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CHAPTER 1 

INTRODUCTION 

1.1  Motivation, Contributions of the Thesis, 

and Organization 

The goal of engineering can be viewed as synthesis 

rather than analysis for a desired system.  The concept 

of optimization arises naturally in engineering as an 

Indispensable tool of conceptualization and synthesis 

Most formulations of optimal design problems in 

engineering assume that complete information is given, 

in the sense that the system is operated under a certain 

known condition.  The formulation, then, generally reduces 

to a "nonlinear programming" problem.  In reality, how- 

ever, few systems operate without interaction with their 

environment.  A mechanical system, for example, must 

operate over a range of load and environmental parameters. 

Applied loads on a structure may act over a range of 

positions and angular orientations, at every point of 

which strength and displacement constraints must be satis- 

fied.  Operating temperature and excitation frequencies 

are other examples of environmental parameters that vary 



In known Intervals, over which performance constraints 

must be satisfied.  Military systems, for example, may be 

mired to operate satisfactorily from -*J0°F to 120°F. 

One cannot simply optimize for a given temperature and 

accept the performance that occurs at other temperatures. 

Mather, performance constraints must be satisfied at all 

temperatures. 

To include the effect of surrounding systems, a new 

formulation is necessary.  The contribution of this the- 

sis is to define a new problem formulation and to develop 

numerical algorithms to solve this class of optimization 

problems.  The development is solution-oriented, instead 

of being a theoretical characterization of the solution 

of the problem.  The basic approach rests on the idea of 

making a series of approximate problems out of the orig- 

inal problem, by use of first and second variations, mak- 

ing it possible to compute solutions to practical problems 

in an iterative fashion. 

Following a literature survey of topics and problems, 

similar in nature to the present concept of problem formu- 

lation, a precise definition of the problem is given in 

Chapter 2.     This is followed by a review of certain clas- 

sical problems and their relation to the present formula- 

tion.  Several concrete example problems, which are solved 

in subsequent chapters, are then stated to make it clear 



what the mathematical formulation implies.  The mathemat- 

ical background relevant to the development of computa- 

tional al ror! thms Is riven at the emi  of Chapter 2. 

Tin- remainder of the thesis develops two computa- 

tional algorithms and presents numerical solutions of 

example problems.  Chapter 3 presents a first order algo- 

rithm, with four- example problems solved.  It is found 

that t>ils algorithm 1s simple enough to be implemented 

without excessive computational or analytical complexity 

and, when it is applied to min-max problems, it gives a 

.Justification for alternating maximization and minimiza- 

tion procedures. 

main contribution of Chapter h   lies in sensitiv- 

ity analysis with error compensation, which makes second 

ord» r algorithms and other interesting hybrid methods of 

Chapter 5 possible.  Several example problems are solved, 

HP  both the second order algorithm and the hybrid 

hod, and a comparison is made. 

Since the problem formulation itself is rather com- 

plicated, the algorithms are algebraically complex.  Im- 

mentatlon of the algorithms is given in Chapter 6, 

where a general flow chart is described. 

Klnally, the last chapter provides a summary of the 

main contributions and the difficulties involved in ap- 

plication of the developed algorithms. 



1.2  Literature Survey 

Several mathematical programming formulations that 

involve a free parameter have been considered in the lit- 

erature.  Fritz John [1] considered an optimization prob- 

lem with a continuum of constraints and showed that the 

problem can be characterized by one having a number of 

constraints less than or equal to the dimension of the 

design variable.  Recently, Gehner [2] considered the same 

problem, with a continuum of equality constraints, and 

derived a necessary condition that is an extension of the 

Fritz John theorem.  He also studied constraint qualifi- 

cation to Chebyshev approximation. 

Minlmax theory, which is closely related to the 

worst case design problem, has been studied by many au- 

thors and has been applied in fields such as matrix game 

theory, optimal control theory, and differential games. 

For a review of the literature pertaining to minimax 

problems, the reader is referred to McLinden [3] and 

Barry I1*].  Recently mln-max problems have received con- 

siderable attention.  Danskin [5] studied the max-min 

problem, using the directional derivative of the function 

$(x)= mln f(x,y), and examined several military applica- 

tions to resource allocation.  Pshenichnyi [6] gives an 

extensive study of necessary conditions for such extrema, 

in     ieral setting.  He treats functions of the type 

♦(x), above, and applies results to the mathematical 



pror.rammlnp; problem with a continuum of constraints. 

Por solutions of the minimax problem, Heller [7] uses 

directional derivative In an iterative scheme and de- 

fines a minimax gradient direction.  Medanic [8] develop- 

lmination algorithm in which he contracts the 

ible set and decreases the minimax objective function, 

tn this treatment, the minimax objective function was 

to be convex in the set over which minimization 

is carried out. 

cken and McGill [9] consider a mathematical pro- 

gramming problem with optimization problems in the con- 

straints.  They develop criteria under which the program 

Is convex. 

The problem that is treated in this thesis differs 

from those considered above, in the sense that it is 

optimal design oriented.  Little emphasis is given in 

the literature on numerical algorithms to solve the prob- 

lem cited above.  The main emphasis of the present thesis 

on the development of numerical algorithms for the 

computation of solutions to practical problems. 



CHAPTER 2 

STATEMENT OF THE PROBLEM 

2.1  Problem Definition 

2.1.1  Parameters in the Optimal Design Problem 

The process of optimal design is that of synthesiz- 

ing a system for the stated needs and objectives.  A phys- 

ical system is modeled so that mathematical analysis is 

possible and the cost function that is to be minimized 

Is analytically defined.  In this section, certain para- 

meters of the system are grouped to provide a model of 

an optimal design problem.  Three groups are identified, 

according to their role in the given system and in re- 

presenting the environment.  They are:  design variables 

of the system, parameters associated with the interacting 

environment, and parameters associated with the state of 

the system.  These will be called "design variables," 

"environmental parameters" or "free parameters," and 

"state variables," respectively.  Design variables are 

those quantities that are to be determined by the design- 

er to specify the design of the system.  Environmental 

parameters are quantities that represent the environment. 

The designer will not know the exact condition of the 



environment, which can change over the life of the system. 

Hence, from the designer's point of view, environmental 

parameters are uncertain quantities.  State variables 

are those quantities that characterize the state of the 

system due to a given environment.  The state of the sys- 

tem is determined by a set of equations, called state 

equations, once the design variables and environmental 

parameters are fixed.  The process of solving the state 

equations is the analysis part of design synthesis. 

This classification of variables is not necessarily 

unique, but is dependent on the designer's point of view. 

As a particular example, consider the simple vibration 

system shown in Figure 2.  The mass of each rigid body, 

the geometry of the system, the properties of the spring 

and damper, etc., are the design variables of the system. 

The frequencies of the excitation forces and their magni- 

tudes or directions are considered as environmental para- 

meters.  The position, velocity, and acceleration of each 

mass are the state variables.  An example of a more com- 

plicated problem is found in [5]. 

In the finite dimensional optimal design problem, the 

three groups of parameters are represented as vectors in 

suitably chosen vector spaces.  The vectors will be de- 

noted by b, a , and z;  for design variables, environmental 

parameters, and state variables, respectively.  The 
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dimensions of these vectors will be denoted by n, p, and 

m, respectively. 

2.1.2  Mathematical Statement of the Problem 

After the various parameters for a given system are 

defined, one is in a position to state the design problem 

in mathematical terms.  The mathematical model for the 

class of optimal design problems Introduced here will be 

termed finite dimensional "parametric optimal design," or 

in short POD.  It may be stated as follows:  Minimize 

J = f(b) (2.1) 

subject to the state equations 

h^z.b.a) ■ 0, i-1,--- ,m; (2.2) 

the parametric constraints 

max g0(z,b,a) <_ 0, 6 = 1,••♦,!; (2.3) 
ae A 

and the design variable constraints 

gB(b) < 0, 8-t+l,-.- ,£', (2.4) 

where 

A 5 {a| qi(o) < 0, i»l,---,r) (2.5) 

will be called the a-constraint set. 

It is noted that certain of the constraints in the 

POD formulation may be absent for a specific problem, as 

shown by examples in Section 2.3.  The special feature of 

the formulation lies in the inclusion of parametric con- 

straints with state equations.  Otherwise, the problem 



reduces to a nonlinear programming problem.  The general- 

ity of the POD formulation is amplified in Section 2.2, 

in relation to other classes of problems. 

.1.3  Subproblems and Expansion Procedures 

For the analytical development to follow, subprob- 

Lems ;IP dr fined as the maximization problems given in 

the parametric constraints of Eq . (2.3), i.e., 

max g (z,b(°), Qi ) (2.6) 
ae A 

subject to 

h1(z,b
(° , c* ) = 0, 1-1,•.. ,m, (2.7) 

where b^ ' is an assumed design. 

Throughout the paper, it is assumed that the implicit 

function theorem can be applied to the state equations, 

i.e.,  3h/3z is nonsingular and z is determined locally 

as a continuous function of b and a .  It is also assumed 

that p     is continuous with respect to its arguements and 

3^(z(b,i ),b,a)/3b is continuous with respect tob.  To 

ensure the existence of the solution to the subproblem, 

the set A is assumed to be closed and bounded, hence com- 

pact (Section 2.^4).  For a physically well formulated prob- 

lem, these assumptions are not particularly restrictive. 

For further developments, it is assumed that the sub- 

problem has a countable, preferably finite, number of 

solution points.  The underlying idea is that, for each 
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local maximum point of the subproblem, a small closed 

neighborhood Is considered and an approximate subproblem 

is constructed with the set A replaced by this neighbor- 

hood. Thus, the newly generated subproblems, called in- 

ner problems, replace the original subproblems, expand- 

ing the number of parametric constraints. Formally, the 

parametric constraints can be written as 

max  gß fz,b(o), at ) < 0, (2.8) 
aeU1  

P1 

where U.dA is a closed neighborhood around the local 

maximum point a ^   that is large enough to contain the 

neighboring maximum point aj , after a small change in 

b^0' to b^1', but small enough to contain only one local 

maximum point.  Under these conditions, it will be shown 

in Section 2.4 that the function on the left side of Eq. 

