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1. INTRODUCTION

Target scintillation is the variation of angular location of the apparent
source of the echo signal and is dependent upon relative phase and amplitude
of the component echo signals and their apparent angular locations. The
motion of the target causes the apparent source to wander back and forth
about the physical center of the target. This wander is called angle noise or
scintillation [ Ref. 1]. Since the noise is random, it is usually calculated
using experimental observation data. Few articles have appeared to propose
models of the phenomenon.

Recently, we implemented a simulation of target scintillation. The
objective of this report is to document this implementation and to define its

theoretical basis. These objectives are realized by answering the following

questions;
1. What algorithm was actually implemented.
2. What are the statistical characteristics of simulated scintillation?
3. What are the theoretical statistical characteristics of our model?

2. ALGORITHM
The scintillation implementation is based on the model illustrated in
Figure 1. Random noise is generated by the algorithm derived in Appendix A
The noise is passed through = filter to simulate the correlation of scintillation.
The filtered noise then exponentially modifies the nominal target strength
which is our output. This arrangement allows for simulation of virtually all
types of scintillation because it allows control of both the statistics of the

noise and the characteristics of the filter.
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; ‘ Pseudo-random noise is generated by the algorithm:
R, = 65539 R (modulo 231) (1)
1(n) 1(n-1)
Ri(O.‘ = 12345
R - 2[R, - (0.5x2°")) (2)
n \ i(n) :

This noise, magnified by a scale factor K, is filtered by a digital one-pole

filter:
Xn = szn-t + ClKRn (3)
where:
_At
Ci=1-e T At
p
At
C2= e = T Nl -%
Thus: - At, At . .
xn"“"r xn-l+-r K Rn (4)

The values selected for implementation were

T = 1.024 second
At = 8 milliseconds
At/ = 2/256

K = 128

Ty
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Therefore:
: 254
X =256 *n-t TRy (5)

The value of both Xn and the eclipsing constant are added to the exponent of

the normal target strength. The range for this exponent is limited to 0 through
+63.

3. STATISTICS OF THE ALGORITHM

The random numbers generated in equations (1) and (2) have the following

uniform distrikution with mean of 0 and variance equal to 1/3.

PR = 1/2for - 1sR_<+1
where p(-) is the probability of (- ).

4o
Mg = R - p(R)dR = 0

mean =

2 2
variance = °Rr =f (R - pR) p(R)dR = 1/3
-

After passing through the filter, the mean, variance, and autocorrelation

functions of any one sequence [XO,Xi s oo e e Xn] as derived in Appendix B

are as follows:

pxsz:O ‘6)
, kK¢? , xPc, ] . ¥ic ‘ )
% = 2°R “27C.°R “7FC. "3 (
1-C, i 1
6
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’{ E(X_, X_,)
: . - n’ "n-k k
plk) = ——— =C, (8)
3 ¢ n n-k
J Substituting values:
By =0
oxz =21.4
k
p(k) = (0.9921875) (9
Time = k + At = 8 - k milliseconds
where
k = number of samples
The amplitude distribution of X is Gaussian with the above mean and variance.
These perturbations are applied to the exponent of target strength so that, in
effect, the logarithm of strength is varied. Applying an inverse log transfor-

mation, we find:

p(S) = ————e

\/ZI"O’X'S

for -e<S<+w
where S = target strength

S = mean of S or nominal target strength
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This is a log-normal distribution whose

2.2 2

. 2 K Cl o

X 2 2

_ = _ 1. C2
mean=Se 2 =Se (12)
o 2 o 2
-2

and variance =S - e X e X i (13)

Note that the average target strength changes from its nominal value S.
Qualitatively, this can be understood by examining a case where the exponent
of target strength is alternately changed by +1 and -1. The average value fcr
the exponent for this case is unchanged. But when one inspects the corre-
sponding strengths, they become {-1/4 rather than 1.

