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ABSTRACT 

The design and implementation of a hardware Fermat Number 

Transform (FNT) is described.  The arithmetic logic design is 

treated in detail and a new data representation for integers 

modulo a Fermat number is derived.  Some results of filter 

implementation with the FNT are shown to illustrate the use 

of the hardware.  Finally, the FNT is compared with the Fast 

Fourier Transform (FFT) on the basis of hardware required for 

a pipeline convolver. 
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I.  Introduction 

The use of number theory transforms for implementing digital convolution 

is attractive from a theoretical point of view because it is possible to 

derive a transform that requires no multiplications.  Since multipliers are a 

major hardware expense in Fast Fourier Transform (FFT) pipeline convolvers 

or in direct form convolvers, the potential for building cheaper and/or 

faster convolvers should lie with number theory transforms.  Many other 

factors cloud the picture and the savings in multiplier hardware can be offset 

by increased memory hardware and transform size in some cases.  It is the purpose 

of this paper to examine some of these hardware issues. 

In the realm of radar signal processing, the potential for greater speed 

is worth exploring.  For this reason a small prototype number theory transform 

has been constructed. This hardware consists of the computational element 

(butterfly)for a 64-point, 16-bit Fermat Number Transform (FNT). 

In the process of designing the butterfly, a new coding scheme for the 

data was developed to facilitate the arithmetic operations modulo the Fermat 

number.  The experience gained in designing and building this hardware is the 

basis for estimates of the size of pipeline FNT convolvers for possible use 

in radar signal processors.  The result of the hardware sizing of the FNT 

versus a pipeline FFT indicates that the anticipated savings can be realized 

for small systems (e.g., length 32 convolution) when the data to be filtered 

is real.  However, in larger systems where one must use two-dimensional convolution 

to implement the one-dimensional convolution, the savings in multiplier hardware 

are offset by the increased transform size and the corresponding increase in 

memory size and reference spectrum multiplier hardware.  In this case, when the 

1 



data to be filtered are real, the FNT still offers a small decrease in the amount 

of hardware versus the FFT, but when the data are complex the amount of hardware 

are much greater than a pipeline FFT. 

Finally, some examples of FIR filter implementations using the FNT 

hardware will be given, in order to illustrate the effects of precision with 

this approach. 



II.  Theory 

There is a large class of transforms which can be derived when the 

underlying algebraic structure is assumed to be a finite field or ring (Ref.1 ) 

When considering hardware implementations, however, only the Fermat number 

transforms offer the dual advantages of no multiplications in the transform 

and decomposition into a fast algorithm analogous to the FFT. 

The FNT of { x(k)|  is defined as 

N-l 
X(n)  =   £  x(k) a      mod F (1) 

k=0 t 

where 

2t th 

F = 2  +1, the t-  Fermat number 

N is a power of 2 

N 
and a is an Nth root unity (i.e.,a  = 1 mod F and 

am ?     1 ,     1 < m< N) 

The notation <nk> means nk modulo N. 

The only FNT's considered here are those in which a has a simple binary 

representation, so that the multiplications implied in equation 1 are easy 

to implement.  It is possible to show that for N = 2  ,a = 2 is an Nth 

root of unity [ 2 ] .  In this case the multiplications in (1) become bit 
3.2t-2   2t-2 

shifts.  Agarwal and Burrus [ 3 ] showed that a = 2      - 2    is 31 

t+2 2 
Nth root of unity for N = 2  .  Since a     = 2 mod F this a     is usually 

referred to as the square root of 2 and written  <* =  \/"2T For general F 

(t > 4), N = 2  'is the largest power of 2 for which a transform can be defined. 



Since v2 has a two-bit representation, multiplication by v2 can be implemented 

with one subtraction.  In addition, the case of N equal to a power of two 

is important because it allows factorization of the transform into a 

structure similar to the FFT algorithm for the Discrete Fourier Transform. 

These properties of the FNT are explained in detail in reference 3 . 

A fundamental constraint imposed by the transform definition is that 

the wordlength of the arithmetic (determined by F ) is linearly related to 

the transform length.  For the case « = V2, N = 4 x wordlength.  It is 

possible to ease this constraint by using a two-dimensional implementation 

of the one-dimensional convolution [ 4 ] .  With a   =    %/ 2 an N x N two- 

dimensional transform can be defined with N = 2  . Using this two- 

2 
dimensional transform a one-dimensional circular convolution of length JjN 

can be implemented.  A 50% loss in convolutional efficiency is incurred in 

2 
using a two-dimensional transform, because with a length N one-dimensional 

2 
FFT, a length N one-dimensional circular convolution can be realized. 

Returning to the definition in equation (1), note that the transform is 

defined in the algebraic system of integers modulo F .  Thus, the implementation 

of circular convolution using (1) will result in circular convolution modulo 

F .  In particular, if the circular convolution 

N-l 

L 
k=0 

is  computed using  FNT's  the  result will  be 

Y    =   T.     x,   h (2) n      r-J
n      k    < n-k > ' 

/\ N-l 

n |£0 k     <n-k> 
[mod F (3) 



It is possible to determine Y from Y if and only if Y is known a priori r n     n J n r 

to lie in the set [P, P + F -1 ] . With no prior knowledge of the ranges 

of jxj} and jh, } a conservative estimate of the number of bits for x, 

and h. can be made, 
k 

Let N = 2n and assume that ]x,| < 2a and |h,| < 2b for k = 0, 1, ... N-l. 
Ft-1   F -1 

Then Y will be in the set [ - —=— , —=— ] for all possible sequences] x, } 

and | h, I if and only ifn + a + b^ 2 -1.  This bound is overly conservative 

in most cases, but it does represent a least upper bound.  Letting t = 4, 

n + a + b < 15.  In this case, if n = 5, (i.e., a length 21 convolution) then 

a and b could both be 5, but 5 bits is probably not enough accuracy for 

convolution. A more likely case would have a = b = 10 so that n + a + b = 25, 

and t = 5 (33-bit arithmetic) would be necessary. For most typical filtering 

32 
applications a 33-bit system (i.e., a modulo 2 " + 1 system) would seem to be 

most appropriate.  The problems with precision in a 17-bit system can be 

overcome in other ways [5 ] . 