(2.8) is differentiable with respect to b. 

It will be assumed that the expansion procedure has 

been applied for each numerical algorithm that follows. 

Hence, the words "inner problem" and "subproblem" will be 

used interchangeably. 

2.2  Relation to Other Classes of Problems 

The POD problem formulation generalizes a number of 

classical problems.  In this section, the relation to these 

problems is studied. 
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2.2.1  Min-Max Problem and Game Theory 

In zero-sum two-person game theory, a mixed strategy 

Is sought 3uch that the max-min is equal to mln-max, by 

randomization [11,12,13].  Game theory is not the subject 

of this thesis, but if one knows that a mixed strategy 

exists, one can obtain a solution by solving the min-max 

problem only.  In general, the mln-max problem;  i.e., a 

two stage problem corresponding to "half" a saddle point 

problem;  arises from two stage resource allocation prob- 

lems [5], 

"Worst case design" can be considered as a game prob- 

lem between the designer and nature, and can be formulated 

as a mln-max problem.  The designer assumes that nature 

will pick the environmental parameter by maximizing the 

cost, whatever design the designer chooses.  The design 

objective is that the designer minimizes this worst cost, 

or loss celling.  This design concept is very conservative. 

One may mitigate this conservativeness by introducing a 

suitable probability distribution over the environmental 

parameters.  This process of mitigation does not disturb 

the min-max nature of the physical design problem. 

Since this thesis is directed toward a solution meth- 

od, the min-max problem is assumed formulated.  In this 

case, the POD formulation is realized through introduction 

of a dummy design variable, bn+1, called an artificial 
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design variable such that the transformed problem Is to 

minimize 

bn+1 (2.9) 

subject to the constraint 

max ♦(b, a) < bn+1. (2.10) 
a e A 

Although the dimension of the design variable is increased 

by 1 and an additional subproblem must be treated, this 

approach has the advantage that every possible local 

maximum point of <fr(b, a ), with respect to a , can be 

retained by expansion of the number of constraints, as in 

.Section 2.1.  It is also noted that a cost function of the 

form max 4(z,b, a) can be transcribed by the same tech- 
a e A 

nique.  Another notable application may be the saddle 

point statement for the NLP problem given in Section 2.4, 

which can be treated formally by the POD algorithm. 

2.2.2  Chebyshev Approximation 

The theory of approximation was developed independ- 

ently of optimization theory, especially the theory of 

Chebyshev approximation.  Literature on approximation the- 

ory is voluminous, for example, see [1^-22]. 

Suppose a function f( a  ) of some normed space C(A) 

is given, and further an approximating function F(b, a) 

depending on the parameter beB where B is some domain set 

of parameter b is given.  Then a general approximation 
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problem Is:  Given feC, determine the parameter b°eB 

such that 

||f-F(b°)|| < ||f-F(b)|| (2.11) 

for all beB.  Here the norm on C is denoted by |*||. 

If the norm is given by the uniform norm  |f||»max |f( a)|, 
a e A 

the problem is called Chebyshev approximation and can be 

restated as:  Determine a b° eD to minimize 

max [g(b,a) = |f( a )-P(b, a )|]. (2.12) 
a e A 

Usually the set  {F(b,a)|beB}  is a subset of C.  If 

F(b, a ) is a linear functional on B for each fixed o , the 

approximation problem is called linear, otherwise nonlin- 

ear.  Since all the required values of the components of 

b are necessarily finite, the set B can be chosen to be 

bounded.  Furthermore, if B is assumed closed and F(b, <x ) 

is continuous in the parameters, there is a solution [17]. 

The study of approximation problems through optimi- 

zation techniques is still in its infancy, especially in 

the field of nonlinear Chebyshev approximation.  In the 

case of discrete Chebyshev approximation, a finite number 

of discrete points are chosen in the given region and the 

problem is relatively simple [1*1,23,2*0.  In the case of 

continuous approximation, such as polynomial and rational 

approximations, a few algorithms were developed by Stiefel 

[22^\  and Remes [16,19].  These algorithms are based on the 

theorem of Chebyshev and are algebraic in nature.  Recent 
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study of Chebyshev approximation, through optimization 

theory [2,6,25], Kives necessary conditions that are sim- 

ilar to the Chebyshev theorem, but do not provide a con- 

structive method of solution. 

Chebyshev approximation falls Into the present formu- 

lation of POD, hence the algorithm developed here can be 

applied easily, regardless of whether the approximation is 

linear ur nonlinear. 

2.2.3  NLP with State Equations Given Implicitly 

by a Minimum Principle 

Using sensitivity analysis, which will follow in 

Chapter 4, an efficient reanalysls of the state equations 

Is possible, particularly if the state equations can be 

derived from a minimum principle.  The problem is stated 

in the form:  Minimize 

f(b,z) (2.13) 

subject to the constraints 

g(b,z) < 0, (2.14) 

where z solves the nonlinear programming problem 

min  H(b,z) (2.15) 
ze« 

where ft is a constraint set. 
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2.3  Examples to be Considered 

To visualize the type of problems dealt with In this 

thesis, several concrete example problems are stated. 

After solution methods are developed, these problems are 

solved numerically and a comparison is made with results 

In the literature. 

2.3.1  Problem of Finite Allocation 

The problem considered here is a finite allocation 

game.  This problem is discussed in [5,8].  Suppose a mix 

x=(x^,*-',x ) has to be chosen among a set of n weapon 

systems, given a total budget C. , that are to be used in 

the possible attack from n enemy units.  Whatever attack 

the enemy selects the damage inflicted on the enemy from 

the counterattack is to be maximized.  That is, the enemy 

will strike first with full knowledge of the system mix x. 

If the i-th weapon system can not attack the J-th enemy 

target, or vice versa, the residual xi ' after enemy attack 

of strength y. can be assumed given by the formula: 

V = xi e 

where  y^ is the "vulnerability" of i-th weapon system, 

with respect to i-th enemy attack.  This residual is used 

in the counterattack.  The damage to the i-th enemy target 

is given by 

v,(l-e  1 1   ), 
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where v is the value of the  1-th target and 6. Is the 

vulnerability of the 1-th enemy target.  Supposing the 

total damage is obtained by addition of individual system 

damage, it is 

~yi yi n        -B x e 
♦ (x,y) - [ v1(l - e 1 1 ). 

Since y  is chosen in full knowledge of x , optimal choice 

for x  is obtained by maximizing min <J>(x,y);  or equiva- 

lently by minimizing max[-<fr (x ,y) ] , * with the budget restric- 

ti ons 

Ixi " Cb> 

x^  > 0, and y1 > 0. 

The two equality constraints above are used to reduce 

the dimension of the variables by removing x and y .  Here 

Xj plays the role of a design variable, b , and y. plays 

the role of the environmental parameter,a .   The alloca- 

tion problem is formulated as a POD problem as:  Minimize 

n 
(2.16) 

(2.17) 

(2.18) 

J = max[f' = [v (TjL - 
a 

subject to 
n-1 

D] 

b. > 0, 1-1,.•• ,n-l, 
n-1 

C - y <% .  >   0, a   L      i -  ' 

a 1  >0, 1-1,••• ,n-l, 

where 
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~Yf i -ß b e 
T, * e  1 1 
1 n-1 

and n-1    -yM(C  - 1  a . ) 
-Bn(Ch- I b.)e  n '       * 

T  = e  n  b      i (2.19) n 
This formulation Is transformed to fit the POD formula- 

tion by Introducing an artificial design variable, as 

explained in Section 2.2. 

2.3.2  Three Bar Truss Design Problem 

For the truss shown in Figure 1, one wishes to de- 

termine the cross sectional area of each member in order 

to minimize the weight of the structure, under constraints 

(stress, buckling, and displacement) that must be satisfied 

for any load direction  a in a given range, a^a 1 a 2' 

The same problem, without parametric constraints, has 

been used as a test problem for single or multiple load 

conditions [26,27,28].  The problem with stress parametric 

constraints is discussed in [29], in which the author uses 

the "Integrated penalty function." 

Denoting the cross sectional areas as b., 1*1,2,3, 
p 

and defining moments of inertia by I*"^*» one mav state 

the POD problem as:  Minimize 

f = 10/2 bx + 10 b  ♦ 10/2 b3, (2.20) 

subject to stress constraints 

g]L   s   5-105|Zl  ♦  z2|   -  5-103 <   09) 
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Figure 1  A Three Bar Truss 
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g2  =   106   |z2|   -   2-10J> 1  0, 

ßl H   5-105   | z2   .  Zl|   m  5-io3  <   0 

buckling constraints 

gjj  =   -10^   +   z2)   - w26b1 <   0, 

g    =   -10z2  -  w26b2   <   0, 
p 

g6   =   -10(Z2   -   z1)   -  w   ßb3 £  0, 

and displacement constraints 

j 
(2.21) 

(2.22) 

g, - 6, < 0, b7 

g8 L ' "21  ' v2 
The state equations, In matrix form, are 

zj    - 63  i  0. i (2.23) 

/f.106 
bl+b^,   bx   -  b^ Pcoso] 

PslnaJ 
(2.2*0 

lb1-b3,  bx+ b3+2/2b2J 

Finally, the constraints must be satisfied for any a 

In an Interval [a, ,a2].  Since the state equations are 

simple, the state variables could be eliminated, explicit- 

ly.  As a test of the POD method, however, this problem 

is solved with state equations as given. 

The maximum number of local maximum points of g (a) 

is conjectured to be two.  Hence two values of a are given 

as estimates.  During iterative solution, the nominal local 

maximum points may approach each other, showing that there 

is Just one maximum point.  If this happens, one of the 

inner problems is removed. 

For numerical examples that follow, let 6-0.07958 (cor- 

responding to a member of circular cross Bection), P ■ 
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^ x 10 lbs, and two load ranges and displacement con- 

straints be considered, as follows:  (1) -^5° i a i 90°, 

6^6-0.005", and (11) 0° i a < 90° , 6 x«0 . 005" ,*2"° • 00i4" • 

2.3.3 Vibration Isolator Design Problem 

As a third example, optimal design of a vibration 

isolator, shown in Figure 2, is considered.  The objective 

Is to minimize the maximum displacement of the main mass 

by attaching a secondary spring-mass system.  This problem 

is treated analytically in Den Ilartog [30], with an infi- 

nite range of exciting frequency, and in [31], for an 

arbitrary range of exciting frequency.  In the latter 

treatment, the problem is solved approximately by enforc- 

ing the constraints on a preselected grid of points over 

the given range of frequencies. 

