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1. Introduction

Generalized Reduced Gradient (GRG) Methods are algorithms for solving

nonlinear programs of general structure. An earlier paper f1! discussed the

.
R e oy e S A N SR ST

AT RT
I s oim '

basic principles of GRG and presented the preliminary design of a GRG

computer code. This paper describes a modified version of that initial

design, including the experiences that led to the modifications. This

paper also is intended to serve as partial system documentation. The

G A S e
=y

code is compared computationally with an interior penalty function code,

and anticipated future work on the algorithm is outlined.
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% ».;; 2. Brief Descriptivn of Generalized Reduced Gradient Algorithms
% l Generalized Reduced Gradient (GRG) Algorithms solve nonlinear programs
432 ° -
of the form
b ? ; minimize B4l (X)
’j, ’»’i ;“"? subject to gi(X) = 0, i=1, NEQ
, ? i
;L I ' 0 < g (X) < UB(N+L), i=NEQ+l, M )
C T LB(1) < X; < UB(4), i=1, N
H
i
C ” 3:' where X is a vector of N variables. NEQ, the number of equality constraints,
-
' may be zero. The functions g; are assumed differentiable.
; ’ & There are many possible GRG algorithms. Their underlying concepts
2 - are described in references ! l: - J; This paper briefly describes the
j i" version currently implemented in our code.
; ;' The user submits the problem in the above form. It is converted to
d oy
3 the following equality form by adding slack variables XN+1,..., xN+M=
& 3
3 ° minimize g+ (X)
e subject to gi(X) - XN+i = 0, i=1, M
3 .
: - LB(1) < X; < UB(1), i=1, N4M 2)
3 where
LB(1) = yB(1) = 0, 1=N+l, M+NEQ
; - LB(i) = 0 i=N+NEQ+l, N+M
k: - These last two equations are the bounds for the slack variables. The variables
§ " X1,..., ¥y will be called "natural" variables.
3
3 *
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Let X satisfy the constraints of (1), and assume that NB of the g;
constraints are binding (i.e. hold as equalities) at X. A constraint g; is

taken as binding
if |g; - UB(W¥+1)| < EPNEWT
or |gy - LB(N+1)| < EPNEWT

i.e. 1f it is within EPNEWT of one of its bounds. The tolerance EPNEWT is

one of the most critical parameters in the code. It can be set by the user,

and has a default valueof 1079,
GRG uses the NB binding constraint equations to solve for NB of the

natural variables, called the basic variables, in terms of the remaining

N-NB natural variables ar.l the MB slacks associated with the binding constraints.

These N variables are callea nonbasic. Let y be the vector of NB basic

variables and x the vector of N nonbasic variables, with their values

corresponding to X denoted by (;; x). Then the binding constraints can be

written.
glyx) =0 (3)

where g is the vector of NB binding constraint functions.* The basic

variables must be selected so that the NB by NB basis matrix
B = (381/3Yj)

is nonsingular at X. Then the binding constraints (3) may be solved
(conceptually at least) for y in terms of x yielding a function y(x), valid

for all (y,x) sufficiently near (y,X). This reduces the objective to a

*The definitions of g are extended here to include the =lacks.
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function of x only

Byyq (Y (X),%) = F(x) (4)
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g

and reduces the original problem (at least in the neighborhood of é;;E)),

to a simpler reduced problem

By

s m\\"aﬂ-\:‘}ﬂ‘ wg&g

minimize F(x)

P
PAE R ]

subject to 2<x<u

where R and u are the bound vectors for x. The function F(x) is called the

reduced objective and its gradient, VF(x), the reduced gradiant.
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This GRG code solves the original problem (1) by solving (perhaps only

T vartially) a sequence of reduced problems. The reduced problems are solved
E’ e by a gradient method., At a given iteration with nonbasic variables x
9 : E' and basic variables ;, Bl is computed, and UF(x) is evaluated as follows:
A T
o ~ T -
- dn
3 o dF/3%y = 0Ryy /0%, - u 38/8%y
; A search direction d is formed from VF(x) and a one dimensional search is
;: - initiated, whose goal is to solve the problem
‘{ - _ _
3 - minimize F(x + ad).
3 a>0
f N This minimization is done only approximately and may be terminated for a
B
i - variety of reasons (see section 5). It is accomplished by choosing a
% { sequence of positive values {al,az,...} for . These are generated by
? subroutine DMINRG, described in section 5. For each value 05 F(§4aia)
g -

; - must be evaluated.By (4), this is equal to gM+l(y(§+aia), §+aia), so the basic
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variables y(§9a13) must be determined. These satisfy the system of equations
g(y, xta;d) = 0

This system is solved by a variant of Newtons method. If Newtons method
converges, and no constraints are violated at the solution, a new O value

is selected and the one dimensional search process continues. If any

g4 constraints or any bounds on basic variables y are violated,the code
determines a new O value such that at least one such new constraint or variable
is at its bounds and all others are satisfied. If certain conditions are

met (see description of subroutine DMINRG, section 5), the new constraint is
added to the set of binding constraints, the one dimensional search is

terminated, and solution of a new reduced problem begins.

3., System Overview

The GRG code described here is composed of a main program and a number
of subroutines. It is written in FORTRAN IV and is currently operative on
a UNIVAC 1108 at Case Western Reserve University and an IBM 370-145 at
Cleveland State University, Yt uses double vrecision arithmetic.

System input is described in the user documentation. The only user
supplied subroutine required is GCOMP, which ccmputes the functions g; for
givern X. The code requires first derivatives of the functions gy, but these
may be computed by a system subroutine PARSH using finite difference
approximations. Alternatively, the user may supply a subroutine PARSH which
computes first derivatives by analytic formulas or other means.