A drawback of the fact that the wordlength of the system must be a 

power of 2 is that it is not possible to tradeoff wordlength versus performance 

as is commonly done in the realization of digital filters. However, the computation 

of the convolution using the FNT (or any number theoretic transform) is 

exact.  That is, after the quantization of the input data and the filter 

coefficients, no additional quantization noise is introduced in the filtering 

process.  Thus, the need for simulations of the filtering process is reduced 

to determining two wordlengths as opposed to present efforts that involve all 

the internal precisions of the calculation [ 6 ] . 



A more complete discussion of all these theoretical issues can be found 

in references 1 through 5.  In the following sections our attention will focus 

on the hardware issues encountered in realizing the FNT. 



Ill. Representation of Numbers Modulo 2 +1 

3.1  Modulo 2t+l Arithmetic 

In this section a new data coding scheme is described for 

performing arithmetic modulo 2 +1. The main result is that modulo 2 +1 

arithmetic can be implemented in a manner that is similar to l's complement 

arithmetic (i.e., modulo 2^-1 arithmetic). A description of the arithmetic 

operations of the FNT when the data was encoded in 2's complement notation 

can be found in reference  3 .  The arithmetic operations of interest are 

addition, subtraction and multiplication by a power of 2, because these 

are the basic operations in the butterfly of the FNT using an FFT-like structure. 

Recall that in the ring of integers mod 2 +1, there are 2 +1 elements. 

Thus, t + 1 bits are needed to represent all possible numbers.  If a binary coding 

scheme such as 2's complement were used, then whenever the MSB was one, all 

the other bits would be zero.  This combination would represent the number 

2 . Thus, the t   bit is used only in this one case. A new coding scheme 

is proposed in which the collection of t+1 bits [ b b   ... b ] represents 

the number B in the following way: 

1. If b =1 then B = 0 

2. If b =0 then B = - (-1) t~1
2
t'1  . (_i) t~2

2
t~2  + ... _ (_i) ° 

That is, the jth bit has weight 2J and sign a.,  where 

1    if b.=l 
J 

-1   if b.=0 
J 



Example 1: 

Letting t=4 and 2 + 1=17, 

10 0 0 0 represents zero 

01010 =23-22 +2-1=5 

0 0 0 11 = -23 - 22 + 2 + 1 = -9 = 8 mod 17 

and       10 10 1 is an illegal combination. 

Ordinarily, the representation proposed would yield only odd numbers. 

However, the use of modulo 2+1 arithmetic means that both even and odd 

numbers will be represented. To see this, note that 

B =   (2bt_1 -1) 2t_1 + (2bt_2 -1) 2t_2 + ... + (2bQ-l) 

=  btl 2t  + bt_2 2t_1 + ... + 2bQ - (2t -1) 

=  (bt_2
2t_1 + ••• + 2b0 " bt-l + 2)       m°d (2t + 1} (4) 

The term in brackets takes on all values from +1 to 2 and the special case 

of zero was handled by b = 1, so all numbers are represented. 

Consider arithmetic operations using this number representation. 

First of all, multiplication by a power of 2 is trivial.  If the number is 

zero (i.e., b =1), you do nothing.  If the number is non-zero, the low order 

t bits are circularly shifted to the left a number of places equal to the power 

of 2, and a bit is replaced by its complement as it enters the LSB position. 

This is a consequence of the fact that 2 = -1 mod (2 +1). 

Example 2: 

Letting t = 4 and 2 + 1 = 17, 8 is represented as 0 0 0 1 1.  Applying 

the above rule, 8 x 2 = 16 = 0 0 1 1 1; and 0 0 1 1 1 = 8 - 7 = -1 = 16 mod 17. 

Further, 8 x 8 = 0 1 1 1 0 = 14 - 1 = 13 = 64 mod 17. 

In a hardware implementation the MSB is used as a control bit.  If it 

is one then the number is zero and the rotation is inhibited. This is charac- 
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teristic of all operations using this new coding system. 

Another easy operation is that of forming the negative of a number. 

Obviously, this is done by complementing the low order t bits except in the 

case where b = 1. Again, the MSB is a control bit that would inhibit the 

operation if it is one.  Since we how know how to form the negative of a number 

and multiply by 2, the only operation left to consider is addition. 

If either or both of the operands for addition are zero (i.e., b =1), 

then there is no addition to take place; so these special cases can be sensed 

and the addition inhibited.  Now consider the addition of two numbers A and 

B where A t  0 and B f  0.  Let 

A = Vt-i ••• ao  with V°' 
and B = bb   ••• b    with b =0. 

Interpret the t LSB's of A and B as the binary representation of A and B, 

and form the sum of A and B using unsigned binary addition to obtain C. 

That is, 

/S              „t-l 0t-2 
A =  Vl2 +  at-22 +   •••   +  a0 
O     u      -it-1 ,       -t-2                  . 

+B = bt-l2 + bt-22 +   •••   + b0 

C  =  ct2    +  Vl2 •   ...   • cQ (5) 

It is possible to deduce from C the desired sum C = (A + B) mod (2 +1). 

Since A = 2^ + 2 mod (2t+l) and B = 2^ + 2 mod (2t+l), C = 2A+2B+4 mod (2t+l). 

If C can be expressed as C = 2C + 2 mod (2 +1) with Cat bit number, then the 

t bits of C are the t LSB's of C. There are two cases, depending on the value 

of c .  If c - 1, then £   =    + 2t    + C  = C - 1 mod (2t  + 1). 



Thus, C = (2A* + 2^+ 4) mod (2* + 1) = (2C^+ 4) mod (2t+l) = (2C + 2) 

mod (2t+l), andC = C . 

If c = 0 then C = 2C + 4 mod (21  +1) and the answer is C = C'+l. 

However, this results in an extra level of add as in the case of l's complement 

arithmetic.  In l's complement the output carry is added to the LSB.  In 

this new mod 2 +1 arithmetic, one takes the output carry, complements 

it and adds it to the LSB.  Thus, the intital claim that this new arithmetic 

is only as complex as l's complement is justified. There is a small amount 

of additional complexity due to the control bit, but this acts only as an 

inhibit signal. 

Example 3: 

Let  t  =  4  and  21  +  1  =  17. 

0  10  10 = 5 

0  0 0  11 = 8 

1101 = 01110 =14-1=  13 

5 

0       MSB = 1 inhibits the addition 

5 

5 - 10 = -5 = 12 mod 17 

0 1 0  1 0 

1 0 0  0 0 

0 1 0   1 0 

0 1 0   1 0 

0 0 1   0 1 

1 1 1 1 
+ 1 

1 0 0  0 0 0 mod 17 
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In this last example note that the second add automatically produced the control 

bit indicator for the special case of zero. Now let's examine how one converts 

from a binary coded representation of numbers to this new representation. 

