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1. Introduction

The requirement to achieve high ac.uracy with free rockets

fired from rotary wing aircraft has been thwarted to a great extent by

launch transients attributable to the aircraft. These transients, prin-
cipally vibration, rotor downwash, and translation and rotation of the
launch platform, have not been properly investigated as sources of
rocket dispersion. Ii an effort to assess the importance of rotor doun-
wash un tIe dynamics of the round during its first few feet of flight,
an experinent to survey the induced velocity field about a helicopter in
flight wai planned. Knowing the properties of the environment which the
rocket must traverse, one may then use aerodynamic forces derived there-
from in simulating the rocket's trajectory. The flight test plan called
for a detailed velocity survey near the helicopter for a variety of
flight and vehicle conditions. This survey was to cover the region
through which missiles launched from the helicopter miust fly. Computer
codes also exist which are intended to provide a theoretical capability
to define the helicopter downwash fluid mechanical properties. One such
code is currently in use at MICOO and :,as been used to evaluate the
effect of downwash on rocket motion. The flight test also serves as a
means of substantiating (or refuting) the accuracy of the computer pro-
gram. This report is intended as a concise presentation of the flight
test results and a comparison with theory as predicted by the cumputer
code in use at MICOM. Reference 1 presents in great detail the flight
test results, instrumentation, and procedure.

2. Description of Experiments

The position of the boundaries of the rotor wake is strongly
influenced by the aircraft's airspeed. For rockets launched from the
helicopter ir a conventional fashion, there exists a maximum airsp-ed
for which the rotor downwash intersects the rocket's flight j'ath. It
was desirable to determine these downwash boundaries as a function of
forward velocity before proceeding with the velocity survey in order to
more efficiently allocate the flight time available to meaningful
explorations, and to better interpret the measurements once completed.
This wake boundary survey was conducted in April 1973 and the results
are compared with theory in this report.

Virtually all the experimental data presented here can also be
found in reference 1. Some is repeated here for completeness or compar-
ison purposes and so that a more detailed representation can be seen.

a. Aircraft and Range

The flight tests were carried out by the US Army Aviation
Engineering Flight Activity located at Edwards Air Force Base, California.
Based primarily oD aircraft availability, a UH-IM helicopter was selected
as the test vehic e. A drawing of the aircraft showing the coordinate
system used is presented in Figure 1.
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b. Instrumentation an., Procedure

The wake boundary surveys were made using an Elliott
dual-axis low airspeed system. The £lliott system was mounted at
Y = -65, Z = 29 for various X positions and at Y = -65, Z = 88 for
various X positions. The flow angularity in the helicopter pitch plane
was noted for various forward speeds of the aircraft. As the foremost
boundary of the rotor wake passed the Elliott probe a pronounced change
in the flow angularity occurred, allowing one to determine the X coordi-
nate of the wake boundary as a function of airspeed for two outboard
stations. This function is presented in Figure 2. It is seen that the
weapon mount location, typically forward of fuselage station 120, will
be free of downwash effects for true airspeeds greater than 45 feet per
second.

-The flow field velocity survey was carried out using an array of
seves, split film 3-component anemometers mounted linearly on a lateral
rack (Figures 1 and 3) 8.5 inch, apart. Plans were to make successive
flights. repositioning the rack between flights until the entire volume
of interest had been covered. During each Ulight a number of lata
records were to be taken at a predetermined set of flight c .,'itions.
The appendix briefly lists the instrumentation and data conditioning
aid collecting procedure. Complete descziptions and specifications are
given in reference 1.

No further details will be given here concerning the complete test
plan because the survey was conducted at the first rack position only.
Due to the adverse vibration environment, the senbors failed on the first
flight and the test progressed no further. The probe locations for the
first rack position are giv.en in Table 1. During this test flight, data
were taken for a variety of forward velocities. Table 2 presents a sum-
mary of the 15 data records taken. As Table I indicates, only five of
the seven sensors were fully operative throughout the flight.

