3.8D 

The hinge moment He may be written. 

e h      e e e (j.*-2) 

Equation 3.21 then becomes, 

CLCh 

Fs    =    Aq(B+Ch    6T 

6T 

6 dC e m 
dC. ) 

Free 

(3.88) 

Writing equation   3.88  as  a   function 
of  airspeed  and substituting  for un- 
accelerated  flight, CT/J = W/S     and 
using equivalent   airspeed,  Ve, 

F      ■    - GC.   qS  c s Lee e 

Substituting 

* K       \    T 
e o o 

(3.83) 

C.     6    + C,     6 
h   e      \T 

(3.64) 

F      =    1/2 p V "A(B + C,     6  ) 
s o e ti,    i 

6T 

%, dC 

cC, 
"Free (3.89) 
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Simplifying equation 3.89 by com- 
bining constant terms, 

KlVe +K2 (3.90) 

Ki contains 6T which determines trim 
speed.  K2 contains dCm/dCLFree. 

Equation 3.90 gives a relationship 
between an inflight measurement of 
stick force gradient and stick 'ree 
stability.  The equation is plotted 
in figure 3.27. 

FIGURE 3.27 

STICK FORCE VERSUS AIRSPEED 

1 i 

K2- 

^ 
rs U 

\   \ 
N.         V 

8,0          8,0 *•© 

The plot is made up of a constant 
force springing from the stability 
term plus a variable force propor- 
tional to the velocity squared, 
introduced through some constants 
and the tab term Ch^m^T«  Equation 

3.90 introduces an interesting fact 
that the stick force variation with 
airspeed is apparently dependent 
on the first term only and indepen- 
dent in general of the stability 
level.  That is, the slope of the 
curve Fs versus V is not a direct 
function of dCm/dCLr ,0.  If the 

derivative of equation 3.89 is 
taken with respect to V, the second 
term containing the stability drops 
out. 

dF 

TV"  = poVeA(B + V V 
6T 

(3.91) 

However, dFs/dV may be made 
a function of the stability term 

using another approach. The tab 
setting <ST in equation 3.89 should 
be adjusted to obtain Fs = 0.  This 
is 6T for trim velocity, i.e., 

U 

dC 
f(V, 

F  = 0 
s 

Trim* dC, ) 

Tree (3.92) 

This value of 5pF = 0 is then sub- 

stituted into equation 3.91 so that, 

dF dC 

dV, f (V, 
Trim 

Trim* dCT 
(3.93) 

Free 

Thus it appears that if an 
aircraft is flown at throe eg lo- 
cations and dFs/dV>rrim through the 
same trim speed each time is de- 
termined, then one could extrapolate 
or interpolate to determine the 
stick-free neutral point hn.  Un- 
fortunately, if there is a signifi- 
cant amount of friction in the control 
system, it is impossible to precisely 
determine this trim speed.  In order 
to investigate briefly the effects 
of friction on the longitudinal con- 
trol system, suppose that the air- 
craft represented in figure 3.28 is 
perfectly trimmed at V^ (i.e., 6e = 
6ei and 6>p = ST-I ) .  If the airspeed 

is decreased or increased with no 
change to the trim setting, the 
friction in the control system will 

FIGURE 3.28 
CONTROL SYSTEM FRICTION 

PULL 

Ff 0 

3.24 
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prevent the elevator from returning 
all the way back to &e\  when the 
controls are released. The aircraft 
will return only to V2 or V3. With 
the trim tab at 6i>j_, the aircraft 

is content to fly at any speed be- 
tween V2 and V3.  The more friction 
that exists in the system, the wider 
this speed range becomes. 

Therefore, if there is a 
significant amount of friction in 
the control system, it becomes im- 
possible to say that there is one 
exact speed for which the aircraft 
is trimmed.  Equation 3.93 then, 
is something less than perfect for 
predicting the stick-free neutral 
point of an aircraft.  To reduce 
the undesirable effect of friction 
in the control system, a different 
approach is made to equation 3.88. 

If equation 3.88 is divided 
by the dynamic pressure q, then, 

ACLCh dC 
F /q - A(B + C,  6 ) 
s hr T 

6T 
dC. 

tree 

(3.94) 

Differentiating with respect to CL, 

AC, 
dyq 

dC, 

cr 

dFs/q 

6 dC e m - (3.95) 

"i 
dC, 

Free 

dCT 
=    f 

dC 

dC, 
(3.96) 

"Free 

Trim velocity  is now eliminated 
from consideration,   and  the  pre- 
diction of stick-free neutral  point 
hn  is more  exact.     A plot of  dFs/q/ 
dCT   versus  eg  position may be extrap- 
olated    to obtain  hn. 

t.i; APPARENT   STICK-FREE 
tILITY 

Speed stability or stick force 
gradient dFs/dV in most cases does 
not reflect the actual stick-free 
stability dCm/dCL. an aircraft. -m/-^Free 
In fact this apparent stability 
dFs/dV may be quite different from 
the actual stability of the air- 
craft.  Where the actual stability 
of the aircraft may be marginal 
(dCm/dCLFreo small), or even un- 

stable (dCm/dCLF   positive), the 

apparent stability dFs/dV may be 
such as to make the aircraft qu: ~* 
acceptable.  In flight, the tesl 
pilot feels and evaluates the appar- 
ent stability or the aircraft and 
not the actual stability dCm/dCL    . 

The apparent stability dFs/dV 
is affected by: 

1. Changes in dCm/dCLpree 

2. Aerodynamic balancing 

3. Downsprings and/or bob weights. 

The apparent stability or 
the stick force gradient through a 
given trim speed increases if dCm/ 
dCr,„    is made more negative.  The uFree 3 

constant K2 of equation 3.90 is 
made more positive and in order for 
the stick force curve to continue 
to pass through the desired trim 
speed, a more positive tab selection 
is required.  An aircraft operating 
at a certain eg with a tab setting 
&1'-,   is shown on figure 3.29, line 1. 

FIGURE 3.29 

EFFECT ON APPARENT STABILITY 

*2 

K2 

Fs 
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If dCn/dCLp   is increased by mov- 
ing the eg forward, K2, which is a 
function of dCm/dCLF   in equation 
3.89 becomes more positive or in- 
creases.  The new equation becomes, 

= K.V - + K. 1 e    2 (3.97) 

This equation plots as line 2  in 
figure 5.7.  The aircraft with no 
change in tab setting 6TI operates 
on line 2 and is trimmed to V"2. 
Stick forces at all airspeeds have 
increased.  At this juncture, al- 
though the actual stability dCm/ 
dCijr, has  increased,   there has ^Free 
been no effect on the stick force 
gradient or apparent stability. 
(The slopes of line 1 and line 2 
being the same.)  So as to retrim 
to the original trim airspeed Vi, 
the pilot applies additional nose 
up tab to ST?-  T'ie aircraft is 
now operating in line 3.  The stick 
force gradient through V^ has in- 
creased because of an increase in 
the Ki term in equation 3.89.  The 
apparent stability dFs/dV has in- 
creased. 

The same effect on apparent 
stability as eg movement may be 
obtained by means of aerodynamic 
balancing.  This is a design means 
of controlling the hinge moment co- 
efficients, Chu and Chj.  The pri- 
mary reason for aerodynamic balanc- 
ing is to increase or reduce the 
hinge moments and, in turn, the 
control stick forces.  Changing Ch.5, 
affects the stick forces as seen 
in equation 3.89.  in addition to 
the influence on hinge moments, 
aerodynamic balancing may very well 
affect the real and apparent sta- 
bility of the aircraft.  Assuming 
that the restoring hinge moment 
coefficient Cn<$ is increased by an 
appropriate aerodynamic balanced 
control surface, the ratio of Cha/ 
C'h.,5 in stability equation 3.98 
is decreased, 

dC dC u 
m 

1CL 
dCT 

Free Fus 

J v. (*-£)(*-£) <3-981 

The  combined  increase  in  dCra/dCLF ep 
and Chj,   increases  the K2  term 
in equation  3.90   since 

U6 
dC 

s   c dC, (3.99) 
JFree 

Figure 3.29 shows the effect of 
increased K2.  The apparent sta- 
bility is not affected by the in- 
crease in K2 while the aircraft 
retrims at V2.  However, once the 
aircraft is retrimmed to the original 
airspeed V]_ by increasing the tab 
setting to ^To» the apparent sta- 
bility is increased. 

Types of aerodynamic balanc- 
ing used to control the hinge mo- 
ment coefficients are as follows: 

Set-Back-Hinge: 

Perhaps the simplest method 
of reducing the aerodynamic hinge 
moments is simply to move the hinge 
line rearward.  Thus the hinge mo- 
ment is reduced because of the 
moment arm between the elevator 
lift and the elevator hinge line 
is reduced.  (One may arrive at the 
same conclusion by arguing that 
part of the elevator lift acting 
behind the hinge line has been re- 
duced, while that in front of the 
hinge line has been increased.) 
The net result is a reduction in 
the absolute value of both Cha and 
Ch6»  *n fact if the hinge line is 
set back far enough, the sign of 
both derivatives can be changed. 

-t 1 
Vi;,' 
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FIGURE 3.30 
SET-BACK-HINGE 

LARGE He 

FIGURE 3.32 
HORN BALANCE 

Overhang Balance; 

This method is simply -< spe- 
cial case of set-back hinge in 
which the elevatoi is designed so 
that when the leading edge pro- 
trudes into the airstream, the 
local velocity is increased sig- 
nificantly; causing an increase in 
negative pressure at that point. 
This negative pressure peak creates 
a hinge moment which opposes the 
normal restoring hinge moment, re- 
ducing Chi-  Figure 3.31 shows an 
elevator with an overhang balance. 

FIGURE 3.31 
OVERHANG BALANCE 

NEGATIVE PEAK PRESSURE 

UNSHIELDED 

HELPING 
MOMENT 

Internal Balance or Internal 
Seal; 

The internal seal allocs the 
negative pressure on the upper sur- 
face and the positive pressure on 
the lower surface to act on an in- 
ternal sealed surface forward of 
the hinge line in such a way that 
a helping moment is created, again 
opposing the normal hinge moments. 
As a result, the absolute values of 
Chu and Chi   are both reduced.  This 
method is good at high indicated air- 
speeds but is sometimes troublesome 
at high Mach numbers. 

Horn Balance; 

The horn balance works on 
the same principle as the set-back 
hinge, i.e., to reduce hinge moments 
by increasing the area forward of 
the hinge line.  The horn balance, 
especially the unshielded horn, is 
very effective in reducing Cha and 
ChL\.  This arrangement shown in 
figure 3.32, is also a handy way 
of improving the mass balance of 
the control surface. 

FIGURE 3.33 
INTERNAL SEAL 

/ 
- LOW 

PRESSURE 
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Elevator Modifications: 

Bevel Angle on Top or on 
Bottom of the Stabilizer. 

This device, which causes 
flow separation on one side but 
not on the other, reduced the abso- 
lute values of Cha and Chs. 

Trailing Edge Strips. 

This device, found on the 
B-57, increases both Cha 

an^ c-h5 • 
In combination with a balance tab, 
trailing edge strips produce a very 
high positive Cha, but still a low 
Chfi«  This results in what is called 
a favorable "Response Effect," i.e., 
it takes a lower control force to 
hold a deflection than was originally 
required to produce it. 

Convex Trailing Edge. 

This type surface produces 
a more negative Ch5, but tends as 
well to produce a dangerous short- 
period oscillation. 

Tabs; 

A tab is simply a small flap 
which has been placed en the trail- 
ing edge of a larger one.  The tab 
greatly modifies the flap hinge 
moments but has only a small effect 
on the lift of the elevator or the 
entire airfoil.  Tabs in general 
are designed to modify stick-forces 
and therefore Ch$ but will not 
affect Cha.  A positive tab deflec- 
tion is one which will tend to move 
the elevator in a positive direc- 
tion. 

Trim Tab. 

factory trim tab should be able to 
accomplish this throughout the air- 
craft flight envelope.  Ordinarily, 
a trim tab will not significantly 
vary Cha or Ch5.  The functions of 
the spring and trim or balance and 
trim tabs may be combined in a 
single tab.  Another method of 
trimming an aircraft is the use 
of an adjustable horizontal sta- 
bilizer.  Normally the trim tab or 
horizontal stabilizer setting will 
have a small effect on stability. 

Balance Tab. 

A balance tab is a simple 
tab which is mechanically geared 
to the elevator so that a certain 
elevator deflection produces a 
given tab deflection.  If the tab 
is geared to move in the same direc- 
tion as the surface, it is called 
a leading tab.  If it moves in the 
opposite direction, it is called 
a lagging tab.  The purpose of the 
balance tab is usually to reduce 
the hinge moments and stick forces 
(lagging tab) at the price of a 
certain loss in control effective- 
ness.  Sometimes, however, a lead- 
ing tab is used to increase control 
effectiveness at the price of in- 
crease'! stick forces.  The leading 
tab ma* also be used for the ex- 
press mrpose of increasing control 
forces.  Thus Chfi may be increased 
or decreased, while Cha remains 
unaffected.  If the linkage shown 
in figure 3.34 is made so that the 
length may be varied ,by the pilot, 
then the tab may also serve as 
c- trimming device. 

FIGUkE 3.34 
BALANCE TAB 

A tab which is controlled by 
a switch or control separate from 
the normal cockpit pi lot control 
is called a trim tab.  The purpose 
of the trim tab is to reduce the 
elevator hinge moment and, there- 
fore, the stick force to zero for 
a given flight condition.  A satis- 

LAGGING TAB 
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Servo or Control Tab. 

The servo tab is linked 
directly to the aircraft control 
system in such a manner that the 
pilot moves the tab and the tab 
moves the elevator, which is f^ee 
to float. The summation of elevator 
hinge moments, therefore, always 
equals zero since the elevator will 
float until the hinge moment due tc 
elevator deflection just balances 
out the hinge moments due to <xs and 
6f  The stick forces are now a func- 
tion* of the tab hinge moment or ChöT. 
Again Cha is not affected. 

Spring Tab. 

A spring tab is a lagging 
balance tab which is geared in 
such a way that the pilot receives 
the most help from the tab at high 
speeds where he needs it the most, 
i.e., the gearing is a function of 
dynamic pressure. The basic prin- 
ciples of its operation are: 

FIGURE 3.35 
SPRING TAB 

The increased tab def action 

An increase in dynamic pres- 
sure causes an increase in 
hinge moment and stick force 
for a given control deflection, 

The increased stick force 
causes an increased spring 
deflection and, therefore, an 
increased tab deflection. 

causes a decrease in stick 
force. Thus an increased 
proportion of the hinge mo- 
rdent is taken by the tab. 

4. Therefore, the spring tab is 
a geared balance tab where 
the gearing is a function of 
dynamic pressure. 

5. Thus the stick forces are 
more nearly constant over the 
speed range of the aircraft. 
That is, the stick force re- 
quired to produce a given de- 
flection at 300 knots is still 
greater than at 150 knots, 
but not by as much as before. 

6. After full spring or tab 
deflection is reached the 
balancing feature is lost 
and the pilot must supply the 
full force necessary for fur- 
ther deflection.  (This acts 
as a safety feature.) 

Because of the very low force 
gradients in most modern aircraft 
at the aft center of gravity (dCm/ 
aCLpree less negative), improve- 
ments in the stick-free longitu- 
dinal stability are obtained by 
devices which produce a constant 
pull force on the stick independent 
of airspeed which allows a more 
noseup tab setting and steeper stick 
force gradients.  Two such gadgets 
for improving the stick force gra- 
dients are the downspring and bob- 
weight.  Both effectively increase 
the apparent stability of the air- 
craft. 

FIGURE 3.36 
DOWNSPRING 
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Downspring; 

A virtually constant stick 
force may be demanded of the pilot 
by incorporating a downspring or 
bungee into the control system 
which tends to pull the top of the 
stick forward.  From figure 3.36, 
the force required to counteract 
the spring is, 

Downspring 
(3.100) 

Bobweight: 

Another method of introducing 
a nearly constant stick force is by 
placing a bobweight somewhere in 
the control system which causes a 
constant moment which must be over- 
come by the pilot.  The force which 
the pilot must apply to counteract 
the bobweight is, 

= nW 
'Bobweight r2 

= K„ (3.102; 

Ü 

If the spring is a long one, the 
tension in it will be increased 
only slightly as the top moves rear- 
ward and can oe considered to be 
constant. 

The equation with the downspring 
in the control system becomes, 

K..V 
1 e + K2 + K3 Downspring 

(3.101) 

As shown in figure 3.36, the 
apparent stability will increase 
whan the aircraft is once again 
retrimmed to the original trim 
airspeed by increasing the tab set- 
ting.  Note that the downspring 
increases apparent stability but 
does not affect the actual sta- 
bility dCm/dCLFree (no change to K2) 
of the aircraft. 

FIGURE 3.37 
BOBWEIGHT 

Ft T 

0= 

l; 

Like thcj downspring the bobweight 
increases the stick force through- 
out the airspeed range and, at in- 
creased tab settings, the apparent 
stability or stick force gradient. 
The bobweight has no effect on 
the actual dCm/dCLpree 

or" the air- 
craft. 

Elevator Unbalance: 

There are other devices which 
increase the stick force gradient 
through trim or apparent stability. 
The unbalance in the control system 
resulting from the center of gravity 
of the elevator falling aft of the 
hinge line is shown in figure 3.38. 

FIGURE 3.38 
ELEVATOR UNBALANCE 

nW 

From the figure it can be seen that 
an elevator eg behind the hinge line 
will tend to rotate the top of the 
stick forward.  This must be counter- 
acted by a positive pull stick force. 
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L) As the elevator is moved from the 
horizontal, the h:lnge moment is re- 
duced by the cosine, of the deflec- 
tion angle; this moment remains 
virtually constant.  Thus a forward 
hinge line which usually produces a 
destabilizing (positive) Cha will 
also produce a "stabilizing" elavator 
unbalance. 

Comment: 

Since hn is usually found by 
equation 3.96, it would be worth- 
while to examine the effect of the 
stick force gradient dFs/dV on this 
equation.  Rewriting equation 3.88, 
with a downspring used as the con- 
trol system gadget, 

S.          dC 5               m 
F       =    Aq(B + C       d   )   - ACLq    —    -^  

6
T 

m6 LFree 
e      No Gadget 

(3.103) 

Chr dC 

+    K„ 
JCadget 

Fs/q A(B + C      6  > -   ACL   — 
6T m6 

K3CL 

dC 
Free 

W/S 

No Gadget 

(3.104) 

free  stability caused by  Ulis 
gadgetry  is   "artificial"   rather 
than genuine  is only of  academic 
interest. 

3.14    HIGH 
LONGITUDINAL 
STABILITY 

STATIC 

The effects of high speeds 
(transonic and supersonic) on longi- 
tudinal static stability can be 
analyzed in the same manner as that 
done for subsonic speeds.  The 
assumptions that were made for the 
incompressible flow are no longer 
valid and, therefore, cannot be 
neglected. 

Compressibility associated 
with the transonic and supersonic 
speed regime has noticeable effect 
upon both the gust stability (lon- 
gitudinal static stability CmCjJ and 

speed stability (Fs/V).  The gust 
stability depends mainly on the 
contributions to stability of the 
wing, fuselage, and tail in the 
stability equation below during 
transonic and supersonic flight. 

dC 

dCT dC, 
JFus 

a   n 1 w 
1 - da 

(3.106) 

dC, 

dC 

2  dC, 
Free 

No Gadget 

_2_    (3.105) 
W/S 

Obviously the eg location at which 
dFs/q/JCL goes to zero will not be 
the true hn.  However, the only 
reason that the term dCm/dCLpj-gg 
was of interest in the first place 
was because it was proportional to 
the stick force gradient.  The pilot 
is more interested in the apparent 
stability for the same reason.  The 
fact that the addition to the stick- 

The terms in the stability equation 
will be examined in turn. 

The Wing Contribution; 

In subsonic flow or low Mach 
flight, the aerodynamic center is 
at the quarter chord.  As subsonic 
Mach approaches unity or the tran- 
sonic speed is approached, flow 
separation occurs behind the shock 
formations causing the aerodynamic 
center to move forward of the quarter 
chord position.  The immediate effect 
is a reduction in stability since 
Xw/c increases.  Following the flow 
separation behind the shocks at 
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positions of sonic speed, the flow 
pattern on the airfoil eventually 
transitions to supersonic flow. 
The shocks move off the surface and 
the wing recovers lift. The aero- 
dynamic center now moves aft towards 
the 50-percent chord position.  There 
is a sudden increase in the wing's 
contribution to stability since 
Xw/c is reduced (figure 3.1). 

The extent of the aerodynamic 
center shift forward and rearward 
depends greatly on the aspect ratio 
of the aircraft. The shift is least 
for low aspect ratio aircraft. Among 
the plan forms, the rectangular wing 
has the largest shift for a g:ven 
aspect ratio whereas the trian^-dar 
wing has the least (figures 3.39 and 
3.14). 

FIGURE 3.39 
A.C. VARIATION WITH MACH 

1 2 
Mach Number 

The Fuselage Contribution; 

In supersonic flow the fuse- 
lage center of pressure moves for- 
ward causing a positive increase in 
the fuselage dCm/dCL or a destabiliz- 
ing influence on the stability equa- 
tion.  The fuselage term variation 
with Mach number will be ignored. 

The Tail Contribution: 

The tail contribution to sta- 
bility depends on the variation of 
lift curve slopes, aw and aT, plus 
downwash e with Mach during transonic 
and supersonic flight.  It is ex- 
pressed as:  -arp/aw VHHT (1 ~ de/da) 

During subsonic flight aT/aw 
remains approximately constant.  The 
slope of the lift curve, aw varies 
as shown in figure 3.40,  This vari- 
ation of aw in the transonic speed 
range is a function of geometry (i.e., 
aspect ratio, thickness, camber, 
and sweep).  Limiting further dis- 
cussion to aircraft designed for 
transonic flight or aircraft which 
employ airfoil shapes with small 
thickness to chord ratios, then 
aw increases slightly in the tran- 
sonic regime.  For all airfoil 
shapes the value of aw decreases 
as the airspeed increases super- 
sonically.  The aT/aw contribution 
is therefore destabilizing in the 
transonic regime and stabilizing 
in the supersonic regime. 

FIGURE 3.40 
LIFT CURVE SLOPE VARIATION WITH MACH 

O 

I     8 

2 
u 

1 2 
Mach Number 
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The tail contribution is fur- 
ther affected by the variation in 
downwash, e, with Mach increase?. 
The dowi. wash at the tail is a re- 
sult of the vortex system asso- 
ciated with the lifting wing.  It 
is recognized that the tail loca- 
tion will have considerable in- 
fluence as to the degree of varia- 
tion of &Q  with Ae.  An aircraft 
such as the F-100 has a great deal 
more variation of 6e due to downwash 
effects than the F-104.  Since down- 
wash is a direct function or" wing 
lift, a sudden loss of downwash 
occurs transonically with a result- 
ing increase in tail angle of attack. 
The effect is to require the pilot 
to apply additional up elevator with 
increasing airspeed to maintain al- 
titude.  This additional ap elevator 
contributes to speed instability. 
(Speed stability will be covered 
more thoroughly later.)  Downwash 
variation with Mach is seen in fig- 
ure 3.41. 

FIliURE 3.41 
DOWNWASH VARIATION WITH MACH 

.7 .9 

MACH 

1.0  1.1   1.2  1.3 

The variation of de/da with 
Mach number greatly influences the 
aircraft's gust stability dCm/dCL. 
Recalling, 

114.6^ 

itäf whe re da 

114.6a  w 

(3.107) 

Since the downwash angle behind 
the wing is directly proportional 
to the lift coefficient of the 
wing, it is apparent that the value 
of the derivative de/da is a func- 

tion of aw.  The general trend of 
de/da is an initial increase with 
Mach starting at subsonic speeds. 
This increase follows a trend simi- 
lar to but at a lesser slope than 
the increase of the lift curve 
slope, aw, of the wing.  Above Mach 
1.0, de/da decreases and approaches 
zero.  This variation depends on 
the particular wing geometry of 
the aircraft.  As shown in figure 
3.42, dt/d'i may dip for thicker wing 
sections where considerable flow 
separation occurs.  Again, de/d-i is 
very much dependent on aw. 

FIGURE 3.42 
DOWNWASH DERIVATIVE vs MACH 

For an aircraft designed for 
high speed flight, the variation 
of de/da with increasing Mach num- 
ber results in a slight destabiliz- 
ing effect in the transonic regime 
and contributes to increased sta- 
bility in the supersonic speed regime, 

As the wing surface becomes 
a less efficient lifting surface, 
a loss of stabilator effectiveness 
is experienced in supersonic flight. 
The elevator power, QT\.-C, increases 
as airspeed approaches Mach 1.0. 
Beyond Mach 1.0, elevator effective- 
ness decreases.  Consequently, in- 
crease of elevator power causes a 
positive contribution or again 
an indication of speed instability 
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as Mach 1.0 is approached. With 
decrease in elevator power, a nega- 
tive A6e contribution once again 
produces speed stability. For the 
F-10* the relative order of magni- 
tude of these values cause an 
initial increase in gust stability 
in the transonic regime followed 
by a steatiily decreasing stability 
influence as Cm6e approaches zero. 

dC 

dC. 
\ ail 

The 
sonic and 
stabil: ty 
figure 3.4 
stability 
and then d 
The speed 
craft is a 
ing the pi 
equation, 

a T w 
1 - ||j  (3.108) 

overall effect of tran- 
supersonic flight on gust 
or dCm/dCL is shown in 
3 . t'tatic longitudinal 
increases transonically 
ecreases supersonically. 
stability of the air- 
ffected as well.  Recall- 
tching moment coefficient 

AC  - C   + CAa + CA« + C  A6 
m    m     m     m* a   m,  e 

o     a     a     6 e 

+ C AV + C  Aq 
v       q (3.109) 

and since CmcL = § Qna ,then: 

Assuming no change in speed or 
pitch rate, and since under com- 
pressibility CmQ is not zero, the 

elevator required to maintain steady 
flight is: 

A6 AC. (3.110) 

Speed stability depends on the 
variations of 6e with transonic 
and supersonic speeds and accord- 
ing to equation 3.110, depends on 
how Cm0, Cm6e, and Cmc vary. 

FIGURE 3.43 
MACH VARIATIONS ON CM0.CmSe AND C„,CL 
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If equation 3.110 is analyzed 
using the plots in figure 3.43, 
speed instability during transonic 
flight becomes obvious. The value 
of - Cm0/

Cm6e increases from approx- 

imately zero in the subsonic range 
to some positive value as the air- 
craft passes through Mach 1.0.  The 
value of Cmc"i/Cm6e increases to a 
very large number in comparison to 
Cm0/Cm,5  through this same range. 

The result is a positive A6e or a 
reversal of elevator deflection 
with increasing airspeed.  This 
manifests itself as a relaxation 
of forward pressure or even a pull 
force to maintain attitude or pre- 
vent a nose down tendency.  As the 
aircraft speed increases to super- 
sonic speed, A6e again becomes nega- 
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tive and the pilot regains speed 
stability or decreasing 6e with 
increasing airspeed.  The actual 
results of some aircraft flown in 
this range are shown in figure 3.44, 

FIGURE 3.44 
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In the F-100C, a pull force 
of 1.4 pounds was required when 
accelerating from Mach 0.87 to 
Mach 1.0.  The test pilot described 
this trim change as disconcerting 
while attempting to maneuver the 
aircraft in this region and recom- 
mended that a "q" or Mach sensing 
device be installed to eliminate 

this characteristic.  Consequently, 
a mechanism was incorporated to 
automatically change the artificial 
feel gradien : as the aircraft accel- 
erates through the transonic range. 
Also, the longitudinal trim, is 
automatically changed in uiis region 
by the use of a "flach Trimmer." 

In the F-104, the test pilot 
stated that, transonic trim changes 
required an aft stick movement with 
increasing speed and a forward stick 
movement when decreasing speed, but 
described this speed instability as 
acceptable. 

In the F-106 the pilot stated 
that the 1.0 to 1.1 Mich region is 
characterized by a moderate trim 
change necessita? ing pi lot technique 
to .'.void large variations in alti- 
tude <...img accelerations.  Minor 
,  ■  hai.qes are encountered up to 
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Mach 1.35.  His report concluded 
that the speed instabilities were 
not unsatisfactory. 

In the T-38 which embodies 
the latest design concept, a de- 
parture is noted from the low tail 
configuration difficulties where 
the pilot described the transonic 
trim change as being hardly per- 
ceptible. 

Aircraft design considerations 
are, of course, influenced by the 
stability aspects of high speed 
flight.  It is desirable to design 
an aircraft where trim changes 
through transonic speeds are small. 
A flat wing without camber, twist, 
or incidence or a low aspect ratio 
wing and tail provide values of 
Xw/c, aw, afp, and clt/da which vary 

minimally over the Mach number range. 
An all-moving tail (slab) for con- 
trol gives negligible variation of 
T with Mach and maximum control 
effectiveness.  A full power, irre- 
versible control system is desirable 
to counteract the erratic changes 
in pressure distribution which affect 
Cha and Ch6e. 

In the transonic speed re- 
gime the meaning or importance of 
"neutral point" is reduced.  At 
transonic speeds the variation of 
control angle and trim force with 
speed, although important, is not 
affected by eg position.  Instead 
of relating trim gradients to a eg 
margin, it is more useful to view 
variation of control for trim as 
a function of compressibility and 
ignore eg position. 
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CHAPTER 

MANEUVERABILITY 

14.1 MANEUVERING FLIGHT 

The method used to analyze 
maneuvering flight will be to de- 
termine stick-fixed maneuver points 
(hm) and stick-free maneuver points 
(hm).  It will be seen that these 
are analogous to their counterparts 
in static stability, the stick- 
fixed and stick-free neutral points. 
The maneuver points will also be 
defined in terms of the neutral 
points and the theory will help to 
predict which of these points will 
be critical as regards the aft cen- 
ter of gravity location.  It will 
also be shown how the forward 
center of gravity is affected by 
the parameters that define the 
maneuver points. 

Maneuvering flight will be 
analyzed much in the same manner 
used in determining a flight te'=t 
relationship in longitudinal sta- 
bility.  For stick-fixed longitu- 
dinal stability, the flight, test 
relationship was determined to be 

d5  e 
dCr 

dC /dCT m  L 
Cm&a 

(4.1) 

This equation gave the static lon- 
gitudinal stability of the aircraft 
in terms that could easily be mea- 
sured in flight test. 

In maneuvering flight, a simi- 
lar stick-fixed equation relating 
to easily measurable flight test 
quantities is desirable.  Where in 
longitudinal stability, the ele- 
vator deflection was related to 
lift coefficient or angle of attack, 
one may surmise that in maneuver- 
ing flight elevator deflection will 
relate to load factor n. 

REVISED I FEBRUARY 1974 

To determine this expression, 
one must refer to the aircraft's 
basic equations of motion. As in 
longitudinal stability, the'six 
equations of motion are the basis 
for all analysis of aircraft sta- 
bility and control.  In maneuvering 
an aircraft the same equations will 
hold true, but one additiona deriva- 
tive will have to be added to the 
analysis. Recalling the pitching 
moment equation 

M = ql + pr (I n y  r   x V + <p r ) I xz 

(4.2) 

and the fact that in static sta- 
bility analysis we have no roll 
rate, yaw rate, or pitch accelera- 
tion, equation 4.2 reduces to: 

q I = 0 (4.3) 

The variables that cause 
external pitching moments on an 
aircraft are infinite, i.e., speed 
brakes, canopy, elevator, etc. 
There are, however, fi 'e primary 
variables that we can consider. 

M f(V, a, a,  6 , q) (4.4) 

If any or all of these vari- 
ables change, there will be a 
change of total pitching moment that 
will equal the sum of the partial 
changes of all the variables.  This 
is written as 

a M    =    —;—   A of +          -* a + ———  ^b    + 
<J a <5> ' <> & e 

(4.5) 
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Since in maneuvering flight, AV 
and A& are zero, equation 4.5 be- 
comes: 

da d& e  </q 

and since M = qSc Cm, then 

= q Sc 
^8. 

q Sc C 
"fe 

—;— = q Sc —r— 
^q       ^q 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Substituting these values intr 
equation 4.6, and multiplying by 
1/q Sc, 

dz 
C  Aa + C   A 5 + -— 

m&    e  ^q 
e 

q = 0 (4.10) 

The derivative 3Cm/3n is 
carried instead of Cmg since the 
compensating factor c/2V is not 
used at this time. 

Solving for the change in 
elevator deflection A6e, 

A &  = - C  A a - o»r Id„A q 
e      m        m q       (4.11) 

ferent load factors will define 
the stick-fixed maneuver point. 
The immediate goal then is to de- 
termine the change in angle of 
attack, Aa, and change in pitch 
rate, Aq, in terms of load factor n. 

14.2 THE PULL UP MANEUVER 

4-3  in the pull up maneuver, the 
change in angle of attack of the 
aircraft, Aa, may be related to 
the lift coeffici jnt of the air- 
craft.  In the pull up with con- 
stant velocity, the angle of attack 
of the whole aircraft will be 
changed since the aircraft has to 
fly at a higher CL to obtain the 
load factor required.  The change 
in CL required to maneuver at high 
load factors at a constant velocity 
comes from two sources:  (1) load 
factor increase,- \l)   elevator de- 
flection.  Although often ignored 
because of its small value when 
compared to total CL, the change 
in lift with elevator deflection 
CL,5eA6e will be carried along for 

a more general analysis. 

AFTER 
ELEVATOR 

DEFLECTION 

BEFORE 
ELEVATOR 

DEFLECTION 
CLMAN 

V.. 

V 

The analysis of equation 4.11 
may be continued by substituting 
in values for Aa and Aq.  The final 
equation obtained should be in the 
form of some flight test relation- 
ship.  Since maneuvering is re- 
lated to load factor, the elevator 
deflection required to obtain dif- 

CL&eX 

Figure 4.1   Lift Coefficient Versus Angle of Attack 
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Referring to figure 4.1, the 
aircraft is in equilibrum at some 
CL0 corresponding to some a0 before 
the elevator is deflected to ini- 
tiate the pull up.  If the elevator 
is considered as a flap, its de- 
flection will affect the lift curve 
as follows. When the elevator is 
deflected upward, the left curve 
shifts downward and does not change 
slope. This says that a certain 
amount of lift is initially lost 
when the elevator is deflected up- 
ward. The loss in lift because of 
elevator deflection is designated 
CL$ A6e. The increase in down- 
loading on the tail or increase in 
negative lift on the horizontal 
stabilizer causes a moment on the 
aircraft which creates a nose up 
pitch rate. The aircraft continues 
to pitch upward and increase its 
angle of attack until it reaches 
a new CL and an equilibrium load 
factor.  In other words a pitch 
rate is initiated and a increases 
until a maneuvering lift coefficient 
CLU,,, is reached for the deflected MAN 
elevator 6e. The change in angle 
of attack is Aa.  The change in CL 
has come partially from the de- 
flected elevator and mainly from 
the pitching maneuver.  The change 
in CL due to the maneuver is from 
CLO to CL MAN* Since it did not 
change the slope of the lift curve, 
if the change in lift caused by 
elevator deflection is included 
the expression for Aa becomes: 

To put equation 4.14 in terms of 
load factor, ACLMAN must be defined. 
This is the change in lift from 
the initial condition to the final 
maneuvering condition. This change 
can occur from one g flight to some 
other load factor or it can start 
at 2 or 3 g's and progress to some 
new load factor.  If CL is at one 
g then 

CT = -x 
w_ 
qs 

(4.15) 

n W 
= _?_ 

"hn qS  n - initial load factor 
o     n    o 

(4.16) 

nW 
CT    = —r Ti - final load factor 

^   ^ (4.17) 

A CL    " S    " CL 
MAN     JMAN    o 

nW  %W 

qS  IS = CL(n-no) (4.18) 

aa (4.12) 

Finally substituting ACLM2VM into 
equation 4.14, 

Aa = i [cL (n-nQ) - CL6e A6e] (4.19) 

Equation 4.19 is row ready for 
substitution into equation 4.11. 

An expression for Aq in equa- 
tion 4.11 will be derived using the 
pull up maneuver analysis. 

AC, 

* * 

(4.12a) 

ACL    "     AC^N-%    A6e    =    a*«*4-") 
e 

Aa      =    { [
AC

LMAN " C\  ABe] <4'14> 
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Figure 4.2  Curvilinear Motion 

Referring to figure 4.2 

A e AS 

d0    _    lim   _AJ)    _    lim   _A_S      I 
dt     ^ t— o    A t      itn-o^t      R 

(4.20) 

(4.21) 

combining equations 4.24 and 4.22, 

dV V2 

AL 

"o* 

C.F. nW 

Figure 4.3  Wings Level Pull Up 

do    =    V 
dt R 

From  figure   4 .2 

(4.22) 

From figure  4.3, 

AL    =    CF    =    nW  -  n W 
o (4.26) 

A V 
~   "   Ae (small  angles)       (4.23) 

do    = Ay    I    =    1    dV 
dt    "      lm "A .     V    ~    V    dt 

A t-0
at 

(4.24) 

Ayam the factor now indicates 
that the change may take place 
from any original load factor and 
i:s not limited to the straight and 
level flight condition.  The centri- 
fugal force that holds the aircraft 
in equilibrium can be expressed as: 

CF 
W 
— a 
g 

w _yj 
g R (4.27) 
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0 Therefore: 

AL   -    W(n-no)    =   | f (4.28) 

■8    (n - n )    =   | 
V o' R 

(4.29) 

Substituting  from equation  4.22, 

Aq«|>    =    1    .    i  (n-n) 
dt V 

(4.30) 

Now equations 4.30 and 3.19 may be 
substituted into equation 4.11. 

""*. 

 ffl g  , V 
-3— f* (n - n ) 
<Jq V o 

Cm&„ 
(4.31) 

Equation 4.35 is now in the 
fcrm that will define the stick- 
fix ;^d maneuver point for the pull 
up..  The definition of the maneuver 
point (hm) is the eg position at 
which the elevator deflection per 
g goes to zero.  Taking the limit 
of equation 4.35, where An is de- 
fined as (n - nQ), 

lim 

An- o 

,A5. 

An 
*! 
dn (4.36) 

or 

d&e aCL [». h    + pp- C 
n           4m    tn 

qJ 
(4.37) 

dn C    C. 
m    L_ 

a    5 e 

C       a 

e 

Setting equation 4.37 equal to zero 
will give the eg position (h) as 
the maneuver point (hm). 

P7
C- c 

4m  m (4.38) 

&  KJ From longitudinal stability, 

a (h - h ) 
n 

(4.32) 

Also to help further in reducing 
the equation to its simplest terms, 

V 
2 W 

P3CT 

(4.33: 

Solving equation 4.38 for hn and 
substituting into equation 4.37, 

aCL 

dn C CT 
a 8 

- C^ a 
o 

(h h )  (4.39) m 

where (hm - h) is defined as the 
stick-fixed maneuver margin. 

4 »• 

and 

 m 
^q 2V Cmq 

(4.34) 

Substituting equations 4.34, 4.33 
and 4.22 into equation 4.31 and 
turning the algebra crank, results 
in, 

AS aC 
+ - 

L 
C C, m L 

a    8 
m&a 

e 

Sc 
h - h + P 7- C 

n    4m  m 
(4.35) 

The significant points to be 
made about equation 4.39 are: 

1. The derivative d6e/dn varies 
with the maneuver margin. 
The more forward the eg, the 
more elevator will be required 
to obtain the limit load fac- 
tor.  That is, as the eg 
moves forward, more elevator 
deflection is necessary to 
obtain a given load factor. 

2. The higher the CL, the more 
elevator will be required to 
obtain the limit load factor. 
That is, at low speeds (high 

4.5 
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CL) more elevator deflection 
is necessary to obtain a 
given load factor than is 
required to obtain the same 
load factor at a higher 
speed (lower CL)• 

The derivative d6e/dn should 
be linear with respect to eg 
at a constant CL- 

Substituting the appropriate CL 
expression for load factor; 

AC     =   ^^(C 

if 

4m    ^   WLMAN " V 

HlAN 

(4.44) 

then 

<Me 

HIGH C 

Figure 4.4   -jjj- vs eg 

Another approach to solving 
for the maneuver point (hm) is to 
return to the original stability 
equation. 

dc 
 n 
dCT 

=    h 

H 

dC 
+   —2 

LFus 

v   (1-1:1) 
T   *•    da ; (4.40) 

1 xm         m 

Ac, —o      AcT 

dC 
 2 _    p Sc 
dC. Am    m 

Pitch Damping     " 
(4.45) 

This term may now be added to 
equation 4.45. If the sign of Cnw 
is negative, then the term is a 
stabilizing contribution to the 
stability equation 
analyzed further. 

Cmq will be 

dC _n 
dCT 

X 
h - ac 

dC 

dC, 
Fus 

-^V  * (1 
a  H Tv 
w 

T^ + 'Irc dot 4m m (4.46) 

The maneuver point is found by 
setting dCm/dCL equal to zero and 
solving for the eg position where 
this occurs. i 

The effect of pitch damping 
on the aircraft stability will be 
determined and added to equation 
4.40. Recalling the relationship: 

dc 
 n 
dq 

c 
2V~ Cmn 

(4.41) 

or 

AC  =7,-7; Cm  Aq m    2V "q 
(4.42) 

Substituting the value obtained 
for Aq froiu equation 4.30, 

Ac 2JL. 
2V2 

-mq ^ no> (4.43) 

dC 
h - — 
m  c dCT 

Fus 

«-£-> 4m m (4.47) 

The first three terms on the right 
side of equation 4.47 may be iden- 
tified as the expression for the 
neutral point hn.  If this substi- 
tution is made in equation 4.47, 
equation 4.38 is again obtained. 

4m m (4.48) 
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The derivative Cm^ found j.n 
equation 4.37, 4.38, and 4.46 needs 
to be examined before proceeding 
with further discussion. 

referred to as the tail efficiency 
factor nx- 

Equation 4.51 may then be written: 

u 

The damping that comes from 
the pitch rate established in a 
pull up, comes from the wing, tail, 
and fuselage components.  The tail 
is the largest contributor to the 
pitch damping because of the long 
moment arm.  For this reason it is 
usually used to derive the value 
of Cmq.  Sometimes an empirical 
value is added to account for the 
rest of the aircraft but more often 
than not, the value for the tail 
alone is used to estimate the deriva- 
tive.  The effect of the tail may 
be calculated in the following 
manno* • 

Figuie 4.5   Pitch Damping 

AC V  ^   Ac H  T    L„ (4.52) 

which can be further refined to: 

AC V     a ^a H  T T   T (4.53) 

From figure 4.5, the change in 
angle of attack at the tail caused 
by the pitch rate will be: 

A aT    =     tan 
■1     Aq A   _    A       _£l (4.54) 

V n      V 

Substituting equation 4.54   into  4.53 

Ac a    V     1     A     iq 
T    H      TV 4 (4.55) 

Taking the limit of equation 4.55 
gives 

 n a V T H 
£, (4.56) 

I 

V 

The pitching moment effect on the 
aircraft from the downward moving 
horizontal stabilizer is: 

AM = -4    AL  = q S c  AC  (4.49] 
T   T     w w w   m 

where 

AL  = q S A c T    4T T   L„ 

Solving for ACm, 

(4.50) 

AC 
q  c S 
w  w w 

(4,51) 

The combination £T
S
T/

C
W
S
W can 

be recognized as the tail volume 
coefficient V"H.  The term qxAlw is 

Equation 4.56 shows that the damp- 
ing expression dCm/dq is a function 
of airspeed, i.e., this term is 
greater at lower speeds. 

Solving for Cm , 
4 

2V in 
c  ^q 

- 2a V V    —- T H  T c 
(4.57) 

The damping derivative is not a 
function of airspeed but rather 
a value determined by design con- 
siderations only (subsonic flight) 
The damping in pitch derivative 
may be increased by increasing S^ 
or f>T. 

When this value for Cmq is 
substituted into equation 4.48, 

4.7 
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■ hn+<° 

S aT VT 

2m 
/^T 

(4.58) 

The following conclusions are 
apparent from equation 4.58. 

1. The maneuver point should 
always be behind the neutral 
point.  This is verified 
since the addition of a pi^h 
rate increases the stability 
(Cmq *s negative in equation 
4.46) of the aircraft.  There- 
fore, the stability margin 
should increase. 

2. Aircraft geometry is influ- 
ential in locating the maneu- 
ver poinl- aft of the neutral 
point. 

3. As altitude increases, the 
distance between the neutral 
point and maneuver point de- 
creases . 

4. As weight decreases at any 
given altitude, the maneuver 
point moves further behind 
the neutral point and the 
maneuver stability margin in- 
creases . 

5. The largest variation between 
maneuver point and neutral 
point occurs with a light 
aircraft flying at sea level. 

14,3 AIRCRAFT BENDING 

Before the pull up analysis 
is completed, one more subject 
should be covered.  One of the 
assumptions made early in stability 
was that the aircraft was a rigid 
body.  It is a well known fact 
that al] aircraft bend when a load 
is applied.  The bigger the air- 
craft, the more they bend.  The 
effect on the aircraft bending is 
shown in figures 4.6a and 4.6b. 

t    ) 

Figure 4.6a Rigid Aircraft Under High Load Factor 

Figure 4.6b Non-Rigid Aircraft under High Load Factor 

The angle of attack of the tail is 
approximately the same as the angle 
of attack of the wing with the ex- 
ception of üownwa^h, incidence, 
etc., for a particular elevator de- 
flection.  As the non-rigid air- 
craft bends, the angle of attack 
aT of the horizontal stabilizer 
decreases.  In order to keep the 
aircraft at the same overall angle 
of attack, the original ancle of 
attack of the tail must be reestab- 
lished.  This requires an increase 
in the elevator (slab) deflection 
or a A6e to reestablish the neces- 
sary aT and to maintain the re- 
quired maneuvering C^.     This addi- 
tional elevator requirement under 
aircraft bending gives an apparent 
increase in the maneuvering sta- 
bility of the aircraft or an addi- 
tional A6e per load factor. 

14.4 THE TURN MANEUVERING 

The subject of maneuvering in 
pull ups has been thoroughly dis- 
cussed and while it is the easiest 
method for a test pilot to perform, 
it is also the most time consuming. 
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0 Therefore, most maneuvering data 
is collected by turning.  There 
are several methods used to collect 
data in a turn and these are dis- 
cussed in the flight test portion 
of this text. 

In order to analyze the 
maneuvering turn, equation 4.11 
is recalled; 

Cra    A a  -    JC  I d q   A q 
A 5      =    - —2 2  

e (4.59) 
n». 

RADIUS OF TURN 

8, 

I- 

The expression for Aa in 
equation 3.19, derived for the 
pullup maneuver, is also applicable 
to the turning maneuver. 

.a = \ [ C     (n n„> ■ CT i6e]  (4.60) 

Such is not the case for the Aq 
expression in equation 4.59. 
Another expression for Aq pertain- 
ing to the turn maneuver must be 
developed. 

Referring to figure 4.7, the 
left vector will be statically 
balanced by the weight and centrif- 
ugal force.  One component (L cos $) 
balances the weight and the other 
(L sin (ji) balances the centrifugal 
force. 

Leos 0 

Lsin <t> 

Figure 4.7b Aircraft in the Turn Maneuver 

L sin 0 CF    = W    V 
g    R 

Figure 4,7a 

L cos d    =    W 

L/W    = 
1 

cos 0 

(4.61) 

(4.62) 

(4.63) 

Now dividing 4.61 by 4.6? and re- 
arranging terms: 

V _ £ sin 0 
R " V cos 0 (4.64) 

Referring to figure 4.7 where 
pitch rate is represented by a 
vector along the wings and yaw rate 
a vector vertically through the 
center of gravity, the following 
relationships can be derived. 

a 
V 

R 

H sin 0 

| sin 0 

(4.65) 

(4.661 

!4.67) 
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Substituting 4.64 into 4.67, 

2    A 
£    sin 

V    cos 0 
(4.68) 

A 6 

Cm    CT (n - n > +   :m    a ^ (n - n )(1 + —) 
'"a    L o "'q       „2 o' nn 

2V o 

v,, J 

Cma CL8    " Cm&    a 
(4.76) 

j»    1 - cos 0 
q V    cos 0 

4 V  vcos 0 

(4.69) 

(4.70) 

Now 

cm„ =  a  (h  "  h )   a"d V2    =    -~=-- % rr c, PS 

-  ! <» - r) (4.71) 

When maneuvering from initial con- 
ditions of nQ to n, the Aq equation 
becomes, 

Aq =  q-qo = *  <„ . I) . 1 (n . I ) 
o 

(4.72) 

(4.73) A q = Ä (n _ „o) (i + JL) 
nn 

The general expression for Aq in 
equation 4.73 and the value for 
Aa in equation i.60 may now be sub- 
stituted into equation 4.59 to de- 
termine A6Q 

A 8. ■S» i [V» • V - °i«.A B.] 