3.2  Code Conversion 

The code conversion between a binary representation and this new 

code falls into two cases.  Let B be a number which is represented in both 

codes.  Let  b b   ... b   be the binary representation of B and 

a a , ... a   the new representation. Also, let B be the number re- 

presented by interpreting  a iat_T ••• a
n  as a binary code.  The 

conversion rules are as follows: 

1. If B = 0 then a =1, B = 0, and b = 0 for k = 0, 1, ... t.  This 
L K 

is a special case and is done separately. 

2. If B / 0 then a = 0 and B = (2B + 2) mod (2t+l).  Conversion 

from the new code to binary is implemented by forming 2B + 2 and comparing this 

sum to 2 .  If the sum is larger than 2 then 2 + 1 is subtracted to 

give the proper binary representation of B. 

If the binary representation is given, the sum B + 2 -1 is formed.  If 

the result is odd, 2 +1 is subtracted; and finally, this result is right shifted 

one place.  The resulting t bits are the t LSB's a   ... a 

Example 4: 

Let t = 4 and 2Z  +  1 = 17. 

B = 1 0 0 0 0 = 16 

fr-(16+,15-17) -i 

The new representation isB =00111. 
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2. B =00 100 
s 

B = 4 

B=2-4+2= 10 =01010. 

B = 0 0 0 0 0 «   *•  B =10 0 0 0. 
s 

In section 5 this new coding scheme will be applied to the logic design 

of the butterfly of the FNT algorithm.  First, the overall structure of the 

hardware system will be described in Section 4. 
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IV.  System Description 

The FNT prototype hardware is a realization of a 64-point transform 

in the finite field of integers modulo 2 ' + 1. The fast FNT algorithm implemented 

is a radix-2 constant geometry decimation in frequency (DIF) decomposition 

of the FNT.  Figure 1 shows a flow diagram of this algorithm for a 16-point 

transform (Ref. 7 ). The constant geometry structure was chosen because 

it simplifies the memory addressing and the rotation control. 

Figure 2 is a block diagram of the complete system showing the four 

major subsystems.  The computational element (CE) is a radix-2 DIF butterfly 

for the fast FNT algorithm; the memory element contains 128 seventeen-bit 

words for use as intermediate storage during the transform; the control 

element is a hardwired implementation of the fast FNT algorithm; and the I/O 

section provides the interface with the Fast Digital Processor (FDP). 

The goal in building this hardware was to construct a CE that would operate 

at a data rate of 40 MHz.  In order to achieve this speed, ECL 10K circuits 

were used.  The basic gate in this logic family has a propagation delay of 

2 nanoseconds, and thus these circuits are well suited for very high speed 

systems.  Even with such high speed logic circuits, two levels of reclock 

and fast carry addition were used in the CE to realize a working system that 

runs reliably at 38 MHz.  In the remainder of this section we will describe 

the major subsystems of the FNT hardware. 

4.1  The Computational Element 

The basic computational element of the FNT consists of an adder, 

a subtractor, and a rotator for multiplication by powers of \/2.     Since 

13 



18-2-12391 

Fig.   1.     Radix-2,   16-point,   constant  geometry FFT   (decimation  in  frequency) 
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k       k 
. ^      2k +k     1  t-~   0 

(v2)  = (v2)  1 0 = 2  (v2)  > where k = 0 or 1, the rotator can be 

divided into two operations: a v2 mutiplier (implemented as a subtractor) 
kl with a possible inhibit if k,= 0 and a 2  multiplier implemented via a 16:1 

multiplexer (see Figure 3).  The butterfly must be reclocked twice in order 

to achieve the 25 nsec clock epoch. Addition (or subtraction) of two 16-bit 

words modulo 2  +1 using carry look ahead addition is just fast enough to 

fit into the 25-nsec clock epoch.  Thus, it is natural to reclock after the first 

stage of add and subtract and after theyJ2  multiplication.  The multiplication 

by powers of 2 must be implemented using a 16:1 multiplexer arrangement in order 

to fit into the 25—nsec clock epoch.  A shift register implementation would 

not be economical at such high rates. 

4.2  The Memory Element 

The memory element contains 128 17-bit words.  It was constructed 

using 17 F10405 128 x 1 ECL RAM's.  The access time for these RAM's is less than 

15-nsec, so they are well within the speed requirements of the system.  For 

a 64»point transform one only needs 64 words of memory if the transform is 

done in place.  However, in the choice of IC's for the memory element it 

was economical to select a 128-word chip, and so the constant geometry 

structure of Figure 1 was employed.  In this form of the fast FNT algorithm, 

the transform is not done in place.  Thus, the memory required is twice that 

of an in place algorithm.  However, the memory addressing is simplified because 

it does not depend on which stage of the transform you are doing.  Since there 

is only one word per memory cell, two memory accesses are required to read 

the two operands needed for the butterfly.  Similarly, two memory write cycles 
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CLOCK( 

ADDER 

FROM MEMORY ll-!-l?«00i 

SUBTRACTER 

SUBTRACTER 

LSB 

ROTATION 
EXPONENT 

(5 bits) 

H 

MULTIPLEXER 

4MSB»    > 16: I 
MULTIPLEXER 

21 
MULTIPLEXER 

T 
TO  MEMORY 

Fig. 3.  Block diagram of the computational element of the FNT system. 
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are required to store the results of a butterfly, and the two data paths are 

multiplexed into the memory. Thus, a total of four memory accesses are needed 

in the course of one butterfly.  In an actual pipeline structure there would 

be four distinct interstage delay memories serving one butterfly. Two memories 

would provide the input operands and two more would acquire the output operands 

on each clock pulse. 

4.3  The Control Element 

The control element is the hardware implementation of the FNT 

algorithm.  It controls the reading and writing of memory during the transform 

and determines the power of vz for rotation. The system operation is broken 

down into 8 states.  Six of these states correspond to the six stages of 

the transform; the other two states are for synchronization and I/O.  When 

the device is doing a transform the basic timing diagram of the elementary 

computation is shown in Figure 4.  There are six time states, each 25 nsec 

long.  During t„ and t1 the two operands A and B needed for the transfoi >rm 

are read from memory (see Figure 3).  During t~, A + B and A - B are formed. 