The problem, in POD form, is given as:  Minimize 

b 
n+1 

subject to 

g1 3 Xl
2(£, f, a) - bn+1 <   0, 

(2.25) 

(2.26) 

where 

and 

6, 
*pU>f ,a) - x, U,f ,0) 

XiU.f ,a) 
-  Qmax 1 °> 

(2.27) 

A2 +B2 •2 + B2 

Cd   + D 2 ■ C2 + D 2 » 

-<«* - f2), 
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Fipure 2  Vibration Isolator 



A
1
« r«f 

B = 2U, 

C = -uf
2a2 + (a2-l)(a2-f2), 

D = 2u(a
2-l + ua2). 

Here 

C = dampinr. ratio (c/cc , cc=critical damping) , 

f - ratio of uncoupled natural frequencies of the 

absorber and the main mass (u>n/fln), 

a ■ ratio of exciting frequency to uncoupled natural 

frequency of main mass (w/ft n ) , 

and p ■ mass ratio of the absorber to main mass (n^/mi). 

The variables $=b^ and f E b~ are chosen as design 

parameters and a is the environmental parameter.  The coor- 

dinates, x^ and x? represent the extreme displacements of 

the main mass and absorber, respectively.  The value Qmax 

is selected as the upper limit for relative motion of the 

two masses, sometimes called a rattlespace constraint. 

Design parameter constraints are 

" * 10, 
g3-= 

t - e max <0, 
(2.28) 

gjj -: 
f  -f 10, 

f - f <   o 1     x max -      > 

and   free  parameter  constraints  are 

<*! -= 
min 

a    - a 

- a   10, 

<    0 max -   u' 

(2.29) 

(2.30) 



23 

For subsequent calculation u = 0.1 and Qmax*3.0, and 

two ranges of a are considered:  (l) 0.5 < <* 1 1»5* and 

(11) 0.9 < a < 1.2lj.  Since the parametric constraints 

are not convex in a, it Is Important to keep every possible 

local maximum point.  From physical characteristics of 

decree-of-freedom system, one may conclude that g-^ 

nan at most two local maximum points over any Interval of 

a.  Hence, two estimates of local maximum points are suf- 

ficient.  For a given range of a, there may be only one 

maximum point at the initial design estimate.  Since one 

may not account for the case in which a new local maximum 

point appears, it is important to have a reasonable de- 

sign estimate, or to repeat the solution with different 

initial design estimate. 

2.3.^  Optimum Damping in Linear 

Dynamic Systems [McMunn] 

Assuming that synchronous, steady state harmonic 

forces are the only input, an n degree-of-freedom dynami- 

cal system can be described by the differential equations 

Nie + Dx ♦ Kx - Peiwt (2.3D 

where 

M, D, K = mass, damping, and stiffness matrices, 

respectively (the elements of D are linear 

combinations of damping coefficients), 

x = column vector of coordinates, 
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P = column vector of forces, 

u) = anrular frequency. 

The design concept chosen here is to minimize the 

maximum response, over a given range of excitation fre- 

quencies.  Design variables are damping; coefficients of 

the system.  The environmental parameter in this case is 

the excitation frequency.  McMunn's method is restricted 

to finding saddle points, whereas the present treatment 

makes no such restriction. 

Following ycMunn [3?], harmonic motion is presumed in 

the form x«Xelwt.  Then the governing equation is 

T(c,u))X = P, (2.32) 

where 

T(c,u))   =   -u>2M +   iwD(c)   +  K. (2.33) 

Tf one  excludes  systems  that  have  Infinite  response  in the 

frequency   interval,  T(c,w)   is  invertible.     By Cramer's 

rule, 

♦ (c,w) 
Xi 
PJ 

m   P2(n-I)(c^) t2M 

QPnVC,«) 

■* 2 
where P2(n-1) and ^2n are rea* polynomials in <D

C
, of de- 

gree 2(n-l) and 2n, respectively;  X. is the complex 

amplitude of the displacement of the i-th mass;  and P. 

is the amplitude of the input force on the j-th mass.  In 

practice, the explicit form of <|>(c,w) is difficult to 

attain.  Hence, a set of state equations is retained 
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in the POD formulation, as follows:  Let real and imagi- 

nary parts be separated such that 

T(c,w) = T, (c,u>) + iT-Cc,«), (2.35) 

and 

X  -  u  -  iv, (2.36) 

then  the  state equations  are,  with the  state  variable 

z =   {u,v} , 

lT2 -T, 

■ru1 
(2.37) 

and the objective function Is given, In terms of the state 

variable z, as 

♦(z) = [Ul
2 + v1

2]/PJ
2. (2.38) 

It is noted that  ♦(c,w) > 0 and  lim ♦(C,ü>) ■» 0.  Hence, 

the case of an infinite range of frequencies can be safely 

replaced by a finite interval of frequencies such that the 

w-constraint set A is closed and bounded. 

The problem of optimum damping may now be formulated 

as:  Minimize 

max ♦(z) 
Ü) 

(2.39) 

subject to the state equations, Eqs. (2.37) and the design 

variable constraints  c  > 0.  To fit the POD formulation, 

an artificial design variable b +1 is introduced, as de- 

scribed in Section 2.2.1. 

The following numerical example is taken from McMunn 
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Firure   3     A  Five  Dep;ree-of-Freedom 

Vehicle   Model 
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[32]:  The system to be designed, Figure 3, is a five de- 

pxee-of-freedom model of a vehicle traveling on a sinusoi- 

dal road.  The dimensions of the vehicle and the magnitudes 

of masses and spring constants are the same as in [32], 

and shown in Figure 3.  The parameters nu , c.,, and k de- 

pict the driver and seat attached to the main body, denoted 

by mass nu and a moment of inertia I=nur2.  The parameters 

nu and nu are the masses of the wheels, axles, and associ- 

ated mechanism of the front and the rear of the vehicle, 

while k^ and k  represent tire stiffnesses.  In the pre- 

sent example, the system is excited by a synchronous har- 

monic displacement of the base, and the cost function is 

taken as the square of the ratio of the amplitudes of m^ 

and the base.  The dynamic equations may be written in 

terms of dimensionless parameters, as given in [32].  Nu- 

merically reduced equations, after substituting values of 

the parameters, are given in Appendix A. 

2.3.5  Bridge Design Problem 

As a more realistic test of the POD formulation, 

design of a bridge is considered, under load by a vehicle 

passing from right to left.  The bridge is composed of a 

truss structure over a beam element.  For structural anal- 

ysis, the truss structure is modeled by 15 elements, as 

shown in Figure ^a.  The beam element, to be supported by 

the truss, is shown in Figure 4b.  The vehicle is 
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a.  Truss Structure 

b.  Beam Element 

p— *2 —H 

a2 /rm- 

Fipure 4  A Bridge Structure 



29 

represented by three point loads applied to the beam, at a 

distance a from the left end.  The design objective is to 

determine the cross sectional area of each truss member 

and the stiffness of the beam element to minimize weight 

of the structure, under certain constraints.  For simplic- 

ity, only the stress and displacement constraints will be 

considered, assuming static loading.  The environmental 

parameter is the location of the vehicle on the bridge, a. 

The state equations for the system are derived in Appen- 

dix D, where the state variables are composed of general- 

ized displacements and the generalized forces acting at 

the interacting boundary between the truss structure and 

the beam element.  As is usually the case with structural 

design problems, the state equations are linear in the 

state variables, with the form, 

K(b)z = F(a), 

where the matrix K is a function of the design variables 

only.  The linear nature of the equations yields computa- 

tional savings, since it is possible to solve the system 

of equations for the parametric constraints, where o as- 

sumes different values, only once for each outer itera- 

tion.  If the dimension of z is small, an explicit inver- 

sion of K gives less programming effort.  For other prob- 

lems, such as the one given in Section 2.3.1*, the coef- 

ficient matrix is a function of the free parameter w, 
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as well as the design variable c. 

Stress constraints for the truss members are repre- 

nted by 

a      <   a    < om (2.^0) 
c -   -  T 

where the axial stress  o is obtained as explained in 

Appendix B and  o  and  o,„ are the yield stresses for c A 

compression  and   tension.     For the   beam element,   a  moment 

constraint   of  the   following type  is  considered; 

MU)l -3^- (2.41) 

where M(x) is the bending moment along the beam, and 

M « o 5 is the yield moment.  The safety factor SF is 

chosen as 1.85 and the section modulus S is chosen as 

S = 0.58-I3/V 

The objective function assumes the form, 

J = I   PiA L  + PQAod,                 (2.42) 

where 0., L and A  are the specific weight, the length, 

and the cross sectional area of i-th member of the truss, 

respectively. The parameters p , d, and A  are the spe- 

cific weight, length, and cross sectional area of the 
1/? beam.  Tn the computation, A =0.58*1 '  is used and A-^, 

A,,-«-, An, and the moment of inertia I are chosen as de- 

sign variables, assuming a geometrical symmetry of the 

structure. 
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K Mathematical Preliminaries 

In the field of nonlinear programming;, a vast amount 

of literature is available.  The following texts are cited 

as general references:  [12,25,33-37].  For future refer- 

ence, some concepts and definitions needed for develop- 

ment of a POD algorithm are summarized here. 

2.1J.1  General Philosophy of Iterative Methods 

Tt has been observed that an analytical solution to 

an optimization problem is practically impossible.  Most 

of the literature on computational techniques use itera- 

tive methods and obtain a local solution to the optimiza- 

tion problem.  The basic philosophy of any iterative meth- 

od is to generate a sequence of nominal solutions from an 

estimated point, such that the sequence converges to a 

limit point or a desirable point that satisfies certain 

conditions.  Two basically different points of view are 

possible, depending on how the designer improves his nom- 

inal design.  The first point of view is indirect.  It 

seeks a solution of necessary conditions that must be 

satisfied at a local solution point.  The second point of 

view is direct, in the sense that the designer tries to 

Improve the design, using the local nature of the problem 

around the nominal point.  Most of the iterative methods 

for solving a nonlinear programming problem are a combi- 

nation of the two.  In the second point of view, an 
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approximate problem is generated from the original problem, 

through function approximations, usually with a tangent 

hyperplano at the nominal point.  The approximate problem 

Is then solved usinp: necessary conditions. 