J~   I (n- n)(l+zi-) c/q  V      o nn 

Substituting 

Jc 

^q 2V    Cmq 

c    cLc m      ^5 a        e 
A 8. 

SCL 
(n - n ) 

(4.74) 

S C~h (n - no)(l + ^)       (4.75) 
^ 2V o 

A8 aC, 

(n - no) S* CH 
e 

(h - h ) + cm ^T% + -L) 
n "q  4m nn  ' 

o 

(4.77) 

Taking the  limit of  A6e/An  in equa- 
tion 4.77 and, 

dB. aC. 

"V^C 

h -  h    +  P^£ 
1 

4m    mq 2 n 
(4.78) 

The maneuver point is deter- 
mined by setting d6e/dn equal to 
zero and solving for the eg posi- 
tion at this point. 

h     = h - Pp- Cm    (1 + K) m     n    4m ""q v    1' (4.79) 

The maneuver point in a turn 
differs from the pullup by the 
factor (1 + 1/n2).  This means that 
at low load factors the turn and 
pullup maneuver points will be very 
nearly the same.  If equation (4.79; 
is solved for hn and substituted 
back into equation 4.76, the result 
is: 

dS 
 e 
dn 

aC. 

:maCL& 
- C 

*& 
~    (h - hj (4.80) 
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The conclusion that d6e/dn is 
the same for both pullup and turn 
would be untrue since hm in equa- 
tion 4.80 for turns 'includes the 
factor (1 + l/n2) is difierent from 
the hm found for the pullup maneu- 
ver.  The same conclusions reached 
for 4.39 and 4.58 apply to 4.80 and 
4.81 as well. 

hn+ ^SaT  ygr 
2m 

VH  (1 + 1/n ) 
(4.81) 

dC 
 n 
dC, 

'Stick-Fixed Stick-Fixed 

(4.83) 

Aircraft   Pitching Aircraft 
Ri feet  of The 
Pitch  Rate 

For the stick-free case, the follow- 
ing must be true, 

dC I 
—- 

'stick-tree 
Aircraft  Pitching 

 m 

>St ick-Fixed 

(4.84) 

Free elevator 
Effect of 

Pitch Rate 

14.5   RECAPITULATION 

Before looking further into 
the stick-free maneuverability 
case, it would be well to review 
the development in the preceding 
paragraphs and relate it to the 
results of chapter 3. 

The basic approach to longi- 
tudinal stability was centered 
around finding a value for dCm/dCL. 
It was found that a negative value 
for this derivative meant that the 
aircraft was statically stable. 
The derivative was analyzed for 
the stick-fixed case first and 
then the stick-free case.  The eg 
position where this derivative was 
zero, was defined as the neutral 
point.  Static margin was defined 
as the difference betwepu the neutral 
point and the eg location.  The 
stick-free case was determined by: 

dC 
 m 
dC. 

dC n 
JC, 

Stick-Free 
Aircraft 

Stick-l:ixeJ 
Aircrnit 

(4.82) 

Effect   of 
Free  '"levator 

ine tree elevator case was 
merely the basic stability of the 
aircraft with the effect of freeing 
the elevator added to it. 

JC 
 n 
dC, 

Ms "''Stick-Free ~ 'Stick-Free 
Aircraft  Pitching Ai'.craft 

"Effect   of 
Pitch  Rate 

I 4.6 STICK-FREE MANEUVERING 

The first analysis of stick- 
free maneuvering requires a review 
of longitudinal stability.  It was 
determined in chapter 3 that the 
effect of freeing the elevator was 
to multiply the tail term by the 
free elevator factor F which equaled 
(1 - T Ch /ChO .  Consequently, to 
free the elevator in the maneuvering 
case and find the stick-free maneu- 
ver point, the tail effect of stick- 
fixed maneuvering must be multiplied 
by this free elevator factor.  Re- 
calling equation 4.47 from the 
stick-fixed maneuvering discussion, 

dc 
n 

dCL 
F-JS 

"H  T 

(1 
d_e_ 
da (4.86) 

Multiplying the tail terms by F, 

When the maneuvering case was 
introduced, it was shown that there 
was a new derivative to be discussed 
but the basic stability of the air- 
craft would not change - only the 
effect of pitch rate was added to 
it. 

C 

dC 
_ n 
dC LFus 

a 
~c-  v * 
a      11 T 
w 

(l - -r-ir 
da 

o Sc p — C  F 
■*m (4.8 7) 

.11 



The first three terms on the 
right are the expression for stick- 
free neutral point, hn. 

h' = 
m 

/°2£ c  F 
4m Lraq * (4.88) 

This is the stick free maneuver 
point in terms of the stick-free 
neutral point for the pullup case. 
It may be extended to the turn 
case by using the term for the 
pitch rate of the tail in a turn. 

h' 
m 

=   h'  - /°|C- Cm  F  (1 + ~) 
n    4m  q       I 

n 
(4.89) 

These equations do not give 
any flight test relationship and 
so it is necessary to derive this 
from stick forces, as was done in 
longitudinal static stability. 
The method used will be to relate 
the stick force-per-g to the stick- 
free maneuver point since stick 
forces can be related to the freeing 
of the elevator.  Starting with the 
relationship of stick force, gear- 
ing, and hinge moments that was 
derived in chapter 5, 

= -GH 

q S c C, n e e h 

Gq S c C, 
e e h 

(4.90) 

(4.91) 

(4.92; 

The change in stick force for a 
change in load factor becomes, 

Stick-Free Pullup Maneuver; 

AChe must be written in terms 
of load factor and substituted back 
into equation 4.93.  This will re- 
quire defining Aa-p and A6e in terms 
of load factor.  The change in 
angle of attack of the tail comes 
partly from the change in angle of 
attack of the wing due to downwash 
and partly from the pitch rate. 

A«„ % (1 
da -±     (4.95) 

where  Aayj +  Aq  in the  above  equa- 
tion are 

AaW = i    K  0-%>  -\   ±\]    (4.96) 

=   £ 
V   (n  -  no> 

ai 

(4.97) 

c   cTc. 
m    L8 

a      e 

—    (h - h )(n - n ) 
a     v m o 

(4.98) 

If the equations abovp are 
substituted into 4.94, the results 
would be cumbersome at best.  To 
simplify things CL,5e will be assumed 
small enough to ignore.  (Reason- 
able assumption since total change 
in lift of the aircraft when the 
elevator is deflected is small.) 
The above equations simplify to: 

(1 ->■ 

u 

AF 

A n 
Gq S  c  --—i 

e e  An 
(4.93) 

(n - n ) +-S- X    (n - n ) (4.99) 
o   ,,l       T      o 

where 
A &  = - ~- (h - h )   (n - n )  (4 .100) 

e      L mo 

AC, 

aT e 

(4.94) 
Substituting equations 4.99 and 
4.100 into 4.94, 
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i.j 

*Cfc 

a a   V 

- C h6 V 
(h - h ) 

m (4.101) 

Substituting V^ = W/pgC^ and Cm& 

-  -ae VH and isolating the maneu- 
ver margin (h - hm) by factoring 
out (- Chß CL/Cm6 ), the result is: 

A C. 

Cm&„ 

<L_ (1 . di_} a 
da   e H 

^■w 

+ —2 ^V- s a Vu + h - h Ch„    2m    e H      m 
o 

(4.102) 

h . h. = pi   Is vu (1 -~)     U.103) 

From longitudinal stability, 

Cb  a 

n   n da 

and if the second term in the paren- 
thesis is multiplied by 

-2ca„ 

•2caT 
and knowing that 

v. 
-2a -»-A 

T  c 
(4.104) 

Rewriting equation 4.102, 

A.C. 

h'   -  h      +     (1  -  F)/3!^ Cm    - h + h 
n        n 4m    mq n 

but 

h      =    h 
m n 

/°S£   c 
4m      mq 

(4.108) 

(4.109) 

Therefore: 

A C, Ch, 
n - n "V 

+ p 
4a    Cmq F 

(4.110) 

Substituting equation  4.110  back 
into   4.9 3 and  taking  the  limit 

dFs 2 % 
-r-5 =     G  1/2  /^V    S c      —-b- CT  • 
dn e  e    Cm        L 

|h -  h'  +/°^C„    F *q     j 
Sc 
4m Lm" (4.111) 

Defining the stick-free maneuver 
point as the eg position where 
dFs/dn is equal to zero, 

h' = h' -P 
m     n 

Sc 
4m Cmq F 

(4.112) 

a /a 
e  I 

F =  1 

(4.10b) 

(4.106: 

which is the same equation as 4.88 
previously derived.  Equation 4.111 
may be written, 

dFs 2 Cll5 
—- =    G  1/2   <°V    S     c    —■  CT 
dn e     e  Gnlc L 

The second term becomes 

<P"1>'°!i S 

hi - h* | (4.113) 

Equation 4.113 may be rearranged 
(4.107)    if the following substitutions are 

made. 
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Cm6e 

d** 
a    V      = 

e    H 
ax7FVH 

e 

= C 
LSe      c    S L        w    w 

(4   114) 

Substituting equations 4.118   and 
4.119   into equation 4.94  and per- 
forming the same  factoring and 
substitutions  as   in the  pullup 
case ; 

then, 

'L   "   PV
2

S 
(4.115) 

AC, <VL 

The stick-force-per-g equation 
becomes: 

dF 

dn" " - G (Se Ce W V t"sm C      ' 

h - h' 

e 

(4.116) 

Stick-Free Turn Maneuver.; 

The procedure used for deter- 
mining tne dFs/dn equation and an 
expression for the stick-free maneu- 
ver point for the turning maneuver 
is practically identical to the 
pullup case.  For the turn condi- 
tion Aq is now, 

= f (n - n ) (1 + JL) 
nn (4.117) 

The change in angle of attack of 
the tail, AaT and A6e become 

A a      -   -i  (n - n )(1  - J*-) + 
T a o da 

&—%  (n - n )(1 + —)     (4.118) „i. o nn 
V o 

A5 
-c, 

Li 
(h - h )(n - n ) + n o 

P~ C„.(n-n )(1 + —) 4tn    mq        o nn 
o 

(4.119) 

Sc 
[h'hn+^SF   <1+1/n> 

(4.3.20) 

Substituting 4.120 into 4.93 

dF , ch_CT 
~ =    G 1/2 /°V    S    c    --2-i . 
dn e    e C„ "» '5. 

[h-h; + ^c">a
F(i + i2> 

n   J 

(4.121) 

And solving for the stick-free 
maneuver point, 

SC Cm    F   (1 + 1/n2)     (4.122) 
n 4m    l"q 

h' ./oil 
r\ AT 

Further substitution puts equation 
4.121 into the following form: 

dF c 
-T-5 = - G (S c dn e e »V ^-sT—; 

[" - K) (4.123) 

Ayain, the turning stick- 
force-per-g equation 4.123 appears 
identical to the stick-free pullup 
equation.  However, the expression 
for the maneuver point h^  is dif- 
ferent. 

The term in the first paren- 
thesis represents the ninge moment 
of the elevator.  The second term 
is the elevator power and the last 
term is the negative value of the 
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u stick-free maneuver margin.  The 
following conclusions are drawn 
from th:.s equation. 

1. The stick-fcrce-per-g appears 
to vary directly with the 
weight.  However, weight also 
appears inversely in hm. 
Therefore, the full effect 
of weight cannot be truly 
analyzed since one effect 
could cancel the other. 

2. Since airspeed does not 
appear in the equation, the 
stick-force-per-g will be 
the same at all airspeeds for 
a fixed eg. 

I 4.7 EFFECT OF BOBWEIGHTS AND SPRINGS 

The effect of bobweights and 
springs on the stick-free maneuver 
point and stick-force gradients is 
of interest.  The result of adding 
a spring or a bobweight to the con- 
trol system adds an incremental 
force to the system.  The effect 
of the spring is different from 
the effect of the bobweight.  The 
spring exerts a constant force on 
the stick no matter what load 
factor is applied.  The bobweight 
exerts a force on the stick pro- 
portional to the load factor. 

BOBWEIGHT DOWNSPRING 

From equation 3.112, come the 
following conclusions. 

1.  The difference between the 
stick-fixed and stick-free 
maneuver point is a function 
of the free elevator factor, 

The stick-free maneuver 
point, hm, varies directly 
with altitude, becoming 
closer to the stick-free 
neutral point, the higher the 
aircraft flies. 

The location of one stick- 
free maneuver point is of aca- 
demic interest only since it 
occurs at the point where 
dFs/dn = 0.  It is difficult 
to fly an aircraft with this 
type gradient.  Consequently, 
military specifications limit 
the minimum value of dFs/dn 
to three pounds per g. 

The forward eg is limited by 
stick force per g.  The maxi- 
mum value is limited by the 
type aircraft (bomber, fighter, 
or trainer); i.e., heavier 
gradients in bomber type and 
lighter ones in fighters. 

CONTROL 
COLUMN 

1 

nW 

r-F, 

r 

AFs^AnWi 

(a) 

AFS=T5 

b 

m 

Figure 4,8   Bobweight and Downspring 

The force increment for the 
downspring and bobveight are: 

AF 
s 

Spring 

G S c W Cv, c 

(h Vhm)(n " no) + T b (4.124) 
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AF s 
Bobweight 

G S c WCh. e e   "5 

A ST V 

(h - h') (n - n ) + W £ (n-n ) m      o     b    o 

(4.125) 

When the derivative is taken 
with respect to load factor, tho 
effect on dFs/dn of the spring is 
zero.  The stick force gradient 
is not affected by the spring nor 
is the stick-free maneuver point 
changed. 

dF  s 
dn 

Spring 

G Sa  c W Ch_ e e   "5 
TT sT C 

c (h - h') w     m 
(4.126) 

4.8 AERODYNAMIC BALANCING 

Aerodynamic balancing is used 
to affect the stick force gradient 
and stick-free maneuver point. 
Aerodynamic balancing or varying 
values of Cha and Chj affects the 
following stick-free equations. 

dF  s 
dn 

h' = m 

G S c W Ch. e e   "g 

^T ST V 
c  (h - h') (4.128; 
w      m 

h' n 
Sc 
4m 

(4.129) 

u 

For the bobweight, the stick 
force gradient dFs/dn becomes: 

dF G S    c    W Cho 

~ =    -   7 
e. %       5 c    (h - h')  f w| dn £    a„ CT w rn b 

T    T    L„ 
Bobweight 14.127) 

Consequently, the addition 
of the bobweight (positive) in- 
creases the stick force gradient, 
moves the stick-free maneuver point 
aft, and shifts the allowable eg 
spread aft (the minimum and maxi- 
mum eg positions as specified by 
force gradients are moved aft) . 
See figure 4.9. 

MAX-- 

JF< 

MIN  

BOB 

<•»• 

=     1 (4.130) 

Figure 4.9   Effects of Adding a Bobweight 

Decreasing Ch5 and/or increas- 
ing Cha by using two such aero- 
dynamic balanced devices as an 
overhang balance or a lagging bal- 
ance tab, does the following: 

1. The free elevator factor, F, 
decreases. 

2. The stick-free maneuver 
point hm moves forward. 

3. The maneuver margin term 
<h  - hm) decreases. 

4. The stick force gradient 
decreases. 

5. The forward and aft eg limits 
move forward. 

Increasing Ch^ and/or decreas- 
ing cha 

by using a convex trailing 
edge or a leading balance tab does 
the following: 

1. The free elevator factor, F, 
increases. 

2. The stick-free maneuver 
point hm moves aft. 

4.16 
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3. The maneuver margin term 
(h - hm) increases. 

4. The stick force gradient 
increases. 

5. The forward and aft eg limits 
move aft. 

14.9   eg RESTRICTIONS 

The restrictions on the air- 
craft's center of gravity location 
may be examined by referring to the 
mean aerodynamic chord in figure 
4.10. 

if, JF. 

CLM.,     *■ M..   *>Mln h; hn £ hm 

FWD- 

Figure 4.10  Restrictions to Center of Gravity Locations 

The forward eg travel is 
normally limited by: 

1. Maximum stick-force-per-g 
gradient - dFs/dn. 

or 

and maneuver points ahead of 
their respective stick-fixed 
points. 

2. The stick-free neutral point, 
hn, can be moved aft arti- 
fically with a downspring. 
The stick-free maneuver point, 
hm, can be moved aft with a 
bobweight but not a down- 
spring. 

3. The desired aft eg location 
may be unsatisfactory because 
it lies aft of the eg posi- 
tion giving minimum stick 
force gradient. The require- 
ment for bobweight or a par- 
ticular aerodynamic balancing 
would exist in order to shift 
the eg for minimum stick force 
gradient aft of the desired 
aft eg position. 

The equations which pertain 
to maneuvering flight are repeated 
below: 

Pull Ups, Stick-Fixed 

P£l 4m mq (4.131) 

dn 

a CT 

- C, 
(h - h ) 

% 
(4.132) 

2. Elevator required to land at 
CL

MAX' 

The aft eg travel is normally 
limited by: 

1. Minimum stick-force-per-g - 
dFs/dn. 

Pull Ups, Stick-Free 

-  h' - P^-    C. F 
n    4m "'q (4.133) 

or 

Stick-free neutral point- 
power on - hn. 

Additional considerations: 

fs     G Se Ce W CH  Cw 
dn "    -   £T  ST C 

(h - n') 

(4.134) 

1. Freeing the elevator causes 
a destabilizing moment that 
locates the stick-free neutral 
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dF G S    c    W Ch_ 
__!_   =   -      ec 

e„ a c   (h.h') + »r 
dn £>„ S„ Cr w  v m' b 

T    T    L„ 
Bobweight (4.; 35) 

Turns,   Stick-Free 

Sc 
h'    =    h'  -Pj- C_    (1 + 1/n")        (4.138) 

in n 4m   ™q 

U 

Turns,   Stick-Fixed 

h     -   h    -<\- C-    (1 +4) (4.1.16) 
m n 4a    luq *■ 

dF 
 s 

dn 

G S    c    WCh. 
e    e        "8 

Z. sm c. 'T    T    L„ 
c    (h - h') (4.139) 

w m 

i5j 
dn 

a C 

Cma CL, 
     (h-hm) (4.137) 

e e 
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o CHAPTER 

DIRECTIONAL STATIC 
STABILITY 

(REVISED FEBRUARY 1974) 

15.1   INTRODUCTION 

An analysis of the equations of aircraft motion leads to the follow- 
ing mathematical description of aircraft lateral-directional motion: 

F = mv + mru - pwm 

G = pi  + qrl x    x  ^ - I ) - (r + pq)I xz 

(5.1) 

(5.2) 

W 

G = rl  + pq(I  - I ) z    z  c^    y   x + (qr - p)I xz (5.3) 

The right side of the equation represents the response of an aircraft to 
applied forces and moments.  The forces and moments are expressed on 
the left side of the equation in terms of stability derivatives and small 
perturbations.  As in "Long-Stat", an analysis of the lateral-directional 
static stability need only concern itself with the values of these deriva- 
tives.  Further analysis of the aircraft equations of motion reveals the 
left side of the foregoing equations to be composed primarily of contribu- 
tions from aerodynamic forces and moments, direct thrust, gravity, and gyro- 
scopic moments.  Of these, only the aerodynamic forces and moments (Y,  ,  ) 
will be analyzed because the other sources are usually eliminated through 
proper design. 

It has been shown in Chapter 1 that when operating under a small 
disturbance assumption, aircraft lateral-directional motion can be con- 
sidered independent of longitudinal motion and that it can be considered 
as a function of the following variables: 

(YX ,V)   = f(B, 6r> :s.4) 

;. 

The ensu:ng analysis is concerned with the question of lateral-direc- 
tional static stability or the tendency of an airplane to return to sta- 
bilized flight after being perturbed in yaw or roll.  This will be deter- 
mined by the values of the yawing and roiling moments [71 & £  ) .  Since 
the side force equation governs only the aircraft translatory response 
and has no effect on the angular motion, the side force equation will not 
be considered. 

The two remaining aerodynamic functions can be expressed in terms 
of non-dimensional stability derivatives, angular rates and angular dis- 
placements : 

C~ A       /S 
n       '"&'        '"■&"        ~'Lp^        ~'lr~   ~"Aa 

a       -™6T  r 

A. 
C 5 = C i   B + Cf-3 + C{ p + C} r + C{. 6a + 

• r 

(5.5) 

(5.6) 

5.1 
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The analysis of aircraft lateral-directional motion is based on 
these two equations. A cursory examination of these equations reveals 
the presence of "cross-coupling" terms, e.g., CnDp and Cttr <5a in the 

*? oa 
yawing moment equation (5.5) .  It is foi this reason that aircraft lateral 
motions and dir.-stional motions must be considered together - each one 
influences the other. 

u 

Static directional stability will be considered first. Each stabil- 
ity derivative in equation (5.5) will be discussed and its contribution 
to aircraft stability will be analyzed.  A summary of these stability 
derivatives is shown in figure 5.1. 

DERIVATIVE NAME 

SIGN FOR A 
STABLE 

AIRCRAFT 
CONTRIBUTING PARTS 

OF AIRCRAFT 

% 
Static Directional Stability 

or 
Weathercock Stability 

(+) Tail, Fuselage, Wing 

% 
Lag Effects (-) Tail 

% Cross-Coupl i.ng (+) Wing, Tail 

Ctr 
Yaw Damping (-) Tail, Wing, Fuselage 

Ctoa 
Adverse or Complimentary Yaw "0" 

or 
slightly 

(+) 

Lateral Control 

C«*r 
Rudder Power (+) Rudder Control 

Figure 5.1 

6.2 Cn/r STATIC DIRECTIONAL STABILITY OR WEATHERCOCK STABILITY 

Static directional stability is defined as the initial tendency of 
an aircraft to return to or depart from its equilibrium angle of sideslip 
when disturbed. Although the static directional stability of an aircraft 
is determined through consideration of all the terms in equation 5.5, C^o 
is often referred to as "static directional stability" because it is 
the predominant term. 

When an aircraft is placed in a sideslip, aerodynamic forces develop 
which create moments about all three axis.  The moments created about the 
- axis tend to turn the nose of the aircraft into or away from the rela- 
tive wind. The aircraft is statically directionally stable if the moments 
created by a sideslip angle tend to align the nose of the aircraft with 
the relative wind.  By convention, sideslip angle is defined as positive 
if the relative wind is displaced to the right of the fuselage reference 
line. 

5.2 
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u 

M 

Figure 5.2 

In figure 5.2 the aircraft is in a right sideslip.  It is statically 
stable if it develops yawing moments that tend to align it with the rela- 
tive wind, or, in this case, right (positive) yawing moments. Therefore, 
an aircraft is statically directionally stuble if it develops positive 
yawing moments with a positive increase in sideslip.  Thus, the slope of 
a plot of yawing moment coefficient, Cn,  versus sideslip, ß, is a quantita- 
tive measure of the static directional stability that an aircraft possesses. 
This plot would normally be determined from wind tunnel results. 
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STABLE 

\ UNSTABLE 

Figure 5.3 

WIND TUNNEL RESULTS OF YAWING 
MOMENT COEFFICIENT vs SIDESLIP 

u 

4>..' 

Fsfln 

Figure 5.4 

The total value of the directional stability derivative, C^g/ at any 
sideslip angle, is determined by contributions from the vertical tail, the 
fuselage, and the wing. These contributions will be discussed separately. 

>5.2.1 VERTICAL TAIL CONTRIBUTION TO C 

! ! 

•ß 
The vertical tail is the primary source of directional stability for 

virtually all aircraft. When the aircraft is yawed, the angle of attack 
of the vertical tail is changed.  This change in angle of attack produces 
a change in lift on the vertical tail, and thus a yawing moment about the 
Z-axis. 

5.4 
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0 Referring to figure 5.4, the yawing moment produced by the tail is: 

o 

np = <-lp) (-Lp) = iFhF (5.7) 

The minus signs in this equation arise from the use of the sign 
convention adopted in the study of aircraft equations of motion. Forces 
to the left and distances behind the aircraft eg are negative. 

As in other aerodynamic considerations, it is convenient to consider 
yawing moments in coefficient form so that static directional stability 
can be evaluated independent of weight, altitude and speed. Putting equa- 
tion 5.7 in coefficient form: 

*FLF VCLF <*F SF 
q s b %* w " ^nF  Q s b 

Tf W W -V W W 

Vertical tail volume ratio, Vv, is defined as: 

V. = F F 
s~b~ w w 

(5.8) 

(5.9) 

The sign of Vv may be either positive or negative. Making this substitu- 
tion in equation 5.8: 

-nF 
CLF 

qF Vv (5.10) 

For a propeller-driven aircraft, qw is greater than qF. However, for a 
jet aircraft, these two quantities are equal.  Thus, for a jet aircraft, 
equation 5.10 becomes: 

C„F = CLp Vv (5.11) 

The lift curve for a vertical tail is presented in figure 5.5. 

Figure 5.5  LIFT CURVE FOR A VERTICAL TAIL 

5.5 
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The negative slope of this curve is a result of the sign convention used. 
Reference figure 5.4. When the relative wind is displaced to the right 
of the fuselage reference line, the vertical tail is placed at a positive 
angle of attack. However, this results in a lift force to the left, or 
a negative lift. Thus, the sign of the lift curve slope of a vertical 
tail, aF, will always be negative below the stall. 

CLF = ap ap 

Making this substitution in equation 5.11 

CtF = ap ap Vv 

(5.12) 

(5.13) 

The angle of attack of the vertical tail, ap, is not merely fc.  If 
the vertical tail were placed alone in an airstream, the ap would >e equal 
to e. However, when the tail is installed on an aircraft, changes in 
both magnitude and direction of the local flow at the tail take place. 

These changes may be caused by a propeller slipstream, or by the wing and 
the fuselage when the airplane is yawed. The angular deflection is allowed 
for by introducing the sidewash angle, o, analogous to the downwash angle, 
e.  The value of a is very difficult to predict, therefore suitable wind 
tunnel tests are required, 
causes aw  to be less than | 

The sign of 
Thus, 

a     = 

is defined as positive if it 

(5.14) 

Substituting in equation 5.13: 

F v (fi - a) (5.15) 

The contribution of the vertical tail to weathercock stability is 
found by examining the change in Cn„  with a change in sideslip angle, t 

ac, 
= VvaF (1 " ff* (5-16) 

Fixed 

•nF 
36 (Tail) 

The subscript "fixed" is added to emphasize that, thus far, the ver- 
tical tail has been considered as a surface with no movable parts, i.e., 
the rudder is "fixed." 

Equation 5.16 reveals that the vertical tail contribution to direc- 
tional stability can only be changed by varying the vertical tail volume 
ratio, Vv, or the vertical tail lift curve slope, ap. The vertical tail 
volume ratio can be changed by varying the size of the vertical tail, or 
its distance from the aircraft eg. The vertical tail lift curve slope 
can be changed by altering the basic airfoil section of the vertical tail, 
or by end piating the vertical fin. An end plate on the top of the ver- 
tical tail is a relatively minor modification and yet it increases the 
directional stability of the aircraft significantly. This fact has been 
utilized in the case of the T-38 (figure 5.6). As can be seen in figure 
5.7, the entire stabilatcr on the F-104 acts as an end plate and, there- 
fore, adds greatly to the directional stability of the aircraft. 

5.6 
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Figure 5.6 Figure 5.7 

The effect of an end plate on the vertical stabilizer is to increase 
the effective aspect ratio of the vertical tail. As '*ith any airfoil, 
this change in aspect ratio produces a change in the lift curve slope of 
the airfoil. 

I  w 

' 

CLF 

INCREASING 

I- 
! 

As the aspect ratio is increasec", the <*p for stall is decreased. Thus, 
if the aspect ratio of the vertical tail is too high, the vertical tail 
will stall at low sideslip angles and a large decrease in directional 
stability will occur. 

5.7 
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#5.2.2 FUSELAGE CONTRIBUTION TO Cn/3: 

The subsonic center of pressure of a typical fuselage occurs about 
one-fourth of the distance back from the nose.  Since the aircraft center 
of gravity usually lies behind this point, the fuselage is generally de- 
stabilizing . 

\) 

Figure 5.8 

FY (FUSELAGE) 

■ 

As can be seer from figure 5.8, a positive sideslip angle will pro- 
duce a negative yawing moment about the eg, thus, Cn & is negative 

(fuselage) 
or destabilizing.  The destabilizing influence of the fuselage diminishes 
at large sideslip angles due to a decrease in lift as the fuselage stall 
angle of attack is exceeded, and also due to an increase in parasite drag 
acting at the center of equivalent parasite area which is located aft of 
the eg. 

If the overall directional stability of an aircraft becomes too low, 
the fuselage-tail combination can be made more stabilizing by adding a 
dorsal fin or a ventral fin.  A dorsal fin was added to the C-12 3 and 
a ventral fin was added to the F-104 to improve static directional sta- 
bility. 

5.8 
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Figure 5.9 

Since the addition of a dorsal fin decreases the effective aspect 
ratio of the tail, a higher sideslip angle can be attained before the 
vertical fin will stall.  However, the major effect of the dorsal fin at 
large sideslip angles is to move the center of equivalent parasite area 
further aft of the eg, therefore producing a greater stabilizing moment 
at any given sideslip angle. Thus, a dorsal fin greatly increases direc- 
tional stability at large sideslip angles.  Figure 5.10 shows the effect 
on directional stability of adding a dorsal fin. 

„ —AIRPLANE WITH 
DORSAL FIN ADDED 

FUSELAGE 
ALONE 

Figure5.10    EFFECT OF ADDING A DORSAL FIN 
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is difficult to estimate, and although some empirical 

is u 
a model without a tail. 

Cnß(fuselage) 
formulas exist, it is usually measured directly by wind tunnel tests using 

•5.2.3 WING CONTRIBUTION TO Cn/3' 

The wing contribution to static directional stability is usually 
small. Straight wings make a slight positive contribution to static 
directional stability due to fuselage blanking in a sideslip. Effectively, 
the relative wind "sees" less of the downwind wing due to fuselage blank- 
ing. This reduces the lift of the downwind wing, and thus reduces the 
induced drag on the downwind wing. The difference in induced drag on the 
two wings tends to yaw the aircraft into the relative wind. 

Swept back wings produce a greater positive contribution to static 
directional stability than do straight wings. 

Reference figure 5.1.1. The wing sweep angle, A is defined as the 
angle between a perpendicular to the fuselage reference line and the quar- 
ter chord line of the wing. 

Figure 5.11 
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It can be seen that the component of free stream velocity normal to the 
wing is greater for swept back wings than for straight wings, and that 
is also greater on the upwind wing. 

VN(UPwind)   - 
VT COS (A " ß) 

VN(Downwind) = VT COS (A + S) 

(5.17) 

(5.18) 

This difference in normal components creates a dissimilance oi: lift and 
therefore a disparity in induced drag on the two wings. Thus a stabiliz- 
ing yawing moment is created. Similarly, forward swept wings would create 
an unstable contribution to static directional stability. 

• 5.2.4 MISCELLANEOUS EFFECTS ON C, •ß 

A propeller can have large effects on an aircraft's static diraction- 
al stability. The jropeller contribution to directional stability arises 
from the side force component at the propeller disc created as a result 
of yaw (figure 5.12) 

Figure 5.12 
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The propeller is destabilizing if a tractor and stabilizing if a pusher. '^.J 
Similarly, engine intakes have the same effects if they are located fore 
or aft of the aircraft eg. 

Engine nacelles act like a small fuselage and can be stabilizing or 
destabilizing depending on whether their cp is located ahead or behind the 
eg. 

Aircraft eg movement is-restricted by longitudinal static stability 
considerations.  However, within the relatively narrow lin i.ts established 
r-y longitudinal considerations, eg movements have no significant effects * 
on static directional stability. 

15.3 Cn^-RUDDER POWER 

In most flight conditions, it is desired to maintain the sideslip , 
angle equal to zero.  If the aircraft has positive directional stability 
and is symmetrical, then it will tend to fly in this condition.  However, 
yawing moments may act on the aircraft as a result of asymmetric thrust 
(one engine inoperative), slip stream rotation, or the unsymmetric flow 
field associated with turning flight.  Under these conditions, sideslip 
angle can be kept to zero only by the application of a control moment. 
The control that provides this moment is the rudder. 

Recall that, 

CHp = aF ap 7v (5.13) 

3Cn„   3C,.        3u 
F    n ~ V —L (5.19) 3 & r 3 6    " F V   36 r     r 

Defining rudder effectiveness, T, as: 

3 a 
T  = rr— (5.20) 

a o r 

TT-C«6.- = aF Vv T (5'21) r 

The derivative, C|1(sr> is called "rudder power" and by definition, its 
algebraid sign is always positive.  This is because a positive rudder 
deflection, +-r is defined as one that produces a positive moment about 
the eg, +Cn.     The magnitude of the rudder pow^r can be altered by varying 
the size of the vertical tail and its distance from the aircraft eg, or 
by using different airfoils for the tail and/or rudder, or by varying the 
size of the rudder. 

I&.4 RUDDER FIXED STATIC DIRECTIONAL STABILITY 

Having some knowledge of both C^,. and Cnö , it is now possible to 
work toward some relationship that can be used in flight to measure the 
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u static directional stability of the aircraft. In flight, the maneuver 
that will be used to determine the static directional stability of the 
aircraft is the "steady straight sideslip." In a steady straight side- 
slip, equation 5.5 reduces to, 

A JL 

(5.22) 

Thus, 

6  = - 
'H, 

(5.23) 

36 
 ] 

36 
'"ß(Fixed) 

(5.24) 

Again, the subscript "fixed" is added as a reminder that equation 5.24 is 
an expression for the static directional stability of an aircraft if the 
rudder is not free to float. Looking at equation 5.24, Cn$     is a known 

quantity once an aircraft is built, therefore, 3 6r/3ß can be taken as a 
direct indication cf the rudder fixed static directional stability of an 
aircraft. The relationship, 36r/3ß, can easily be measured in flight. 
Since C^g has to be positive in order to have positive directional sta- 
bility, and Cn$    is positive by definition, 36r/3ß must be negative to 
obtain positive directional stability. 

Figure 5.13 RUDDER DEFLECTION vs SLIDESLIP 
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16.5  RUDDER FREE DIRECTIONAL STABILITY 
Ü 

On aircraft with reversible control systems, the rudder is free to 
float in response to its hinge moments, and this floating can have large 
effects on the directional stability of the airplane. In fact, a plot of 
36r/3ß may be stable while an examination of the rudder free static direc- 
tional stability reveals the aircraft to be unstable. Thus, if the rudder 
is free to float, there will be a change in the tail contribution to static 
directional stability. To analyze the nature of this change, recall that 
hinge moments are produced by the pressure distribution caused by angle 
of attack and control surface deflection. In the case of the rudder, 

o   SH      3H 

In coefficient form 

(5.25) 

ch = ch. + ch, (5.26) 

It can be seen that when the vertical tail is placed at some angle 
of attack, aF, the rudder will start to "float." However, as soon as it 
deflects, restoring moments are set up, and an equilibrium floating angle 
will be reached where the floating tendency is just balanced by the re- 
storing tendency and Ch = 0. At this point, 

chr 
aF = ~ ch. >r(Float) (5.27) 

Thus, 

chn 
r(Float) Ch, 

(5.28) 

With this background, it is now possible to develop a relationship 
that expresses the static directional stability of an aircraft with the 
rudder free to float. 

Recall that, 

cnF = Vy ap ap (5.13) 

3aF - a + r-ri- 6_ 
3 r r(Float) 

(5.29) 

Therefore, 

= V - a  + 
36r °r(Float) 

(5.30) 
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u 
CW     -!f!±-v a  1  3g . T 36r(Float) 

Wf5(Free)   3ß    v F     9ß        U 
(5.31) 

Cn 
^Free)'^^!1 " " 

1 + T  "*(Float) . _JL. 
3ß        1 _ i£ 

3ß 

(5.32) 

From equation 5.14, 

3ß        3ß (5.33) 

96, 
Cnc = V a. 1 - &      1 + T  r(Float) . 3ß 

(Free) v F 3ß 3ß 3oT 
(5.34) 

Cn, 
(Free) ̂

VvaF I1 "If 
1 + T 85r (Float) (5.35) 

s 
Recall that, 

6r(Float)" ' 

ChaF 
Ch6r 

Therefore, 

36r (Float). 
3aF 

ChaF 
Ch6r 

Thus, 

(5.28) 

(5.36) 

"Vreef ^ ^ " ^ 
Ch 

1 - T 
ap 

Ch6l 
(5.37) 

It can be seen that this expression differs from equation 5.16, 
the expression for rudder fixed static directional stability by the term 
(1 - T ChaF/Chg ) • Since this term will always result in a quantity less 

than one, it can be stated that the effect of rudder float is to reduce 
the slope of the static directional stability curve. 
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u 
Rudder 

^Free 

Figure 5.14 

Equation 5.37 does not contain parameters that are easily measured 
in flight, therefore it is necessary to develop an expression that will 
be useful in flight test work. 

Assuming a steady straight sideslip, figure 5.15 schematically repre- 
sents the forces and moments at work. u 

-fc- 

Figure 5.15 

In a steady straight sideslip, l7[  = 0.  Therefore, it follows that 
E» .    _.  =0.  Now if moments are summed about the rudder hinge pin, 
Hinge Pin 

the rudder force exerted by the pilot, FR, acts through a moment arm and 
gearing mechanism, both accounted for by some constant, K, and must balance 
the other aerodynamic yawing moments so that ^Hinqe pj_n 

= 

is hindered in his task by the fact that the rudder floats 
steady straight fiight, 

m 

F 

Hinge Pin - 0 - F, 

H. r M 

Where G is merely 1/K, 

K + H, m 

0.  The pilot 

Thus, in 

(5.38) 

(5.39) 
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o 
Knowing, 

Hm = Ch *r Sr Cr 

From equation 5.26, 

H  = q S c  (CK   * oip + cht      '   6r) 

Thus, equation 5.39 becomes, 

r  -- - Gq S  c  (Ch   • »F + Cht      '   6r) r     ^r r r  "aF   
c "5r   

r 

Applying equation 5.2 7, 

F = - Gq S  c  (-Ch*  • «r/pi t-\ +  Ch* r      r r r    6r   
r (Float)   ri6r 

F     =   -   Gq     S     C     CK,      (6r   -   <5r/oi «,4.\ ' r r    r    r    "6r       * r(Float) 

6r) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

\J 

The difference between where the pilot pushes the rudder, 6r, and the 
amount it floats, 6r,_,n  . . , is the free position of the rudder, 6r/T,  . L (Float) r *■ (Fiee) 
Therefore, 

F  =-Gq  S c  Chc  6r,„   , r    ^r r r n6  r(Free) 

37.. 3(5 
rrr~  = _ Gq S c Ch. 33      ^r r r n&r 

r(Free^ 
36 

(5.45) 

(5.46) 

From equation 5.24, it can be shown that, 

35r(Free) m  _ %Free) 
3ß Cut 

(5.47) 

Thus, 

3F Ch, 

JT  = Gqr Sr Cr C^T CH 
*r (Free) 

(5.48) 

This equation shows that the parameter, 3Fr/3ß, can be taken as an 
indication of the rudder free static directional stability of an aircraft. 
This parameter can be readily measured in flight. 

An analysis of the components of equation 5.48 reveals that for 
static directional stability, the sign of 3Fr/3ß should be negative. 
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UNSTABLE 

STABLE 

Figure 5.16 

1B-6 CBja - YAWING MOMENT DUE TO LATERAL CONTROL DEFLECTION 

The remaining derivatives in equation 5.5 that have not been studied 
thus far are called "cross derivatives." It is the existence of these 
cross derivatives that causes the rolling and yawing motions to be so 
closely coupled. 

'• i 

The first of these cross derivatives to be covered will be C^j , and 
is the yawing moment due to lateral control deflection.  In order for a 
lateral control to produce a rolling moment, it must create an unbalanced 
lift condition on the wings. The wing with the most lift will also pro- 
duce the most i lduced drag according to the equation Cp^ = Ci^/ve  ZR . 
Also, any change in the profile of the wing due to a lateral control de- 
flection will cause a change in profile drag. Thus, any lateral control 
deflection will produce a change in both induced and profile drag.  The 
predominate effect will be dependent on the particular aircraft configura- 
tion and the flight condition.  If induced drag predominates, the aircraft 
will tend to yaw away from the direction of roll. This phenomenon is 
known as "adverse yaw." The sign of Cn$     for adverse yaw is negative. 
If profile drag predominates, the aircraft will tend to yaw into the direc- 
tion of roll.  This is known as "complimentary" or "proverse" yaw.  The 
sign of C^  for complimentary yaw is positive.  Both ailerons and spoilers 
are capable of producing either adverse or complimentary yaw. To determine 
which condition will prevail, the particular aircraft configuration and 
flight condition must be analyzed.  If design permits, it is desirable to 
have C^  = 0 or be slightly positive. A slight positive value will ease 
the pilot's turn coordination task. 
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15.7 da - YAWING MOMENT CUE TP ROLL RATE 

\    j 

The derivative Cnp is called yawing moment due to roll rate. Both 
the wing and the tail contribute to dtp.  The wing contribution arises 
from two sources.  The first comes from the change in profile drag asso- 
ciated with the change in wing angle of attack due to rolling. As an 
aircraft is rolled, the angle of attack on the downgoing wing is increased, 
Refer to figure 5.17. Conversely, the angle of attack on the upgoing wing 
is decreased. 

COMPONENT OF RELATIVE WIND CAUSED BY ROLLING VELQCTY 

VT (ORIGINAL) 

RELATIVE WIND 

Figure 5.17 

I I 

This increase in angle of attack on the donwgoing wing means that 
the relative wind "sees" more of the downgoing wing and that therefore 
the profile drag will be greater on this wing than on the upgoing wing. 
For the right roll depicted in figure 5.17, the increased profile drag 
would cause a yaw to the right.  Thus, the sign of Cnp due to this effect 
only is positive. However, the second wing effect is predominant and the 
foregoing effect exerts only a mitigating influence. 

The local lift vector is always perpendicular to the local relative 
wind. As already discussed, the inclination of the relative wind is 
difference on the wings during a roll. Thus, there will be a difference 
in the inclination of the two wing lift vectors. The lift vector on the 
downgoing wing will be tilted forward, and the lift vector on the upgoing 
wing will be tilted aft.  Refer to figure 5.18. 

Since each lift vector has a component in the X-direction, a yawing 
moment will result.  In the case depicted, for a right roll the yaw will 
be to the left. Thus, the sign of Cnp due to this effect will be negative, 
As previously mentioned, this is the predominate wing effect and thus, 
overall, the sign of the wing contribution to Crtp is negative. 
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RELATIVE WIND 

FiglM 5.18    INCLINATION OF WING LIFT VECTORS  DURING A RIGHT ROLL 

The vertical  tail makes a larger contribution to Cnp than does either 
wing effect.    Rolling changes the angle of attack on the vertical  tail. 
Refer to figure 5.19. 

Figure 5.19      CHANGE IN ANGLE OF ATTACK OF THE   VERTICAL TAIL DUE TO A RIGHT ROLL RATE 
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u This change in angle of attack on the vertical tail will generate 
a lift force. In the situation depicted in figure 5.19, the change in 
angle of attack will generate a lift force, Lp, to the left.  This will 
create a positive yawing moment, 
positive. 

Thus, Cn_. for the vertical tail is 

I / 

Considering both wing and tail, a slight positive value of Cn    is 
desired to aid in Dutch roll damping. 

16.8 Cnr YAW DAMPING 

The derivative Cnr, is called yaw damping and, by definition, its 
sign is always negative. The aircraft fuselage adds a negligible amount 
to Cnr except when it is very large.  The important contributions are 
those of the wing and tail. 

The tail contribution to Cnr arises from the fact that there is a 
change in angle of attack on the vertical tail whenever the aircraft is 
yawed. This change in <*F produces a lift force, LF, that in turn produces 
a yawing moment that opposes the original yawing moment. Refer to figure 
5.20. The tail contribution to Cnr accounts for 80-90% of the total "yaw 
damping" on most aircraft. 

The wing contribution to Cnr arises from the fact that in a yaw, the 
outside wing experiences an increase in both induced drag and profile drag 
due to the increased dynamic pressure on the win'f. An increase in drag 
on the outside wing creates a yawing moment that opposes the original 
direction of yaw. 

15.9 Cn - YAW DAMPING DUE TO LAG EFFfcCTS IN SIDEWASH 

The derivative Cno   is yaw damping due to lag effects in sidewash, a. 
Very little can be authoritatively stated about the magnitude or algebraic 
sign of Cn$     due to the wide variations of opinion in interpreting the 
experimental data concerniny it. 
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Figure 5.20 

CHANGE IN ANGLE OF ATTACK OF 
VERTICAL FIN DUE TO YAWING RATE 

During any change in ß, the angle of attack of the vertical fin will 
always be less than it will be at steady state. This is due to lag effects 
in sidewash. Since this phenomenon reduces the angle of attack of the 
vertical tail, it also reduces the yawing moment created by the vertical 
tail.  This reduction in yawing moment is, effectively, a contribution to 
yaw damping. Thus the description, "yaw damping due to lag effects in 
sidewash." 

i 6.10 HIGH SPEED ASPECTS OF STATIC DIRECTIONAL STABILITY 

CyiQ  -  The effectiveness of an airfoil decreases as the velocity in- 
creases supersonically.  Thus, for a given ß, as Mach increases, the re- 
storing moment generated by the tail diminishes.  The wing-fuselage combi- 
nation continues to be destabilizing throughout the flight envelope.  Thus, 
the overall CnQ  of the aircraft will decrease with increasing Mach. 
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Figure 5.21  CHANGE IN WITH MACH NUMBER 

\    i 

The requirement for large values of Cnß is compounded by the tendency 
of high speed aerodynamic designs toward divergencies in yaw due to roll 
coupling effects.  This problem can be combated by designing an extremel\ 
large tail (F-104, F-lll, T-38), by endplating the tail (F-104, T-38), by 
using ventral fins (F-104), or by using fore body strakes. 

The F-104 employs a ventral fin in addition to a sizeable vertical 
stabilizer to increase supersonic directional stability.  The efficiency 
of underbody surfaces is not affected by wing wake at high angles of 
attack, and supersonically, they are located in a high energy compression 
pattern. 

Fore body strakes located radially along the horizontal center line 
in the x-y plane of the aircraft have also been employed effectively to 
increase directional stability at supersonic speeds.  This increase in 
C-ria  by the employment of strakes is a result of a more favorable pressure 
distribution over the fore body surface, and in addition, the creation 
of improved flow effects at the vertical tail location by virtue of dimin- 
ished flow circulation.  In addition, even small sideslip angles will pro- 
duce fuselage blanking of the downwind strake and create a dissimilance 
of induced drag, and thus a stable contribution to CWa. 

CM(5  - In the transonic region, flow separation will decrease the 
effectiveness of any trailing edge control surface.  On most aircraft 
however, this is offset by an increase in the CLa curve in the transonic 
region.  As a result, flight controls are usually the most effective in 
this region.  However, as Mach number continues to increase, the CLa curve 
will decrease, and thus, control surface effectiveness will continue to 
decrease.  In addition, once the flow over the surface is supersonic, a 
trailing edge control cannot influence the pressure distribution on the 
surface itself, due to the fact that pressure disturbances cannot be 
transmitted forward in a supersonic environment.  Thus, the rudder power 
will decrease as Mach increases above the transonic region. 

-»6; For the bailie reasons discussed under rudder power, a given 
aileron 3eflection will not produce as much lift at high Mach number as 
it did transonically.  Therefore, induced drag will be ier.s.  In addition, 
the profile drag, for a given aileron deflection, increases with Mach num- 
ber.  Thus, the tendency toward complimentary yaw increases with Mach. 
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Cnr - The development of yaw damping depends on the ability of the 
wing and tail to develop lift.  Thus, as Mach number increases and the 
ability of all surfaces to develop lift decreases, yaw damping will also 
decrease. 

J 

dtp - The slope of a curve of Cnp  normally doesn't change with Mach 
number. However, the magnitude of attainable roll rate will decrease 
with decreasing aileron effectiveness. Therefore, the magnitude of Cn„ 
encountered at higher Mach numbers will normally be less. 

