TR S PR SOV B YRS/

AR

AD-A008 877

DATACOMPUTER PROJECT

Computer Corporation of America

Prepared for:

Defense Supply Service
Advanced Research Projects Agency

31 December 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

v e . TS ey T T Y . o B e S S Lo Ll
pLEIE o oo et it = TR 3

AD- 008877

i? Computer Corporation of America
. 575 Technology Square
Cambridge, Massachusetts 02139

m
L T T (T I R

£ ‘ | DATACOMPUTER PROJECT
SEMI-ANNUAL TECENICAL REPORT

July 1, 1974 to December 31, 1974

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense ané was monitored
by the U.S. Army Research Office, Defense Supply Service--
Washington under Contract No. MDA903-74-C-0225. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA, 22151

+

I
|
I
I
I
&
I
B

om—

e, d

Wi ;

Becse

Setion

»

S

B SR BT IR GOSN T 2R TN SV AT SO, Y

AT PRI e sitsy
[
[SO |

b Suid e e e ey g

R R A B

R

gy

i

ERETR TN Y v et o At o o ey

Abstract

The Datacomputer system is being desigred as & large-scale
data storage utility to be accessed from remote computers on
the Arpanet and, poteritially, on other networks. The
development is phased, with each successive release of the
syster offering increased capabllities to users. During the
present reporting period, the third major release of the
system became operational. This release, while still primi-
tive in many respects, is providing service for a wide range
of applications.

-1

.
.
i
i
|
!
%
i
{
§
!
;

Bl 14l ¥ wheral ava Gl ht o bl parie Sl ot

|
i
Table of Contents
ﬁ Page
E Abstract...... o BT o ST 5 S OV Y S o e 11
1. Overview.....ioeeeeeeens 0 &% o o’ &% 088 o580l oo00000c 1
1.1 Review of Basic Concepts........... B0 OO0 OO0 G0 o 1
i% 1.2 Status of Project............ S5 offS omelfohers sl s g lels lsl's S erls 5
2. Software Implementation........... 35,310 95 FIOP. 0 ORI D 1o T
i 2.1 Request Handler.......c:ieeeees S @e S B T slels =% 7
2.2 ServicesS...cecictiitcitnssnsannan 50000 0aa ool a '
E 3. Network Services...... FUF YI O™ O EYF: L Y LY W)
|
™ Figures i
4 1. Togical View of Datacomputer........ 5 G 0000 GO booke soc g
2. Hardware Overview of System........ 50 Q0 P00Q 0008000 C
gg 3. Hardware Block Diagram--CCA Installation............ by

Appendix: Working Paper No. 10, "Datacomputer Version.
0/11 User Manual.....co0es. o PO YIE 13

#

—— = . ‘ e . i st . AR :
; e b s o

W T, v

P e s i b R et Rttt - 1,«,‘,,.'32

3 1. Overview

1.1 Review of Basic Concepts
; A The goal cf the project continues to be the development of
a shared, large-scale data storage utility, to serve the needs

gl Gt

H of the Arpanet community.

The system under develooment will make it possible to store
within the network such files as the ETAC Weather File cr the
NMRO Seismic Data File, which are measured in hundreds cof
billions of bits, and to make arbitrarily selected psrts of
i these files available within seconds to sites requesting the

information. The system is also intended to be used as a
e centralized facility for archiving data, for sharing data
L among the various network hosts, and for providing inéxpensive
on-line storage to sites which need to supplement their 1local

capability.

| Logically, the system can be viewed as a closed box which is
shared by multiple external processors, and which is accessed
in a standard notation, "datalanguaze" (see Fig. 1). The

b processors can request the system to store information, change
Fis information already stored in the system, and retrieve stored
i information. ‘To cause the Datacomputer to take action, the
external processor sends a "request" expressed in datalanguage
to the Datacomputer, which then performs the desired déta
operations. ' '

From the user's point of view the Datacomputer is a remotely-
lccated utility, accessed by telecommuniéations. It would be
impractical to use such a utility if, whenever the user wanted
to access or change any portion of his file, the entire file
had to be transmitted to him. Accordingly, data management
functions (information retrieval, file maintenance, backup,

oy

access security, creation of direct and inverse flles, mainten-
ance of file directories, etc.) are performed by the Dataccmputer

=4

- A-1-

s MO

DATACOMPUTER

IOVNONY ..ﬁqo‘
N

PROCESSOR PROCESSOR
1 2
Figure 1. Loglcal View of Datacomputer
h2-

L

ﬂw%?é&iiglllll

BRI Rorecos, By Sra R s

i ol et
AR

-

T T T e

PRIMARY
STORAGE
L MEMORY BUS
SECONDARY SYSTEM TERTIARY
STORAGE PROCESSOR STORAGE
L 110 BUS
IMP .
INTERFACE PERIPHERALS
IMP

ARPANET

Figure 2. Hardware Overview of System

g
ME1) ME10 MEWD ME10 ME10
; MEMORY MEMORY MEMORY MEMOAY MORY
i% (18K} 18K) i16K) {16K) (18K)
: I
= 4 MEMORY
i i] Teus
3
2 DF10 DAT. TENEX
] CHANN:L . PAGER
. |]
g B R10 DISK ' KA10
e PACK CONYROL =~ CENTRAL KSR3s
PROCESSOR | | CONSOLE
R)
g 4——1 RPOZ DISK.
P02 Gisi f—d Toie TUSE DUAL TIUB6 DUAL
= ggg‘;;‘l_ DECTAPE CECTAPE
g' L RPO2 DISK
£
a L RPO2 DISK |—net
g &— APOZ DISK || 8a0 LP10 LINE
£ CONTROL PRINTER
P :
z g F
! Q
b ocagn DATA .
: LINE SCANNER ||
Wl _ ™1 contror
F CONC ocioe
] é’ i DATA 7y
&, Eg‘cfw TERMINALS
I || TM10A TAPE uNIT
g3 1am CourRoL KSR35
O CHANNELS LOGGING
B4 - -i
TERTIARY
CALCOMP
2 1030 .' STORArE r—'—‘——-'[Tu308
= INTERFACE MAG. TAPE
& b —— e
B .
CALCOMP Tsﬁnanv_!
?o:JA|;5K STORAQE) 303 ARPA
I = m;'sguce MODEMS NETWORK
TP .
YADE 1 biaLup
MODEMS LINES

Flgure 3. Hardware Block Diagram - cca Installation
(Equipment in dashed outiine is planned for 1975)

hb-

o i g e s b S

ERPET STV S W T TR NIRRT AT BTN R R I e,

VUV S S

system itself. The user sends a "request", which cause:z the
prcper functions to be executed at the Datacomputer without
requiring entire files to be shipped back and forth.

The hardware of the system is shown in overview in Fig. 2 and
in greater detail in Fig. 3.

The program for the system processor handles the interactions
with the network hosts and is designed to control up to three

levels of storage: primary (core’),; secondary (disk), and

tertiary (mass store). Currently, the CCA facility is operating
with primary and secondary storage only, with the addition of
tertiary storage planned for 1975. 1Installation of a tertiary
storage module will leave datalanguage unchanged, and will
therefore be imperceptible to users of the system (except
insofar as it affects performance and the total stcrage capa-

city available for data).

In addition tc using the dedicated equipment at CCA, it is
planned that Datacomputer service will also make use of hardware
resources located at NASA/Ames, using CCA software. The two
sites will provide mutual backup for one another, thereby
guarding against accidental loss of data and providing for
satisfactory uptime of the overall service.

1.2 Status of Project
During this reporting period, Version 0/11 of the Datacomputer
system was completed. This is the third major version of the
system to offer Datacomputer services on the Arpanet.

New facilities in Version 0/11 include updating of fixed-
length contalners, inversions on variable-length containers and
retrieval by index number. (See Chapter 2 and Appendix for
details.)

M5-

o—aeed Ll

ihe next version, 1/0, will be the first complete, though
minlwral, database management system. Its main feailures are
full updating capabilities &nd concurrent updating and reading
of a file. Version 1/0 wilil be completed in June 1475.

The project continues to interact with actual and potential
Datacomputer users. A user's meeting was held to identify user
needs so that they may be considered in setting implementation
priorities. Several new applications are beginning, and major
presentations have been made to poﬁential users.

A paper giving an overview of the Datacomputer system was

written. In additlon to serving as a chapter of the Arpanet
bock, it will be presented at the National Computer Conference !
in May 197%.

USRI s P WA e

&

ey

55

[

L

PR
B

Bty
]

2. Scftware Implementation
During this neriod, version 0/11 repliaced version 0/10 as the
Datacomputer system offering service on the Arpanet. The new

features of 0/11 are summarized in this section. (See Appendix,

"Datacomputer Version 0/11 User Manual" for details.)
Specification and implementation of version 1/0 were begun.

2.1 Request Handler
The following enhancements were released in version 0/11:

1. Simple Updating
The user may specify value replacement for fixed length,
uninverted fields. The update request takes a master file,
and either a list of transactions or a constant. Since the
Datacomputer is making a sequential pass of port and file, the
information appearing in the transaction port must occur in
the same order as it appeared in the master file; that is,
outer and inner port list members must be in the same order
as those of the file. Lists which contain no information

‘different from the master file (which are not being changed by

the update) may be omitted.

2. Virtual Index
A virtual contailner is one whose value 1s nct stored as data,
but can be derived. The kind of virtual container implemented
in 0/11 is the virtual index container: the poesition, by
number starting at 1, of a list-member within the list. For
the virtual index container to be used, it must be included

in the creating description.

AL e i

4
1

iR oo

ICREE I TR

i

1 A S VR A B 0 21

T R

SPT—

e
H
S

3. Integer Type
Two's complement integers have been added as a data type in
0/11. Sizes may be specified up to 36 bits. Conversion (to
and from ASCII strings) and comparison have been implemented

for integers.

4, CAT

The Container Address Table (CAT) is a new internal structure
in version 0/11 which will speed retrieval of variable length
data. The CAT is a table of pointers to the start of each
variable-length list member. The CAT is automatically formed
for those variable length lists which contain at least one
inverted string. The user can specify a CAT for lists which
do not contain an inverted string. The CAT will be used for

retrievals tased on the virtual index container for files.

Definition and design of release 1/0, currently scheduled for
June 1975, was begun in this period. Removal of the zero
prefix implies that 1/0 will be the first "service offering"
of the Datacomputer. As such, we are making a special commit-
ment to "clean up" and "flush out" the system. Remcval of
restrictions imposed in previous releases will be a major

goal of 1/0. The majcr features of this release will be:

1. Full Updating Capability
The user will be able to change the value of any elementary
container, whether fixed or variable length, or inverted.
Append and delete facilities will be available for lists at
any level. Some ability to add 1list members in an ordered
list will be implemented, but the ordering will be maintained
by the user.

2. Intermediate Language
The method of compiling the high level datalanguage has been
changed. A new for.alism, intermediate language, has been

h8-

—_
e g

-

defined. The ccmpilation prccess now translates datalarguage
into intermediate language, and then compliles intermediate

f”“
P —

language into tuples (the system's most primitive operations).

3 This new method allows more advanced compile time optimization,

j and makes thé handling of datalanguage side effects more manageable.
These side effects were responsible for many of the restrictions

in previous releases of the system. Intermediate language also

&
eoree

provides an internal base language so that addition of high
level operators to the user datalanguage 1s greatly simplified.

I,

3. Improved Directory List Features

r B
Lecomnnt

The system will provide more information to the user about

stored data, including times created, read, modified and size

e

L

information on both base and inversion areas. Status information
on open files will be provided. All this information will be
available over the datalanguage (or control) path as well as

SR

via system-maintained descriptions over data paths. This

M o

=
[‘ allows user program control over format and content of list
cutput.

£

g; 2.2 Services
L The Services subsystem of the Datacomputer has made significant
. progress both in overall design and in code implementation.

Design progress has been made in the following areas:

SDAX (Special Disk Area Index) 1is the scheme for buffering
on 3330 disk fille data pages which will normally reside

on tertiary memory. Tha data pages for files currently
active will be buffered in the Special Disk Area (SDA)
until the file is no longer in use. This scheme is

expected to yield substantial efficiencies in internal

gy e

data handling. The design 1is complete and detailed.
Implementation 1s expected to take place over the next
six to eight months.

—

s s b

PR TR R R Y, FENTETETRIORT o Vol asnc ot ¥ op o R

The RESERVE function has been designed and pre-
implementation work has been done for the purpose of

St

accomodating vhis design. This function will permit

{j users to gain exclusive access to specified components
i

of the file directory such as individual pathnames and

privilege typle chains.

Extremely high priority is belng placed upon verifiable
¢ integrity of the database. To this end, every underived

item of directory and volume-descriptor information will be
i multiply redundant. The validation routines will have the
capability of cross-checking redundant items, isolating

faulty data fields, and, under progremmer control, correcting

f A, such errors. Portions of this design are now complete, and

are currently being lmplemented.
Implementation includes the following significant work:
. 32-bit mode. Since the Unicon 1s a 32-bit wide device,

O and TENEX files/memory utilizes 36-bit words, files
stored on this device must not use the low 4 bits of

N (A

ij each word. Thils capability has required the following

E L. changes to SV: (a) Added a new Datacomputer device,

=; 4 the "Unicon file", which 1s just 1like a TENEX file except

E | that 1ts VTOC is only 32 bits wide; (b) Required
changing VTOC blit manipulatlon subroutines to accomodate
32-bit sized words; (c) Also required formulating and

coding a new internal representation for date/times,
since the TENEX standard requires 36 bits; (d) Since
the width of a file is no longer implicitly 36, changes
e were made to the space allocation and deletlon routines
o to pass the width as a parameter whenever manipulating
the free chunk bp.

ey

- A—lo-

SRS R e

A "slosh" program has been implemented for the purpose

of transferring data from one Datacomputer to another.
This greatly facilitates transfer of file directories

and data between different (and sometimes incompatible)
releases of Datacomputer software. Also, it has the
potential to be used to transfer files between physically
discrete Datacomputers.

Directory system validation routines. This collection
of routines way be run at any time in order to validate,
and to perform extensive internal verification of,
directory system information. Work is still being per-
formed in this area.

A;ll-

e i SRR LSRR

(=

3. Network Services

)

-

During the present reporting period, emphasis has been placed

on getting operational experience with a range of Datacomputer
applications.

-~

—

One of the largest databases to be stored on the Datacomputer
is the seismic data. The amount of data to be stored
necessitates that the data be handled as efficiently as possible
if the application is to be feasible. CCA has worked closely
with the other organizations inv~»lved to identify the data

i storage and retrieval requirements for this application and to
design the file formats. We have obtained several sample
seismic files for experimental purpcses. One of these files,
L containing data from the International Seismic Month, was used
in a demonstration at an internavional conference. The user
8, program SMART¥* was modified to access this data.

e
(&=

Jrom————rn.

CCA took part in the ARFA intelligence show. A demonstration
of the Datacomputer and a datalanguage tutorial were given.

Acconnts were set up to allow experimental access for potential
DOD users.

———
© o

4 P T ~t
S Lo Ll il e U R S il
‘ TR | e g BN gt ok R] sl
b o ek o b e T ke £
i H 1 !
[, - e { i)] i

S
[RS-

As a part of the MIT-DMS message archival project, the Data-
computer will provide archival storage for network mail.

Several meetings have taken place between CCA and DMS in order
to design the application.

T A TIer
*
Wi Y
et

PORSEL

3 * SMART generates datalanguage for users at terminals, thus

2‘ providing them with convenient zccess to the Datacomputer.

ot

i A

L

-

i

{4

Appendix

Datacomputer Version 0/11 User Manual

- A13-

Te

ey

[

E;w 2.
;

3.

4e

S5e

Table of Contents

Introduction to the batacomputer ¢« o ¢ ¢ o o

Containers ¢« ¢ ¢ ¢ o » o ¢ ¢ ¢ ¢ o ¢ o ¢ o o
Containers « e« ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ ¢ 5 o o
Outermost Containers ¢ « o« « ¢« ¢ o o ¢ o
The Directory ¢ e ¢ ¢ ¢ o ¢ o o
Pathnames ¢« ¢ ¢ ¢ =« ¢ » ¢ ¢« o o
Creating NOdES o o ¢ ¢ ¢ ¢ 2 ¢ ¢ s o ¢ o o
Creating Containers o o ¢ ¢ ¢ ¢ s ¢ ¢ o o o

Byte SiZeSe ¢ ¢ ¢ ¢ 6 4 6 06 6 6 6 0 06 06 0 o o

Directory Commands o« ¢ ¢ ¢ ¢« ¢ <« ¢ ¢ o o o o o
OPENe o o o o

® & o & & 5 & & & o & o © o o
MODE. e o & & & & & & & & ¢ S S o > o & o L]
CLOSE & e © © & & & & & & o & 0 ® & & o o o
DELETE. e o ® & o o & & » & © © o o oo 5 o o
LIST. ® e & o & » & & & & & & o © & o & o o

Security and PasSswords ¢« ¢ ¢ ¢ ¢ ©¢ ¢ s o ¢ & o
Introductory Concepts o ¢ o« » ¢ ¢ ¢ o ¢ o »
Gaining BRccess to Nndes: LOGIN ¢ o o ¢ o o
Privileges ¢ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 06 ¢ o o
Privilege BloCcKk o ¢« © ¢ ¢ ¢ = ¢ ¢ o o ¢ o o
User Identification Fields o o ¢ ¢ o » o
Privilege Set Specifications ¢ o o o o o
User Classes ¢ ¢ ¢« ¢ ¢ ¢ + ¢ © o © ¢ o o
Creating Privilege Blocks: CREATEPe o o o«
Deleting Privilege Blocks: DELETEPe o o ¢ o

e o

EXample® ¢ ¢ o ¢ o ¢ ¢ ¢ o ¢ ¢ ¢ o o o

Assignment and FOR-LOOPSe ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o
Assignment Involving Outermost Containers .
The Matching Rules ¢« o« ¢ ¢ ¢ ¢ ¢ o ¢ o o
Padding and Truncation « « o
Conversion ¢ ¢ ¢ ¢ o ¢ ¢ o o
Examples ¢ « ¢ ¢ ¢ ¢ o ¢ o o
Selection of LIST Members. o«

Retrievals Using Inner LIST Members o« « o o
Retrievale Using Inverted Containers « « o«

Retrievals Using Container Address Tables .
Assignment With FOR ¢ ¢ o o ¢ ¢ ¢ ¢ ¢ o o
UPDATE [J [] L J [] L 4 [J [Z L J ® [® L] ® [] ® [[J L]

Mismatched FOR LOODPS o ¢ ¢ ¢ ¢ o ¢ ¢ o o o

€ & & o @

e o ¢ & O [} []
[} .
.)
) .
(o] (=]

e o o o o
¢ & o & o
—
wn

L 4 ® .18
L 4 L 4 L J 18
o o 18
[[4 .19
L L J L 20
o <21
o 22
e 23
® .25
o 28
. L J L 28

e o e 32
e 32
e ¢33
[] .3”
L] .3”
e 38
[4 [] [] 39

* ® .uo
o [J L] u‘
L] L] L] “2
e o o Ui

e« o U6

[N

6e

Using

the Datacomputer ¢ oe¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ o

Interacting With The Datacomputer « ¢ s o o o ¢ »
Synchronization ® ¢ & o o o & o ¢ & o & & o o o o
Transmitting Data Through Datalanguage PORTs o
Opening a Secondary PORT o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o
Error MesSsages ¢« ¢ ¢ a ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 ¢ ¢ » o o

Appendices

A:

Indexe.