2.4.:>  Definitions and Theorems for NLP Problems 

Important definitions and theorems are described for 

the following nonlinear propramminp. problem (NLP): 

Mi nimize 

f(x) (2.143) 

subject to constraints 

p(x) < 0, (2.44) 

and 

h(x) = 0, (2.45) 

where xeRn, R is an l-dimensional vector, h is an m-dimen- 

3lonal vector, and m ^ n. 

A point xeRn that satisfies all the functional con- 

straints is said to be feasible.  The set of all such 

points is called the constraint set and will be denoted 

by D.  The following; definitions are often referred to in 

later chapters.  An inequality constraint g.(x) <_ 0 is said 

to be active at a point x if gr.i(x) = 0 and Inactive at x if 

i:.(x) < 0.  By convention, each equality constraint is 

considered active at any feasible point.  This definition 

is of rather theoretical Interest, since in numerical anal- 

ysis one rarely satisfies the equality.  Hence, the 
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following concepts are more useful for numerical develop- 

ment.  Given a point xe R and a real number e >. 0, the 

inequality constraint is said to be c-active at x if 

g (x) > -e , and inactive otherwise.  All equality con- 

straints will be considered c-active.  An e-active index 

set I at x is defined as I (x)»{i|g is e-actlve}.  Here, 
£ e i 

intentionally, the indices of the equality constraints are 

not included in the set I .  The usefulness of this defl- c 

nition is illustrated in Chapter 6.  The Index set I is 

used to denote I  when e=0. 

The existence of a solution to NLP is guaranteed by 

the following theorem [33,3*0:  If f(x) is continuous on 

D and D is closed and bounded in R11 (compact for a more 

general space), then, f(x) has a minimum (and a maximum) 

in D. 

For NLP without equality constraints, a vector d is 

said to be a feasible direction at xeD if there is a 

B >0 such that x+ßd e D for all 0, 0 <_ 0 ^ 0.  The set 

of directions  r = {d|deRn, x+0d eD for some 0} is called 
x   '    ■ 

the set of feasible directions for xeD and is a cone.  The 

set r  is a convex cone if the set D is convex.  For a 

definition of convexity and cone, see Appendix C.  For a 

set of linear equality constraints, this definition could 

still be applied.  For more general equality constraints, 

the concept of tangent direction is introduced [38]. 
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In the following, the functions f, g, and h are as- 

sumed once differentiable.  At a feasible point x , the 

first order constraint qualification is said to hold if 

every feasible direction at x  is tangent to a once dif- 
o 

ferentiable arc (a directed curve) emanating from x0 and 

contained in the constraint set.  Roughly, the first order 

constraint qualification, or regularity condition, is said 

to be satisfied if a small move along any feasible direc- 

tion must leave the point still in the constraint set. 

To identify the class of constraints that satisfy this 

condition at x , the following theorem is cited;  the first 

order constraint qualification holds at a feasible point 

xQ if the gradient vectors of the active constraints are 

linearly independent.  Such a point will be called a regu- 

lar point of the constraint set.  At a regular point x , 

a tangent subspace is defined by the set M«{y|{Vg.(x ), 

iel, vh(x )}-y»0), where y is an 111 +m <_ n dimensional 

vector.  |l| is the number of elements in the set I. 

It is obvious that if at a point there is a direction 

that does not lead out of the constraint set and along 

which the objective function decreases, then such a point 

can not be a minimum point.  Based on this observation, 

a necessary condition for a regular point x  to be a local 

minimum point is stated:  The gradient vf of the objective 

function is orthogonal to the tangent plane.  That is, 
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vf is a linear combination of the gradients of active con- 

straints.  Stated differently, the projection of the grad- 

ient vf onto the tangent plane is zero.  More precisely, 

the following Kuhn-Tucker Theorem is stated [33]:  If xQ 

is a relative (local) minimum point for NLP and is a regu- 

lar point for the constraints, then there exists a vector 

XeR1" and a vector ye R* , with y > 0, such that 

and 

where 

VL(xo, X, u) -0, (2.46) 

y1g1(xo) = 0, (2.47) 

L(x, x, y) - f(x) + XTh(x) + yTg(x)    (2.48) 

is called the Lagrangian. The vectors y and X are called 

Lagrange multipliers, corresponding to the inequality con- 

straints and equality constraints, respectively. 

According to the Kuhn-Tucker theorem, the Lagrangian 

functional is stationary at x .  If the regularity assump- 

tion on x is omitted, one can only conclude that the 

functional XQf(x)+x
Th(x)+yTg(x)  is stationary.  If xQ 

is regular,  x may be chosen as one and the optimization 

problem is said to be normal [37].  If x  is not a regular 

point, then  X »0 and the problem is abnormal. 

Assuming that functions in NLP are twice differenti- 

able, one can show that the Hessian matrix of second 

partial derivatives of the Lagrangian with respect to x 

is positive semidefinite on the tangent subspace of the 
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active constraints at x  [3*0.  This is called second or- 

der necessary conditions.  If the Hessian matrix is posi- 

tive definite, then, this strengthened condition, combined 

with Kuhn-Tucker conditions, constitutes a second order 

sufficient condition for x to b? a strict relative mini- 
o 

mum. 

2.4.3  Approximations of the Problem NLP 

As stated at the beginning of this section, an itera- 

tive method is established by first forming an approximate 

problem, using Taylor series expansions.  If second and 

higher order terms are deleted, the approximation is lin- 

ear.  If third or higher order terms are deleted, one has 

a second order approximation.  The most common approxima- 

tion around x is first order, 

f(y) - f(x) * ^liil (y - x), (2.49) 
dx 

where  |y-x|  is small enough that the higher order terms 

are negligibly small.  The left hand side of Eq. (2.49) 

is denoted  6f(x) and (y-x) is denoted 6x.  These quan- 

tities are called variations.  Hence, 

6f(x) = ^L*1  6x + 0(6x2), (2.50) 

where  0(x)/|x| <_ K for small x for some constant K. 

Similarly, a variation of f up to second order is express- 

ed by 

af(x) - *5^x+LxTJ!£(«)6x ♦ 0(6x3),   (2.51) 
dx    2    dx2 
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where  6x has same meaning of a finite variation.  In the 

following studies, the remainder terms for the expressions 

of variation of f will be omitted, with the understanding 

that | 16x |  is small enough so that the expansion has 

negligible higher order terms. 

2.4.*J  Gradient Projection with Constraint 

Error Compensation 

The first order expanion is described here to solve a 

NLP.  The method is called a "gradient projection method 

with constraint error compensation" [33], since the direc- 

tion of movement is defined as the vector sura of a projec- 

tion of the negative gradient onto a subspace and another 

vector that compensates any constraint error at the cur- 

rent point.  The following result is derived from the Kuhn- 

Tucker necessary condition, applied to the first order 

approximate problem.  The approximate problem is of the 

form:  Minimize 

of » ijT6b (2.52) 

subject to 
T 

6g - 1* 6b < Ag, (2.53) 

where I     and t* are gradients of f and g in the design 

space, i.e., when equality constraints or state equations 

are Involved, the state variables are locally eliminated. 

The particular form of these gradients is derived for each 

problem in the following chapters.  The quantity Ag is the 
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desired reduction in the current constraint violation. 

The solution of the above approximate problem can 

result in a large 6b, so the linear approximation would 

no longer be valid.  Hence, a stepsize restriction is 

imposed on 6b;  namely: 

6bTW6b < n2, (2.5*0 

where n is a small constant and W is a positive definite 

weighting matrix.  The choice of W and n is based on 

computational skill, suggestions for which are given in 

Section 6.3.2.  Also, since this iterative method Is local 

in nature, around the current nominal design, the inequal- 

ity constraints that are inactive are not of interest. 

Therefore, the matrix of gradients l* contains only columns 

associated with active constraints.  With this formulation, 

the solution of the Kuhn-Tucker necessary conditions for 

the local problem is [33]: 
-1 

«*>---=- (*J - ***). (2.55) 

T 
A = -M^1 (£* W"1**7 + 2yAg), (2.56) 

where 
T 

M^ = i* w-1**, (2.57) 

and A and y  are multipliers.  A choice of Y, in relation 

to n, is suggested in Section 6.3.2. 

Instead of the direct inversion of matrix M^, the 

following scheme is used in computation.  Let 
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r = constant 

FJpure 5  Gradient Projection Method 

with Constraint Error Compensation 
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where 

and 

x   - x1  - 2YA2, (2.58) 

T 
M^A

1
 = -i* vrV, (2.59) 

M^A2   =   Ag. (2.60) 

Then,   one   has 

Putting 

fib  -  -  ——  (£J  +  l+X1)   + VTMX2. (2.61) 
2Y 

6b   =   -  -1L-     +  6b2, (2.62) 
2Y 

where 

6b1   -   W_1(lJ   +  l + X1) (2.63) 

6b2   =   W"Vx2, (2.64) 

one   can   verify  the  relations   [39>40]: 
T 

(1) 6b2  W6bX   =   0, (2.65) 
T 

(2) £*   6b1   =   0, (2.66) 

(3) i*   6b2  -  Ag, (2.67) 
T 

(4) -iJ  6b1   <   0. (2.68) 

The  geometrical   situation  is  shown   in  Figure   5,   in  a two 

dimensional  design  space with  one  active  constraint. 

2.4.5     Analytical   Properties  of Max-Value  Functions 

Recently,   a  number of authors   [5,6,41]   have  studied 

functions  of the  type    u(x)=max  <fr(x,a)   and  have  applied 
a 

their results to solution of practical problems such as 

mathematical programming with continuum of constraints 
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and the theory of best approximation.  The distinguishing 

feature is that the function u(x) is not differentiable, 

in general, but is only quasi-differentiable, under mild 

assumptions.  In the remainder of this section, relevant 

properties of the function u(x) are summarized, mainly 

from Pshenichnyi[6].  For definitions of basic terminolo- 

gies in functional analysis, see Appendix C. 