Cnx  - This derivative normally will not change with M?ch number. 

15.11 STATIC LATERAL STABILITY 

The analysis of aircraft lateral static stability is based on equa- 
tion 5.6, which is repeated here for reference. 

= c*«e C4gß 
s\ 

C*rr + C*6a
6a + C lx   ur °r 

(5.6) 

It can be seen that the rolling moment, C^, is not a function of bank 
angle, $,  In other words, a change in bank angle will produce no change 
in rolling moment.  In fact, $ produces no moment at all.  Thus, Ci    = 0, 
and although it is analogous to C^ and Cn^,   it contributes nothing in 
the lateral static stability analysis. 

Bank angle, <j>, does have an indirect effect on rolling moment. As 
the aircraft is rolled into a bank angle, a component of aircraft weight 
will act along the Y-axis, and will thus produce an unbalanced force. 
Refer to figure 5.22.  This unbalanced force in the Y direction, Fy, will 
produce a sideslip, ß, and as seen from equation 5.6, this will influence 
the rolling moment produced. 

Fy = Wsin^ 

Figure 5.22   SIDE FORCE PRODUCED BY BANK ANGLE 
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Each stability derivac J in equation 5.6 will be discussed and its 
contribution to aircraft stability will be analyzed. A summary of these 
stability derivatives follows: 

SIGN FOR A STABLE CONTRIBUTING PARTS 
Zr.KVlkTl  E NAME AIRCRAFT OF AIRCRAFT 

% 
Dihedral Effect (-) Wing, Tail 

% 
C£  due to ß (+) Wing, Tail 

% 
Roll Damping (-) Wing, Tail 

% 
Ca  due to Yaw Rate (+) Wing, Tail 

cx Lateral Control Power (+) Lateral Control 

c\ 
C*  due to Rudder Deflection (-) Rudder 

Figure 5.23 

l    I 

u 
16.12 Ciß- DIHEDRAL EFFECT 

The tendency of an aircraft to fly wings level is related to the 
derivative Cjtß, which is known as "Dihedral Effect." Although the static 
lateral stability of an aircraft is a function of all the derivatives in 
equation 5.6, Ci$  is the predominant term.  Therefore, static lateral 
stability is often referred to as "Stable Dihedral Effect." 

An aircraft has stable dihedral effect if a positive sideslip produces 
a negative rolling moment.  Thus, the algebraic sign of CJU must be nega- 
tive for stable dihedral effect. 

UNSTABLE 

STABLE 

Figure 5.24  WIND TUNNEL RESULTS OF ROLLING MOMENT COEFFICIENT vs SIDESLIP 
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It is possible to have too much or too little dihedral effect. 
High values of dihedral effect give good spiral stability.  If an aircraft 
has a large amount of positive dihedral effect, the pilot is able to pick 
up a wing with top rudder. This also means that in level flight a small 
amount of sideslip will cause the aircraft to roll and this can be annoy- 
ing to the pilot. This is known'as a high <f>/0 ratio.  In multi-engine 
aircraft, an engine failure will normally produce a large sideslip angle. 
If the aircraft has a great deal of dihedral effect, the pilot must supply 
an excessive amount of aileron force and deflection to overcome the rolling 
moment due to sideslip.  Still another detrimental effect of too much 
dihedral effect may be encountered when the pilot rolls an aircraft. If 
an aircraft in rolling to the right tends to yaw to the left, the result- 
ing right sideslip, together with stable dihedral effect, creates a roll- 
ing moment to the left.  This effect could materially reduce the maximum 
roll rate available. The pilot, then wants a certain amount of dihedral 
effect, but not too much, '.''he end result is usually a design compromise. 

.J 

Both the wing and the tail exert an influence on Ci$.     The various 
effects on Cj,g can be classified as "direct" or "indirect." A direct 
effect actually produces some increment of Cx,g while an indirect effect 
merely alters the value of the existing CJU. 

The discrete wing and tail effects that will be considered are 
classified as follows: 

Effects on C4> 

DIRECT INDIRECT 

Geometrie Dihedral Aspect Ratio 

Wing Sweep Taper Ratio 

Wing-Fuselage "interference Tip Tanks 

Vertical Tail Wing Flaps 

Figure 5.25 

Geometric dihedral, y,   is defined as positive when the chord lines 
of the wing tip are above those at the wing root.  To understand the 
effect of geometric dihedral on static lateral stability, consider figure 
5.25. 

5.7.B 
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t ) VT «in/9 

Figure 5.26c 

rT»i nß%inY 

VT sin ßtlny 

Figure 5.26a 

It can be seen that when an aircraft is planed in a sideslip, posi- 
tive geometric dihedral causes the component, Vip sin 6 sin y  to be added 
to the lift producing component of the relative wind, VT cos ß.  Thus, 
geometric dihedral causes the angle of attack on the upwind wing to be 
increased by Aa. 

tan A a = 
VT sin sin Y 

VT cos 
= tan ß sin y (5.49) 

Making the small angle assumption, 

Aa = tan ß sin y (5.50) 

5.21 
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Conversely, the angle of attack on the downwind wing will be reduced. 
These changes in angle of attack tend to increase the lift on the upwind 
wing and decrease the lift on the downwind wing, thus producing a roll 
away from the sideslip.  In figure 5.26, for example, a positive sideslip, 
+ß, will ii.crease the angle of attack on the upwind, or right, wing, thus 
producing a roll to the left.  Therefore, it can be seen that this effect 
produces a stable, or negative, contribution to CJU. 

15.12.1 WING SWEEP: 

The wing sweep angle, A, is measured from a perpendicular t~ the 
aircraft x-axis at the forward wing root, to a line connecting the quarter 
cord points of the wing. Wing sweep back is defined as positive. 

Aerodynamic theory shows that the lift of a yawed wing is determined 
by the component of the free stream velocity normal to wing. That is, 
L = CL 1/2 PV"N

2
S where, VN is the normal velocity. 

R.W. 

!  i 

ANGLE =A-/3 

RELATIVE WIND 

5.28 

Figure 5.27      EFFECT OF WING SWEEP ON Cj^ 
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It can be seen from figure 5,27 that on a swept wing aircraft, the 

normal component of free stream velocity on xhe  upwind wing is, 

VN = VT cos (A ~ t) (5.51) 

Conversely, on the downwind wing, 

VN = VT cos (.'. f ,) (5.52) 

Therefore, V"N will be greater on the upwind wing.  This will cause the 
upwind wing to produce more lift and will thus create a roll away from 
the direction of the sideslip.  In other words, a right sideslip will 
produce ä roll to the left.  Thus, wing sweep makes a stable contribution 
to C#ft and produces the same effect as geometric dihedral. 

To fully appreciate the effect of wing sweep on static lateral sta- 
bility, it will be necessary to develop an equation relating the two. 

L(Upwind Wing)   CL 2 1/2 pVN 
(5.53) 

u 
'(Upwind Winy) 

= CL | 1/2 VT cos (A - i3) 

AL = CL | 1/2 i V  cos (A - 3) - CL § 1/2 p 

(5.54) 

12 
VT cos (A + 6) (5.55) 

AL = CL | 1/2 ; VT
2 2 2 

cos  (A -8) - cos  (A + ß) (5.56) 

Applying a trigonometric identity, 

2 2 cos  (A - !';) - cos  (A + 3) = sin 2 A sin 2 B 

Making the assumption of: a small sideslip angle, 

cos      (A   -   |.)   -  cos'   (A   +   a =   2   h   sin  2   A 

(5.57) 

(5.58) 

Therefore,   equation  5.56  becomes, 

AL  = Cf|  | 1/2   ,   Vr
2   2   i-   sin  2   A  = cL  S   1/2   ,    V,^   n   sin   2   A        (5.59) 

The  rolling moment  produced   by   this  change   in   lift   is, 

Z    =   -   A   L   .   Y (5.60) 
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Where Y is the distance from the wing cp to the aircraft eg. The minus 
sign arises from the fact that equation 5.59 assumes a positive sideslip, 
+»J, and for an aircraft with stable dihedral effect, this will produce a 
negative rolling moment. 

p = ^^ 
^i       a  S b ^w w w 

(5.61) 

Ci  = 
Y CL S p VT  6 sin A 

p vT
2 Sb 

CL Y ß 
sin A (5.62) 

5 = cio = - r- CT sin 2 b L A = - CONST (CL sin A) (5.63) 

Where the constant will be on the order of 0.2. Equation 5.63 should not 
be used above A = 45° because highly swept wings are subject to leading 
edge separation at high angles of attack, and this can result in reversal 
of the dihedral effect.  Therefore, it's best to use empirical results 
above A = 45°. 

From equation 5.63, it can be seen that at low speeds, high CL, 
sweepback makes a large contribution to stable dihedral effect. However, 
at high speeds, low CL, sweepback makes a relatively small contribution 
to stable dihedral effect. 

For angles of sweep on the order of 45°, the wing sweep contribution 
to CILQ  may be on the order of - 1/5 CL .  For large values of CL, this is 
a very large contribution, equivalent to nearly ten degrees of geometric 
dihedral. At very high angles of attack, such as during landing and 
takeoff, this effect can be very helpful to a swept wing fighter encounter- 
ing downwash. 

Since the effect of sweepback varies with CL, becoming extremely 
small at high speeds, it can help keep the proper ratio of Cj,g to Crtg at 
high speeds and reduce poor Dutch roll characteristics at these speeds. 

5.12.2 WING ASPECT RATIO: 

The wing aspect ratio exerts an indirect effect on dihedral effect. 
On a high aspect ratio wing, the center of pressure is further from the 
eg than on a low aspect ratio wing.  This results in high aspect ratio 
planformr. having a longer moment arm and thus, greater rolling moments 
for a yivttn asymmetric lift distribution.  Refer to figure 5.28.  It 
should be noted that aspect ratio, in itself, does not create dihedral 
effect, but that it merely alters the magnitude of the existing dihedral 
effect. 
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DIHEDRAL 
SEMISPAN 

Figure 5.28 

CONTRIBUTION OF ASPECT 
RATIO TO niHEDRAL EFFECT. 

I 

»5.12.3 WING TAPER RATIO: 

Taper ratio, A, is a measure of how fast the wing chord shortens. 
Taper ratio is the ratio of the tip chord to the root chord.  Therefore, 
the lower the taper ratio, the faster the chord shortens.  On highly 
tapered wings, the center of pressure is closer to the aircraft eg than 
on untapered wings.  This results in a shorter moment arm and thus, less 
rolling moment for a given asymmetric lift distribution.  Refer to figure 
5.29.  Taper ratio does not create dihedral effect, but merely alters 
the magnitude of the existing dihedral effect.  Thus it has an "indirect" 
effect on dihedral effect. 

I f 

DIHEDRAL 
SEMISPAN 

Figure 5.29    CONTRIBUTION OF TAPER RATIO   TO DIHEDRAL EFFECT 
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»5.12.4 TIP TANKS 

Tip tanks, pylon tanks and other extern ;1 stores will generally exert 
an indirect influence on Cig. Adding external stores creates an end-plat- 
ing effect on the wing, and this, in turn, alters the effective aspect 
ratio of the wing. The effect of a given external store configuration 
is hard to predict analytically, and it is usually necessary to rely on 
empirical results. To illustrate the effect of various external store 
configurations, data for the F-80 is presented in figure 5.30.  The data 
is for a clean F-80 230 gallon centerline tip tanks, and 165 gallon under- 
slung tanks. This data shows that the centerline tanks increase dihedral 
effect while the underslung tanks reduce stable dihedral effect consider- 
ably. 

UNDERSLUNG TANKS 

NO TANKS 

CENTERLINE TANKS 

Figure 5.30     EFFECT OF TIP TANKS ON Cjlß OF F-80 

»5.12.5    PARTIAL SPAN FLAPS: 

Partial-span  flaps  indirectly exert a detrimental  effect on static 
lateral  stability.     Refer to  figure  5.31. 

AL DUE 10 DIHEDRAL 
EFFECT 

Figure 5.31a    WING LIFT DISTRIBUTION, NO FLAPS 
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AL DUE TO 

DIHEDRAL EFFECT 

Figure 5.31b  WING LIFT DISTRIBUTION, FLAPS EXTENDED 

Partial-span flaps shift the center of lift of the wing inboard, reducing 
the effective moment arm Y.  Therefore, although the values of AL remain 
the same, the rolling moment will decrease.  The higher the effectiveness 
of the flaps in increasing the lift coefficient, the greater will be the 
change in span lift distribution and the more detrimental will be the 
effect of the flaps.  Therefore, the decrease in lateral stability due 
to flap deflection may be large. 

Deflected flaps cause a secondary variation in the effective dihedral 
thdt depends on the planform of the flaps themselves.  If the shape of 
the wing gives a sweepback to the leading edge of the flaps, a slight posi- 
tive dihedral effect results when the flaps are deflected.  If the leading 
edge of the flaps are swept forward, flap deflection causes a slight nega- 
tive dihedral effect.  These effects are produced by the same phenomenon 
that produced a change in Csh with wing sweep.  The effect of flap platform 
on Cj, is generally small. 

p 

#5.12.6 WING - FUSELAGE INTERFERENCE : 

Of the various interference effects between parts of the aircraft, 
probably the most important is the change in angle of attack of the wing 
near the root due to the flow pattern about the fuselage in a sideslip. 
To visualize the change in angle of attack, refer to figure 5.32. 

U 
A If? ^UfZ 

HIGH WING 

. —   LOW WING 

Figure 5.32   INFLUENCE OF WING - FUSELAGE INTERFERENCE ON C 

5 33 



The fuselage induces vertical velocities in & sideslip which, when com- 
bined with the mainstream velocity, alter the local angle of attack of the 
wing. When the wing is located at the top of the fuselage (high-wing), 
then the angle of attack will be increased at the wing root, and a posi- 
tive sideslip will produce a negative rolling moment:  i.e., the dihedral 
effect will be enhanced. Conversely, when the aircraft has a low wing, 
the dihedral effect will be diminished by the fuselage interference. 
Generally, this explains why high-wing airplanes often have little or no 
geometric dihedral, whereas low-wing aircraft may have a great deal of 
geometric dihedral. 

J 

»5.12.7   VERTICAL TAIL: 

When an aircraft sideslips,   the angle of attack of the vertical  tail 
is changed.    This change in angle of attack produces a lift force on the 
vertical  tail.     If the center of pressure of the vertical tail  is above 
the aircraft eg,   this lift force will produce a rolling moment.     Refer 
to figure  5.33. 

Figure 5.33     ROLLING MOMENT CREATED BY VERTICAL TAIL AT   A POSITIVE ANGLE OF SIDESLIPE 

In the situation depicted in figure 5.33,   the negative rolling moment 
was created by a  positive  sideslip angle,   thus,   the vertical  tail  con- 
tributes a stable  increment  to dihedral effect.     This  contribution can 
be quite  large.     In  fact,   it can be  the major contribution to Cig  on air- 
craft with  large vertical   tails  such as  the F-104  and  the  T-38.     This 
effect can be calculated  in the same manner yawing moments were calculated 
in  the directional  case. 

Assuming a  positive  sideslip angle, 

-*F   "    (' v <-v (5.64) 

-ZFLF 
q  S  b 
^w w w 

(5.65) 

■ZFCLFqFSF 

~ q. s b V w  w 
(5.66) 
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Define Vp as, 

S
P
Z
F 

VF = /^- (5.67) 
w w 

Assume that for a jet aircraft, 

qF - % (5.68) 

And equation 5.66 becomesf 

% = - CLp VF = - aFaFVp (5.69) 

Knowing 

ap = (6 - a) (5.14) 

CiF  = - aFVp (ß - a) (5.70) 

- arVr 1 - 42.I (5.71) 
pVertical 
tail 

Equation 5.71 reveals that a vertical tail contributes a stable 
increment to Clo,  whereas a ventral fin [Vp = (+)] would contribute an 
unstable increment to Cj, .  Also, if the lift curve slope of the vertical 
tail is increased, by end plating for example, the stable dihedral effect 
would be greatly increased.  For example, the F-104 has a high horizontal 
stabilizer that acts as an end plate on the vertical tail and this in- 
creases the stable dihedral effect.  In fact, the increase is so large 
that it is necessary to add negative geometric dihedral to the wings and 
a ventral fin to maintain a reasonable value of stable dihedral effect. 

15.13 C^a - LATERAL CONTROL POWER 

Lateral control is achieved by altering the lift distribution so 
that the total lift on the two wings differ, thereby creatina a rolling 
moment.  This may be done simply by destroying a certain amount of lift 
on one wing by means of a spoiler, or by altering the lift on both wings 
by means of ailerons.  This discussion will be limited to the use of 
ailerons as the means of lateral control. 
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Since the purpose of the ailerons is to create a rolling moment, 
a logical measure of aileron power would be the rolling moniert created 
by a given aileron deflection. Before progressing to the actual develop- 
ment of this relationship, it is necessary to make several definitions. 
A positive deflection of either aileron, +Sa, is defined as one which 
produces a positive rolling moment, (right wing down) . Thus, by definition, 
CJU  is positive. Also, in this discussion, total aileron deflection is 
defined as the sum of the two individual aileron deflections;.  Thus*, 

5aTotal 
= ä*Left + 6*Right (5,72) 

The assumption will be made that the wing cp shift due to aileron deflec- 
tion will not alter the value of CJU. The distance from the x-axis to the 
cp of the wing will be labeled Y. When the ailerons are deflected, they 
produce a change in lift on both wings.  This total change in lift, AL, 
produces a rolling moment, £. 

Z =  A L • Y (5.73) 

3CL 

! 

Z = - - • A a  • q  • S  • Y (5.74) 3a       a  ^a   a 
5L 

Where the "a" subscripts refer to "aileron" values, 

£ = aa A aaqaSaY (5.75) 

(5.76) C£ 
= 

a     A   a  S   } 
a        a a 

S b w w 

I 

Where A<t 
a 

=   6 
Total 

Cj = a aTotal S  Y 
a 

S  b w w 
(5.77) 

"w"w 

f 
3C a S Y 

I TT =     C^a 
= b¥- (5-78> a      a   w w 

i: 
Thus, from equation 5.78, it can be seen that lateral control power 

is a function of the aileron airfoil section, the area of the aileron in 
relation to the area of the wing, and the location of the wing cp. 

5.36 

tmmmmmmmmKmmmmmmtmmmimtmmimm, , 



u 
15.14   IRREVERSIBLE CONTROL SYSTEMS 

Now that both Cjtg  and Ci$    have been discussed,   it  is possible  to 
develop a parameter which can Be measured in flight to determine the 
static lateral stability of an aircraft.    As in the directional case,  the 
maneuver that will be  flown will be a steady straight sideslip.    Consider- 
ing this maneuver,  equation 5.6  reduces  to, 

=    c» + C*6> +  CJU   5r  =   0 6r 
(5.79) 

°r 
Cl— 6r (5.80) 

i  $ 

36 a(Fixed) 
36 

Ct 13 (Fixed) (5.81) 

Thus,   since CJU     is known once  the aircraft is built,   36a/3ß,   can 
be taken as a direct measure of the static lateral stability of an air- 
craft.     Again,   the  subscript  "Fixed"  has been  added as  o  reminder  that 
in  this  development  the aileron has not been  free  to   "float." 

Equation 5.81  reveals  that  for  static  lateral  stability,   a plot  of 
9<5a/3ß  should have  a positive  slope.     Refer  to  figure  5.34. 

Oa 

STABLE 

N UNSTABLE 

Figure 5.34   AILERON DEFLECTION VERSUS   SIDESLIP ANGLE 
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15.15   REVERSIBLE CONTROL SYSTEMS u 
It is now necessary to consider an aircraft with a reversible con- 

trol system. On this type aircraft, the ailerons are free to float in 
response to their hinge moments. Using the same approach as in the direc- 
tional case, it is possible to derive an expression that will relate the 
"Aileron Free" static lateral stability to parameters that can be easily 
measured in flight. 

In a steady straight sideslip, 'Lit-  0.  Therefore, it follows that 
£<£-.,      = 0. Now if moments are summed about the aileron hinge pin, Aileron 
Hinge Pin 

the aileron force exerted by the pilot, Fa, acts through a moment arm and 
gearing mechanism, both accounted for by some constant, K, and must balance 
the other aerodynamic rolling moments so that ^A;ieron  

= 0-  Thus, in 
steady straight flight, Hinge Pin 

''"'Aileron 
Hinge Pin 

—  V      —      L • K + H, a       a (5.82) 

- G H (5.83) 

Where 3 is merely 1/K, 

Knowing. 

H  = C, q S  c a   h a a a 
(5.84) 

From equation 5.26 

H= = q, s, c, (chaa • aa + Ch5a ' «a> a a a 
(5.85) 

Thus, equation 5.83 becomes, 

F  = - G q  S  C  (Ch   • a_ + Cn c  • 6j a      ^a  a  a  "ota   a   "6a   
a (5.86) 

From equation 5.27, 

' S 
Ch, 

Ch, &a> a(Float) 
(5.87) 

equation 5.86  becomes, 

G ^a  Sa Ca   ("Ch,. «a/?1^t)   +  Ch 1 a 
**) (5.88) 

=   -   G  q     S     c     CK        i* "a     a     a (Float) 
(5.89) 
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O The difference between where  the  pilot  pushes  the aileron,   <5a,   and 
the amount it  floats,   Öa/Fi     t\t  is the  free position of  the aileron, 
6a(Free)* 

Therefore, 

F    =  -  G q    S    c    CK a    a    a a(Free) (5.90) 

3Fa 36a(Free) —-a- =  -  G q    S     c     Ch. ^^;- 33 ci     a     a    n6a dß (5.91) 

From equation 5.81,   it  can be shown  that, 

36a (Free) 
3ß 

^(Free) (5.92) 

Th'is, 

3F Ch, 
=  G  q     S     C 

a    a    a CJU ^U 
(Frae) 

(5.93) 

This equation shows that the parameter 3Fa/3ü, can be taken as an 
indication of the aileron free static lateral stability of an aircraft. 
This parameter en be readily measured in flight. 

An analysis of equation 5.9 3 reveals that for stable dihedral effect, 
a plot of 3Fa/3ß would have a positive slope.  Pefer to figure 5.35. 

STABLE 

N UNSTABLE 

Figure £.35 Al LERON FORCE VERSUS 
SIDESLIP ANGLE 
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15.16 ROLLING PERFORMANCE 

It has been shown how aileron force and ai i.eron deflection can be 
used as a measure of the stable dihedral effect of an aircraft.  However, 
it is now necessary to consider how aileron force and aileron deflection 
affect the rolling capability of the aircraft.  For example, full aileron 
deflection may produce excellent rolling characteristics on certain air- 
craft, however, because of the large aileron forces required, the pilot 
may not be able to fully deflect the ailerons, thus making the overall 
rolling performance unsatisfactory.  Thus, it is necessary to evaluate 
the rolling performance of the aircraft. 

The rolling qualities of an aircraft can be evaluated by examining 
the parameters Fa, Sa, p and (pb/2V).  Although the importance of the 
first three parameters is readily apparent, the parameter (pb/2V) needs 
some additional explanation.  Physically, (pb/2V) may be described as the 
helix angle that the wing tip of a rolling aircraft describes.  Refer to 
figure 5.36. 

RESULTANT 
PATH OF WING TIP 

V=AIRCRAFT VELOCITY 

HELIX ANGLE 

Figure 5.36 
WING TIP HELIX ANGLE 

It can be  seen  that, 

tan   (Helix  Angle)   = - £b 
2 V 

(5.94) 

Assuming v  small angle, 

Helix Angle = l^r (5.95) 

Figure 5.36 is a vectorial presentation of the wind forces acting 
on the downgoing wing during a roll.  It shows that the angle of attack 
of the downgoing wing is increased due to roll rate.  Thus (pb/2V^ repre- 
sents a damping term. 

With the foregoing background, it is possible to discuss the effect 
of the parameters, Fa, 6a, p, (pb/2V) throughout the flight envelope of 
the aircraft. 
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u From equation 5.90, it can be seen that 

Fa " (f) V 6a(Free) 

6a(Free) " (f) Fa ^2 

(5.96) 

(5.97) 

To derive a functional relationship for (pb/2V), it is necessary 
to start with, 

/N ^ 
d =  C£gß + Cjgß + Cnp p + Cnr  r + Cn&   6a + Cn&   &r (5.6) 

and examine the effects of roll terms only, i.e., assume that the roll 
moment developed is due to the interaction of moments due to 6a and roll 
damping only.  Therefore, equation 5.6 becomes, 

S* Dh 
C* = C£p p + Ci&a&a = Clp   (|^) + c^ 6 

Va (5.98) 

Below Mach or aerolastic effects, C#   = constant, so if it is desired Max 
to evaluate an aircraft's maximum rolling performance, equation 5.98 
becomes, 

i   i i 
% <^» + c I     6a = constant 15.99) 

Constant - Cs     &a 

2V C*n 
(5.100) 

<§> - <« 5a (5.101) 

From equation 5.9 7, 

(§> -   (f) 6a = (f) Fa ^2 
(5.102) 

A function relationship for roll rate, p, can be derived from equa- 
tion 5.100, 

f 
Constant - Co  6a 

P = !•' 
[5.103) 

i 

\   I 
P = (f) V h. (5.104) 
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From equation 5.97 

p = (f) V 6a = (f) Fa £ (5.105) 

To summarize, the rolling performance of an aircraft can be eval- 
uated by examining the parameters, Fa, 6a, p, and (pb/2V).  Functional 
relationships have been developed in order to look at the variance of 
these parameters below Mach or aeroelastic effects.  These functional 
relationships are: 

(5.96) 

(5.97) 

(5.102) 

(5.105) 

These relationships are expressed graphically in figure 5.37 for a 
case in which the pilot desires the maximum roll rate at all airspeeds. 

Fa = 
! 

(f) V    s a 

t                         6     = 
a 

(f) F     V 
a v2 

(Pb)   ^ V2V; (f) 6 a =   (f)   Fa ~2 

P     = (f) V  6a -   (f)   Fa i 

25 

Fo     |0 

F: :K 

Fo.f< ,, 

0 

8<.=r 

So   » 

0 

•S. 
S. = ,(J7) 

P b/jv = K 
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As indicated in equation 5.9 6, the force required to hold a con- 

stant aileron deflection will vary as the square of the airspeed.  The 
force required by the pilot to hold full aileron deflection will increase 
in this manner until the aircraft reaches VMax or until the pilot is 
unable to apply any more force.  In figure 5.37, it is assumed that the 
pilot can supply a maximum of 25 pounds force and that this force is 
reached at 300 knots.  If the speed is increased further, the aileron 
force will remain at this 25 pound maximum value.  The curve of aileron 
deflection versus airspeed shows that the pilot is able to maintain full 
aileron deflection out to 300 knots.  Inspection of equaLion 5.97 shows 
that if aileron force is constant beyond 300 knots, then aileron deflec- 
tion will be proportional to (1/V ). Equation 5.102 shows that (pb/2V) 
will vary in the same manner as aileron deflection.  Inspection of equa- 
tion 5.105 shows that the maximum roll rate available will increase line- 
arly as long as the pilot can maintain maximum aileron deflection; up to 
300 knots in this case.  Beyond this point, the maximum roll rate will 
fall off hyperbolically.  That is, above 300 knots, p is proportional to 
1/V.  It fellows, then, that at high speeds the maximum roll rate may 
become unacceptably low.  One method of combating this problem is to in- 
crease the pilot's mechanical advantage by adding boosted or fully powered 
ailerons. 

15.17 ROLL DAMPING Cap 

Aircraft roll damping comes from the winy and the vertical tail. 
The algebraic sign of Cj  is negative as long as the local angle of attack 
remains below the local stall angle of attack. 

The wing contribution to C;D arises from the change in winy angle 
of attack that results from the rolling velocity.  It has already been 
shown that the donwgoing wing in a rolling maneuver experiences an in- 
crease in angle of attack and that this increased .< tends to develop a 
rolling moment that opposes the original rolling moment.  However, when 
the wing is near the aerodynamic stall, a rolling motion may cause the 
downgoiny wing to exceed the stall angle of attack.  In this case, the 
local lift curve slope may fall to zero or even reverse sign.  The 
algebraic sign of the wing contribution to C,  may then become positive. 
This is what occurs when a wing "autorotates,  as in spinning. 

The vertical tail contribution to Cy.p arises from the fact that when 
the aircraft is rolled, the angle of attack on the vertical taxi is 
changed.  This change in angle of attack develops a lift force.  If the 
vertical tail eg is above or below the aircraft eg, the rolling moment 
developed will oppose the original rolling moment and C. f) due to a con- 
ventional vertical taix or a ventral fin will be negative. 

| 015.18 ROLLING MOMENT DUE TO YAW RATE-Cr 

The contributions to this derivative come from r   sources, the 
| wings and the vertical tail. 

As the aircraft yaws, the velocity of the relative wind is increased 
on the outboard wing and decreased on the inboard winy.  This causes the 
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outboard wing to produce more lift and thus produces a rolling moment. 
A right yaw would produce more lift on the left wing and thus a rolling 
moment to the right.  Thus, the algebraic sign of the wing contribution 
to Ci.r is positive. 

The tail contribution to Cir  arises from the fact that as the air- 
craft is yawed, the angle of attack on the vertical tail is changed. 
Refer to figure 5.38. 

COMPONENT   » — 
DUE TO TAW    V' 

RATF/X        aF 

CHANGE l»aF DUE TOY«! RATE 

Figure 5.38 

I 

The lift force thus produced, Lp, will create a rolling moment if 
the vertical tail eg is above or below the eg.  For a conventional verti- 
cal tail, the sign of Cfr will be positive while for a zentral fin the 
sign will be negative. 

15.19 ROLLING MOMENT DUE TO RUDDER DEFLECTION - C r 

When the rudder is deflected, it creates a lift force on the vertical 
tail.  If the cp of the vertical tail is above or below the aircraft eg 
a rolling moment wil] result.  Refer to figure 5.39. 

5.44 

IflgUgjifrlfcggll^Hg,^^ -..,^-jdÜ 



u 
; I 

: 

Figure 5.39     LIFT FORCE DEVELOPED AS   A RESULT OF 8, 

It can be  seen that  if  the cp of  the vertical   tail  is  above  the eg, 
as with a conventional  vertical  tail,   the sign of d&    will be negative. 
However, with a ventral  fin,   the  sign would be positive. 

It  is  interesting  to note  that  the effects of Cn6     and C^     are  oppo- 
site  in nature.     When  the rudder  is  deflected  to  the  right,   initially, 
a rolling moment to the left is created due to Cr   .     However,   as side- ör 
slip develops due  to the rudder deflection,  dihedral effect,  Cjg,   comes 
into play  and  causes a  resulting rolling moment  to   the  right.     Therefore, 
when a pilot applies right rudder  to pick up a left wing,  he initially 
creates  a rolling moment to  the  left  and  finally,   to  the  right. 
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15.20   ROLLING MOMENT DUE TO LAG EFFECTS IN SIDEWASH -C > 
In the discussion of Cn«, it was pointed out that during an increase 

in (3, the angle of attack of the vertical tail will be less than it will 
finally be in steady state conditions.  If the cp of the vertical tail 
is displaced from the aircraft eg, this change in ap due to lag effects 
will alter the rolling moment created during the 3 build up period.  Be- 
cause of lag effects, Cp will be less during the ß build up period than 
at steady state.  Thus, for a conventional vertical tail, the algebraic 
sign of C,- is positive. 

me 
Again, it should be pointed out that there is widespread disagree- 

nt over the interpretation of data concerning lag effects in sidewash 
and that the foregoing is only one basic approach to a many faceted and 
complex problem. 

B 5.21 HIGH SPEED CONSIDERATIONS OF STATIC LATERAL STABILITY 

C, . - Generally, CJI„ is not greatly affected by Macn number.  How- 
ever, in the transonic region the increase in the lift curve slope of 
the vertical tail increases this contribution to Cj,„ and usually results 
in an overall increase in Cz,:   in the transonic region. 

C,   - Because of the decrease in the lift curve slope of all aero- 
dynamic surfaces in supersonic flight, lateral control power decreases 
ds Mach number increases supersonically. 

Aeroelasticity problems have been qu: ':e predominant in the lateral 
control system, since in flight at very high dynamic pressures the wing 
torsional deflections which occur with aileron usage are considerable and 
cause noticeable changes in aileron effectiveness.  At some high dynamic 
pressures, dependent upon the given wing structural integrity, the twist- 
ing deformation might be gre«t enough to nullify the effect of aileron 
deflection and the aileron effectiveness will be reduced to zero.  Since 
at speeds above the poinc where this phenomenon occurs, rolling moments 
are created which are opposite in direction to the control deflection, 
this speed is termed "aileron reversal speed."  In order to alleviate 
this characteristic the wing must have a high torsional stiffness which 
presents a significant design problem in sweptwing aircraft.  For an air- 
craft design of the B-47 type, it is easy to visualize how aeroelastic 
distortion might result in a considerable reduction in lateral control 
capability at high speeds.  In addition, lateral control effectiveness 
at transonic Mach numbers may be reduced seriously by flow separation 
effects as ä result of shock formation.  However, modern high speed fighter 
designs have been so successful in introducing sufficient rigidity into 
wing structures and employing such design modifications as split ailerons, 
inboard ailerons, spoiler systems, etc., that the resulting high control 
power, coupled with the low C,p of low aspect ratio planforms, has re- 
sulted in the lateral control becoming an accelerating dc'ite rather than 
a rate control.  That is to say, a steady state rolling velocity is nor- 
mally not reached prior to attaining the desired bank angle.  Consequently, 
many high speed aircraft have a type of differential aileron system to 
pru'/ide the pilot with much more control surface during approach and 
Ian.turns and to restrict, his degree of control in other areas of flight. 
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u Spoiler controls are quite effective in reducing aeroelastic dis- 
tortions since the pitching moment changes due to spoilers are generally 
smaller than those for a flap type control surface. However, a problem 
associated with spoilers is their tendency to reverse the roll direction 
for small stick inputs during transonic flight.  This occurs as a result 
of re-energizing the boundary layer by a vortex generator effect for very 
small deflections of the spoiler, which can reduce the magnitude of the 
shock induced separation and actually increase the lift on the wing.  This 
difficulty can be eliminated by proper design techniques. 

< i 

Cüp - Since the development of "damping" requires the development 
of lift on either the wing or the tail, it is dependent on the value of 
the lift curve slope.  Thus, as the lift curve slope of both the wing 
and tail decrease supersonically, C£p will decrease.  Also, since most 
supersonic designs make use of low aspect ratio surfaces, Cjtp will tend 
to be less for these designs. 

Cjtr and Cj.,5  - Both of these derivatives depend on the development 
of lift and will decrease as the lift curve slope decreases supersonically, 

cr< Data on the supersonic variation of this derivative is sketchy, 

but it probably will not change significantly with Mach number. 
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CHAPTER 

DYNAMICS m 
6.1   INTRODUCTION 

REVISED DECEMBER 1973 

The study of dynamics is concerned with the time history of the 
motion of some physical system.  An aircraft is such a system, and its 
equations of motion can be derived from theory.  In their basic form 
these equations comprise a set of six simultaneous, nonlinear differential 
equations with ill-defined forcing functions such as Fx = f (Aero, Gravity, 
Thrust).  Recall from Chapter 1 that two methods were used to get these 
equations into a set of workable simultaneous linear differential equa- 
tions : 

1. Small perturbations were assumed such that products of perturbations 
were negligible. 

2. Forcinq functions were approximated by the linear part of a Taylor 
Series expansion for the forcing function. 

This set of linear differential equations can then be operated on by 
Laplace transforms so that simple algebraic solutions followed by inverse 
transformations back to the time domain result in equations which describe 
the aircraft's motion as a function of time. 

In the good old days when aircraft were simple, all aircraft exhibited 
the five characteristic dynamic modes of motion, two longitudinal and 
three lateral-directional modes.  The two longitudinal modes are the short 
period and the phuyoid; the three lateral-directional modes are the Dutch 
roll, the spiral, and the roll mode.  Theoretical solutions for these 
modes of motion can be obtained by the methods listed above. 
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As aircraft control systems have increased in complexity, it is con- 
ceivable that one or more of these modes may not exist as a dominant longi- 
tudinal or lateral-directional mode.  It can be expected, however, that 
frequently the higher order effects of complex control systems will be quick 
to die out and will leave the basic five dynamic modes of motion. When 
this is not the case, the development of special procedures may be required 
to meaningfully describe an aircraft's dynamic motion. For the purposes 
of this chapter, aircraft will be assumed to possess these five basic modes 
of motion. 

During this study of aircraft dynamics, the solutions to both first 
order and second order systems will be of interest, and several important 
descriptive parameters will be used to define either a first order system 
or a second order system. 

The quantification of handling qualities, that is, specify how the 
magnitude of some of these descriptive parameters can be used to indicate 
how well an aircraft can be flown, has been an extensive investigation 
which is by no means complete.  Flight test, simulators, variable stability 
aircraft, engineering know-how, and pilot opinion surveys have all played 
major roles in this investigation.  The military specification on aircraft 
handling qualities, MIL-F-8785B, is the culmination of this effort and has 
the intent of insuring that an aircraft will handle well if compliance 
has been achieved.  This chapter will not attempt to evaluate how satis- 
factory MIL-F-8785B is for this purpose, but suffice it to say that even 
this comprehensive document has some room for improvement. 

16.2 DYNAMIC STABILITY 

When it is necessary to investigate the dynamic stability character- 
istics of a physical system, the time history of its motion must be known. 
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As indicated earlier, this time history can be obtained theoretically 
and with good accuracy in many cases, depending on the depth of the 
theoretical analysis. 

A particular mode of an aircraft's motion is defined to be "dynami- 
cally stable" if the parameters of interest tend toward finite values 
as time increases without limit.  Some examples of dynamically stable 
time histories and some terms used to describe them are shown in figures 
6.1 and 6.2 

Figure 6.1   Exponentially Decreasing 

(      K 

Figure 6.2   Damped Sinusoidal Oscillation 

A mode of motion is defined to be "dynamically unstable" if the 
parameters of interest increase without limit as time increases without 
limit.  Some examples of dynamic instability are shown in figures 6.3 
and 6.4. 
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Figure 6.3  Exponentially Increasing 

Figure 6.4   Divergent Sinusoidal Oscillation 

A mode of motion is said to have "neutral dynamic stability" if the 
parameters of interest exhibit an undamped sinusoidal oscillation as time 
increases without limit.  A sketch of such motion is shown in figure 6.5. 

Figure 6.5   Undamped Oscillation 
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• 6.2.1    EXAMPLE PROBLEM 

I 

To emphasize the difference between static stability and dynamic 
stability the simple physical system shown in figure 6.6 consisting of 
a mass and a spring will be examined for both static stability and dy- 
namic stability. 

Zero Friction 

Figure 6.6 

• 6.2.1.1   STATIC STABILITY ANALYSIS 

I 

If the mass were displaced from 5ts equilibrium position, then a 
spring force would exist to return M toward its initial position.  Thus, 
this physical system has positive static stability. 

• 6.2.1.2   DYNAMIC STABILITY ANALYSIS 

Tne motion of the system as a function of time must be known to 
describe its dynamic stability.  Two methods could be used to find the 
time history of the motion of the block: 

1. A test could be devised to perturb the block from its equilibrium 
position and the resulting motion would be observed for analysis. 

2, If a good enough mathematical model of the system could be obtained, 
the equation of motion could be analyzed to describe its dynamic 
stability. 

Using the theoretical approach, the equation of motion for this 
phys'.cal system is 

x(t) ci cos {
VM 

t + 

where  C^  and  :  are constants dependent on the initial velocity and 
displacement of the mass fror, its equilibrium condition.  Dxam.inat i on of 
its equation of motion shov. Ji't this system has "neutral dynamic sta- 
bilit/." 
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• 6.2.2 EXAMPLE PROBLEM 

A similar analysis must be accomplished to analyze the aircraft 
shown in figure C,7   for longitudinal static stability and dynamic sta- 
bility.  This aircraft is operating at a constant  aQ in 1-g flight. 

3 

Reference Line 

(Specified That C.  <0) 

Figure 6.7 

• 6.2.2.1   STATIC STABILITY ANALYSIS 

If the aircraft were displaced from its equilibrium flight condi- 
tions by increasing the angle of attack to a = a. + Aa, then the change 
in pitching moment due to the increase in angle of attack would be nose 
down because 
stability. 

CM < 0.  Tnus the aircraft has positive static longitudinal 

• 6.2.2.2   DYNAMIC STABILITY ANALYSIS 

The motion of the aircrart as a function of time must be known to 
describe its dynamic stability. Two methods could be used to find the 
time history of the motion of the aircraft: 

1. A flight test could be flown in which the aircraft is perturbed 
from its equilibrium condition and the resulting motion is recorded 
and observed. 

2. Solutions to the aircraft equations of motion could be obtained and 
analyzed. 

A sophisticated solution to the aircraft equations of motion with 
valid aerodynamic inputs can result in good theoretically obtained time 
histories.  However, the fact remains that the only way to discover the 
aircraft's actual dynamic motion is to flight test and record its motion 
for analysis. 

■ 6.3 EXAMPLES OF FIRST AND SECOND ORDER DYNAMIC SYSTEMS 

• 6.3.1    SECOND ORDER SYSTEM WITH POSITIVE DAMPING 

Tne problem of finding the motion of the block shown in figure 6.8 
encompasses many of the methods and ideas that will be used in finding 
the time history of an aircraft's motion from its equations of motion. 
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Smooth 

Figure 6.8   Second Order System 

The differential equation of motion for this physical system is 

0=Mx + Dx + Kx (6.1) 

After Laplace transforming equation 6.1 and solving for X(S), the dis- 
placement of the block in the Laplace domain, the result is 

I I 

&; 

\ I 

X(S) = 

D 
Sxo + Xo + M Xo 

s21 § s; j M    M 

(6.2) 

The denominator of the S domain equation which gives the response of a 
system will be referred to as its "characteristic equation," and the 
symbol MS) will be used to indicate the -haracteristic equation. 

The A(S) of a second order system will frequently be written in a 
standard notation 

2 2 0 = S  + 2 ;u>  S + u n     n 
(6.3) 

where 

u = natural frequency 

z,     =  damping ratio 

The two terms natural frequency and damping ratio are frequently used to 
characterize the motion of second order systems. 

Also, knowing the location of the roots of A(S) on the complex plane 
makes -t possible to immediately specify and sketch the dynamic motion 
associated with a system.  Continuing to discuss the problem shown in 
figure 6„8 and making an identity between equations 6.2 and 6.3 results 
in 

iii — n 
(6.4) 
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c = 
2M VM 

(6.5) 

The roots of  A{S)  can be found from equation 6.3 to be 

'1,2 
o  + i a) _, 
n —  d 

(6.6) 

Where 

0) . = w d »V 
Note that if (-1 < z, < 1) , then trie roots of A(S) comprise a complex 
conjugate pair, and for positive t, would result in root locations as 
shown in figure 6.9. 

i i    Imaginary 

-►   Real 

Figure E 9   Complex Plane 

The equation describing the time history of the block's motion can 
be written by knowing the roots of  MS)  given in equation 6.6. 

x(t) = C, e ~ "u'n  sin (w,t + t) 
1 a (6.7) 

Where 

C, and $ are constants determined by boundary conditions. 

Knowing either the  A(S)  root location shown in figure 6.9 or equation 
6.7 makes it possible to sketch or describe the time history of the motion 
of the block.  The motion of the block shown in figure 6.8 as a function 
of time is a sinusoidal oscillation within an exponentially decaying enve- 
lope and is dynamically stable. 

• 6.3.2 SECOND ORDER SYSTEM WITH NEGATIVE DAMPING 

A similar procedure to that used in Section 6.3.1 can be used to 
find the motion of the block shown in figure 6.10. 
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f(t)= -D; 

Figure 6.10 

The differential equation of motion  for  this block  is 

0  = Mx-Dx+Kx 

and the equation  for    X(S)     is 

X(S) 
Sx  + X  - rr X 

o    o   M  o 

s2 - % S I  g M     M 

(6.8) 

(6.9) 

By inspection, for this system 

-D 

2MV^ 

(6.10) 

(6.11) 

From equation 6.11 note that the damping ratio has a negative value.  The 
equation giving the time response of this system is 

,.,   „   (pos. value)t  . ,   . . ,, 
x(t) = C, e r sin(üjj t + $) (6.12) 

where 

•c,u     = pos. value 

For the range (-1 < c,   < 0), the roots of  A(F)  for this system 
could again be plotted on the complex plane from equation 6.6 as shown 
in figure 6.11. 
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I L    Imaginary 

HP*.   Real 

"^ 

Figure 6.11   Complex Plane 

The motion of this system can now be sketched or described.  The 
motion of this system is a sinusoidal oscillation within an exponentially 
diverging envelope and is dynamically unstable. 

• 6.3.3 UNSTABLE FIRST ORDER SYSTEM 

Assume that some physical system has been mathematically modeled 
and its equation of motion in the S domain is 

MS) = 0.5 
0.4S - 0.7 

(6.13) 

For this system the characteristic equation is 

MS) = S - 1.75 

And its root is shown plotted on the complex plane in figure 6.12. 

li   I magmary 

S=1.75 

-►   Real 

Figure 6.12   Complex Plane 

The equation of motion in the time domain becomes 

1 75 - 
<(t) - 1.25 e1''3 " (6.14) 

Note that it is possible to sketch or describe the motion for this 
system by knowing the location of the root of MS) or its equation of 
motion. 
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W For an unstable first order system such as this, one parameter that 
can be used to characterize its motion is T2, defined as the time to 
double amplitude.  Without proof, 

i  ) 

r 

T      =    -693 
l2  "     a 

For  a   first order  system described by 

Z = C± eat 

(6.15) 

(6.16) 

Note that for a stable first order system a similar parameter has 
been defined:  T, ,, is the time to half amplitude, 

-0.693 
1/2 (6.17) 

Where the term a must have a negative value for a stable system. 

• 6.3.4 ADDITIONAL TERMS USED IN DYNAMICS 

The time constant,  x, is defined for a stable first order system 
as the time when the exponent of e  in the system equation is -1. 
From equation 6.16, 

-1 
a (6.18) 

The time constant can be thought of as the time required for the parameter 

of interest to accomplish (1 - —) th of its total value change.  Note that 

1 
e 2.718 

f 

so that 

(1 1.   2 
e> * T 

With this in mind, it is easy to visualize an approximate value for a 
system time constant from a time history.  Thus, the magnitude of the 
time constant gives a measure of how quickly the dynamic motion of a first 
order system occurs. 

The following list contains some terms commonly used to describe 
second order systems based on damping ratio values: 

Term 

Overdamped 

Critically damped 

Underdamped 

Undamped 

Negatively damped 

Damping Ratio Value 

1 < t. 

1 = rp 

0 < c   < 1 

0 = r, 

r, < 0 
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Typical responses can be visualized after the value of 
established. 

has been 

IM THE COMPLEX PLANE 

It is possible to describe the type response a system will have by 
knowing the location of the roots of its characteristic equation on the 
complex plane.  A first order response will be associated with each real 
root, and a complex conjugate pair will have a second order response tha'; 
is either stable, neutrally stable, or unstable.  A complicated system 
such as an aircraft might have a characteristic equation with severed 
roots, and the total response of such a system will be the sum of the 
responses associated with each root.  A summary of root location and 
associated response is presented in the following list and bketch below. 

Case I 

Root Location 

On the negative Rea] axis 
(1st Order Response) 

Associated Response 

Dynamically stable with 
exponential decay 

Case II     In the left half plane off 
the negative Real axis 
(2nd Order Response) 

Dynamically stable with 
sinusoidal oscillation in 
exponentially decaying 
envelope 

Case III    On the Imaginary axis 
(2nd Order Response) 

Neutral dynamic stability 

Case IV     In the right half plane 
off the positive Real axis 
(2nd Order Response) 

Dynamically unstable with 
sinusoidal oscillation in 
exponentially increasing 
envelope 

Case V 

S 

(Case I) 

On the positive Real axis 
(1st Order Response) 

Dynamically unstable with 
exponential increase 

Imaginary 

(Case V) 

Note that any roots appearing in the upper half plane 
must have reflected roots in lower half pla-.e. 
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U 
IS.5 HANDLING QUALITIES 

Because the "goodness" with which an aircraft flies is often stated 
as a general appraisal . . . "My F-69 is the best damn fighter ever built, 
and it can outfly and outshoot any other airplane."  "It flies good." 
"That was really hairy." . . . you probably car. understand the difficulty 
of measuring how well an aircraft handles.  The basic question of what 
parameters to measure and how those parameters relate to qood handling 
qualities has been a difficult one, and the total answer is not yet avail- 
able.  The current best answers for military aircraft are found in MIL-F- 
8785B, the specification for the "Flying Qualities of Piloted Airplanes." 