The code operates in two phases. If the initial vector X does not
satisfy one or more of the g4 constraints, phase I finds an initial feasible

point or determines that there is none. This is done by minimizing a phase I
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otjective function, which is the sum of the constraint violationms.

Phase II starts with an initial feasible point and attempts to minimize the

sser-supplied objective gy.;. As with any other NLP algorithm any solution
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<y

found may ve only a local rather than a global minimum. In phase I, this

means that a feasible point may not be located even if one exists. A popular
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procedure, if local optima appear to be a problem, is to try a variety of

starting points. If the same final point is obtained, it is likely

Giii oma¢ @GNS SN 0 L

that this is a global solution. A suggested algorithm for generating

alternative starting points is described in reference :4_.
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4. Subroutines Comprising the Code

The current GRG code is composed of a main program, MAINRG, and 11
subroutines. These are described briefiy in the following subroutine

dictionary.




Subroutine
Name

1. MAINRG

2. SUMRY

3. GCOoMP

4, PARSH

5. GRG

6. DMINRG

7. REDOBJ

Subroutine Dictionary

Function

Not a subroutine. Reads, edits,
and prints input.

Optional user supplied subroutine
which prints additional solution
output, beyond that provided by
GRG

User supplied subroutine. Given
current X vector, computes vector
of M+l function values G, where
G(1),..., G(M) are constraint
function values and G(M+1l) is the
objective

Given current X and G vectors,
computes array GRAD(M+L, N),
whose (I,J) element is the
partial derivative of G(I) with
respect to X(J). May be user
supplied. 1If not, there is a
system subroutine PARSH which
computes GRAD by forward
difference approximation

Controls main iterative loop.
Computes initial BINV and
search direction. Calls one
dimensional search subroutine
DMINRG. Tests tor optimality,
updates H matrix

Performs one dimensional
search

Computes values of basic
variables for given values of
nonbasics by calling NEWTON.
Takes action if NEWTON doesn't
converge. Checks for constraint
violations. If any are violated,
finds feasible point where some
initially violated constraint is
binding and others satisfied.

Calls

GRG
SUMRY

If not
user
supplied,
calls
GCOMP

GCOMP

CONSBS
REDGRA
DMINRG

. REDOBJ

CONSBS

NEWTON
GCOMP

CONSBS
PH10BJ

Called
by

MAINRG

GRG
NEWTON

CONSEF

MATINRG

GRG

DMINRG
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’ p{;“
E - % l Subroutine Function Calls Called
4 i;», Name by
‘. A F l 8. NEWTON Uses Newtons Method to compute GCOMP REDOBJ
4 ¥ values of basic variables for
L given values of nonbasics. If
* convergence not achieved, sets
; l flag and returns
‘ 9. CONSBS Computes Basis Inverse, BINV PARSH CRC
£ l REDOBJ
o DMINRG
I 10. REDGRA Given BINV and GRAD, computes - GRG
‘ Lagrange multiplier vector U,
. S and reduced gradient of either
i phase I or phase II objectives,
g . GRADF
¥ v 11, PH1O0BJ If any constraints are violated, — REDOBJ
3 is computes phase I objective,
4 , equal to the sum of constraint
P CoEt violations. Stores this as
3 ‘ i‘. G(M+l), stores original G(M+l)
: as TRUOBJ.
1 j 12, TANG Computes tangent vector Vv as v = - GRG
, 1
: ‘ -5~} (ag/ox)d
3 (.
L -
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5. Subroutine Flow Charts anq,Descriptions :

The flow charts in this section are in aggregated rather than detailed ,

PRI

form. Their purpose is to describe overall program logic. However, they
correspond fairly closely to the ac-wal FORTRAN code. In particular, all

array, variable, and subroutine names used arethe same as in the code.
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The subroutine begins by calling CONSBS to invert the initial basis., 1If

NCAND is not zero in block 1, the user has specified an initial candidate

) S
may A G e

list for CONSBES. Otherwise, ali variables are candidates. The arrays

TABOVE and IBLLOW in block 2 are the sets of indices of constraints which

)

viciate théir upper and lower bounds respectively.

)

gy

The Broyden - Fletcher - Shanno (BFS) variable metric algorithm 8] is

used to generate the search direction d, This method uses an N x N matrix, H,

%

In block 3, H is ir-tialized to a #iagonal matrix with diagonal element zero
' th
i if the i~ nonbasic variable is at a bound and unity otherwise. The test in
.- block 4 is true if either of two optimality tests are passed. The first test

checks if the following conditions are met;

' for 1 = 1,N but x, not a slack variable

for an equality constraint

x(i) = LB (1) = GRADF(i) > -EPSTOP
x(1) = UB (1) =P GRADF(i) < E¥STOP

LB(i) < x(i) <UB(1) =p|GRADF(i)|< EPSTOP

The quuntities x, are the current nonbasic variables and GRADF(i) is the

ith component of the reduced gradient, (see section 2)., This tests whether the
Kuhn~-Tucker optimality conditions [7] are satisfied to within EPSTOP, a small positive
number which can be controlled by the user. The slack variables for equality
constraints (i.e. the variables X(N+1) to X(N+NEQ)) are excluded from the test

because they must be zero in any feasible solution.
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The second optimality test checks if the condition
ABS(FM -~ OBJTST) < EPSTOP * ABS(OBJTST)

is satisfied for NSTOP consecutive iterations. In the above, FM is the
current objective value and OBJTST is the®bjective value at the start of the previous
one dimensional search,

There are two tests for resetting H in block 5. The first tests whether
the scalar product

£ d(i) * GRADF(i)

is negative. If not, the search direction d(i) will not yield an immediate
decrease in the objective, and i must be reset. This condition can occur
due to numerical error in computing H or to inaccuracies in the one dimensional

search, The second test checks if

max |d(i) | < 1076

i.e if d is too small, Neither of the latter two tests can be true immediately
after H is reset,

In block 6, ALFMAX is the largest value of o for which each component of
x + ad satisfies its bounds. The tangent vector, V, in block 7 is used to
compute initial values for the basic variables in subroutine REDOBJ,

The variable IFLAG in block 8 is set to 3 either in REDOBJ, if phase I

ends, or in DMINRG, if a new binding constraint is to be added to the basis,
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In either case a new reduced problem is to be solved, so H is reinitialized
and the entire procedure begins again. IFLAG is set to 6 either in

DMIRRG, if too many NEWION iterations have been taken, or in REDOBJ,

if NEWION fails to converge. A new one dimensional search is initiated

but the reduced problem remains the same, so H is not reset.