During t,, A - B is multiplied by 1 or-s/2-and C = A + B is set up to be written 

back to memory.  During t , further rotation of A - B by a power of 2 is 

done, D = (A-B) x 2 is set up for its return to memory, and C is written 

into memory.  Finally, during t_,D is written into memory.  Within each stage 

a counter keeps track of the fact that 32 butterflies must be executed during 

each stage and 64 operands must be accessed.  The rotation value  T is a function 

of this counter and the stage counter. 
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4.4  The I/O Element 

The I/O section handles all handshaking with the FDP in order to 

transfer data back and forth.  Communication is always two-way. Thus, whenever 

the FDP sends a word to the FNT, the FNT is also sending a word to the FDP. 

The memory element is used as a buffer memory for I/O transfers.  Data is 

transferred in blocks of 64 words.  While the 64 data points to be transformed 

are being sent to the FNT, the 64 output points from the previous transform 

are being received from the FNT.  Data from the FDP is loaded in linear sequence, 

but it is read out in bit reversed order when being sent to the FDP.  Since 

the result of the transform is in bit reversed order, this bit reversed 

read out of memory will undo the bit reversal of the FNT. Thus, the data 

in the FDP is always in normal order. 

The code conversion from 2's complement to the code described in section 

3 above is also performed in the I/O section before the memory is loaded.  A 

similar conversion back to 2's complement is also done in the I/O section. 
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V.   Logic Design 

In this section the logic design of the major elements of the FNT 

system will be described. The description will concentrate on the arithmetic 

section which implements the butterfly of the fast FNT algorithm. A basic 

objective of the logic design was to construct a butterfly which would operate 

at a data rate of 40 MHz.  For this reason ECL 10K logic was employed in the 

entire system and the butterfly was pipelined with two levels of reclock. 

The other subsystems will also be reviewed,but the emphasis will be on 

their relation to the fast FNT algorithm. 

5.1 The Computational Element 

Figure 3 shows a functional diagram of the butterfly which 

consists of an adder, a subtractor, a rotator, input buffer registers R. 

and RR, reclock registers Rw, R , and R,^ and an output register R .  Register 

transfers are made at each clock pulse, so that data are always flowing through 

the CE as would be the case in a pipelined fast FNT.  As the timing diagram 

in Figure 4 shows, the output of the butterfly is only written into memory 

from Rz at t. and t,..  During the other clock epochs the contents of R7 may 

be changing, but this does not affect the algorithm. 

5.1.1 Adder (Subtractor) Logic: 

In Section 3 a nonstandard coding scheme for data manipulation 

in the FNT was derived.  Recall that the rule for addition of two non- 

zero numbers A = a..a1r ... a.. I and B = b1£ b,_ ... b. is: 
[ lo 15     UJ I ID  ID      L)J 

Step 1:  Add the 16 LSB's of A and B with the carry in equal to zero. 

Step 2.  Complement the carry out from step 1 and add it to the sum 
from step 1. 
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If either A or B is zero (i.e., b.., or a,. = 1) then the carry must 
lo    lb 

be inhibited.  Finally if both A and B are zero the MSB of the sum is 

set to one.  Figure 5 shows a realization of the addition process. The 

structure of Figure 5 is inefficient in two respects. First of all, 

two 16-bit adders are required, although the second one is simple 

because one input is zero.  Secondly, the addition is very slow because 

the carry must propagate through both 16-bit adders. The use of carry 

look ahead logic as in Figure 6 will improve both situations. Now 

let's look at the details of the implementation using ECL building 

blocks. 

The 16-bit adder can be realized using 4MC10181 arithmetic logic 

units (ALU's).  Figure 7 shows a block diagram of the 4-bit ALU.  In 

addition to producing the sum outputs, the ALU's also produce carry 

propagate and carry generate information for use in a carry lookahead 

block. Thus, the CLA block of Figure 6 is physically spread between 

the ALU's and a carry lookahead logic unit (MC10179). The addition 

process can be speeded up further if the carries into each ALU are 

formed in parallel from the output of the CLA logic. Then the add time 

will bereduced by 3 x (propagation delay time from C to C  ). 

For the MC10181 this is approximately 10 nsec which is significant for 

realizing a 25-nsec clock epoch.  Figure 8 shows the final realization 

of the 25-nsec adder. The logic expressions for the carries were derived 

from the fact that C . = P C + G for each ALU. 
n+4   n n   n 
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16 Fig.   5.     Fermat number adder  (modulo  2    +1)   using two  16-bit  adders 
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Fig.   6.     Fermat number adder  implemented with carry  look ahead addition. 
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Fig.   7.     Functional block diagram of the MC10181 ALU in the addition mode. 
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Worst case add time was calculated to be 24 nsec and was measured 

as 21 nsec. The flip flop setting time and setup time account for the 

remainder of the 25-nsec epoch. 

As noted above the subtractor, A-B can be implemented by complementing 

B and adding it to A. The use of the MC10181 ALU allows the B input to be 

complemented internal to the 10181 via mode control. This results in a 

slight design change in the adder unless the complement is inhibited when 

B is zero. 

The addition A + B completes the calculation on one rail of 

CE.  The result is held in the register R and then is moved to R 

to be written back into memory. On the other rail of the CE, the 

quantity A-B is stored in the reclock register Ry for subsequent rotation 

by a power of-v/2. 

5.1.2 Rotation by-^2 

The rotation by "^2  is split into two stages, each requiring 

a 25-nsec epoch.  In the first stage, the quantity X = A - B is 

multiplied by A/2 if k is odd.  The -^2 multiplier is merely a subtracter. 

However, since the output is zero whenever the input is zero, some 

simplification of the subtractor logic results,  and the subtraction 

time is reduced.   A 2:1 multiplexer at the output of the sub- 

tractor selects whether the input is to be multiplied by^2 or by 1, and 

is controlled by the LSB of k.  The result of this calculation is stored 

in the reclock register R„.  The second stage of the rotation is a multiplication 

by a power of 2, namely  y •  ( |_ J denotes the greatest integer function.) 
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This multiplication is implemented as a 16:1 multiplexer controlled 

by the upper four bits of the binary representation of the power of 2. 

Actually the 16:1 multiplexer is realized as a cascade of two 4:1 

multiplexers with inverters for the end around shifts. The shifting 

network is followed by a 2:1 multiplexer which selects which butterfly 

output (A + B or 2  • Y) is to be stored in R-, and then written back into 

memory.  This multiplexer is controlled by t, and its output is (2  • Y)• 

t3 + W • t,.  This completes the description of the CE; the other 

elements of the FNT will now be described. 