When an aircraft is designed for performance, the design team has 
definite goals to work toward ... a particular takeoff distance, a 
minimum time to climb, or a specified combat radius.  If an aircraft is 
also to be designed to handle well, it is necessary to have some definite 
handling quality goals to work toward.  Success in attaining these goals 
can be measured by flight tests for handling qualities when some rather 
firm standards are available against v/hich to measure and from which to 
recommend. 

To make it possible to specify acceptable handling qualities it was 
necessary to evolve some flight test measurable parameters.  Flight testing 
results in data which yield values for the various handling quality param- 
eters, and the military specification gives a range of values that should 
insure good handling qualities.  Because MIL-F-8785 is not the ultimate 
answer, the role of the test pilot in making accurate qualitative observa- 
tions and reports in addition to generating the quantitative data is of 
great importance in handling qualities testing. 
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One method that has been extensively used in handling qualities 
quantification is the use of pilot opinion surveys and variable stability 
aircraft.  For example, a best range of values for the short period 
damping ratio and natural frequency could be identified by flying a par- 
ticular aircraft type to accomplish a specific task while allowing the 
x,     and wn to vary.  From the opinions of a large numoer of pilots, a 
valid best range of values for 
shown in figure 6,13. 

and  wn could thus be obtained, as 

BEST TESTED BOUNDARY 

■ UNSATISFACTORY BOUNDARY 

RESPONSE ERRATIC OR STEP-LIKE. 
rORCES TOO NEAVT. MOT 
MANJUVERABLE. STICK MOTION 
TOO GREAT. 

NOT VERY MANEUVERA8LE. 
STIFF AND SLUGGISH. 
FORCE TOO HEAVY. GOOD 
FLYING BUT MOT A FIGHTER 

BOMBER OR HEAVY FIGHTER. 
NOT UANEUVERABLE. 
FORCES HEAVY AHD STICK 
MOTKN TOO GREAT. TRIMS 
WELL 

.3 .4 .5 ,4 .7      .(     .9    1.0 

SHORT PERIOO DAMPING RA'HO {, 

Figure 6.13 
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• 6.5.1    FREE RESPONSE 

The and "n being discussed here are the aircraft free response 
characteristics which describe aircraft motion without pilot inputs. With 
the pilot in the loop, the free response of the aircraft is hidden as 
pilot inputs are continually made.  The closed loop block diagram shown 
in figure 6.14 should be used to understand aircraft closed loop and open 
loop response. 

DESIRED CORRECTION ■ 

DESIRED a 
&. PILOT 

INPUT 

J* ^ 
CONTROL 
SYSTEM t AIRCRAFT 

F 
DYNAMICS 

i 1 
OBSERVED   d' 5 

1 
SAS 

K" 
Figure 6.14 

The free response of an aircraft does relate directly to how well the 
aircraft can be flown with a pilot in the loop, and many of the pertinent 
handling qualities parameters are for the open loop aircraft. 

It must be kept in mind that the real test of an aircraft's handling 
qualities is how well it can be flown closed loop to accomplish a par- 
ticular mission.  Closed loop handling quality evaluations such as air-to- 
air tracking in a simulated air combat maneuvering mission play an impor- 
tant part of determining how well an aircraft handles. 

• 6.5.2 PILOT RATING SCALES1 

The Calspan Corporation (formerly Cornell Aeronautical Laboratory) 
has made notable contributions to the use and understanding of pilot 
rating scales and pilot opinion surveys.  Except for minor variations be- 
tween pilots, which sometimes prevent a sharp delineation between accept- 
able and unacceptable flight characteristics, there is very definite con- 
sistency and reliability in pilot opinion.  In addition, the opinions of 
well qualified test pilots can be exploited because of their engineering 
knowledge and experience in many different aircraft types. 

The stability and control characteristics of airplanes are generally 
established by wind tunnel measurement and by technical analysis as part 
of the airplane design process.  The handling qualities of a particular 
airplane are related to the stability and control characteristics.  The 
relationship is a complex one which involves the combination of the air- 
plane and its human pilot in the accomplishment of the intended mission. 
It is important that the effects of specific stability and control char- 
acteristics be evaluated in terms of their ultimate effects on the suita- 
bility of the pilot-vehicle combination for the mission.  On the basis of 

^A Revised Pilot Rating Scale for the Evaluation of Handling Qualities, CAL Report No. 153, Robert P. Harper 

and George E. Cooper. 
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thir information, intelligent decisions can be made during the airplane 
design phase which will lead to the desired handling qualities of the 
final product. 

There are three general ways in which the relationship between sta- 
bility and control parameters and the degree of suitability of the air- 
plane for the mission may be examined: 

1. Theoretical   analysis 

2. Experimental   performance   measurement 

3. Pilot   evaluation 

Each of the three approaches has an important rol^ in the complete 
evaluation.  One might ask, however, why is the pilot assessment necessary? 
At present a mathematical representation of the human operator best lends 
itself to analysis of specific simple tasks.  Since the intended use is 
made up of several tasks and several modes of pilot-vehicle behavior, 
difficulty is experienced first in accurately describing all modes analyti- 
cally, and second In integrating the quality of the subordinate parts into 
a measure of overall quality for the intended use.  In spite of these 
difficulties, theoretical analysis is fundamental to understanding pilot- 
vehicle difficulties, and pilot evaluation without it remains a purely 

.|     experimental process. 

The attainment of satisfactory performance in fulfillment of a 
designated mission is, of course, a fundamental reason for our concern 
with handling qualities.  Why cannot the experimental measurement of per- 
formance replace pilot evaluation?  Uny not measure pilot-vehicle per- 
formance in the intended use - isn't: good performance consonant with good 
quality?  A significant difficulty arises here in that the performance 
measurement tasks may not demand of the pilot all that the real mission 
demands.  The pilot is an adaptive controller whose qoal (when so in- 
structed) is to achieve good performance.  In a specific task, he is 
capable of attaining essentially the saim? performance for a wide range 
of vehicle characteristics, at the expense of significant reductions in 
his capacity to assume other duties and planning operations.  Significant 
differences in task performance may not be measured where very real dif- 
ferences in mission suitability do exist. 

The questions which arise: in using performance measurements may be 
:     summarized as follows:  (i) For what maneuvers and tasks should measure- 

ments be made to define the mission suitability?  (2) How do we integrate 
and weigh the performance in several tasks to give an overall measure of 
quality if measurable differences do exist?  (3) Is it necessary to measure 
or evaluate pilot workload and attention factors for performance to be 
meaningful?  If so, how are these factors weighed with those in (2)? 
(4) What disturbances and distractions are necessary to provide a realis- 
tic workload for the pilot during the ncasurement of his performance in 
the specified task? 

Pilot evaluation still remains the only method of assessing the 
interactions between [ lot performance and workload in determining suit- 
ability of the airplane for tan:- mission.  Tt is required in order to pro- 
vide a basic measure of quality and to serve as a standard aqainst which 
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pilot-airplane system theory may be developed, against which performance 
measurements may be correlated and with which siqnificant airplane design 
parameters may be determined and correlated. 

The technical content of the pilot evaluation generally falls into 
two categories:  one, the identification of characteristics which inter- 
fere with the intended use, and two, the determination of the extent to 
which these characteristics affect mission accomplishment.  The latter 
judgment may be formalized as a pilot rating. 

In 1956, the newly formed Society of Experimental Test Pilots 
accepted responsibility for one program session at the annual meeting of 
the Institute of Aeronautical Sciences.  For this purpose, a paper, en- 
titled "Understanding and Interpreting Pilot Opinion" was prepared, which 
represented an attempt to create better understanding and utilization of 
pilot opinion and evaluation in the field of aeronautical research and 
development.  The widespread use of rating systems has indicated a general 
need for some uniform method of assessing aircraft handling qualities 
through pilot opinion. 

Several rating scales were independently developed during the early- 
use of variable stability aircraft.  These vehicles, as well as the use 
of ground simulation, made possible systematic studies of aircraft handling 
qualities through pilot evaluation and rating of the effects of specific 
stability and control parameters. 

Figure 6.15 shows the 10-point Harper-Cooper Rating Scale that is 
widely used today. 

. 
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ATTENTION 
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BEING 

ACCEPTABLE 

MAT  HAVE 
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WARRANT   IMPROVEMENT. 
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MISSION. 

Pi LOT   COMPENSATION. 

IE   REQUIRED  TO 

ICn;E*f   ACCEPTABLE 

PERIQRMANCE.    IS 

F-EiSi'tlf. 

0 

UNACCEP!A9if 
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REQUIRE  MANDATORY 

'MPROVEMENI. 

INADEQUATE  PEWMANCE 

FOR MiSSiON EvfN *:Tn 

MAIiMUM  FEASIBLE 

PiLO'   COMffNSA'I ON. 
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MEETS  ALL   REQUIREMENTS 

AND EXPECTATIONS.   GOOD 

ENOUGH  WITHOUT 

IMPROVEMENT 

CLEARLY   ADEQUATE   »OR 

HI SS'ON. 
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RElKIANM  ACCEPTABLE 

DE> It:FNCIES  WHICH 
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'OR  MISSION  WITH 

FEASIBLE PILOT 
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SOML"  MINOR  BUI   ANNOYING  DEFICIENCIES.      'MPROvFMEN'   IS  REQUESTED. 
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MODERATE!*  08IEC rtONABLf   0t f IC \ ENC i i S.      iMPROvEM'NT   IS  NFEDED. 

REASONABLE   PERFORMANCE   »EQUIRES  C0*r IDEft*Bt£  PILOT   COMPENSATION1. 

VERY  OBJFCTIONABLE  DEFICIENCIES.     MAJJR   IMPROVEMENTS  AfiE   NEEDE['. 

REQUIRES  BEST   AVAILABLE  PILO'   COMPENSATION   TO  ACHIEVE 

j    *rCEPTA8LE   PERFORMANCE. 

UNCONTROLLABLE 

CONTROL   »III   BE   LOST   DUR'Nfj  SOME   PORTION  0'   MISSION. 

MAJOR  DEFICIENCIES  WHICH RfQljiRE  MANDATORY   IMPROVEMENT   FOR 

ACCEPTANCE.      C0NTK' .LABlE.     PERFORMANCE   INADLQUATE   FOR 

MISSION,   OR   PILOT   COMPENSATION  REQUIRED  10»   MINIMUM 

ACCEPTABLE   PERFORMANCE   iN  MISSION   'S   TOO  H:GH, 

CONTROLLABLE   WITH  OIFMCLHTY.     REQUiRf:-   SU«ST AJil I Al   »MOi   SK 1LI 

AND  ATTfNMON   TO  RETAIN CON;R0L   AND CONTINUE   MiSS'QH. 

MARGINAL.-  rnt,i «OLL ABi F    IN  M'SS  ON       RE^U'lUS  Mii'MUM  Avi < L ABLE 

PILO!   S»'LI   AMD  -""TEmtiON  TO RETAIN   C0NT«O'.. 

ICONT-CILABLE    IN t 

Figure 6.15   Ten-Point Harper-Cooper Pilot Rating Scale 
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A flow chart is shown in figure 6.16 which traces the series of 
dichotomous decisions which the pilot maker in arriving at the final 
rating. As a rule, the first decision may he fairly obvious.  l£. the 
configuration controllable or uncontrollable.'' Subsequent decisions become 
less obvious as the final rating is approached. 

SERIES  OF   DECISION   LEADING   TO  *  RAT INC: 

OR ICOKTPIOLLABLE UNCONTROLLABLE 

umcc 

3. S*TISF»CT0RY (UN;'TISFA 

 1 I r 1        r 
«I «2 13 >4 15 16 U7 ';< U9 10 

Figure 6.16  Sequential Pilot Rating Decisions 

If the airplane is uncontrollable in the mission, it is rated 10. 
If it is  controllable, the second decision examines whether it is accept- 
able or unacceptable.  If unacceptable, the ratings U7, U8, and U9 are 
to be considered (rating 10 has been excluded by the "controllable" answer 
to the first decision),  If it is acceptable, the third decision mupt 
examine whether it is satisfactory or unsatisfactory.  If unsatisfactory, 
the ratings A4, A5 and A6 are to be considered; if satisfactory, the 
ratings Al, A2, and A3 are to be considered. 

The basic categories must be described in carefully selected terms 
to clarify and standardize the N-iundaries desired.  Following a careful 
review of dictionary definitions and consideration of the pilot's require- 
ment for clear, concise descriptions, tha category definitions shown in 
figure 6.17 were selected.  When considered in conjunction with the struc- 
tural outline presented in figure 6.16 a clearer picture of the series of 
decisions which the pilot must make is obtained. 

CA7:GCRV 
                     ] 

DEFINIT10* 

CONTROLLABLE 

UNC0NTR0LLA61E 

ACCEPTABLE 

UNACCEPTABLE 

SATISFACTORY 

UNSATISF1CT0RV 

CAPABLE OF BEUo «WTMUI;, OR MANAGED IK I.0NTEXT 
OF MISSION, WITH AVAILABLE PILOT ATTENTION. 

CONTROL »ILL BE LOST DURING SOUS PORTON CF MISSION. 

MA» HAVE  DEFICIENCIES WHICH «ARRANT   1 "»Rfl.t:'EMT  BUT 
•DEQUATE  FOR MISSION.       PILOT COMPENSATION,   IF  «rjUIREO 
TO ACHIEVE ACCEPTABLE PFRFOKMANCE,   IS FEAS'BU, 

DEFICIENCIES WHICH REQUIRE MANDATORY  IMPROVEMENT. 
'NADEOUATE PERFORMANCE  FOR MISSIOH.   EVEN KITH MKItUri        | 
FEASIBLE PILOT COMPENSATION 
   1 

MEETS ALL  RETIREMENTS AND EXPECTATIONS;    GOOD EN01K.H       j 
WITHOUT   IMPROVEMENT.    CLEARLY ADEQUATE FOR MISSION. 

RELUCTANTLY AC'PTABLF.      DEFICIENCIES WHICH WARR1»T 
IMPSOVEhENT.    PERCRMAhCE ADEQUATE I0P MISSION »'Tl.            1 
FEASIBLE  PILOT COMPENSATION. 

Figure 6.17   Major Category Defii:. ns 
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• 6.5.2.1   MAJOR CATEGORY DFFINITIONS 

Let us examine what is meant by controllable.  To control is to 
exercise direction of, or to command.  Control also means v.o regulate. 
The determination as to whether the airplane is controllable or not must 
be made within the framework of the defined mission or intended use.  An 
example of the considerations of this decision would be the evaluation 
of fighter handling qualities during which the evaluation pilot encounters 
a configuration over which he cm maintain control only with his complete 
and undivided attention.  The configuration is "controllable" in the sense 
that the pilot can maintain control by restricting the tasks and maneuvers 
which he is called upon to perform, and by giving the configuration his 
undivided attention.  However, for him to answer "Yes, it is controllable 
in the mission," he must be able to retain control in the mission tasks 
witn whatever effort and attention are available from the totality of 
his mission duties;. 

The dictionary shows acceptable to mean that a thing offered is 
received with a consenting mind; unacceptable means +-hat it is refused 
or rejected.  Acceptable means that tie mission can be accomplished; 
it means that the evaluation pilot would agree to buy it for the mission: 
for him to fly, for his son to fly, or for either to ride in as a passen- 
ger.  "Acceptable" in the rating scale doesn't say how good it is for the 
mission, but it does say it is good enough.  With these characteristics, 
the mission can be accomplished.  It may be accomplished with considerable 
expenditure of effort and concentration on the part of the pilot, but the 
levels of effort and concentration required in order to achieve this accept- 
able performance are feasible in the intended use.  By the same token, un- 
acceptable does not necessarily mean that the mission cannot be accom- 
plished; it does mean that the effort, concentration, and workload neces- 
sary t-n accomplish the mission are of such a magnitude that the evaluation 
pilot rejects that airplane for the mission. 

;- 

Consider now a definition of satisfactory.  The dictionary defines 
this as adequate for the purpose.  A pilot's definition of satisfactory 
might be that it isn't necessarily perfect or even good, but it is good 
enough that he wouldn't ask that it be fixed.  It meets a standard, it 
has sufficient goodness; it can meet all requirements of a mission. 
Acceptable but unsatisfactory implies that it is reluctantly acceptable 
even thouch objectionable characteristics should be improved, that it is 
deficient in a limited sense, or that there is insufficient goodness. 
Thus, the quality is either: 

a.  Completely acceptable (satisfactory) and therefore of the best 
category, or 

! k 

b. Reluctantly acceptable (unsatisfactory) and of the next best 
category, or 

c. Unacceptable.  Not suitable for the mission, but still controllable, 
or 

i I 
Unacceptable for the mission and uncontrollable. 
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• 6.5.2.2   EXPERIMENTAL USE OF RATING OF HANDLING QUALITIES 

The evaluation of handling qualities has a similarity to other 
scientific experiments in that the output data are only as good as the 
care taken in the design and execution of the experiment itself and in 
the analysis and reporting of the results.  There are two basic categories 
of output data in a handling qualities evaluation:  the pilot comment 
data and the pilot ratings.  Both items are important output data.  An 
experiment which ignores one of the two outputs is discarding a substan- 
tial part of the output information. 

As one might expect, the output data which are -ost often neglected 
are the pilot comments, primarily because they are qaite difficult to 
deal with due to their qualitative form and, perhaps, their bulk.  Ratings, 
however, without the attendant pilot objections, are only part of the 
story.  Only if the deficient areas can be identified, can one expect to * 
devise improvements to eliminate or attenuate the shortcomings.  The 
pilot comments are the means by which the identification can be made. 

There are several factors which have a strong influence on the 
quality of pilot evaluation data and a brief discussion of them follows. 

• 6.5.2.3   MISSIONDEFINITION 

Explicit definition of the mission is probably the most important 
contributor to the objectivity of the pilot evaluation data.  The mission 
is defined here as a use to which the pilot-airplane combination is to 
be put.  The mission must be very carefully examined, and a clear defini- 
tion and understanding must be reached between the engineer and the evalua-       »■■■>' 
tion pilot as to their interpretation of this mission.  This definition 
must include: 

a. what the pilot is required to accomplish with the airplane, and 

b. the conditions or circumstances under which he must perform the 
mission. 

For example, the conditions or circumstances might include instru- 
ment or visual flight or both, type of displays in the cockpit, input 
information to assist the pilot in the accomplishment of the mission, 
etc.  The environment in which the mission is to be accomplished must i 
also be defined and considered in the evaluation, and could include, 
for example, the presence or absence of turbulence, day versus night, 
the frequency with which the mission has to be repeated, the variability 
in the preparedness of the pilot for the mission, and his level of 
proficiency. ' 

; i 

• 6.5.2.4   SIMULATION SITUATION 

The pilot evaluation is seldom conducted under the circumstances of 
the r«.al mission.  The evaluation almost inherently involves simulation 
to some degree because of the absence of the real situation.  As an ex- 
ample, the evaluation of a day fighter is seldom carried out under the 
circumstances of a combat mission in which the pilot is not only shooting 
at real targets, but also beinq shot back at by real guns.  Therefore, 
after the mission has been defined, the relationship of the simulation 
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u 
situation to the real mission must be explicitly stated for both the 
engineer and the evaluation pilot so that' each may clearly understand 
the limitations of the simulation situation. 

The pilot and engineer must both know what is left out o* the eval- 
uation program, and also what is in that should not be in.  The fact that 
the anxiety and tension of the real situation are missimj. and that the 
airplane is flying in the clear blue of calm daylight air, instead of in 
the icing, cloudy, turbulent, dark situation of the real mission, will 
affect results.  Regardless of the evaluation tasks selected, the pilot 
must use his knowledge and experience to provide a rating which includes 
all considerations which are pertinent to the mission, whether provided 
in the tasks or not. 

u 

%   0 

• 6.5.2.5 PILOT COMMENT DATA 

One of the fallacies resulting from the use of a rating scale which 
is considered for universal handling qualities application is the assumption 
that the numerical pilot rating can represent the entire qualitative assess- 
ment.  Extreme care must be taken against this oversimplification because 
it does not constitute the full data gathering process. 

The pilot objections to the handling qualities are important, par- 
ticularly co the airplane designer who is responsible for the improvement 
of the handling qualities.  But, even more important, the pilot comment 
data are essential to the engineer who is attempting to understand and 
use the pilot rating data.  If ratings are the only output data, one has 
no real way of assessing whether the objectives of the experiment were 
actually realized.  Pilot comments supply a means of assessing whether 
the pilot objections (which lead to his summary rating) were related to 
the mission or resulted from some extraneous uncontrolled factor in the 
execution of the experiment, or from individual pilots focusing on and 
weighing differently various aspects of the mission.  In order that the 
pilot comments be most useful, several details are important. 

The comments must be given by the pilot in the simplest language. 
Engineering terms are generally to be avoided, unless they are carefully 
defined.  The pilot should report what he sees and feels, and describe 
his difficulties in carrying out that which he is attempting.  It is then 
important for the pilot to relate the difficulties which he is having in 
executing specific tasks to their effect on the accomplishment of the 
mission. 

The pilot should be required to make specific comments in evaluating 
each configuration.  These comments generally are in response to questions 
which have been developed in the discussions of the mission and simulation 
situation.  The pilot must also be free to make comments regarding his 
difficulties over and above the answers to the specific questions asked 
of him.  In this regard, the test pilot should strive for a balance between 
a continuous running commentary and occasional comment in the form of an 
explicit adjective.  The former often requires so much editing to find 
the substance that it is often ignored, while the latter may add nothing 
to the numerical rating itself. 

The pilot comments must be taken during or immediately after each 
evaluation.  For in-flight evaluations, this means that the comments 
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should be recorded on a tape recorder.  Experience has shovm that the 
best free comments are o.'ten given during the evaluation.  If the comments 
are left until the conclusion of the evaluation, tiey are often forgotten. 
A useful procedure is to permit free comment during the evaluation itself 
and to require answers to specific questions in the summary comments at the 
end of the evaluation. 

Questionnaires and supplementary pilot comments are most necessary 
to ensure that:  (a) all important or suspected aspects are considered 
and not overlooked, (b) information is provided "-j.ati.ve to why a given 
rating has been given, (c) an understanding is provided of the tradeoffs 
with which pilots must continually contend, and (d) supplementary comment 
that might not be offered otherwise is stimulated.  It is recommended 
that the pilots participate in the preparation of the questionnaires.  The 
questionnaires should be modified if necessary as a result of the pilots' 
initial evaluations. 

• 6.5.2.6 PILOT RATING DATA 

The pilot rating is ar overall summation of the net effect of all of 
the objections which the pilot has observed during the evaluation as they 
relate to the mission.  It is emphasized that the basic question that is 
asked of the pilot conditions the answei that he provides.  For this rea- 
son, it is most important to ensure that the objectives of the program 
are clearly stated and understood by all concerned, and that all criteria, 
whether established or assumed, be clearly defined.  In other words, it 
is extremely important that the basis upon which the evaluation is estab- 
lished te firmly understood by pilots and engineers.  Unless a common 
basis is used, one cannot hope to achieve comparable pilot ratings, and 
confusing disagreement will often result.  Care must also be taken that 
criteria established at the beginning of the program carry through to the 
end.  If the pilot finds it necessary to modify his tasks, technique or 
mission definition during the program, he must make it clear just when 
this change occurred. 

u 

A discussion of the speci 
some disagreement among pilots 
numerical rating. There is ge 
is only a shorthand for the wo 
heavily on the specific adject 
which best fits their overall 
dichotomous decisions sequenti 
two or three ratings. The dec 
based upon the adjective descr 
is much to be preferred since 
cisions to the mission. 

fie use of a rating scale tends to indicate 
as to how they actually arrive at a specific 

neral agreement that the numerical rating 
rd definition.  Some pilots, however, lean 
ive description and look for that description 
assessment.  Other pilots prefer to make the 
ally, thereby arriving at a choice between 
ision among the two or three ratings is then 
lption.  In concept, the latter technique 
it emphasizes the relatiwnship of all de- 

It is suggested that the actual technique used is somewhere between 
the two techniques above and not so c cferent among pilots.  In the past, 
the pilot's choice has probably been strongly influenced by the relative 
usefulness of the descriptions provided for the categories on one hand, 
and the numerical ratings on the other.  The evaluation pilot is more 
or less continuously considering the rating decision process during his 
evaluation.  He proceeds through the dichotomous decisions to the adjective 
descriptors enough times that his final decision is a blend of both tech- 
niques.  It is therefore obvious that descriptors should not be contra- 
dictory to the mission-oriented framework. 
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Half ratings are permitted (e.g., rating 4.5) and are generally 
used by the evaluation pilot to indicate a reluctance to assign either 
of the adjacent ratings to describe the configuration. Any finer break- 
down than half ratings is prohibited since any number greater than or 
less than the half rating implies that it belongs ;  the adjacent group. 
Any distinction between configurations assigned th .• same rating must be 
made in the pilot comments.  Use of the 3.5, 6.5,  nd 9.5 ratings is dis- 
couraged as they must be interpreted as evidence that the pilot is unable 
to make the fundamental decision with respect to category. 

As noted previously, the pilot rating and comments must be given 
on the spot in order to be most meaningful.  If the pilot should later 
want to change his rating, the engineer should record the reasons and the 
new rating for consideration in the analysis, and should attempt to repeat 
the configuration later in the evaluation program.  If the configuration 
cannot be repeated, the larger weight (in most circumstances) should be 
given to the on-the-spot rating since it was given when all the character- 
istics were freshest in the pilot's mind. 

• 6.5.2.7   EXECUTION OF HANDLING QUALITIES EXPERIMENTS 

Probably the most important item is the admonition to execute the 
experiment as it was planned.  This requires careful attention to the 
conduct of the experiment so that the plans are actually executed in the 
manne? intended.  It is valuable for the engineer to monitor the pilot 
comment data as the experiment is conducted in order that he becoir.es aware 
of evaluation difficulties as soon as they occur.  These difficulties may 
take a variety of forms.  The pilot may use words which die engineer needs 
to have defined.  The pilot's word descriptions may not convey a clear, 
understandable picture of the piloting difficulties.  Direct communication 
between pilot and engineer is most important in clarifying such uncer- 
tainties.  In fact, communication is probably the most important single 
element in the evaluation of handling qualities.  Pilot and engineer must 
endeavor to understand one another, and cooperate to achieve and retain 
this understanding.  The very nature of the experiment itself makes this 
somewhat difficult.  The engineer is usually not present during the evalua- 
tion and, hence, he has only the pilot's word description of any piloting 
difficulty.  Often, these described difficulties are contrary to the 
intuitive judgments of the engineer based on the characteristics of the 
airplane by itself.  Mutual confidence is required.  The engineer should 
be confident that the pilot will give him accurate, meaningful data; the 
pilot should be confident that the engineer is vitally interested in what 
he has to say and trusts the accuracy of his comments. 

It is important that the pilot have no foreknowledge of the specific 
characteristics of the configuration being investigated.  This does not 
exclude information which can bei provided to help shorten certain tests 
(e.g., the parameter variations are lateral-directional, only).  But it 
does exclude foreknowledge of the specific parameters under evaluation. 
The pilot must be free to examine the configuration without prejudice, 
learn all he can about it from meeting it as an unknown for the first time, 
look clearly and accurately at his difficulties in performing the evalua- 
tion task, and freely associate these difficulties with their effects on 
the ultimate success of the mission.  A considerable aid to the pilot in 
this assessment is to present the configuration in a random-appearing 
fashion. 
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The amount of time which the pilot should use for the evaluation is 
difficult to specify a priori.  He is normally at>ked to examine each con- 
figuration for as long as is necessary to feel confident that he can give 
a reliable and repeatable assessment.  Sometimes, however, it is necessary 
to limit the evaluation time to a specific period of time because of cir- 
cumstances beyond the control of the researcher.  If the evaluation time 
per pilot is limited, a laiger sanpie of pilots or repeat evaluations 
will be required for similar accuracy, and the pilot comment data will 
be of poorer quality. 

One final point is the state of mind of the evaluation pilot.  He 
must be confident of the importance of the simulation program and join 
wholeheartedly into the production of data which will supply answers to 
the questions.  Pilots as a group are strongly motivated toward the produc- 
tion of data to improve the handling qualities of the airplanes they fly. 
It isn't usually necessary to explicitly motivate the pilot, but it is 
very important to inspire in him confidence in the structure of the experi- 
ment and the usefulness of his rating and comment data.  Pilot evaluations 
are probably one of the most difficult tasks that a pilot undertakes. 
To produce useful data involves a lot of hard work, tenacity, and careful 
thought.  There is a strong tendency for the pilot to become discourage! 
in the course of his evaluations about their ultimate usefulness.  He 
worries constantly about his assessments:  their accuracy and repeatability. 
The pilot may feel that the engineer has the answers on a sheet of paper 
and he is merely testing the pilot as to his ability to search out the 
correct answers.  Such feelings are added to by a lack of communication 
between the piloting and engineering organizations and are to be avoided. 
Probably the best approach is to explicitly state to the pilot that only 
he knows the answers to the questions which are being asked, and he can 
arrive at these correct answers by carrying out the evaluation program. 
He must be reassured in the course of the program that his assessments 
are good, so that he gains confidence in the manner in which he is carry- 
ing out the program. 

■ 6.6 CONTROL INPUTS 

There are several different control inputs that could be used to 
excite the dynamic modes of motion of an aircraft.  To accomplish the task 
of obtaining the free response of an aircraft, the pilot makes an appro- 
priate control input, removes himself from the loop, and observes the 
resulting aircraft motion.  Three inputs that are frequently used in sta- 
bility and control investigations will be discussed in this section: 
the step input, the pulse, and the doublet. 

• 6.6.1 STEP INPUT 

When a step input, is made, the applicable control is rapidly moved 
to a desired new position and F'.eadily held there.  The aircraft motion 
resulting from this suddenly applied new control position can then be 
recorded for analysis.  A mathematical representation of a step input 
assumes the deflection occurs in zero time and is contrasted to a typic-'l 
actual control position time history in figure 6.18.  The "unit step" 
input is frequently used in theoretical analysis and has the magnitude 
of one radian, which is equivalent to 57.3 degrees.  Specifying control 
inputs in dimensionless radians instead of degrees is convenient for use 
in the non-dimensional equations of motion. 
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Figure 6.18  Step Input 

• 6.6.2   PULSE 

When a pulse, or singlet, input is applied,, the 
rapidly to a desired position, held momentarily, and 
to its original position, 'i'he pilot can then remove 
loop and observe the free aircraft response. Again, 
retically assumed to occur instantaneously, and an 
or singlet is shown in figure 6.19. 

control is moved 
then rapidly returned 
himself from the 
deflections are theo- 

example of a pulse, 

i 1 

 ACTUAL INPUT 

ke r* 

/ 

i \ 
V 
\ 

TRIM 

t 

Figure 6.19   Pulse Input 
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The "unit impulse" input is frequently used in theoretical analysis 
and is related to the pulse input.  The unit impulse is the mathematical 
result of a limiting process which begins with a pulse having an area 
of unity under the rectangle formed by the input and ends with an in- 
finitely large magnitude input applied in zero time. 
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• 6.6.3 DOUBLET 

A doublet input is a double pulse which is skew symmetric with time. 
After exciting a dynamic mode of motion with this input and removing him- 
self from the control loop, the pilot can record the aircraft open loop 
motion. Figure 5.20 depicts a theoretical doublet input. 

8r 

_J1 u 
t 

Figure 6.20   Doublet Input 

16.7 EQUATIONS OF MOTION 

Six equations of motion (three translational and three rotational) 
for a rigid body flight vehicle are required to solve its motion problem. 
A rigid body aircraft and constant mass were assumed, and the equations 
of motion were derived and expressed in terms of a coordinate system fixed 
in the oody.  Solving for the motion of a rigid body in terms of a body 
fixed coordinate system is particularly convenient in the case of an air- 
craft when the applied forces are most easily specified in the body axis 
system. 

"Stability axes" were used to specify the body fixed coordinate sys- 
tem.  With the vehicle at reference flight conditions the x axis is 
aligned into the relative wind; the z axis is 90 degrees from the  x 
axis in the aircraft plane of symmetry, with positive direction down rela- 
tive to the vehicle; the y axis completes the orthogonal triad.  This 
xyz coordinate system is then fixed in the vehicle and rotates with it 
when perturbed from the reference equilibrium conditions. The solid 
lines in figure 6.21 depict initial alignment of the stability axes, and 
the dashed lines show the perturbed coordinate system. 

INITIAL ORIENTATION 

PERTURBED AXIS 

Figure 6.21   Stability Axis System 
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Chapter 1 contains the derivation of the complete equations of 
motion, and the results are listed here for your convenience. 

F, = m (u + qw - rv) 

pw) F = m (v + ru 
y 

F = m (w + pv - qu) 
> 

(6.19) 

L = plx + qi (Iz - Iy) - (r + pq) Ixz 

M = qi - pr (I  - I ) + (p2 - r2) I ^ y v          2 x    r        xz 

N = rl + pa (I  - I ) + (qr - p) I 
z r -  y x            xz 

where F , F , and F^ are forces in the x, y, and z direction, and L, M, 

and N are moments 'bout t. -> x, y, and z axes taken at the vehicle center 
of mas'3. 

X 

*w' 

• 6.7.1 SEPARATION OF THE EQUATIONS Of MOTION 

When all lateral-directional forces, moments, and accelerations are 
constrained to be zero, the equations which govern pure longitudinal mo- 
tion result from the fix general equations of motion.  That is, substitut- 
ing 

p   = 0 = V 

p   = 0 = r 

L     ^ 0 = N 

F     = 
y 

0 

v     = 0 

> 
(6.20) 

v  =  0 

into the equations labeled 6.19 results in the longitudinal equations 
of motion. 

F = m (u + qw) 

F =  m (w - qu) z 
(6.21] 

M q i y J 

Linearization of the equations labeled 6.21 by Taylor series first order 
approximations of the forcing functions and small perturbation assumptions 
for the variables u, q, and w result in a set of workable equations for 
longitudinal motion.  Note that the resulting equations are the longitu- 
dinal perturbation equations, and that the unknowns are the perturbed 
values of a,   u, and 8 from the equilibrium condition.  These equations 
in coefficient form are2 

% f ^Automatic Control of Aircraft and Missiles, Slakelock, Wylie, 1965. 
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mUc 

Sq" 
u - C  u 

X 
u 

-C u | + 
u 

u 

mU. 

Sq 

1 -c 2U C  a 
x« 

o   a 
C  a 
x 
a 

°   «£- C  la - C  a 
2U   2'/     z 

O   a/      a 

f-mU 

"Sq" 

mg 

Sq 

20" Cz 
o  c 

\ 

= C  6e 
x6e 

= C  6e > (6.22) 
Z6e 

-c 
„  CM a - Cu a 
UM»     M 
O   a      a / 

I 
y 

Sqc 
— C 
2U CM 

o  c 
= C  6e 

5e 

In the equations labeled 6.22, 
y 

u 

u = 

1 „ 2 
2-pUo 

AU 

(except when q is a subscript denoting a partial deriva- 
tive with respect to pitch rate.) 

(A dimensionless velocity parameter has been defined for 
convenience.) 

a, 6       are perturbations about their equilibrium values. 

C  , C  , etc., are partial derivatives evaluated at the reference 
u   a   conditions with respect to force coefficients. Derivations 

for these terms may be found in Blakelock. 

Note that the equations labeled 6.22 are for pure longitudinal motion 
and that the unknowns are perturbation values about the reference condi- 
tions. 

Laplace transforms can be used to facilitate solutions to the longi- 
tudinal perturbation equations.  For example, taking Laplace transforms 
of the x  force aquation and stating that initial perturbation values 
are zero results in 

mU 
 o 
Sq 

= C 

S - C u(S) + 
-c 
!U 

c  s 
x» 

o  o. 
a (S) + :c  c    s + £a 

2tT X     Sq o  q     ^ 

6e (S) 

e(s) 

(6.23) 
'fie 

The other two equations could similarly be Laplace transformed to obtain 
a set of longitudinal perturbation equations in the  S domain. 

I6.S LONGITUDINAL MOTION 

The equations labeled 6.22 describe the perturbed longitudinal motion 
of an aircraft about some equilibrium conditions.  The theoretical solu- 
tions for aircraft motion can be quite good, depending on the accuracy of 
the various aerodynamic parameters.  For example, 

= c    - c UL        UD 
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is one parameter appearing in the    x    force equation,   and the goodness 
of the solution will certainly depend on' how accurately the values of 
CL and CQ    are known.     Before an aircraft  flies,   such values result  from 
theoretical predictions and wind tunnel data. After appropriate flight 
tests have been flown, values for the various stability derivatives can 
be extracted  from flight tesc data. 

• 6.8.1    EXAMPLE PROBLEM 

Blakelock presents an example problem for a four-engine  jet transport 
using the  longitudinal  equatxcns  to  solve   for the perturbed aircraft mo- 
tion.     The  reference  flight  conditions are  straight and level   at  40,000 
feet with a velocity of 600  feet per  second.    Values  for the various aero- 
dynamic parameters are  specified,   and the set of  longitudinal equations 
in the  Laplace  domain become 

[13.78S +   ,088]u(S)   -   .392a(S)   +   .746(S)   = C       6e(S) 
X5e 

M Se 
6e 

1.48u(S)   +   [13.78S +  4.46]a (Ü)   - 13.78S6(S)   = C       6e(E) 
Z6e 

C  +   [.0552S +   .619] a (S)   +   [.514S2  +   .1923] 6(3)   =  C. 

These  equations are  of  the   form 

au    +     ba     +     c6~d 

eu    +     fa     +     ge     =     h 

iu     +     ja     +     ke     =     J. 

(6.24) 

(6.25) 

and the set of equations can be readily solved for any of the variables. 
For example, from equation 6.25, 

u(S) 

a d c 

e h g 
i l k Numerator(S) 

a b c Denominator(S) 

e f g 
i j k 

Recall that the denominator of the above equation ir the  S domain is 
the system characteristic equation and that the location of the roots of 
MS)  will immediately indicate the type of dynamic response.  From equa- 
tion 6.24 

MS) = 97.5S4 + 79S3 + 128.9S2 + .998S + .677 (6.26) 

Factoring higher  order equations  such as  6.26  is not a  simple  thing,   but 
some  systematic  approaches do exist.     Blakelock  refers  to  Lin's method 
and  accomplishes   the   factoring  of 6.26   into  two quadratics. 

MS) (S2   + .00466S  +   .005,^    (S     +   .806S +   1.211) (6.27) 

6.29 
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Each of the quadratics listed in equation 6.27 will have a natural 
frequency and damping ratio associated with it, and the values can be 
rapidly computed by comparing the particular quadratic to the standard 
notation second order characteristic equation: 

,J 

t,1    =     0.352 

u       =    1.145  radians/sec 
nl 

(6.28) 

;x     =     0.332 

a      =     0.07 3   radians/sec n2 

(6.29) 

• 6.8.2 LONGITUDINAL MOTION MODES 

Experience has shown that aircraft exhibit two different types of 
longitudinal oscillations: 

1. One of short period with relatively heavy damping that is called 
the "short period" mode. 

2. Another of long period with very light damping that is called the 
"phugoid" mode. 

The periods and damping of these oscillations vary from aircraft to air- 
craft and with flight conditions. 

The shcrt period mode is characterized primarily by variations in 
angle of attack and pitch angle with very little change in forward speed. 
Relative to the phugoid, the short period has a high frequency and heavy 
damping. 

Typical values" for its damped period are in the range of 2 to 5 
seconds.  Generally, the short period motion is the more important longi- 
tudinal mode for handling qualities since it is contributing to the motion 
being observed ard corrected by the pilot when the pilot is in the loop. 

The phugoid mode is characterized mainly by variations in u and 
0 with  a nearly constant.  This long period oscillation can be thought 
of as a constant total energy problem with exchanges between potential 
and kinetic energy.  The aircraft nose drops and airspeed increases as 
the aircraft descends below its initial altitude.  Then the nose rotates 
up, causing the aircraft to climb above its initial altitude with air- 
speed decreasing until the nose lazily drops belo- the horizon at the top 
of the maneuver. 

Because of light damping, many cycles are requii -d for this motion 
to damp out.  However, its long period combined with low damping results 
in an oscillation that is easily controlled by the pilot, even for a 
slightly divergent motion.  When the pilot is in the loop, he is frequently 
not aware that the phugoid mode exists as he makes control inputs and ob- 
tains aircraft response before the phugoid can be seen.  Typical values 
for its damped period range in the order of 45 to 90 seconds. 

J 
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From the example problem in section 6.8.1 and from the descriptions 

of the longitudinal mode, it is possiole to immediately specify which 
parameters are associated with the short period and which must be that 
aircraft's phugoid parameters. 

• 6.8.3 SHORT PERIOD APPROXIMATION EQUATIONS 

A logical approach to use when trying to get a simplified set of 
equations to describe the short period mode is to recall that the short 
period occurs at nearly constant airspeed and set u = 0 in the equations 
labeled 6.22.  The result of this substitution is two unknowns appearing 
in three independent equations, and it is certainly desirable to select 
the correct set of two equations for solution.. Note that the x force 
equation could be expected to contribute primarily to a change of velocity 
in the x direction; however the .-specification that u = 0 has been made 
for this approximation.  Chooring to discard the x  force equation and 
making the above substitutions results in a set of two equations with the 
unknowns  a and  5.  In the  S domain these equations 3re 

mU 
5-2 S - C Sq       z 

-£- C 
2U  M« 

O   a 

a(S) + 

- C 

-mU 

"Sq 
2. s 

M a (S) + 

6(S) 

J 

ri 

Sqc 

C:   6e(S) 
Z6e 

fa   2lT LM b 

}(6,29) 

e(s) = c M 5e(S) 
6e 

where C   and C   have been arr.umed to be nealigible. 
7.  • 7. -    3 

J 

' 3 
As for previous example.?,, recall ;hat toe characteristic equation 

can be found by expanding the determinant of the coefficients from the 
ltift side of the equations labeled 6.29.  From these equations, the 
characteristic equation is 

A(S) = S (AS  + BS + C) (6.30) 

where 

.Sqcj 

mU 
 c 
Sq 

mU \ 
B = | 2TT CM I So^ 

C=  2Ü-S Cz O   q   a 

,/mu \ 

2Uo \M.j| Sq 

To find expressions for the short period dampinc ratio and natural fre- 
quency from the second order part of equation 6.30, it can be rewritten 
as 

MS) = S (S2 + | S + S-) 

and compared to the standard notation second order characteristic equation. 
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Some   rather  involved expressions   result  for     Q     and    <u 
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p Sc     M 
I  ia 
y 

M       z I q       a 
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1/2 

2m C 
'M 

pSc 

1/2 

(6.31) 

If the  aircraft parameter  values  that were  used  in the example problem 
from section  6.8.1  are  substituted in  the equations  labeled 6.31,   the 
followinq values  result   for     r     and     ID 

=   .35 1.15 (6.32) 

Comparison of the above to the values shown in the equations labeled 6.28 
show good agreement for this problem. 

The complicated expressions listed in the equations labeled 6.31 
can be further simplified by discarding the terms that are usually the 
smallest contributors to the expressions.  Grating that the CM«  and Cz 

terirs in the numerator of the  ,; expression ara negligible when compared 
to CM  and that the CM Cz  term in the denominator is small compared 

to the CM  term results in a more simplified expression for r,.  This 
functional relationship can be used to predict trends in the short period 
damping ratio as flight conditions are changed. 

-C. M 
_q 

'M 
(6.33) 

Stating that the CM  term in the sign;.ficant one in the numerator 

of the  tun expression listed :n 6.31 results in 

(6.34) 

Equation 6.34 can be used to predict the trends expscted in the short 
period natural frequency as flight conditions change.  Beth equations 6.3 3 
and 6.34 show the predominant stability derivatives which affect the 
short period damping ratio and natural frequency. 

• 6.8.4 PHUGOID APPROXIMATION EQUATIONS 

An approach similar to that used when obtaining the short period 
approximation will be used to obtain a set of equatiors to approximate 
the phugoid oscillation.  Recalling that the phugoid  otion occurs at 

6.32 
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nearly constant angle of attack, it is logical to substitute  a -- ü  into 
the longitudinal motion equations.  This results in a set of three equa- 
tions with only two unknowns.  Further reasoning that the phugoid motion 
is characterized primarily by altitude excursions and changes in aircraft 
speed implies that the  z  force and x  force equations are the two equa- 
tions which should be used.  The resulting set of two equations for the 
phugoid approximation in the Laplace domain is 

mV c 
Sq S - C u(S) + 

-mU 

mg 
Sq 6(S) = C   6e (S) 

Se 

u(S) + Sq S 6 (s) = C   6e (3) 
Z6e 

where and Cz  have been assumed to be negligibly small, 

The characteristic equation for the phugoid approximation can now 
be found using the above equations. 

A(S) = 

r        ™l 2 

s2 + 

P                  -* p       -1 

-mU o 
Sq 

mU 

Sq       *u_ 
s + mg 

Sq 
(6.35) 

Note that lift and weight are not equal during phugoid motion, but also 
realize that the net difference between 1:':t and weight is quite small. 
If the approximation is made that 

L  =  W 

and then the substitution that 

W  =  mg 

it can be written that 

mg = r 
Sq     L 

The phugoid characteristic equation can thus be rewritten as 

C 

mU  c 
Sq 

S - 
mU c 
Sq 

The  phugoid  natural   frequency  is  then   found  to be 

p SU        i . 

2n.     ^     zu     L 
(6.36) 
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In an effort to further simplify equation 6.36, the 
examined.  Examining figure f,22 

Cz  terms should be 

HORIZON 

Figure 6.22 

leadi! to 

F = z 

then, 

3F 

3U 

L cos a - D sin a 

3L       , .  .    3a   3D „       3o -r—  cos a + L Sin a — sin a - D cos a —— 3u 3u   3u 3u 

which must be evaluated at the equilibrium conditions for use in the first 
order Taylor Series that was used in obtaining the linearized equations 
of motion 

3F 
z 

3U 
o 

- 
3L 
3U 

And, 

3F 
z 3 

C 
3U DU CL S \  PV2 

When the approximation that V = U is made in the above equation, the 
result is 

3F  5 
3u 

?CL . 1  M2 
3lTS 2 pu CT SpU 

Li 

In order to have a nondimensional expression, the correct factor must be 
used 

U      3F _o z 
Lz Sq   3u u ^ 
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u 
So  that 

C 
z u 

U     CT o     L 2  CT (6.37) 

The variation of CT  with velocity is primarily due to Mach effects, 

and except for the transonic regime,  CT ,  is approximately zero in many 

cases.  Figure 6.23 shows a typical plot. 

xT 2 

Figure 6.23  Typical Plot of CL vs Mach 
MACH 

If the aircraft and flight conditions are such that CL ~ 0, then 
u 

C - 2 C, 

Substituting  the above equation  into the expression  for  the  phugoid 
natural   frequency  results  in 

«n   =m~o   <f 
An equation showing that the phugoid natural frequency is inversely re- 

lated to aircraft velocity results from substituting C = ~£ into th» 
above equation. 

45.5 (6.38) 

Where  UQ is true velocity in feet per second. 

A simplified approixmate expression for the phugoid damping ratio 
can also be obtained and is given by 

'  l\/CDl 

■F 
(6.39) 

I 
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Equations 6.38 and 6.39 can be used to understand some major contributors 
to the natural frequency and damping ratio of the phugoid motion. 

u 

16.8.5 EQUATION FOR n/a 

Noting that the requirements of MIL-F-8785 for the short period 
natural frequency are stated as a function of n/a,  it is desirable to 
develop a theoretical capability to predict n/a. Consider the z force 
equation for longitudinal motion. 

EAF  = m (w - U 6) 
2 O ' 

and recall that Newton's Second Law is a directional relationship 

F = m i~ 

Thus 

a  = w - U e z       o (6.40) 

where all the variables appearing in equation 6.40 are perturbations about 
the equilibrium condition.  Rewriting the above equation and stating that 

=uo <[T o 
0) 

n = U„ (, e) (6.41) 

Of course expressions for  a and  e  can be obtained from the short 
period solutions for a(t)  and  8 (t),  and an expression that gives 
n(t)  can be written from equation 6.41.  The ratio of the magnitudes of 
the n and  u envelopes can then be used to determine n/a. 