In block 10, page, 2, the binding constraints are checked to see if any have

become strictly satisfied during the one dimensional search. If so, a new,

smaller basis inverse is constructed in CONSBS, and a new reduced problem

solution begins.

If the one dimensional search ends with IFLAG = 0, corresponding to

an unconstrained minimum being located along the search direction d, H is

updated and a new iteration begins. The update used depends on whether or

not any nonbasic variable has reached a bound, i.e. if the step size, ALPH,

is equal to ALFMAX. The updating formulas in blocks 11 and 12 are given

in reference [3]. Since H is a symmetric matrix, only the diagonal and

super-diagonal elements are needed, and these are stored in a linear array

H in row order.
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Subroutine GRG - p. 1

’

;__»Start <_j:)

¥

Call GCOMP {

( NCAND = 0 Q L

e e

— Y

r can < {1,2 ... N}, NCAND « N I

v...-\..\.:¥» o e

s o ——

CALL CONSBS @

h d

C

ompute arrays IABOVE, IBELOW ]

Ao Am st

1f

—

Com vy meeeten v l ‘”'—‘—*m-“»l

Phase I, Call PH10BJ

e IO,
3
Initialize H matrix ‘
(3 > — o
CALL REDGRA"

ho '

\4/) 7

=7 O Y

-

. )
Print sciution ‘

Current point optimal A"‘~;>"—‘—“%V—- output
T U PR T TR e e ey 7YY

~'N

d <+ -H * GRADF

¥

" Py A B

RETURN \

-

If any nonbasic variables should be
released from their bounds, release them
by setting diagonal elements of H

)

1 f —

to unity
( )
stould H be reset )

A

[3// page
2
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Subroutine GRG - p.

Q@

Compute ALFMAX

Y @

Compute tangent vector, V

v

CALL DMINRG (T, IPR, IFLAG, ALFMAX)

 ®

Z

\(.-<

IFLAG-:‘;L
(e

IFLAG = 6 3

~
I

Any

binding ~onstraints > b N

strictly satisfied

Y N

{

update H

Y

Y
<
@

ICAND « {1,

ceeyN}

Y

CALL CONSBS

4

9

ALPH
o

ICAND « {1, .., N}

= \
ALPMAX )

¥

CALL CONSBS

-

U

GG + GRADF

Y

ICAND <« IBV

Y

CALL CONSBS

Y

CALL REDGRA

\7 @

update H
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Subroutine DMINRG

Subroutine GRG provides search directions for the one dimensional search
subroutine, DMINRG,in which the variables of the problem are assigned new values.
This subroutine finds a first local minimum for the problem

min&mize F(%x + ad)

The direction d is always a direction of descent, i.e.

e Smm R BB o

aTvr (x) <0

Fd

This subroutine searches for three o values, A, B, and C, which
- .atisfy

C<A<B<C

F (x + Ad) > F (x + Bd)
and

F (x + Cd) > F (x + Bd)
Then the interval [A,C] contzins a local minimum of F (x + ad). In block 11
of the flow chart, a quadratic in a is passed through A, B, and C, with itc
minimum at D, The point D is taken as an estimate of the optimal o and 2 return
is made.

In finding (A,B,C) the choice of initial step size, &y (block 1, page 1),

is important. With Goldfarbs algorithm or other variable metric methods, ol
is set equal to the optimal a value from the previous search except when this
causes too large a change in the variables. The theoretical basis for this is that,
as a variable metric converges, the optimal o values should converge to 1, the
optimal step size for Newton's Method. Hence the previocus optimal step is 1 good
approximation to the current one. This must be mcdified when the method is restarted,
for example when a new constraint is encountered or the basis is changed, since then
an optimal step much less than unity is generally taken., Hence, we require that the

change in any nonbasic variable larger than 10_3 in absolutre value not exceed .05
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times its value, while the change in any variable smaller than 10'_3 in absolute
value cannot exceed 0.1, If the largest a value meeting these conditions is al,

and a is the step size found by DMINRG at interation i, then o is equal to

1

o = mi o .
o in (ql_l. a’)

if the previous search terminated with an interpolation, and a = al otherwise.

The loop 2 - 3 - 4 ~ 5 halves the step size until a value FB < FA is achieved,
or until LOOPCT = 10, The variable IFLAG in block 3 is set in REDOBJ - to 3 if a
new constraint or bound on basic wvariable was encountered and a new basis was
constructed, and to 6 if either NEWTON call in REDOBJ did not converge.

The test in block 6 of the one dimensional search flow chart is false only if
the step size has been halved at least once in 2 - 3 - 4 -~ 5, in which case K1 is the
funct.or value corresponding to C. It also insures that the subroutine will cut
bacl. the subroutine will cut back the step size if a large function value is returned
by REDOBJ. This is used to force a cutback when the Newton algorithm in REDOBJ does

not converge and an improved point has not been found, by setting FB to 1030.