5.2 The Control Element and Memory Element 

The control logic is the realization of the Fermat Number 

Transform algorithm.  There are three levels of control and each is driven by 

a binary counter.  The highest level of control consists of 8 states formed 

from the 3-bit S counter.  Six of these states (S , S ...S ) correspond to the 

six transform stages; S is a synchronization state; and S is the I/O state. 

The second level of control is the indexing within a stage of the FNT. 

A seven-bit counter, called the K counter, is employed. Within a transform 

stage or in the I/O state the K counter increments 64 times because each 

data point must be referenced once.  When the 64th count is reached, the S counter 

is incremented. The K counter is used to form the memory address and the power 

of J2 for rotation.  The 7 bits are required for addressing all 128 words of 

memory. 

The lowest level of control is the time state counter called the T 

counter.  The time state counter consists of the six states t„, t , ... t,. and 

determines the sequence of operations in the butterfly. 
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The realization of the FNT algorithm requires the formation of memory 

addresses and rotation exponents from the three control counters.  Letting 

K = K , K ...K„  , the rotation exponent (called twiddle control) is 

where T4 T3 • 

K5 K4 K3 K2 Kl 

K5 K4 K3 K2 0 

T = / K    K. KT 0 0 
5 4 3 

Kr K. 0 0 0 5 4 

K5 0 0 0 0 

0 0 0 0 0 

when    S = (0 0 0) = s 

S = (0 0 1) = s. 

S = (0 1 0) = s. 

S = (0 1 1) = S, 

S = (1 0 0) = s^ 

S = (1 0 1) = sc 

0 

The memory address is formed in one of four ways depending on the counters. 

When memory is being written,  the MAR is equal to K, and the K counter is 

incremented after the write.  When the memory is being read during the trans- 

form, there are two possible memory addresses.  During t„, the MAR is 

K6 0 K K  = pQ(K); during t   ,   the MAR is  K 1 K ... 1^ PjCK). 

Finally, during I/O the memory is used in bit reversed order and the MAR 

equals [K^... K5j  . 

In order to complete the specification of the control of the FNT, 

a register transfer sequence is provided below.  This corresponds to the timing 

diagram in Figure 4. 
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Comments 
tn • CL:   MAR = P (k) Read operand A from memory 

"""   o' 
MDR •*• Rr 

t1 • CL:   MAR = P1(k) Read operand B from memory 

RB+RA 
MDR-* RD 

t  • CL:   SUM (A, B) -»• Rtf       A + B and A - B 

DIFF (A, B) -»• R 
A 

t3   •   CL: Rw -> R _. J2 Multiplication 

T     •   MUL   {\2,   X)   + 

°^o   '   VRY 

t  • CL:   MAR = K Write Memory 

K + 1 •*• K 

R7 •+ Mem 
L k 

ROT ( T , Y) •> R      Multiply by 2 

t  • CL:   MAR = K Write Memory 

K + 1 ^K 

R_->- Mem 

5.3 The I/O Element 

The I/O element was designed to provide asynchronous transfer 

of data between the FNT system and the FDP. The I/O is enabled only when 

the S counter is in state s .  An input request (IR) from the FDP is first 

synchronized to the FNT clock and then the following I/O sequence takes place: 

1.    The memory is read with the bit-reversed address, MAR = 

[K. Kn   ... K_  .  The output is stored in register R_.  The output 
o  U     5J fc 

of R is code converted to 2's complement and is transmitted to the 

FDP. 
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2. The input acknowledge line (IA) is raised approximately 

50-100 nsec after the acceptance of the IR. 

3. Data are written into the memory after being code converted 

from 2's complement to the new code used internal to the FNT.  This 

memory write occurs approximately 250 nsec after the acceptance of the 

IR. The K counter is incremented after the write. 

4. The IA is cleared after 1.2 psec and is held down for a 

minimum of 200 nsec. 

The data rate achievable with this interface to the FDP is approximately 

one word every 1.5 Msec. 

31 



VI.   FDP Peripheral 

In this section the operation of the FNT system as an FDP peripheral 

device will be described. Two topics will be discussed:  the operation of the 

manual controls of the FNT and the constraints to be observed by FDP programs that 

use the FNT. 

Figure 9 shows the layout of the control panel of the FNT.  The function 

of the switches and lights is as follows: 

1. S/R Switch: The Stop/Run switch is a two position switch.  When 

the switch is in the down position the FNT is in the run mode and normal (full 

speed) operation of the hardware is enabled.  When the switch is placed in the up 

position, the FNT is stopped.  The stop condition is indicated by the red light 

above the S/R switch.  In the stop mode, depressing the CYCLE button will step 

the machine by one clock cycle. This feature was used for debugging the hardware 

and shouldn't concern the programmer. 

2. The MEM.T switch is a two position switch that will allow the memory 

element of the FNT to be tested.  When this switch is in the down position, 

the FNT is in transform mode.  When the switch is in the up position, the device 

is in the memory test mode and the butterfly is disabled.  A red light above the 

MEM.T switch signifies that the FNT is in memory test mode.  In this mode data 

transferred from the FDP to the FNT are returned to the FDP unchanged except for 

a bit reversal. This bit reversal results from the I/O addressing modes described 

in Section V. A diagnostic program uses this mode to check for the proper operation 

of the memory. 

3. The RESET button is used to initialize the FNT machine.  When the 

button is depressed, all counters are initialized and the system is put in the 
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synchronization state. For proper initialization the FNT should be stopped when 

a RESET is done. 

4. The CYCLE button, when pushed, will step the machine by one 

clock pulse if the FNT is stopped.  If the machine is in RUN mode, the CYCLE 

button has no effect. 

5. The I/O light signifies that the FNT is in the I/O state where 

it is waiting for I/O with the FDP. 

Initialization of the FNT for use in the transform mode requires 

the following steps. 

(i)  Place MEM.T switch in the down position.  The red light above the 

switch should be off. 

(ii)  Place the S/R switch in the up position. The red "Stop" light 

should come on. 

(iii) Press the RESET button and hold in for 1 or 2 seconds.  The I/O 

light should be off after this operation. 

(iv)  Place the S/R switch in the "run" position (i.e., down).  The "stop" 

light should go off and the I/O light should come on. Now the device is initialized 

and ready to accept data from the FDP.  We now turn to a discussion of the pro- 

gramming features of the FNT. 