Using a theoretically obtained n/a along with the short period 
natural frequency and damping ratio obtained from the equations of motion 
makes it possible to accomplish a design problem to check whether or not 
the aircraft is being designed to comply with the MIL-F-8785. 

■ 6.9 LATERAL-DIRECTIONAL MOTION MODES 

There are three typical asymmetric modes of motion exhibited by air- 
craft.  These modes are the roll, spiral, and Dutch roll. 

• 6.9.1 kOLL MODE 

The roll mode is considered to be a first order response which 
describes the aircraft roll rate response to an aileron input.  Figure 
6.24 depicts an idealized roll rate time history to a step aileron input. 
The roll mode time constant is normally small, with a MIL-F-8785 require- 
ment to be less than three seconds. 
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Figure 6.24  Typical Roll Kode 

»6.9.2 SPIRAL MODE 

i & 

The spiral mode is considered to be a first order response which 
describes the aircraft bank angle time history as  4>  tends to increase 
or decrease from a small, non-zero bank angle.  After a wings level trim 
shot, the< spiral mode can be observed by releasing the aircraft from bank 
angles as great as 20 degrees and allowing the spiral mode to occur without 
control inputs.  If this mode is divergent, the aircraft nose continues 
to drop as the bank angle continues to increase, resulting in the name, 
"spiral mode." This mode, similar to the phugoid in that a pilot can 
easily control it even if it is dynamically unstable, has somewhat loose 
requirements in MIL-F-8785.  A typical divergent time history as shown 
in figure 6.25 and might be characterized by T2,  the time to double 
amplitude. 

i  6 
M. 

I 
t:' 

20° 

Figure 6.25  Typical Spiral Mode 
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• 6.9.3 DUTCH ROLL MODE 

The Dutch roll mode is a tightly coupled yawing and rolling motion 
with a relatively high frequency.  Some typical values for Dutch roll 
damped period at a cruise condition are 3 seconds for the A-7, and 3 
seconds for the B-58.  Typically, as the aircraft nose yaws to the right 
a right roll due to the yawing motion is generated.  The combination of 
restoring forces and moments, damping, and aircraft inertia is generally 
such that after the motion peaks out to the right, a nose left yawing mo- 
tion begins accompanied by a roll to the left.  This coupled right - 
left - right - . . . motion often is lightly damped with a relatively 
high frequency. 

One of the pertinent Dutch roll parameters is <t>/ß,  the ratio of 
bank, angle to yaw angle.  A very low value for  $/ß  implies little bank 
action during the Dutch roll.  In the limit when 4>/ß is zero, the Dutch 
roll motion consists of a pure yawing motion that most pilots consider 
less objectionable than a Dutch roll mode with a high value for 4>/ß. 

Another parameter than can be used to characterize the Dutch roll or 
any other second order motion is the number of cycles required to damp to 
half amplitude, C./2. 

A doublet rudder input is frequently used to excite the Dutch toll, 
and figure 6.26 shows a typical Dutch roll time history. 

RIGHT WING DOWN ( + ) 

Sri L 

RIGHT (*) 

() 

Figure S.26   Typical Dutch Roil Mode 

• 6.9.4 ASYMMETRIC EQUATIONS OF MOTION 

Similarly to the separation of the longitudinal equations, the set 
of equations which describe lateral-directional motion can be separated 
from the six general equations of motion.  Starting with equilibrium condi- 
tions and specifying that only asymmetric forcing functions, velocities, 
and accelerations exist results in the lateral-directional equations of 
motion.  Assuming small perturbations and using a linear Taylor Series 

6.38 
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u 
approximation for the forcing functions result in the linear, lateral- 
directional perturbation equations of motion 

±-  C 2U  y o Jp 

Sqb 

I xz 
Sqb 

* - 

- C   + 

2IT S 

^- c 
o i 

/mU 
°  -  2U  C bq    o y, 

mu 
* - C  V   +    —1 

y   si 
- C  ß=C   6r+C 

*ß    *6r     1 
5a 

6a 

bqo    zuQ  xr     *      ü6r     v,fia 
M6.42) 

+ S|B # - 
b C 2TT SJ o  r 

i|< - C. N. 
6r + C 

6r N 
6a 

6a 

Note that the lateral-directional equations of motion have been non- 
dimensional zed by span,  b,  as opposed to chord.  Also, recall that the 
stability derivative 

but that the script 

is not a lift-referenced stability derivative 
f 
refers to rolling moment. 

It is appropriate to point out that if the products of perturbation 
are not small, then the lateral-directional motion will couple directly 
into longitudinal motion.  This can be readily seen by examination of 
the pitching moment equation and makes the point that asymmetric motion 
can couple into symmetric motion.  Our analysis will assume that condi- 
tions are such that coupling does not exist. 

• 6.9.5 ROOTS OF A (S) FOR ASYMMETRIC MOTION 

Laplace transforming the equations labeled 6.42 puts them into a 
form that readily yields the characteristic equation for asymmetric 
motion or that can be used to find the time response for some specified 
input. 

The roots of the lateral directional characteristic equation typically 
are comprised of a relatively large negative real root, a small real root 
that is either positive or negative, and a complex conjugate pair of 
roots. 

The large real root is the one associated with the roll mode of 
motion.  Note that a large negative value for this root implies a fast 
time constant. 

The small real root that might be either positive or negative is 
associated with the spiral mode.  A slowly changing time response results 
from this small root, and the motion is either stable for a negative root 
or divergent for a positive root. 

The complex conjugate pair of roots corresponds to the Dutch roll 
mode which frequently exhibits high frequency and light damping for SAS 
off conditions.  This second order motion is of great interest in handling 
qualities investigations. 

Figure fa.24 shows typical characteristic equation root locations 
for the asymmetric motion modes. 
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Figure 6.27   Typical Roots of A (S) for Asymmetric Motion 

• 6.9.6   APPROXIMATE ROLL MODE EQUATION 

This approximation  results  from the  hypothesis  that only  rolling 
motion exists  and  use  of  the  rolling moment equation as done  in Blakelock 
(reference  2).     The  roll  mode  approximation equation  is 

Sqb 
b    C XT C( o 

*(S) 6 a (6.43) 

The roll mode characteristic equation root is 

b2 S pU 

4 I (6.44) 

Note that C£  less than zero implies stability for the roll mode and 

that a larger negative value of  SR implies an aircraft that approaches 
its steady state roll rate quickly.  A functional analysis can be made 
using equation 6.44 to predic. change trends in  iR,  the roll mode time 
constant, as flight conditions change. 

• 6.9.7 SPIRAL MODE STABILITY 

Blakelock lists the condition for dynamic spiral stability, namely 
that 

C c  > c  c 
N     N,  v r     t-;   r 
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and points out that increasing C$  while decreasing Cj,  is a reason- 

able design method if increasing spiral stability is desired.  Also he 
lists an equation to calculate the spiral mode A(S)  root 

= sa_ - „ c mU  y, 
o * 4> 

'N_ 
- C. 

n 
Ci     CN 

P   i 

(6.45) 

I 6.9.8 DUTCH ROLL MODE APPROXIMATE EQUATIONS 

The approximate equations for Dutch roll motion can be obtained by 
using the equations labeled 6.42 and specifying that pure sideslip exists 
(8 = -*)  and bank angle is zero.  While this specification is generally 
not true, the result is a reasonable approximation for the Dutch roll 
damping ratio and natural frequency: 

> (6.46) 

of 
An approximate functional relationship can be found for the magnitude 

(> to  ß 

(6.47) 

Equation 6.47 is of value in predicting trends in  $/e 
tions are changed. 

• 6.9.9 COUPLED ROLL-SPIRAL MODE 

as flight condi- 

This 
by aircra 
this mode 
has two p 
conjugate 
the roll 
root beco 
to form a 
6.28. 

mode of lateral-directional motion has rarely been exhibited 
ft, but the possibility exists that it can indeed happen.  If 
is present, the characteristic equation for asymmetric motion 

airs of complex conjugate roots instead of the usual one complex 
pair along with two real roots.  The phenomenon which occurs is 

mode root decreases in absolute magnitude while the spiral mode 
me.5 more negative until they meet and split off the real axis 
second complex conjugate pair of roots, as depicted in figure 
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Figure 6.28   Coupled Roll Spiral Mode 

At least two inflight experiences with this mode have been documented, 
and suffice to say that a coupled roll spiral mode causes significant 
piloting difficulties.  One occurrence involved the M2-F2 lifting body, 
and a second involved the Flight Dynamics Lab variable-stability T-33. 
Some designs of V/STOL aircraft have indicated that these aircraft would 
exhibit a coupled roll spiral mode in a portion of their flight envelope^. 
Some pilot comments from simulator evaluations are "roily," "requires 
tightly closed roll control loop," or "will roll on its back if you don't 
watch it." 

A coupled roll spiral mode can result from a high value for Ci 
P 

and a low value for C< The M2-F2 lifting body did in fact possess a 

high dihedral effect and a quite low roll damping.  Examination of the 
equations for the roll mode and spiral mode characteristic equation roots 
shows how the root locus shown in figure 6.25 could result as Cj,p de- 
creases in absolute magnitude and Cx  increases. ; 

16.10 STABILITY DERIVATIVES 

• 6.10.1 INTRODUCTION 

Some of the stability derivatives are particularly pertinent in the 
study of the dynamic modes of aircraft motion, and the more important ones 
appearing in the functional equations which characterize the dynamic modes 
of motion should be understood.  C„ , ( 

M 
q 

discussed  in  the   following paragraphs. 

"M 
P ß V and    C are 

ß 

•^AFFDL-TR-65-39, Ground Simulotor Elevations of Coupled Roll Spiral Mode Effects on Aircraft Handling Qualities. 
F. D. Newell, Morel, 1965. 
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0 »6.10.2   PARTICULAR STABILITY DERIVATIVES 

• 6.10.2.1 C, M,i 

(\) 

This stability derivative is the change in pitching moment 
coefficient with varying angle of attack and is commonly referred to as 
the longitudinal static stability derivative.  When the angle of attack 
of the airframe increases from the equilibrium condition, the increased 
lift on the horizontal tail causes a negative pitching moment about the 
center of gravity of the airframe.  Simultaneously, the increased lift 
of the wing causes a positive or negative pitching moment, depending on 
the fore and aft location of the lift vector with respect to the center 
of gravity.  These contributions together with the pitching moment contri- 
bution of the fuselage are combined to establish the derivative CM . 

The magnitude and sign of the total CM  for a particular airframe con- 

figuration are thus a function cf the center of gravity position, and this 
fact is very important in lognitudinal stability and control.  If the cen- 
ter of gravity is ahead of the neutral point, the value of  C^  is 

negative, and the airframe is said to possess static longitudinal sta- 
bility.  Conversely, if the center of gravity is aft of the neutral point, 
the value of CM  is positive, and the airframe is the) statically un- 

stable.  CM  is perhaps the most important derivative as far as longi- 

tudinal stability and control are concerned.  It pr:marily establishes 
the natural frequency of the short period mode, and is a major factor in 
determining the response of the airframe to elevator motions and to gusts. 
In general, a large negative value of CM   (i.e., large static stability) 

is desirable for good flying qualities.  However, if it is too ic ge, 
the required elevator effectiveness for satisfactory control may become 
unreasonably high.  A compromise is thus necessary in selecting a design 
range for CM . 

a 
not in terms of 

the relation is: 

Design values of static stability are usually expressed 

CM  but rather in terms of the derivative CMC,     where 

It should be pointed out that CMCT  in CM0 = cMcL cLa 
the above expression is actually a partial derivative for which the forward 
speed remains constant. 

• 6.10.2.2   C M„ 

% 

The  stability derivative    CM       is  the change  in pitching moment  co- 
efficient  with  varying pitch  velocity and  is  commonly  referred  to as  the 
pitch damping derivative.     As the  airframe  pitches  abo'jt its  center  of 
gravity pach,   the   angle  of  attack  of  the  horizontal   tail  changes,   and  a 
lift   force  is  developed  on  the horizontal  tail  producing a negative pitch- 
ing moment  on  the   airframe  and  hence  a  contribution  to  the  derivative 
CM   .     There  is also  a contribution  to    CM       because  of  various   "deadweight" 
aeroelastic effects.     Since   the  airframe  is moving  in  a curved   flight path 
due  to  its  pitching,   a centrifugal   force   is developed  on  all   the  components 
of  the  airframe.     The   force  car.  cause  the wing to  twist  as  a  result  of  the 
dead weight  moment  of overhanging nacelles,   and  can  cause  the  horizontal 
tail   angle  of  attack   to  change   as  a  result  of   faselaqe  bending due  to  the 
weight  of the  tail   section.     In  low speed  flight,     CM       comes mostly  from 
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the effect of the curved flight path on the horizontal tail and its sign 
is negative.  In high speed flight the sign of CM  can be oositive or 
negative, depending on the nature of the aeroelastrc effects.  The deriva- 
tive CM  is very important in longitudinal dynamics because it contributes 

a major portion of the damping of the short period mode for conventional 
aircraft. As pointed out, this damping effect comes mostly from the hori- 
zontal i-ail.  For tailless aircraft, the magnitude of CM  is consequently 
small; this is the main reason for the usually poor damping of this type 
of configuration.  CM  is also involved to a certain extent in the damp- 

ing of the phugoid mode.  In almost all cases, high negative values of 
CM  are desired.  In the light of the present design trend toward larger 

radii of gyration in pitch and high altitude flight, it is believed that 
consideration of CM  is necessary in the preliminary design stage 

• 6.10.2.3 C£, 

\w> 

This stability derivative is the change in rolling moment 
coefficient with variation in sideslip angle and is usually referred to 
as the "effective dihedral derivative." When the airframe sideslips, a 
rolling moment is developed because of the dihedral effect of the winq 
and because of the usual high position of the vertical tail realtive to 
the equilibrium x-axis.  No general statements can be made concerning the 
relative magnitudes of the contributions to CJJ   from the vertical tail 

p 

and from the wing since these contributions vary considerably from airframe 
to airframe and for different angles of attack of the same airframe. Ca 
is nearly always negative in sign, signifying a negative rolling noment 
for a positive sideslip. 

The derivative  Co   is very important in lateral stability and con- 

trol, and it is therefore usually considered in the preliminary design of 
an airframe.  It is involved in damping both the Dutch roll mode and the 
spiral mode.  It is also involved in the maneuvering characteristics of 
an airframe, especially with regarci to lateral control with the rudder 
alone near stall. 

• 6.10.2.4 C, 

The stability derivative,  Cj ,  is the change in rolling moment 
coefficient with change in rolling velocity and is usually known as the 
roll damping derivative.  When the airframe rolls at an angular velocity 
p,  a rolling moment is produced as a result of this velocity; this moment 
opposes the rotation.  C;   is composed of contributions, negative in sign, 

from the wing and the horizontal and vertical tails.  However, unless the 
size of the tail is unusually large in comparison with the size of the 
wing, the major portion of the total  Cf   comes from the wing. 

The derivative C ,■   is quite important in lateral dynamics because 

essentially C^  alone determines the damping in roll characteristics 

of the aircraft.  Normally, it appears that small negative values of C% 
are more desirable than large ones because the airframe will respond 
better to a given aileron input and will suffer fewer flight perturbations 
due to gust inputs. 
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• 6.10.2.5 CNl 

The stability derivative,  Cfj ,  ^s ^e  change In yawing moment co- 
efficient with variation in sideslip angle.  It is usually referred to as 
the static directional derivative or the "weathercock" derivative.  When 
the airframe sideslips, the relative wind strikes the airframe obliquely, 
creating a yawing moment,  N,  about the center of gravity.  The major 
portion of C^D  comes from the vertical tail, which stabilizes the body 
of the airframe just as the tail feathers of an arrow stabilize the arrow 
shaft.  The C^o contribution due to the vertical tail is positive, sig- 

nifying static directional ptability, whereas the CN6 due to body is 
negative, signifying static directional instability.  There is also a 
contribution to Cu«  from the wing, the value of which is usually posi- 
tive but very small compared to the body and vertical tail contributions. 

The derivative CNO  is very important in determining the dynamic 
lateral stability and control characteristics.  Most of the references 
concerning full-scale flight tests and free-flight wind tunnel model 
tests agree that CNB  should be as high as possible for good flying quali- 
ties.  A high value of C\$„     aids the pilot in effecting coordinated 
turns and prevents excessive sideslip and yawing motions in extreme 
flight maneuvers and in rough air.  CNS primarily determines the natural 
frequency of the Dutch rcll oscillatory mode or the airframe, and it is 
also a factor in determining the spiral stability characteristics. 

i  ; • 6.10.2.6 CN 

The stability derivative C^j-  ' i v_he change in yawing moment co- 
efficient with change of yawing velocity.  It is known as the yaw damping 
derivative.  When the airframe is yawing at an angular velocity  r,  a 
yawing moment is produced which opposes the rotation.  CNr is made up 
of contributions from the wing, the fuselage, and the vertical tail, all 
of which are negative in sign.  The contribution from the vertical tail 
is by far the largest, usually amounting to about 80 or 90 percent of the 
total  CNr  of the airframe. 

The derivative CNr  is very important in lateral dynamics because 
it is the main contributor to the damping of the Dutch roll oscillatory 
mode.  It also is important to the spiral mode.  For each mode, large nega- 
tive values of  CN  are desired. 

■ 6.11 PILOT EXTINCTION OF SECOND ORDER MOTION 

Pilot-observed data can be used to obt-iin approximate values for the 
damped frequency and damping ratio for second order motion such as the 
short period or Dutch roll. 

• 6.11.1 ESTIMATION OF d 

To obtain a value for  u^, the pilot needs merely to observe the 
number of cycles that occur during a particular increment of time. 
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Then, 

ff\, 
Number of Cycles 
Time Increment = cycles/sec (6.47) 

And 

cycles  I   2TT  radians 
d sec cycle = radians/sec 

The number of cycles can be estimated either by counting peaks or zeroes 
of the appropriate variable.  For short period motion, perturbed  6 is 
easily observed, and if counting zeroes is applied to the motion shown 
in figure 6.29 the result is 

(5 - 1) 
.5 cycles/sec 

4 Seconds 

f-   •'. Response Starts Here 

Figure 6.29   Second Order Motion 

If zeroes ar« counted, then 

(number of zeroes - 1) 

" (Time Increment! 
cycles/sec 

• 6.11.2 ESTIMATION OF L 

The pilot can obtain an estimated value for  5 by noting the number 
of peaks that exist during second order motion and using the approximation 

; ~ Yf)   (7   ~  Number of Peaks) 

for .1 < c < .7 

(6.48) 
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u 
The notion shown in figure 6.29 thus has an approximate value 

C^JJ (7 "4) = .3 

Note that the peaks which occur during aircraft free response are 
the ones to be used in equation 6.48.  If zero observable peaks exist 
during a second order motion, the best estimate for the value of  c,  is 
then "heavily damped, .7 or greater."  If seven or more peaks are ob- 
served, the best estimate for the value of  ;  is "lightly damped, .1 or 
less." 
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V j LIST    OP    ABBREVIATIONS   AND   SYMBOLS 
USID   IN   THIS    CHAPTER 

Item Definition 

AOA angle of attack 

b wing span 

cD drag coefficient 

eg center of gravity 

cL coefficient of  lift 

c* rolling moment  coefficient 

Cm pitching moment coefficient 

C       U m,b pitching moment  coefficient non- 
dimensionalizing v.'ith b 

Cn yawing moment coefficient 

D drag 

g acceleration equal  to that  of gravity 

H angular momentum 

i unit vector 

J unit  vector 

k unit  vector 

K radius  of  gyration 

L rolling moment 

M pitching moment 

m mass 

N yawing moment 

P roll  rate 

PSG post-^tall  gyration 

q pitch  rate 

r yaw  rate 

r radius 

S wing  area 

sec second 

T torque 

V true  velocity 

W weight 

Symbols 

a angle  of  attack 

a stall   angle  of  attack                  ^   ,. 
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Item Definition 

8 angle of sideslip 

A small increment 

n angle of inclination of t 
path from the vertical 

e pitch angle 

V relative aircraft density 

P density 

p air density 

$ engine rotation rate 

* bank angle 

Q angular velocity 

u angular velocity 
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u CHAPTER 

POST-STALL GYRATIONS/SPINS VII 
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T.l INTRODUCTION 

"Of the myriad of coupled 
an airplane can perform, t 
out as being unique.  When 
is stalled and left to its 
perform some sort of rolli 
and pitching motion which, 
continue, may develop into 
tic motion called a spin, 
airplane descends rapidly 
earth in a helical movamen 
vertical axis at an angle 
tween the stall and 90°." 
page 2) 

motions which 
he spin stands 
an airplane 

elf, it will 
ng, yawing 
if allowed to 
a   characteris- 

in which   the 
toward   thf; 
t   about   the 
of   attack  be- 

(Reference   1, 

From this classical description it is clear that an aircraft spin 
is an extremely complex maneuver simultaneously involving pitch, roll, 
and yaw rates along with extreme angles of attack and large angles of 
sideslip.  It is indeed more complex than the description.  In the ini- 
tial stages, the aircraft will still have some of its translational 
velocity, and the aircraft can spin at angles of attack greater than 9 0 
degrees. 

Recently a renewed interest in the high angle of attack (AOA) flight 
regime has generated considerable interest in designing to avoid the 
spin entirely in tactical aircraft.  Clearly such design goals are 
worthy, and a wholj set of terms (not necessarily new) has been redefined 
to make more explr'cit the requirements which hopefully will make spin 
resistant tactical aircraft a reality. Words like "departure," stall," 
"post-stall gyration (PSG)," and "spin" itself have taken on different 
shades of meaning since the publication of reference 2.  Given the com- 
plicated motions associated with a PSG or a spin and the explicit re- 
quirements now imposed by references 2 and 3, it is imperative that the 
test pilot clearly understand the precise terminology of the high AOA 
flight regime. 

#7.1.1 DEFINITIONS 

• 7.1.1.1 Stall Versus Out-of-Contro'!. 

Stalls and associated aerodynamic phenomena have been described 
completely in chapter 2, but it is worth repeating the formal definition 
of a stall from page 67 of reference 3.  In terms of angle of attack, 
the stall is defined as the lowest of the following: 

a.  Angle of attack for the highest steady load factor, normal to the 
flightpath, that can be attained at a given speed or Mach number. 
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b. Angle of attack,   for a given speed or Mach number,  at which  abrupt 
or uncontrollable pitching,   rolling,  or yawing occurs.    Angular 
limits of 20 degrees   (Classes  I,  II,  or III)   or  30 degrees   (Class 
IV)   are specified in paragraph   3.4.2.1.2 of reference  3. 

c. Angle  of attack,   for  a given speed or Mach  number,   at which  in- 
tolerable buffeting is  encountered. 

d. An arbitrary  angle of attack,  allowed by paragraph   3.1.9.2.1  of 
reference   3,  which  may be based on such  considerations  as  ability 
to perform altitude  corrections,  excessive  sinking speed,  or 
ability  to execute  a go-around. 

Reference  2  defines  the stall  angle  of attack more  simply:     The  angle 
of attack  for maximum usable  lift at  a given  flight condition.     This 
latter definition is   the  one most useful  in this  course,  but  the student 
must understand that   "maximum usable  lift"  is  determined  from one  of the 
four conditions  given  above. 

• 7.1.1.2 Departure. 

u 

Departure  is  defined  as  that  event  in the post-stall   flight regime 
vvhich precipitates  entry  into  a PSG,  spin or deep stall condition   (refer- 
ence  2,  paragraph  6.3.9).     Notice  two things   about this  definition.     First, 
departure  occurs  in the post-stall   flign:   regime;   that  is,   the stall  al- 
ways  precedes  departure.     It  can be  inferred then that the  angle of attack 
for maximum usable  lift  is  always  less  than  the  angle  of attack  at which 
departure occurs.     The second point  is  that  only one  of three motions 
may  result  after departure  -  the  aircraft enters  either a PSG,  spin or 
deep stall   (of  course,   a PSG  can progress  into  a spin or deep stall). 
Implicit  in this  definition  is  the  implication  that  an immediate  recovery 
cannot be  attained.     For example,   a  light  aircraft whose  stall  is  defined 
by  a  g-break,   may   recover immediately  if  the  longitudinal  control pressure 
is   relaxed.     However,  note  that movement or position of  controls  is  not 
mentioned in the  definition.     The same  light  aircraft that would not  de- 
part  if  control  pressures  were  relaxed at  the stall may  depart  and enter 
a spin if pro-spin  controls   are  applied at  the stall.     Hence,   in discussing, 
susceptibility or  resistance  to departure  one must specify  control posi- 
tions  as well  as   loading  and  configuration. 

The  departure  event  is  usually  a  large   amplitude,   uncommanded,   and 
divergent motion.     Such  descriptive  terms   as  nose  slice  or pitch-up are 
commonly  used to  describe the event.     Large  amplitude excursions   impiy 
changes   in yaw,   roll,   or pitch  greater than  20  degrees   (class   I,   II,   and 
III)   or  30  degrees   (class   IV)    (reference   3,  paragraph   3.4.2.1.2).     Un- 
commanded morions   are  motions  not  intended by the pilot,  even though  the 
control  positions   are  legitimately  causing the departure.     The  aircraft 
may not   follow  the pilot's   commands   for a number of  reasons:     the high 
angle of  attack  may  render the  control  surface  ineffective when moved 
to  its  desired position;   or the pilot  may be  unable  to position the  stick 
to put the  surface  in  the  desired position due  to  lateral  or transverse 
g  loads.     In either of  these  conditions  the  aircraft motion  is   "uncom- 
manded."     Finally,   a divergent motion is  one which  either  continuously 
or periodically  increases   in  amplitude.     The T-33  usually  exhibits   a 
"bucking"  motion  after  the stall  in which  the nose periodically  rises 
and  falls.     However,   the motion  is  not  divergent  unless   aggravated by 
full  aft  stick  or some  other pro-spin  control.     The T-38 will  sometimes 
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{^J exhibit a non-divergent lateral oscillation near the stall  angle of 
attack.    Neither of these motions  are normally  counted as  departures, 
though  their occurrence  does  serve  as warning of impending departure if 
further misapplications  of controls  are made.     With this sort of back- 
ground it is  easy to see why  a departure  is  so hard to define,  yet is 
relatively easy  for a pilot  to  recognize.     Next  one must examine  the 
terms   "post-stall  gyration",   "spin"   ani  "deep stalls",   used to define 
a departure. 

• 7.1.1.3 Post-Stall Gyration. 
i 

A post-stall gyration is  an  uncontrolled motion  about one  or more 
axes   following departure   (reference  2,  paragraph  6.3.10).     PSG is  a very 
difficult term to define  concisely because it can occur in so many  dif- 
ferent ways.     Frequently,  the motions  are  completely  random about all 
axes  and no more  descriptive  term than PSG can be applied.     On the other 
hand a snap roll or a tumble  are post-stall  gyrations.    The main diffi- 
culty  lies   in distinguiphing between  a PSG and either the  incipient 
phase  of  a spin or  an oscillatory  spin.     The  chief  distinguishing 
characteristic  is  that  a PSG may  involve  angles  of  attack  that  are  in- 
termittently below the airplane's  stall  angle of  attack,  whereas  a spin 
always  occurs  at  angles  of  attack greater than stall. 

• 7.1.1.4 Spin. 

A spin is  a sustained yaw  rotation  at  angles  of  attack  above  the 
aircraft's  stall  angle  of  attack   (reference  2,  paragraph  6.3.11).     This 
definition bears  a bit of explanation  in that  a spin is  certainly  not 
altogether a yaw  rotation.     Only the perfect  flat spin   (a = 90  degrees) 
could satisfy  that  constraint.     The inference  is,  however,   that the yaw 
rotation is  dominant  in  characterizing a spin.     Indeed,  to  a pilot,  the 
recognition of  a sustained   (though  not necessarily  steady)   yaw  rate  is 
probably  the most  important visual  cue  that  a spin is  occurring.     Even 
though  roll  rate  and yaw  rate  are  often of nearly  the same  magnitude, 
the pilot still  ordinarily  recognizes  the spin because of the yaw  rate. 
In steep spins   (with  a  relatively  close  to  as)   it is quite easy  to con- 
fuse  the roll  rate  and yaw  rate  and pilots  sometimes  have  difficulty  in 
recognizing this  typr  of motion  and treating  it as  a spin.     The  steep 
inverted spin is  pa.cicularly  confusing since  the  roll  and yaw  rates  are 
in opposite  directions.     Once  again though,   the yaw  rate  determines  the 
direction of  the spin and the  required control manipulations  to  recover. 
All  in  all,   it is well  to  remember that  the spin is  trvly  a complicated 
maneuver involving simultaneous  roll,  pitch,   and yaw  ratios  and high  angles 
of attack.     And,  even though  the overall  rotary motion in a spin will 
probably have  oscillations  in pitch,   roll,   and yaw  superimposed upon it, 
it  is  still  most easily   recognized by  its  sustained yawing  component. 

•7.1.1.5 Deep Stall. 

A deep stall  is  an out-of-control  flight condition in which  the 
airplane  is  sustained  at  an  angle of  attack well beyond that  for  as 
while  experiencing negligible  rotational  velocities   (reference   2,  para- 
graph  6.3.12).     It  may be  distinguisned  from a PSG by  the   lack  of 
significant motions  other than  a high  rate  of  descent.     The  deep stall 
may  be  a  fairly  stable  maneuver such  as   a  falling  leaf,   or it  can be 
characterized by  large  amplitude angle of attack oscillations.     For an 
aircraft to stay  in  a deep stalled condition,   significant  oscillations 
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must be  limited to the  longitudinal axis.     Lateral and directional con- 
trol surfaces  are either stalled or blanked out.     Depending on the 
pitching moment coefficient,   recovery may or may not be possible. 

• 7.1.2 SUSCEPTIBILITY AND RESISTANCE TO DEPARTURES AND SPINS: 

Susceptibility/resistance to departures  and spins has become  an 
extremely  important  design  goal   for the  generation of high performance 
aircraft presently  in  the  design  stage.     Reference  4 offers  convincing 
proof that such design  emphasis  is   in  fact overdue.     But,   for the de- 
signer to meet this  requirement  in  an aircraft and  for the test pilot 
to test  against this  requirement,  it is essential  that the words   "sus- 
ceptible"   and   "resistant"  be understood alike by  all  concerned. 

• 7.1.2.1 Extremely Susceptibie to Departure (Spins). 

An aircraft is said to be extremely susceptible to departure (spins) 
if the uncontrolled motion occurs with the normal application of pitch 
control alone or with small roll and yaw control inputs. The only allow- 
able roll and yaw control inputs are those normally associated with a 
given maneuver task.  In short, an airplane that departs or enters a 
spin during Phase A of the flight test demonstration falls within this 
category (reference 2, paragraph 3.4.1.8). 

• 7.1.2.2 Susceptible to Departure (Spins). 

An aircraft is said to be susceptible to departure (spins) when the 
application or brief misapplication of pitch and roll and yaw controls 
that may be anticipated in normal operational use cause departure (spin). 
The amount of misapplied controls to be used will be approved by the 
procuring activity for Phase B of the flight test demonstration.  In 
other words each aircraft will be stalled and aggravated control inputs 
will be briefly applied to determine departure (spin) susceptibility. 

• 7 1.2.3 Resistant to Departure (Spins). 

An aircraft is said to be departure (spin) resistant if only large 
and reasonably sustained misapplication of controls results in a de- 
parture (spin).  "Reasonably sustained" means up to 3 seconds before re- 
covery is initiated (reference 2, table I).  This time delay may be in- 
creased for aircraft without positive indication of impending loss of 
control.  This aircraft departs (spins) during Phase C of the flight 
test demonstration. 

• 7.1.2.4 Extremely Resistant to Departure (Spins). 

An  aircraft is  said to be extremely  resistant to  departure   (spins) 
if these motions  occur only  after  abrupt,   inordinately  sustained applica- 
tion  of gross,   abnormal,   pro-departure   controls.     Aircraft in this  cate- 
gory will  only  depart   (spin)   in Phase D of  the  flight test demonstration 
when  the   controls   are   applied   and hold  in  the most  critical  manner  to 
attain each possible mode of post-stall  motion and held  for various 
lengths  of  time  up  to   15  seconds   or  three  spin turns,  whichever is  longer. 
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ü • 7.1.3 SPIN MODES': 

Adjective descriptors are used to describe general characteristics 
of a given spin and these adjectives specify the spin mode.  Average 
values of angle of attack, for example, would allow categorization of 
the spin as either upright (positive angle of attack) or inverted (nega- 
tive angle of attack).  An average value of angle of attack would also 
allow classification of a spin as either flat (high angle of attack) or 
steep (lower angle of attack).  Finally, the average value of the ro- 
tational rate compared with the oscillations in angular rates about all 
three axes determines the oscillatory character of the spin.  One des- 
cripcive modifier from each of these groups may be used to specify the 
spin mode. 

Table I 

SPIN MODE MODIFIERS 

Group 1 Group  2 Group  3 

Upright Steep Smooth 
Mildly  Oscillatory 

Oscillatory 
Highly  Oscillatory 
Violently Oscillatory 

Inverted Flat 

The most confusing thing about mode identification is the proper 
use of group 2 and group 3 modifiers.  Perhaps the following tabulated 
data, extracted from reference 5, will provide insight for understanding 
how to use these terms. 

Table   U 

F-4E   SPIN   MODES 

Mode 

Average 
AOA 

(deq) 

AOA 
Oscillations 

(deq) 
Y aw   Ra te 
(dec/sec) 

Roll   Rate 
(deq/sec) 

Pitch 
Rate 

(deg/sec) 

Steep-Smooth 42 + 5 

+ 10 

40-50 50 15 

Steep-Mildly  Oscillatory 45-60 45-60 -- -- 

Steep-Oscillatory 50-60 + 20 

Neg] igible 

50-60 
(wi th  large 
oscillations) 

80- 90 

Same   as 
yaw   rate 

  

Flat-Smooth 77-80 25 7 

Note:     One  mode   reported  in   reference   5   has  been  omitted   from  this   table  because   the 
terminology   did not   fully   conform  to  that  of   reference   2.      It was   called 
"highly  oscillatory" with   angle   ol   attack  excursions   of  +30   degrees. 
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17.1.4 SPIN PHASES: 

A typical  spin may be divided into the phases  shown in figure  7.1 

INCIPIENT PHASE 

THE BOUNDARIES 
BETWEEN PHASES 
ARE NOT ALWAYS 
DISTINCT OR WELL 
DEFINED 

INITIATION OF RECOVERY 
CONTROLS AND 

LEVEL FLIGHT 

FIGURE 7.1   SPIN PHASES 

• 7.1.4.1 Incipient Phase. 

The incipient phase of a spin is the initial, transitory part of 
the motion during which it is impossible to identify the spin mode. 
However, notice in figure 7.1 that the yaw rotation begins as the in- 
cipient phase begins; that is, the visual cue to the pilot is of a sus- 
tained (though by no means steady) yaw rotation.  A further distinction 
between the PSG (if one occurs) and the incipient phase of the spin is 
that the angle of attack is continuously above the stalled angle of 
attack (as) for the aircraft, even in the incipient phase of the spin. 
During a PSG the angle of attack may intermittently be less than os. 
This incipient phase continues until a recognizable spin mode develops, 
another boundary very difficult to establish precisely.  In fact the 
test pilot may not recognize such a mode until he has seen it several 
times; but careful examination of data traces and film may reveal that 
a "recognizable" mode had occurred.  In this case "recognizable" does 
not necessarily mean recognizable in flight, but distinguishable to the 
engineer from all available data.  In short, the incipient phase of the 
spin is a transitory motion easily confused with a PSG, but distinctly 
different from either a PSG or the developed phase of ehe spin. 
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• 7.1.4.2 Developed Phase. 

I 

The developed phase of a spin is that stage oi the motion in which 
it is possible to identify the spin mode.  During this phase it is common 
for oscillations to be present, but the mean motion is still abundantly 
clear. The aerodynamic forces and moments are not usually completely 
balanced by the corresponding linear and angular accelerations, but at 
least equilibrium conditions are being approached.  Generally it is 
evident in the cockpit that the developed phase is in progress, though 
the exact point at which it began may be quite fuzzy.  Since the aircraft 
motion is approaching an equilibrium state, it is frequently advisable 
to initiate recovery before equilibrium is achieved.  For example, dur- 
ing the T-38 test program warning lights were installed to signal a 
buildup in yaw rate.  Test pilots initiated recovery attempts when these 
lights came on.  Still, in the flat spin mode with recovery initiated 
at 85 degrees per second, a peak yaw rate of 165 degrees per second was 
achieved.  The longitudinal acceleration at the pilot's station was 
approximately 3.5 g and the spin was terminated by deployment of the 
spin chute (reference 6, pages 10, 11).  The developed spin, while it 
may be more comfortable due to less violent oscillations, can be de- 
ceptively dangerous, and the spin phase which follows can be disastrous. 

• 7.1.4.3 Fully Developed Phase. 

A fully developed spin is one in which the trajectory has become 
vertical and no significant change in the spin characteristics is noted 
from turn to turn.  Many aircraft never reach this phase during a spin, 
but when they do, they are often very difficult to recover.  The smooth, 
flat spin of the F-4 is a classic example in which this phase is attained 
and from which there is no known aerodynamic means of recovery.  But a 
fully developed spin obviously requires time and altitude to be generated; 
how much time and how much attitude are strong fuctions of entry condi- 
tions.  As a general rule, departures that occur at high airspeeds (high 
kinetic energy) require more time and altitude to reach the fully de- 
veloped phase than departures which occur at low kinexiic energy.  Finally, 
the spin characteristics which remain essentially unchanged in the fully 
developed phase include such parameters as time per turn, body axis 
angular velocities, altitude loss per turn, and similar quantities.  How- 
ever, the definition does not prohibit a cyclic variation in any of these 
parameters.  Hence, a fully developed spxn can be oscillatory. 

! l 

With this rather lengthy set of definitions in mind it is now 
appropriate to look more closely at spinning motions and at the aero- 
dynamic and inertial factors which cause them and the PSG. 

! ■7.2 THE SPINNING MOTION 

Because the PSG is   a random and usually  a highly  irregular motion, 
it  is   very  difficult  to  study.     On  the other hand,   the spin  can  approach 
an equilibrium condition  and  is  therefore much  more  easily   understood. 
Further,   since  the  PSG  is   affected by  the same   aerodynamic  and mass 
loading  characteristics  as  the spin,   an understanding of the spin  and 
the  factors   affecting  it  are  appropriate  to  the purposes  of this  course. 
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• 7.2.1 DESCRIPTION OF FTJGHTPATlf- 

An aircraft spin is a coupled motion at extreme attitudes that re- 
quires all six equations of motion for a complete analysis.  It is 
usually depicted with the aircraft center of gravity describing a helical 
path as the airplane rotates about an axis of rotation.  Figures 7.2 
shows such a motion.  Notice that the spin axis of rotation may be curved 
and that the spin vector w is constantly changing.  Such a motion is 
highly complex, but by making some approximations a simplification re- 
sults whion can be very useful in understanding the spin and its causes. 

FIGURE 7.2 HELICAL SPIN MOTION 

In a fully developed spin with no sideslip the spin axis is verti- 
cal as indicated in figure 7.3. 
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RELATIVE WIND 

FIGURE 7.3   FORCES IN A STEADY SPIN WITHOUT SIDESLIP 

If one  ignores   the side  force,  the  resultant aerodynamic  force  acts 
in the  x-z plane  and is approximately  normal  to  the wing  chord.     Taking 
the  relative wind to be nearly  vertical,   a summation of vertical   forces 
gives: 

W =   D  =   \ p   V2S  CD (7.1) 

A similar summation of horizontal   forces  suggests  that  the lift  component 
balances   the  so-called  centrifugal  force  so that 

2 12 
mroj     =  L =  j P   

v S  C (7.2) 

Equation  7.1  suggests  that  as  AOA increased   (an<   CD increased)   the  rate 
of descent   (V)   must decrease.     Furthermore,   at  a stalled AOA,   CL decreases 
as  AOA increases.     With  these two  facts   in mind  it  is  cl^av that  tne 
left hand side  of equation   7.2  must decrease  as   the AOA ircreases   in  a 
spin.     The  rotation  rate,   w,   as  will be shown later,   tend;;   to  increase 
as  AOA increases;   hence,   the  radius  of turning  r must decrease  rapidly 
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as AOA increases.  These observations point up the fact that in a fully 
developed spin u  and the relative wind are parallel and become more 
nearly coincident as the AOA increases.  In fact the inclination (n) of 
the flightpath (relative wind) to the vertical is given by 

tan n = 77— ru 
V 

A typical  variation of  n  with AOA is   from about  5.5  degrees   at   a =  50 
degrees  to  1  degree   at   a =  80  degrees   (reference  7,  page   533).     So,   it 
is  not   farfetched to  assume  that  w  is  approximately  parallel  to  the 
relative wind  in  a  fully  developed  spin. 

All of these  observations  have  been made  under the assumption that 
the wings   are  horizontal   and that sideslip is  zero.     These effects, 
while extremely  important,   are beyond the scope  of  this  course,  but 
references   7  and  8 offer some   insight into them.     It  is  also noteworthy 
that  this   simplified analysis   is  valid only   for  a  fully  developed spin. 
However,   the  trends   to be noted  and  an  understanding of the underlying 
physical phenomena will  give  the  student  a greater  appreciation of  the 
other phases   of  the  spin  and of  the post-stall  gyration. 

• 7.2.2 AERODYNAMIC FACTORS'- 

In the post-stall   flight  regime  the  aircraft is  affected by vary 
different  aerodynamic  forces   than  those  acting upon  it during unstalled 
flight.     Many   aerodynamic  derivatives   change  sign;   others which   are  in- 
significant  at  low  angles   of  attack  become  extremely   important.     Probably 
the most  important  of these  changes   is  a phenomenon  called  autorotation 
which  stems   largely   from the  post-stall  behavior of  the wing. 

• 7.2.2.1 Autorotativr Couple of tlir Wing. 

If a wing is operating at ai_ (low angle of attack) i  id experiences 
a A a due to wing drop, there is a restoring moment from the increased 
lift.  If, on the other hand, a wing operating at 0.2   (^2 > as' experi- 
ences a sudden drop, there is a loss of lift and an increase in drag 
that tends to prolong the disturbance and sets up autorotation.  These 
aerodynamic changes are illustrated in figure 7.4. 

(-)ACL - TENDS TO FURTHER 
DROP THE WING AND PROLONG 
A ROLLING MOMENT. 

LARGE ACD TENDS TO RETREAT 
THE WING FURTHER INCREASING 
OAND FORCING A YAWING MOTION 

FIGURE 1.4   CHANGES IN CLAND CD WITH a<«, AND 
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ü Consider now a wing  flying in the post-stall region of figure 7.4 
and assume  that some disturbance has  given that wing an increase in a 
which  tends  to set up a yawing and rolling motion to the right as shown 
in  figure  7.5.    The angle of attack of the advancing wing   (section A) 
corresponds  to  c*2  in  figure  7.4 while  the  angle of  attack of the  retreat- 
ing wing   (section  R)   corresponds   to  02 +  An in  figure  7.4.     Figure   7.C 
shows  these two sections  and illustrates why  the  advancing wing is 
operating  at  a lesser angle  of  attack  than the  retreating wing.     In each 
case  the velocity  vectors  are  drawn  as  they would be seen by  an observer 
fixed to the respective wing section.    The difference  in resultant aero- 
dynamic  force  RA -  RR acting  at  section A will,   in general,  be  a  force 
AF, depicted in  figure   7.7.     Notice  that  AFX is  in a positive  x-direc- 
tion,  while  AFZ  is  in a negative  z-direction.     AFX  forms  a couple  as 
depicted in  figure   7.8 which  tends  to sustain  the initial yawing moment 
to the  right.     Of course,   AFZ   contributes   a similar rolling  couple  about 
the x-axis  which  tends  to sustain the  initial  rolling moment to  the 
right.     Ordinarily,   the  autorotative  couples  generated by  the wing are 
the most important  aerodynamic  factors  causing and sustaining  a spin. 
However,  the  other parts  of the  aircraft  also have  a part to play. 

!   I 

f 
ADVANCING 
WING 

RETREATING 
WING 

FIGURE 7.5   PLAN VIEW OF AUTOROTATING WING 

RA     OR 

ADVANCING WINC 
SECTION 

RETREATING WING 
SECTION 

FIGURE 7.6   DIFFERENCE IN AOA FOR THE ADVANCING AND RETREATING WING IN AUTOROTATION 
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FIGURE 7.7   COMPOHENTS OF DIFFERENCE IN RESULTANT AERODYNAMIC FORCES (ADVANCING WING) 

I 

J4 AF„ 

FIGURE 7.8   AUTOROTATIVE YAWING COUPLE 

• 7.2.2.2 Fuselage Contribution. 

The  aerodynamic  forces  on  the  fuselage  at  stalled angle  of  attack 
are  very  complex,   are  highly  dependent  on  fuselage  shape,   and may  either 
oppose  or  increase  the  autorotative  couples.     Sidewash  flow over the 
fuselage  greatly  affects  the dihedral effect   (CJU)   and may even increase 
it  to values   greater  than those observed  for  unstalled flight   (reference 
7,  page   529).     Weathercock  stability   (CnR)   will  also be affected signifi- 
cantly by sidewash  flow over the  fuselage.     As  an example of the possible 
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V. ) 
contributions   of  the  fuselage   to  the  autorotative   couple  consider the 
effects   of   fuselage   shape   as   illustrated in  figure   7.9.     The   fuselage 
in  figure  7.9a acts   much   likt   an  airfoil  section  and may well  generate 
a resultant  aerodynamic  force which would contribute  to the yawing auto- 
rotative  couple.     Of  course  the  fuselage shape will  determine  the  rela- 
tive  sizes  of   "lift"   and  "drag"   contributed by the rotating nose section. 
A box-like   fuselage   cross-section will  probably  give  a resultant  aero- 
dynamic   force  opposing   the  yaw   autorotation.     An  extreme example  of tnis 
type   of   fuselage   cross-section   reshaping   is   the strakes   added to  the  nose 
of  the T-37,   as   in   figure   7.9b.     Clearly   the   flow  separation produced 
by  the  strakes   in  a   flow   field with   considerable   sidewash   reorients  the 
resultant  aerodynamic   force   in  such   a way   as   to  produce  an  anti-spin 
yawing moment.     Such  devices   have   also been  proposed   (and  tested)   for 
the F-100,   F-10G,   and  F-lll. 

CONTRIBUTES TO AUTOROTATIVE 
YAWING MOMENT 

HINDERS AUTOROTATIVE 
YAWING MOMENT 

FIGURE T.9A   PLAIN FUSELAGE 

FIGURE J.9B   FUSELAGE WITH STRAKES 
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*7.2.2.3 Changes in Other Stability Derivatives. 

All of the  other stability  derivatives,  especially  those  depending 
on  the  lift  curve  slope  of the wing,  behave  in  a different manner in the 
post-stall   flight  regime.     However,   a  fuller discussion of  the post-stall 
behavior of such  derivatives   as  Cj,   ,   Cn   ,  Cn   ,   and  combinations  of  these 

hr r *■ 
derivatives   is   given  in  reference   7,  page  529.     For the purposes  of  this 
course  it suffices  to  say  that C«     becomes  positive  and Cn    may become 
positive in  the post-stall   flight regime;  Cn    may  also become  greater 
in stalled  flight.     Each  of  these  changes  contributes  to  autorotation, 
the  aerodynamic phenomenon which  initiates   and sustains   a spin.     However, 
aerodynamic  considerations   are by  no means   the only   factors   affecting 
the post-stall  motions   of an  aircraft.     The  inertia  characteristics   are 
equally  important. 

• 7.2.3 AIRCHAFI MASS DISTHIBl TION: 

• 7.2..i.l Principal Axes. 

For every rigid body there exists a set of principal axes for which 
the products of inertia are zero and one of the moments of inertial is 
the maximum possible for the body.  For a symmetrical aircraft, this 
principal axis system is frequently quite close to the body axis system. 
For the purpose of this course, the small difference in displacement is 
neglected, and the principal axes are assumed to lie along the body axes. 
Figure 7.10 illustrates what the actual difference might be. 