For a bounded convex functional 4(x), x in a Banach 

space B, i.e., a convex functional that is bounded above 

on every bounded region D, the set of support functionals 

M(xQ) to ♦(x), at x0, is defined by 

M(x )-{x»|x«eB*, *(x)-*(xn)>x»(x-x ) for all xcB}, 
o o -     o (2.69) 

where B* is the normed dual of B.  It is shown in [6] that 

M(xQ) is convex, weak* closed, and bounded. The term "sub- 

differentials" of $(x) at x has been used for the set of 

support functionals by Rockafellar C*l].  If *(x) is 

Gateaux differentiable at x , M(xQ) is simply the single 

functional xQ*, the Gateaux differential of *(x) at xQ. 

The directional differential, defined by 

»• . ilm   *(X°+Xe) - ♦(xo)  ,        (2.70) 
3e   A + + 0 X 

is given by the formula [6] 

—  = max,  x  x»(e) (2.7D 
ae   x*eM(x ) 

o 

for all xQ and e.  Motivated by this result, a broader 

class of functionals is defined.  A functional is said 
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to be quasi-differentiable  at x     if there  exists  a convex, 
o 

weak* closed set M(x ) such that Eq. (2.71) holds.  The 

class of Gateaux differentiable functionals and bounded 

convex functionals are in the class of quasi-differentiable 

functionals. 

Now consider the function 

p(x) = max ♦(x.o) (2.72) 
ae A 

where A is a closed and bounded subset in a Euclidean 

space.  For convenience, define the "answering set" [5] 

at x, 

A(x) = (a| ♦(xfo)-ii(x)>. (2.73) 

If ^(x,a) is a functional that is continuous in x and o, 

where x is in a Banach space B and  aeA, then  M(X) is 

continuous.  Moreover, let 

♦ (x0+Ae,a)-*(x0,a) + \**   *0,a  + Ay U ,a ) , 

for  A>0, where y(A,a)-»-0  uniformly in a  as  A++0. 

Then,  w(x) is differentiable in the direction e and 

3^ =  3Up  »♦(»p.«), timW 

ae oeA(xQ)  3e 

Furthermore,   If    <fr(x,a)   is  quasi-differentiable  at  x   ,   for 

every     a,   then     w(x)   is  quasi-differentiable  at  xQ,   with 

M(xn)   =   c^U M(x.,a), (2.75) 0 oeA(x   ) ° o 

where M(x ,a) is the set of support functionals to  ♦(x,a) 

at x , M(xQ) is the set of support functionals to u(x) 
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at x , and  cö~ K denotes the weak* closure of the convex 

hull of K [6]. 

Existence of the directional derivative and its 

properties, such as the continuity of the directional 

derivative  when A(x) is composed of a single point, are 

discussed in Danskin [5].  For future reference, an 

important theorem is cited:  If $(x,a) is continuous 

34(x a) in x and  a, and if —~v'    is continuous with respect 
o X 

to x, then  y(x) is differentiable in any direction e at 

any point x  and 

iMi5l.max  ülf^i. (2.76) 
3e     aeA(x)  *e 

If A(x) consists of one point  a(x) only, then  n(x) is 

continuously differentiable, 

3y(x)    3+(x,q(x)) (7  77) 
3x 3x V^.ffi 

and  a(x) is continuously dependent on x [5,6]. 

2.U.6 Theory of Parametric Nonlinear Programming 

Consider the problem of minimizing a continuously 

differentiable function f(x) subject to the constraint 

M(X) E max g(x,a) < 0, (2.78) 
ae A 

where g(x,a) is continuous with respect to a and x and has 

a continuous gradient 3^x*a) , xeR11.  According to the 
0 x 

theorem  cltei  above,     y(x)   is  quasl-differentiable with 

the   set  of support   functionals given  by 
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I I    3g(x ,a) 
M(x ) » co ( U     -  ). (2.79) 

0       aeA(x0)  
3X 

It can be shown [6] that the necessary condition for x  to 
o 

be the minimum point is that there exist nonnegative con- 

stants  A   and  A, not both zero, such that 

3f(x0)  + Ac = 0 (2.80) 
°  3X 

and 

Au (xo) ■ 0, 

where  ceM(xQ).  From Eq. (2.79), and Caratheodory's the- 

orem [*U], the vector c can be represented in the form, 

n+1    3g(x .a ) 
c - I     X      °  1 , (2.82) 

1=1  x   3x 

where 
n+1 

a1   e A(XQ), \±   > 0,   J  AjL = 1. 

Hence a necessary condition for x  to be a solution to the o 

above problem is that there exist constants A >0 and Y^O, 

not all zero, and points  a. e A(xQ), i=*l, • • • ,n+l, such 

that 
af(x )   n+1    3g(xn,a1) 

Furthermore, If f(x) and p:(x,a) are convex functionals for 

each a and if M(X1)<0 for some x^ (interior point condi- 

tion), then It is necessary and sufficient that there exist 

a  c A(xQ), i«l,-««, n+1, such that x  is a solution to the 

following problem 

min f(x) (2.81) 
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subject to 

K(xfo1) i 0, W,---,n+l. (2.85) 

This result Is very similar to the Fritz John Theorem 

llj, which states that at most  n c^'s are sufficient to 

characterize the solution of the original continuum prob- 

lern by a discrete problem with at most n equality con- 

straints.  If the above result is applied to the Chebyshev 

approximation problem discussed in Section 2.2, the funda- 

mental theorem of Chebyshev approximation is obtained [6]. 

While the Justification of the assumptions is often 

difficult, certain continuity assumptions can safely be 

made in practice.  For the following development of numer- 

ical techniques, let g(x,a) be continuous in x and a, 

where xe Hn and acRp, and let ag{x»a *  be continuous in x. 

Then, from the above, u(x)= max g(x,a) is directionally 
ac A 

differentiable, where A is a closed bounded set.  Also, 

there exist points a., i=l,»«',n+l, in A(xQ) that charac- 

terize the original problem.  The difficulty with the 

problem at hand is that the points a., i*l,-'-,n+l are 

not known beforehand and the numerical procedure that 

follows is very much dependent on how these points are ob- 

tained.  As observed in practical problems, it will be 

assumed that the answering set A(x), for each x, consists 

of a finite number of isolated points, ai, i»l,-««,s, such 

it it is always possible to have a closed neighborhood 
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U., corresponding to a  In A(x), disjoint from each other. 

Thus, the expansion procedure discussed in Section 2.1 is 

realizable.  The expanded form of the problem is, 

min f(x) (2.86) 

subject to 

u,(x) = max  ♦(Xjo) <_ 0, 1«1,•••,&,     (2.87) 
1      aeU1 

where U^d A. 

In this case, it is evident that the answering set U (x) 

for  u^x) is composed of a single point a^x), where 

a,(x) Is continuous in x and y.(x) is in the class of 

continuously differentiable functions, making it possible 

to apply the theory of nonlinear programming.  These fea- 

tures are utilized implicitly in the numerical algorithms 

that are developed more formally in the following chapters. 
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CHAPTER 3 

A FIRST ORDER ALGORITHM FOR THE POD PROBLEM 

3.1  Introduction 

Iterative algorithms for design improvement can be 

based on varying degrees of precision of approximation of 

the problem.  In this chapter, first order approximations 

will be used and a "first order" algorithm will be devel- 

oped.  The basic idea in the development of the algorithm 

is to determine what constraints the inner problems place 

on allowable variations of the design variable.  Once this 

information is available, one can apply steepest descent 

or other iterative design techniques.  In the following, 

an algorithm based on the gradient projection method de- 

scribed in Section 2. *4, is given. 

3.2  A First Order Algorithm by Gradient Projection 

Assuming that the conditions given in Section 2.1.3 

are satisfied, the procedure will be as follows: 

(1)  Estimate b*1', solve the inner problems and de- 

note the solutions by the vectors ä    and  z .  When 
6       P 

solutions of an inner problem corresponding to the same 

parametric constraint approach each other, one inner prob- 

lem must be removed.  Thus a "merge" check for the local 
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maximum points is necessary. 

(2) Check the constraints  g. (z. ,b^0',öT ) < 0. 

(3) Define the index set  Ie = { i| g > -e). 

(M Consider g. , iele.  For perturbations 6b around 

b   , perturbations of a" and z must satisfy, 

3g.     3gt     *g4 , 
max L—6z + —± 6b + -^60] <Ag.    (3.1) 
Xn  9Z 3D 9a ~"  1 

subject to 

and 

6h - Jil 6z + |£ 6b + |^6a - 0. (3.2) 

3 a 
6q * r1 6a<_ 0, (3.3) 

da 

where derivatives are calcualted at a., z , and b   .  The 

quantity Ag is the desired reduction in constraint viola- 

tion, usually taken as Ag1= -g (z,b^  ,a).  This linearized 

subproblem may be viewed as a restriction on the variation 

6b, which must be made more explicit for calculation of 

solutions. 

Since a" and z solve the inner problem of Eqs. (2.2) 

and (2.3), with b  ' fixed, the Kuhn-Tucker necessary con- 

ditions (See Section 2.k)  must be satisfied: 

3L4       3g,    m 3h   m 3q 

3a 3a       3a      3a 

3L        >g<    T 3h 

piqi s °» i-1*' '* 'r' (3.6) 

y. 1 0, i-l,#•',r (3.7) 

h(z,b,a) - 0, (3.9) 
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where 

Hence, 

and 

Li  "  ~gi   * *Th  + yTq- (3#9) 

^ «• ■  <«T S? ♦ -T &«• <3'10) 

'  6z  = K1   -ÖZ  -   -K    (-76b   +  r^6a).        (3.11) 3z dz ab 3a 

Therefore, the expression in brackets in Eq. (3.1) Is sim- 

plified to: 

6*i = Cab1 -*T l§)6b + "T Us«.     (3.12) 
so that explicit dependence on 6z has been eliminated. 