Summary of Datalanguage SyntaXe o« o o o o o 58
keserved WOrdse ¢ ¢ = ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o o o 13
Inversion: Technical Considerations ¢ « « « 74
Network Interaction with the Datacomputer o 77
Implementation Restrictions o ¢ ¢ ¢ ¢ ¢« o ¢ 79
Differences Between 0/10 and 0/11s o o ¢« « « 84

Error MessSagesSe o« » ¢ ¢ ¢ ¢ ¢« ¢ ¢ o ¢ o ¢ o 85

e O ® e e e o o o e o « O o * o o ¢ @ o . [4 .91

L3
48
49
51
52
55

DN B AT RO AR

G

2,

) .cﬁq
i

2 C B s >
o e i o D it g Rt e T s R G A LS R g i ARG U A e T Lkafilh
. . C . e 1 i BRSNSt L L i G MR e LR S B i ok LR ol S R A b fia s s
FORER S Misss st S tat g A - =

- orseress WML veome

[

J

|
W T

oo

G g mf Ay ey

Chapter 1: Introduction to the Datacomputer

dntroduction

The datacomputer is a shared large-scale data utility
system designed to serve the computers on the ARPA network.
It may be thought of as a "black borx" that performs date
storage and retrieval functions in response to commands
phrased in a standard notation, called datalanguage, The
datacomputer in {ts full implementation will provide an
on-line storage capacity of one trillioan bits and an
extensive set of services to user programs.(1)

This document describes Version 0/11, the currently
running version of the datacomputer system, and includes
information about how a user program can access the systenm,
transmit datalanguage, process the datacomputer's responses,
and transmit and receive data over the networke,

Version 0/11 is & preliminary version. While it |{is
sufficiently powerful for many types of applications, it
still lacks some desirable features, and contaln3 some
undesirable implementation restrictionse The next verzion,
170, will offer a more complete subset of datalanguare. In
particular, it is pianned that full updating facilities will
be available and that restrictions of the type described 1in
Appendix E will be removed. Versions beyond 1/0 will
progressively enlarge the range of services,

(1) See Datacomputer Project Working Paper No. 6, Ffurther
Ratalanguage Design Loncepts, December 1973.

RSB I

T BT P 1 T e

Chapter 2: Contaliners

Containers

The gcontginer is a basic concept in datalanguage. A
container is an imaginary box which, 1like a FORTRAN
variable, may contain data; a container may also enclose
other containers. For example, some 1information about
people could be represented as:

PEOPLE
PERSO!I PERSON
NAME ADDRESS SOCSECNO
FIRST LAST STREET CITY STATE

DATA
DATA
DATA
DATA
DATA
DATA

Figure 2-1+. A contalner structure

Here PEOPLE, PERSON, NAME, and ADDRESS are containers
enclosing other containers; FIRST, LAST, STREET, CITY,
STATE, and SOCSECNO are containers that enclose only data,.

The description of a container has several parts. It
includes the container’s ident, type, and size, and perhaps
some additional attributes, The container’s jdent, or
simple name, 1is a string of 100 or fewer letters, digits or
the special character %, by which datalanguage requests
refer to the container, The first character of an ident
must be a letter or the character %o Certairn reserved words
may not be wused as container idents; these are listed in
Appendix B of this documente.

tpbss. e e

AT

5 WS - el
P i dene e L SEl el

n

-

P]

L4

[ram—
s

¥

Chapter 2: Containers Page 5

Some sample idents are

AVERYLONGIDENTABCDEFGHIJKLMNOPQRSTUVWXYZ
PEOPLE

WEATHEROSTATIONS

fccA

Containeras are of four types, depending on their
contents,

A container that is a LIST contains some number of
other containerss, The LIST-menbers may be containers of any
data type, but they must ali have the same description.
PEOPLE (above) is an example of a LIST.

A container that is a SIRUCT, or SIRUCIURE, contains
some number of other contciners, which need not have
identical descriptions.{1) The descriptions of all the
containers that are enclosed by the STRUCT form part of the
description of the STRUCT itself; and on every occurrence of
the STRUCT every one of its sub-containers must appear in
the same ordere ADDRESS is an example of a STRUCT.

An elementary data container of type PBYIE or INIEGER
(INT) contains one byte of datae. An elementary data
container of type a STIE or SIRING contains a string of
bytes.(2) The user can specify the byte size of BYTEs, INTs,
and STRs and can indicate that STRs are 7- or 8-bit ASCII or
uninterpreteds BYTEs are always uninterpreted, INTs are 2°s
complement, ({(See below).

A LIST or STR has a 3jze associated with it. The size
may be fixed or variable. The size of a STR is the number
of bytes in it, while the size of a LIST is the number of
elements in the LIST.

Qutermost Containers

A container that s not contained by any other

container is called an gytermost 2oontajner: outermost
containers are different in several respects from other
containerse.

An cutermost container in datalanguage has a fupction,
which {s =ither FILE, PORT, or TEMPORARY PORT (which may be
abbreviate: TEMP PORT). A FILE contains data kept in the
datacomputer, When a FILE s created (see below),

(1) STRUCT and STRUCTURE are synonyms in datalanguage.
Hereafter, STRUCT will normally be used.

(2) INT and INTEGER, STR and STRING are synonyms in
datalanguage. Hereafter, STR and INT will normally be usede.

|
|
|

s Gl T CS R U,

PRMEPIS PN

ot

Chapter 2: Containers Page b

datacomputer space is allocated for it. A PORT describes
data that 1s transmitted to or from the datacomputere. A
TEMP PORT is a PORT whose description 1is not permanently
stored, wunlike the descriptions of other containers. The
description of TEMP PORTs are deleted at the end of the
session in which they were coreatede.

Ihe Rirectory

The ident of an outermost container, whether 1t 1is a
FILE or a PORT, 1is wunlike other 1idents, in that it is
entered in the datacomputer’s directorve The directory is
conceptually a tree; the entries in it are called nodes. A
node may have one or more subordinate nodes, wunless it
represents a container, in which case it cannotes A portion
of a hypothetical directory is diagrammed below; it may be
read as indicating that the nodes F and G are subordinate to
DATA, which 1in turn 1is subordinate to CCA. Only the
bottom-most nodes in this tree, F and G, may represent
containers, and they represert outermost containers,

I CCA

DATA

Figure 2-2+s A portion of the directory.

Only a bottom-most node of the directory may be a container
ident; only an outermost container has its ident entered in
the directorye

Normally, the first thing a user does after connecting
to the datacomputer is LOGIN to a directory node. For most
purposes, he only sees his login node and the part of the
directory that is subordinate to his login nodes (The LOGIN
request is discussed in detail in Chapter 4,)

- oSl AT L

[Co—
.

Chapter 2: Containers Page 7

Rathnames

Pathnames are usad to referencz nodes in the directory
tree by describing a path througi ite They have the general
hierarchical form

NCDE1+eNODE2+ ¢ «NODEN
where NODEZ2 is a node directiy subordinate to NODE1.

There are several varieties of pathnamess The two
classes of directory objects referenced by pathiames are
closed nodes (including all nodes that are not outermost
containers and therefore cannot be open, and all outermost
containers that are not OPEN) and OPEN outermost containers.
There are three areas in which names can be found: the TOP,
LOGIN and OPEN contextse Thus there are six possible
pathname types, only five of which are reasonable. (A
closed node in the OPEN context isn’te.)

Closed nodes can be referenced either by a complete
pathname (started with the reserved word %TOP), which causes
the nama search to be anchor-"d at the top of the directory
tree, or a LOGIN pathname, which anchors the search at the
current LOGIN nodee Either pathname may contain passwords,.
(Passwords are discussed in chapter 4.)

OPEN nodes may be referenced by a simple complete
pathname or a simple LOGIN pathname, neither of which can
contain passwords, or by an OPEN node simple name. An OPEN
node simple name is the name of the outermost container,

Lreating Nodes

A node in the directory 1is c¢reated with a CREATE
requestes Such a request has the form

CREATE <pathname> ;

Only one node may be created by a single CREATE request, and
a higher-level node must always be <created before one
subordinate to ite The reserved words listed in Appendix B
may not be used as directory node names.

As an example, let us create the outermost container F,
a LIST of 4-character strings; the container’s ident will be
entered in the directory as indicated in Figure 2-2e. he
assume that nothing 1is presently in the directory, so we
must start by creating the topmost node.

CREATE CCA;
CREATE CCA.DATA;

SN R e

|
{
i
{
|

G R o

X 3 L Ay e
S S e e

Gk R AR L e S iy
I
L

Chapter 2: Containers

rage 8

CREATE CCA+DATA.F FILE LIST
XYZ STR (4);

Now that CCA and CCA.DATA have been created, we could
create CCA.DATAG with only one CREATE request; ie.e.

CREATE CCA+DATA.G PORT LIST etce

Creating Contajpers

Outermost containers are created by a more complicated
form of the CREATE request. The CREATE statement must tell
the datacomputer all about the container, An outermost
container and all its subcontainers must be created at once,
with one CREATE requeste.

The CREATE request causes the description to be storede.

It also causes space to he allocated if the container is a
FILE.

The full BNF in Appendix A indicates succinctly the
precise syntax of the CREATE statement. It is worth looking
at a few examples before looking at all the details of
descriptions. One example, a LIST of STRings:

CREATE ALPHA FILE LIST SUBCONTAINEDSTRING STR (44);

Here the size of the outermost LIST is omitted, s0 the
datacomputer will calculate a default size.

A LIST of STRUCTs, each of which contains three
strings:

CREATE BALLTEAM FILE LIST (25)
PLAYER STRUCT
NAME STR (20)
POSITION STR (2)
UNIFORMENUMBER STR (2)
END;

The datacomputer will allocate enough space for the file
BALLTEAM to hold 25 <copies of the STRUCT named PLAYERe.
NAME, POSITION and UNIFORMYNUMBER are 7-bit ASCII STRse
note that END 1s required to terminate the description of
.he STRUCT.

The example diagrammed on page 4:

CREATE PEOPLE FILE LIST
PERSON STRUCT
NAME STRUCT
FIRST STR (15)

P
&
%
x

1

LatR

:
]
5

N R T

Chapter 2: Containers Page 9

LAST STR (15)
END
ADDRESS STRUCT
STREET STR (15)
CITY STR (15)
STATE STR (15)
END
SOCSECNO STR (10)
END;

The elementary data types are BYTE, INT and STRe
Containers of these types contain data, not other
containers. INT is a 2°s complement integer, while BYTE {is
uninterpretede.

STRings and LISTs must have a sizee. For LISTs the size
is the number of LIST members (e<.ge., the number of PERSONs
in PEOPLE above.) The three forms for indicating the size
are:

(n) -« a fixed size of n
(myn) -- a minimum size of m and a maximum of n
(4n) =~ a minimum dimension of 0 and a maximum of n

where m and n are positive integerse.

Terpinator Options: For an outermost LIST or STRing,
no size need be specifiede For a FILE, the default minimum
is 0, and the default maximum is based on what will fit in
the default space allocatione For a PORT, the default
minimum is also zero, but the default maximum is effectively
infinite.

The datacomputer needs a way to find the end of the
data in variable-sized LISTs and STRingse The three options
are a preceding count, a trailing delimiter, and punctuation
(ieee, a device-dependent marker). A one-byte preceding
count is indicated with the keyword parameter:

yC=1

Version 0/11 cannot handle counts larger than one bytes
Thus, if <there is a count, then the maximum dimension must
be small enough to fit into a one-byte count. (Byte size {is
is discussed further belowe.) The value of the count does not
include the count byte itself.

The syntax to indicate that there is a one-byte
delimiter is:

+Dzn

i
]
{
i

S T, bR L

LA U b v MO R - o

Chapter 2: Containers Page 10

or

, L4

D= a
where n is a decimal number and ‘a” is any ASCII number,
letter or special charactere.

The datacomputer considers punctuation for ASCII PORTs
to be different from delimiterses Punctuation over the
network is a special character (specifically EOR, EOB, or
EOF) inserted in the data but not considered part of the
datae This is indicated by:

+P=EOR (carriage return, line feed)
+P=EOB (Control-L)

and
+P=EOF (Control-z)

A fixed-size container (including a STRUCT) in a PORT,
may have a P, D, or C parameter, but no container (fixed or
variable) may have more than one of these. PORT’s and FILEs
may not have an outer level D or C parameter.,

A FILE may be punctuated with an EOF, but the
datacomputer ignores this punctuation. No subcontainers of
a FILE may be punctuatedes Variable length subcontainers of
a FILE must have either a C (count) or D (delimited)
parameter, fixed length may havee.

If a variable-sized PORT does not have an outer level P
parameter specified, then it defaults to P=EOF.
Variable-sized subcontainers of a PORT must have a C or D
parameter, or be punctuatede A subcontainer of a PORT may
have a C parameter only if the PORT is a secondary PORT (see
Chapter 6)e.

"unctuation 1is hierarchical. A container that 1is
punctuated with EOR cannot contain one that is punctuated
with EOR, EOB or EOFe A container that is punctuated with
EOB cannot contain one with EOB or EOF. If higher
punctuation is found in a data stream where the datacomputer
is 1looking for lower punctuation (e.ge, an EOB where an EOR
is expected), the higher punctuation implies the lowere.

Ipnterpretation: The interpretation of a STR 1is one
of ASCII (i.e., T7-bit ASCII), ASCII8, or BYTE, as in the
following examples:

A STR ASCII (5)
P STR ASCII8 (1,10)
WALDO STR BYTE (73)

R LRSS

Chapter 2: Containers Page 11

The default byte size for BYTE is 36 bitse BEBYTE is optional
if the byte size 1is given explicitly with the keyword
parameter

o B o I |

5 1 sBzn

e |

where n is a positive integer less than or equal to 36. The
+B=n option may not be used for ASCII STRingse. If nc byte
size or interpretation is given, then the STR is 7-bit

s Ll

.

N ASCII.
£ Virtual Containers: A virtual container is one whose
g ?z value 1is not stored as data, but can be derived. The only
' kind of virtual container implemented in 0/11 is the virtual
E index container: the position, by number starting at 1, of a
; % LIST-member within the LIST. For the virtual index
LA container to be used, it must be included in the CREATing
% description with the following format:
&
Pl <name> BYTE, V=I
13 The name 1is wuser-specified within the container 1ident
i restrictions; the data type must be BYTE and must be
" followed by “,v=I°, which stands for ‘virtual container
. equals index’e The virtual index container will take up no
e §= physical space within the file. Virtual index containers
- may exist in inner and/or outer STRUCT s

Fill Character: At times the datacomputer needs to

fill in a value or a part of a value. The user can specify
a fill character thus:

d L4

JF= a
or
fF=n

where a is an ASCII character and n is a decimal number
representing a character code. The default fill character
is a blank for ASCII data and zero for non-ASCII datae.

Note that a byte size and a fill character can apply to
a STRUCT or a LIST as well as a STR, INTEGER, or a BYTEe.
Consider the following:

CREATE F FILE LIST
R STRUCT, B=36
A STR (5)
END;

The byte size of A is 7« A takes up 35 bits. There is one
"unused"” bit after A before the next Re Thus, R must be
fillede Even though the data (ie.ee., A) is ASCII, R 1is
non-ASCII because it does not have a T7-bit byte size.

1
I
I
I
I
I
|

Chapter 2: Containers Page 12

Hence, the default filler of 0 is used for the bit.

The rules for punctuation, byte size and fillers are
simple but not at all intuitive. 1In general, specifying
punctuation rather than relying on defaults helps avoid
errors, Also

LIST <pathname> $¥DESC;

) OB P e PN

will output a complete description, including all default
lengths, dimensions, punctuation, byte sizes and fillers,
(Tae LIST command is discussed more fully in Chapter 3.) It
is often instructive to 1look closely at the %¥DESC to see
where it is different from what is expected.

oy

Inversion and CAT: BYTEs, INTegers and STRings may

be inverteds For members of outer LISTs, the option

 zaay |

)

=

is used.s For members of inner LISTs, the option

eI=1

is useds Inversions and the difference between outer 1list
members and inner list members are discussed more fully in
Chapter 5.