The loop 7 - 8 - 9 - 10 doubles the step size each time until the points A, B,

C bracket the minimum. The test in block 7 is true if the NEWTION algorithm in REDOBJ
took more than 5 iterations to converge. Experience has shown that, in this case,
the next step with C « 2B is almost certain not to converge in the limit of 10
iterations. This test, and related logic, has reduced overall computational effort
significantly - see sections 6 and 7,

Subroutine DMINRG also includes logic to insure that the step takem is no larger
than ALFMAX., To simplif{y the exposition, this logic has not been included in the
flow chart., Before returning, DMINRG picks up the best objective value encountered
during the search, This is done in block 12, page 2. The quantities XBEST, GBEST,

ALFBST are computed in gubroutine KREDOBJ, which will now be described,

ot A S AL 2N £y RS RSE .

gy
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.

CALL REDOART

Y

D,

@

2

-

"X e XBEST, G€& GBEST,ALPHE ALFBST

J .
RETURN
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Subroutine REDOBJ - Introduction

This subroutine (REDuced OBJective) is equivalent to the subroutine
which evaluates the objective function in a procedure for unconstrained
minimization. However, it is much more complicated. REDOBJ is called from
the one dimensional search subroutine DMINRG. Prior to the call to REDOBJ,
DMINRG chooses a value for the step size ¢, and computes new values of the non-~
basic variables, x, equal to x + 0d (d 1s the search direction). Then
REDOBJ is called. It attempts to compute the corresponding values of the
basic variables, by solving the system of NB nonlinear equations

gy Y, x+ad) =0 1€IBC
for the NB basic variables y, where IBC is the index set of binding
constraints. This system is solved by subroutine NEWTON.

If a solution is obtained then all of the constraints are checked to
see thaiL none are violated, If not, and if no new constraints are binding
then the current objective value is compared to the previous best value ,
If it is lower, the current values of the variables, constraints,
objective and step size are stored as XBEST, GBEST and ALFBST
before returning to the calling subroutine (DMINRG).

If the pseudo-Newton algorithm (NEWTON), used to solve for the basic
variables in terms of the nonbasics, does not converge then one of two
alternatives is taken. If at least one improved point had been Hund during
the linear search process in DMINRG, then the best such value found is

accepted as the optimum in this search direction and the search terminated.

If no improved point had been found (i.e, ALFBST = 0) then the objective
function is assigned a large value (G(M + 1) = 1030) to force the linear search
process to cut back the step size ALPH and to try again.

1f, after the NEWTON process has converged, one of the constraints is
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violated then REDOBJ attempts to find the largest value of ALPH such that
no coustraints are violated and at least one new constraint is binding.
If successful, control is returned to DMINRG where a new search is initiated.

If not successful then the same action is taken as if NEWTON did not converge.
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REDOBJ - Detailed Description

Given the new values for the nonbasic variables x in terms of their previous

values x, the current search direction d and a step size o then the new values for the
basic variable;'y are determined by solving the system of non-linear equations

g, (yy x+ad) =0  ieIBC
where IBC is the index set of binding constraints. As in [2] and [3] this is
accomplished, in subroutine NEWTON, using the pseudo-Newton algorithm

Yepp = V¢ ™ B—l (X) gB(yt. X+ ad) t=0,1,2,...
where 8y is the vector of binding constraints., The algorithm is called pseudo-Newton
because BV i¢ evaluated once at the initial point of the search, X, instead of being re-

evaluated at each step of the algorithm, as in the standard Newton method.

An initial estimate of the solution is computed by linear extrapolation in
block 1 on page 1 of the REDOBJ flow chart. Consider the tangent plane to the
constraint surface at X. This is the set of all vectors (a,b) satisfying

(3g/3y)a + (8g/3x) b =0
where all partial derivative matrices are evaluated at X. In GRG, the change in
X, b, is given by
b = ad
The corresponding vector a is called the tangent vector, V. Since any scale
factor multiplying V is unimportant, we may as well take a = 1, yielding
V== (3g/ay) " (ag/ox)d
In our program, V i, computed at i, the initial point of the one dimensional search
in block 7, pg. 2, of subroutine GRG. In block 1 of REDOBJ, this vector is used

to find initial values, Yo by the formula
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. Mo bt 2 vt

Yo T v+ oy v
Using these initial values, Newton finds the feasible point Xl' Then, at
Xy, V is not recomputed. The old V is used, but emanating now from Xy, to
yileld the next set of initial values as

Yo = v1 + (09 - )V
Using these, Newton finds a new point Xz. This procedure is repeated until
Newton fails to converge or until the one dimensional search is over.

Newton is considered to have converged i: the condition

NORMG = max |g, (X,)| < EPNEWT
1€IBC

is met within ITLIM interations. Currently EPNEWT = 10"4 and ITLIM = 10.
If NORMG has not decreased from {ts previous value (or the above condition
is not met in 10 iterations) Newton has not converged. In block 2, ALFBST
is the value of o at the best point found thus far in the one-dimensional
search., If ALFBST = 0, i.e. no better point has been found, the objective
is set to 1030 in block 3. This forces DMINRG to cut back the step size.
The Newton algorithm will converge if the step size is '"small enough"”. If
ALFBST > 0, at least one improved objective value has been found by DMINRG,
so CONSBS is called and the search is terminated by setting IFLAG to 6 in
block 4.

Once Newton has converged, we check for constraint violations on page 2.
There are a number of reasons why the current step & may be too large;

(1) A strictly satisfied constraint (one with index in the set IRC)
mav have violated an upper or lower bound.

(2) A constraint in 1ABOVE, the set of constraints initially violating
their upper bounds, may violate a lower bound.