The linearized POD problem is now:  Minimize 

«f « |f «b (3.13) 

subject to 

max [P
T
 ^5a] < -(^i-KT3h)6b + A    (3.^, 

0a     da 3D      9 D        1 

»a< 0, 
3a  - 

u > 0. 
T 3Q 

The two inequalities above require that  u  --4a < 0, so 
3a 

T 2 Q max u  ?-^ 6a <0.  However, the maximum value of zero can 
6a    *« 

be achieved by 6a»0.  This observation eliminates explicit 

dependence in the linearized problem on 6a, so the con- 

straint on the design variable is written only in terms 

of the design variable.  The linearized problem of Eqs. 

(3.13) and (3.1*0 now becomes simply:  Minimize 
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6f - ~; 6b (3.15) 
3D 

subject to 

,3gi   T ah 
( 3b 

- K S»lil «b< Agl. lele,    (3.16) 
rp 

where *  is given from Eq. (3.5). 

With 6b solved from this approximate problem, an 

improved design is  b^ '*b* '+6b.  One may now check for 

convergence and terminate or return to Step (2), with b 

replaced by b 

The procedure for solving the POD problem may now be 

divided into two independent steps:  (1)  Solution of sub- 

problems, and (2) solution of the outer problem given by 

Eqs. (3.15), and (3.16).  Several different versions of 

the solution procedure are possible, depending on the 

methods used to implement these two steps.  Possible ap- 

proaches will be discussed in Section 5.2.  For Step (2), 

the solution by gradient projection is exclusively used 

in the algorithm. 

The approximate problem obtained above is exactly the 

same as is given by Eqs. (2.52) and (2.53), and can be 

readily solved for a design improvement by imposing a step- 

size restriction on 6b, as in Eq. (2.5*0; 

6bT w\6b < n2 (3.17) 
b  — 

where W is a positive definite weighting matrix and n is 

a small constant. Following Section 2.4, the solution of 

the approximate problem is obtained as Eqs. (2.62), (2.63), 
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and (2.64); where 

'jT= if. (3.18) 

l*     ={V- «*!£> leV> (3'19) 

Ag s (Aglf iel£}. (3.20) 

The first order analysis described here leads to a 

3imple computational scheme that essentially Justifies 

previously used "alternating maximization and minimization 

procedures" for the min-max problem.  In the present treat- 

ment, no assumption of a saddle point solution is neces- 

sary, as long as the functions involved are once differ- 

entiable with respect to their arguments. 

3.3 Numerical Examples 

In this section, the first order algorithm is applied 

to solve four example problems from Section 2.3. 

As a numerical example, for the weapons allocation 

problem given by Eqs. (2.16-19), the following input data 

from Medanic [8] are taken, with n«3:  v, » 1, v2 ■ 2, 

v3 - 3, v^ » 4; S1  - 1, B2 - 2, 63 - 2, fl^ - 1;  Yx - », 

y2  * 3, Y3 " 2, YJJ = 1. 

Since f in Eq. (2.16) is concave in a, for any b, and 

the constrained set given by Eq. (2.18) is convex, only one 

value of a is used as a starting estimate of the maximum 

point.  The initial estimate is b(o)« [0.1, 0.2, 0.3]T and 
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a*0'- [0.1, 0.2, 0.3]T.  Results of computation for each 

iteration are shown in Table 1.  The final result is 

b - [0.0, 0.188, 0.273]T, a = [0.0, 0.182, 0.456]T, and 

J - -2.234, after 11 iterations.  The solution from [8] is 

b » [0.0, 0.1891, 0.2942]T and J «= -2.235, after 22 iter- 

ations . 

In Table 2, the results for case (i) of the 3 bar 

truss design problem are shown.  At the optimum solution, 

the worst case was found to be the buckling constraint of 

member 2, at load angle a * -45°, and the z^-dlsplacement 

constraint, at load angle o = 0.0°.  It is observed that 

the Z2-displacement constraint is nearly tight at load 

angle a - 90°.  Table 3 shows results for case (ii).  Two 

displacement constraints became tight at a - 0° and a »90°, 

respectively.  In Tables 2 and 3, a is given in radians. 

The results presented in Table 4, for case (i) of the 

vibration Isolator design problem, show that the rattlespace 

constraint is strictly satisfied and that g. is tight at 

two local maximum points.  Thus, the solution of this 

problem is the same as Den Hartog's [30], with an infinite 

range of exciting frequency.  The final result obtained is 

K  * 0.1697 and f = 0.9090, with x±  »4.59, after 20 itera- 

tions.  The response of the main mass with this design is 

shown in Figure 6.  The analytic solution from [30] is 

5 « 0.1679 and f » 0.9091, with xx - 4.583.  The solution 
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in [31], using a grid mesh of 0.05, is £ « 0.1503 and 

f ■ 0,9096, with x, = *J.5**7.  For the excitation frequency 

range of [0.9, 1.25] in case (il), results are shown in 

Table 5.  The final result is K  ■ 0.1239 and f » 0.9536, 

with x^ ■ *4.06.  Here, g, becomes tight at two points, as 

shown in Figure 6, and the rattlespace constraint g2 is 

tight at a = 0.9*4.  The solution in [31], using a grid 

mesh of 0.05, is C = 0.1232 and f = 0.952*4, with x±  » 4.029. 

Table 6 shows results of calculation for the bridge 

design problem described In Section 2.3.5.  The problem 

contains 9 design variables, 1 free parameter, 16 state 

variables, and 20 inner problems (1*4 subproblems; 8 stress 

constraints for the first eight truss members, 5 moment 

constraints at three nodal points and at two loads P2 and 

P^, and 1 displacement constraint at load P2).  The solution 

shows that the displacement constraint dominates the design. 

Convergence was rapid for the first few iterations, but the 

compensation of displacement violations was slow, resulting 

in a large number of iterations.  Better convergence can 

be obtained by a different choice of the algorithm para- 

meters, such as the stepsize.  As in the other example 

problems, this problem shows the reliability of the first 

order method.  The computer time per iteration on an 

IBM 360/65 was about 1.7 seconds in FORTRAN(H). 



Table 1  Weapons Allocation Problem 

(First Order Algorithm) 

lter bi obJ.      | Ub1!! °i II«*1!! 
tight 

0.1 0.2 0.3 

0 0.1 0.2 0.3 -2.10 1.0 0.0 0.246 0.566 (4)*.007 «1 

1 0.15 0.154 0.254 -2.298 0.55 0.0 0.123 0.447 (4)0.008 *1 

2 -0.134 0.237 0.293 -2.378 0.17 0.0 0.219 0.455 (4)0.005 g2,   q1 

3 0.0 0.075 0.340 -2.280 0.65 0.0 0.010 0.478 (4)0.008 

H 0.0 0.199 0.328 -2.308 0.43 0.0 0.197 0.556 (4)0.007 

5 0.0 0.1^8 0.254 -2.274 0.20 0.0 0.147 0.506 (3)0.003 

6 0.0 0.179 0.250 -2.240 0.16 0.0 0.160 0.445 (4)0.006 

7 0.0 0.189 0.262 -2.232 0.09 0.0 0.166 0.466 (1)0.005 

8 0.0 0.193 0.269 -2.234 0.04 0.0 0.178 0.452 (2)0.004 

9 0.0 0.191 0.271 -2.234 0.04 0.0 0.180 0.453 (1)0.003 

10 0.0 0.190 0.272 -2.234 0.04 0.0 0.181 0.454 (1)0.002 n 

11 0.0 0.188 0.273 -2.234 0.04 0.0 0.182 0.456 (1)0.001 n 

•Number of maximizations. Ul 



Table  2     3-bar Truss  Design,   Case   (i)   (First  Order Algorithm) 

lter bi obj. 

182.39 

llfib1!! ||6a ||max 

(6)*.300 

tig 

S3> 

;ht constraint,gi(a) 

0 8.00 2.40 3.20 12.6 1 67 > 88 

1 8.03 2.42 4.61 203.01 11.6 (6)0.007 g3| 
S8( 

:-.6i),g7(-.i8) 
.-.785)/g8(1.571) 

2 8.33 2.31 5.99 225.54 10.8 (6)0.007 

g8( 
'-.6l9),g,(-.117) 
:i.57D  ' 

3 8.84 2.09 7.29 249.00 3.75 (6)0.005 g7( :-.072),g8(1.57D 

4 9.28 1.55 8.49 266.54 2.07 (5)0.005 g7< -.0H5),g8(1.571) 

5 9.67 1.18 9.26 279.52 0.95 (6)0.006 g7( -•013),g8(1.571) 

6 10.07 0.894 9.77 289.54 0.60 (6)0.005 g7l .-.0043),g8(l.571) 

7 10.36 0.691 10.12 296.56 O.58 (6)0.003 g7< -.011),g8(1.571) 

8 10.59 0.530 10.39 302.10 0.39 (5)0.005 g7< :-.00l8),g8(1.571) 

9 10.83 0.369 10.66 307.58 0.41 (6)0.003 g7( ;-.007),g8(1.571) 

10 11.02 0.237 10.88 312.04 0.25 (5)0.004 g7< :.0002),g8(l.571) 

11 11.21 0.105 11.09 316.50 0.33 (5)0.004 g7< ;-.008),g8(1.571) 

12 11.35 0.00166 11.27 319.95 0.20 (5)0.003 &51 

g8< 

:-.785),g7(-.0016) 
[1.571) 

13 11.25 0.0445 11.38 320.42 0.30 (5)0.003 g5( 
;-.785),g?(.005) 

14 11.33 0.0448 11.30 320.43 0.08 (6)0.04 g5< [-.785),g7(-.0001) 

15 11.32 0.0448 11.31 320.45 0.14 (6)0.04 
«51 :-.785),g?(-.005) 

16 11.306 0.04474 11.321 320.44 0.04 (6)0.03 g5< [-.785),g7(.0019) 

17 11.309 0.04475 11.319 320.45 0.1 (6)0.03 g5 [-.785),g7(-.005)     ^ 
VJ1 



Table   3     3-bar Truss  Design,   Case   (11)   (First   Order  Algorithm) 

iter bi obj. | 

182.39 

16b1!! H^llmax 

(6)*.075 

tight constraint ^^(a) 