The Container Address Table (CAT) is a feature which
can be used for retrieval of variable length data. The CAT
is a table of pointers to the start of each variable-~length
LIST members The CAT is automatically formed for those
variable length LIST s which contain at least one inverted
elementary data containers For example:

5
B
E- &
8 4
g ¥
A
4
.
;. 3
7‘_ ;
-
4_‘“ %
E
E
; [
E: &1
3
g =
S

CREATE F FILE LIST
A STR (,10), I=D;

L Ry

44

The user can specify a CAT for LISTs which do not contain an
inverted elements The CAT will be used to speed retrievals
(discussed in Chapter 5)e

CREATE F FILE LIST, CAT
A STR (10)
B BYTE, V=I;

Byte Sizes

Containers have a physical byte size, These byte sizes
may be specified for FILEs for the purposes of packing data
and for alignment of datae For PORTs, the user may specify
byte sizes in order to model the transmission format of the

S TN S m ey e By Y

24

DTN

Aot

e

S IR R T T R M S TRy

T R A S TR

RTINS N TR R R e SRy ddh kel RTINS ST T

o |

By e

- U A NN N emd ey ey

Chapter 2: Containers Page 13

host machine, When byte sizes are not explicitly given,
they have the following defaults: for STRs, the default is
Te For BYTEs and INTs the default is 36 For
non-elementary containers the default byte size is that of
the largest subcontainer. These defaults correspond to data
being sent from a 36 bit machine with a seven bit character
size -- for example a PDP-10. Byte size combinations of 8,
16, and 32 can be wused to model data formats on 32 bit
machines such as the 1IBM 2360. In order to construct
containers with byte sizes different from the defaults, the
user must specify the byte size with the "B=n" option, where
n is a decimal number of bitse.

In version 0/11,
1e containers have a maximum byte size of 36 bits
2« no 3ubcontainer byte can straddle 2 or more parent bytes

3¢ this implies that the byte size of the subcontainer must
be less than or equal to that of the parent.

There are a nuaber of temporary restrictions on BYTE size
combinationse The rules are giver in Appendix E, #8.

L

T

Page 14

Chapter 3: Directory Commands

QREN

Before data can be input to or read from a FILE or
PORT, the container must be gopen, and a mode must be
specified for ite The mode of a FILE or PORT, which is set
when the container is opened, determines the legality of
various operations on that containere.

The possible MODEs are READ, WRITE, and APPEND. Data
can be transmitted either out of or into a FILE or FORT that
is open in WRITE or APPEND mode, but can only be transmitted
out of a FILE or PORT that 1is open in READ modee The
difference between WRITE and APPEND lies in their treatment
of any data that is already in the container when it is
openeds When an assignment is made to a containc¢r that was
opened in WRITE mode, any data it contained previously is
thrown awaye A container opened in APPEND mode has
newly-arriving data written after the end of any
already-present data, which is thus preserved.

A variation of WRITE and APPEND is WRITE DEFER and
APPEND DEFER. When DEFER is indicated as part of the mode,
a more efficient technique of building an inversion is usede.

When a FILE or PORT is created, it is opened in WRITE
modes A FILE/PORT that already exists may be opened with an
OPEN request:

OPEN <pathname> <mode>

which specifies the name of the container that 1is to be
opened and the mode of opening. The name can be either a
complete pathname (started with the reserved word $TOP) or
it can be a login pathname, started with a node immediately
subordinate to the current login node. The mode must be one
for which the user has privileges (see Chapter 4). The mode
argument may be left out of an OPEN statement, in which case
the container is opened in READ mode if it is a FILE and
WRITE mode if it is a PORTe Two outermost containers with
the same ident may not be open at the same tire.

For example, to read data that was previously stored in
CCA+DATAL.F, a file, either

OPEN 3TOP«CCA+DATALF;

SEONL S an i L s e TSR

AN I R AN AR 5 T

L

",

et |

o '«.A’

[IR

L3
i

S §

L S o S et

e

I
I
|
|
|
|

N T 1 I eNBeE ot ek kel andote o g il At R T e o el U s 7 i S S

Chapter 3: Directory Commands Page 15

or, if the current login node is CCaA,
OPEN DATALF;

will open F preparatory to data transfer requests,.

MODE

The mode of a container that is already open may be
changed with the MCDE statement:

MODE <pathname> <mode> ;

The pathname can be a simple complete pathname (i.ee a
complete pathname with no passwords), a simple login
pathname, or a node names

CLOSE

The complement of the OPEN request is the CLOSE
request., When an open container is no longer needed, it can
bc closed with

CLOSE <pathname) ;

where pathname must be the simple pathname of an open
container. Closing a FILE/PORT with a function of TEMPORARY
PORT has the effect of deleting its description from the
datacomputere.

DELETE

The ability to delete directory nodes 1is wuseful in
maintaining a data base at the datacomputer. The DELETE
request allows one to delete one or several outermost
containers and all the data they containe.

DELETE <pathname> ;

causes the node named by <pathname> to be deleted from the
directorye. The pathname must be the login pathname. Thus,
only nodes subordinate to the login node can be deleted,
The node cannot have any subordinates.

DELETE <pathname).*% ;

deletes the node and all subordinate nodes. If any of the
deleted nodes are outermost containers, the container
descriptions and any associated data are d2leted as well.
The DELETE request need not be used on TEMPORARY PORTs, as
they are automatically deleted either when they are closed,

Chapter 3:

Directory Commands Page 16

or at session end.

E If the data stored in a FILE is to be deleted, but the
container description itself retained in storage, the DELETE

- request cannot be usedes Instead, CREATE a port E with a

i description matching the container A that is to be emptied,
and execute the assignment A = B with no data in B. The
effect of this assignment 1s to delete all the data from A.

LIST

s |

The LIST request 1is the means by which the user
interrogates the datacomputer about his environmente. The
request has two arguments: the node or nodes which are the
object of the inquiry, and the type of information desirede.

The first argument consists of a set of nodes 1in the
directory. Possible node sets are: 1) a single node, 2) all
nodes directly subordinate to a given node, 3) a node and
all its subordinates, and 4) all open files and ports. A
single node is specified with a full pathname, which can
include passwords and can be anchored at the top node
($TOP) . The set of a node’s direct subordinates is
indicated with either a "®#" (the login pathame is implicit)
or a full pathname followed by a "#", Either "##" op a full
pathname followed by a "®#" designates a node and all its
subordinates. The set of all open nodes 1is referenced by
$OPENe. %TOP alone defaults to STOP.*¥,

R N PO N L R M AR NS e
oy

"1

2
[T
-

There are five kinds of available information. These
are: 1) node names and related data (node type, privileges,
and possibly mode and connected argument), 2) parsed data
descriptions (of FILEs and PORTs), 3) original source text
of data descriptions, 4) allocated space (for FILEs), and 5)
privilege blocks associated with nodes. These information
options are specified by %ENAME, $%DESC or $DESCRIPTION,
$SOURCE, $ALLOC or $ALLOCATION, and $PRIV or $PRIVILEGE,
respectively. The default option is ¥NAME.

Not all of the kinds of information are available for
all of the possible node setse. The options that are
available are:

Node Set Cption %
+ <{pathname> $DESC §
§ <pathname> ENAME %
: <pathname> L£SOURCE %

<pathname> $ALLOC(ATION) !

<{pathname> $PRIV(ILEGE)

<pathname>.* INAME

<pathname).**% INAME

AN R G T W e ey g ey

A

e T oty e wngﬂ?}‘_?w o SR i B o N o R ek et on i Sl e i g ey O e et

Chapter 3: Directory Commands Page

<pathnamed),.**® $SOURCE

$0PEN $NAME

$0OPEN SDESC(RIPTION)
$0PEN $SOURCE

$0PEN SALLOC(ATION)

St e o A ot i

b ans iR LR ARG

<<<<<<<<

i1

PN ORI

PRI

T T

RN o, ’ .

Py

Chapter 4: Security and Passwords
lntroductory Concepts

The 0/1t version of the datacomputer provides
file-level security (restricted access to nodes and
attendant data) by means of a system of privilege blocks,
described in the following sections. One or more (or no)
blocks may be associated with a particular node. Each
privilege block defines a class of ysers who may be given
access to the node and the set of privilesges to be granted
to such users. Whenever a user attempts to access a node or
FILE/PORT, the datacomputer will scan that node or
FILE/PORT's privilege block(s), if any, to ensure that the
user is ‘legal’ and to determine what privileges will be
allowede

Lhapter Organization

This chapter is divided 1into three principal partse.
The first sections describe what privilege blocks are and
how they provide file security functions for datacomputer
users, and introduce the reader to the security features of
datalanguagees The second part completely specifies the
datalanguage needed for creating, deleting and manipulating
privilege blocks, and completes the description of their
components begun in the first part. The third section
offers several examples of how to add, delete and 1look at
privilege blockse

Gaiping Access fo Nodes: LOGIN

Every node in the directory nas certain privileges
associated with 1{it. For example, the ability to create
inferior nodes, or to read or write file data, is a
privilege which may be granted or denied to a particular
nodee When a user initially connects to the datacomputer he
is automatically connected to the top node of the directory
tree (%TOP), and he (ie.es, the $TOP node) is granted minimal
privileges. To acquire more, he must log in to some node,
and this node is called the login node.

Logging into this node establishes the user’s identity for
subsequent pathname references (1)e It should be kept in
mind that a user is identified to the datacomputer only by
his 1login nodee. Thus, throughout this chapter, the terms
‘user-id’ or ‘user name’ are to be understood to mean

(1) In addition to establishing a wuser identity for
privilege purposes, logging in performs various accounting
and pathname context functionse

|
i
|
:é%
i
:
!
|

SRR

b pa g B

TS S TR LT

B e R R STV T €.

A

I TR STRETINY, X, 2%y o B oo L L et e e bt o Lo B ok e SRt N S M e e S L AR O e e
i T et gy iak ket gl 2§ g <

S—

=

Chapter 4: Security and Passwords Pare 19

nothing more than the ful) pathname, including the specified
privilege bleck (if any) at each level (2), of the node to
which the user has logged-ine

Whenever a logged-in user references a node, the login
pathname i3 compared against the user-id field of every
biock in the node’s privilege block liste. If a block 1is
found whose user clas3 description includes the pathname of
the login node, tiue privilege-set described by the block
will be added to (or taken away from) the privilege set
already given to the login nodees

Rrivileges

Privilege set apecifications come in two flavors:
privileges to be granted (added) to the node and privileges
to be der.ed (taken away)e If a privilege is not specified
(as either grant or deny), then that privilege (or derial of
it) is passed, unchanged, from the superior node to 1its
subordinatees At each node level, the deny bits specified in
the given privilege block are NOT-AND ed with the privileges
of the =superior node. Then the grant privileges are OR’ed
with the result, to yield the privilege set for that node.

It is important to understand that prjvileces mav be added

and taken away at everv level of the pathrame, For example,
suppose the login node has the privilege set <CLWA> (3), and

a subnode’s privilege block specifies: grant read privilege
(G=R), and deny write privilege (D=W)es The result at the
subnode wculd be the final privilege set of <CRA> ().

(2) Pathnames may be gualified or ungualjifiedes A qualified
pathname is one containing passwoirrd strings for the purpose
of gaining particular privileges upon opening the node,
e‘g‘ r

NODE1("PASSWORD1 ") «NODE2.NODE3{ “PW3")

is a pathname qualified at the first and third levels by the
passwords ‘PASSWORD1’ and ‘PW3°, respectively. The pathname
NCDE1.NODE2,NODE3, on the other hand, is unqualifiede Prior
to Version 0/10, all pathnames were unqualified.

(3) This is a shorthand way of saying ‘this node has been
granted control <C», 1login <L>, write-to-file <W> and
append-to-file <A> privilegess.’ Specific privileges are
described in detail belowes

(4) The login privilege is not propagated to subnodese. It
applies only to the node for which it is explicitly granted.
See belowe

B

fhiaia b

T

B s

[ERR—

- ETNTITETEPE
R e T e ey e el s 2

Chapter 4: Security and Passwords Page <&

Note that a node’s privilege set can never allow a user look
at, modify, or affect a superior node in any way not
possible at the level of the superior. That is, if a user
cannot 1look at the privilege blocks for a node, he cannot
acquire that privilege for that node from an inferior one.
However, an inferior node may well have privileges relative
to its subnodes that its superior does not have relative to
its subnodese. For example, scanning along the pathname
ReBeCeDeEooee, AeBeC may have only read privileges, but does
not have rite privilege. Now, the node A.B.C.D may be
granted write privilege at level D (thus awarding AeB.C.D
read/write privileges), this does not affect AsB.Coe It
still has only read privilegee.

Rrivilege Block

Privilege blocks are data structures which define
access to nodese. Each privilege block is associated with
one particular nodes Any node in the directery, 1including
PORTs and FILEs, may have privilege blocks defined for it.
A node may have any number (including zero) of privilege
blockse When an attempt is made to access a node which has
privilege block(s), those blocks are scanned for a user-id
corresponding to the current 1login pathname and for a
password string matching that supplied by the user {in the
request referencing the node (e.ge, LOGIN, OPEN, DELETE,
etce)e If a match is found, the matching block’s privilege
bits are examined and the appropriate privileges are
granted/denied the nodes The matching algorithm is
described below in more detail.

Each privilege block can contain:
user name
host name
socket number

password character string
grant privileges
deny privileges

Each of the above fields falls into one of two categories:

1) a description of the group of users which may access the
associated node; and 2) the privileges to be granted to
these userse.

The privilege block is completely specified at the time it
is createde. When a node is referenced, only tne password
string, if any, is required; the wuser-id (including host

name and socket number), has been retained by the login
processs

Privilege blocks are created by the datalanguage command

CREATEP. They are deleted by the command DELETEP. Existing
privilege blocks may be displayed via the LIST nodename

S o

1 Ty

SR PSR o

|

e]

R

Chapter 4: Security and Passwords Pare ¢1

SPRIV(ILEGE) commande The full syntax of these commands is
described below.

User Identification Fields (User-]D)

The user identification fields include some or all of
the following: a valid login pathname or a class of login
pathnames, the number of a host ccmputer, the foreign host
socket number, an¢ a password character string. These
fields are discussad in more detail in the following
sections.

Host

The host name is an optional fielde If specified, it
must be a decimal number from 1 to 255 designating the
number of the host computer. The host name cannot be a
number greater than 255, or less than 1. It cannot be a
character string, except for the special cases LOCAL and
ANY.

The host name may also be ANY, which means that any host,
foreign or local, is acceptable.

If a host name is not specified, the default value is ANY.
User Name

The user name is the pathname or classname (5) of the
login node(s) which may gain access to the node associated
with the privilege blocke Note that a different privilege
block must be created for each specific user permitted to
use a given passworde For example, if two different users,
say CCA.WALDO and CCA.DINGLF, «vanted to wuse the same
password string (‘FOO°) to gain access to a node, two
separate blocks would have to be created, one per specifiec
user names Thus, in this example, one privilege block would
contain the information

CCAWALDO (°F0O0°);
the other,
CCASDINGLE (F0OO')e

If no user name is specified, the default is ®#¥%¥_ whieh
grants any user access to the nodee.

(5) User classnames are defined belowe

s oy

e

Chapter U4: Security and Passwords Page 2¢

socket

The socket number is a 32-bit decimal number, eeog.,
609403, or ANYe This is an identification number assigned
by the foreign host to the user logged in on that foreign
hoste. Usage of the socket number in the CREATEP statement
can ensure, for TENEX systems, that only specified users at
the foreign host site may gain access to a particular node.

Socket number defaults to ANY.

Password

A password consists of an alphanumeric string enclosed
by single quote (") characters, e.ge, P="FO0°. Non-printine
characters, except blanks, are not valid 1in a password
stringe. Blanks wmay appear at any point 1in the quoted
stringes Tab characters are not permitted.

A privilege block need not contain a passworde If it does
not, none should be given when referencing that node. Note
that npo password is pot the same as, and 1is treated
differently from, a pull password (°““)e The null password
is treated as a password of =zero length, and must be
supplied as such whenever the node is referenced,

Brivilege set specifications
The following privilege bits are defined for 0/11:

LOGIN (L) In order to control 1login 1identities
more closely, the ability to log in te a
node is not passed to subordinates. As
a result, -L (deny login) is
meaningless,

CONTROL (C) Control includes complete subordinate
control and privilege control. Control
is required for c¢reating and deleting
nodes, files and privilege blocks. It
is also required for 1listing privilege
blockse It is very powerful, and cannot
be removed by an {inferior: -C 1is not
permitted, After 0/11, C may be spiit
into meaningful components

Data Control Privileges
READ (R)
WRITE (W) ¥ implies R and A,
APPEND (A) A does not imply Re.
Conflicts are not allowed, eesge +R and -R.

i s

mS—
.

Chapter 4: Security and Passwords Page 23

OQrdering of Privilese Blocks

Ihe ordering of privilege blocks is important., When a
rode 1is referenced, the privilege blocks (if any) for that

node are scanned linearly for a password string matching the
password entered by the usere If a match is found, the
user-id of the privilege block 1is compared to the 1login
identity. If they match, the associated privileges are
granted/denied, and access appropriate to the granted
privilege set are awarded to the nodee If the end of the
privilege blocks is reached without finding a
password/user-id mateh, the node 1is opened with no
privilegese

Since the privilege blocks are scanned 1linearly, their
ordering defines their selectivitye F~r example, suppose a
node to have two privilege blocks which specify the same
password (°FO0°) but different login nodes, say, A and *#
#%_ and suppose that the block with user name A grants
greater privileges (read/write/append) than that with #*#®
(which permits read)e The proper ordering, as displayed by
a

LIST WALDONODENAME $PRIV(ILEGE);
statement, is as follows: (6)

(1),U=A,H=ANY,S=ANY ,G=RWA

(2),U=%® H=ANY,S=ANY,G=R (7)

If the order of these blocks were reversed, so that the
block with the user name "**° were first, then whenever the
password FOO was encountered the first bdlock would be
selected; 1i.e., every login pathname would match the “#&°
and the matching process would be completes Thus, the block
with the wuser name A would never be found, and the user A
would be unable to open the node with the: greater privileges
which should be granted hime

In 0/11 the user is responsible for maintaining the desired
search order, by adding and deleting privilege blocks via

their block numbersas The datalanguage for this process 1is
described belowes Future versions of the datacomputer may

(6) Details of this command are given belowe

(7) U=*®* means that any user name will te accepted as valide.

et AR

B L= B I

PN
. B

e § Pey——
» v - a

ordmeimin
.