The FNT is connected to the FDP via subchannel 6 of I/O channel 1.  Since 

data communication between the two machines is always full duplex, the I/O hand- 

shaking is done using the control signals of the FDP input channel.  Thus, the 

execution of an IOC instruction which sets the input request line will cause 

the FNT to take as input the contents of the FDP E register and to send an output 

word which will be strobed into the E. register of the FDP.  The timing of the I/O 
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transfers allows E to be loaded in the same instruction as the IOC.  Thus, 
o 

the following instruction is valid. 

TME DATA 0 0 IOC 3 3 0 0 15 

In order to do a transform 64 data points must be loaded into the FNT. 

The FNT machine automatically starts the calculation of the transform when 

the 64th data point arrives. At the present 38-MHz clock rate, the transform takes 

about 30 /xsec.  To obtain the results of the transform 64 more I/O transfers must 

be done.  The full duplex mode of operation allows one to load data for a new 

transform and obtain the results of the previous transform at the same time. 

Since the I/O of 64 data points takes 2 or 3 times as long as the transform 

itself, this is an important factor for obtaining maximum performance from 

the machine. 

In order to do convolution using the FNT hardware, it is necessary to do 

the reference spectrum multiplication (mod 2  + 1) in the FDP.  A possible program 

to do this is given below.  The program will multiply the two 64-point arrays 

DATA (MA) and DATA (MB) modulo (216 + 1) and store the result in DATA (MB). 

Since the FNT hardware will only compute a forward transform, a reordering 

of the data in the FDP is necessary to obtain an inverse transform.  The 

64-point array x(k) to be inverse transformed must be flipped according 

to the formula 

T(k)  = x ( < 64 - k > mod 64) 

Then the forward FNT of 3T(k) is the inverse FNT of x(k). 
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(PRUGP/Uvi TO L»0 REFERENCE MULTIPLY FUR lfe BIT FMT 
(MULTIPLIES DATA(MA) BT DAIA(M3) 
(PUTS RESUl T IN DATA(MB) 
(POLS FOUR I"ILLTIPLIES PER PASS 
(FrKPlATlM«) s 2U0001 
(FrHlvT((V|b) - 177777 

MJLUP 

riULiipn 

FX2 

F X<+ 

YIX FERMAT IO 
YlX 63. 7 

AI1BI2 DATA 7 7 YPX -1 7 
AliBH DATA 7 7 YPX -1 7 
/MIFZ/MIF /TIQ//TIQ 
Bli>4 0 10 /MUL/VNUI 
Al3Bi<+ DATA 7 1 /TI0//T10 
/TPp//|PR YPX -1 7 
AI1BI2 DAT« 7 7 YPX 3 7 
HIB/TOR/MB/TLJR TlQ/TRl/TIQ/TRi 

"UL/TRl/Mli^/THl /1AQ//IAQ 
All3Pl^t+ o in 10 /RMI//RM1 
wiB/MlF/niB/niF JMR FX? «+ 
TPR//TPR/ TIQ//TIU/ 
R?fc PA1A 7 JNR FXU 1 
TR1//TRI/ TDR//TDR/ 
IAU//IAU/ TRT//TR1/ 
RMlz/RMl/ YPX -1 7 
R^b DAIA 7 JNR FX«* 2 
/MRF//MRF YPX -1 7 

JNR FX2 «+ 
R4B DATA 7 YPX -1 7 
H?B TAiA 7 JPX I1ULUP0 7 
A11BI2 DATA 7 7 YKX -1 7 
SOJ 0 2 XJP -l RTRM 

XJP 0 1 
/IPP// 

XJP 0 1 
///1PR 

END 
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VII.  Diagnostic Programs 

In order to debug and maintain the FNT hardware, three diagnostic 

programs are available: 

1. Memory Test 

2. Rotator Test 

3. Adder/Subtractor Test 

Each diagnostic program tests a separate functional element of the hardware, 

and the tests form a hierarchy in that each diagnostic test relies on the proper 

operation of the functional element tested by the previous diagnostics. 

The memory test is used with the hardware in the memory test mode.  The 

purpose of the test is to check the memory element of the FNT and the data comm- 

unication link between the FDP and the FNT.  Data words are generated in the FDP 

and sent to the FNT in blocks of 64.  Then as a block of 64 words is being sent, 

the words being received from the FNT are compared to the previous block sent 

and checked for errors.  If an error occurs, the FDP halts with information 

concerning the error in the AE lights.  Successful completion of the memory 

test allows one to test the FNT in its transform mode with the remaining 

two diagnostic tests. 

Both of the transform tests use known transform pairs to test different 

parts of the FNT butterfly.  In the rotator test the rotation element of the CE is 

subject to test.  The following transform pair is used. 

FNT jeW(= XW =[l i{2f  ... C^n-D] 
e(r) = [o ... 1 ... o] 

1   th t .   J 

r  position 
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Since the transform of e   involves no additions or subtractions (except 

with zero), this test serves to check out the rotation element of the butter- 

fly. As before, the program halts if an error is detected and displays the 

erroneous data in the AE lights. 

In order to check the adder/subtractor pair in the butterfly, another 

known transform pair is used. 

FNT i fa 0 ... 0 b 0 ... 01 Tj  =  fa+b, a-b, a+b,...,a-b 

32nd position 

The first two elements of the transform are examined to check the addition and 

subtraction.  The numbers a and b are varied to check all possible cases. 

The successful completion of all three diagnostic tests should guarantee that 

the FNT hardware is operating properly. 

38 



VIII. Hardware Comparison of the FNT vs the FFT 

Since one purpose in building a hardware prototype of the FNT was to 

gain a working knowledge of the amount of hardware needed to implement an 

FNT convolver, it is appropriate to compare this method with the standard FFT 

implementation of convolution.  It is impossible to make a comparison that will 

apply in all cases, or even a majority of cases. Therefore, a specific application 

has been chosen for comparison; namely, digital filter implementation for radar 

signal processing.  The problem areas to be described below should be representative 

of the general problems associated with FNT convolution implementation. 

The signal bandwidths encountered in radar signal processing  (10-30-MHz) 

require a pipeline architecture for either the FNT or the FFT [ 8 ].  Further- 

more, the length of the convolution to be implemented is assumed to be large 

(e.g., 512 or greater). Two cases will be considered: a length 1024 linear 

convolution of real data and a length 1024 convolution of complex data.  Four 

measures of hardware complexity are the basis of comparison:  the number of 

butterflies per output point, the number of reference spectrum multiplies 

per output point, the total amount of interstage delay line memory in the 

forward and inverse transforms, and the total amount of reference spectrum 

memory.  The FFT implementation will be considered first. 