(3) A constraiat in IBELOW may violate an upper bound.
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(4) A basic variable may violate a lower or upper bound.
If one or more of these cases hold, O is reduced 10 a value, ALFSTR, where
no constraints are violated and at least onz new constraint is equal to a
bound. To determine this constraint, an estimate is made of ALFSTR in block
6 for cases 1, 2, and 3. Linear interpolation between the current and
previous values of the violated constraint is used. Case 4 is dealt with
in the same way in block 8. 1If none of the 4 cases holds (Y branch, block 9),
the test in block 10 checks if we are still in phase I (NABOVE is the number
of indices in IABOVE, the ret of constraints violating upper bounds, and
similarly for NBELOW). If still in phase I (N branch, block 10) block 11
checks to see if all violated constraints are satisfied. If so, phase I ends
and a return is made.

1 any of the 4 cases holds, the logic at the top of page 3 decides
whether case 4 or one of cases 1 - 3 is to be dealt with., Assuming cases

1 - 3 as an example, we then wish to solve the system

fi

g (y(@), x + ad) = 0, icIBC

g, (y(@), x+ad) =0

The Jacobian for this system is

|
B c!
J = - -!
: D4 | wi
where
D4 = 9gy /3y
W= (agL/Bx)Td

and ¢ is an NB component column vector whose elements are (Qgi/Bx)Td for

icIBC, Since J involves only adding a border to the current basis macrix,

b VAT Y YA

E S Y




-, e y o ma s ¢ . e e ) y N {72 r 7% L LTl SRS T R
2 PREIISeS yro oo T e ok S L ISR AR U N ST NG SR e QT AN R s sl o St

34
s L

g
”:

P
2
¥

£ 24

RECSE o s
PR

P s e A
oy R

B, its inverse is easily computed if B! i known. This is done in

block 13. The call to NEWION in block 14 then attempts to solve the system.

If NEWITON fails tc converge, the same logic as described previously is

i el innts

applied. 1iIf it does converge, we return to page 2 to see if any of cases
1 - 4 still holds.,
This procedure for satisfying violated constraints terminates with

the Y branch im block 9., If a basic variable has been set to one of its

ey e W BB B wm

5 bounds, its index is stored as LV1 in block 12, p. 3. 1In block 15, page 4 LV is
{ - replaced by LV1. If both LV and NNEW are zero, the set of strictly
H .

3 satisfied constraints is checked to see if any constraints in it are binding.

Then the best point iz updated if necessary and a return is made.
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Subroutine CONSBS

This subroutine selects a set ot basic variables and computes the basis
inverse, BINV. Its input is a list of indices of variables, the candidate
list ICAND. The outputs of CONSBS are (a) a new list of binding and
strictly satisfied constraint indices (b) a new list of basic variable
indices and (c) the new basis inverse, BINV. In block 1 of the flow chart
the array IREM contains the list of rows of TAB which remain to be
pivoted in. The subroutine operates in 2 modes, indicated by the variable
MODE. When MODE = 1, CONSBS will choose pivot columns from whatever
candidate list was input to it. If a basis inverse could not be constructed
from columns in this candidate list, or if the original candidate list
included all variables (NCAND = N, block 2), MODE is set to 2, and CONSBS
will choose pivot columns from the list of all admissible columms. A
column is admissible if it is not scheduled to leave the basis‘and if it has
a0t yet been pivoted in,

The main loop of CONSBS begins at block 3., A pivot row is chosen as

in block 4. The choice of ISV in block 5 is motivated by the desire
+0 have basic variables as far from their bounds as possible, so that fewer

basis changes will be required. The other criterion influencing the choice
of basic variables is vhat the basis matrix should be well-conditioned.

We try to insure this by choosing as a prospective pivot column that index,

I, in ISV yielding

max |TAB (IROW, I)|
IeIsV

This is done in block 6. If the element chosen passes 2 tests we pivot

on it (block 8), transforming the Jacobian and entering that column into

BINV. The index of the column pivoted in is stored in the basic variable

list, IBV (block 7), and the

st s T e el it e e e e e L
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procedure is repeated for each binding constraint until either BINV
has been constructed (N branch, block 9) or the candidate list has been

exhausted (Y branch, block 10, page 2).

The two tests that a pivot element must pass are (a) its absolute

value must be larger than EPSPIV (currently 10“6) and (b) the absolute
value of the ratio of all other elemen:s in the pivot column to the

pivot element must be less than RTOL (currently 100). The first test

R A AL T A S

insures that we do not pivot on an element that is essentially zero, while

i i,

the second protects against the generation of elements of large absolute

value in BINV. Such values are synptomatic of ill-conditioned basis matrices.

§d bed Gy G T BN B

It either test is failed while MODE = 1, we simply do not pivot in the

current row, and move on to the next one.

H

1f, when mode 1 terminates, BINV has not yet been constructed, we

b nnry

»

attempt to complete its construction by considering columns not in the

originalcandidate list. In block 11, page 2, the candidate list, ICAND, is

-y
.

reset to the set of all remaining admissible columns, MODE is set to 2, and

.-
.

o we return to the start of the main iterative loop. If, in this seccnd phase,

a pivot element fails the absolute value test, we temporatily mark all columns

in ISV inadmissible (by setting their indicator in the IGNORE array to 1, in

block 12, page 3) and choose a new ISV array. If, in mode 2, a column fails the

o RTOL test (block 14, page 3), its IGNORE indicator is set to one. If all admissibl
- matrix elements in a row fail one of these two tests (N branch, block 13, page 2)
we are forced to consider variables within EPBOUN of their bounds. This

-

is done in block 15, p.4. If all these fail the tests, the slack variable

e

corresponding to row IROW is entered into the basis,
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Subroutine CONSBS - p. 1

Initialize: ICT * O, IGNORE (I) = 0, I =1, N

Determine indices of binding and
strictly satisfied constraints
NB = number of binding constraints

]

Y.
LCALL PARS—]

Ms=o Xy ST,

Store gradients of binding constraints in array TAB l
. i

Sort variables in order of increasing Z(J) where

z(J) = min {(X(J) - LB (J)), (UB(J) -~ X))}

,, IREM + (1,2,...,NB)
NREM * NB
( w=0 - > .