Chapter 4: Security and Passwords Page 24

provide an automatic ordering aligorithm, which «could be
manually overridden, if desired.

User Classes (°Star’ Feature)

Classes of users may be given access to a node by
specifying a user class as the user name instead of a singie
user, This is done by means of the ‘*° and “#*¢° (“star’ and
‘star-star’) featurese If a star appears in a pathname, it
is interpreted to mean: ‘any single (non-null) partial
pathname is acceptable here’s That is, if the nodes A.Bl.N1,
AeBaN2, and AeBeN3 exist in the directory tree. usage of the
user classname A.Be* would specify any of these three
pathnameses Stars may appear at any number of 1levels; for
example, if the nodes A«XeN1 and A.Y.N4 exist, then the
user-name A-*,* would specify both of these nodes, as well
as any of the previous three, The use of a star at any
level implies that there must be a partial pathname at that

level; eege, the classname Aes%*+*® could not specify node A or
A.J.

lUser Classes, conts (’°Star-star’ Feature)

The use of a single star in a pathname indicates that a
node must exist at the level corresponding to that of the
star, and a star must be explicitly specified for each
desired 1leveles The star-star feature is designed to permit
access to several levels of nodese A star-star (“##°) in a
user name is interpreted to mean: 'any number (ineluding
zero) of partial pathnames are acceptable here’. Thus,
referring to the example of the preceeding paragraph, AeBeNt
could be specified by any of the following:

AesBoNt
AeBoN1,.H8
AeBat %
A.B.%*#
AeBot
Aottt
AJtt

n a0

as

For 0/11, only trailing *°s and/or a final #* are allowed.
The followling, for example, are illegal:

A...C

A..‘.C

Aot %D

A.....

% B 4

T

SRR VNI A

R

Chapter &: Security and Passwords Page 25

N

or
-

Ratalaneuage for File Security

Two datalanguage statements, CREATEP and DELETEP,
create and delete privilege blockse They are discussed in
the following sectionse The LIST command has a special
' l option, $PRIV (or SPRIVILEGE), which allows the user to list
the privilege blccks for a nodees)

.
i .

st YA b s gt

CREATEP and DELETEP are privileged requestse They are
{ accepted only when the associated node can be referenced
with controi privilege <C>. (This means that it may be
necessary to 1login to some particular node before any
privilege blocks can be added to ancther, and that passwords
T may be required for the login process or for referencing

nodes superior to the node for which the privilege block 1is
] to be addede.)

Creatioeg Privilege Blocks; CREATEPR

Privilege blocks are created, and fully specified by,
the CREATEP commande. A fully specified CREATEP statement
might appear as follows:

CREATEP NODE1(PW1)oNODE2, U=CCASWALDO.¥.%# H=z34,
S=604320,
Pz “SECRET PASSWORD’, G=R, D=WA, N=2;

In this example, the node for which we are creating a
privilege block is NODE1.NODE2. We must specify (°PW1°) for
NODEt in order, perhaps, to gain control privileges at the
first 1level. The parameters which follow the nodename are
the privilege keyword liste. These are discussed
individually in the following sections, and are summarized
in Appendix Ae.

CREATEP: User Name

The user name is specified by ‘U=" followed by an
unqualified pathname or classname stringes The pathname may
have any number of levelse It must not contain password
strings for any levele.

The following are valid pathnames/classnamese.
CCA
CCAWALDOSDINGLE
CChA.",*
CChAl.*#%
i.l.l
I.II
#* #

aiatico s s SRl

i

O B Bl T T B

| — Wbt

1

>
W

Chapter 4: Security and Passwords Page 26

LREATER: Host Number

Tne host number is specified by ‘H=" followed by a
decimal number from 1 to 255, or either of the strings LOCAL
or ANY.

H=28
Hz=ANY
H=LOCAL

CREATEP: Socket Number

The socket number is specified by °Sz’ followed by the
32-bit foreign-host assigned decimal number corresponding to
the directory the user is logged into at that foreign host,
or the string ANY.

5=309483
S=ANY

CREATEP: Password String

The password string is specified by °‘P=" followed by
any datacomputer string constant (tabs may not be included,

although blanks are permitted), eege, ~PASSWORD 1°, ‘2 #
++1!°, or °° (null password)e.

Note that if no password string is specified at CREATEP
time, then that privilege block will have no password
associated with ite Hjo password is different from nyll
password (P:"), which is a valid password zero characters
in lengthe

CREATEP: Grant Privilemes

Privileges are granted by °G=
C (control)
I8 (login)
R (read FILE/PORT data)
W (write FILE/PORT data)
A (append data to FILE/PORT)
in any combination and in any order, e.ge, G=CRAWL (all
privileges), G=WAR (read/write/zcppend), etce

4

followed by

CREATERP: Deny Privileges

Deny privileges are spec..ied by ‘D=’ followed by R, W
or Ae. Login (L) applies ornly to the node for which it is
specifiede It is not passed to subordinates. Control (C)
cannot be removed by any inferior node, i.e., it is passed
to all subnodese.

1
|
|
i
|

T

[——

Chapter 4: Security and Passwords Page 27

LREAIEP. Erivilege Block Number

As priviiege blocks are created, they are assigned
numbers by ({he datacomputere. Block numbers are assigned to
privilege blcnks sequentially according to their search
order, Blo¢% numbers can range from one to n, where n is
the total num:+~ of password blocks in the search seguence,
Blocks can be c«plicitly ordered by the usar at CREATEP time
by entering “I'° followed by the number that the newly added
block 1is to kive in the search sequence. N must be greater
than zero, ai'i not greater than the total number of
privilege blocia currently existing for the node. Note that
this number is not in any sense a part of the data contained
in the privilege block; it is merely the position of the
block in the pa¢sword block 1lista.

An examples Ii' there were three blocks in the privilege
block list for a rode (NODE1),

1 U=AAA
U=CCC
3 U=DDD

and a new block were to be added between the first and
second existing blocks, {.e., so that the new block would

then occupy second position, we add a keyword, N=2, to a
CREATEP command:

CREATE? NODE1,U=BBD,P=z"200",N=z2;
which reasults in the following privilege block list:
U=zAAA
U=BBB

U=CcC
U=DDD

W N -

If N had been omitted, the new block would have teen added
at the end of the liste Note that the numbers of the two
blocks following tke new one have been bumped by one.
Similarly, if anv bleock is deleted, the numbers of all the
following blocks are reduced by onee.

LOOKING AT PRIVILEGE BLOCKS;: LIST

In order to permit the user to 1list privilege block

information, the %$PRIV (or $PRIVILEGE) option exists for the
datalanguage LIST request, It looks like this:

LIST CCA.WALDO $SPRIV; (or)
LIST CCA.WALDO %PRIVILEGE;

Chapter 4: Security and Passwords Page 28

Passwords cannot be listed with the 2PRIV option (or in any
other way - 8o dont forget theml), Privilege block

information is preceded by the number of that blockes All
other information in the privilege block is listed in a
format similar to that which might be found in a CREATEP
command, e.g, either of the LIST requests above might
generate the following output from the datacomputer:

(1) ,U=CCAWALDO,R=LOCAL ,S=ANY,G=CRAWL
(2),U=CCA.®o®*® H=ANY,S=ANY,G=RWAL
(3) ,U='.",H=32,S=65u36u ,G=RL ,D=HA

$PRIV may be used only when the node has control privileges.
Deleting Privilege Blocks: DELETEP

Privilege blocks may be deleted with DELETEP followed
by the number of the privilege block to be deleted,

DELETEP NODEt, 3

The controlling node must have control privilege.

Example

This example will create a node which will be the
controlling node for all other nodes at site CCA.
Presumably, access to this controlling node would be
restricted to very few persons at that site; °“super-users’,
as it weres This could be done by means of a password. In
addition, anyone seeking control privileges for CCA might be
required to be logged-in to some other (access restricted)
nodes The person with access to CCA would be responsible
for creating subnodes, perhaps one for each programmer
permi tted to use the datacomputere. These individual
programmers could then create their own directory structures
(nodes, ports and files) in any manner they wishe.

The site-node CCA is created by the following series of
requests:

CREATE CCA;
CREATEP CCA,Pz "HONCHO®,G=CL;
CREATEP CCA,P="FLUNKY',G=L;
LOGIN CCA(HONCHO');

The user is now logged in to CCA. He has control
privilegess Next he creates a series of programmer-nodes,

Betreiine,

Lo B o B o B e I e B S : :

Chapter U: Security and Passwords Page 29

each with control privileges. Initially, two privilege
blocks are created for each programmer node. One requires a
password (known to, and probably specified by, the
individual programmer), and the other requires no password
and is accessible to anyone logged in to CCA or any of 1its
subnodese. However, persons who log in to a programmer node
without specifying a password are not given control
privileges and thus cannot modify or delete anything that
the programmer wishes to keep securee.

CREATE WALDO; CREATEP WALDO,U=CCA,P= TURKEY ,G=CL;
CREATEP WALDO,U=CCA.*¥,G=L;

CREATE CLYDE; CREATEP CLYDE,U=CCA,?= FETCH’,G=CL;
CREATEP CLYDE,U=CCA_."#,G=L;

CREATE DINK; CREATEP DINK,U=CCA,P= "PODUNK’,G=CL;
CREATEP DINK ,U=CCA<*¥,G=L;

After this is done, super-user checks the privilege blocks
he has created, first at his own node level:

LIST $TOP.CCA("HONCKO®) %$PRIVILEGE;

and he receives a datacomputer printout in the following
format:

(1),U=%% H=ANY,S=ANY,G=CL
(2),U=%% H=ANY,S=ANY,G=L

He next verifies that each of the programmer-node privilege
blocks has been correctly entered, e+ge,

LIST WALDO %PRIV;
and the datacomputer replies:

(1),U=CCA,H=ANY,S=ANY,G=CL
(2),U=CCAo** H=ANY,S=ANY,G=L

At this point, programmer Waldo tells super-uszr that he
would rather have °‘DONKEY as his control password rather
than ‘TURKEY e Since the wuser name (U=CCA} in Waldo's
control privilege block is more restrictive than the user
name (U=CCA.**) in the non-control privilege block, the
first privilege block must be deleted and the new one added
in the same position (N=1):

DELETEP WALDO 1;
CREATEP WALDO,U=CCA,P="DONKEY’,G=CL,N=1;

bt G SRR S S ol GRER it e iy e o
S

A o T T T M P o e
it B <o B oo N o

’WM\ ‘l‘,

chots |

AN I
T e

et SR e |

¥

_ “ H H H M l.ﬁaq o5d 5;;55&:.,1

4

Chapter 4: Security and Passwords Page 30

We now have the following directory:

CCA
CCAWALDO
CCACLYDE

CCACDINK

Each of the programmer-nodes listed above has its own
password which is known to the person having access to that
nodes In addition, each is required to login to CCA before
being able to acquire login and control privileges at its
own level, (Most or all of the programmers at CCA are given
only the password FLUNKY, which does not give control
privileges. Thus, they cannot create or delete any nodes at
the programmer-node level or look at the restricted data of
any other programmerse.)

As soon as he is informed that he may Jjoin the select
international hoard of datacomputer users, Waldo rushes to
his terminal to login:

LOGIN CCA(FLUNKY®);
LOGIN WALDO(“DONKEY’);

Since he has logged in to his node using the password which
grants control privileges, Waldo now creates BOOKFILE and
BOOKPORT and reads some data into BOOKFILE from a TENEX file
named TENEX-BOOK.FILE (8):

CREATE BOOKFILE FILE LIST(,1000)
BOOK STRUCT

TITLE STR (,100),C

AUTHORS LIST(5) c

0)

50

1
1
AUTHOR STR (c

1
PUBLISHER STR (=1

y =
),C
END;

CREATE BOOKPORT PORT LIST(,1000),P=EOF
BOOK STRUCT
TITLE STR (,100),P=EOR
AUTHORS LIST(,5),P=EOB
AUTHOR STR (,50),P=EOR
PUBLISHER STR (,50),P=EOR
END;

CLOSE %OPEN;

OPEN BOOKFILE WRITE;

e i i

S~
o

G Gm B i e

=3 e B Eem

oo B s

- ommos BN - oot |

o

Wy

#

e IR o |

-

Chapter 4§: Security and Passwords Page 31

OPEN BOOKPORT;
CONNECT BOOKPORT ‘TENEX-BOOKoFILE®; (8)
BOOKFILE=BOOKPORT;

CLOSE SOPEN;

In order to permit others to look at his BOOKPORT, Waldo
creates a couple of privilege blockse The first permits
anyone at CCA to look at his book list, while denying him
t=> right to change anythinge The second is for Waldo's
privcete use in changing the file:

CREATEP BOOKFILE,U=CCAe*,G=R,D=AW;

CREATEP ,
BOOKFILE,U=CCA<WALDO,P= "READ*MORE®EVERY®DAY ,G=RWA;

(8) A TENEX filename is used in this example for the purpose
of didactic claritye. In practice, this would usually be
done only by local datacomputer users (users located at the
site of the datacomputer). Remote users would have to
arrange for operator intervention, if connecting to a TENEX
file at the datacomputer aite; or would specify the host
name and socket number from which the data would be sent to
the datacomputer,

5
.
5
&
5
%

Page 32

Chapter 5: Assignment and For-loops

Assignment Invelving Qutermost Containers

Transmission of data is achieved with an assignmente.
The syntax of an assignment request that involves two
outermost containers is

<ident> = <ident>;

where the <(ident>s are the node names of open outermost
containerss The first ident in the statement is that of the
receiving container; it must be open in either WRITE or
APPEND modeo The second ident is that of the transmitting
container; it can be open in any mode, but it must have READ
privilege (see Chapter 4).

The containers in the assignment may be either files or
portse The various combinations are listed here, with a
description of the action of the assignment request in each
casee

Recelving Transmitting Comment
container container

FILE FILE coples data from one FILE to another
within the datacomputere.

FILE PORT transmits data from sSome source
external to the datacomputer through
a PORT, into a FILE.

PORT FILE transmits data from a FILE, where it
is being kept in the datacomputer,
through a PORT, to the outside worlde

PORT PORT transmits data from one place to
another in the outside world, using
the datacomputer only as a channel
for transmission.

Ihe Matching Rules

In any assignment statement such as

X =0y

S B

S TR T, S T

ilv
- 3
i ©
-
2
|
¥

e B Em

e B e R

]

e

T,

L B B I B B

L B

Chapter S: Azsignment and For-loops Page 33

(not only one involving two outermost containers) the two
operands, X and Y, each have their cwn de2scriptione The
datacomputer will transform the data in Y to match the
description of Xe 1In order for the datacomputer to be able
to do this, the descriptions must gmatche This amounts to a
restriction that only similar objects can be assigned to
each other, Specifically, for two assignment-operands X and
Y to match:

leAe X and Y must have the same type: LIST, STRUCT, or
data types STR, INT, or BYTE,

AND

1eBe If X and Y are both LISTs, then they must have
compatible gizes, or else X must be a PORTe The sizes are
compatible if the minimum size of X is less than or equal to
the minimum of Y and the maximum size of X is greater than
or equal to the maximum size of Yo This restriction leads
to cases where it 1is legal to assign Y tc X but not to
assign X to Yo Note that if X and Y are outermost 1lists
with no 1ist size specified, the datacomputer supplies a
default size based on the space allocation. (Use the LIST
request with the %$DESC option to find out what the default
size is.)

AND

1eCe If X and Y are STRUCTs or LISTs, then at least
one container immediately enclosed in X must match, and have
the same ident as, one container immediately contained in Y,

OR

2e X must be a STRing, INTeger or BYTE and Y a
constante. A constant is an arbitrary string of characters.
If they are enclosed by single quote marks, then it 1is an
ASCII constant, If they are not inclosed by quote marks,
then the string is used as a binary constant; a single or
double quote mark may be included in such a string only by
prefixing it with another double quotes The constant
“DON"’T" represents the string DON'Te (This rule 1is
included here for completeness.)

Radding and Irupcation

If two containers of type STR are used in an
assignment, the matching rules do not require that their
sizes matche There are three cases:

1e The two sizes are equale The string 1is assigned
without changee.

2e In the assignment X=Y, the size of X 1s greater
than that of Y. 1In this case, it is as if the string in Y
is padded at the right-hand side to make it as 1long as X,
before assignment 1is performed. If a fill character is
specified in the description of X (i.ee. if the parameter

s

e i

T

Chapter 5: Assignment and For-loops Page 34

,F="a” or ,Fzn is wused in the CREATE recuest), then that
character is usede Otherwise, a blank is used for ASCII
strings and zero is used for non-ASCII datas

3¢ The size of X is less than that of Y. The string
contained in Y i{s truncated at the right-hand side to be as
short as X, ard the shortened string is then assignede.