TABLE 1. PROBE LOCATIONS

Probe X Y Z
No. (in.) (in.) (in.) Comments

1 111.885 -109.56 58.928

2 111.885 -101.06 58.928 Operative in one axis only

3 111.885 -92.56 58.928

4 111.885 -84.06 58.928

5 111.885 -75.56 58.928 Inoperative

6 111.885 -67.06 58.928

7 111.885 -58.56 58.928 Data noisy (perhaps due to
turbulence)
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TABLE 2. FLIGHT RECORD SUMMhARY

I Velocity-ti~me

Flight VF Aircraft T P data included
Record (ft/sec) Gross wt (lb) (deg) 70 in this report

1 152.2 7495 5.44 0.839 /

2 153.5 7494 5.54 0.839

3 136.5 7483 4.10 0.840

4 132.7 7480 4.52 0.839

5 112.8 7474 1.38 0.841 /

6 113.7 7470 1.35 0.843

7 92.5 7456 1.00 0.841

8 93.1 7454 1.04 0.841

9 73.8 7439 5.07 0.838 1
10 54.5 7410 -2.52 0.838

11 54.0 7418 -2.40 0.838!

13 7.7 7374 0.4 0.832

14 19.3 7339 -0.3 0.832

l 17.9 7-55 -0.2 0.832 V

Rotor speed - 324 rpm
*Flight Record 12 was unusable due to flight tran.ients

c. Experimental Resilts

Velocity-time curves for each component, sensor, and
flight record are presei.ted for the entire measurement interval in
reference !. This time inteival is laege compared to the period of the
fluctuating velocity, making it hard to distinguish details of the curýe
shap- over only one period (= 0.095 second). Figures 4 through 36
depict the velocity-time curves for selected flight recorda through only
six periods. When two flight records were taken at practically the same
velocity, only one is snowa (Table 2). In these graphs, the scatter in
data, repeatability from cycle to cycle, and variability of data quality
from flight record to flight record are readily seen. Tn one case, flight
record number 1, the behavior of the signals for sensor number 7 are
shown. It has been suggested that the dispersion occurring in data from
sensor ntunber 7 is duj to turbulence caused by being near the fuselage.
Data from the inoperative sensors, numbers 2 and 5, are not presented.
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3. Dscription of Analytical Technique

The computer program being used at MICOM and the analysis upon
which it is based are described in references 3, 4, and 5. Basically,
the resultant flow in the domain of interest is assumed to be a super-
position of three elements: the freestream, the fuselage represented by
a distribution of sources and sinks, and the rotor wake -epresented by
line vortices shed from aach blade. Obviously, the representation of
the fuselage and the representation of the rotor dowrwash are interdepen-
dent and both should be periodic functions of time. In the program, the
initial representation of the wake is chosen to be helical (one for each
blade) and slanted aft in accordance with momentum theory. The fuselage
representation is iaitially taken to be that resulting from the free-
stream only. The rotor representation is then advanced by marching time-
wise for several revolutions of the rotor. The ftselage representation
is then recalculated using the time average valLes for the douawash
effect in accounting for flow ncnuniforaity. This procedure is then
repeated until a nearly periodic flow is istablished - usually approxi-
mately four complete passes. It is seen that the solution found is not
completely interactive - the fuselage representation resulting is the
one that would result from the time average of the petiodic flow. The
influence of the fuselage is relatively small compared to the other
sources and this shortcoming is not very important. There is another
shortcoming which is putentially more serious. The shed vortex sheet
from all along the blades is ignored or lumped into the vortex filament3
being shed by the blade tips. More recent downwash simulation programs
which account for this effect indicate that it is quite important.

4. Coniparison of Theory and Experiment

Theoretical simulations were carried out for flight records 1,
10, 13, and 15 corresponding to airspeeds of 152.2, 54.5, 7.7, and 17.9
feet per second respectively. Because each computer run requires
approximately 30 minutes of CDC 6600 computer time, four simulation;
were deemed sufficient.