4. THEORETICAL MODEL

Radar scintillation discussions invariably refer back to Swerling's

e o Ry adtute

classic paper [Ref. 2]. For his cases I or 1I, which apply to aircraft, the

dist~ibution of reflected energy is:

_s
3 5§
; p(S,S) ==e forx >0 (14)
1 S
:
: = 0 elsewhere
where S = input signal-to-noise ratio (target cross-section)

S = average of S over all fluctuations
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We must therefore generate a distribution which, when applied to the logarithm

of target strength, will result in Eq. (14). If p(x) is this distribution, then

D e it o gl

x=1nSorS=ex

dx=9515-=e"‘ds

MR ﬁ.‘!‘,ﬁi.‘d!”?‘ PO

.S
1 _S s i
=€ - = ;
(x) = S _S =S, S *
7] B C |
ds x f
S=ze
x
&
e ex e'i:'
é!g p(x) = — for ~o<x< + @ (15)
.; x
e

The mean and variance of this distribution p(x) as derived in Appendix C are:
mean=p.x='>?-C=1n§-C

where C = Euler's constan:

. 2 =
variance = 0 = —
x 6

5. COMPARISON OF MODELS

A plot of the theoretical versus the implemented distribution is included

as Figure 2. Figure 3 illustrates the input distribution used to generate the
distribution in Figure 2. Figure 4 illustrates the transform used to convert
theoretically correct noise from the available Gaussian noise. The algorithm

closely realizes theoretical scintillation for valuesr greater than 0.6.
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APPENDIX A

STATISTICS OF NOISE GENERATOR

The basic random number generator is the sar~e one used in the
XDS standard FORTRAN Numerical Subroutine Package., It generates pseudo-
random numbers uniformly distributed between 1 and positive full scale
(X'7TFFFFFFF'). Only odd numbers are generated. Treating the generated

sequence R1 as numbers scaled over 231
R1 =1 forOsRl<+1
(Al-1)
=0 elsewhere

By equation (2), these are converted to a uniform distribution in the

region -1 to +1:

R=-%- for -1sR<+ 1
(Al-2)
=0 elsewhere
Hence the mean is:
+ +t:ol R& +
Hp = f Rp(R) dR = =+« RdR = —-] =0 (Al=3)

and the variance:

-
| pm— |
wlx
w
e
] -+
[ ] Pt
!
w =

+ 0 +o
2 f 2. 1., 2,
O = J.o PIRNR-pp)"dR = [_m > ° R7dR =
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APPENDIX B

STATISTICS OF SCINTILLATION SEQUENCES

Fach sequence of scintillation factors is generated by the recursion

relation of Eq.(3). Expanding this equation:

X, .= C,KR, .
0, 1 0, j
Xl,j = CIKRl,j +b1C£KRO,j
X, .= C,KR +C,C_KR, .+C CZKR

2,) 1 2, 172 1,j 172 0,j
2 3

X3’j = C1KR3,j + CICZKRZ,j + CICZKRi,j + CICZKRO,j
' _ n
X, ;= CKR, ;+C C,KR | . +:- C CJKR,
or
n
_ n-i
X, ;= CK Zc?_ R, |
i=0

The mean of the jth sequence is obtained by summing all terms in the sequence:

_ 1 . 0 1 2 n
n—o
0 1 2 n
+(C2+CZ+C?_+--°CZ)R1’j
4+ ececce
B, = icx[c°+c1+mc"][n #R, .+R, .+.++ R
j n 1 2 A 2 0,; 1,j 2, n,j
n—eo
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The mean of all sequences is obtained by summ:ng across all j:
Y 4 J

: o o 1.2 . . .n]l1J
; b= ;caszfc2+c2+ ;|5 ER

- n -
%

+
M.
o}

+

g.l....
Mo

0,m]
n,m

3 J—od)

But

j-.a)m:o )

and

Thus
CIK
HX=T-C, "r
2
However, since PR is zero,
1 hx =0

Similarly, we can find the variance:

2
U}i - I‘:[(xn.px) ] - E(an) - %

1€

O
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If we expand a typical term, say X: j:
’