Lonversion

It is pussible to assign the data type &TR, 1f (it
contains a number, to the data types BYTE and INT, and the
reverses Ia such an assignment, the input ASCIi1 STR can be
any length, but its binary magnitude must fit in 35 bits, or
the specified size of the BYTE or INT. The only legal
characters are numbers, + and - signs, and blankse Leading
and trailing blanks are allowed but embedded blanks are note.
Any number of sign characters may precede the number, mixed
with blanks; even numbers of minus signs cancele. A string
with no digits is an error; any error causes a zero resulte.
An input BYTE is treated as a positive number regardless of
the high order bite. If the input (right hand of the
assignment statement) INT or BYTE will not fit properly in
the output bytesize, an error statement is made, and the
result is truncated on the left. An output ASCII STR will
contain no more than eleven significant digitse If the
number being converted for output is negative, a minus sign
will appear in the first character position in the output
stringe The minumum possitle number of digits will Dbe
output, with 1leading zeros only if the STRs minimum length
is greater than elevene If the STR does not contain enough
positions to hold the entire number, an error statement will
be made.

Examples

Let us consider a few examples of the cperation of the
ruleses Suppose we have

CREATE M FILE LIST (25) RECORD STR(10);
CREATE N TEMP PORT LIST (25), P=EOF RECORD STR(10) ;
M = N;

where M is a FILE in which data read from the PORT N {is ¢to
be stored in the datacomputer, The assignment M = N {is
legal because M i{s in WRITE mode and both M and N are open
(opened by the CREATE statements and the MODEs set)e 1In
addition, M and N match: their subcontainers have the same
ident (RECORD), and matching descriptions. They satisfy
rule 1.A, since the type is STR in both cases, and rules 1,B
and 1.C do not apply to containers of type STRe

The effect of this assignment is t¢ read strings of

. 4 s ~t

- agr.f-.._:aa,.mw T

—

e N T

=l

Chapter 5: Assignment and For-loops Page 35

length 10 from the PORT N, and to store them in the FILE M.
If an attempt is made to store more than 25 strings in M, an
error message is output, as space was allocated for only 25
stringse

A similar example, using the above description for M:

OPEN M APPEND;

CREATE O TEMP PORT LIST (25), P=EOF
RECOKD STR (,15), P=EOR ;

M = 0;

Each STRing in 0 is no more than 15 ASCII characters and
ends with an EORe Each one will be padded or truncated to
10 characters since M has fixed-length rather than variable
length STRingse.

Now 3 more complex examplees

CREATE FF FILE LIST (,25)
PERSON STRUCT
NAME STR (15)
ADDRESS STR (20)
CITY STR (10)
STATE STR (2)
ZIP STR (5)
SOCSECNO STR (9)
DEPENDENTS LIST (10) NAME STR (15)
END ; :
see requests that store data in the FILE FF oee
CREATE PP PORT LIST, P=EOF
PERSON STRUCT, P=EOR
NAME STR (15)
SOCSECNO STR (9)
END;
PP = FF ;

Here, the assignment PP = FF is 1legal because: PP 1is 1in
WRITE mode, both FF and PP are open, and their descriptions
matche Rule 1.A: the type of both FF and PP is LISTe. Rule
1eB: PP 1s a PORT. Rule 14C: the subcontainer PERSON
immediately contained in FF has the same ident as the
subcontainer PERSON in PP, and the two STRUCTs PERSON matche
We determine this last fact by going around once again with
the matching rulese.

Rule 14A: PERSON in FF and PERSON in PP have the same
type, STRUCT. Rule 1B does not apply to STRUCTs. Rule
1eC: a container immediately contained by PERSON in FF,
NAME, has the same ident (NAME) and a matching description
(STR (15)) as a container immediately enclosed by PERSON in
PP, that is, NAME.

The effect of ¢this assignment 1is to create a new
instance of the struct PERSON for each instance of PERSON in

Ugb ittt kbt 1
o

PR RN IR

O T T

—

[S

"

L4

Coamoed

L 1.

S

|

-

Bl o A BEd el] e

Chapter 5: Assignment and For-loops Page 36

FF, and add it to the LIST PP (that is, output it through
the PORT PP)e Each PERSON that is output contains only a
selection of the data stored in FF: only the NAME and
SOCSECNO.

If the situation here were reversed, that is, 1if FF
were open in WRITE mode, and PP were in READ mode, the
effect of the assignment

FF = PP;

would be to read data from the PORT PP and store it 1in the
FILE FFoe However, only the NAME and SOCSECNC would be
available as datae The datacomputer handles this situation
by assigning strings consisting only of blanks (the default
since no fill character is specified in the description) to
the unmatched STRs in the output LIST-membere. Thus,
ADDRESS, CITY, STATE, ZIP, and all 10 instances of NAME in
the DEPENDENTS LIST would be blank in the FILE FFe

SYg87

SAM SMITH] JONES DURFEE

FILE1 WORKFL DATAS TEMPX

Figure 5-3« The directory for a sample application:
providing backup file storage for time-sharing users

A directory of this sort would initially be set up by
several CREATE requests; i.e.

CREATE SYS87;
CREATE SYS87eSAM; CREATE SYS8T7SMITH;
CREATE SYS87.JONES; etce

ekl at

bt uha s

]

Chapter 5: Assignment and For-loops Page .37

Then, whenever a particular file was to be moved to the
datacomputer, a directory node for that file would be set up
by, for example,

CREATE SYS874SMITHeFILE1 FILE LIST (,999)
A STR(80);

(describing a file with less than 1000 80-character records)
and the file would be moved with an assignment statement
specifying a PORT with a matching description, and the FILE
FILE1, open in WRITE mode. Thus:

CREATE T TEMP PORT LIST A STR(80);
FILEY = T;

Note that the two outermost containers FILEt1t and T in
the assignment statement FILE1 = T match each others

In order to recover the file from the datacomputer when
it 1is again r-zeded, a PORT would be opened in WRITE mode
with

CREATE T TEMP PORT LIST A STR(80);
OPEN SYS87.SMITHe.FILE1 READ;
T = FILEY ;

and the reverse assignment would take places

Selection of LIST Mempers

In the examples given above, there is one output LIST
member for every input LIST member. Subsets of the input
LIST member (i.es« the LIST on the right side of the =) may
be specified by the wuse of a WITH clause. For example,
con3sider the description

CREATE F FILE LIST
P STRUCT A STR(3) B STR(5) END;

and a matching PORT Re If only some of the P°s on the LIST
F were to be output -~ those with the string A equal to the
string °500°, say -- one could specify

R = F WITH A EQ ‘500°;

referring to the set of all members P of the LIST F that
have the given propertys Note that A is understood to refer
to FePeA (STR A in STRUCT P of the outermost container FILE
F); see the section on the context rules below for an
explanation. Quotes are used in the expression ‘500 ° to

o B i

stk

PRI ¥

o s A NI SIS

PSS

Chapter 5: Assignment and For-loops Page 38

indicate that an ASCII string constant is intended.

In a WITH clause, the expressions j>ne can use to choose
certain LIST-members, which are called Boolean expressions,
must involve comparison of a container that is a STR, INT,
or BYTE with a constant (like °‘500° in the example), using
the comparison operators

EQ (equals)

NE (not equal to)

GT (greater than)

LT (less than)

GE (greater than or equal to)
and LE (less than or equal to)e.

Combinations of comparisons with
OR, AND, NOT, and ANY

are also possiblee. 1In precedence of operators, ANY (see
below) 1is highest; NOT 1s next in precedence, then AND,
which is in turn higher than OR; parentheses may be used to
affect the order of evaluation of these operators. Some
sample input-specs are thus:

F

F WITH A EQ °500°

F WITH A EQ “500° AND B GT °AZ222Z°

F WITH (A EQ “500° AND NOT B GT “MONDA"' OR
(A EQ ‘600° AND B NE “ZYYYY')

For ASCII containers, the operators GT, LT, etce compare
the ASCII codes for the given strings and the givez 3s%rings
nust be of the specified 1lengthe This means that the
character blank 1is less than the digits, which in turn are
less than the letterse Consult a reference document for the
complete list of ASCII codes for all characterse

Also, while an input-spec like

’ ’

F WITH A EQ 5

is legal, it will not find any P’s, since there are no A’s
with only one character,

Data will be compared to other data or constants
without reference to interpretation as STR, INT or BYTE.
Care should be taken to specify quoted ASCII constants for
ASCII STRs and unquoted integer <constants for INTs and
BYTEse A warning message will appear if the operands 1in a
comparison are of different types, but the operation will
continuee.

gl A S5

(SRS s 2 _‘“K-k. i St ok LS g0 s

AP AP/ IS TIPS TIIEN. DPUEY

—

» e sz

P

Chapter 5: Assignment and For-loops Page 39

Betrievals Usiog Inner List Members

Consider a description like

G FILE LIST
R STRUCT
A STR (4)
B STR (4)
W LIST (20)
WA STR (5)
END

Each R has 20 WA's, since R contains an inner 1list (W)e An
input-spec like

G WITH WA EQ “ABCDE’

specifies all R's with at least one WA with value ‘ABCDE’.
This may also be expressed as

G WITH ANY WA EQ “ABCDE’

The former is called an jmplicjt ANY and the 1latter, an
explicjt ANY.

The container WA can be wused in boolean expressions
such as

G WI™i ANY (WA EQ "MARCH® OR WA EQ “331037)
G WITH ANY (WA EQ “MARCH® OR WA EQ “WORD °)
G WITH ANY WA EQ “12345° AND B EQ “CALI’

An ANY expression g¢annot be wused within the object of
another ANY expression (nested A%Y’s)e

In most cases, the expliecit ANY 1is not required.
However, consider the description:

FAMILIES FILE LIST (,100)
FAMILY STRUCT
MOTHER STR (10)
FATHER STR (106)
CHILDREN LIST (10)
CHILD STRUCT
NAME STR (,10), C=1
AGE STR (2)
END
END;

BRI RE

e

Chapter 5: Assignment and For-loops Page 40

The following expressions are not equivalent:

FAMILY WITH ANY (NAME EQ “ELLEN’ AND
AGE EQ ‘21°)

FAMILY WITH NAME EQ ‘ELLEN’ AND
AGE EQ ‘217,

The latter case is interpreted as:

FAMILY WITH ANY NAME EQ ‘ELLEN’
AND ANY AGE EQ “21° ‘

and refers to any FAMILY with an ELLEN who either is 21 or
has a sibling who is 21 The former refers only to FAMILYs
with a 21-year-o0ld ELLEN,

In all of these examples, the 4inner 'list is the
second-level 1liste. If there is a third level 1list, its
members may not be used in a boolean expressione. For
example, given the description:

F FILE LIST R STRUCT
A STR(1)
L LIST (5)
L1 LEST {5)
B STR (1)
END;

L1 is a third-level 1list, and so B cannot be used in & WITH
exprestione However, A may still be used in a WITH
expressione

Betrievals Usipg Inverted Containers

An elementary data container may be jnverted if it 1is
contained 1in a FILE which is a LISTe This is useful if the
container will be used often in a boolean expressione.
Inversion is specified by "I=D" or "I=I" as follows:

CREATE F FILE LIST (0,100)
P STRUCT
A STR (3), I=D
Q LIST (10)
B STR (%), I=I
END;

The "I" of the above stands for inversion, the "=D" (for
distinct) is used with members of outer lists, the "=I" (for
indistinct) with inner lists.

An inversion on the string A increases the efficiency
of retrieving sets of outermost-LIST members by the contents

G i, o ki e v b

S Y

Chapter 5: Assignment and For-loops Page U1

of the string A -- that is, retrieving subsets of the P’s

i that are defined by their values of A, Retrieval by content

E based on a particular string is possible whether or not that

string 1is 1inverted; only the efficiency is improved by the
existence of an inversion on the stringe

There is a certain cost assoclated with inversion,

o however. Storage space must be allocated for a secondary

data structure that the datacomputer uses for retrievals
{? based on inverted strings. Appending to 2 FILE takes longer
— when it is inverted, since the secondary data structure must

be changed as welle. Thus, the decision to invert a
particular string willi depend on the relative cost of
increased retrieval time versus increased storage space, the
frequency of retrieval based on the particular string, and
other considerations. Appendix C contains further technical
details concerning inversion,

Retrievals Using Contajner Address Table, (CAT)

{2 The Container Address Table (CAT) is a feature which
will speed retrieval of variable length datae The CAT is a
table of pointers to the start of each variable-length LIST
member. The CAT is automatically formed for those variabdle
length LIST s which contain at least one inverted containers
For example:

[on—
+
i

T Al I AT N P, £ 55
—

R

[

L WAL ® £ 0 . es e B

h CREATE F FILE LIST
A STR (,10), I=D;

{ The user can specif; a CAT for LIST s which do not contain
an 1inverted container., The CAT will be used for retrievals
based on the virtual index container for FILES of a format
7 similar to the following:

CREATE F1 FILE LIST (,50000), CAT
A STRUCT
id B STR (,10)
C STR (5
X BYTE, V=I
END;

Retrievals would be of the form (P1 a matching PORT):
ok P1=F1 WITH X EQ 2413;

onr
i P1=F1 WITH B GT °1000°;

These retrievals can be executed whether or not there 1is a

- CAT, but the execution is faster with a CATe There is, of
i course, a storage cost to the CAT, which is proportional to
Ik the number of LIST members.

e e

1
-y

FE—

e B £

 S—

]
<

»
e

ity

v

FEremia g

Ll

Bopiiie
] 4

p TVARE T Y
L4

s

FRHRTY
r

Chapter 5: Assignment and For-loops Page 42

Assizopent with EOR

Containers other than outermost can also be wused 1in
assignment statements, if they are inside a FOR loope FOCR
causes some set of datalanguage statements (usually
assignment statements) to be executed several times, once
for each member of a given set of LIST-members,

The syntax of the FOR-request 1is:
FOR <output-specd>, <input-spec> <body> END ;

The <input-spec> specifies a set of LIST-members to which
the operations specified in the <(body> are to be appliede A
new member of the LIST specified by the <output-specd> 1is
created for each member of the input set processeds II the
output-spec is omitted, the FOR-request generates no outpute.

Ihe input-spec The input-spec must specify a set of
LIST-memberses The simplest kind of input-spec is an entire
LIST -« 1. the set of all the LIST-members. For example,
if

CREATE F FILE LIST
P STRUCT A STR (3) B STR (5) END;

then F would be a legal input-spec, and would refer to the
set of all P°'s in the LIST F (1).

A subset o7 the LIST-members may be specifiec by the
use of a WITH clause in the input-spece The input-spec on a
FOR-1loop looks like the inmput spec on the assignment of
outermost containers (discussed above)s Thus

F WITH A EQ ‘500°

can be used in a FOR-loope

Ihe output-spec The output-spec 1is an optional
argumente. Like the input-spec, it must be the name of a
LIST-gembere. The LIST that contains the LIST-member
specified by the output-spec 1is often called the gQutput
LISTe A new member is created and added to the output LIST
for each execution of the FOR-bodye

A FOR-loop may be 1loosely thought of as assignment
between two LISTs. However, the descriptions of the members
of the input and output LISTs need not matches Otherwise,

(1) Note the syntactic difference from version 0/10, LIST
(instead of LIST member) naming for loop argumentse

Gl MR

¥ Ao

SAORITF P LNRADA DA NO IR 20, TR N A

TNATAL T

o i

3 y
B rovray

L
Wi

v pagod

Posrirmarey
a -

Chapter 5: Assignment and For-loops Page 43

the restrictions governing the input and output LISTs of a
FOR are largely the same as those governing outermost LISTs
used in assignment:

e Both LISTs must be open or contained in open
outermost containerse.

2e The output LIST or its outermost container must be
in WRITE or APPEND mode.

3¢ If the input LIST is not an outermost container,
the LIST that most immediately encloses it must be the input
LIST of an enclosing FOR loopes

4, Similarly, if the output LIST is not outermost, the
LIST that most immediately encloses it must be the output
LIST of an enclosing FORe.

Ihe FOR-body The operations that are 1legal 1in a
FOR-body are assignment and another (nested) FORs. The
assignment may be of the form

<name> = <constant> ;

where <name> refers to a container that is a STR, INT or
BYTE (see matching rule number 2, page 33), or assignment
may be of the form

<name> = <name>;

to transfer data from one container to another. If the
latter is the case, then assignment is subject to

1e the restrictions specified in the matching rules
above,

2e the usual restriction that data can be transmitted
into a container only if it is open in WRITE or APPEND mode,
and

3¢ the restriction that assignment must occur between
objects, not getg of objectse.