One of the critical input variables is the incidence of the rotor
tip path plane to the freestream (aT). This quantity varies with air-

speed and aircraft weight and center of gravity location and was not
directly measured during the experiment but inferned from aircraft atti-
tude measurements. Since rotor flapping nngle was not measured, the
angle of the tip plane relative to the aircraft coordinate system was
unknown. For the values of T derived from experiment, the flapping

angle was assumed to be zero; therefore, aT may be in error by the amount

of the true flapping angle. If one uses the available data for aircraft
weight and drag, aT may be calculated by balancing iorces at the rotor

hub. The comparison of the values obtained in these two different ways
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is presented in Figure 37. We may then expect to find disagreements
betveen theory and experiment which correspond to up to 4 degrees of
flow incidence in the pitch plane.

-a. Wake Boundaries

Wake boundaries were determined from all but the highest
speed simulation. Instead of examining flow angularity at a given point
as a function of airspeed, as described in Paragraph 2, flow angularity
was plottei as a function of X (with Y and Z constant) at a given veloc-
ity. Either way, an abrupt change in pitch plane flow angle indicates
passage of the wake leading boundary and from this wake boundary station
(X) can be crossplotted as a function oi airspeed. The points found by
applying rhe theory are indicated in Figure 2 together with the experi-
mental data.

"b. Time Dependent Data Comparison

Velocity-time data were calculated for each of the seven
sensor positions and for ezch of the four simulations. Comparisons are
shown in Figures 38 through 88 for the sensors which were fully operational,
nurbers 1, 3, 4, and 6. For flight record 13, sensor number 7 is also
included. Since the period of the velocity fluctuatioas is governed by
the rotation of the rocor, the time coordinate was replaced with rotor
position. For a two-bladed rotor, such as that of the UH-IN, each blade
contributes t; the flow velocity experienced by a point in the wake,
therefore, the period is 2 per revolution or 180 degrees of rotation of
the rotor. Instead of plotting rotor position as an ever increasing
angle for succcosive periods, it was plotted modulo 180 degrees. In
this way all the periods are superimposed on each other in the same 0 to
180 degree range. This is called a folded plot. For flight record 1,
the absolute value of rotor position was measured with 0 and 180 degrees
corresponding to alignment of the rotor with the fuselage centerline.
This measurement subsequently became inoperative; therefore, for flight
records 10, 13, and 15, the experi.aental values for rotor position are
know.n relative to egich other but not with respect to any reference posi-
tion as waz the case for flight record 1. As a result, in comparing
theory with experiment using Figures 38 through 88, one must realize that
theo'v.' and experiment can be arbitrarily displaced relative to each other
along the abscissa for flight records 10, 13, and 15.

During the rour~e of the experiment, the rotational velocity of the
rotor was nominally 324 rpm which w.:ould correspond to a period of 0.0926
second. Howpver, in plottin2 the folded data it was found that slightl\
higher values for the period gave much better results, in that there was
less scatter in tlh.e data. The value used for the period is indicated on
each ;raph o)f Figures 38 throu.i, SS.

Instead of plotting flowvelocit compou)ents alonk, the three coord'-
nate axes t!r,,throuj,, 36), -eLoc.t magnitude and directon art



shown in Figures 38 through 88. y and!:Z are the angles between the

flow velocity vector and the Y and Z axes respectively. In this manner
differences in flow direction between theory and experiment are put in
proper perspective whereas in plotting VX, W, and VZ a small error in
flow direction can overwhelm a small component, such as VY, making it
scattered to the point of being useless.

c. Time Averaged Data

In many cases the frequency of the flow fluctu~iion
(1 10 Hz) is high enough that objects of interest which are immersed in
the flow cannot respond to it. In this case time dependent details of
the wake flow can be ignored and the time averaged flow velocity and
direction can be used to determine the behavior, of the object.