N 4.
Label variable leaving basis l

inadmissible
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Subroutine CONSBS - p.2

|

B Q’@

v

NCAND = N

1
e

,-).. MODE4-1 !

main loop T Ll

S

start of \y

b2, ---»T--- o '“__.“A..
\‘/

ICT + ICT +1

...... “"""i‘.‘“.' e 2 N
7 MODE = 2 e
S oYy

FOR I = 1,N, IGNORE (I) « 0 BN 2

—————tnr e nw
a eemeem o

A
t

(10 \I

ICT >

<(mw__.u.‘

s,

W‘\\

NREM

Pe

; IROW = IREM (ICT)

@ i i

Py

5 ICT « O
MODE + 2

———arge

@ 4

NREM + number of rows not yet
pivoted in

173t of rows not yet
pivoted in .
list of admissible :
variables i
size of ICAND

L

IREM +
ICAND +

NCAND +

l f e et v o e e m—————.

®

Select (up to) 5 admissible candidate variables with IGNORE (1) =0

which have Z(J) > EPBOUN and with largest values of Z(J).
Let NSV = number cf indices in ISV

indices in ISV.

R

Scan row IROW of TABR.

! 3 ! p-3

Store

From columns with indices in 1SV,
pick one with element of largest absolute value. Let
element value = PIV, column index = ICOL
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Subroutine CONSBS - p. 3

T

TRINE B
- ER e e

‘i‘i‘
VAR

;‘:‘ @
% ..... ——
A SR /dlnvl > EPSPIV )
|
i *
) ~. 2 p. 2
T \/
s ) ! For each I in ISV set IGNORE (1) = 1 *
’: g_ 4" YReehu e v amn - . . - - - o~ e tov ok
L i \ )
. I———-l § {ﬁ’z
3 - . i \
SRR - — +
g 0 “\/ —— - . . N J . R —————
S _For I =1, NB but I # IROW, R(I) = -TAB(I ICOL)/PIV '
i ) s tweares e W  em Amsumes e W g -w -@--. v sew em Ah o aese v
P r:ny R(I) > RTOL g
1 . e
©, REE Y
Store ICOL in ;ist of basic variables, IBV, in ' IGNORE (IC0L) = 1 !

Cnvia wry
.

' 4 u 0

; - >

@ Y

Pivot on TAB (IROW, ICOL), Update all columns of TAB \

{
( - ————y (9) _
Any rows remaining to pivot in ™ % {:l p. 2
JE— -- P -—‘- ey, ‘-TM .

position IROW. Replace columm ICOL of TAB by :5 o
p.2

POO—

{ Reorder columns of TAB With indices im Dasic variable list,
IBV, into first NB columns of TAB, Order is as specified in

IBV., Since TAB and BINV occupy same storage locations (by
EQUIVALENCE statemant) these columns comprise BINV

i Construct index set of nonbasic variables ‘
» RETURN
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Subroutine CONSBS - p. &
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Find all admissible candidate variables which have IGNORE (I) = 0
and Z(J) < EPBOUN. If none set PIV = 0. Otherwise, set PIV =

element of largest absolute value in these columns in row IROW.
| Set ICOL to index of maximizing column

MR LR SR g Ul N

TITCT -

BS54

; —~— - —m vy s 4 e coaaae oo o §

1 1 QPIVL > EPSPIVW p. 3

v N

a-——

- . \
3 / Is variable leaving basis the Y error \

i\ same as the slack in row IROW ;"'> " stop J
. » VP LY N et & s re s —
Y

( ! et e s ——
.. { Enter slack in row IROW into BINV ‘
- ‘l\.* bl i
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6. Changes in the Algorithm

The subroutines of section 5 have been changed significantly from their
orginal versions, described in reference [1]. Here we discuss some of these changes
and give reasons for them.

Subroutine PARSH

Ghyd oy SEB B 0B

RSTA &

A finite difference version of PARSH has been added. This computes partial

derivatives of gl"”gn-+ ] by simple forward differencing, using a constant increment

=

? of 10.4 in each variable. It frees the user of having to code his own PARSH, a task
% é{ which can require man - months of effort for some problems. In comparing solution

§ = by using amalytic and finite difference derivatives, little or no degradation in

: i- accuracy or speed has been noted.

The form of the user - supplied PARSH has also been changed. Prewiously, the
code assumed that only the gradients of currently binding constraints would be computed
; by PARSH., Now, gradients of all constraints are computed, This significantly
. simplifies the preparation of PARSH. The older version required that PARSH compute
;. the gradients of an =rbitrary subset of constraints, which is more complex to code
; than simply computing all of them. The rest of the program is also simplified. No
distinction need now be made between finite difference and analytic derivatives;
previously, finite difference would compute all gradients, analytic only those for
binding constraints,

Subroutine GRG

- The Broyden - Fletcher - Shanno (BFS) variable metric algorithm [8] has replaced

the Davidon - Fletcher - Powell [6] method. This was done because recent computational

4

experience indicates that BFS is the best of the variable metric algorithms, Reference

p -

[9] shows that BFS is less sensitive to errors in the 1 dimensional search than DFP,
while [10] provides evidence that periodic restarting of BFS is undesirable. Hence
a simpler 1 dimensional search is now used, and the test in block 5 of GRG does not

include resetting H periodically.

ol el weeeeed
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Ll

Subroutine DMINRG

The cubic interpolation section has been deleted., This followed the quadratic
interpolation (block 11), and fit successive cubics through 4 points until certain
stop criteria were met. It was removed because:

(1) In about 10 test problems, it was found that deleting the cubic interpolatio
increased solution effort little, if at all, and often decreased it. There are a
number of reasons for this. Foremost among them is the fact that, to compute the
reduced objective F(x) exactly, the basic variables y(x) must be determined exactly,
i.e, each binding constraint must be exactly equal to zero. Of course this is
impossible in practice, and the binding constraints are only within EPNEWT of their
bounds, with the default value of EPNEWT currently equal to 10-4. Hence F(x) is
computed significantly less accurately than if the problem were unconstrained, perhaps
only to 4 or 5 significant figures, With such noise in the function evaluation, cubic
interpolation rarely achieves improved functio.a values.