J 

r\ 

"B0V\ 'WMF TRY 

tx< . V  PRINCIPAL 

If  I BODY |l, 

t   1 PRINCIPAL 

FIGURE 7.10   BODY AND PRINCIPAL AXES PROXIMITY 

♦ 7.1..5.2 Hadiiis of (ivration. 

The center of gyration of a body with respect to an axis is a point 
at such a distance from the axis that, if the entire mass of the body 
were concentrated there, its moment of inertia would be the same as that 
of the body.  The radius of gyration (K) of a body with respect to an 
axis is the distance from the center of gyration to the axis.  In equa- 
tion form 



u 

or 

/(y2  +  z2)   dm =  I    =  K  2m 1 xx 

/(x2  +  z2)   dm =  I    = K  2m 

fix2  +  y2)   dm =  I     =  K  2m z z 

K.   =   I./m,   i  =  x,   y,   or  z 
l l 4 (7.3) 

•7.2.3.3 Relative Aircraft Density. Y: 

A nondimensional parameter called relative aircraft density (y) is 
frequently used to compare aircraft density to air density. 

(7.4) m/Sb   m 
u ~  o     PSb 

•7.2.3.4 Relative Magnitude of the Moments of Inertia. 

The aircraft mass distribution is frequently used to classify the 
aircraft according to loading.  Because aircraft are "flattened" into 
the XY plane, Iz is invariably the maximum moment of inertia.  Ix is 
greater or less than Iy depending on the aircraft's mass distribution. 
The relative magnitudes of the moments of inertia are shown in figure 
7.11.  As will be seen in the next paragraph the relative magnitudes of 
Ix, Iy, and Iz are of utmost importance in interpreting the equations 
of motion. 
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WING LOADED 

NEUTRALLY LOADED 

FUSELAGE LOADED 

Wx 

7.16 

FIGURE 7.11   AIRCRAFT MASS DISTRIBUTION 
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.J IT.3 EQUATIONS OF MOTION 

'■    I 

Maneuvers within the post-stall  flight regime can be analyzed by 
using all  six equations  of motion and integrating them numerically on a 
computer.     From such studies,  predictions of rate of rotation,  angle of 
attack, magnitude of the oscillations, optimum recovery techniques,  and 
other parameters  can be made.     However,  such studies must use rather in- 
accurate theory to predict stability derivatives  or else depend on wind 
tunnel data or  free  flight model tests  to provide  the aerodynamic data. 
Hence,  many  researchers  prefer to  rely  almost  completely  on model  tests 
for predictions  prior to  flight tests.     Correlation between model tests 
and aircraft  flight tests  is  generally  good.     But model tests  also have 
limitations.     Spin tunnel tests primarily examine  developed or  fully 
developed spins;   there  is  no  good way  to investigate PSG's  or the in- 
cipient phase of the spin in the spin tunnel.     Reynolds  number effects 
on both  spin tunnel  and  free   flight models  make it very  difficult to 
accurately extrapolate  to the  full  scale  aircraft.     Engine  gyroscopic 
effects  are not often simulated in model tests.     Finally,  model  tests 
are  always  done  for a specific aircraft configuration, which  is  a dis- 
tinct  advantage  for a  flight test program even though  it does  not suit 
tne purposes  of this   course.     However,   it would be  foolish to ignore 
either computer analyses  or model  tests  in preparing  for  a series of 
post-stall   flight tests.     For obvious  reasons,   this  course will be re- 
stricted to  a much  simplified  look  at  the equations  of motion  as  applied 
to  a  fully  developed spin. 

• 7.3.1 ASSUMPTIONS': 

The analytical treatment used in these notes is based on many 
simplifying assumptions, but even with these assumptions good qualitative 
information can be obtained.  The most important assumption is that only 
a fully developed spin with the wings horizontal will be considered.  The 
wings horizontal, fully developed spin involves ^ balance between ap- 
plied and inertial forces and moments.  Some of the ramifications of this 
assumption are: 

a. The rate of descent (V) is virtually constant, as is altitude loss 
per turn. 

b. V and u are parallel. 

— •   • 
c. The time per turn is constant, or u is constant.  Hence, p = q = 

r = 0. 

d. With  the wings  horizontal  iö  lies  entirely within the  xz  plane  and 
q  =  0 .      (~=pi+rk). 

Initially,   it will   also be assumed  that  tne applied moments   consist 
entirely  of aerodynamic  ones,   although  other  factors will be  considered 
in  later paragraphs. 

• 7.3.2 GOVERNING EQUATIONS: 

The reference frame for expressing moments, forces, accelerations, 
etc., is the xyz body axis frame which rotates at the same rate as the 
spin rotation rate ~.  The origin of the xyz axes is centered at the 
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aircraft's  eg and translates  downward  at  a rate equal  to  the  constant 
rate  of descent V.     With  this background the  forces   acting on the  air- 
craft  can be examined. 

Ü 

• 7.3.2.1 Forces. 

The external   forces   applied  to  the aircraft and expressed  in an 
inertial  reference   frame  follow Newton's   second  law. 

F = m V 

Expressing V in the xyz reference frame, 

F = m (V + . x V) 

But since V is constant in the fully developed spin and since tu and V 
are parallel , 

F = 0 

The elimination of the force equations in this fashion merely reinforces 
the idea that the rotary motion is the important motion in a spin and one 
would expect the significant equations to be the moment equations. 

• 7.3.2.2 Moments. 

The moment equations to be considered have already been developed 
in Chapter I and are repeated below. 

G  = p I  + qr (I  - I ) - (r + pq) I x  r  x   1 z   y        l^       xz (7.5) 

G  = q I  - pr (I  - I ) + (p2 - r2) I Y y z x    ^        xz 
!7.6) 

G  = r I  + pq (I  - I ) + (qr - p) I z     z       y   x    ^   c       xz 
(7.7) 

Utilizing  the   assumption  that   the body   axes   xyz   are   also principal   axes 
and  considering G to  consist of  aerodynamic moments  only,   these equations 
become: 
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u L    = p I + qr (I - I ) aero  r x  *   z   y 

Maero = * Jy " ?r (Iz " V 

N    = r I + pq (I - I ) aero     z  ^M  y   x 

(7.8) 

(7.9) 

(7.10) 

Solving for the angular accelerations shows the contributions of each 
type of moment to that acceleration. 

I - I 
aero    +    -Y. ?. q r 
I I     y x x 

(7.11) 

M I  - I 
aGro +    _z * p r I I     F 

y y 

N _... i„ -  I. aero ,     x   y 
Xz V *z 

aerodynamic     inertial 
term term 

(7.12) 

(7.13) 

Ü The body axis  angular accelerations  can also be expressed in terirs  of 
aerodynamic  coefficients  and the  relative  aircraft density. 

aero 
1 2 j p  M    S b 

K      m x 

V 
2m    K 
pSb    x 

2     C* 

V 

2yK 2     ^ 

In  a similar manner, 

aero V 

2pK 2       n 

;. i 

It  is  common  practice  in post-stall/spin  literature  to  define  Cm 
on the basis  of wingspan instead of on the basis  of wing chord as  is 
done  in most other stability  and control work.     This  change  is made  to 
allow a  consistent  definition of  u  and is  indicated by  a second sub- 
script;  that  is,   Cm becames  Cm j-,.     Then, 
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M aero 

2pK 2  m,b 
o 

Equations 7.11 through 7.13 then become 

V2C 
P  = 

2uK 

1  - I 
T  +  "I  qr (7.14) 

V2C .      I  - I 
q  =  __m_£ +    z    * pr (7.15) 

r - 
V2C        I  - I 

n J.  
x  y   +    ^L  pg 

2pK Z 1z 
(7.16) 

With this brief mathematical background it ^.s now appropriate to consider 
the aerodynamic prerequisites for a fully developed spin to occur. 

• 7.3.3 AERODYNAMIC PREREQUISITES: 

For a fully developed upright spin with the wings horizontal 

p=q=r=q=0 and equations 7.14, 7.15, and 7.16 yield 

Cl    = 0 [7.17) 

v2c m,b I  - I z   x pr 17.18) 
2uK 

C  =  0 n 
17.19) 

What do each of these results imply about a stable condition like the 
fully developed spin? 

• 7.3.3.1 Pitching Moment Balance. 

By examining equation 7.18 in conjunction with the Cm ^ versus a 

curve for an aircraft it is at least possible to identify regions where 
a fully developed spin can occur. 

First, the angle of attack must be above the stall angle of attack. 
This condition is obvious, since the definition of a spin demands a > us 
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u Second, C . must be opposite in sign to the inertial term on the 

right hand side of equation 7.18.  For an upright spin this requirement 
means that C , must be negative. This fact is clear if one observes m,b 
that Iz > Ix and that p and r are of the same sign in an upright spin 
(figure 7.12) . In fact it is possible to express the rotation rate in 
a convenient form by slightly rearranging equation 7.18.  Recall that 

M aero V2C m,b 

K 2m x 

Figure 7.12 also illustrates the fact that 

p= u cos a and r = w sin a 

ANGULAR 
RATES 

'     I 

i    I 

r>0 

p>0 

q=o 

LEFT SPIN 

RIGHT SPIN 

WINGS 

HORIZONTAL 

p>0 

Ol    pi + rk 

1=0 

P<0 

r<0 

P *"aJ COS r    a) sin a 

FIGURE 7.12   SPIN VECTOR COMPONENTS 
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Substituting into equation 7.18, 

aero 
I  - I   _ 
z   x  2 cos a sin -i 

-M 
aero (7.20) 

i-   (I  - I ) sin 2 
2   z   x 

Equation 7.20 suggests that the minimum rotation rate occurs ne:.r ar u 
cf 45 degrees, although strong variations in M    may preclude this 

ae i o 
minimum.  in fact, there is one additional prerequisite which must be 
satisfied before   a   fully   developed  spin  can  occur. 

The  sloe''   of  C     ,    versus    ■.  must  be  neuative  or  stabilizing  and must 
m,D 

be relatively constant.  This is required simply because a positive 

dC 
~m,b 
da represents a divergent situation and would therefore require a 

pitching acceleration, q r   0._ But this angular acceleration would violate 
the assumption of a constant .. in a fully developed spin.  Said another 
way, any disturbance in anale of attack would produce a .'.C , tendinq to 2 '       - - t rn,b      * 

dC 
restore   C     ,    to   its   initial   value   only   so   lone;  as      , m,b J J d 

m,b 0.     To summarize 

these   constraints,   consider   figure   7.13.     Aircraft   B   can enter  a   fully 

FIGURE 7.13   AERODYNAMIC PITCHING MOMENT  PREREQUISITES 
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u 
developed, upright spin at any AOA above as insofar as the pitching 
moment equation is concerned because its C .. versus a is always negative 

dc m'r 

and ~m,b 
da is always negative-  However, aircraft A can meet the three 

constraints imposed by the pitching equation only in the shaded areas. 
Of course, the pitching moment equation is not the sole criterion; the 
rolling and yawing moment equations must also be considered. 

• 7.3.3.2 Rolling and Yawing Moment Balance. 

Equations 7.17 and 7.19 suggest at least four other conditions 
which must be satisfied to have a fully developed spin occur.  Although 
not specifically pointed out in paragraph 7.3.3.1 all the aerodynamic 
derivatives, even Cm b are functions of both a, ß, and the rotation rate 

w (reference 9, page 6). Having considered C . as a function of a m,b 
alone,  it is   convenient to  consider Cn  and C^  as   functions  of co  alone. 
There  is   little  justification  for this  choice other than the  fact  the 
lateral-directional  derivatives   are more  directly  linked to  rotation 
rate while  the  longitudinal  derivative  is more  directly  linked to  angle 
of  attack.     But it is well   to keep in mind that  all  these  variables  do 
affect  Cm b,   C.lt  and Cn. 

The conditions imposed by both Cn and C£ to allow a fully developed 
spin are that the derivatives must be equal to zero and the rate of 
change of the derivatives with respect to changes in u must be negative. 
The first of these conditions is explicitly stated by equations 7.17 and 

7.19.  But the second requirement (- 
dC 

0 and 
dC  r 
dw 0) stems from the 

fact that a fully developed spin must be a stable condition.  If an 
increase in u will produce an increased C^ or Cn, then any change in 
rotation rate will cause the autorotative moments to diverge away from 
the supposedly stable initial condition.  Figure 7.14 illustrates this 
point. 

C C.  or C       - 0   tends   to 

restore  equilibrium u. 

t 
Cp   or  c„   >0   tends   tc 

icrease  u,. <\furthär   inc 

I- .<W-I 

FIGURE 7.14   STABILIZING AND DESTABILIZING SLOPES FOR C, AND C(1 VERSUS 
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Obviously,   these  aerodynamic  prerequisites  must  all  be met   for  a 
fully  developed spin  to  exist  in  a  true  equilibrium   form.     Of  course, 
oscillatory  spins  may  occur with  some  relaxation of one  or more  of  these 
conditions.     It is  extremely  rare  to observe  an ideal  case which would 
precisely meet all   these  conditions  in  an  actual  spin.     So,  while ex- 
actly  satisfying all  these  conditions   is  essential  for  a  fully  developed 
spin to  actually exist,   it  is   common  to estimate  spin parameters with 
less   than  perfect   fulfillment  of  these  prerequisites.     An  example   of how 
such estimations   are  made  will  be  considered next. 

•7.3.4 ESTIMATION CF SPIN CHARACTKKISIICS': 

Reference   9,   appendix  B,   describes   in  detail   a method of estimating 
spin  characteristics which was   designed  to estimate   initial   conditions 
for a computer study  investigating  possible  steady  state  spin modes   of 
the McDonnell  F-3H   Demon.     Although   this  estimation  method was   only   in- 
tended to  help  predict   initial   conditions   for   the  numerical   integration 
and  thus   save   computer  time,   it  serves   as   an  excellent  example  of how 
model   date   and  the  aerodynamic  prerequisites   discussed  in paragraph   7.3.3 
can bo  combined  to  get   a   "first   cut"   at   spin   characteristics. 

The   aerodynamic  data on which   this  example  is  based were  measured 
by  steadily   rotating  a model   about  an   axis  parallel   to  the  relative wind 
in  a wind  tunnel.     Hence,   no  oscillations   in  angular  rates   are   taken 
into  account.     This   limitation  on   the   aerodynamic  data  is   indicated by 
the  subscript   "r b"   (rotation-balance   tunnel  measurements).     In   addition, 
the  data  are  presented  as   a   function  of  a nondimensional   rotation  rate, 

~~.     To  help  simplify   the  estimation  process   and partly  because  the 

rolling moment  data were  not  as   "well-behaved"   as   the yawing moment  data, 
the  rolling moment   data were   ignored.     However,   all   the  other prerequi- 
sites   of paragraph   7.3.3 were   observed.        .  B  estimation method  is  outlined 
below  and  the  interested  student  is   referred  to   reference   9,   page   18,   for 
a  fuller   description   and   a  numerical   example. 

• 7.3.4.1 Ortr: Fmm Ai-i'^K iiaini r ! )ata. 

Use   the  ~- and 
dC       . 

r ii. n n,rb for  wh.i ch   (-.        ,    -   0   ana    .-•—— n , rb , JJ . 
d(2V) 

0   to  determine 

C       , .     This   amounts   to   using   the  model   data   to  determine   aerodynamic 
m,rb 

pitching moments   ror whi oil   the   aerodynamic  yawing  moment   is   zero. 

• 7.3.4.2 Calculating Incrtial Pitching \|<um nl. 

Using a modified form of equation 7.20, and recognizing that the 
inertial pitching moment, is the negative of the aerodynamic pitching 
moment on a fully developed spin, 

in, rl 
s   calculated. 
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u 

Solving for - C  . m,rb 

I - I. 
'm,rb 

-M aero  

I (Iz " V sin 2 a 

-Cm>rb I P V
2 S b 

I (I2 - V sin 2 a 

p S b   VV (—)  sin 2 a (7.21) 

#7.3.4.3 Comparing Aerodynamic Pitching Moment and l'nertial Pitching Moment. 

Plot C  , versus a from the wind tunnel data (paragraph 7.3.4 

and the results of equation 7.21 on the same plot, like figure 7.15 

•t 
Cm,rb  

AERODYNAMIC 

Si _?=v &   ^-(-INERTIAL) 

i 
a SPIN 

FIGURE T.1S   AERODYNAMIC PITCHING MOMENTS COMPARED TO -INERTIAL PITCHING MOMENTS 

The  intersection of the two  curves   indicates   a possible  fully  developed 
spin.     From this plot  the  angle  of  attack of  the potential  spin is  read 
directly  and the value  of C       ,   is   used to  calculate  the potential  ro- 

j_ m, rb t-.ation rate. 
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• 7.3.4.4 Calculation of a,. 

Rearranging equation  7.21, 

2 I"  cm ,J (psb) 
.a».  m, rt>          
lVJ    " (I     -  I   )   sin  2   a * z         x 

(7.22) 

the ratio ~ can be calculated.  But equation 7.1 allows calculation of 

V is CD is known.  The model force measurements provide Crj and then 

V2 = 
w 

2P S CD 

(7.23) 

Then,   of course, 

9 (-  C       , ) (oSb)   W 2 m,rb 
u     =  

(I. Ix)(sin  2a)   | ,S  CD 

-2C       .    b W m,rb 

s71; I   )   sin  2.» 
x 

(7.24) 

•7.3.4.5 Results. 

A typical set of results from the numerical integration of the six 
equations compared with the estimated parameters is given in table III 
below (extracted from reference 9, pages 26, 27). 

Table III 

TYPICAL COMPUTER RESULTS VERSUS ESTIMATION 

Computer Results Estimation 

(deg) 
(0 

(rad/sec) 
V 

(ft/sec) 
u 

(deq) 
tu 

(rad/sec) 
V 

(ft/sec) 

36.0 1.88 294 38.2 1.90 285 

37.0 1.92 372 45.1 1.83 327 

Oscillated out of spin 48.2 1.89 453 

51.8 2.18 619 50.5 2.18 6 20 

80.0 4.72 494 70.0 3.50 515 

36.5 2.80 380 37.4 2.69 365 
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17.3.5 GYROSCOPIC INFLUENCES: 

Only  aerodynamic moments have been considered so  far in expanding 
the  applied external moments.    Ordinarily the aerodynamic moments  are 
the dominant ones,  but gyroscopic influences  of rotating masses  can also 
be important.    The NF-104,   for example has virtually no aerodynamic 
moments at the top of its rocket-powered zoom profile.    There is con- 
vincing evidence  that gyroscopic moments  from the engine dominate the 
equations  of motion at  these extreme altitudes   (reference  10,  page  13). 
The external  applied moments  should be generalized to include gyroscopic 
influences  and other miscellaneous   terms   (anti-spin rockets,   anti-spin 
chutes,  etc.).     The  applied external moments become 

G  = L     + L     + L .. x     aero    gyro    other 

G=M     +M      + M .. y     aero    gyro    other 

G=N     + N      + N .. z     aero    gyro    other 

The next paragraph will consider a simplified expansion of the gyroscopic 
terms. 

• 7.3.5.1 Gyroscope Theory. 

By virtue of its rotation, a gyroscope tends to maintain its spin 
axis aligned with respect to inertial space.  That is, unless an external 
torque is applied, the gyro spin axis will remain stationary with respect 
to the fixed stars.  If a torque is applied about an axis which is per- 
pendicular to the spin axis, the rotor turns about a third axis which 
is orthogonal to the other two axes.  On removing this torque the rota- 
tion (precession) ceases - unlike an ordinary wheel on an axle which 
keeps on rotating after the torque impulse is removed. 

These phenomena, all somewhat surprising when first encountered, 
are consequences of Newton's laws of motion.  The precessional behavior 
represents obedience of the gyro to Newton's second law expressed in 
rotation form, which states that torque is equal to the time rate of 
change of angular momentum. 

T = d H 
dt 

(7.25) 

with f = external torque applied to the gyroscope 

H = angular nomentum of the rotating mass 

H = I Q 
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with  I  = moment of inertia  of  the  rotating mass 

il  =  angular velocity  of the rotating mass 

Equation  7.25  applies,   like  all Newton's   laws,   only in an inertial   frame 
of  reference.     If it  assumed that■H is  to be expressed within a  frame  of 

reference  rotating  at the precession  rate of the gyroscope,  HA        ,_.   ,   = r -si r   i     'inertial 
• • 
H/ .        + u)     x H.     If the  gyro spin  rate  is  unchanged,   then H measured 

in the   rotating  frame will be  zero  and equation  7.25 becomes 

T  = ui     x  H 
P 

(7.26) 

The direction of precession for a gyro when a torque is applied is 
given by equation 7.26.  This direction is such that the gyro spin axis 
tends to align itself with the total angular momentum vector, which in 
this case is the vector sum of the angular moment due to the spinning 
rotor and the angular momentum change due the applied torque, AH as 
shown in figure 7.16.  The law of precession is a reversible one.  Just 
as a torque input results in an angular velocity output (precession), an 
angular velocity input results in a torque output along the corresponding 
axis . 

ROTOR 

FIGURE T.16   DIRECTION OF PRECESSION 

Three   gyro   axes   are   significant   in  describing  gyro operation;   the 
torque  axis,   the spin  axis   and  the precession  axis.     These  are  commonly 
referred  to  as   input   (torque),  spin,   and output   (precession).     The  direc- 
tions   of  these  axes   are   shown  in   figure   7.17;   they   are  such   that  the  spin 
axis   rotated  into  the  input  axis   gives   the  output  axis   direction by   the 
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right hand rule. The direction of rotational vectors such as spin, 
torque, and precession can be shown by means of the right hand rule.  If 
the curve of the fingers of the closed right hand point in the direction 
of rotation, the thumb extended will point along the axis of rotation. 
For gyro work, it is convenient to let the thumb, forefinger, and middle 
finger represent t»<e spin, torque, and precession axes respectively. 
Figure 7.18 illustrates this handy memory device. 

FIGURE M7 GYRO AXES 

GYRO CASE 

OUTER GIMBM. 

INNER CIMBAL 

SMN VECTOR 

FIGURE 7.18   SPIN, TORQUE- AND PRECESSION VECTORS 
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• 7.3.5.2 Kngine Gyroscopic Moments. 

In figure 7.19 consider the rotating mass of the engine as a gyro- 
scope and analyze the external torque applied to the engine by the engine 
mounts of an aircraft in a spin.  Then the total angular velocity of the 
rotating mass is the vector sum of ü£ + ~, with ~E being the engine rpm 
(assumed constant) and 3 being the aircraft's spin rotation rate. 

u 

FIGURE 7.19   ANGULAR VELOCITIES OF THE ENGINE'S ROTATING MASS 

+  w 

But 

"  'E 

If one also assumes that the rotational axis of the engine is parallel to 
the x-axis, 

"„ ♦ 

Then the angular momentum of the engine is 

HE E E 

with I_ =  moment of inertia of the engine about the x-axis. 

Considering figure 7.19 again and applying equation 7.26, the external 
torque applied to the engine must be the precession rate of the aircraft 
(~) crossed into the engine's angular momentum. 

T =  :  x  nE 

Rut the moment applied by the engine through the engine r tints to the 
spinning aircraft is equal but opposite in sign (Newton's Third Law). 
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ayro 

gyro 

M gyro 

N gyro 

u x H_ E 

p  q 

VE° 

gyro 

Mgyro =  "VE r 

Ngyro =  VE 
q 

(7.27) 

(7.28) 

(7.29) 

Then equations 7.11, 7 i2, and 7.13 can be expanded to 

AERO 

aero 

x 

I M 
aero , q = i -_  + 

aero , r = I —  + 

1 
INITIAL COUPLING   GYROSCOPIC TERM  "  MISC 
1 «ometimes called'  (an engine effect)!  (rockets,   ' 
gyrodynamic term) 

I - I 

I - I 
z   x 

I - I 
_x Y_ 

q r  i + 

p r  | + 

P q  i + 

_gyro 

M 
gyr° 

N 
9Yro 

spin chutes, | 
etc.) 

I   L 

I + 

other 

M other 

+  other 
l .    I z 
i 

(7.30) 

I  (7.31) 

|  (7.32) 

Equation 7.20 becomes 

-M    + I„ü)_ r 
aero   E E 

hh I ) sin 2 a 
x 

(7.33) 

Equation 7.33 shows that the effect of the engine gyroscopic moment is 
to shift the curves of figure 7.13 as shown below.  An engine that rotates 
in a clockwise direction (as viewed from the tailpipe) will cause an air- 
craft to spin faster in a right spin and slower in a left spin.  Generally 
speaking, however, this engine gyroscopic moment is negligible in com- 
parison to the other external moments. 
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RIGHT SPIN 

~---i.t EFT SPIN 

FIGURE IM   EFFECT OF Mgyro ON SPIN ROTATION RATE 

•7.3.6 SPIN CHARACTERISTICS OF FUSELAGF-LOADFJ) AIRCRAFT: 

It is appropriate to consider briefly some of the spin character- 
istics peculiar to modern high performance aircraft in which the mass is 
generally concentrated within the fuselage (Iy larger than Ix and almcst 
as large as Iz).  It can be shown that a system which has no external 
moments or forces tends to rotate about its largest principal axis, which 
in the case of an aircraft, is the Z axis.  In an actual spinning aircraft, 
the external moments are not zero and thus the aircraft spins about some 
intermediate axis.  For the idealized spin thus far considered, the pitch- 
ing moment equation leads one to the observation that fuselage-loaded air- 
craft will probably spin flatter than their wing-loaded counterparts. 

• 7.3.6 1 Fuselage-Loaded Aircraft Tend to Spin Flatter Than Wing-Loaded Aircraft. 

For a  fully  developed  spin 

Pr V 17.34) 

In an aircraft, (Iz - Ix) can never be zero.  Hence, if Gy = 0 then 
p must be zero, in which case ~ = rk and the spin is flat (ü = pi is 
excluded by the definition of a sj.in) .  If the spin is not flat, then 
both p and r exist and, in an upright spin, have the same algebraic sign, 
Because (Iz - Ix) is always positive, examination of equation 7.34 shows 
that G„ mast always be negative (or zero) for an upright spin. 

The smaller the pitch attitude (i1 in figure 7.21) the flatter the 
•1 p spin, and 0 can be defined as sin for the spin depicted in figure 7.21, 

- varies with the relative magnitude of (Iz and Ix), as can readily be 
seen by rearranging equation 7.34. 

r(I  - I ) z    x 
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: 
WING LOADED 

(lz-lx) SM^LL 

FIGURE 7.21   EFFECT OF MAGNITUDES OF lz AND lx ON S FIN ATTITUDE 

Since p becomes smaller as (I, Ix) increases, it is clear that fuselage- 
loaded aircraft tend to spin flatter than wing-loaded aircraft.  But what 
about the effect of increasing Iy upon the roll equation? 

• 7.3.6.2 Fuselagp-Loadod Aircraft Tend It) l.xliibit More Oscillations. 

On aircraft where Iy is approximately equal to Iz in ragnitude, the 
fully developed spin is more likely to be oscillatory.  In the limit, if 
ly = Iz, the reference spin could be wing down, since any axis in the YZ 
plane would be a maximum principal axis.  Although these facts suggest 
that the bank angle is easily disturbed and that a developed spin often 
occurs with the bank angle not zero, a restoring tendency does exist 
which leads to periodic oscillations in bank angle.  Consider again the 
rolling moment equation, 
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G   =pl+qr(l-l) 
x    *    x  M    z   y 

(7.35) 

If an "o" subscript is used to represent the reference or steady-state 
conditions, 

Gx„ = F>  I  + q„ *  (I  - I ) ox   o o   z 

If instantaneous values are represented by equation 7.35, the change in 
external moments due to the perturbations of the angular acceleration and 
angular velocities is 

(Gx ~ G  ) - (p - po) Ix + (q r - qo rQ) C; I.) 

Assuming perturbations in roll with not signiiicantly change r , r * rQ 
and 

AG =  Ap I  + Aq (I  - I ) r 
x      x   ^ 7.        y  o 

Ap 
AG 

Aq 
I  - I 

z T  y  r 
I     o 
x 

(7.36) 

! I 

The second term on the right side of equation 7.36 serves to damp oscilla- 
tions in that it reduces the ability of perturbations in rolling moment 
(AGX) to produce perturbations in roll acceleration (Ap).  For fuselage- 
loaded aircraft, in which (Iz - Iv) is small, the damping is much reduced. 
Thus, any perturbations in the motion tend to persist longer in fuselage- 
loaded aircraft than they do in wing-Joaded aircraft. 

.3.7 SIDKSUP: 

It is beyond the scope of this course to deal with the effects of 
sideslip in any detail.  However, it is noteworthy that sideslip need 
not be zero in a developed spin; in fact it usually is not.  Reference 7, 
page 535, shows that sideslip in a spin arises from two sources:  wing 
tilt with respect to the horizontal (f) and the inclination of the flight 
path to the vertical (n). 

=  <j,  - (7.37) 

If then, one considers a spin with a helical flight path as opposed to a 
vertical flight path, the inclination of the flight path to the vertical 
is positive and equal to the helix angle.  Then, in order to maintain 
zero sideslip, the retreating wing must be inclined downwards by an amount 
equal to the helix angle in order to have zero sideslip.  However, it is 
quite common to have fully developed spins (with the spin axis vertical, 
not the flight path) with varying amounts of sideslip.  Sideslip on a 
stalled wing will generally increase the lift on the wing toward which 
the sideslip occurs and reduce the lift on the opposite wing.  It is eas^ 
to understand that a small amount of sideslip can produce a large rolling 
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moment and thereby significantly alter the balance of rolling moments. 
These qualitative comments are quite cursory and the inquisitive student 
may wish to pursue these effects further.  Reference 7 offers an expanded 
discussion, but to adequately discuss sideslip effects in any detail one 
must consider all three moment equations and their coupling effects.  The 
consideration of sideslip leads to the general conclusion that the rolling 
couple can be balanced over a wide range of angles of attack and spin 
rotation rates. 

■ 1.4 INVERTED SPINS 

Since PSG's are definitely uncontrolled aircraft motions, there is 
absolutely no guarantee that all spins will be of an upright variety, 
as has so far been assumed.  The test pilot particularly (and operational 
pilots as well) will continue to experience inverted spins and PSG's which 
may be mainly inverted aircraft motions.  As reference 11, page 1, points 
out, 

"...inverted spins cannot be prevented by 
handbook entries that 'the airplane resists 
inverted spins'." 

It is, therefore, essential that the test pilot have some appreciation 
of the nature of the inverted PSG/spin.  As usual, the analytical emphasis 
will necessarily be restricted to the fully developed spin, but the quali- 
tative comments which follow also apply in a general way to other types 
of post-stall motion. 

The most common pilot reaction 
is, "I have no idea what happened! 
dirt, and confusion." Why? First, 
in and of itself, particularly when 
even experienced test pilots can be 
reduced in an anticipated inverted 
takes one of two forms: (1) inabil 
is inverted or upright or (2) inabi 
the spin.  Each of these problems w 

to an inverted post-stall maneuver 
The cockpit was full of surprise, 
negative g flight is disconcerting 
it is entered inadvertently.  But 
upset and their powers of observation 

spin.  This disorientation usually 
ity to distinguish whether the motion 
lity to determine the direction of 
ill be considered separately. 

.1 ANGI.K OK ATTACK IN AN INVKHTF.I) SPIN- 

The angle of attack in 
7.22). It might appear tha 
in an upright or inverted s 
it is an inverted spin. Su 
(the Hawker Hunter has an e 
this); however if the moti 
or a PSG, the pilot's tacti 
aircraft has an angle of at 
reliable means of determini 
Lacking an anyle of attack 
or his sensory cues, neithe 
about determining spin dire 

an inverted sp 
t it would be e 
pin; if the pil 
rh an "analysis 
asily recognize 
on is highly os 
le senses are j 
tack indicator, 
ng whether the 
syste:,., _■ pil 
r of which are 
ction? 

in is always negative (figure 
asy to determine the difference 
ot is "hanging in the straps,'' 

is accurate in some spin modes 
d smooth, fiat mode such as 
dilatory, not fully developed, 
ust not good enough.  If the 
this is probably the most 

maneuver is erect or inverted, 
ot must rely on the accelerometer 
easy to interpret.  But what 
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UPRIGHT SPIN 

INVERTED SPIN 

RELATIVE WIND 

J 

RELATIVE WIND 

FIGURE 7.22 ANGLE OF ATTACK IN AN INVERTED SPIN 

• 7.4.2 ROLL AND YAW DIRECTIONS !N AN INVERTED SPIV 

Consider two identical aircraft, one in an upright spin and the 
other in an inverted spin as shown in figure 7.23.  Notice that the spin 
direction in either an upright or an inverted spin is determined by the 
sense of the yaw rate.  Notice also that in an inverted spin ti.e sense 
of the roll rate is always opposite to that of the yaw rate.  It is common 
for pilots to mistakenly take the direction of roll as the spin direction. 
The chances of making this error are considerably enhanced during a PSG 
or the incipient phase of the spin when oscillations are extreme.  In 
steep inverted spins (!aj nearly equals | as | ) the rolling motion is the 
largest rotation rate and further adds to the confusion.  However, there 
is a reliable cockpit instrument, the turn needle, whivh always indicates 
the direction of yaw.  With such confusion possible, what about the pre- 
viously obtained equations of motion?  Is it necessary to modify them for 
the inverted spin? 

us 4P 
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RIGHT UPRIGHT SPIN LEFT INVERTED SPIN 

FIGURE T.23 ROLL AND YAW RATES IN AN INVERTED SPIN 

•7.4.3 APPLICABILITY OF EQUATIONS OF MOTION': 

All the equations previously described are dire 
the inverted spin.  Of course, the differences in si 
and the dearth of aerodynamic data collected at nega 
pose a significant practical problem in trying to do 
of the inverted spin.  But for the qualitative purpo 
the equations of motion are usable.  However, it is 
the difference in the sense of the pitching moments 
and an inverted spin.  Recall that in an upright spi 
pitching moment (dominated by the aerodynamic pitchi 
negative to balance the inertia couple, as equation 
developed spin shows. 

pr   (I. I   ) x 

ctly   applicable   to 
gn for angle of attack 
tive angle of attack 
detailed analyses 

ses of this course, 
instructive to note 
between an upright 
n the applied external 
ng moment) had to be 
7.34 for a fully 

(7.34) 

But when p and r are of opposite, as in the inverted spin, the applied 
external moment must be positive.  This fact is illustrated in f.gure 
7.24, where tht. mass of the aircraft is represented as a rotating dumb- 
bell. 
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AERODYNAMIC 
PITCHING 
MOMENT 

INERTIA 
PITCHING 
MOMENT 

t 
RELATIVE 

y    AIRFLOW 

OUTWARD 
FORCES 

J 

FIGURE 7.24 PITCHING MOMENTS IN AN INVERTED SPIN 

It is apparent that in the inverted spin the external pitching moment 
J3 positive; that is, expressed as a vector, it lies along the positive 
y-axis.  As a final point, the recovery from PSG's/spins, both erect and 
inverted, must be examined in some detail. 

■ 7.5 RECOVERY 

Obtaining 
obtained, the 
may also make 
aircraft desig 
provide adequa 
spin; also, th 
developed spin 
must be given 
preventing the 
techniques has 

developed spins today is generally difficult, but when 
factors that make it difficult to obtain this type of spin 
it difficult to recover from the spin.  Current and future 
ns may be compromised too much for their intended uses to 
te aerodynamic control for termination of the developed 
ere is a problem of pilot disorientation associated with 
s.  As a result, the PSG and the incipient phase of the spin 
more attention than they have received in the pas1:, and 
developed spin through good design and/or proper control 
become a primary consideration. 

Current aircraft have weights which are appreciably larger and have 
moments of inertia about the Y and Z axes which may be ten times as large 
as those of World War II aircraft.  With the resulting high angular momen- 
tum, it is difficult for a spin to be terminated as effectively as a spin 
in earlier airplanes by aerodynamic controls which are generally of similar 
size.  Furthermore, controls which, are effective in normal flight may be 
inadequate for recovery from the spin unless sufficient consideration has 
been given to this problem in the design phase. 

riiHMiNoi.oi.t: 

The recovery phase terminology was purposely omitted from paragraph 
7.1.4 for inclusion here.  Referring to figure 7.', the; whole of the re- 
covery phase begins when the pilot initiates recover 
eher the aircraft is in straight flight; however, tlv 
used to differentiate between the subparts of this '.. 

>n t rols and ends 
a i ..• several terms 
phase . 
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• 7.5.1.1 Recovery. 

Recovery is defined as the transitional event from out-of-control 
conditions to controlled flight.  In more usable terms, this period of 
time normally is counted from the time the pilot initiates recovery con- 
trols and that point at which the angle of attack is below as  and no sig- 
nificant uncommanded angular motions remain.  The key phrase in this 
expanded definition is "angle of attack below JS;" once this objective is 
attained the aircraft can be brought back under control provided there 
are sufficient altitude and airspeed margins to maneuver out of whatever 
unusual attitude ensues. 

• 7.5.1.2 Dive Pulloiit and Total Recover\ Altitude. 

The dive pullout is the transition from the termination of recovery 
to level flight.  Total recovery altitude is the sum of the altitude 
losses during the recovery and dive pullout. Notice that reference 3, 
paragraph 3.4.2.2.2, specifies altitude loss during recovery - not total 
recovery altitude. 

5.2 AUK RATION OF AERODYNAMIC MOMENTS: 

i . : 

| I 

\ I 

The balanced condition of the developed spin must be disturbed in 
order to effect a recovery, and prolonged angular accelerations in the 
proper direction are needed.  Several methods for obtaining these accel- 
erations are available but not all are predictable.  Also, the accompanying 
effects of some methods are adverse or potentially hazardous.  The general 
methods available for generating anti-spin moments are presented with the 
applicable terms of the general equations given below.  Alteration of the 
aerodynamic moments (Cj, Cm j-,, and Cn) through the use of flight controls 
is the conventional means of spin recovery; seldom are configuration 
changes presently used to accomplish spin recovery.  The all-important 
question is "How should the flight controls be used to recover from a PSG 
or a spin?" 

! l.   Modify aerodynamic moments ' 
I    a. With flight controls 
I    b. Configuration changes I 
I       (gear, flaps, strakes) i 

2;.K 

2. Reposition the aircraft   I 
attitude on the spin axis  > 

__i 

I 
— q r 

other 
1 

2..K 
i C m,b 

I  - I  i 
z    x 

P r 
other 
I 
y 

1  I 

2. K 
I C 

.- J 
I I 

r L 

I 3. Variations in' 4. Spin chutes ' 
i Engine )>i ■*,■.>:; ' ' Spin Rockets ' 
i- .- -    -     -J i.. _ -. _  I 
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•7.5.2.1 l'sp of Longitudinal Control. 

The longitudinal control surface can only be effective if it can 
drive the angle of attack below JS .  Rarely is the elevator capable of 
producing this much change in pitching moment in a fully developed spin, 
but its use during a PGG or the incipient phase of a spin may well reduce 
angle of attack sufficiently.  However, forward stick during a fully 
developed upright spin will merely cause many spin modes to progress to 
a higher rotation rate, which is also usually flatter.  Model tests and 
computer studies should thoroughly investigate this control movement 
before it is recommended to the test pilot.  Then a thorough flight test 
program must be conducted to confirm these predictions before such a 
recommendation is passed on to operational users. 

I .so of Ri.diW. 

Considering only the alteration of C, , Cm b, or Cn by deflection of 
the appropriate control surfaces, the use of rudder to change Cn has 
proven to be the most effective in recovering from a developed spin. 
Rudder deflection, if the rudder is not blanked out, produces a reduction 
in yaw rate which persists.  The reduction in yaw rate reduces the inertia 
pitching couple and the angle of attack consequently decreases.  Once the 
rotation rate has been reduced sufficiently, the longitudinal control can 
be used to reduce angle of attack below as. 

The student will notice that the use of ailerons to produce an anti- 
spin rolling moment has not been discussed.  Generally, in stalled flight 
the ailerons are not effective in producing moments of any significance, 
though they can still be the primary anti-spin control by causing a small 
change in bank angle and thereby reorienting the aircraft attitude on 
the spin axis so that the inertial terms operate to cause recovery. 

#7.5.3 ! SH OK INERTIAL MOMKNTs- 

Examination of the inertial terms listed below reveals that the 
relative magnitudes of Ix and Iv determine how the ailerons should be 
used to reorient the aircraft attitude. 

I  - I 
y   z 

q = pr 

- 1 
pq 

For a f uselage-loade<" aircraft 'he pitch rate must be positive : n an 
upright spin to develop anti-spin yawing and rolling accelerations from 
these terms.  In both cases aileron applied in the direction of the spin 
causes the aircraft bod  axes to tilt so as to produce a positive com- 
ponent of   along the y-axis (see figure 7.25).  Another way to help 
achieve a positive pitch rate is to hold aft stick until the rotation rate 
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begins to drop.  This procedure is common in some fuselage-loaded aircraft, 
although it is unacceptable in others (F-104) for example).  However, the 
most important factor is the relative sizes of Iv and I,.  Considering 

I  - I X 

that   =—E is approximately six times greater for the F-10 4 than for 
z 

the T-28, it is little wonder that aileron is a more important spin re- 
covery control in the F-10 4 than is the rudder. 

RIGHT SPIN LEFT SPIN 

FIGURE 7.25   AILERON WITH RECOVERY PROCEDURE 

A similar analysis shows that aileron against the upright spin in 
a wing-loaded aircraft will produce an anti-spin yai. acceleration, but 
a prc-spin roll acceleration.  Since wing-loaded aircraft generally spin 
more nose low than fuselage-loaded aircraft (with py r), and since they 
generally are recoverable with rudder and elevator, aileron-against re- 
covery procedures are rarely recommended. 

•7.5.4 CTHKR RECOVERY MEANS: 

The other two terms which can produce anti-spin accelerations include 
engine gyroscopic terms and emergency recovery devices. 

07.5.4.1 Variations in En ginP IV.WT. 

The gyroscopic terms are usually so small that they have little 
effect on recovery characteristics.  Furthermore, jet engines often flame 
out during PSG or spin motions, particularly if the throttle is not at 
idle.  So, although there are potentiell pitch and yaw accelerations avail- 
able from the gyroscopic terms, NASA experience indicates thai: changes in 
engine power are generally detrimental to recovery. 
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ft?.5.4.2 Emergency Recovery Devices. 

Emergency recovery devices may take many forms - anti-spin parachutes 
attached to the aft fuselage, anti-spin parachutes attached to the wing 
tip, anti-spin rockets, strakes, etc.  The design of such devices is a 
complex subject worthy of careful engineering in its own right.  Cer- 
tainly such design considerations are not the concern of test pilots; 
but the reliability of the device, its attachments, and its jettison 
mechanism are of vital concern to him.  He is also likely to be concerned 
with tests to validate this reliability. 

•7 5.5 RECOVERY FROM INVERTED SPINS': 

Recovery from inverted spins is generally easier than recovery from 
upright spins, particularly if the rudder is in undisturbed airflow. 
In fact many aircraft will recover from an inverted spin as soon as the 
controls are neutralized.  In any case rudder opposite to the turn needle 
may be recommended, often in conjunction with aft stick.  Some fuselage- 
loaded T-tailed aircraft may require anti-spin aileron.  An analysis simi- 
lar to that in paragraph 7.5.3 shows that in an inverted spin aileron 
against the spin is the correct anti-spin control for a faselage-loaded 
aircraft. 
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CHAPTER 

ROLL COUPLING 

• S.I   INTRODUCTION 

Divergencies experienced dur- 
ing rolling maneuvers have fre- 
quently been referred to as "Inertia 
Coupling." This leads to a miscon- 
ception of the problems involved. 
The divergence experienced during 
rolling maneuvers is complex because 
it involves not on]y inertia prop- 
erties, but aerodynamic ones as 
well.  It is the intention of this 
chapter to offer a physical explana- 
tion of the more imuortant causes 
of roll coupling a-.d  to also intro- 
duce a brief mathematical tool to 
aid in predicting roll coupling 
divergencies. 

Coupling results when a dis- 
turbance ?bout one aircraft axis 
causes a disturbance about another 
axis.  An example of uncoupled mo- 
tion is the dis*-'.roance created by 
an elevator defl-ction.  The result- 
ing motioi. is restricted to pish- 
ing motion and no disturbance occurs 
in yaw or roll.  An example of 
coupled motion is the disturbance 
created by a rudder deflection. 
The ensuing motion will be some 
combination of both yawing arid 
rolling motion.  Although all 
lateral-directional motions are 
coupled, the only motion that ever 
results in coupling problems large 
enough to threaten the str icturax 
integrity of the aircraft is cou- 
pling as a result of rolling motion. 
Thus our study of "roll coupling." 

Although there are numerous 
contributions to the roll coupling 
characteristics of an aircraft, 
aeroelastic effects, etc., this 
chapter will only consider three: 
(1) inertia coupling, (2) the Ixz 
parameter, (3) aerodynamic coupling. 

These effects occur simultaneously 
in a very complicated fashion. 
Therefore, the resulting aircraft 
motion cannot be predicted by 
analyzing these effects separately. 
The complicated interrelationship 
of thes.e parameters can best be 
seen by analyzing the aircraft equa- 
tions of motion. 

Rol i LL i ——- * p + qr (r + qp) 
xz 

I 
X 

(8.1) 

Pitch Z,M J x   z . .2   2. xz q pr 1 i  ]+<P " r > T 
(8.2) 

Yaw EN 
= r + pq 

I - I , 
1 * 

~ 
+ (qr - p) xz 

Drag   » u + qw - rv m 

Side v + ru - pw 

z 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

This analysis will be based on 
equations 8.1 - 8.3.  Equations 
8.4 - 8.6 are not important in an 
analysis of roll coupling.  Consider 
equations 8.1-8.3.  Tn each case, 
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the first term in the equations 
represents the aerodynamic contri- 
bution, the second term the interial 
contribution, and the third term 
the Ixz parameter. It can be seen 
that the relations-uus involved 
could never occur singularily and 
that they actually occur in conjunc- 
tion with one another to either 
become additive and aggravating or 
opposing and thus-- alleviate the 
tendency to diverge. 

"Divergence" in roll coupling 
is manifested b> a departure from 
the intended flight path that will 
result in either IJSS of control or 
structural failure.  As defined, 
this "divergent" is what we are 
concerned wi*n in roll coupling. 
Smaller rol. -oupJing effects that 
do no* resj.  xr; divergence will 
not be cons:Jereu.  It should be 
noted that c.. vergence about any 
one axis will t>e closely followed 
by divergence about ehe others. 

In attemp* LJ <J  explain the 
subject of rol» oupling, this 
chapter will first explain the 
physical aspei ts of inert'.* coupling, 
aerodynamic coupliig, and 
parameter. No ittemp* *;' 
to physically analyze -nes 
bined motions.  Next, a ma 
model for roll coupling wi 
developed that wnl permit 
tion of the approximate to 
that will drive an aircra*" 
gence. 

he *xz 
1 be made 
e com- 
thematical 
.1 be 
determina- 

1 1 rate 
t to diver- 

centi?ted in the fuselage as the 
aircraft's wings became thinner and 
shorter. Trrs shift of weight 
caused relations between the moments 
of inertia to change. As more 
weight is concentrated along the 
longitudinal axis, the moment of 
inertia about the x-axis decreases 
while the moments of inertia about 
the y and z  axes increase. This 
phenomena increases the coupling 
between the lateral and longitudinal 
equations. This can be seen by 
examining equation 8,2. 

EM 
I 

q + pr 

(8.2) 

• 0.«    INKMTIAL    COUPLING 

As Ix becomes nuch smaller than Iz, 
the moment of inertia difference 
term (Ix - Iz)/Iy becomes large. 
If a rolling moment is introduced, 
the term pr (Ix - Iz)/Iy may become 
large enough to cause an uncon- 
trollable pitching moment. 

Modern fighter design is 
characterized by a long slender, 
high-density fuselage with short, 
thin wings. This results in a roll 
inertia which is quite small in 
comparison to the pitch and yaw 
inertia. The more conventional 
low speed airplane may have a wing- 
span greater than the fuselage 
length, and a great deal of weight 
concentrated in the wings. A com- 
parison of these configurations is 
presented in figure 8.1. 