For each of the four flight records simulated, theoretical and
experimental flow magnitude and direction were time averaged and plotted
as a function of Y for fixed X and Z locations corresponding to the
sensor rack position (Figure 89). Gaps in the experimental data corre-
spond to positions of the malfunctioning sensors numbers 2, 5, and 7.-

5. Conclusions and Recommendations

Based upon experience gained from the flight test discussed,
new experiments will be run which should achieve what this one did not,
a complete survey of the flow field about the helicopter traversed by
air launched weapons. In these new experiments, a rotor position and
blade flapping angle will be determined to make valid comparisons. The
planned flight tests will be conducted on the Ccbra helicopter which is
the Army's attack helicopter.

The comparisons presented here are inconclusive. Although it is
certain that the analytical model needs improvement, it is also quite
likely that differences between theory and experiment reflect, to a
certain degree, errors in measurement. Until an improved prediction
capability is available, the results of the program in use should be
better than stream tube approximations.
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FLIGHT TEST INSTRUMENTATION*

Flight test instrumentation were as follows:

LOCAL VELOCITY SENSING: Thermo Systems Inc. Model 1080 total vector
anemometo-rs including probes, control circuits, and chassis.

toaiM;3ENT TEMPERATU'RE: Rosemount type 102AU2CK platinum resistance

ttltem~perature probe with Rosemount 51OBF signal conditioning

TEMP. VELOCITY
PROBE PROBE

RECORDING SYSTEM

PCM. PM-FM OR
WIDE SAND FM

SIX INDPNDN
TSI MODEL IVELOCITY OTUS ZERO SCLN ITRNGj

SUPPRESSIONj

I I

ELECTRONICS TMEAREDYNAMICS MODE - 77.13/OK
SIGNAL CONST TITIONER

ROTO)R POSITION: Defined once per revolution by a magneztit; prox-
imit- sensor.

In addition, the following .Arcraft parameters were recorded with
a state-of-the-art general purpose data system and were either measured
or calculated from measured data (100 samples/second):

Angle of attack (boom)

Pitch attitude

Roll attitude

*Thi isa brief sumary of material described in detail in
reference 1.
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Angle of sideslip (boom)

Yaw attitude

Pitch rate

Roll rate

Yaw rate

CG longitudinal acceleration

CG lateral acceleration

CG vertical acceleration

Rotor speed

(E) Longitudinal CAS (coarse)

(E) Longitudinal CAS (fine)

(E) Lateral CAS

(E) Total velocity

(E) Downwash velocity

(E) Vertical velocity

Calibrated airspeed

True airspeed

Pressure altitude

Density altitude

Ambient temperature

Temperature ratio

Air pressure ratio

Air density ratio

Speed of sound

Fuel used

Gross weight

Fuselage station of CG

Waterline of CG

Buttline

Main rotor tip speed

Rate of climb

Rotor tip speed ratio (advance ratio)

x component, true airspeed

y component, true airspeed
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z component, true airspeed

x shaft component, true airspeed

y shaft component, true airspeed

z shaft component, true airspeed

Elliott angle of attack (sin)

Elliott angle of sideslip (sin)

Elliott angle of sideslip in A/C axis system

1
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SYMBOLS

V - Magnitude of local air velocity /V2+ Vy2+ VZ2

VF - Airspeed of helicopter, ft/sec

VX, VY, V7. - Local air velocities relative to X, Y, Z axes, respec-
tively, ft/sec

X, Y, Z - Cartesian coordLnates relative to shaft axis system
(moving with aircraft)

X - Fuselage station - inches

Y = Buttline - inches see Figure 1

Z - Waterline - inches

'T - Inclination of tip path plane to freestream (equal to
negative of angle of attack relative to shaft axis
coordinates)

X, ay, OZ- Angles between local air velocity vector and X, Y, and Z
axes, respectively

-1
ex = cos (VX/V) etc

P/PO Ratio of density at test altitude to reference density

(0.002378 lb sec2 /ft 4)
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