(2) There is much evidence in unconstrained minimization that a "sloppy" one
dimensional search achieves better overall results than a more exact one.

(3) The code was significantly simplified and shortened.

The current interpolation strategy is simply to bracket the minimum, fit a
quadratic, choose the best of all points evaluated during the current search, and
return., Multiple interpolations are no longer performed. Choosing the best point
is necessary, because the D point selected by the‘quadratic interpolation (block 11,
DMINRG flow chart) may not be the best, and choosing it can yield a final objective
value worse than the value at the start of the search.

Two new checks have been added to the quadratic interpolation. The first test
requires that the product (A-B) * (B-C) * (C-A) exceed, in absolute value, a tolerence
EPSQl, while the second requires that the three points (A,FA), (B,FB) and (C,FC)
enclose an area no less than a tolerence EPSQZ. These tests ensure that the quadratic
interpolation is numerically stable, and no interpolation is performed if either of th

fails,
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Subroutine REDOBJ

The actions taken when NEWTON does not converge (see pages 1 and 3 of the flow
chart) are new. In the current logic, if NEWTON does not converge then either the
best point found so far is accepted as the minimum and the one dimensional search
terminated or, if no such point has been found, the objective value at the current

point is set to 1030

in order to force the step size to be cut back in DMINRG.
Previous logic tried to force convergence by first computing an approximate B-1 aud,
if that also failed, then an exact B-l, both evaluated at the last feasible point.

The approximate B-1 was a dismal failure, and even the exact one often would not cause
Newton to converge. Further, when convergence of Newton did ensue, many iterations
were usually required and, of course, evaluating B-l involves a significant amount

of computation. Computational results (see section 7) show a significant improvement
with the new logic. Evidently, once the radius of convergence of Newtons method (with
B“l evaluated at o = 0) has been reached, it is not worthwhile to try to extend it. In
fact, it had proved worthwhile to limit motion from a = O to those a values which
require only a few Newton iterations (fewer than 6, for example) for convergence,

This is accomplished by the test in block 7, page 2 of the DMINRG flow chart,

Additional advantages of this new logic are (1) it is much simpler and (2)
only one evaluation of B“l is required per one dimensional search. This latter
feature is especially important for large problems, where evaluating B“l will be one
of the major computational steps.

Subroutine REDOBJ giow includes logic to deal with basic wariables which violate
their bounds. This permitted the elimination of subroutine BSCHNG of reference [1],
and hence shorted the code,

The logic in blocks 6 and 11 on page 2 was added as part of the changes required
to solve problems for which the initial solution was not feasible i.e. a Phase I to
determine an initial feasible solution. These blocks deal with constraints which
had previously violated an upper (lower) bound and now, because too large a step has

been taken, violate their lower (upper) bounds.
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The logic on page 4, block 15, which stores the point with lowest objective
value, is also new. This causes each one dimensional search to yield a point no
worse than the one it starts with., This logic was added because the last point
obtained by DMINRG is not always the best, especially when it is obtained by
interpolation., This may be due to the inacurracy with which F(x) is obtained;
interpolation seems to produce poorer results as EPNEWT is increased. Without this
logic, function values obtained at the end of successive DMINRG calls sometimes
increased, especially near the minimum and with larger values of EPNEWT. One consequen
of this was that many iterations could take place without the objective improving

and without thc stop criteria in subroutine GRG being met, The new logic eliminates

this problem.

Subroutine CONSBS

The only major change from the previous version is in the way degeneracy is handlex
In biock 13, p. 2 of the CONSBS flow chart, the N branch is taken when an acceptable
pivot element cannot be found in mode 2., The old code simply printed an error
message and stopped. The present code branches to page 4 of the flow chart, which
enters a variable at its bound into the basis. This is an improvement, but the logic

is still not s.risfactory. Future plans for dealing with degeneracy are discussed

in section 8.
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7. _Computational Results
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(a) Comparison with Previous GRG Code
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The changes described in section 6 have both simplified the code and improved
its efficiency. Table 1 below gives problem characteristics of eight test problems,
while table 2 gives comparative results using the new GRG logic and the old described
in reference [1] and section 6. While the number of one dimensional searches has

increased slightly, the other 3 performance measures are significantly improved.

S ?‘!e P R
Sue)y S IR D o o

asing

v
L
Prob- NAME OF NO. QP NO. OF NO. OF
- lem VARIABLES EQUALITY INEQUALITY
¢ No. PROBLEM CONSTRAINTS CONSTRAINTS
é»
? 1, Kowalik- 4 0 3
b Osborne
.. Quadratic
el o2, Colvil. 5 0 3
Quadrat._c
13 Asaadi Problem 5 3 0 |
No. 4 ;
. 3
4, Eight Variable 8 0 23
Spring
’ 5. R.A.C. Shell 15 0 5 E
Dual ;
- 6. Seven Variable 17 10 8
Truss i
- 7. RAC Primal 5 0 10
- | 8. GGP Alklya- 7 0 14
tion
- i
TABLE 1 - Characteristies of Test Problems
!
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%ﬁ l PROBLEM 1 2 3 4 5 6 TOTALS
B STATISTIC OLD |NEW OLD|NEW OLD|NEW | OLD|NEW |OLD NEW JOLD/NEW| OLD {NEW
§, One Dim-
E ' ensional 8|8 505 6{9 | 8|12|31]3 [w]u| 68|75
3 Searches
i
¥
? l Newton 135} 56 819 519| 110 87| 48 |543 | 412 |87 |78 1379} 813
£ ' Iterations
b
; I Equivalent
k Function 283} 143 55| 48 724 1991 234| 199|12961000{ 324|208] 2874|1797
H g- Calls *
. &
L |Bwy
P4 Computa- 151 8 6 5 351 9 15 | 12 44f 301 11| 11 126} 85
L tions