0 8.00 2.40 3.20 97.8 OO >   g»T »   DO 

1 8.12 2.39 4.60 204.01 73.0 (6)0.0047 ^3' g7' g8 

2 8.44 2.40 5.99 228.04 49.3 (6)0.0066 g7(0.0),g8(1.571) 

3 8.91 2.38 7.32 253.35 29.9 (6)0.0046 g7(0.0),g8(1.57D 

4 9.67 2.32 8.86 285.33 14.1 (4)0.0045 g7(0.0),g8(1.571) 

5 10.85 2.15 10.71 326.42 2.23 (6)0.0060 g7(0.0),g8(1.571) 

6 11.295 2.01 11.282 339.41 0.19 (5)0.0042 g7(0.0),g8(1.571) 

7 11.313 2.00 11.314 340.00 0.015 (0)0.0042 g7(0.0),g8(1.57D 

8 11.31* 2.00 11.314 340.00 0.001 (0)0.0042 g7(0.0),g8(1.57D 

*Maximum number of maximizations 

ON 



Table 4 Vibration Isolator Design, Case (i) 

(First Order Algorithm) 

iter bl obj. 
58.5 

llfib1!! 16a1|Imax tight constraintfg(o) 
gx(.8675) 0 0.15 1.0 29.97 (6)*.0025 

1 0.15 0.9965 55.99 29.97 (5)0.0018 gx(.864) 

2 0.1502 0.9926 53.48 29.97 (6)0.0013 gx(.8665) 

3 0.1502 0.9889 50.98 29.97 (5)0.0018 gx(.863) 

H 0.1503 0.9844 48.49 29.96 (5)0.0013 gl(.8605) 

5 0.1504 0.9799 45.99 30.00 (5)0.0018 

6 0.1504 0.9799 40.00 29.95 (5)0.0025 gx(.859) 

7 0.1508 0.9636 37.52 29.92 (4)0.0025 gl(.854) 

8 0.1509 0.9564 35.03 30.00 (4)0.0025 

9 0.1509 0.9564 29.04 29.92 (5)0.0025 gl(.854) 

10 0.1512 0.9352 26.59 29.86 (5)0.0025 gx(.849) 

11 0.1513 0.9237 24.11 29.81 (4)0.0025 gx(.844) 

12 0.1514 0.9128 21.65 29.74 (5)0.0025 gx(.839) 

13 0.1515 0.9007 19.10 9.36 (4)0.0025 gl(.836),g2(1.067> 

I* 0.1739 0.9074 20.39 2.44 (5)0.0025 g1(.849),g2(1.052) 

15 0.1658 0.9092 21.00 2.78 (4)0.0017 gl(.846),g2(1.063) 

16 0.1720 0.9087 21.00 1.02 (4)0.0025 g1(.850),g2(1.058) 

17 0.1706 0.9089 21.00 0.81 (4)0.0025 gl(.846),g2(1.053) 

18 0.1701 0.9090 21.03 0.96 (4)0.0017 g1(.849),g2(1.056) 

19 0.1699 0.9090 21.06 1.12 (3)0.0015 gl(.852),g2(1.060) 

20 0.1697 0.9090 21.05 0.97 (4)0.0015 g1(.849),g2(1.056) -4 



Table 5  Vibration Isolator Design, Case (ii 

(First Order Algorithm) 

) 

iter bl obj. 

37.82 

116b1! 1l6oll max 
(6)*.0025 

tight c onstralnt, Ei(<») 

0 0.15 1.0 28.24 
gl< .9) 

1 0.1499 0.9955 35.55 28.24 (6)0.005 81 < :.9) 

2 0.1498 0.9907 33.20 28.23 (6)0.0013 Bl< ..9) 

3 0.1497 0.9852 30.85 28.22 (4)0.5017 gl< :.9) 
4 0.1496 0.9791 28.50 28.20 (4)0.5025 <?1< ..9) 

5 0.1494 0.9723 26.16 28.18 (4)0.0025 «1< .9) 

6 0.1491 0.9646 28.82 28.14 (4)0.0025 *1< :.9) 

7 0.1488 0.9558 21.49 28.09 (5)0.0025 «L< ..9) 

8 0.1484 0.9453 19.16 27.99 (4)0.0025 Bl< :.9> 

9 0.1478 0.9326 17.57 11.11 (4)0.0025 Si« :.9) ,gx(1.093) 
10 0.1297 0.9488 16.68 5.59 (5)0.0025 *1( :.9) ,gl(1.108) 

11 0.1168 0.9589 16.85 4.44 (5)0.0017 8l < :.9) ,gl(1.125) 

12 0.1262 0.9517 16.61 0.91 (4)0.0025 *1{ :.9) ,gl(1.120) 

13 0.1311 0.9472 16.71 5.93 (4)0.0022 8l < :.9) ,gl(1.107) 

1* 0.1150 0.9603 16.90 6.65 (3)0.0015 «1 [.9) 
,gl(1.13),g2(.96) 

15 0.1180 0.9587 16.67 4.47 (3)0.0015 «l1 :.9) ,g1(1.13),g2<.9*3) 
16 0.1192 0.9577 16.64 0.8(-4) (4)0.0015 «1 [.9) ,gl(1.12),g2(.9'») 

17 0.1221 0.9552 16.62 0.93 (3)0.0013 «1 (.9) ,gl(1.12),g2(.938) 

18 0.1227 0.9547 16.61 2.32 (4)0.0013 «1 C9) ,gl(1.12)>g2(.9'*) 

19 0.1233 0.9541 16.61 0.88 (4)0.0013 81 C.9) ,g1(1.12),g2(.9l) 

20 0.1239 0.9536 16.61 0.K-4) (4)0.0013 gl (.9) ,gl(1.12)>g2(.9'») 00 



.       .                                                                                                                     t • 

Table 6  Bridge Design Problem 

(First Order Algorithm) 

Initial estimate; b(o)«[3.8, 3.0, 3.0, 3.8, 0.8, 0.8, 3.0, 3.C, 1250.]T, 

Weight = 12854 lbs, 

Constraints violated; none. 

Final design found: 

b(75) = [3.228, 2.284, 1.107, 3.527, 1.847, 0.200, 2.340-, 0.200, 1255-0]T, 

Weight = 11825 lbs, 

Displacement at load ?2  = 1.8029" at o ■ 378.8" (0.16X violation), 

Design variables b^ and bo were at the lower bound of 0.2 in . 

The following information regarding parametric constraints is obtained: 

Maximum stresses in members 1 through 8 are; -I8.9 ksi at a » 204", 

18.9 ksi at 204", 34.6 ksi at 72.3", -16.4 ksi at 396", 18.5 ksi at 570", 

18.5 ksi at 0.0", 17.8 ksi at 234", and 7.22 ksi at 440"; 

Maximum moments were 187.8 ft-kips under load P2 at a - 0" and 187.7 ft-kips 

under load P3 at 785". 

VJl 
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Flpure 6  Main Mass Response 
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3.^  Conclusions 

A first order algorithm has been developed, applying 

Kuhn-Tucker necessary conditions to the first order approx- 

imation of the POD problem.  The analysis shows that this 

method is equivalent to alternating; maximization and mini- 

mization procedures for min-max problems. 

The algorithm implemented by the gradient projection 

method, with constraint error compensation, has been applied 

to four example problems with no real difficulty.  It was 

experienced that, though the convergence is linear, the 

method has the general characteristics of the gradient 

projection method applied to nonlinear programming problems. 

Thus the method appears to be reliably convergent, generally 

within 20 iterations. 
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AlPEHDTOES 



APPtfNfHX   A 

DYNAMIC  EQUATIONS   FOÜ  SECTION   2. J.* 

63 

The  dynamic  equation:;   have   been   d«-rived   in   terms   of 

«.'■mi I m"i:;ioriali zed  variables   In   [.32].     With  specific 

vajuf.i   Por the  variables   Introduced  there   ISee   Pifture   i), 

mass,   stiffness   and   damping matrices   are   obtain 

11. J low3 : 

|V)   = 

0-?5 o Ü n 

1.0 (1 

rj. 07*63 

fj    IS 
(symmetric) 

(.•jynunetrJr ) 

0 

Ü 

Q 

0.1 r> 

i    --O.lTi.O     1)^*17   o       0 

2.590  -0-3292 -]j    -1.09 

0.6084 -0,3633  0.7267 

) •       0 

12.12 



D 

0.6403^, -0.6403b1 , -0.05336b1 , 0,0 

0.6^03b1+2.697b2-»»2.697b3,   0.05336b]L + . 8989b2-1. 798b3 ,   -2.697b2,   -2.697b3 

.00'*i»l7b1+.2996b  +1.199b3>   -.6989b2>  1.798b, 

2.697b2, 0 
(symmetric) 

2.697b 
3 

ON 
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and  the   column   force   vector  Is  given   as 

{   0,   0,   0,   11.03,   11.03   ), 

aD u ■ p 

a2M   -   K V .0. 

where b, , b , and b  are the dlmensionless damping para- 

meters, which are the design variables.  Hence, the state 

equation« can be written, from Eqs. (2.35) and (2.37), as 

fol lews : 

-a2M + K 

aD 

where the dlmensionless generalized coordinates 

?.   i X/x  * u - 1v are the state variables, and a ■ w/wlo 

Is the frequency parameter, where w   is the first undamped 
10 

natural frequency. 