The problem of inerti.al 
coupling did not manifest itself 
until the introduction of  the cen- 
tury series aircraft. As the 
modern fighter plane evolved from 
the conventional fightet, such as 
the F-51 and F-47, through the first 
jet fighter, the F-80, and then to 
the F-100 and other ce irury series 
aircraft, there was a slow but 
steady change in the weight dis- 
tribution. During this evolution, 
more and more weight became con- 

It can be seen that the con- 
ventional design presents consider- 
able resistance to rotation about 
the x-axis. Thus, with this design, 
one would not expect high roll rates. 
On the other hand, it can be seen 
• hat the modern design presents a 
relatively small resistance to ro- 
tation about the x-axis. Thus, with 
this design, one could expect to 
attain high rates of roll.  It has 
been shown that high roll rates 

8.2 
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CONVENTIONAL AND MODERN AIRCRAFT DESIGNS 

T-33 T-38 
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enhance the tendency toward inertial 
coupling. 

This analysis of inertia cou- 
pling will consider rolls about two 
different axes: The inertia axis, 
and the aerodynamic axis. The in- 
ertia axis is formed by a line 
connecting the aircraft's two "cen- 
ters of inertia." Refer to figure 
8.2. 

Flfiirt 1.2 

AIRCRAFT INERTIA AXIS 

be created on the wings.  By defini- 
tion, the differential lift created 
must be perpendicular to the rela- 
tive wind. Therefore, the aircraft 
will roll about the relative wind, 
or aerodynamic axis. 

First, consider a roll when 
the aerodynamic and inertia axis 
are coincident. Figure 8.3. 

Figin 8.1 

AERODYNAMIC AND INERTIA 

AXIS COINCIDENT 

The aerodynamic axis is simply the 
stability x-axis first introduced 
in the investigation of the left 
hand side of the equations of motion. 
It is merely the line of the rela- 
tive wind. Aircraft rotation in a 
roll is generally assumed to be 
about this axis. To visualize this, 
recall that to produce a rolling 
moment, a differential in lift must 

In this case, there is no force 
created by the centers of inertia 
tnat will cause the aircraft to be 
diverted from its intended flight 
path, and no inertia coupling 
results.  Now, observe what happens 
when the inertia axis is displaced 
from the aerodynamic axis. 

j 8.3 
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Figart 1.4 

AERODYNAMIC AND INERTIA AXIS NCK-C0INCID5NT 
C 

.|Hl«t* 
AX» 

_fpv  .AERODYNAMIC 
<,>        AXIS 

As the aircraft is rotated «bout 
the aerodynamic axis, centrifugal 
force will act on the centers of 
inertia. Remembering that Cen- 
trifugal force acts perpendicular 
to the axis of rotation, it can be 
seen that a moment will be created 
by this centrifugal force. For 
the case depicted in figure 8.4, 
where the aerodynamic axis is 
depressed below the inertia axis, 
a pitch up will result. Convert* :.ly, 
if the aerodynamic axis is above 
the inertia axis, a pitch down 
will result. 

To appreciate the magnitude 
of the moment thus developed, refer 
to figure 8.4 and consider the 
following: 

mV, 
Centrifugal Force (8.7) 

VT   -    **    -    rp («3.8] 

Therefore, 

C.F.    »    mrp 

the moment created by this cen- 
trifugal  force  is 

M - (C.F.)(d) * n>rp <1 

For modern designs, m is large. 
Also, r will be larger than for a 
high aspect ratio wing.  (The air- 
craft will operate at a higher 
angle of attack.) As previously 
discussed, p will be large. Also, 
for long fuselages, d will be 
large. Thus, the moment created 
by inertia coupling will be large. 

Three products of inertia 
lxy' ■Lyz and Ixz appear in the equa- 

tes) 

tions of motion for a rigid air- 
craft.  By virtue of symmetry, Txv 
and I/z are both equal to zero. 

However, the product of inertia Ixz 
can be of an appreciable magnitude 
and can have a significant effect 
on the roll characteristics of an 
aircraft. 

The parameter, lxz, can be 
thought of as a measure of the uni- 
formity of the mass distribution 
about the x-axis.  The axis about 
which IXz is equal to zero is de- 
fined as the principle inertia 
axis, and the mass of the aircraft 
can be considered to be concentrated 
on this axis. 

If the Ixz parameter is not 
equal to zero, then the principle 
inertia axis is not aligned with 
the aircraft x-axis.  A typical 
modern aircraft design can be rep- 
resented by two centers of mass in 
the xz plane designated mi and m2 
in figure 8.5. 

I.« 
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It can be seen that if the aircraft 
is rolled about the aerodynamic 
axis, a pitch down will result. This 
phenomena is produced by exactly the 
same centrifugal force effects that 
produced inertial coupling. However, 
it should be noted that in this case 
the x-axis is aligned with the aero- 
dynamic axis and that the pitching 
moment is a result of the inclina- 
tion of the principle inertia axis. 
Thus, when an aircraft is rolled 
about any axis which differs from 
its principle inertia axis, pitching 
moments develop which tend to cause 
the aircraft to depart from its in- 
tended flight path. Depending on 
its orientation, the Ix2 parameter 
can either aggravate or oppose 
inertial coupling. 

To appreciate the magnitude 
of this parameter, consider figure 
8.6. 

From equation 8.9, the moment pro- 
duced by the forward center of mass 
is, 

Hx   - (C.F.)(x1) - «W^l    (8«10> 

Similarly, the moment produced by 
the aft center of mass is, 

M2 - m2x2P z2 (8>U) 

The total pitch moment is therefore, 

m1 + m2 - mixiP zi  + m2X2P 22 
2 

z 

(8.12) 

Hj    =    P  O»!*!2! + m
2
x2Z2) (8.13) 

Figur* 8.5 

PRINCIPLE INERTIA AXIS 

C,F. 

X-AXIS 

AERODYNAMIC AXIS 

C.F. 

Figur« 8.8 

PRINCIPLE INERTIA AXIS BELOW AERODYNAMIC AXIS 

AERODYNAMIC AXIS 
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But for a simplified system, 

lxz   "   VlZl   +   m2x2Z2 

Therefore, 

P
2
I xz 

(8.14) 

(8.15) 

Thus, it can be seen that the 
magnitude of the pitching moment 
thus developed depends on the roll 
rate and the magnitude of the Ix2 
parameter relative to the roll axis. 

The product of inertia, lxz» 
is not only of ^oncern because of 
its introduction of a pitching mo- 
ment, but also because it plays an 
important role in determining the 
aircraft's cross over speed from 
adverse to complimentary yaw. Pri- 
marily, an aircraft's cross over 
speed is determined by the relation- 
ship of the induced and parasite 
drag generated by a wing during a 
rolling maneuver. However, this 
primary effect is mitigated somewhat 
by the effect of the Ixz parameter. 

As previously shown, the IXz 
parameter can cause a pitching mo- 
ment during a rolling maneuver. 
However, since the aircraft is 
rolling, gyroscopic effects come 
into play, and this moment results 
in a yawing motion.  From figure 
3.6, it can be seen that when the 
principle inertia axis is below the 
roll axis, a pitch down will result. 
For the right ..oil depicted, this 
pitching moment would result in a 
yaw left. Thus, in this case, the 
Ixz parameter would contribute to 
the adverse yaw tendency of the air- 
craft.  In actual practice however, 
it will be found that the aerody- 
namic axis generally lies below 
the principle inertia axis through- 
out most of ehe flight envelope. 
Thus the Ixz parameter will gen- 
erally cause the aircraft to transi- 
tion from adverse to complimentary 
yaw at an earlier speed.  For a 
relative comparison of values, the 

F-102 nets an IXz of 3,500 slugs- 
feet2 and a crossover speed of 
268 knots. The F-100 has an Ixz of 
942 slugs-feet2 and experiences 
complimentary yaw in roll above 360 
knots. 

9 8.4   AIRODVNAMiC 
COUPLING 

This analysis of roll coupling 
is not concerned with all aerodynamic 
coupling terms (Cnp, Cn6a, C^r, C£6j., 

etc.). Only the "kinematic coupling" 
aspects of aerodynamic coupling will 
be considered. 

Kinematic coupling may be con- 
sidered as an actual interchange of 
a  and ß during a rolling maneuver. 
This interchange is an important 
means by which the longitudinal and 
lateral motions are capable of in- 
fluencing each other during a rapid 
roll. 

To understand how this inter- 
change of a for ß occurs, consider 
figure 8.7. 

In this figure the aircraft is 
assumed to have either infinitely 
large inertia or negligible sta- 
bility.  Thus, it will roll about 
its principle inertia axis.  In 
(I) the aircraft initiates a roll 
from a positive angle of attack. 
In (II) the initial angle of attack 
is converted to a positive sideslip 
angle of equal magnitude after 90° 
of roll.  In (III) the aircraft has 
again exchanged 8 and a and after 
180° of roll has an angle of attack 
equal in magnitude but opposite in 
sign to the original a.  The inter- 
change continues and in (IV) this 
-a is converted to -ß. 

Next, consider an aircraft 
with infinitely large stability in 
{. tch and yaw or negligible inertia. 
Refer to figure 8.8. 
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Figiril.T 
KINEMATIC COUPLING. STABLE ROLLING OF AN AIRCRAFT NITH 
INFINITELY LARGE STABILITY IN PITCH AUD YAN OR NEGLIGIBLE INERTIA 

Figur« «.a 

KINEMATIC COUPLING. STABLE ROLLING OF AN AIRCRAFT NITH 
INFINITELY LARGE STABILITY IN PITCH AND YAW OR NEGLIGIBLE INERTIA 
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In this case, the aircraft will 
roll about its aerodynamic axis, and 
no interchange of a or 6 will occur. 
However, in this situation it is 
possible for inertia coupling to 
occur. 

that, 
It will be shown in dynamics 

fnB= (f)CB, (8.18) 

The situation depicted in fig- 
ure 8.8 never actually occurs but 
can be fairly well approximated by 
an aircraft possessing large magni- 
tudes of Cnß and Cma which is 
rolled at a relatively slow roll 
rate. However, in most cases, the 
actual aircraft motion will lie 
somewhere between the two extremes 
depicted. 

Two empirical relationships 
can be stated: 

m, (O C m (8.19) 

-Kpr 

ß =  Xpcr 

(8.16) 

(8.17) 

These relationships show that any 
roll rate will cause an interchange 
of a and 8, the exact amount de- 
pending on the relative vai"es of 
the moments of inertia and Cma and 
Cnß.  It can also L>e seen that for 
a given aircraft, the rate of inter- 
change of a and 8 depends on the 
roll rate. 

It has been shown that when- 
ever a and t exist, a rolling maneu- 
ver will generate inertia coupling. 
The relative value of Cma and Cnß 
will determine just what axis an 
aircraft will actually .roll about r 

and thus how much interchange of 
a and ß will occur. 

Subsequent to a disturbance 
in pitch or yaw from an aircraft's 
equilibrium condition, a finite 
period of time will be required for 
the natural aircraft stability to 
reduce the distarDance to zero. 
The frequency of this response is 
a function of the value of Cng and 

Cmo- 

Assume that an aircraft is 
rolled at a rate that creates a 
disturbance in 8 at a rate equal to 
the maximum rate that the natural 
aircraft stability can damp out 
the disturbance. Thus, 

Kpor 
P (8.20) 

In this case there would be no 
buildup of 8, and a condition of 
neutral stability in yaw would re- 
sult.  However, if the roll rate 
were increased slightly above this 
value then successively larger in- 
creases in 6 would occur and diver- 
gence would result.  This analysis 
can also be followed through for 
an initial disturbance in a.  It is 
not important which diverges first, 
a or 8, since any divergence about 
one axis will quickly drive the 
other divergent.  As a matter of 
interest however, supersonically 
Cne decreases more rapidly than Cm<x 

and therefore, most modern aircraft 
will diverge in yaw first. 

It can be shown on an analog 
computer that when Cma = Cng a 
stable condition will exist at all 
roll rates.  This is often referred 
to as a "tuned condition," and is 
a possible dodge for an aircraft 
designer to utilize in a critical 
flic'it area.  However, it is diffi- 
cult to capitalize on this ocvurisnce 
because of the wide variation of 
the stability derivatives  - ;h Mach 
number. 

It may be th»tc ci  '.rcraft 
will possess stability parameters 
such that a roll coupling problem 
exists at a given roll rate.  How- 
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ever, if a relatively long time 
is required before large values of 
o and 6 are generated, then the air- 
craft may be rolled at the maximum 
value by restricting the aircraft 
to one 360 degree roll.  In this 
situation, the aircraft is diverging 
during the roll, but at such a slow 
rate that by the time the aircraft 
has rolled 360 degrees, the maximum 
allowable a or ß of the aircraft 
has not been exceeded. 

• a.B   AUTOROTATION AL 
ROLLING 

It has been shown that during 
rolling maneuvers large angles of 
sideslip may occur as a result of 
roll coupling and kinematic cou- 
pling.  At negative angles of 
attack, kinematic coupling may cause 
the vertical tail to produce large 
rolling moments in the original 
direction of roll.  In such a case, 
it may not be possible to stop the 
aircraft from rolling, although the 
lateral control is held against the 
roll direction.  This is known as 
autorotational rolling.  In this 
situation, positive "G" would facili- 
tate recovery. As the angle of 
attack is increased to a positive 
value, kinematic coupling will re- 
sult in a moment that opposes the 
original direction of roll, thus 
alleviating the tendency for auto- 
rotational rolling. 

For an appreciation of roll 
coupling difficulties, computer 
studies have demonstrated that in 
quite realistic designs, the criti- 
cal roll rate for the occurrence of 
such phenomenon as autorotational 
rolling can be as low as 20 degrees 
per second. 

• e.S A MATHEMATICAL 
ANALYSIS OF ROLL 
DIVIROINCI 

The roll coupling character- 
istics of high performance modern 
fighters are thoroughly investigated 
by analog simulation prior to 

flight testing. However, smaller 
test programs may not have this 
capability. It is the intent of 
this section to provide the test 
pilot with a practical mathematical 
tool to aid in determining the roll 
rate at which an aircraft will 
start to diverge due to roll cou- 
pling.  If the critical roll rate 
thus determined is attainable in 
the ai.craft, then the test pilot 
should avoid higher rates of roll 
until a complete analog analysis 
can be conducted. This, this mathe- 
matic tool will enable the test 
pilot to identify potentially 
hazardous areas. 

This mathematical analysis is 
based on certain simplifying assump- 
tions .  They are: 

1. Velocity remains constant 
during the roll maneuver, 
ü - 0. 

2. Roll rate is constant, 
p = 0. 

3. v, w, q, r are small therefore 
their products are negligible. 

4. Engine gyroscopic effects 
are negligible. 

5. The rudder and elevator are 
fixed in their initial trim 
position. 

6. Aerodynamic parameters are 
negligible with the exception 
Of Mai Hq( Nß ,  Np- 

When these assumptions are 
applied to the equations of aircraft 
motion, the following results are 
obtained: 
r^       o    o    o 

_JS=  /+ J . J   _ o     (8.4) 

(8.1) 
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It Cc.-> be shown that: 

(r ■*■ qp) - - 0 SIN 0 SJ 0 (8.21) 

for small a and 0, 

w 
u 

(8.24) 

Therefore, in light of the assump- 
tions made, equation 8.1 will be 
approximately equal to zero. 

• 

£.;♦■.(*£) .^ xz 

y 

IB. 2) 

Thus, 

M      .oi+M      .  q = q + pr + pr    1-5—-£]  + p2 ^ 
\    y 

(8.22) 

EN 'I    - I 

i     r + pql"V-^ + < 
2 \ Z        / / / Z /•/*■ 

Thus, 

+   N     .  r    =    r   +    pq 

(8.3) 

1    " I . _y xi 
I 

(8.23) 

The lift and side force equa- 
tions will average zero throughout 
a roll. 

Assuming u = 0 

(8.25) 

(8.26) 

0 - J (8.27) 

Thus, equation 8.5 becomes, 

w ,   v 
- + p - - q 
u     u   ^ 

a + p ß - q - 0 

(8.28) 

Equation 8.6 becomes, 

v w • 
-    +    r-p-    »    B+r-pot u u r 

(8.29) 

To further streamline equations 
8.22 and 8.23, the following sub- 
stitutions are made, 

I - I 

B = 
I - I 
z   x 

w + pv - qu - 0     (8.5) 

v + ru - pw « 0    (8.6) 

To get equations 8.5 and 8.6 into 
a more suitable form, recall that 

To recap, simplifying assumptions 
have reduced the aircraft equations 
of motion to the following for 
rolling maneuvers: 

a + pß - q «. o 

ß + r - pa ■ 0 

M  .a+M  .q-q + prB 
a        q 

(8.28) 

(8.29) 

2*xz 

y 
(8.30) 
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N  . ß + N  . r - r  - pqA - 0  (8.31) 

These equations can be recog- 
nized as four linear differential 
equations expressed in terras of the 
variables o, ß, q, r. To examine 
the stability of these equations, 
it is only necessary to find out 
if the transient solution of the 
equations delays with time.  To 
do this, first express the equa- 
tions in Laplace notation: 

Mcr + MqNr + Nß + p (l + AB) 

M N a r MqNß - P 

(8.38) 

(Mq+ Nr) 

(8.39) 

P (M A + M N a   'q "r NpB+ ABp )-MaNß 

(8.40) 

Thus, equation 8.36 becomes 

sa   +   pß (8.32) 4 3 2 
s    + a3s    + as    + a 8 + a      *    0       (8.41) 

sß    +    r - pa (8.33) 

Ma  "  a +  ( Mq "  s) q + prB    =    °    (8,34) 

N +  (Nr -  s)  r -  pqA    =    0    (8.35) 

If any roots of equation 
8.41 have positive real parts, then 
the motion will be unstable and 
the aircraft will diverge.  In 
order that there be no roots with 
positive real parts, it is necessary 
but not sufficient that: 

The characteristic equation 
of this set of simultaneous, non- 
homogeneous, differential equations 
is identical to the determinate of 
the coefficients.  The expanded 
determinate yields: 

s4 (8.36) 

1. All coefficients have the 
same sign. 

2. None of the coefficients 
vanish. 

If both of these conditions are 
met, then the equation must be 
examined further. 

+ (-Mq - Nf) sJ 

+ (-M+MN    +N+p2+ p2AB)   s2 

a q     r p 

The coefficients of the char- 
acteristic equation will be examined 
in light of the following assump- 
tions: 

+ (M N - M, N. - M„P2 - N p2) s 
a i    -)  p    q      r 

*■   Map2A +   Mq Nrp2  -    NßBp2 + ABp4  -   Ma N 

For convenience, the following 
substitutions will be made: 

- M - N . (8.37) 

1. The aircraft possesses posi- 
tive static stability in 
pitch and yaw, thus Ma = 
(-), NB = ( + ). 

2. The aircraft possesses posi- 
tive damping in pitch and 
yaw, thus, Mq = (-) , Nr = (-) 

3. The aircraft mass distribu- 
tion is such that Iz>Ix ancä 

Iy>Ix, thus A = (+), B = (+). 
(This mass distribution is 
typical of a modern fuselage 
loaded aircraft.) 

8.11 
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In view of these assumptions, 
it can be seen that the coefficients 
a2» *2» al will be positive.  However, 
aG may be either positive or nega- 
tive.  If a0 is examined and found 
to be negative, the resulting roll- 
ing maneuver will be unstable.  If, 
however, a<> if found to be positive, 
the coefficients must be investi- 
gated further by means of the 
Routh-Hurwitz Stability Criterion. 
A brief description of the mech- 

anics involved in the Routh-Horwitz 
method follows: 

The first step is to arrange 
the polynomial coefficients into 
two rows:  The first row will con- 
sist of the first, third, fifth 
coefficients, etc., and the second 
row will consist of the second, 
fourth, sixth coefficients, etc. 
The following example is presented: 

8.12 

The next step is to form the 
following array of numbers ob- 
tained by the indicated  operations. 
The example 3hown is  for a sixth- 
order  system. 

F(«)    =    as    + a.8    + a„s    + a.s    + a.s    + a.s    + a, 
o 1 2 J *» 5 o 

a.a    - a_a a a    - a a, a,a,  - a x 
12        3 o 14        o 5 n 1 6        o .  m A   ■ B   = a,        0 

a, a, a. 6 "1 'I 

Aa. -  a B Aa5 - aLa6 A x Ü -   a.  x 0 

CB - AD Ca.  - A x 0 
o C x 0 - A x 0 

ED - Ca, 

Fa,  - E x 0 
-a6 0 
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The last step is to investi- 
gate the signs of the numbers in 
the first column in this array. 
If all of the elements in the first 
column are positive, the system is 
stable.  If one or more of the 
elements is negative, the system 
is unstable. 

When the Routh-Hurwitz Cri- 
terion is applied to equation 8.41, 
the following equations result. 
They must both be positive if the 
system is to be stable. 

a3a2 

ala2a3 a a, o 3 

(8.42) 

(8.43) 

In summary, to determine if 
a given roll rate will result in 
a stable aircraft motion: 

1. Determine the value of a0 
(equation 8.40) .  If it 
is negative the system is 
unstable. 

2. Determine the values of ai, 
&2i   33 (equations 37 - 39). 

3. Solve equation 8.42.  If 
negative the system is un- 
stable. 

4. Solve equation 8.43.  If 
negative the system is un- 
stable. 

5. If steps 1-4 yield no nega- 
tive results, the system is 
stable for the roll rate in- 
vestigated. 

Although somewhat unwieldly, 
in the absence of adequate analog 
simulation, the foregoing system 
will yield fairly accurate results. 
It can serve to warn the test pilot 
of a perilous situation. 

• 0.7 CONCLUSIONS 

As an aircraft's inertias are 
disproportionately increased in 
relation to its aerodynamic sta- 
bilities in pitch and yaw, the air- 
craft will be liable to pitching 
and yawing motions during rolling 
maneuvers. The more typical case 
is a divergence in yaw by virtue 
of an inadequate value of 'no- 

The peak loads resulting from 
roll coupling generally increase in 
proportion to the initial incidence 
of the principle inertial axis and 
progressively with the duration of 
the roll and the rapidity of aileron 
application at the beginning and 
the end of the maneuver.  The most 
severe cases naturally should be 
expected in a flight regime of low 
Cnß and high dynamic pressures. 

The rolling pull-out maneuver 
in a high performance aircraft is 
especially dangerous.  It combines 
many unfavorable features:  High 
speed hence high roll rate capa- 
bility; high acceleration which 
favors poor coordination and in- 
advertent excitation of transients 
by the pilot; and high dynamic pres- 
sures which at large values of 
a and S may break the aircraft. 

Most high performance air- 
craft incorporate roll rate limi- 
ters in addition to angular damping 
augmenters.  In these aircraft a 
lateral control with enough power 
for low speed .s almost certain 
to be too powerful for high speeds. 
Fortunately, limiters of various 
kinds are not too difficult to in- 
corporate in a fully powered con- 
trol system. 

It is obvious that flight 
testing in suspected regions of 
roll coupling warrant a cautious 
methodical approach and must be 
accompanied by thorough computer 
studies that stay current with the 
flight test data.  The only way 
that the pilot can discover the 
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exact critical roll limit in 
flight is when he exceeds it, which 
is obviously not the approach to 
take. Because of this, flight 
tests are generally discontinued 
v/hen computer studies indicate that 
the next data point may be "over 
the line." 

The following example is 
cited. The Bell X-2 rocket ship 
in 1956 was launched from its 
mother ship at Edwards. The pilot 
flew a perfect profile bat the 
rocket engine burned a few critical 
seconds longer than the engineers 
predicted, resulting in a greater 
speed (Mach 3.2) and greater alti- 
tude (119,300 feet) than planned. 
Unknown to the pilot, he was pro- 
gressively running out of direc- 
tional stability. When he was 
over the point at which he had 
preplanned to start his turn toward 
Roger's Dry Lake he actuated his 
controls.  The X-2 went divergent 
with a resultant loss of control. 
The accident investigation revealed 
the cause to be a greater loss in 
directional stability than planned, 
resulting in divergent roll cou- 
pling. 

A combination of reasonable 
piloting restrictions coupled with 
increased directional stability has 
provided the solution to roll cou- 
pling problems in the present gen- 
eration of aircraft. The problem 
is one of understanding since a 
thinking pilot would no more exceed 
the roll limitations imposed on an 
aircraft than he would the struc- 
tural "G" limitations. 

Besides pilot education, some 
other schemes to eliminate roll 
coupling divergencies are: 

1. Roll rate limiters. 

2. Angular damping augmenters. 

3. Placarded roll limits such as 

a. "G" limits. 

b. Total allowable roll at 
maximum rate. 

c. Altitude limits. 

d. Mach limits. 

e. Flap position limits. 

1.14 



PUBBB immmimffmm/^gmgmßtmKgfKmfKi mqm&mo^qi i      "pnn^wpip   "* aggwammgi—3 ipwwy«»wwiyy8wwgsw»w "»!»a»i-;!.iwt,'>'.'.»-.-i-i»* 

CHAPTER 

CONTROL SYSTEMS 

dF /dn 
s 

db  /dv 
e 

d6r/dß 

ABBREVIATIONS   AND   SYMBOLS 

FOR   THIS   CHAPTER 

hinge moment coefficient (restoring) 

hinge moment coefficient (floating) 

hinge moment coefficient (tab) 

q "dynamic pressure" 

qc 
compressible dynamic pressure 

?■ elevator deflection 

V airspeed 

di 'dn elevator angle per g 

normal acceleration 

stick force per g 

elevator angle to airspeed ratio 

rudder angle per degree of sideslip 

elevator deflection 

lbs/ft 

lbs/ft 

degrees or radians 

knots 

2 
tt/sec 

degref.s or radians 

Yaw damping derivative 

Yav,ing moment coefficient with sideslip angle 

Yawing moment coefficient with rolling velocity 
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• •.1   INTRODUCTION 
In the broad sense the air- 

craft flight control system con- 
sists of all the mechanical, elec- 
trical and hydraulic elements which 
convert cockpit control forces and 
motions into aerodynamic control 
surface deflections or action of 
other control devices which in turn 
change the orientation of the ve- 
hicle. The flight control system 
together with the power plant con- 
trol system, enables the pilot to 
"fly" his aircraft - that is, to 
place it at ai.y  desired flight con- 
dition within its capability. 

T:ie power plant control sys- 
tem acts as a thrust metering de- 
vice, while the flight control 
system varies the moments about 
the aircraft center of gravity. 
Through tnest control systems the 
pilot is able to vary the velocity, 
normal acceleration, sideslip, roll 
rate, and other parameters within 
the aircraft's envelope.  How 
easily and effectively he can accom- 
plish his task is a measure of the 
suitability of his control systems. 
An aircraft with exceptional per- 
formance characteristics is vir- 
tually worthless if it is not 
equipped with at least an acceptable 
flight control system. 

Two important control system 
characteristic  are the magnitude 
of cockpit control forces and de- 
flections.  Figure 9.1 shows ap- 
proximate limitat ons of the 
pilot's physical effort.  The limi- 
tations shown in this figure are 
much greater than those considered 
desirable for n-.rmal flying.  How- 
ever, if tie control forces re- 
quired for normal aircraft maneu- 
vers are pleasantly light it wiii 
usually be pussible to overstress 
the aircraft by misuse of the con- 
trols. Conversely, an aircraft 
that displays control character- 
istics that prevent exceeding the 
design limitat: >ns would ordinarily 
be considered unacceptably heavy. 

FIGURE 9.1 
APPROXIMATE PILOT PHYSICAL LIMITATIONS 
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Having noted the approximate 
capabilities of a pilot with re- 
spect to effort, there is another 
important factor to which he reacts, 
that of control 'harmony." Control 
harmony is a rather nebulous quan- 
tity and cannot be discussed merely 
in terms of relative forces required 
for the three controls, it is also 
necessary to take into account the 
aircraft's response characteristics. 
Therefore, no idealized ratios can 
be established for relative heavi- 
ness of the controls. However, as 
one would suspect after reference 
to figure 9.1, aileron force should 
ordinarily be less than elevator 
force which in turn is usually ex- 
pected to be less than the rudder 
force required.  In any case con- 
trol harmony is a matter of opinion, 
and opinions change with time and 
pilots. Since the pilot-control 
system acts on an aircraft with 
specific static and dynamic sta- 
bility properties, it follows that 
the characteristics of the closed 
loop system must be found satis- 
factory. 

In flying an aircraft the 
pilot frequently makes use of such 
references as the movement about the 
horizon and the magnitude of accel- 
erations felt, but these indications 
are available to him after he is 
already in the maneuver. He can 
only conclude that this maneuver 
is too violent or too mild after he 
has felt or seen its magnitude. 
Needless to say this could be rather 
untimely for effective control of 
the aircraft, consequently there 
is a need for something to forewarn 
the pilot of aircraft motion that 

9.2 

mmm 
■NtffMMMI ■fniHrn r 



- fttt-MJ--"f***js?,v-^M»,V ..T^, ,+mwwmw-v^,v«**xr'**!**  ~ """ ^^^W^TT^*?«^^^i;n I.H-Jmmw\mwwxxmt*a™^<-'-H*r*->* P«WPW ■.•!'.!*-WT<| 

/ 

will take place as a result of his 
use of the cockpit controls. Con- 
trol movement and force are two of 
the pilot's inputs to the stick, of 
which he is usually aware.  In some 
flight regimes the stick movement 
can be considerable but at high 
speeds and aft eg conditions, the 
stick movements may be barely per- 
ceptible and for this reason it is 
generally conceded that control 
force is the most important indi- 
cation of the magnitude of the 
maneuver.  It follows that there 
should be no reversal of these 
forces in order that the pilot is 
never required to reverse his 
thinking.  "  would seem that 
stick deflections should never re- 
verse either, but it may be possi- 
ble to relax such a requirement 
in the portion of the aircraft en- 
velope where stick movement is so 
small as -o be unnoticeable.  If 
the stir movement is infinitesimal 
the piloi simply senses that be 
must pull to slow down and is prob- 
ably unaware of the fact that the 
stick way have moved forward a 
fraction jf an inch. 

To summarize the general re- 
quirements of the aerodynamic con- 
trol system; two conditions must 
be met if the pilot is to be given 
suitable command over his airplane. 

1. It must be capable of actuat- 
ing the control surface. 

2. It must provide the pilot 
with a "feel" that bears a 
satisfactory relationshio to 
the aircraft's reaction. 

There are numerous variations 
in the designs of aircraft control 
systems.  However, these systems 
may be rather simply classified. 
The first classification in which 
the majority -f the modern aircraft 
control systems fall is that in 
whi:h the moments about the aircraft 
cc.ter of qi ivity are created by 
varyinq the camber or angle of 
attack ^f the aerodynamic lifting 

or stabilizing surfaces.  The most 
familiar example, is the use of 
trailing edge flaps on the wings, 
horizontal and vertical stabilizer, 
called ailerons, elevator and rud- 
der, respectively. Another subclass 
of aerodynamic control is the 
spoiler which has come into rather 
wide use in recent years for lateral 
control. This device creates roll- 
ing moments by changing the energy 
of the airflow over one wing thereby 
resulting in a differential lift 
between the two wings.  These aero- 
dynamic systems can be further 
broken down into "reversible" and 
irreversible systems.  These systems 
can be simple mechanical controls 
in which the pilot supplies all of 
the force required to move the con- 
trol surface.  "his type system is 
called "reversible" since all of 
the forces reqi. r°<? to overcome the 
hinge moments at trie control surface 
are transmitted to the cockpit con- 
trols.  The system may have buil* 
into it a mechanical, hydraulic or 
some other type of boosting device, 
which supplies some specific pro- 
portion of the control force.  Sys- 
tems of this nature are generally 
called "boosted control systems." 
However, they are still considered 
"reversible."  Even though the force 
required of the pilot :.s less than 
the control surface hinge moments 
the force required is proportional 
to these moments.  In other words 
the pilot furnishes a fraction of 
the force required to overcome the 
hinge moments throughout the air- 
craft's envelope.  The ccatrol sys- 
tem is said to be irreversible if 
the pilot through his cockpit con- 
trols, actuates a hydraulic, elec- 
tronic, or some other '/De of device 
which in turn moves the control sur- 
face.  In this system the aerodynamic 
hinge moments at the con* rol surface 
are no longer transmitted to the 
stick.  Here, without artificial 
feel devices the pilct would feel 
only the force required to actuate 
the valves or sensing devices of 
his powered control system.  Because 
of this, artificial ^eel. which 
approximates the feei that the pilot 

9.3 



'.T—»V" :-:iT    .     ..JLIIlJltp|!a^^LI .IJV4WI    .-^^s- mpi«uij|i||LiiiLH| '' "5"TPi^,'h--^J^,«rf,lW'*,fl^?i-'!^"--"^!p i 

senses with a 
must be added. 

'reversible" system 

A second category of control 
system is that of reaction controls. 
In this system small jets are usu- 
ally located near the extremities 
of the aircraft where the length 
of the moment arm is greatest. 
These jets may be fired in order to 
create pitching, rolling, or yawing 
moments. Reaction controls are used 
extensively for control of vehicles 
in the very low speed or very high 
altitude flight regimes where aero- 
dynamic controls are ineffective. 
Since this control system is used 
primarily in areas where aerodynamic 
damping is very light or in some 
cases almost non-existent, it be- 
comes apparent that a different 
technique is required in the use of 
*-he cockpit controls. When an 
angular velocity about the eg is 
established by use of one of the 
reaction jets, this velocity tends 
to continue undiminished until an 
equal and opposite pulse is intro- 
duced.  Therefore, it is obvious 
that a considerable change in ground 
rules is iequired for the pilot to 
intelligently evaluate such a con- 
trol system. 

Other control system cate- 
gories might include the use of 
inertial or magnetic control de- 
vices not only to guide, but to 
control the orientation of a vehicle 
in space. 

Since in the final analysis 
it is the pilot-control system - 
aircraft combination which must be 
satisfactory in order for the air- 
craft itself to be conridered ac- 
ceptable, this chapter "ill concern 
itself with not only the various 
types of control systems mentioned 
above, but also with the pilot 
himself. 

• 9.8   SIRVOMICHANISMS 

From experitnce it has been 
shown that in simple tasks the 
difference in performance between 

one pilot and another is generally 
snail, becoming negligible when 
such tasks are repetitive. As the 
complexity of the task is gradually 
increased his performance becomes 
more inconsistent. Then at each 
progressively more difficult stage 
the performance depends on the 
variance of adaptability of pilots, 
the degrees of predictability of 
the system they operate, their 
individual nervous and muscular 
characteristics and also their 
psychological and physiological con- 
dition at the time.  In spite of all 
this the human pilot is popular with 
servo engineers for use as an adap- 
tive servo. The human, however, 
has some limiting character .sties 
which are virtually constant. They 
are his reaction time (normally 
between 0.2 and 0.3 seconds) and 
his neuro-muscular lag (0.10 to 
0.16 seconds). These virtually 
fixed characteristics represent 
some of his most serious liabilities 
as a servo element and restrict sys- 
tem performance. Therefore, the 
control system designer must design 
for the physical limitations of the 
pilot as well as for the airplane 
characteristics. 

A servomechanism can be de- 
fined as an automatic control sys- 
tem which senses the output of a 
system, compares thjs output with 
the desired output, and if a dif- 
ference exists - causes the output 
to be changed until it equals the 
desired value  Familiar examples 
of servomechanisms are automatic 
tracking radar, and thermostatically 
controlled air conditioning units. 
Another example is the human uody 
when performing even the simplest 
of tasks. A boy catching a ball 
senses the direction of motion of 
the ball with his eyes and moves 
his body, arms and hands until the 
ball enters his glove. He is sub- 
consciously but continually compar- 
ing -he relative position and motion 
of the ball and glove and correcting 
the motion of the glove until the 
ball enters it. A pilot flying an 
aircraft, may be thought of as part 
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of a multi-channel servomechanism. 
He is constantly monitoring and - 
through the flight control system - 
adjusting angles of pitch and bank, 
airspeed, altitude, heading, and 
often a number of other parameters 
as well. 

Before further considering 
the pilot as a servomechanism, a 
brief discussion of the servomechan- 
ism is in order.  The servomechanism 
is based on the detection of a dif- 
ference between the existing output 
of a system and the desired output, 
and a resulting correction of the 
output toward the desired value. 
A signal (such as a voltage), repre- 
senting the output is "fed back" to 
a sensing device which detects this 
difference which is called the error 
signal.  The route by which the 
existing output is fed back to the 
sending device is called the feed- 
back loop.  A control system con- 
taining one or more feedback loops 
is called a closed loop system. A 
system which does not contain a 
feedback element is called an open 
loop system.  Examples of a closed 
loop and open loop system are shown 
in figures 9.2 and 9.3. 

FIGURE 9.2 
CLOSED LOOP SYSTEM 

An open loop system does not 
qualify as a servomechanism.  An 
example of an open loop system is 
an aircraft with the controls free 
to float.  An example of a closed 
loop system is an aircraft under 
the control of a pilot.  Typical 
block diagrams for these two sys- 
tems are shown in figures 9.4 and 
9.5. 

FIGURE 9.4 
CLOSED LOOP SYSTEM 
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FIGURE 9.5 
OPEN LOOP SYSTEM 
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FIGURE 9.3 
OPEN LOOP SYSTEM 
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In the closed loop case, the 
input is a des', -ad normal accelera- 
tion of say 2.J g's.  If the air- 
craft is at only 1.8 g's (the out- 
put) the pilot reads and irterprets 
the accelerometer and pulls back 
on the stick.  Thus, he is both 
a sensing and a control element. 
He senses an error signal of 0.2 g 
and imparts an aft deflection to 
the -stick.  This aft notion of the 
<:tick produces a '-railing edge up 
elevator deflection whuh in turn, 
produces an increase in normal 
acceleration.  When the actual nor- 
mal acceleration (tie output'i equals 
the desired normal accelerrt on 
(the input) the error signal will 
then be zero and the pilot w..ll 
stop the aft movement of the stick. 
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In the open loop system, the 
stick is deflected tc a position 
which is estimated to produce a 
normal acceleration of 2.0 g's. 
The elevator is moved to a corre- 
sponding angle by the flight con- 
trol system, and the airplane is 
given a normal acceleration which 
may or may not be exactly 2.0 g's. 
Since there is no feedback, no 
further refinement is possible. 
The normal acceleration obtained 
with this stick deflection depends 
on many variables including altitude, 
airspeed, eg position, etc. 

It is quite possible for an 
aircraft to exhibit satisfactory 
open loop characteristics and yet 
be unsatisfactory when the pilot 
is introduced into the system and 
the loop is closed. For example, 
suppose that the stick-fixed longi- 
tudinal dynamic characteristics oi 
an aircraft were such that an ele- 
vator pulse produced a pitch rate 
trace as shown in figure 9.6. 

FIGURE 9.6 
OPEN LOOP DYNAMIC TIME "«TORY 

AIRFRAME 
OUTPUT 

(PITCH RATE) 

AIRFRAME      ; 
INPUT 

(ELEVATOR 
DEFLECTION) 

-#• TIME 

/I -♦TIME 

This open loop dynamic time history 
indicates stable, moderately-damped 
longitudinal dynamics. If the pilot 
were required to control the air- 
craft quite closely, however, such 
as in low-level, high-speed forma- 
tion flying, the closed loop dynamic 
time history might indicate an en- 
tirely different situation. The 
resulting pilot-induced oscillations 
might lead to normal accelerations 
which would produce structural 
damage to the aircraft. The results 
seen in figure 9.7 could well be 
caused by the designer failing to 
take into account that the normal 
pilot response time was similar to 
the short period in a portion of 
the aircraft's envelope. 

Thus the job of matching 
airframe and pilot characteristics 
with suitable flight control sys- 
tem characteristics is not an easy 
one. But if the airplane designer 
does not bear in mind the basic 
characteristics and limitations of 
the pilot when he designs the air- 
craft and control system, the re- 
sults might well prove disappointing. 

• 9.3 BOOSTID CONTROL 
SYSTEMS 

As the si*s and speed of air- 
craft increase, the hinge moments 
and thus the control forces increase 
accordingly.  Neglecting Mach 
effects, if the dimensions and speed 
of a given aircraft are both doubled, 

FIGURF 9.7 

CLOSED LOOP DYNAMIC TIME HISTORY 

AIRFRAME 
OUTPUT       " 

(PITCH RATE ) 

AIRFRAME      „ 
INPUT 

(ELEVATOR 
DEFLECTION) 

¥ TIME 

► TIME 

9.6 



s-,E AT" "jTOi-f «^'^T^pi^^«! 
";-;-      -*- —.'" '   Ti :v^7" g^ty WOT*w.^<!ifcy Wg'-f > papygWjWHW, ■^«^«^^^•^w^ 

u 

[ I 

i i 

the cootrol forces will be multi- 
plied by a factor of thirty-two. 
Although aerodynamic balancing 
couj-d alleviate the problem up to 
a point, the difficulty in the past 
of achieving the production toi- 
erAI\SSs necessary to produce a Ch5 
OdPsJ?, tl.0002 per degree, and the 
«cratlc variations in hinge moment 
in the transonic regime led to the 
development of boosted control sys- 
tems.  In"this type of system the 
pilot is required to produce only 
a fraction of the force required 
to overcome the hinge moments. 
However, he does produce a specified 
portion of this force and the force 
required of the pilot is still 
approximately proportional to the 
hinge moments on the control sur- 
face.  The control system then, is 
still a reversible one in that the 
hinge moments are fed back to the 
stick. 

One method of control boosting 
is shown in figures 9.8 and 9.9. 
This system uses the hydraulic 
method of amplifying which requires 
the addition of <.  hydraulic cylinder 
on a follower arm. Ls  in the un- 
boosted system the pilot moves the 
stick aft and the trailing edge 
of the elevator deflects up. 

The process however causes a 
hydraulic pressure drop across the 
piston causing the cylinder to 
collapse and affecting additional 
elevator deflection. As the cylin- 
der collapses a follow-up linkage 
reduces the pressure drop across 
the piston to zero and the follower 
arm contraction ceases. Starting 
from an initially trimmed condi- 
tion with zero stick force the 
pilot pulls back on the stick and 
holds. There is an accompanying 
up elevator produced, identical to 
that which would be produced in an 
unboosted system. This up elevator 
moves the follow-up arm down but 
point (2) does not move as far as 
point (1) and thus the free crank 
"B" rotates clockwise relative to 
bell crank "A". This produces an 
upward motion at point (3) relative 
to the hor:zontal arm of the bell 
crank "A" and the valve slides 
toward the elevator, thereby unport- 
ing two orifices in the cylinder 
wall astraddle the piston head. 
High-pressure oil is fed to the 
orifice on the rod side and the oil 
pressure drop across the piston 
forces it to collapse and therefore 
shorten the follower arm achieving 
an additional up elevator deflection. 
As the elevator moves up, the follow- 
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FIGURE 9.3 

SCHEMATIC OF BOOSTED 
CONTROL SYSTEM 

HYDRAULIC CYLINDER 

ImTTW    BELt CRANK "A" 

-TV—^ WmTT 

FOLLOW-UP ARM 

HYDRAULIC VALVE 

FRFE CRANK "B" 

9.7 

wmtA 



Mip^WPUUNL! W "UtymJltyWm?* S^Uß. #W$!9£.mi> ffl1-.': ■■■- ,^ WWWA'^H^-Ji^ltJ '™*1»W^wrTW5Fl'7?i!' «- ^TTT^^sr'. Ji'fjy-i ■ 

:    ! 

up arm goes down and point (2) moves 
down relative to point (1). This 
action rotates the free crank "B" 
counterclockwise and the valve 
slides down on the cylinder until 
the orifices are closed and the 
action is complete. 

FIGURE 9.9 
HYDRAULIC VALVE 

LOW PRESSURE 

VALVE FOLLOWER 

The hydraulic valve consists 
of a double piston and cylinder 
arranged so that a slight motion in 
either direction of the valve follow- 
er opens two orifices straddling the 
hydraulic cylinder piston head.  If 
the valve follower is forced upward 
the high-pressure orifice on the 
rod side and the low-pressure ori- 
fice on the face side are opened. 
If the valve follower is forced down- 
ward the reverse action takes place. 
(See figure 9.9.) 

Some advantages of the boosted 
control system aret 

1. Aerodynamic feel from the 
control surface is retained. 

2. In event of power failure the 
controls can be operated man- 
ually by the pilot, at least 
over a limited flight regime. 

Some disadvantages are: 

1. Unless the boost ratio is 
variable, control forces may 
still be excessive at high 
speeds (low boost ratio) or 
too low at low indicated air- 
speeds (high boost ratio). 

2. Normal antiflutter mass 
balance is still required. 

3. A certain amount of aerody- 
namic balance is still re- 
quired for manual operation. 

4. Power failure in out-of-trim 
flight will produce very 
high control forces. 

On aircraft which have a wide speed 
range, the difficulty of avoiding 
the problems mentioned in (1) makes 
full power operation of controls 
desirable. 

9.4 POWERED CONTROL 
SYSTEMS 

The aircraft designer can, by 
proper use of aerodynamic balance 
and/or boost, enable the pilot to 
cope with control hinge moments of 
extremely large magnitude. These 
methods are practical as long as 
the control derivatives (Cha, 

chs » 
Chst) remain essentially constant. 
But as aircraft approach sonic 
speed they run into a region where 
the hinge moments vary widely with 
very small speed changes, and as 
they accelerate to supersonic speeds 
the hinge moment characteristics 
settle down but at substantially 
different values than those experi- 
enced in subsonic flight.  This is 
due primarily to the aft shift in 
center of pressure. Therefore, 
the designer divorces the pilot 
from the control surface by giving 
him a control system in which he 
activates the flight control surface 
indirectly through a mechanical or 
electrically actuated system - 
ucually hydraulically operated. A 
system such as this would require 

1.1 
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the pilot to overcome forces which 
originate from friction of the 
control linkages, valves, etc., 
and not directly from control sur- 
face movement.  It is fairly 
obvious that these forces would 
not be a satisfactory measure of 
aircraft response. Thus the de- 
signer must supply the pilot with 
an artificial feel system. One 
of the purposes of this section is 
to discuss some of the relatively 
simple devices used in irreversible 
control systems. The following 
section will deal with the more 
complex problem of feel systems. 

A schematic of a typical 
powered system is shown in figure 
9.10.  The pilot, by pulling the 
stick aft, positions the upper 
piston or valve in the jack. The 
incoming hydraulic fluid forces 

the lower piston to the right with 
respect to the jack. Since the 
piston is fixed to the structure, 
the jack must move to the left. 
This movement, in turn leaves the 
control surface trailing edge up. 
As the jack moves to the left the 
ports of the upper cylinder are 
again covered and the control de- 
flection ceases.  If the pistons 
in the upper valve have only a 
small overlap the control surface 
will follow the stick deflection 
quite closely. However, this type 
of system, while capable of handling 
very large hinge moments, is not 
capable of handling unlimited loads. 
If the aerodynamic hinge moment on 
the control surface exceeds the 
mechanical hinge moments which can 
be generated by the powered control 
system, the system encounters a 
"jack stall." 

FIGURE 9.10 

POWERED IRREVERSIBLE CONTROL SYSTEM 

li 

ENTIRE JACK MOVES TO LEFT 

9.9 
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A variation of the powered 
control can be made because- it is 
not necessary to make use of mech- 
anical valve linkage. An elec- 
trically operated servo valve can 
be used to meter the hydraulic 
fluid to the cylinder, by supplying 
it with a voltage proportional to 
stick deflection (see figure 9.11). 

FIGURE 9.11 
POWER OPERATED CONTROL WITH ELECTRIC SERVO ', 

/ 

I \    n  
HICH PRESSURE   ^     /    L0W PRESSURE 

To fulfill the positional require- 
ment of stick-elevator gearing, a 
feedback voltage in the ratio of 
elevator deflection is also.fed 
back to the servo.  Stick motion 
is not the only way to obtain con- 
trol surface deflection. Since 
only a voltage is required, ,a 
stick-mounted strain gage generating 
voltage proportional to stitfk force 
will command surface deflection. 
It is generally accepted that the 
power systems using mechanical 
linkage rather than electrical 
signals are somewhat more reliable 
but are less adaptive to sophisti- 
cated damping systems and automatic 
weapons delivery systems.  In most 
cases it is wise to choose the 
least complex system which is 
capable of doing the task required. 

The most important advantages 
of using powered irreversible con- 
trol systems are: 

1. The pilot is divorced from 
the large and often erratic 
control forces required at 
high speeds. 

2. Aerodynamic balancing is not 
usually required. The rigid- 
ity associated with powered 
control systems reduces the 
requirement for mass balanc- 
ing, although some attention 
must still be given to the 
problem in order to avoid 
high speed flutter. 