For either real or complex data, it is assumed that the FFT implementation 

employs an Hostage radix-2 pipeline FFT in both the forward and inverse 

transforms.  (Note:  for real data it is possible to do a length N transform 

with two length N/2 transforms and some overhead to combine the two shorter 

transforms [ 9 ].  However, the overhead amounts to an additional butterfly so 
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there is little, if anything to gain using this fact in a pipeline FFT). 

Much work has been done on the hardware complexity of pipeline FFT's and 

the four measures of complexity we are considering here are detailed 

in ref.  10 .  For the case of a length 2048 pipeline FFT convolver the number 

of butterflies per output point is 2 log N = 22, assuming 50% convolutional 

overlap.  Likewise, two reference spectrum multiplies must be done per output 

point.  The amount of interstage delay line memory can be calculated from 

the formula 

IDM = | (r + 1) (6) 

where r is the radix of the transform. Thus, for two radix -2 pipelines, 

the total is 3N = 6144 = 6K words of memory.  Finally, the reference memory 

requires 2K words of memory.  Now we turn our attention to the FNT. 

A pipeline FNT structure is identical to the pipeline FFT except in the 

-j 2 7T k/N 
butterfly where rotation by e      (in the FFT case) is replaced by multiplication 

by /2     .  Thus, many of the results quoted above are applicable to the FNT.  Since 

the FNT naturally processes real input data, the cases of real and complex con- 

volution require different realizations.  In both cases, however, a two- 

dimensional implementation of the convolution is required [ 4 ].  The two 

arrays to be convolved are H and X, where 

x(0)    x(L)             x(N-L) 
x(l) 

x(L-l)  x(2L-l)           x(N-l) 
0       0           0 

• • • 
0       0                  0 

k -64  * 
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and 

Fhfn (n-L+1) h(l) 

h(N-l)  h(L-l) 
h(0)    h(L) 
h(l) 

h(L-l) 

h(N-2L+l) 

(7b) 

The length 1024 convolution of real signals can be implemented with a 64 x 64 

transform.  The input data is the array X of equation 7 and it is advantageous 

to exploit the fact that half of the X array is zero by doing the row transforms 

first.  Hence, 96 length 64 FNT's must be computed for the entire 2-D transform. 

The total number of butterflies for the complete convolution is 2 x 96 x 32 log„ 

12 
9x2  , or 36 butterflies per output point.  This is reflected in the structure 

of Figure 10 where there are 36 butterflies working in parallel -- six in 

12 
each 64-point FNT.  Since 2  reference function multiplies must be done 

during each convolution, four reference multiplies per output point are required. 

The interstage delay memory requirement is calculated from the individual 64- 

point transforms.  The first and last 64-point FNT's are computing 32 trans- 

forms simultaneously. This is accomplished by making all interstage delay 

lines 32 times as  long as in a standard pipeline and by modifying the control 

to switch at l/32nd the speed of a normal pipeline.  That is, the rotation 

exponents and commutator switches are only changed at every 32nd clock pulse. 

The other four FNT's employ a normal pipeline structure. Applying equation 6, 

the total interstage delay memory is 3 • 64 • 32 + 2 • 3 • 64 = 6K + 384 *=  6-4K 

64 
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Finally, it is easy to verify that the amount of reference function memory 

is 4K. 

If the signals to be convolved are complex then one possible implementation 

is to handle the real and imaginary parts of the data separately. The number 

of butterflies per output point, the interstage delay memory, and the reference 

spectrum memory are all doubled.  However, the number of real multipliers for 

the reference function multiply is quadrupled because the multiplication is 

complex.  Table 1 summarizes the three systems versus the four hardware measures. 

Notice that the FNT always requires more memory and more computational elements 

than the FFT.  Hardware savings are possible because most of the hardware 

cost of the FFT is concentrated in the butterfly elements (up to 80%) and 

because the FNT butterfly requires from one-third to one-sixth the hardware 

of an FFT butterfly.  These remarks apply to the FNT when the data to be convolved 

arereal, but when the data are complex the situation becomes much more difficult 

because all measures of hardware complexity are increased by a factor of three 

or four.  Therefore, we will concentrate on the case of real convolution in the 

following discussion. 

In order to be more specific, let's divide the hardware cost of any 

convolver into two parts, the percentage of hardware for the butterfly elements 

and the percentage of hardware for the rest of the system.  Assume the following 

relations between the FFT and the FNT 

BFNT " 56/22 A BFFT (8) 

FFT "    FFT 

(TFNT " W = V (TFFT " W (10) 

43 



Table 1. Hardware measures for FFT and FNT implementations of length 1024 
convolution. 

FFT Real or 
Complex Data 

FNT Real 
Data 

FNT Complex 
Data 

Butterflies 22 36 72 

Reference 
Multiplies 2 4 16 

Interstage 
Delay 
Memory 

6K 
complex words 

6-4K „ 
real words 

12.8K 
real words 

Reference 
Spectrum 
Memory 

2K 
complex words 

4K 
real words 

8K 
real words 

One complex word will contain approximately 25 bits for typical high- 
precision radar applications. 

** 
One real word contains 33 bits for FNT 
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where B denotes the butterfly cost and T the total convolver cost.  Letting 

T„nrr = 1 the total hardware for the FNT is 
r r 1 

TFNT =  CH A " V)  y + V (11) 

and the savings can be expressed as 

SFNT = X " TFNT = (1 - v) + M(|^ X-v) (12) 

Thus,the problem is now that of determining realistic values for the three 

ratios A,u and v .  If we assume that the accuracy requirements of the system 

are high, then the FFT implementation should use a hybrid floating point scheme 

as described in reference 6 . This study described a complex data format using 

27 bits -- 11 bits each for the real and imaginary parts of the mantissa and 

32 
5 bits for a common exponent.  In contrast the FNT would employ modulo 2 " + 1 

arithmetic, implying a 33-bit data word.  From this information we would like 

to argue that a reasonable value for v is two. Three components must be 

considered.  First, the numbers of reference multiplies being compared are two 

11 x 11 complex multipliers and four 32 x 32 real multipliers.  Since the hard- 

ware complexity of an array multiplier (which would be required at radar speeds) 
2 

2 4-3     , 
is proportional to n , the four real multipliers amount to about  = .  = Ah 

times the hardware of the two complex multipliers.  Secondly, the interstage 

delay memory is 6K words of 27 bits each for the FFT versus 6-4K words 

of 33 bits each for the FNT, or a factor of 1.3 in favor of the FFT.  Similarly, 

the reference function memory differs by a factor of 2.44 in favor of the FFT. 