2
2 2 3
Xy (CIKR3,J.+C1KC2RZ’J.+C1KCZ ), + C1KC; O,j)

cix? [c" 39

5 . . . :
+C, (R iRgy 3+ Ry iR )5 )
4 j + R Ry, ° R, i)
+C2 RZ:JRO:J+ 19J+ 0! 22
€2 (Ryi " Rypi+ Rypd " RpyG+ RyyJ " Ry +Rgyi " Rysi)
2 2
+C, (R3:J RisjtRy,i+ Ryy) R3;J)
: 1 ]
:: +CZ (R3’J RZ}J + Rz’J R3’J)
.
: 0, 2
F +Cz (R3,J)
. Summing across all j and recognizing that:
: ER. .-R_ )=c¢2 i=m
3 ) m, ) Tx
=0 i;‘m
and that:
: 0,2, .4 1
: C, +Cy tCy teer - ——%
3 1-C,
: We find:
5 22
E 2 C]K 2
’x - 2 °x
1-C,
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In an analogous manner we can find the expected value of displaced

samples:
o .
c 12K2C2 ,
E(xn ’ xn-m) - ) CZ R
e}

where m is the displacement.

By definition, the correlation coefficient, p, is:

E:(Xn - X ) B(X, Xn-m)

p(m) = o . Grhn] = 2
xn Xn-m 7
which, in this case is:
p(m) = C,"

The mean and variance of he transformed sequences may be

computerd from Eq. (11}, which is derived in the foilowing manner. Gaussian

pertubations characterized by py, and Oyt

2
(X"px)
- 2
p(X) = ——e X

NI oy

are transiormed by an inverse log transformation:
b}
S - e"{ or X =1In8S§

ds . X _ 1
dX S
where = transformed target strength
X = log strength = contents ol target files
2
(X-l"x)
-__...2_2 -
p(X) i \ Oy
P(S) = =357 . g ¢
‘E— N2
' X:in 8 X
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p(s) = .1 -sl- e X
'\/—Z‘n’ o'X
note:
- M
S = e X or p.x=1ns

The mean » 4 variance ol
Section 10, 14, 2:

Z 2
. X ’x
mean(S)=pS=elns-e 2 =5e ?

variance of § = ¢

LTS 5 G g A AR T 2 Y FFITIX QOTTIATTT ISPV BT IR, ST R TS Ty
AT AT AT YTy, RTINS Ty
Ty s, TR AT T AT TN Ta Y Y, Y
i & e ey
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£
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this log-normal distribution are given in Reference 3,

ra3 0'2 0'2
2 205 x(e x_l)

n
0y
™~
o
q
o)
o
q
- )
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APPENDIX C

STATISTICS OF THEORETICAL DISTRIBUTION

The distribution of the sequence, which, when added to the exponent of
target strength will generate theoretically correct scintillation, as derived

in Section 4, is:

p(x) = i.-e (4-3)

for ~o < x< 4+

The mean, p,, and mean square, Hys of this distribution are:

x
.
to  x -e)?
. p_x = -lm X-e—.).a e dx (A3~l)
x
e
+o x X
- 2 e e
Hy = [ X' - e dx (A3-2)
- e

To integrate these, we make the substitutions

y=exforosy<+oo (A3-3)
which implie s;
dy = de* = e* dx (A3-4)
and
X = Iny (A3-5)

Preceding page blank
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Substituting into (A3-2) and (A3-3) ~
3
A
3 0 X
; S U
3 B = 7% [ e Iny dy (A3-6)
3 e 0
-
= v o] X
3 1 e 2
By =—F / e (In x)~ dy (A3-7)
e 0
The standard forms of these integrais are [from Ref. 4]:

! © |
E j e PXinxdx = --ﬁ(C + lnp) (3.711, R2£.3) .

) 0
© 2
E f e P*(Inx)? dx = c? + I (3. 714, Ref.3)
N C
_“ where C = Euler's constant = 0.577 .......
: Using these and:
3 i
P= %
e

YT

it can be shown that:

Qo alaiig Sox Lo wigk 2y
=S
b3
1

—<—1—§>(-e*xc+ In —) (A3-8)

(3 ]

- oC -1lneX) = %-C (A3-9)

b, = RP.2%C 4 C 4l

and 2 6

)
= (%-C)7 + ¢ (A3-10) :

22
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‘The variance is therefore:

2 (A3-11)

[}
x
'l
a
+
SE
[ ]
=
[}
o

In other words, to generate random variations of target strength for
Swerling's Case I or Case II distributions, we apply random perturbations
to the exponent of target strength with the distribution of (15), mean of

(A3-5), and variance of (A3-11).

T
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