4o In Version 0/11 of datalanguage, there are other
restrictions governing the containers that can be referenced
in the body of a FOR-loope See Appendix Ee

Let us look at a few examples, and describe their
operation in wordse. With F a FILE as above, and

CREATE Q PORT LIST

P STRUCT
A STk (3)
B STR (5)
END;
L N J
OPEN F APPEND;
then
F = Q;
and

FOR F, Q

AR AN

-

o

o o s TS SR

B e =

4
$

[YoE

e el g e

Chapter 5: Assignment and For-loops Page 4l

P = P 3
END;

have the same effect: a new member P is created and added to
the LIST Fe

Likewise
FOR F, Q WITH A EQ “500°
R 3 P
END;

has the same effect as
F = Q WITH A EQ “500°

A final example: with FF and PP as given in the example
for the matching rules,

FOR PP, FF WITH STATE EQ ‘RI’
OR STATE EQ ‘CT° CR STATE EQ “MA’
OR STATE EQ 'VT® OR STATE EQ 'NH'
OR STATE EQ ‘ME’
NAME = NAME;
END;

will have the effect of outputting through the PORT PP, the
NAMEs of all PERSONs in the FILE FF who live in New England;
i.es with STATE equal to one of the New England statess

URDATE

With UPDATE a vcer éan replace the contents of any
container which {s neither variable length nor invertede.
Given 2 FILE and PORT:

CREATE FAMILIES FILE LIST
FAMILY STRUCT
MOTHER STR (,8), C
FATHER STR (,8), C
KIDS LIST (,10), C
KIC STRUCT
NAME STR (,6), C=1
AGE STR (2)
KIDSNUM BYTE, V=I
END
FAMSNUM BYTE, V=I
END;

1
1
1

CREATE PAMILIES PORT LIST
FAMILY STRUCT
MOTHER STR (,8), P=EUR
FATHER STk (,8), P=ECR

Chapter 5: Assignment and For-loops Page 45

"

KIDS LIST (,10), P=EOB !
KID STRUCT ;
NAME STR (,8), P=EOR ;
AGE STR (2), P=EOR
END
END;

then, with the FILE FAMILIES open in the WRITE MODE:

UPDATE FAMILIES WITH
MOTHER EQ MOTHER AND FATHER EQ FATHER,

PAMILIES
UPDATE KIDS WITH NAME EQ NAME, KIDS

AGE=AGE; END; END;

T ey ey

Whern UPDATing, the datacomputer finds the first match on the
outer LIST (FAMILIES); then, if one is requested, the first
match on an inner LIST (KIDS)e The datacomputer does the
UPDATE and proceeds to the next matche The above UPDATE
will match the transaction PORT on MOTHER, FATHER (in the
outer LIST), then on the NAME (in the inner LIST) and
replace the AGE with the AGE from the transaction PORT.
Only the first match is UPDATEd; if others exist, they will
not be founds The EQ specifies those elements which must
match exactly between the master FILE and the transaction
PORT; the "=" is the UPDATing assignment of the transaction
PORT element which will replace the master FILE element,
Since the datacomputer is miking a sequential pass of PORT
and FILE, the information appearing in the transaction PORT
must occur in the same orde, as it appears in the master
FILE; that is, outer and inner PORT LIST members must be in
the same order as those of the FILZ, LIST members which
contain no information different from the master FILE (which
are not being changed by the UPDATE) may be omittede.

Res s e s R S i

oy

LT B B B

O R R AR oy

I{ the datacomputer fails to find a match on MOTHER,
FATHER or NAME, it will give the error message (see Chapter

6):
;U000 dd-mm~yy hhmm:ss LEBARF: NO MATCH FOUND

Any UPDATing information occurring after the failure to
match will ©be discardede. This happens because the FILE
being UPDATEd is searched to its end for a match and the
datacomputer presently has no method of searching more than
once through a portion of the master FILE.

vala iy ot T TR R S TR

It is possible to do an UPDATE with qualifications both
on the master and transaction L1STS (eeeFAMILIES WITH MOTHER
EQ “ANITA®, PAMILIES WITH FATHER EQ “JOHN eee)e In such a
case, the datacomputer finds the match on the transaction
LIST and then the match on the master LISTe.

oM SUN AN ONE OGN U W ewy

o

.
Wt Aol

[Ps——

Chapter 5: Assignment and For-loops Page U6b

A common process would be to change some existing data
within a FILE and then to APPEND further {nformation to the
end of a FILEe Care must be taken when doing this, to
remember to change the FILE MODEe. An UPDATE requires the
FILE be in WRITE MODE, but if the MODE is not changed to
APPEND before attempting to add further data, what has
already been written in the FILE will be replaced.

Although an inverted container may not be changed by an
UPDATE in Version 0/11, if matching for the UPDATE refers to
an inverted container, the datacomputer makes use of the
inversion to perform the UPDATE more efficiently. The
requirement of exactly similar ordering still remainse

An UPDATE may be done without a transaction PORT or
FILEes For example:

UPDATE FAMILIES WITH MOTHER EQ “ANITA’
UPDATE KIDS WITH NAME EQ “JULIE’
AGE="24° END; END;

will determine that LIST-member with specified MOTHER and
NAME and change the associated AGE to 24, When doing an
UPDATE such as this one, in which the information 1is
contalned in the request, the datacomputer will give no
message if the requested matches on MOTHER and NAME are not
found. Also, this type of UPDATE will change all instances
that fulfill the specifications, not just the first onee.

UPDATing is one method by which a number of elements
can be changed with a single "= quoted constant" assignment.
If the restriction WITH NAME EQ “JULIE® is dropped from the
above UPDATC al' KIDS 4in FAMILIES WITH MOTHER EQ ‘ANITA’
will be given an .GE equai to “247,

Mismatched FOR Loops

It is possible, by using a mismatched FOR-loop, to
output selected information from the FILE LIST.

CREATE MISFAM PORT LIST
KID STRUCT
FATHER STR (,8), P=EOR
NAME STR (,8), P=EOR
AGE 3TR (2), P=EOR
END;
then
FOR FAMILIES
FOR MISFAM, KIDS
FATHER=FATHER; NAME=NAME; AGE=AGE;
END; END; '

i TR T AR T

LI P A Sy

d bl et b LD

Al

Qs

1

A

i

H
[

Chapter 5: Assignment and For-loops Page 47

will output all children’s names and ages and the father’s
name for each childs The selection may be further narrowed
by reference to the virtual index containerse.

FOR FAMILIES WITH FAMSNUM GT 5

FOR MISFAM, KIDS WITH KIDENUM GE 1
FATHER=FATHER; NAME=NAME; AGE=AGE;
END; END;

This will select the FATHER, KID HAME and AGE of those
FAMILIES with one or more child, which are not in the first
five FAMILIES.

ATREREORY TR HRA P

L O
i e

L4
| P

Page 48

Chapter 6: Using the Datacomputer

We proceed now from the basics of the language itself,
such as containers and assignment, to a broader view of how
datalanguage might be employed by a user’s program. We will
discuss such matters as accessing the datacomputer,
transmitting data to and from datalanguage PORTs, and
various aids to the maintenance of data and FILE and PORT

descriptions on the datacomputeres

Interacting with the Datacomputer

Typically, datalanguage requests will be sent to the
datacomputer by a user program residing on some computer on
the ARPA networke All interaction between the user program
and the datacomputer takes place over the network;

Information transmission over the network takes place
along wuni-directional pathse For a two-way conversation,
two such paths are needed, one for transmission 1in each
directions The end of & transmission path-is called a
socket; a socket can be either a send (output) or receive
(input) sockete Obviously, a transmission pati:requires a
send socket at one end and a receive socket at the other. A
diagram of the sockets involved in a two-way conversation
over the network appears belowe

USER (HOST) COMPUTER DATACOMPUTER
USER QUTPUT DATALANGUAGE
SOCKET INPUT SOCKET
USER INPUT DATALANGUAGE
SOCKET OUTPUT SOCKET

Figure 4-1. Network connecticns to the datacomputer

A host computer is identified on the network either by
a number or by an alphabetic name, like BBN-TENEX. A socket
within a given host is identified by a number; send sockets

et ACTH

| —

>
]
§

[&
-

1

Wrevihablie
*

(]

1

f = T W“

-

s |

Chapter 6: Using the Datacomputer . Page 49

have odd numbers and receive sockets even ones. For a
connection to be opened, both hosts involved must request
that it be opened. Likewise, after data transmission is
complete, both hosts must c¢lose their ends of the
connections. The period of ¢time during which network
connections are open between a user host and the
datacomputer is called a sessione.

In the user program’s dialogue with the datacomputer,
the transmission in one direction consists 1largely of
datalanguage requests, whilie messages from the datacomputer
are sent in the other direction, to the user programes The
sockets at the datacomputer that are used for these purposes

are called the datalapguage input socket and the
datalanguage output socket. The terms datalanguage
input/output port are also usedes These ports, like the
PORTs that a wuser can create with datalanguage CREATE
requests, are channels for the input and output of
information. However, the purpose of the datalanguage ports
is to receive datalanguage and transmit datacomputer
messages; the purpose of a wuser PORT is to transmit or
receive datae.

The protocol by which a wuser program can set up
datalanguage input and output sockets connected to its own

output and input sockets is described in Appendix II of this
document,

Synchropjzation

Since use of the datacomputer typically 1involves the
interaction of two programs at opposite ends of a
communication network with a finite time delay, steps must
be taken to ensure that the programs remain in synchrony
with each others If they do not, the user program might
blithely go on sending datalanguage vhen the datacomputer
expects data or might receive diagnostjc me3asages when it
expects a list of directory node names,

To avoid such problems, the datacomputer generates a
variety of messages that keep the user program informed of
what 1s going one The messages fall into several
categories: there are error messages, which will be
discussed in a later section; irformational messages, which
can safely be {ignored or merely logged by a user program;
and synchronization messages, some of which at least must de
processed by the user program to ensure proper
communications The first character of the message differs
from category to category, allowing the user program easily
to differentiate the various classes of messagee "

et daeaa e

WM SR o Sl SRS L L A S

S

i

¢)
%
e

_-—-—1

o= S
[-

wrs
‘bm-ml

-
S——

e

+

[o]
-

O R I T

£y

i B g

=

L T B

Chapter 6: Using the Datacomputer Page 50
Prefix Type of Message
2y =y OF + error message
s informational message
. synchronization message

Gther special characters may be added as datacomputer
message-prefix characters in future versions. The letters,
digits, tab, and space will never be wused as message
prefixes, howevere.

The datacomputer’s messages all follow a common format,
which includes the special header character just described,
a letter and three digits that a program can use to identify
the message, the date and time of the message’s
transmission, and a variable-length string of text that can
be read by a human usere. Specifically, the format is:

¢X999 dd-mm-yy hhmm:ss (TAB) TEXT STRING (CR, LF)

where « represents the header character, X999 represents
the message identifier (for example, 1210), dd-mm-yy
represents the day, month, and year (for example, 25-09-73),
hhmm:ss represents the time on a 2U4-hour clock in hours,
minutes, and seconds, (TAB) represents a tab character, aad
(CR, LF) represents the carriage return, 1line feed
characters that terminate the messagee. All alphabetic
characters in the message are capitalizeds Note that the
message may be very long (too long to orint on a T72-column
printer, for 1instance), so a user program that processes
datacomputer messages may have to format them to be
readable,

In this manual, only the invariant parts of messages
will be displayed; that 1is, the header character, the
identifying letter and digits, and the message text.

To illustrate the use of synchronization messages 1in
pacing 1interaction with the datacomputer, consider these
two:

«I1210 LAGC: READING NEW DL BUFFER
«J900 FCFINI: END OF SESSION

The first message, 1210, .s sent by the datacomputer over
the datalanguage output socket, and hopefully received by
the user program over an {aput socket, whenever the
datacomputer 1is ready to accept datalanguage requestse The
user program will in general r:spond to this message by
transmitting a ljipe of datalanguagee A line is some number
of characters (currently there is an upper 1limit of about
2500) terminated by either the character sequence carriage

G e s e b e e

s
&
F
|

E

il o Reph e 2l

RS O G L T e

o

¥

e W e R R B e Eg Dy PN DWR PN

YAy » A

g

Chapter 6: Using the Datacomputer Page 51

return, line feed (ASCII codes 15, 12 octal) or the single
character eol (37 octal)e On a line may be one datalanguage
request (terminated by a semicolon), several requests (each
terminated by a semicolon), or a portion of a request.

In the first two cases, when the datacomputer receives
the requests (and if they contain no errors) it will proceed
to execute them, (typically generating messages and/or
initiating data transfers as it does). Following execution,
it will again send the ,1I210 message signifying that {t is
again ready to receive datalanguages, In the third case, the
datacomputer will continue to send .I210 messages, prompting
the user program for lines of datalanguage, until a complete
request has been assembled; the regquest will then be
executed as described abovee

The second message, +J900, is sent by the datacomputer
at the end of a session. The user program may request that
the session end by sending the datacomputer a control-Z
(ASCII code 32 octal) in response to a .I210 messagee The
datacomputer responds to control-Z by executing an end of
session procedure, which involves closing any open
containers, deleting TEMP PORTs, and sending the 4J900
messagee The wuser program may then <close 1its network
connections with the datacomputer.

Synchronization after an error {s discussed in the
section entitled Error Messages belowe.

Iranspittine Data throush the Datalanguage ports

Often, a user program will need to send data over the
network to be stored at the datacomputer, or to process data
that {t receives from the datacomputer, If all of the data
is described as ASCII, then tXis may be doue by using the
datalanguage input or output prrta

To reference data that «ill be transmitted through the
datalanguage input socket, the user need only open a PORT
and use it on the right-hand side of an assignment |{n
datalanguages When the assignment 1s executed, data will be
accepted through the datalanguage input port and assigned to
whatever container appears on the left side of the requeste.

Similarly, to output data through the datalanguage
output socket so that 1t can be picked up by the user
program, all that is needed in datalanguage is a PORT wused
on the left-hand side of an assignment. Any data assigned
to that container will be transmitted through the
datalanguage output port over the networke

B AR R

TR
AT R
S—
[

it N
TR RN ST O

LA

Chapter 6: Using the Datacomputer Page 52

orf course, this requires the use of more
synchronization messagese. To treat the data-input case
first:

«I231 OCPBO: (DEFAULT) INPUT PORT OPENED
e 251 OCPBC: (DEFAULT) INPUT PORT CLOSED

After the user program has sent the datalanguage assignment
request that references the open input PORT, tae
datacomputer will transmit the .I231 message over the
datalanguage output port. The message signals that input
data is now expected through the datalanguage input port,
and the user program should send the datae. Cata
transmission is terminated by a control-Z character which
causes the datacomputer to send the 41251 message confirming
that data transmission is finished. The next
synchronizaticn message will be 41210, a request for more
datalanguagee

The synchronization procedure governing data output
through the datalanguage output port is similare. The
messages are

«I241 (CSOP: (DEFAULT) OUTPUT PORT OPENED
«I261 UCSCL: (DEFAULT) OUTPUT PORT CLOSED

When the assignment statement is executed which requests
that data be output through the datalanguage po-t, the
datacomputer first sends +.I241, followed by the requested
data, followed in turn by . I261« The datacomputer does not
output a control-Z at the end of the data. The user program
can use these messages to separate the data from all other
information.

Openjing a Secondary Port

Instead of a datzlanguage port, an additional network
connection or secondary port can be used for transmitting
datae Non-ASCII date, 1including an ASCII STR with a
preceding count or a non-ASCII delimiter, must be
transmitted over a secondary port (see Chapter 2y
delimiter)., The CONNECT request sets up the secondary porte

The CONNECT request names an open PORT, and gives a
host (that is, a computer on the network) and socket number
to which that PORT is to refer. As mentioned above, 1if a
CONNECT request iy never executed for a PORT, it will refer
to the socket from which the wuser program transmits
datalanguage (if it is a READ FORT) or the socket at which
the user program receives the datacomputer’s messages (a
WRITE or APPEND PORT)e The form of the CONNECT request is

et % P A R e AR

A ST ATl LA TN, MO ARNMIACRODT
4 i .

A

i iy g M s

Chapter 6: Using the Datacomputer Page 53

CONNECT <pathname> <address> ;

where <pathname> is the node name, complete name (i.ee.
starting with %TOP) or simple login name (i.e. starting
immediately subordinate to the login node) of an open PORT,
and <address> can have several formses It can be one of

<{socket-no> the decimal number of a socket at the
user s host computer,

<host-no> <socket-no> where <host-no> i{s the decimal
number of a computer on the ARPA network

‘<host-name>’ <socket-no> where <host-name> is the host
computer’s TENEX alphabetic name

<host-name> <socket-no> where <host-name> is the host
computer’s TENEX alphabetic name
(such as ‘CccCa’)

OR “Clocal-file-designator>’ This last form of <address>
does not refer to the network, but is
included here for completeness,
<local-file-designator> is a TENEX
file designator that refers to a file
at the datacomputer site.

A CONNECT may be executed any time the PORT is open,
but it does not actually establish the network connection.
Those cocnnections are established, used, and then closed
again during the execution of an assignment statement in
datalanguage, and CONNECT merely sets up the socket address
to be wused when the PORT is 1later referenced in an
assignmentes

A DISCONNECT request may be used to cause a CONNECTed

PORT to refer once again to the datalanguage input or output
porte

DISCONNECT <pathname> ;

Two CONNECT requests may be issued for the same PORT without
an intervening DISCONNECT.

Additional synchronization messages are generated at

the time a CONNECTed PCRT 1s wused in an assignment
statement.s These messages are

«I1230 OCPBO: GFENING INPUT PORT
;1239 OCPBO: INPUT PORT OPENED
«I1250 OCPBC: CLOSING INPUT SOCKET
;1259 0CPBC: INPUT SOCKET CLOSED

RS

semaons

o vy

Chapter 6: Using the Datacomputer Page 54

«I240 OCPLS: OPENING OUTPUT PORT
;1249 OCPOO: OUTPUT PORT OPENED
«1260 OCPOC: CLOSING OUTPUT SOCKET
;1269 OCPOC: OUTPUT SOCKET CLOSED

When a CONNECTed PORT is used on the right-hand side of an
assignment (that is, in READ mode), the ,1230 message is
sent over the datalanguage output porte This 3ignals the
user program that the datacomputer is attempting to open a
network connection to the host and socket specified by the
CONNECT request for the PORTes The user program should thus
open its end of the connection itself (if it is a connection
to a different socket on the user program’s own host) or
ensure that the third host opens its end of the connection
at this time (if it ic a connection to another host on the
network)e.

The ;1239 message indicates that indeed the network
connection was opened correctly. After this message is
received, aata can be transmitted, terminated by closing the
network connectione When the connection is being closed,
the datacomputer sends +1250 over the datalanguage ouvput
port and then ;1259, signaling the user program that use of
the secondary network conne.tion is complete. The oI250 may
precede or follow the <closing of the connection on the
user’s sidee.

The messages for output PORTs work similarly, with
1240 signaling that the output network connection is being
opened, ;I249 that the connection is opened, and .I260 that
output is complete and the connection is being closed, and

;1269, that the closing has been completed,

If there are errors in the data, other messages will be
sent before the 1250 or 1260 messagee This would be the
case, for example, 1if the data does not match the
description (see Appendix G).