9.10 
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The primary disadvantages are: 

1. An artificial feel system 
must be incorporated into 
the aircraft control system. 

2. The increased complexity of 
the control-feel system com- 
bination reduces system 
reliability. 

3. It is often difficult or im- 
practical to build into the 
system a standby capable of 
reverting to manual revtrsible 
control. 

B.a   AIRCRAFT    FEIL 

SYSTEMS 

Aircraft feel was discussed 
at some length in section 9.1, 
however, several additional com- 
ments will now be made before some 
of the artificial devices that 
affect feel are described. 

The control system character- 
istics, together with the airframe 
stability characteristics, are 
determined Oy airframe design, 
the control-feel system is the 
place »/here the handling qualities 
may be patched up - or ruined. 

The aircraft-feel system 
ordinarily includes stability aug- 
mentation devices, since they 
definitely affect aircraft handling 
qualities, but becai.se of their 
dual function and unique character 
they will be considered separately. 

The feel characteristics of 
a reversible contici system may 
certainly be altered in order to 
improve handling qualities.  In 
fact two devices for doing just 
that were discussed previously in 
this course, i.- ., the downspring 
and bobweight.  In the following 
paragraphs, though, the control 
system will be assumed to be irre- 
versible and feel systems artificial. 

kC- 
TBRISTICS   OP   CONTROL 

Mechanical characteristics of 
control systems which affect feel 
will now be discussed before going 
into artificial devices which are 
incorporated in order to improve 
feel. 

Breakout Force: 

This term defines the force 
necessary to be applied to the 
stick before it moves.  The source 
lies in the cumulative affect of 
the following: 

1. The mechanical friction of 
the control circuit, the 
feel unit, and the valve. 

2. The force due to viscous 
flow past the valve in its 
neutral position and/or valve 
centering spring, and 

3. The preload of the feel unit. 

If the breakout force is high, 
it will tend to produce overshoot- 
ing in the desired small and rapid 
control pressures (e.g., during track- 
ing or .instrument flight) because 
of the pilot's neuromuscular and 
reaction lag. As the pilot exerts 
pressure on the cockpit control to 
overcome this force he is likely to 
continue this pressure for a short 
period after the friction is over- 
come and this take the control past 
the desired value.  These effects 
will be aggravated if the force 
level immediately following breakout 
force becomes noticeably lower be- 
cause of lower running friction. 

Backlash: 

Mechanical play in the control 
system resulting from cable stretch, 
valve overlap, etc., is called by 
various names - backlash, lost 
motion, free play, mechanical 
hysteresis.  If it reaches annoy- 

9.11 
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ing proportions it is frequently 
called "slop." The cockpit-con- 
trol/control-surface relationship 
is not constant. This phenomenon 
makes the pilot work even harder 
to maintain steady flight or make 
small corrections. The combined 
effects of breakout force and back- 
lash on a system where the pilot 
is attempting to make a small cor- 
rection is shown in figure 9.12. 

The pilot starts applying a 
force at time "0." At time "1" he 
has applied enough force to overcome 
the breakout force and the stick 
starts to move.  At time "2" the 
stick has moved far enough to take 
up the mechanical play in the sys- 
tem and the control surface starts 
to move.  At time "3" the control 
surface reaches the desired deflec- 
tion.  Just after this time, the 
pilot starts to release force, but 
the control surface has moved past 
the desired point until time "4" 

when he has applied enough force 
in the opposite direction to again 
overcome friction, backlash, etc. 
Such a system would thus cause the 
pilot to overcontrol. 

If the initial aircraft re- 
sponse is slow and damping is high, 
the overshoot is likely to be 
negligible; however, rapid air- 
craft response to control pressures 
will result in marked overshoot, 
often culminating in pilot induced 
oscillations.  In more severe casas 
of breaking forces and backlash, 
exciting landing flareouts may 
result. 

Centering: 

Good centering of the cockpit 
control and the control surface is 
a requirement for any satisfactory 
aerodynamic control system.  Cen- 
tering may be defined as the degree 
tc which the pilot's control and 

FIGURE 9.12 
EFFECTS OF BREAKOUT FORCE AND BACKLASH 

STICK FORCE     0 

STICK 
DISPLACEMENT 

CONTROL SURFACE      9 

DISPLACEMENT 

S.12 
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U 
control surface will return to the 
trimmed position after the cockpit 
control has been displaced and re- 
leased.  For a reversible system 
the primary centering tendency comes 
from the aerodynamic hinge moments. 
For an irreversible system a feel 
spring would have the same effect. 
Good centering aids the pilot in 
making small momentary corrections 
from a trimmed flight condition. 
Sources of trouble occur when the 
pilot releases the force on the 
cockpit control, but the control 
valve does not center, causing the 
control surface to continue to move. 
The end result is again to make the 
pilot work narder to maintain steady 
flight or to make 5«ali corrections 
since he must now consciously take 
out each correction. 

Phase Lag: 

In virtually all control sys- 
tems there is a finite time delay 
between a cockpit control deflection 
and the corresponding flight con- 
trol deflection   In mor;t cases, 
this time is extremely small.  If 
the flight control system is rela- 
tively laioe and complicated, how- 
ever, this time lag can become 
signif i_ar:*-.  It. may be that this 
control system lag plus the airplane 
response time could be relatively 
large.  In such cases, if the 
pilot wished to make a series of 
rapid control imuts, he might find 
the aircraft motions out of phase 
with his desires.  Control system 
lag plus aircraft response time is 
the phase lag. 

Another associated problem 
which can develop is that the 
natural frequency of the cockpit 
contro* or control system may be 
near the natural frequency of the 
associated airplane modes of motion 
in a portion of the performance 
envelope.  If, for instance, *he 
centering spring is weak, in order 
to produce a light stick force 
gradient, the natural frequency of 
the control system may be low 

enough to couple with the short 
period or Dutch roll mode. 

Trim: 

Trimming is accomplished on 
virtually all artificial feel systems 
by shifting the no-load position 
of the feel device.  The trimming 
device should have enough authority 
to reduce the control forces to 
zero throughout the flight enve- 
lope. The rate of movement of 
trim should be determined by the 
runaway trim condition at Vmax. 

• 9.7   ARTIFICAL 
SYSTEMS 

FEEL 

In this section, a brief 
description of some typical arti- 
ficial feel systems will be given. 

Without artificial feel in the 
irreversible control systems, the 
stick is free to flop around at 
will. 

Simple Spring: 

The simplest type of feel 
system is that in which the cockpit 
control is restrained from move- 
ment in either direction by a 
linear spring. The control force 
is then simply proportional to 
control deflection. 

AF = KA6 (9.1) 

It is worth noting that this type 
is often called a "bungee."  It is 
unfortunate, but a downspring is 
also sometimes called a bungee. 
(In this chapter the term bungee 
will be used to mean a centering 
or feel spring.)  Although the 
simple spring ioes give the pilot 
some feel of rne aircraft response, 
the stick force versus control sur- 
face deflection is a constant re- 
gardless of airspeed (ignoring aero- 
elastic and Mach effects).  There- 
fore, for aircraft with wide speed 
ranges their use for longitudinal 
control is unsatisfactory, since 

S.1S 
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the etick force per "g" is lowest 
for .igh speeds and highest for 
low speeds. However, this type 
of feel is often used in aileron 
systems/ and thus explains the 
relatively high roll rates obtained 
in some of our high performance 
aircraft at high subsonic airspeeds. 

q-Feel; 

It  the feel system can be 
made &  function of dynamic pres- 
sure, by use of bellows, a servo 
device, or any other means, then 
the control force will be a function 
of control deflection and dynamic 
pressure. 

AF = KqA6 .2) 

Such a system produces a stick 
force per g which is invariant 
with airspeed.  Another character- 
istic of this system is that in 
regards to  speed stability, the 
stick force varies as a function of 
"q." Thus "q" feel is an attempt 
to approximate the feel that is 
obtained in the reversible system. 
This device is ommonly used for 
feel in the longitudinal control 
of many modern aircraft. 

There are some problems that 
reduce the utility of this system 
somewhat.  Since the feel is based 
on dynamic pressure and not Mach 
number, the matching of the system 
to perform correctly at subsonic 
speeds will result in much larger 
forces supersonically because nearly 
twice as large control movements 
are needed for the same response. 
Other problems inherent m the "q" 
system are compressibility and posi- 
tion error effects in the transonic 
region, however, these can be alLe- 
viated to some extent by suitable 
scheduling, or by a Mach cutoff 
through a specific range of the 
transonic region. 

One method of mechanizing 
the Kqa6 of feel forces is :o  pro- 
duce a force proportional to qc tay 

ram air bellows and piston combina- 
tion shown in figure 9.13. 

FIGURE 9.13 
RAM AIR MLLOWS AMD PftTON 

K 
The pressure drop across the 

piston is the difference between 
total and static pressure. Hence 
the force on the piston is approxi- 
mately the product of the face area 
and the compressible dynamic pres- 
sure. 

The qc force is fed through a 
rocking cam to the cockpit control 
as shown in figure 9.14. 

FIGURE 9.14 
RAM AIR FEEL SYSTEM 

Ram air provides at all times a 
force on the cam. As the stick 
moves aft the cam rotates clockwise 
and the qc force creates a counter- 
clockwise moment on the cam which 
must be balanced by a positive 
itick force. 

9.14 
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V - Feel; 

When the feel system is made 
a function of airspeed, then the 
control force will be a function 
of control deflection and airspeed. 

AF = KVAÖ (9.3) 

This system, primarily used by the 
British, is desirable for much the 
same reason as the q - feel system, 
and similarly runs into some of 
the same difficulties in the tran- 
sonic regions. 

Preloaded Spring; 

If a significant amount of 
friction exists in a flight con- 

FIGURE 915 
PRE-LOAD SPRING 

PILOT'S 
FORCE   F 

tiol system, the control centering 
is likely to be poor. One method 
of eliminating this problem is to 
use a preloaded spring on the arti- 
ficial fee.! system. A preloaded 
spring is one which has already been 
compressed, usually in a cylinder, 
in such a way that some specified 
force must be applied to compress 
it further, as indicated in figure 
9.15. Thus, in order for the pilot 
to move the stick at all, he must 
supply this force. The magnitude 
of the preload can be adjusted to 
just exceed the force required to 
overcome system friction, thus 
assuring good centering. The 
stiffness of the spring can be 
chosen to give the desired stick 
force gradient. 

If a very light stick force 
gradient is desired, then the feel 
characteristics of the infinite 
stick force gradient through trim 
produced by the preload may be 
objectionable.  In this case, a 

9.15 
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vigorous friction reduction program 
Mould probably be a better solution 
to the centering problem than the 
preloaded spring. 

Nonlinear Gearing; 

In this arrangement, the ratio 
of control surface movement to move- 
ment of the stick is small near the 
neutral position changing with dis- 
placement to a high ratio near the 
limits of travel.  In this system 
spring feel is often used with 
either linear or nonlinear force 
gradients versus displacement. A 
typical example of nonlinear gearing 
is used on the F-100 slab tail in 
conjunction with a nonlinear spring. 
The original F-100A with a linear 
gear, nonlinear spring provided the 
pilot with oversensitive control at 
high speed. To remedy this situa- 
tion, a nonlinear gear was designed. 
As a result, the amount of stabilizer 
angle available within one inca for- 
ward and aft from the stick nettral 
position reduced from a total of 
7 1/2 to 3 degrees. 

There are certain disadvantages 
inherent in the use of nonlinear 
gearing.  In the longitudinal axis 
it is desirable that the center of 
the reduced ratio of control move- 
ment occurs at high speed around the 
trim position.  Now if large trim 
changes are present, say due to eg 
movement, the trim at high speed 
would not correspond to the optimum 
position in the nonlinear slope and 
the handling characteristics would 
change. Another problem arises in 
lightening of force with increasing 
"g."  This is ordinarily solvable 
with nonlinearity in the feel 
springs. 

Variable Gearing? 

In a variable gear ratio con- 
trol the ratio of pilot's control 
movement to surface movement is 
altered in flight to fit the desired 
response characteristics in a qfiven 
flight regime. This principle of 
control is applied in the B-58. 

The Hustler uses a variable gear 
system which is varied automatically 
with dynamic pressure and g loading. 

Stability Augmentation: 

It is frequently necessary to 
augment the natural stability of an 
aircraft by synthetic means. This 
may be because the damping of some 
mode is too low, or because of 
actual instabilities, static or 
dynamic, that are present in some 
flight regime. 

One type of a control damper 
produces a control force require- 
ment which is proportional to the 
rate of deflection of the cockpit 
control or control surface.  Usually 
this damper is a piston which must 
be moved in a cylinder which con- 
tains oil which must be forced 
through orifices.  One possible use 
of a damper might be to prevent 
pilots "beating the bobweight." 
One difficulty in installing such 
ä device is that this damper might 
also prevent the pilot from making 
necessary rapid corrections when 
needed; say, upon landing the air- 
craft. 

From the aerodynamic stand- 
paint, stability augmentation con- 
sists of altering one or more of 
the stability derivatives by auto- 
matically displacing one or more of 
the control surfaces in response 
to motion of the airframe.  For 
example, if the aircraft is stat- 
ically unstable longitudinally 
(Cma> 0), then it could in principle 
be stabilized by sensing a, and 
producing an elevator deflection 
proportional and opposite to it; 
i.e., let 6e = ka, then 

AC ma 
<?Cm_ JOT - KCm6e (9.4) 

A common example of the stability 
augmentor is the yaw damper.  In 
its simplest form, it increases 
the damping in the derivative Cnr, 
but can also be designed to alter 
Cng and Cnp. 

', 

5.16 



--»I.I. JIVI.M* II..,.  -1«^,^^ TTr.^-r mmmmm WW I.^IJJi.Liii J*viU*Utmi np * ■« 

u FIGURE 9.16 
SCHEMATIC OF A RESPONSE FEEL SYSTEM 
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5. The flight control movement 
produces a desired aircraft 
response, say normal accelera- 
tion. 

6. This response is sensed by 
an accelerometer and con- 
verted into a voltage - the 
"response signal." 

Other names occasionally used for 
this system are "Synthetic Feel' 
or "Stick Steering." 

If the desired response (say, 
g's) to a cockpit input (usually 
force) is sensed, and if through 
an appropriate servo device the 
flight control surface deflection 
is varied in order to correct the 
output to the desired response, the 
pilot has "response feel." 

F - KX (desired response) (9.5) 

For example, suppose the longitudi- 
nal control system of an aircraft 
worked as follows (figure 9.16): 

1. The pilot exerts a force on 
the stick. 

2. The stick force is converted 
to a voltage - the signal. 

3. This command signal voltage 
is fed to a comparator, then 
to a flight control position 
servo, and also to a cockpit 
control position-servo. 

4. These position-servos convert 
the signals to valve move- 
ments, which direct fluid to 
the appropriate side of pistons, 
causing flight control and 
stick movement.  (Thus the 
naae "stick steering." The 
pilot thinks he is moving the 
stick, but really it is being 

7. This response signal voltage 
is sent to the comparator 
where command and response 
signals are continually com- 
pared. The difference is 
called error signal. The 
comparator must be given the 
desired stick force per g in 
order to compare the command 
response signals. Thus the 
comparator is the origin and 
heart of the control system. 

8. The error signal in the com- 
parator causes further servo 
and control motion until the 
response and command are 
equal.  Then the error signal 
is zero and no further con- 
trol motion takes place until 
the pilot demands it by 
changing stick force. 

As a byproduct of this type 
of control system, the aircraft 
which might otherwise have unde- 
sirable characteristics can be 
stabilized by introduction of a 
damping loop in the circuitry.  In 
this case a rate gyro (sensing 
pitch rate in longitudinal oscilla- 
tions in poorly damped flight re- 
gions) could be made to operate a 
fast response servo to deflect the 
elevator in a stabilizing sense, 
without the pilot being aware of 
the corrections being made. 

S.1T 
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Typical response for a number 
of the feel systems just described 
are shown in the following figures, 
where 

S = Spring Feel 

V = V - Feel 

q = q - Feel 
R = Response Feel 

FIGURE 9.17 
STICK FORCE PER "3" 

<IF, 

»V. 

FIGURE 9.18 ,« FOR« 
OUT-OF-TRIM STICK FORCE 

TRIM SPEED    0  » V, 

S- 

FIGURE 9.19 
AILERON FORCE PER UNIT ROLL RATE 

if 

FIGURE 9.20 
RUDDER FOUCi PER UNIT SKNESUP ANGLE 

(Assuming dör/dß * K) 

*ß 

The stick force per g plot 
(figure 9.17) can be analyzed in 
the following way: 

JJJJ*- =—^     For all feel systems 
V       except the response feel     (9.6) 

system 

dF 
-rjj-S  = K^     For spring teel 

$£a  = K3V  For   V - Feel 
e 

jjjj  = K4V2 For q - Feel 

(9.7) 

(9.3) 

(9.9) 

Since d5Q/dn is not a function of 
n, the derivatives can be multi- 
plied 

on        d0e   dn (9.10) 

§*=  •^■^(•^) Jor spring (9.U) 

j£f • &51 = f( i ) for V - feel (9.12) 

*   v. 

and 

dFa 

dn 

I 

- K1K4 = consent for q - feel       (9.13) 

9.11 
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For the response feel dFg/dn » K5. 
iJ      Where K5 is the desired stick-force 

per g which is built into the com- 
parator . 

The reader may find it worth- 
while to analyze the other response 
curves in a similar manner. Warning: 
Since d6e/dV is a function of velocity 
the method of multiplying will not 
work. A little reflection should 

. convince the reader that a response 
4 feel system that senses a parameter 

such as normal acceleration or roll- 
ing acceleration will require no 
force by the pilot to maint iin a 
steady state change of airspeed or 

ji       roll rate. The shape of the response 
curves for a response feel system 
would depend entirely on what was 
built into the comparator or what 
additional feel device was added. 

A glance at the stick force 
per g plot shows that the spring 
and q-feel curves are quite dif- 
ferent. The q - spring gives the 
pilot a constant stick-force per g 
throughout the aircraft speed 
range.  This constant measure of 
response is generally considered 
to be superior to the variable 
response encountered when the feel 
is provided by a simple linear 
spring.  In the latter case, the 
stick force gradient might well be 
too high in the pattern and/or 
dangerously low at high speeds 
where the aircraft is usually capa- 
ble of generating its limit load 
factor. The advantage of the simple 
spring is its simplicity and re- 
liability. The designer must decide 

^       what degree of sophistication, and 
therefore, complexity must go into 
the system.  The test pilot must 
then pass judgment on his decision. 

• 9.9    CONTROL SVSTEM 
EXAMPLES 

The previous paragraphs have 
discussed the different classifica- 
tions of control systems and how 
they are used to give the pilot 
control of his aircraft.  It is of 
interest now to look at some of 

the actual control systems of a 
number of aircraft and observe how 
the different designers have made 
use of the various types of con- 
trols to give the pilot a desirable 
control system. Descriptive sum- 
maries of the control systems of 
fourteen different aircraft are 
given in the following paragraphs. 
There are other aircraft that might 
have been included such as the 
F-100, F-106, B-66, etc.  However, 
their control systems were so simi- 
lar to one or more of the systems 
given that they were excluded. The 
reader might consider some of the 
aircraft described in this section 
rather outmoded, however, this se- 
lection includes the various types 
of cortrol systems. Further, it 
is wis- to consider the possibility 
of fur idä development of subsonic 
aircraft to be employed in small 
brush-fire type wars, where the 
use of the more simple control 
systems might be advantageous from 
a reliability standpoint. 

NOPTH AMERICAN T-28A 

The control system of the 
T-28A is a simple reversible type 
that consists of conventional ele- 
vators, ailerons, and a rudder. 

The elevators use aerodynamic 
balancing in the form of an over- 
hung balance.  Mass balancing of 
the elvator is accomplished by 
means of a negative bobweight 
located in the bell crank mechanism. 
This not only counterbalances the 
elevator, but reducet; elevator 
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stick forces during accelerated 
flight. Elevator trim is provided 
by means of a manually operated 
trim tab on each elevator. 

Aerodynamic balancing is in- 
corporated in the aileron by means 
of a simple internal seal. Trim 
is provided by means of a manually- 
operated trim tab, one on each 
aileron. 

The rudder incorporates aero- 
dynamic balancing by means of a 
setback hinge. A trim tab located 
on the trailing edge of the rudder 
provides directional tiim. 

LOCKHEED T-33A 

BALANCE ~TKIM 

i 

'    i 

The T-33A has a reversible 
control system that includes several 
modifications for improving stick 
forces or pilot feel. 

Longitudinal control is pro- 
vided by conventional elevators. 
Aerodynamic balancing is incorporated 
in the elevators in the form of a 

spring tab and a balance tab on 
each elevator. A small shielded 
horn balance mounted outboard on 
each elevator is used for mass 
balancing of the elevators.. Ele- 
vator unbalance plus a downspring 
are used in the control system to 
increase stick free stability. 
Trim is provided by an electric 
actuator that moves the balance tab. 

Lateral control is provided 
by conventional ailerons that are 
hydraulically boosted. This boost 
is necessary since the ailerons are 
not aerodynamically balanced and 
stick forces are considerable with- 
out the hydraulic boost.  Lateral 
trim is provided by an electrically- 
actuated tab located on the trailing 
edge of the left aileron. 

NORTH AMERICAN F-86F 

t 

The lateral and longitudinal 
control systems of the F-86F are 
irreversible.  The directional 
control system is reversible. The 
longitudinal control consists of 
a hydraulically-operated elevator 
and horizontal stabilizer that are 
interconnected and operate as one 
unit. Artificial feel is provided 
by means of a downspring and r 
bobweight. The main purpose of 
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the bobweight is to increase the 
gradient of stick force versus 
load factor. Longitudinal trim is 
accomplished by repositioning the 
downspring by an electric actuator. 
This, in effect, changes the neu- 
tral (no load) position of the 
control stick. 

Lateral control is provided 
by hydraulically operated ailerons. 
Artificial feel is provided by a 
bungee. Lateral trim is accom- 
plished in the same manner as 
longitudinal trim. 

Direbtional /control is pro- 
vided by a mecha/.ically-operated 
rudder.  Rudder/crim is accomplished 
by an electrice.ily-actuated tab on 
the rudder. M4SS balancing is in- 
corporated in/the rudder by the 
addition of weight in a small horn 
balance in the top part of the 
rudder. 

CONV/tIR TF-102 

-<o 

The TF-102 has a hydraulically- 
operated irreversible control sys- 
tem.  Being a delta wing aircraft, 
the TF-102 utilises elevons instead 
of ailerons and elevator control 
surfaces.  The elevons when moved 
coirjridentally act as elevators 
and when moved iifferentially act 
as ailerons.  This is accomplished 
by a mixer assembly which consists 
of a bell crank assembly which ro- 
tates to provide aileron action 

and moves fore and aft ^o provide 
elevator action. A rudder mounted 
on the vertical stabilizer is used 
for directional control. Aileron 
artificial feel is provided the 
pilot by means of a bungee. Ele- 
vator feel is provided by a bungee, 
a bobweight, and a variable feel 
force cylinder that incorporates 
ram air pressure. This is better 
known as a "Q-feel" system. The 
bobweight is r. >t  only used to in- 
crease the gradient of stick force 
versus load factor, but to counter 
the negative bobweight effect of 
the control column.  Rudder feel 
is provided by the same method as 
the elevator. Trim is accomplished 
by repositioning the neutral (no 
load) positions of the control 
stick and rudder pedals.  In addi- 
tion, an automatic trim servo is 
used in the control system to com- 
pensate for unstable stick force 
gradients in the transonic speed 
region. 

MARTIN B-57E 

^ 

v/1 

The longitudinal control sys- 
tem is a reversible type and con- 
sists of mechanically-operated 
conventional elevators.  Aerodynamic 
balancing is used on the elevators 
in the form of a spring tab, un- 
shielded horn balance, and trailing 
edge strips on each elevator.  Mass 
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balancing of the elevator is in- 
cluded in the horn balances. The 
trailing edge strips are used on 
the elevator to produce a favorable 
response effect. Longitudinal trim 
is provided by an electric actuator 
that changes the angle of incidence 
of the horizontal stabilizer. 

The lateral control system 
consists of mechanically operated 
conventional ailerons. A spring 
tab mounted on each aileron is used 
for aerodynamic balancing. Lateral 
trim is provided by an electric 
actuator that, in effect, shifts the 
neutral position of the control 
wheel by varying the elongation of 
a spring at the base of the control 
column. 

Directional control is pro- 
vided by a conventional rudder that 
is normally operated by hydraulic 
pressure.  In the event of hydraulic 
pressure failure, the system be- 
comes reversible and the rudder can 
be operated manually. The rudder 
is balanced aerodynamically by 
means of a balance tab, unshielded 
horn balance, and a beveled trail- 
ing edge. The rudder is mass 
balanced uy  addition of weight in 
the horn balance. 

When the rudder is operated 
by hydraulic pressure, the system 
becomes irreversible and requires 
artificial feel. The artificial 
feel used is a V-feei system which 
varies the mechanical advantage of 
the rudder in proportion to the 
speed of the aircraft, producing 
high rudder pedal forces at high 
speeds and low rudder pedal forces 
at low speeds.  When the rudder is 
operated manually, trim is provided 
by using the balance tab as a com- 
bined trim and balance tab. When 
the rudder is hydraulically oper- 
ated, the balance tab is used only 
as a balance tab and trim is pro- 
vided by an actuator in the feel 
system which varies the neutral 
position of the rudder pedals. 

LOCKHEED F-104B J 

The complete control system, 
i.e., longitudinal, lateral, and 
directional, of the F-104B is a 
full hydraulically powered irre- 
versible system. 

Longitudinal control is pro- 
vided by means of a controllable 
horizontal stabilizer mounted at 
the top of the vertical stabilizer. 
Artificial feel is provided by 
means of a bobweight and a variable 
feel cam arrangement, which is 
similar to a bungee or spring feel 
system.  Shown below is a schematic 
of the cam and spring arrangement 
which indicates its principle of 
operation. 

CONTROL STICK 

'"w* 

STATIONARY 
f/        EXCEPT FOR 

LINKAGE TO 
HYDRAULIC 
PISTON THAT 
OPERATES 
STABILIZER 

iS 

ARTIFICIAL FEEL SYSTEM FOR 
LONGITUDINAL CONTROL SYSTEM 

-*  TRIM ACTUATOR 
MOVES SPRING 
LOADED ROLLER 
TO ZERO FORCE 
POSITION OR 
BOTTOM OF CAM 

PRINCIPAL OF TRIM 
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This type of system is unique in 
that the shape of the curve of 
stick force versus stabilizer de- 
flection depends on the slope of 
the cam. Longitudinal trim is 
provided by an electric actuator 
that returns the spring loaded 
roller on the cam to the zero force 
position.  (See preceding sketch.) 

Lateral control consists of 
conventional ailerons mounted on 
the outboard section of the wing. 
Artificial feel is provided by 
means of a bungee. To prevent a 
dangerously high rate of roll ami 
possible inertial coupling problems 
at higher speeds the aileron de- 
flections are limited to plus or 
minus 15 degrees with landing flaps 
up. This is 5 degrees less de- 
flection than with landing flaps 
down. Trim is provided by means 
of an electric actuator that re- 
positions -he neutral position of 
the bungee. 

Directional control is provided 
by a conventional rudder. Arti- 
ficial feel is provided by means of 
a bungee.  With landing flaps up 
maximum rudder deflection is de- 
creased from plus or minus 20 de- 
grees to plus or minus 6 degrees 
by mechanical stops at the rudder 
pedals.  This is done to prevent 
structural failure of the vertical 
tail at high speeds.  Rudder trim 
is provided through the yaw damper 
circuit to the rudder. 

BOUNDARY LAYER CONTROL 

1. Airflow 

2. Boundary layer nozzle 

3. Trailing edge flap 

4. Boundary layer control duct 

5. Aft wing section 

In the above figure the air is 
bled from the compressor and ducted 
to the boundary layer control mani- 
fold which is located above the 
trailing edge flap hinge. The 
boundary layer control manifold 
has a series of nozzles which 
direct high pressure air over the 
upper surface of the flap when they 
are placed in the landing position. 
The high velocity created by this 
jet of air re-energizes the boun- 
dary layer, causing it to adhere 
to the curved fairing and bend 
around and pass over the upper sur- 
face of the flap. This induces the 
adjacent layer of air to adhere and 
bend through the flap deflection 
angle, thus preventing airflow 
separation and resulting in a re- 
duced landing speed.  The system 
operation is automatic. 

NORTHROP  T-38 

-AILERON 

- FLAP 

"JbJ M ""   Ite'  

The T-38 has a fully powered 
irreversible control system with 
conventional ailerons and rudder, 
and an all-moveable horizontal tail. 
This system is quite similar to the 
F-104B except for the type of arti- 
ficial feel in the horizontal sta- 
bilizer system. All control surfaces 
are hydraulically operated. The 
horizontal tail system's artificial 
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feel consists of a bungee and a 
positive bobweight. Artificial 
feel for the ailerons and rudder 
is achieved by means of bungees. 
Maximum rudder deflection is re- 
duced also with the landing gear 
up to prevent structural damage to 
the vertical tail. Trim is provided 
by electric actuators that reposition 
the neutral (no load) position of 
the bungees. The flaps are mech- 
anically interconnected to the 
horizontal tail to automatically 
change its angle to the trim posi- 
tion when the flaps are actuated - 
trailing edge down when the flaps 
are extended. 

GRUMMAN F-11F (TIGER CAT) 

The longitudinal control sys- 
tem of the F-11F is a hydraulically- 
operatted irreversible system con- 
sisting of an all-movable horizontal 
stabilizer and geared elevator much 
like that of the F-86F. One unique 
feature of the systen is that when 
the wing flap control is in the 
"up" position, the elevator is 
automatically locked in line with 
the stabilizer and the two units 
move as a single unit.  When the 
wing flaps are in the down position 
the elevator is geared to stabilizer 
motion. When the control stick is 
pushed forward the leading edge of 
the stabilizer moves up and the 
trailing edge of the elevator moves 
down.  When the control stick is 
pulled dft, the stabilizer leading 

edge roves down and the elevator 
trailing edge moves up. This, in 
effect, changes the camber of the 
tail as well as the angle of 
attack which improves pitch control 
in the lower speed range. 

Artificial feel is supplied 
to the pilot by means of a cam and 
spring-loaded follower (modified 
bungee) that is quite similar to 
that of the F-104B.  (See schematic 
of control system.)  In addition, 
a positive bobweight is used in 
the system for feel. Longitudinal 
trim is provided by an electric 
actuator that varies the neutral 
position of the artificial feel 
system which in turn varies the 
neutral position of the stick. 

The lateral control system is 
a hydraulically-operated irrevers- 
ible system consisting of a movable 
flaperon (spoiler) on tne top of 
each wing. This type of system is 
used on the F-11F so that full span 
wing flaps can be used to provide 
lower carrier approach speeds. The 
flaperons are hinged forward and 
move through an arc of 55 degrees 
when the control stick is deflected 
fully. When control stick is de- 
flected right, the right flaperon 
rises with the left flaperon remain- 
ing flush and vice-versa. The arti- 
ficial feel system consists of a 
cam and spring-loaded follower 
(modified bungee) that is almost 
identical to the longitudinal sys- 
tem arrangement. Lateral trim is 
provided by the same method as 
longitudinal trim, i.e., varying 
the neutral position of the arti- 
ficial feel system. 

The directional control sys- 
tem is irreversible and consists 
of a hydraulically-operated con- 
ventional rudder. To prevent possi- 
ble structural failure of the ver- 
tical tail the rudder is limited to 
5 degrees either side of neutral 
by automatic rudder pedal position 
stops with flaps in up position. 
With flaps in the down positior 
rudder travel is increased to 22 

t 

**• * 
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u degrees either side of neutral for 
increased directional control at 
lower speeds. This is quite simi- 
lar to the system of the F-104B. 
The artificial feel system consists 
of a cam and spring-loaded follower 
(modified bungee) quite similar to 
that of the longitudinal and lateral 
system. Movement of the cam against 
the follower induces a force in the 
control system that opposes pedal 
movement. This force is dependent 
on pedal position only. Trim is 
provided by an electric actuator 
that operates through the yaw damper 
to trim the rudder in much the same 
way as the F-104B rudder trim. 

MCDONNELL F-4C 

position of the artificial feel sys- 
tem. 

The lateral control system 
consists of hydraulically-operated 
ailerons and spoilers. The system 
is quite unique in that the aile- 
rons deflect downward only. When 
the control stick is deflected 
right for a roll to the right, 
the right aileron remains flush, 
the right spoiler deflects upward, 
the left aileron deflects downward, 
and the left spoiler remains flush. 
The system operates opposite for 
a roll to the left.  Spoilers are 
used in the F-4C to partially alle- 
viate wing twisting during high- 
speed roll maneuvers, and the aile- 
ron spoiler combination is used to 
increase roll rate and roll effec- 
tiveness at low speeds. Maximum 
roll rate is decreased above 220 
knots indicated airspeed by a pres- 
sure switch in the system that de- 
creases the maximum available hy- 
draulic pressure which in turn re- 
duces the deflection of the aileron 
and spoilers in proportion with dy- 
namic pressure.  The reason for this 
is to avoid dangerously high rates 
of roll which might cause inertial 
coupling.  Artificial feel is pro- 
vided the system by means of a bun- 
gee.  Trim is made available by 
adjusting the neutral position of 
the bungee. 

An aileron-rudder interconnect 
is incorporated in the lateral and 
directional control system to auto- 
matically coordinate turns made at 
speeds below 225 knots.  This is 
accomplished by providing rudder 
displacement as a function of 
aileron displacement. 

i r 

The longitudinal control 
system of the F-4C consists of a 
hydraulically-cperated horizontal 
stabilizer referred to by McDonnell 
as i  "stabilator." Artificial feel 
is pio'ided the system by the addi- 
tion of a bobweight and a Q-spring 
which makes stick force a function 
of dynamic pressure.  Trim is accom- 
plished by adjusting the neutral 

CONVAIR 880 

The longitudinal control 
system of the 880 is a reversible 
system that consists of conventional 
elevators mounted on the rear spar 
of the horizontal stabilizer.  Move- 
ment of the elevators is accom- 
plished indirectly by movement of 
a control or servo tab located on 
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the trailing edge of each elevator. 
An unusual feature in the system is 
that the left and right elevators 
are independently hinged and may 
be moved independently of each other 
on the ground. However, the ele- 
vators will always act together in 
flight since th« control tabs are 
interconnected. Centering springs 
located at the elevator hinge line 
and attached to .he control tabs 
are used to overcome system fric- 
tion, and return the control tabs 
to neutral when the pilot releases 
stick pressure. An internal seal 
type of aerodynamic balancing called 
a balance board is used on the ele- 
vators to reduce stick forces. 
The balance boards are quite unique 
in their design in that they provide 
maximum assistance to the pilot at 
large deflection of the control sur- 
faces where he needs assistance 
and very little at small deflection 
of the control surfaces where assis- 
tance is not required.  The principle 
of operation of the balance boards? 
is described as follows.  (Refer 
to figure shown below.) 

DAGMAR 

AIR BLEED HOLE 

<^_ 

ELEVATOR 

BALANCE BOARD 

AIR BLEED HOLE 

If the control surface is deflected 
in either direction, a differential 
pressure will exist between each 
side of the balance board, with the 
increased pressure being on the 
deflected side. This differential 
pressure will exert an additional 
force that will aid control surface 
movement. The differential pres- 
sure will increase as the control 
surface deflection is increased 
due to the dome-shaped "dagmar" 
entering the airbleed hole and 
effectively sealing off each side 
of the balance board. At maximum 
deflection of the elevator, the 
airbleed hole is closed completely 
and the differential pressure is 
at its maximum. This gives the 
maximum aid in moving the control 
surface at precisely the time it 
is required. Once the control sur- 
face is again centered differential 
pressures will no longer exist. 

Longitudinal trim is ;:r'rmally 
provided by an electrical actuator 
that changes the angle of incidence 
of the horizontal stabilizer.  In 
the event of electrical failure, 
trim can be accomplished manually 
by trim cables. 

The lateral control system is 
a partially reversible system that 
consists of conventional ailerons 
augmented by two sets» of wing spoilers 
on each wing. The ailerons, located 
approximately half wiy out the 
wing span, between the inboard and 
outboard flaps (see picture), are 
indirectly operated through control 
tabs on the trailing edge of each 
aileron.  The ailerons are aero- 
dynamically balanced bv balance 
boards similar to those of the 
longitudinal system.  The wing 
spoilers, located forward of each 
flap are hydraulically operated 
and incorporate a blowdown safety 
design that prevents damaging the 
spoilers at high speeds.  The 
lateral control system operates as 
follows (right roll example): 
When the control wheel is rotated 
to the right, the right aileron 
and spoilers deflect up, the left 
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aileron deflects down, and the left 
spoilers remain flush.  The spoilers 
are also used as speed brakes by 
deflection of both sets of wing 
spoilers together.  If the spoilers 
are being used as speed brakes, 
and the control wheel is rotated 
right, the right spoiler will re- 
main in the up position and the 
left spoiler will deflect downward 
toward the flush position. Lateral 
trim is provided by means of a 
manually-operated trim tab located 
on the trailing edge of each aileron. 

The directional control sys- 
tem is reversible and consists of 
a conventional rudder that is 
operated indirectly by a control 
tab on the trailing edge of the 
rudder. A center spring mechanism 
is used in conjunction with the 
control tab to return it to its 
neutra" position when pressure is 
removed from the rudder pedals. 
The rudJsr is aerodynamically 
balanced hy the use of five balance 
boards identical to those used in 
the elevator.  One unique feature 
of the control system is that al- 
though it is a reversible system, 
a feel system is designed into the 
rudder control system.  This makes 
the system force limited at high 
airspeeds, thus preventing over- 
stressing ci the vertical tail 
through excessive side loads.  Rud- 
der trim is provided by means of a 
manually-operated trim tab located 
on the trailing edge of the rudder. 

BOEING KC-135 

The longitudinal control sys- 
tem is; a reversible system and con- 
trol Ls provided by means of ele- 
vators mounted on an adjustable 
horizontal stabilizer.  The elevators 
are independently hinged in much the 
same way as those of the Convair 880. 
The elevators are deflected together 
by manually-operated interconnected 
control tabs (servo tabs) located 
on the trailing edge of the elevators. 
Once full control tab is attained, 
additional elevator deflection can 
be obtained by further movement of 

the control column, though this is 
not practical during flight due to 
high stick forces. Each elevator 
is aerodynamically balanced by 
means of five balance pai.els (in- 
ternal seals) that operate quite 
similarly to the balance boards of 
the Convair 880. 

Shown below is a sketch of 
the balance panel. 

AIR BLEED 

AIR BLEED HOLE CLOSED 

Trim is accomplished by vary- 
ing the angle of incidence of the 
horizontal stabilizer by an elec- 
trical or manual actuator.  In 
addition, a trim tab is located on 
each elevator and is actuated by 
movement of the horizontal stabilizer. 
The purpose of these tabs is to 
position the elevators in line with 
the stabilizer and reduce the upward 
and downward movement of the elevator 
which is a result of aerodvnamic 
loads on the elevator caused by 
positioning of the stabilizer. 

The lateral control system is 
a partially reversible system and 
consists of inboard and outboard 
ailerons that are used in conjunc- 
tion with two sets of spoilers on 
the top of each wing.  The inboard 
ailerons, which are considerably 
smaller than the outboard ailerons 
are used in conjunction with the 
spoilers for lateral control through- 
out the speed range of the aircraft. 
When flaps are lowered for low 
speed flight, the outboard ailerons 
are locked out of the system and 
remain faired in the neutral position. 
This prevents wing twist at high 
speeds.  The outboard ailerons 
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are aerodynamically balanced by 
use of internal seals and a spring 
tab on each aileron. Movement of 
the inboard ailerons is by action 
through the spring tab. The spring 
tab is also used as a trim tab for 
lateral trim. The lateral control 
system operates as follows (right 
roll example): When the control 
wheel is rotated to the right, 
the right ailerons and right 
spoilers deflect upward. The left 
ailerons deflect downward, and the 
left spoilers remain flush. The 
spoilers on both wings are also 
used as speedbrakes by being de- 
flected together.  If the spoilers 
are being used as speed brakes, 
and the control wheel is rotated 
right, the right spoiler will re- 
main up, and the left spoiler will 
deflect down. 

The directional control syf. • 
tern of the KC-135 consists oi a 
conventional rudder that incor- 
porates four rudder tabs, i.e., 
a trim tab, a spring tab, a con- 
trol tab, and an antibalance tab. 
The antibalance tab is located on 
the trailing edge of the control 
tab.  The purpose of tha antibalance 
tab is to increase the effective- 
ness of the control tab.  In addi- 
tion five balance panels (internal 
seal) are used for aerodynamic 
balancing of the rudder.  The 
rudder control surface is mech- 
anically operated from the pilot's 
rudder pedal through the control 
tab and spring tab.  Rudder trim 
is provided by a mechanical man- 
ually-operated trim tab. 

The control system of the 
Boeing 707 is almost identical to 
the KC-135 except for the direc- 
tional control system. The 707's 
rudder incorporates aerodynanu c 
balancing only in the form of 
balance panels.  The rudder has 
one control tab used to deflect 
the rudder.  Whenever the rudder is 
deflected in excess of 15 degrees, 
the control tab hits its stop, a 
rudder hydraulic control unit takes 
over the rudder system and it then 

becomes an irreversible system. 
Artificial feel is supplied to the 
pilot by a Q-spring assembly which 
provides an artificial feel pro- 
per cional to the dynamic pressure 
and rudder deflection. 

DC-8 

ELEVATOR CONTROL TAB 

JUDMBn All CDQfcl 

RUDDER 

CONTROL TAB 

The longitudinal control 
system of the DC-8 is a partially 
reversible system that consists of 
conventional elevators that are 
manually operated indirectly by 
control tabs. Aerodynamic balanc- 
ing is incorporated in the elevator 
by means of a balance tab on each 
elevator and an overhang balance. 
A centering spring is provided in 
the system to provide more positive 
centering of the controls and also 
for additional control forces. 
Trim is provided by means of an 
electric actuator that varies the 
angle of incidence of the horizontal 
stabilizer. 

The lateral control system con- 
sists of inboard and outboard aile- 
rons interconnected by a torsion 
rod. Wing spoilers on the top of 
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each wing are used in conjunction 
with the ailerons, whenever the 
landing gear is extended, for better 
lateral control during landing. 
Both inboard and outboard ailerons 
use aerodynamic balancing.  Hydraulic 
power normally operates the inboard 
ailerons which in turn operate the 
outboard ailerons through the inter- 
connecting torsion rods. At .low 
speeds when the inboard ailerons 
are deflected, the outboard aile- 
rons deflect an equal amount; how- 
ever, as speed is increased, the 
outboard aileron del Lection becomes 
less due to the twisting of the 
interconnecting torsion rods. This, 
in effect, reduces wing twist as 
speed is increased.  Artificial 
feel is supplied to the pilot oy 
means of a bungee spring.  In the 
event that hydraulic power is not 
available, the inboard filerons 
can be manually operated indirectly 
by control tabs located on the 
trailing edge of each aileron. These 
control tabs are normally locked in 
the neutral position whenever the 
ailerons are operated by hydraulic 
power, but automatically unlock 
when hydraulic power is not avail- 
able.  Lateral trim is accomplished 
manually by adjusting the neuvral 
(no load) position of the bungee 
spring. 

Directional control is pro- 
vided by means of a hydraulically- 
powered conven* i.onal rudder.  The 
rudder uses aerodynamic balancing 
in the form of an overhang balance. 
Artificial feel is supplied to the 
system by a bungee spring.  When 
hydraulic power is not available, 
the rudder can be controlled in- 
directly by a mechanically-operated 
control tab.  Like the aileron 
control tab, the rudder control 
tab is normally locked in the 
neutral position when hydraulic 
power is available, but automati- 
cally in locks if hydraulic po»^ 
iS not available.  Rudder trim is 
provided by adjusting the neutral 
'no load) position of the bungee 
spring. 

B-52C 

The longitudinal control 
system of the B-52G is quite simi- 
lar to that of the 707. The system 
is reversible and consists of con- 
ventional independently hinged 
elevators positioned by manually- 
operated interconnected control 
tabs. The elevator is mass bal- 
anced by weights in the elevator 
forward of its hinge line.  Aero- 
dynamic balancing is incorporated 
in the elevator by use of balance 
panels (internal seals) which oper- 
ate similarly to those used in the 
707.  Additional feel is supplied 
to the elevator by means of a Q- 
spring.  In addition, a centering 
spring is used to assist in center- 
ing the elevator at low indicated 
airspeed.  Longitudinal trim is 
provided by an electric actuator 
that varies the angle of incidence 
of the horizontal stabilizer. 

BOEING B-52 

CONTROL TAB 

The lateral control system of 
the B-52G is quite different from 
similar type aircraft such as the 
880 and DC-8 in that no convention- 
al ailerons are used. Lateral con- 
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trol is provided by means of two 
sets of spoilers located on the top 
of each wing (see picture). The 
spoilers are hydraulically operated 
and artificial feel is supplied to 
the pilot by means of bungee springs. 
The spoilers can be deflected fully 
up to an indicated airspeed of 250 
knots. Above this speed, hydraulic 
pressure is insufficient to obtain 
full deflection. The reason for 
this is to reduce wing twist at 
high indicated airspeeds. The 
spoilers are also used as speed 
brakes in the same manner as the 
707. 

Lateral trim is provided by 
an electric actuator that reposi- 
tions the neutral (no load) position 
of the bungee springs. 

The directional control system 
of the B-52G is reversible and con- 
sists of a conventional rudder 
operated by a control tab on the 
trailing edge of the rudder. The 
rudder is balanced aerodynamically 
by the same method as the elevator, 
i.e., balance panels. Additional 
feel is supplied to the pilot by a 
Q-spring which is almost identical 
to that of the elevator system. 
Directional trim is provided by 
manually adjusting the control tab 
through the Q-spring feel system. 

X-15 

f 

The X-15 has two control 
systems, an aerodynamic flight- 
control system and a reaction con- 
trol system. The reaction control 
system, often called a ballistic 
control system, is used to control 
the aircraft's attitude and altitude 
where the aerodynamic surfaces are 
relatively ineffective. 

1. Aerodynamic Flight Control 
System 

Longitudinal (pitch) and 
lateral (roll) control in this sys- 
tem is provided by a hydraulically- 
actuated horizontal stabilizer. 
The stabilizer consists of two all- 
movable, one-piece surfaces that 
can be moved simultaneously or 
differentially. Longitudinal (pitch) 
control is obtained by simultaneous 
movement of the left and right sta- 
bilizers. Lateral (roll) control 
is obtained by differential move- 
ment of the horizontal stabilizer 
surfaces. Combined pitch and roll 
control is obtained by compound 
movement of the horizontal sta- 
bilizer surfaces. Artificial feel 
is supplied to the system by bun- 
gees.  Longitudinal trim is obtained 
by shifting the neutral (no load) 
position of the bungee.  Lateral 
trim is adjustable only on the 
ground. 

Directional control is obtained 
by deflection of the upper and 
lower stabilizers that are intercon- 
nected and hydraulically actuated. 
Artificial feel is provided by a 
bungee.  Prior to landing, the lower 
stabilizer is dropped since it ex- 
tends below the landing skids. 
Directional trim is adjustable only 
on the ground. 

2. Reaction Control System 

Reaction control is provided 
by small rockets located in the nose 
section and wing that use a mono- 
propellant (hydrogen peroxide) which 
is converted by catalytic action to 
superheated steam and oxygen.  The 
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reaction of the escaping gases 
causes the aircraft to move about 
the selected or combined axes. The 
control used by the pilot consists 
of a control stick handle located 
on the left console of the cockpit. 
Upward and downward movement of 
the control handle operates the 
rockets located on the top and 
bottom of the nose section, re- 
spectively, and gives the aircraft 
pitch control.  Sideward movement 
of the control handle operates the 
rockets located on the sides of the 
nose section and provides the air- 
craft with directional control. 
Rotating the control handle oper- 
ates the rockets located in the 

wing section and provides lateral 
control. 

Artificial feel is provided 
the pilot for all three axes of 
operation by spring bungees con- 
nected to the system. The angular 
acceleration and velocity of the 
aircraft vary with the amount and 
duration of the ballistic control 
handle application. The velocity 
tends to sustain itself after the 
stick is returned to the neutral 
position. A subsequent stick move- 
ment opposite to the initial one is 
required to cancel the original 
induced velocity. 

J 
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