TABLE 2 - Results of New Logic

* Equivalent Function Calls Z Functions Calls + N¢ Gr.dient Calls
i where N = No. of variabl:s,
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]

(b) Comparison with Penalty Methods.

The sam:: seven test problems were run on the current GRG code as well as on
the interior penalty code described in [11]. GRG required far fewer on dimensional
searches, function evaluations and .gradient evaluations. While some of this reduction
was offset by the requirement of matrix inversion and solution of nonlinear equations
in GRG, it was noted that GRG produced more accurate solutions for most of the problems.
Differences in computation times (of the order of hundredths of a second) could not be
estimated accurately owing to the masking effects of mutiprogramming. We expect
that GRG will prove superior to penalty methods for large problems where linear
programming technology can be implemented very effectively., The couparative

performance of GRG and the penalty codes is shown in Table 3

TOTALS - PROBLEMS 1,2,4-8
STATISTIC RENPUCTION FACTOR
PENALTY GRG PENALTY /GRG
One Dimensional 495 94 5.3
Searches
Function Calls 3773 1125 3.4
Gradient Calls 539 99 5.4
Equivalent 8645 2023 4,5
Function Calls
Newton
Iterations - 747 -
BINV
Computations - 94 -

Table 3 ~ Comparison of GRG and Intericr Penalty Codes,
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8. Future Work
a. Degeneracy

A feasible point is degenerate if the gradients of the binding
constraints (including bounds on the variables) are dependent. Hence, a
point with more than N constraints binding is always degenerate. At a
degenerate point, any basis matrix must include at least one column
corresponding to a variable at one of its bounds. This may be a slack
variable or one of the natural variables, As one attempts to move away
from a degenerate point, it may be that one or more of the basic variables
at a bound immediately violates that bound. Then either the basis must
be changed or a new search direction selected. We have encountered 3
degenerate points in the dozen or so problems solved thus far. The current
logic for dealing with degeneracy is unsatisfactory. Work in the coming

year will aim at remedying these defects,

b. Extrapolation of Basic Variables

Within a given one dimensional search, each basic variable, Yy is
a function of the step size o, v, = yi(a). At a = 0 we know vy (0) and
yi (0) = Vi’ where Vi is the ith component of the tangent vector V. At
a = B we compute yi(B). Given this information, a quadratic can be fit
to yi(O), yl(O), yi(B) and used to estimate yi(C). These estimates are
used as initial values in the Newton iteration which evaluates yi(C).
Then a quadratic can be fit thru yi(O), yi(B), yi(C). This is usad to
estimate Yy at the next o value, and so on. At each stage, we have a
quadratic approximation to the curve y(a) on the constraint surface. These
approximations should be much better than the current linear approximation,

which always uses the tangent vector V evaluated at a = 0, Computational
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N experiments to measure the improvement yielded by these moving quadratic
&fi:

%ﬁ extrapolations will be carried out in the coming year.

v

c. Conjugate Gradient Algorithm

We have changed from the I¥P to the BFS variable metric alébrithm,

o, Ay o N T o A
T BRI R

due to recent work by Shanno [9, 10,] showing it to be superior. However,
all variable metric algorithms require storage and updating of an N by N

H matrix which is not sparse. Hence there is no way they can be used in

¥ omomene i, T

a GRG algorithm that is to solve large problems. The only alternative

ey aw he

algorithm that requires no H matrix and converges finitely on quadratic
3; functions is the Gonjugate Gradient (CG) algorithm [12]. We plan to
implement a version of GRG employing CG and compare its performance with
i that of the BFS procedure. CG should permit solution of problems with 100
7= constraints and two to three hundred variables in an explicit inverse GRG

code which does not exploit sparsity.

ir d. Solution of Geometric Programs

Geometric programs (GP) have constraint and objective functions

of the form
Ny
ge X) = I cjty (X)
l=nk_l

where the terms t; are given by

N
- £y (X) = nx?ij
3=1

. The exponents aij are avbitrary real numbers. Such problems have received much

attention in the literature, and special algorithms based on the dual GP have

been developed to solve them. These algorithms arc not completely satisfa_tory,

however, due to ill-conditioning
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of the dual objective function [14] . We intend to solve a number of
geometric programs using GRG and compare the results with those obtained
by other researchers with whom we are in correspondence. Our GRG code
will be specialized to the GP structure by adding a "front end” module.
This will permit input of tne GP by specifying the indices n,, constants

cy» and exponent matrix a It will also compute derivatives of the

i3’
functions gy as the terms t; are evaluated. This will speed computation
significantly, and will yield the accuracy of analytic derivatives without

any user-supplied PARSH subroutine.

Geed GEE EEE G N e o

e. A GRG Code for Large Problems

,.maer .

One of the most attractive features of GRG is that it is able to

A

accommodate large problems (1000 or more comstraints and many more variables)

e
»

by incorporation of techniques which exploit sparsity. These techniques
. are extensively used in modern linear programming codes. A long
- range (2 - 3 years) goal of this research is the development of a large
scale GRG code and its comparison with current codes for solving large

) NLP's, e.g. approximation programming codes [13] .
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