A user program c¢an interrupt the datacomputer’s
transmission of data; see Appendix D for detailse

The form CONNECT <pathname> <local-file-designator>;
may be useful to those with large amounts of data to send to
the datacoumputer. 1In some cases, the shipment of magnetic
tapes by air-freight produces higher bit rates than sending
the data over the network; the magnetiec tape may then be
addressed from datalanguage as a local file. Contact CCA
for irformation on this procedure.

AU PR T TOTR S

O AL T I SRR P

P S—

iy
‘

orS——

R

Chapter 6: Using the Datacomputer Page 55

Error Messagey

Datacomputer error messages will in general be seen by
a human user, although they have header characters which
make them potentially prncessable by a smart user program,
Error messages fall into several categories, distinguished
by their first charactere.

First Character Meaning
? indicates a datacomputer or
system buge A user program
should rarely see ong of these.

Examples:
20000 TRDN: NODE CHAIN SNAFU
?2Y000 DKWR: DISK I/0 WRITE ERROR

- indicates a user error --
typically tad datalanguage, data,
or i/0 handlinge A debugged user
program should rarely see one of
thesee (See ippendix G)

Examples:
-U090 LPNM: FORARG NOT DIRECT LIST MEMBER
-I246 OCSOP: CAN'T OPEN OUTPUT PORT (BAD CCNNECT ARGS?)

+ indicates a circumstantial error,
such as a file’s being busy, or
an error which is due to current
datacomputer limitations.

Examples:
+U000 OCDOP: CAN'T OPEN FILE (SOMEBODY ELSE UPDATING?)

+L000 DHIN: DESCRIPTOR TOO LARGE

After the datacomputer generates one or more errcor
messages, it follows a special procedure to resynchronize
itself with the usere This procedure involves waiting for a
special character, control-L or form feed (ASCII 14 octal),
to be transmitted by the usere That 1is, after the error
message the datacomputer sends

«1220 LAEB: LOOKING FOR CONTROL-L

This is repeated for each line of input it receives on the
datalanguage input port until the user sends a control-L
charactere Following receipt of a control-L, .I210 will

P

Kbl i e g

T ¥

| —

| —

Rl
[} .

Chapter 6: Using the Datacomputer Page 56

again be sent and datalanguage requests again processed.

More severe action must be taken following certain
system or ?2-type errorse One of the following
synchronization ressages may be generat-d:

eJ151 FCERRH: RESTARTING TH. REQUEST HANDLER
«J140 FCREIN: REINITIALIZING USER JOB
«J910 FCERRH: CRASHING JOB

The oJ151 message 1indicates that TEMP PORTs have been
deleted; otherwise, the status of thes session remains the
same (PORTs and FILEs will still be open, etcs.)e This
message will wusually be followed by 1220, a request for
contrcl-Le

The oJ140 message is more seriouse The user’s job 1{is
complately reinitlalized, 1leaving hfs status the same as
when the session was begune This message will also be
followed by .I220.

The +J910 message indicates a condition so severe that
the Jatacomputer does not know how to recovere. The user’s
Job is crashed and the datalanguage network connections
closede That 1s, the session is forcibly ended.

If this happeus, and also 1if the user s network
connections to the datacomputer are accidentally broken, the
datacomputer will do its best to close his open PORTs and
FILEs in an orderly manner. However, if the user was in the
process of transmitting data into a FILE, the last few
thousand characters of data his program sent may have been
lost in transit and not incorporated into the FILE.

Not much in general can be said about handling ? or -
errors, except that a human user will have to read and
interpret the text of the error message in each case, and
(in the case of - errors) correct the datalanguage he is
having his program send.

Appendix G of this manual is a 1listing of error
messages c¢ommonly caused by bad datalanguage and errors in
data ctreams, with a few examples of the type of
datalanguage that could cause these messages.

+ errors, on the other hand, could be processed by a
user programe The most reasonable thing to do in many cases
is to wait rfive minutes and retry the datalanguage request
that caused the error. For example, a FILE which was busy
{ieee 1in use by someone else) may be free by that time, so
the second attempt to use it may be successfule.

Messages beginning with +L are an exception to this, in
that +the appropriate time to wait may be several weeks
instead of winutese Such messages indicate 1limitations of
the current datacomputer system, such as limitations imposed

el b pt v aPecdiain Bt nd Lo iy ¥ r

FYSTowE—

Chapter 6: Using the Natacomputer Page 57

by internal table sizes. A new version of the datacomputer
may remove many of these limitations. Realistically, this
means that +L messages are like - messages in that a program
probably could not handle them.

it

T TR

A b i i

Lt

R DAL AR DM IR TP AIGA WY RONIT 3 MR

o~

fea i

Bem

AR

Page 58

Addendix A: Syntax for 0711

The following is the ccmplete BRF (Backus Normal Form)
specification of datalanguage syntax for version 0/11 of the
datacomputers,

Requests

{request> ::=

Directcry Requests

<{request> ::= LOGIN <login body> ;
CREATE <create body> ;

DELETE <{delete body> ;

OPEN <open body> ;

CLOSE <close body> ;

CONNECT <connect body> ;
DISCONNECT <disconnect bvody> ;
MODE <mode body> ;
CREATEP <createp body>
DELETEP <deletep body>
LIST <list body> ;

P)
wes weo

Data Transfer Requests

<{request>

::= <direct assignment)> ;
i <loop> ;

4

j

-3

i

i

:
.
=
e

Appendix A: Syntax for O0/11 Page 59

B e ik o g
o
et

(Al

; Directory

Pathnames

Gllethata s

! <pathname> ::= <complete pathname>
<simple complete pathname>
<login pathname>

<{simple login pathname>

<open node nane>

PN

<node name> ::=z <identifier>

! <identifier> (<password string>)
<{password string> ::= <string constant>
<simple node name> ::=z <identifier>

{complete pathname> ::= %$TOP . <node name>
! <complete pathname> + <node name>

{simple complete pathname> ::=
$TOP « <simple node name>
! <simple complete pathname> o <(simple node name>

<login pathname> ::=z <node name>
! <login pathname> o, <node name>

[ESGR

<{simple login pathname> ::= <simple node name>
i <simple iogin pathname> . <simple node name>

<cpen node name> ::= <simple node name>

<{ncde patrname> ::= <complete pathname>
i <login nathname>

{open pathname> ::= <simple complete pathname>
t <simple 1lngin pathname>
Ic i <oper node nama>

L Appendix A: Syatax frr 0/11% Page 6¢C

Directory

Requests

{_ <login body> ::= $TOF
= i <node pathnams>

= <simple node name>
ame> o <simple node name>
= <data description>
ame>» o <{data description>

i {create body> ::
L. { <node pathn
{create body> ::

{ <node pathn

il rhse <{delete body> ::= #é
<login pathname:’
<login pathname> . #%

]

- f

1

1

<open body> :::= <node pathname>
i <node pathname> <mode>

<close body> ::= SOPEN
- { <open pathname>

R L T s RS

\} 3 e <connect becdyd> ::=
4 S <open pathname> <{tenex file specification>
: ; 2 t <open pathname> <network specification>
¢ G <t 1ex file specification> ::= <string constant>

<uetwork specification> ::z <socket number>
7 i <host specification> <socket number>
<{socket number> ::= <integer constant>
<host specification> ::= <integer constant)
{ <identifier>
{ <string constant>

{disconnect body> ::= <open pathname>
£ <mode body> ::= <dopen pathname)> <mode>
<mode> ::= READ
WRITE
APPEND

WRITE DEFER
APPEND DEFER

s |

i

Appendix A: Syntax for 0/11 Page 61

<createp body> ::= <node pathname>
{ i <node pathname> <privilege tuple specification>
[<privilege tuple specification> ::z
<privilege tuple option>
A i <privilege tuple specification>
E {privilege tuple option>
? pob <{privilege tuple option> ::= , U = <user identity>
3 <host identity>
<{socket identity>
<{password striag>
<grant privilege 1list>
<{deny privilege 1list>
- <privilege tuple numbder>
identity> ::= ®#
<user noded
<user node set>
{user node> o **
<user node set> , #*%
<user node> o <user node set> o ?
: {user node> ::= <identifier>
i ! <user node> . <identifier>
] <user node set> ::z #
! <user node set> o ¥
<host identity> ::= ANY
i LOCAL ‘
i <integer constant>
<{socket identity> ::= ANY
i <integer constant>
oy <{grant privilege list> ::= <grant privilege>
3, i <grant privilege list><grant privilege>
<grant privilege> ::= C

% WM N N w

ZoUoQUunnx
"wonononu

i <us

e - e —= () == == ———— -
"3

> x o

<deny privilege 1list> ::= <deny privilege>
3is i <deny privilege list><deny privilege>
<deny privilege> ::= R
ir . |
N |
<privilege tuple number> ::= <integer constant>

<{deletep body, ::=
’ <node pathname> <privilege tujple number>

e G AN A Tl e Sty s e 5 s e

e Appendix A: Syntax for 0/11 Page
|

<{list body> ::z <(list node set)
1 i <list node set> <list option>
1 <list node set> ::=z $TOP

10PEN

; &
: 1)

-
<14
, i
E L
a2
k| §
E |
-
!
i
E}
)
H
A
r
iy
:
!
i
]
]
ET
!
Z

<open node name>
<{node pathname>
<node pathname> , *

<node pathname)> , #**
option> ::= $NAME
$DESCRIPTION

2DESC

£SOURCE

SALLOCATION

SALLOC

$PRIVILEGE

$PRIV

62

S A T St 0 B RN A S 500 9 O e

e L R

ol

S ol

o Appendix A: Syntax for 0/11 Page 63
L}
Data Description
= <{datatype> ::= <compound datatype>
o { <simple datatyped
| ! <stringd
<compound datatype> ::= LIST
! i <structure>
L.J {structure> ::= STRUCTURE
{ STRUCT
| <simple datatype> ::= BYTE
B ! <integer>
— <integer> ::= INTEGER
| i INT
: <string> ::= <string type>
: { <string type> <string interpretationd
E 3 <string type> ::= STRING
% { STR
H <{string interpretation> ::= ASCII
{ i ASCIIS
{ BYTE
{ INTEGER
i INT

£l

Appendix A: Syntax for 0/11 Page 64

=

—

<deta description> ::=

<{simple node name> <function>

<outermost description>
<{function> ::= FILE
i PORT
i { TEMPORARY PORT
i TEMP PORT

<outermost description> ::= LIST <description>
i LIST <list options> <descriptiond

| <string>

! <string> <string options>

{ <descrirption body>

"

L.

Gl
.
=

-4 <descriptionsd> ::= <description>

! <descriptions> <description>
<description> ::=
.l <description name> <description body>

Gty

<description name> ::= <identifier>
<description body> ::=
LIST <dimension> <description>
LIST <dimension> <list options> <description>
<{structure> <descriptions> END
¢{structure> <compound datatype options>
<descriptions> END

Y T AP Y K RS

BYTE

BYTE <byte options>

<{integer>

<integer> <simple datatype options>
<string> <dimension>

<string> <dimension> <string options>

=

Appendix A: Syn.ax for 0/11 Page 65

(=

<description cption> ::
<byte size option>
<{filler option>
{variable length option>

<virtual data option>

<container address table option>
] <{inversion option> ::=z , I =D

i P 8 B ¢

25 <byte size option> ::= , B = <integer constant> i

108 <filler option) tax , P2 <integer constant>

4 ! s F = “<nonquote character>’

= . ¢variabl length option> ::= , C = 1

EOF

EOB

EOR

<integer constant>
‘¢nonquote character>’

<virtual data option> ::= , V = I

" {container address table option> :

z <inversion option>

-

L

OO WYY oo
"o N

e
—-—— - .- w- -
- W 9w w

ts , CAT

{compound datatype options> ::=
- <compound datatype optiond>
! <compound datatype options>
=2 <{compound datatype option>
<compound datatype option> ::= <byte size option>
! <filler optiow.

H]
) ! { <variable length option>

i <{simple datatype options> ::=
! <{simple datatype option>

; | <simple datatype options>
< 2 <simple datatype option> ,
E' <simple datatype option> ::= <inversion option>

14 { <byte size option>

]
{ <filler option>

t:= <string option>
£ !\ <string options> <string option>
T <string option> ::= <inversion optiond>
<{byte size option>
<filler option>
{variable length option>

i‘ <string options>

PR

H
I <list options> iz <list optiom>
<list options> <list option>
g <list option> ::= <compound datatype optiond>
i i <container address table option>

i %
%

L abaad

e — e B T

-

Appendix A: Syntex for 0/11 Page 66

<byte optionsd> ::= <byte option>
i <byte options> <byte option>

<byte option> ::= {simple datatype option>
i <virtual data option>

: <dimension> ::= (<integer constant))
= i (, <integer constant))
i (<integer constant> , <integer constant>)

[

[P
L .

[P

Prrre——

-
5
3
e

Appendix A: Syntax for 0/11

~
o
om
[+]
[=))]
-
CT AR W PTT A O T IARPEEY AT 2o

Data Transfer

<data reference> ::=z <(identifier>
i <data reference> o <identifier>
<constant> ::= <string constant>
! <integer constant)

{assignment> ::= <data reference> = <(data reference>

i <data refer:nce> = <constant>

A A R LR L B o e R fa sl g SRR g s et
-

<direct assignment> ::=
' i <implicit for loop>
! <implicit for loop> ::=

{assignment>
<assignment> <qualifier>

<loop> ::= <for loop>

i <update loop>

<{for loop> ::= FOR <input> <loop body> END
i { FOR <input> <qualifier> <loop body> END
n i FOR <output> , <input> <loop body> END
i FOR <output> , <inputd> <qualifier>
<loop body> END
= <data reference>
t= <data reference>

i <input> -
e <output>
s {update loep> ::= UPDATE <master> <loop body> END

i UPDATE <master> <qualifier> <loop body> END
i UPDATE <master> , <(transaction> <loop body> END
{ UPDATE <master> <(qualifier> , <transaction>
! <loop body> END
) <master> ::= <data reference>

<transaction> ::= <data reference>

<loop body> ::= <loop>

<loop> ;

{assignment list>

<{assignment 1list> ;

<assignment list> ::= <(assignment>
[]

+ <assignment 1list> ; <assignment>

Eriaisian oy

<qualifier> ::= WITH <boolean expression>

<{boolean expression> ::= <relational expression>
(<boolean expression>)
NOT <boolean expression>
ANY <boolean expression>
<{boolean expression> AND <boolean expression>
<{boolean expression> OR <boolean expression>

<{relational expression> ::=
<data reference> <comparison operator>
<{data reference> !
! <data reference> <{comparison operator> <constant>

PP AT, i g w2
3 t ™ v

- Appzndix A: Syntax for 0/11 Page 68

¢ : <comnarison operator> ::z EQ

2 ! NE

2l i GT

e i GE i
e i LT

S ! LE

4 ¥

£ !

L

PN IRTATI W
5
s

:
&

£

;:]
3

1
S !
Pob
5 N
§

b3 =
2 £4
x

e g e g

P
. f

TR P ST A

R £33 8 8507 o s et

e ey ek

Appendix A: Syntax for 0/11 Page

Loxical Items

<lexical item> ::= <identifier>
{ <integer constant>
i <string constant>
i <autonomous character)>

[a———
{
S

<identifier> ::=z <(letter>
3

<identifier> <letter>
<identifier> 3
<identifier> <digit>

E U
B "

<integer constant> ::= <digit>
i <integer constant)> <digit>

[—
.

<string constant> ::=z ‘<string constant body>’
{ {string constant body> ::= <nonquote character>
i <string constant body> <nonquote character)>

i R b i

Appondix A Syntax for C/11 Page 70

Character Set

¢ s o o ot v e s gt

{letter> ::= QA
]

1 B

L X N]
4
i a
i b

o0
I 4

<digit> ::= 0
N

9

<{nonquote character> ::z <(letter)>
%
<digit>
autonomous character>
(space)
(horizontal tab -~ HT)

.
n
LR

{separator> ::= (space)
4 (horizontal tab -~ HT)
i <Ceold

<eol> ::= (end of line -- octal 37)
i <carriage return> <line feed>

{carriage return> ::= (carrtage return -- CR)

<line feed> ::= (line feed -~ LF)

Appendix A: Syntax for 0/11 Page T1

Cautonomous character)> ::= !

+ B~ Qe

[

o N o

bed 7 CVMP VOV I A e

{(up arrow)
(left arrow)
(at sign)

{

(vertical bar)
}

[
]
i
]
]
]
[)
]
)
]
[)
]
[)
]
[)
]
[)
]
)
]
[)
]
[)
]
[)
]
.]
]
i []
]
)
]
!
[)
]
]
]
]
]
]
]
[]
]
]
]
[}
]
[}
]
(]
]
(]
]
i (up arrow)

L Appendix A: Syntax fsr 0/11 Page 72

i
!—_.'
Notes :
E | Character codes are 7 bit ASCII. E
£ 1
H Separators are always permitted between lexical {items, 14
P o= except between rneant privileges, between deny ?
! privileges, and inside string constants. ;
i
: ‘g 3 Comments may %e insert.ed wherever separators are
| allowed. Comments begin with /%’ and erd with “#/°
4 ! (eege, /% THIS IS A COMMENT %/).
;? FE {carriaze returud> and <line feed> may appear together
b 5 only 1in that order (as an <eol>). Ctherwise they are
£ treated as control characters, which are rejecteds
?_ & .
| L

SRR

Appendix B:

AND

ANY
ASCII
ASCIIS8
BYTE
CLOSE
CONNECT
CREATE
CREATEP
DELETE
DELETEP
DISCONNECT
END

EQ

FILE
FOR

GE

GT

INT
INTEGER
LE

LIST
LOGIN
LT

MODE

NE

NOT
CPEN

OR

PORT
STR
STRING
STRUCT
STRUCTURE
UPDATE
WITH
SOPEN
£TOP

Reserved Words

Page

73

bRl 02 s)

WVRITRAE UK i (22 e

T RITAL L TEE NP S ey

“m) e,

k.o

page T4

Appendix C: Inversion: Technical Considerations

An inversion is a secondary data structure that the
datacomputer can use tc improve it. efficien2y in retrieving
data by content from a FILE. Specifically, an entry in the
inversion i3 <constructed for every container with the
inversion attributee For each data value which occurs for
the container, the inversion contains pointers to all the
records in the FILE for which that container has that value.