Depending on the detailed logic realization,the value of V will vary, but 
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v = 2 conveys the fact that the two-dimensional convolution using the FNT wastes 

a factor of two in non-butterfly hardware.  This is a fundamental limitation 

of the FNT for long convolutions. At this point we can isolate the impacts 

of the butterfly hardware on the possible savings for the FNT.  Figure  11 shows 

a plot of hardware savings versus the percentage of butterfly hardware in the 

FFT (y).  Several curves are shown with X as a parameter. A is the ratio of 

FNT butterfly hardware to FFT butterfly hardware.  The range of values for A 

are typical for the high speed implementations required in radar signal processing. 

The value of v was assumed to be two and if it were larger then the horizontal 

intercept would be moved to the right to a higher value of y . 

Independent of the exact values of A , y and v , Figure 11 clearly shows 

that the FNT will provide hardware savings over the FFT only when the FFT hard- 

* 
ware is dominated by the CE cost as in the case of a pipeline implementation. 

Furthermore, the signals to be convolved must be real, because complex data 

essentially require two real FNT convolvers.  Although short convolutions 

(e.g., length 64) have not been discussed here, it is worth mentioning that there 

is a good chance for significant hardware savings over the FFT because a one- 

dimensional FNT can be used.  This means that the non-butterfly hardware of the 

two systems will be approximately the same (i.e.,v ~  1) and the savings will 

begin at a value of y near zero. 

Note: As transform size increases the memory cost of a pipeline increases faster 
than the CE cost and will become a significant fraction of the total cost for 
large transforms (e.g., length 16K or 32K) . 
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IX.  Examples of Filter Implementation 

In order to demonstrate the capabilities of the FNT hardware, two filters 

were implemented and the results are shown below. The first filter chosen 

was a length 33 FIR lowpass filter with a passband cutoff frequency of 0.10, 

stopband cutoff frequency of 0.15 and stopband attenuation equal to -33 db. 

The second filter was a length 33 bandpass filter with -44.5 db attenuation in 

the stopbands. The cutoff frequencies of the bandpass filter were 0.15 for 

the lower stopband, 0.27 for the upper stopband and 0.20 to 0.22 for the pass- 

band.  Figures 12a and 12b show the ideal frequency responses of the two 

filters obtained using an FFT of the impulse responses. The frequency response 

is shown from F=0toF=0.5 (assuming the sampling frequency is unity) and 

the horizontal lines denote steps of 20 db. 

The method chosen to show the FNT implementation of convolution was to 

filter a discrete time linear FM signal with the lowpass and bandpass filters. 

The output of the filters traces out an approximate frequency response of the 

filter, because the input linear FM sweeps across the frequency range of 

interest.  Figures 13a and 13b show the results of the convolution when the 

input signal is represented with 7 bits.  For the lowpass filter it is possible 

to use 8 bits for the filter coefficients without overflowing the computation 

but the bandpass filter can use only 7 bits.  The response of the lowpass filter 

is good approximation to the ideal response of Figure 12a and much of the 

roughness can be attributed to the fact that the linear FM only traces out an 

approximate spectrum. The bandpass filter (Figure 13b) is much worse because 

specifications of the filter are more stringent and one less bit is available 
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for filter coefficients. The conclusion one reaches is that the FNT based on 

F = 2  + 1 is marginal for the implementation of most filters. 

It is possible to extend the precision of the FNT implementation in sev- 

eral ways.  One possibility is a method based on the Chinese Remainder Theorem 

[ 5 ].  In this method, two convolutions are computed modulo two relatively 

prime numbers and the results are combined term by term using the Chinese 

Remainder Theorem.  In particular, {h, } and {x, } are convolved modulo (2  + 1) 

to obtain {y } and modulo 2 to obtain {i }.  Assuming the true output {Y } 
n n n 

satisfies Y^: 2 • (216 + 1) then Yn can be written 

Yn " \  + f- (216 + 1) 

Then assuming f <2 , we have 

f =  ( Yn - Yn) mod 25 

Note that the convolution of {h, } and {x, } modulo 2 can be done with the FNT 
k       k 

hardware by convolving {h, mod 2 } with {x, mod 2 } and taking the result 

modulo 2 . 

Thus, by applying the Chinese Remainder Theorem, 5 extra bits of precision 

are available for the filter implementation.  Figures 14a and 14b show the 

response to linear FM of the lowpass and bandpass filters with 11-bit filter 

coefficients.  In both cases, the response is very near the ideal of Figure 12 

with the slight differences due to the linear FM input signal. 
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Fig. 12.  Ideal filter responses. 
a) lowpass filter 
b) bandpass filter 

50 



-2-12431 

LOU PftSS FILTER -33  08 
i PPSS8PN0 - 0.1 
\ STOPBflND - 6.15 
\ FILTER LENGTH - 33 
\9  BIT FILTER COEFF 

(a) 

BOMOPflSS FILTER, 
LENGTH 33 / 
-44.3 OB ATTEN/ 
7 BIT FILTER  / 

(b) 

Fig. 13.  Filter response with linear FN input using FNT convolution. 
a) lowpass filter 
b) bandpass filter 

51 



2-12432 

(a) 

BflNDPASS FILTER/\ 
LENGTH 33            /        \ 
-44.3 OB fiTTEM/            \ 
11   BIT FILTER /             \ 
CH REM THM        /               \ 

.     /   \ 

1 
(b) 

Fig. 14.  Filter response with linear FN input using the FNT and the Chinese 
Remainder Theorem to increase precision. 

a) lowpass filter 
b) bandpass filter 

52 



X.   Summary 

A hardware implementation of the Fermat Number Transform has been 

built.  In the course of designing this machine a new representation for 

numbers modulo 2+1 was derived to facilitate the arithmetic operations 

of the FNT butterfly. The design goal of a 40-MHz clock rate through the 

butterfly was nearly achieved with the final reliable clock rate being 

38 MHz. 

The FNT system was built as a peripheral device for the FDP and 

the software necessary use the FNT for convolution has been developed and 

was explained here. 

Finally, a comparison with the FFT for special purpose pipeline 

hardware convolution has been made based on the present design. A con- 

clusion of this comparison is that the FNT is a useful alternative if the 

data to be filtered are real and the computational elements are a large part 

of the convolver cost as in a pipeline architecture. 
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