Therefore, the objective function introduced In the 

text as the square of the ratio of the amplitude of m^ and 

the base is piven by 

♦(z) = u1
2 + vx

2. 
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APPENDIX  B 

ANALYSIS  OF TUE  BRIDGE   FOH  SECTION  2.3.<"> 

Numterinr  the  elements   and nodes  of the   truss   struc- 

ture,   as   shown   In  Fipure   'la,  extensions  of  the  members,   in 

terms of generalized displacements,   are  obtained:     For 

- onvenionce,   let 

b 

Then, 

A   = a 
/^ThT B  = 

• £* b^+ h' 

1! 
1      'b*+ h2 

el =  Bu2  " Hlv2' 

e2  = u3, 

°3 =   v3  "  V2 

II?  =    .—n  
•V+ h2 

e„ - U„ - u2 

e5 = A(u^-u2 

c6 =  A(uru3 

e?  =• u5  -  u3 

"r, = "6 - UK 

°10 = A(U
7-

UD 

'11   "   A(u6"u5 

e12  M  U7   "  u5 

+  H2(v  -v2), 

+ VV3"V' 

+ H2(v7-vlt), 

+  H2(v,3-v6), 
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°13 " v7 " V 

■-,,  = Uo - Uy • r15 - u8 
•mi' ''i      biffneaa matrices are, then, riven by; 

I A.jK B^ -BHj 

.~BH1 »l2 

A.2E 

U 

A3E 1 -1 

L3 -1 1 

A„E 1 -1 

V -1 1 

A5E 
AH2 

«2? 

(sym) 

•A* 

-AH2 

A2 

-AH 

■H 2 

AH? 

-AH 2 
,, 2 
*l2 

(sym) 

■A* 

AH? 

AH- 

-H- 

-AH. 

AyE 

L7 

1 

-1 

-1 

1 etc 
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ten  as ; 

"Kii K12 • ~q a o" 

-K21 K22- LQbJ _-F J 

The structure stiffness matrix is obtained by combining the 

element stiffness matrices.  This can be done easily by a 

simple computer program with the element stiffness matrices 

stored.  The equation for the truss tructure can be writ- 

(B.l) 

where , 

q= {u2,v2fu3,ul4,vl4,u5,u6,v6,u7,u8},    (B.2) 

nb 2 {v3,v5,v7}, (B.3) 

F = {F3, P5, F7). (B.*0 

For a more systematic approach of obtaining the stiffness 

matrix and the derivatives of the equations with respect 

to design variables, see [50]. 

Once the reneralized displacements are obtained, 

axial stresses in the members are given by the formula 
E 

°i ■ T7" ei> (B.5) 

where the subscript 1 refers the i-th member. 

The following analysis will determine the displace- 

ments at x = a^ , a2, and a^>in terms of the load P»(P^, ?2^ 

and the load F acting at the interacting boundary.  Using 

the superposition principle, the displacements can be 

written as 

i:iqb = BF + CP, (B.6) 

where BF is the contribution from P and CP is that from 
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the   load   P. 

Consider first the case of load P. Using the notation 

of singularity functions[^9], the load on the beam is given 

by 

q(x)   =   -RA<X>T    +   P,<x-a>_,    +   P2<X-a-£>_i 

-Rg<x-d>_1. 

By   integration,   the   shear  force   is, 

-V(x)   «   -R.<X>G   +   P1<x-a>°   +   P2<x-a-£>°   -   Rß<X-d>°, 

and   integrating ap;ain,   the  moment   is, 

M(X)   =   -RA
<X>1   ♦   P1<x-a>1   +   P2<x-a-l>1. (B.7) 

From the   load  conditions  at   the  end, 

-V(x)|xcd+   -   0   =   -RA   ♦  P]>   ♦   P2   -  RB 

M(x)    |x=d+   =   0   =   -RAd   f   Px(d-a)   +   P2(d-a-l). 

Hence   solving  for  RA and  Rß, 

RA  =   (Pi(d-o)   +  P2(d-a-l)}/d, (B.8) 

RB  »   {PlQ  ♦  P2(a+£)}/d. (B.9) 

Now,   the  beam equation   is  given  by 

.2 
Bi   -I4 =   M(X) (B.10) 

dx^ 

where,   v   is  the   vertical  displacement   at  x.     After sub- 

stituting  M(x)   from fcq.   (B.7)   and  integrating, 

EIv   ■   k-RA
x3   +   P1<X-a>3   *   P2<x-a-£>3] 

♦CjX   + c2. (B.ll) 

From the  boundary   conditions,   i.e., 

v|x=0 ■  0,    and    v|x-d - 0, 
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one   has 

Cx   »   -   ri-[-RAd3+P1(d-a)3 + P2(d-a-£)3], (B.12) 

c,   -   0. 

There foro,   the   vertical  displacements  v..,   Vj.,   and v~;   at 

x = a   ,   a   9  and  a   •   are  obtained  as 

EIv-j  *   ^[-RAa1
3+P1<a1-a>3+P2<a1-a-l>3]   +  c1a1, 

ElVg  ■  ^-[-RAa2
3-»'P1<a2-a>3+P2<a2-ai-£>3]  +  c1a2, 

EIv7 " 5-[-RAa3
3+P1<a^-a>

3+Pp<a3-a-^>
3] + cia3« 

The elements of C are obtained as: 

C(1"i) = 6d^d2ai-a1
3)(d-yj)-a1(d-yJ)

3+d<a1-yJ>
3]> 

(i-1,2,3, and J»l,2), (B.13) 

where y-,=a, and y2=a+fc.  In the case of k loads P., i-l,**#, 

k, it is only necessary to define y. as positions of load 

applications. 

For the load Fo, F,-, and F?, the matrix is simply 

obtained by putting a*a-, , a? , and a^, cyclically, Into the 

first column of the above expression.  It is noted that, 

in this case, Maxwell's law of reciprocity is applied and 

the matrix B Is symmetric.  The matrix B is obtained as: 

B(i,.1) = ^•[(d2al-al
3)(d-aj)-al(d-a1)

3], 

(1 J-1,2,3; ilJ). (B.1U) 

Since F is assumed as an unknown generalized force, 

one can write 
K- 

K. 

11 K12 0 q 
s 

0 

21 K22 I Qb 0 

0 I -B/EI F CP/EI 

(B.15) 
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which   Is  the  desired  state  equation,  with the  state 

variable  vector 

z  =   {q,   qb,   F) . (B.16) 

Since   B  is   a constant  matrix,   the   following  form is 

comnutationally  more  efficient; 

K 11 K 12 

lK12 K?2*EL 
-1 

0 

B-1CP 
(B.17) 

F   =   KIB~1qb   -   B-1CP. (B.18) 

In the text, bending moment and displacement of the 

beam are needed. For the beam under consideration, they 

are  easily   found  as 

r*(x)   =   -RAx   +   P1<x-a>1   +   P2<x-a-i>1 

+F 3<x-a1>1+  F5<x-a2>1  ♦  F^x-a^1, (B.19) 

and 

EIv   -   g-[-RAx3   +   Px<x-a>3   +   P2<x-a-l>^   ♦   F <X-ax>3 

+F5<x-a2>3 *  F7<x-a3>3]  +cxx, (B.20) 

where 

R -   [Px(d-a)   + P2(d-a-t)   + F3(d-ax)   + F5(d-a2) 

+F?(d-a3)]/d (B.21) 

Cl   =   "C^RAd3  *   pl(d-a)3   ♦   P2(d-a-i)3  +   F3(d-ax)3 

+F5(d-a2)3 + Fy(d-a3)3]/6d. (B.22) 

It is noted that the maximum bending moment occurs at the 

point of load application.  Hence the moment constraint 

is imposed at the discrete points of load application. 

For example, at x-a-^, the constraint can be written 
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from Eq.   (D.19) 

| -KAa1   +   P1<a1-a>1   ♦   P2<a1-a-i>1|    -   0.580yI3/1|/SF <   0. 

(B.23) 

Displacement constraints will be imposed under a specified 

axle of the vehicle, say the front axle.  Then, from Eq. 

(B.20), 

|[-RAa
3 + F3<a-a1>

3 ♦ Fc<a-a2>3 + F7<o-a^>3]/6. 

+c1a| - EIÖ < 0, (B.24) 

where 6 is a preassigned number.  If the displacement 

constraint at the center is imposed, the expression is 

|v5l - 6C <_ 0, (B.25) 

where 6A is a constant, c 

For the numerical calculations given in the text, the 

following data are chosen: 

E = 3-107 lbs/in2 

p = Pl - 0.2836 lbs/in3 

-oc= 0^ =  0^*   3.6'IQ2* lbs/in2 

a r t = h = 30 ft 

ix= m ft 

t2« A2 ft 

Px * 8000 lbs 

P2 ■ p • 32000 lbs 

<5 = 6C = 1.8 in. 
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APPENDIX C 

CONVEXITY AND SOME TERMINOLOGY FROM 

FUNCTIONAL ANALYSIS 

A set K in a linear vector space is said to be convex, 

if, Riven x, y e K, all points of the form Ax+(1-A)y, with 

0<Ä<1, are in K.  The convex hull of a given subset S in a 

linear vector space is the smallest convex set containing 

S, and is denoted by co S.  A set C in a linear vector 

space is said to be a cone with vertex at the origin if 

xeC implies AxeC for all A>0. 

For a full discussion of convexity, the reader is re- 

ferred to C*l]. 

Consider a normed linear space X.  A linear functional 

f on X is bounded if there is a constant M such that 

If(x)| < M||X|I, for all xeX.  The normed dual of X, denoted 

by X* is defined as the set of all bounded linear function- 

al on X.  The elements of X* are denoted by letters with an 

asterisk, e.p%, x*, y*, etc.  The addition of functionals 

and multiplication by numbers are defined as follows: 

(x* ♦ y*)(x) = x*(x) + y*(x) 

(Ax*)(x) - Ax»(x) 

Then, X* is a normed linear space (actually a Banach space) 
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with the norm 

sup   |x*(x) I . 
xl |<1 

Hence the set 

V(B,r,x*) = (x*eX* | sup |x*(x)-x*(x ) |<r> , 
xeB        ° 

where B is any bounded subset of X, is an open set in the 

strong; topology in X* .  The weak* topology may be defined 

by the class of open sets; 

S(x,r,x*) = (x*eX* | |x*(x)-x*(x) | <r }, 

for all x's, x*'s, and r's.  Therefore, on X*, each term, 

such as closure, convergence, and compactness, has two 

meanings, depending on whether the strong or the weak* 

topology Is under consideration.  It may be verified that 

the strong convergence of a sequence of functionals x* to 

x* Implies weak* convergence, and if a set is weak* closed, 

then it is also strongly closed.  For more details, refer 

to [6,25,51]. 
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