For example, 1if

CREATE PEOPLE FILE LIST
PERSON STRUCT
NAME STR (15)
SOCSECNO STR(9),I=D
SEX STR (1) /% ‘M° OR ‘F’%/,1=LC
ZIP STR(5),I=D
END;

then the data structure for the inversion on SEX contaigs

pcinters to all instances of FERSONs with SEX egual to ‘F -
and similarly for ‘M. Thus, evaluation of a FOR input-spec

like

FOR ee« , PEOPLE WITH SEX EQ ‘M’

would not require a full sequential reading of the FILE
PEOPLE.

An inversion is not only constructed automatically by
the datacomputer when the FILE is loaded with data, but is
automatically maintained whenever information is appended to
the FILE.

Unfortunately, even if an inversion for the approoriate
container exists, the datacomputer cannot always use it for
the evaluation of input-specs, and must sometimes resort to
time-consuming searches of the FILE. In particular, the
inversion can be used only when the container is compared

with a constant ysjing the orerators EQ and NE. That is,

PERSON WITH ZIP EQ "02138° OR ZIP EQ 02139’
OR ZIP EQ “02140° OR ZIP FQ 02141’

Appendix C: Inversion: Technical Considerations Page 75

can be evaluated directly fror the inversion. However,

PEOPLE WITH ZIP GE “02138°
AND ZIP LE ‘02141°

while it still can be evaluated, cannot take advantage of
the inversion and so would normally be much less efficiente

Furthermore, when the container is a member of an inner
LIST, only the operator EQ can be evaluated using the
inversione A sequential search is used for evaluating NEe.

Complex Boolean expressions, those 1involving several
comparisons, fall into three <('asses: those with all
comparisons evaluable from the inversion, those containing
no comparisons evaluable from the inversion, and those which
mix the two kinds of comparisonse The first two <classes
pose no problem; the datacomputer will use the inversion to
evaluate expressions in the first category, and not for
expressions in the second categorye

For mixed expressions, the datacomputer will wuse the
inversion as much as it cane. For the present, this can be
stated as follows: if the Boolean expression is of the form

<expr> AND <expr> AND esve

(where <expr> 1is an arbitrary Boolean expression, in
parentheses if it contains OR, then the datacomputer will
separate the <expr>s 1into those that c¢an be completely
evaluated from the inversion and those that cannot, and will
proce3ss those for which it can use the inversion firste. The
<expr>s that cannot use the inversion are evaluated by an
exhaustive search of the set of records selected by the
earlier <expr>se.

For an example, take the above FILE, PEOPLEe Suppose a
list of all males with ZIP GT “02000° were desiredes ZIP is
indeed inverted, but since the operator GT is involved, the
evaluation of that part of the Boolean expression cannot use
the inversione As a result, in

FOR eee , PEOPLE WITH ZIP GT “02000° AND SEX EQ 'M’

the datacomputer will first use the inversion to {ind the
set of all PERSONs with SEX EQ ‘M°, and only this smaller
set of PERSONs would be searched for the desired ZIPs,

A more difficult example: consider the problem of
retrieving all the records for events that occurred between
10:05 on the 25th and 15:07 of the 30th from a FILE that is
inverted on DAY but not on TIME. A straightforward way to
do this is

Ll e

ok ubasugti

Appendix C: Inversicn: Technical Considerations Page 76

ees WITH (DAY EQ “25° AND TIME GT “10:057)
OR (DAY EQ “26°) OR (DAY EQ “27°) OR oee
OR (DAY EQ “30° AND TIME LT “15:07°)

but this is quite inefficient: the inversion cannot be wused
at all, for this Boolean expression is mixed and is not set
up as a series of terms connected by ANDs. The best way to
express this condition is

eee WITH (DAY EQ “25° OR DAY EQ ‘26" OR eee O] DAY EQ
030’)
AND (DAY NE “25° OR TIME GT “10:05°,
AND (DAY NE “30° OR TIME LT “15:07°)

In this case, only records for the correct six days are
retrieved by the first term, s0 only they need to be

searched through for the evaluation of the second and third
terms,

Future versions of the datacomputer will automatically
optimize mixed Boolean expressions, freeing the user from
this taske

The computation of the space requirements for an
inversion is best 1leoft to the datacomputer’s operational
staff at CCA, who should be contacted by any user interested
in setting up a data file with an inversione.

—_y

ey

-

Bz ¢ a2}

iRt

Cxvidg Lol o

N

Tl ey Gl gmend e e

S e

g

¥ e

iy

%

Page 77

Appendix D: Network Interaction with the Datacomputer

The procedure for establishing network connections with
the datacomputer is that documented in J» Postel, Qffjcjal
Ielnet - Logeer Injtjal Conpnectjion Protocol, NIC 7103, 15
June 1971 The following is a simplified, informal
description of that procedure,

The datacomputer 1listens for connections on a
well-advertised socket, currently number 103 (octal) at CCA,
host number 37 (octal)e This is an odd-numbered or send
socketo, The wuser program wishing to use the datacomputer
will address this socket from a socket on his own host
computer -- say from socket number Us U must, of course, be
an even number or a receive sockete The user program should
reai one 32-bit byte of information over this connection and
then immediately close it (leaving socket CCA-103 free for
other users). This byte of information is a socket number
at the datacomputer -- say socket D D will be an even
numbers,

The last step 1is the opening of two network
connections, the permanent datalanguage connectionse They
are

from D+1 at CCA to U+2 at the user host
and from U+3 at the user host to D at CCA.

Note that U+2 is even (sinre U is) and D+t is odd -- this is
the datalanguage output socket. Also, U+3 is odd, and D is
even: the datalanguage input sockete These connections will
remain in effect until the end of the datalanguage sessione

Two special network control signals, INS and INR, may
be wused to interrupt the datacomputers INS, for interrupt
the gender, may be sent at any time during the processing of
a request and stops data output from the current requeste
No error message or other acknowledgement will be generated;
the output simply stopse INS might be useful to a progranm
which receives output from the datacomputer and displays it
to & human operator sitting at a teletype; at the request of
the user, the program could send INS to stop an overly-long
printout.

INR, for jinterrupt the receiser, performs all the
functions of 1INS. In addition, compilation or any other
processing that is under way when INR is received will be
aborted, possibly generating an error message and a request

e

Appendix - Network Interaction with the DatacomputerPage 78

for control-Le INR thus requests a more immediate halt than
does INS.

N I il

1
e AR ARl iy

LRl Ll B s b i i]
i

YT T
S L e

f.',wm' 3t
bl et o I e

P

Page 179

Appendix E: Implementation Restrictions

A number of datalanguage restrictions specific to
Versioen 0/1%1 are =2ollected here for ready references
Nete that some of these restrictions have been
mentioned in the body of this manual, while others have
note

1e There is a restriction on the containers
tnat can be referenced in the body of a FOR-loo0pe
Consider the following example:
CREATE FF FILE LIST
PERSON STRUCT
NAME STR (15)
ADDRESS STR (20)
CITY STH (10)
STATE STR (2)
ZIP STR (%)
SOCSECNO STR (9)
DEPENDENTS LIST (10)
NAME STR (15)
END;
CREATE PP PORT LIST
PERSON STRUCT
NAME STR (15)
SOCSECNO STR (9)
END;
To output all the DEPENDENTS.NAMEs from the file FF,
together with the SOCSECNO of the PERSON whose
DEPENDENTS they were,
FOR PP,FF
NAME=NAME;
SOCSECNO=SOCSECNO;
END;
This example as written will work in datalanguage 0/1..
However, 1if SOCSECNO occurred after DEPENDENTS in the
description of PERSON in FF, the request would fail due
to a compiler restriction.

When an inner FOR-loop is processing a LIST which
occurs within a STRUCT, references may be made in the
body of that FOR to objects which occur Dbefore that
LIST in the STRUCT, but not after the LIST.

There are certain cases of assignment involving
inner LISTs which the compiler in Version 0/11 cannot

o Kb

T LTI TRV REECA PN

S

s
e

g

o MRS B T S AT,

ek

-
| TS

Kovmnd

o b

=

Grbaaian Ry o an oo it e D Qe dibnc. s Pk s e bR ol o e

Appendirx E: Implementation Restrictions Page 80

handles For example, given two structures of the
following format:
Lt FILE LIST
St STRUCT
A1 STR (8)
A2 LIST (4)
B2 STR (6)
END;
and
L2 PORT LIST
Si STRUCT
A1 STR (8)
A2 LIST (4)
B2 STR (6)
END;
the following FOR-loop will not work:
FOk L1, L2
FOR A2, A2
S1=51
END
END;
The A2 lists are in use by the inner FOR-loop (FOR
A2.B2,A2.B2) when the assignment S1z=S1 is encountered.
The datacomputer expands S1=St1 internally into:
Al=A1
FOR L1eS1eA2,L2eS1.42
B2=B2
END;
This constitutes a second use of the A2 1lists, which
cannot be handled,

2¢ In Version 0/11 of datalanguage, there is one
general restriction on sequences of nested FOR-loops,
which can be stated as follows:

Sequences of nested FOR-loops are rsestricted to be
a number (possibly 0) of FOR-loops without output
LISTs, followed by an arbitrary number, at least 1, of
FOR=-1l00ps with output LISTs.

For example,

FOR A FOR A FOR A
FOR B,C FOR B
(ASSIGNMENT)
(ASSIGNMENT) FOR C,D END;
END; (ASSIGNMENT)
END; END;
END;
END;

The first two examples are legal, whereas the third is
note

B e L 1 RO N R S T W TR

E = Appendix E: Implementation Restrictions Page 81
h 3« A FuR-loop with no output LIST can contain é
only one datalanguage statement as the FOR-body, not a]
g

series of statements. Because of restriction 2, that
one statement must be a FOR.
This does not apply to a FOR with an output LISTe

A il £

4, The only comparison operators which c¢an be
evaluated from an inversion are EQ and NE. All other
comparison operators must be evaluated by a linear
search through a set of recordse If the container
being compared is a member of an inner list, only the
EQ comparison operator can be evaluated from an

e TR -

A B R A e Yoo a

: inversione

¢

i 5¢ It is impossible to assign members of a LIST

£ without setting up a FOR-loop (either explicitly or

g implicitly)s For example, given the PORT is:

: CREATE L1 PORT LIST (5)

oI S1 STR (3);

% {, The following assignment is illegal:

¥ S1= "FO0";

¥ because it treats the five members of S1 as if they
were a single data item.

¥ . 6e Two outermost containers with the same name

5 ; may not be open at the same timee This is true even

3 though the containers may have different pathnames in
the directorye.

Te If an output PORT is punctuated, all
assignments before each punctuation character must be
. completed before any assignments are made after the
f punctuation character. That 1s, the datacomputer

v cannot back up over punctuation in an output PORTe. For
example, given an output PORT of the form:

i PP PORT LIST
i. St STRUCT
A1 STR (3),P=EOR
- A2 STR (3),P=EOR
7 END
. assignments must be made in the same order as the STRs
. appear in the STRUCT.
A1="F00";
. ; A2="BAR";
will take effect correctly, but
- A2="BAR’;
4 A1="F00";
will note

Because of the internal paging of the
datacomputer, PORTs with STRUCTs containing long STRs
(i.ee 2zreater than 2560 ASCII characteirs) have a
similar restriction. for example, the LIST

L B)

LR S VRIS i o Al SR ki e R AR Aot B o ke e s e TSRS e s e B ot

L Appendix E: Implementation Restrictions Page 82

f
! b4
1 FF PORT LIST
- S1 STRUCT
3 At STR (10000)
. A2 STR (10000)
A3 STR (10000)

LMD
may have assignments done only in the same order as
they appear in the STRUCT.)

ot

&

8¢ The datacomputer checks all descriptions at
creation time to make sure that the byte parsing
algorithm can be followedes Whenever a subcontainer
byte size differs from the parental byte size the
foliowing tests are made (in order); if it is accepted
by (any) test, the subcontainer is accepted:

y Lot

o

1) If the entire subcontainer fits within the remainder
- of the parent byte, it is acceptede thus, in example 1
' (below), the STRing "S"™ is accepted.

2) If a parental tyte boundary could be crossed by the
subcontainer, it must be aligned on its own byte
L boundary. In example 2, the description 1is rejected
because "S" c¢rosses the boundary defined by R2, and i
starts on an 18-bit rather than 7-bit boundary.

In example 3, since "S" {is aligned on a 7 bit
boundary, it is acceptede.

Beocunond
s e bRl

ex 1: R STRUCT, B=36
I INT, B=18

S STRy2), B=7
END /% R %/

ex 2: Re¢ STRUCT, B=36

L TN T A Y T N R O T S RS b MRS DAY
‘ ‘-‘\.
s s

- I INT ,B=18

§ S STR(7), B=7

. END /% R2 #/

T ex 3: R3 STRUCT, B=36 i
i I INT , B=18

PAD BYTE, B=3
S STR(7), B=T
END /% R3 #/

3) The byte size of a subcontainer must be greater than
the remainder of 36 divided by the parental byte sizee.
This is because data is packed in the datacomputer into
36 bit words and parent alignment is not followeda

i R STRUCT, B=32

B R T S e

R

S1 INTEGER ,B=4
S2 INTEGER ,B=16

s

.
e,

s Gt b R i L e o Sl

L 4

e mscth

i b Al el Sk ras s A R s SRNE e A o B A ik il L5
A
1
A\

"
[roee—

Wt

B B T TR AT
Wi)

iy g sy e

B Rt

f

B el el et el e (el

g R B B e D B o Tl Lo ¥ i T U S XL L i P T
Appendix E: Implementation Restrictions Page 83

S3 BYTE, B=12
sS4 BYTE, B=4
END /* R %/

in this example, S3 would be 1legal because {t fits
within the 32 bit parent byte, but S4 is not accepted
because it would fit in the remaining bits after the 32
in the 36 bit word buffer.

4) If the parental byte size is less than 18 bits, all
subcontainer byte sizes must evenly divide the parent
byte size. Again, this is because the 18 bit parent
bytes are packed into 36 bit words.

Please contact CCA if you need help with complicated
byte structures.

i
o et bk ki i soie e B
T TP TP PR I T AL L T INr TF, v 3

|
|
%

Page

Appendix F: Differences between 0/10 and 0/1%1

The following is a list of user specifiable (i.ce
syntactie) differences between 0/10 and 0/11
datalanguages

Additions

Container Address Tables -- the CAT option for LISTs

[Yoe——
L

Inversions and optimized indexing
for LISTs with variable length members

T L L v Y

i 1t A T i

Virtual Data

P R R R AR

TN B

?: ;
ii LIST member indexing -« the V=] option for BYTEs i

R

Update (fixed length replacement) -- the UPDATE loop

1..,,. :
SNy
®oneorrd

- N

WITH clauses on the left hand loop argument

gé Names on the right hand side of relational
expressions

Integer Constants

|
;
|

Modifications

't

P
*

LIST (instead of LIST member) naming for loop arguments

1

B

*

¥

Sy

ST FARIIO QWINPT MShr o
Py
S

R PR DN 1

AT
oy
- +

e e

ey

we o

Page 85

Appendix G: Error Messages

The following is not a comprehensive 1listing of
all the possible error messages the datacomputer can
produce in response to bad datalanguage; and most users
will only see a few of thems Many of the messages are
sell-explanatorye Some messages will contain, in an
actual datacomputer session, a name specifing, for
example, the unopened FILE/PORT which the wuser had
aszsigned (CRER: RHS FILE/PORT NOT OPENED:) or the
non-existant pathname to which the wuser had refered
(CRER: LHS PATHNAME NOT FOUND:)e The error messages
are always one 1lin:; in an actual session they do not
contain the carriage returns used in the following
listing to increase legibilitve The messages will also
contain the date and time of the printout.

-U00C IOOPEN: NET CONWECTION DIED

-0000 cocCL: BAD CLOSE ARGUMENT

-U000 COCL: NODE SETS NOT ALLOWED

-U000 CoCL: FILE/PORT NOT OPEN

-0000 CCCL: END OF STATEMENT EXPECTED

-U000 COCN: NODE SETS NOT ALLOWED

-U000 cocu: CLOSED OR NOT A PORT

-U000 COCN: BAD HOST/FILE SPECIFICATION

-l000 COCN: BAD HOST-SOCKET SPECIFICATION

-0000 COCN: SURROUND HOST NAME WITH SINGLE
QUOTES

-U000 COCN: ZERO SOCKET NOT ALLOWED

-U000 COCN: END OF STATEMENT EXPECTED

-U000 COCN: ZERO HOST-SOCKET NOT ALLOWED

~17000 Ccoco: CONFLICTING GRANT AND DENY
PRIVILEGES

-U009 €oco: "," EXPECTED

-0000 Ccoco: BAD PRIVILEGE TUPLE OPTION

-U000 €oco: REDUNDANT USER 1D

-0000 C0CO: BAD USER-ID

-U000 CocCo: REDUNDANT HOST

-U000 C0OcCo: BAD HOST NUMBER

~-U000 C0CO: REDUNDANT SOCKET

-U000 C0CO: BAD SOCKET NUMBER

-U000 C0CO: REDUNDANT PASSWORD

-y000 C0CO: BAD PASSWORD

-U000 €0Co: REDUNDANT GRANT PRIVILEGES

-U000 C0oCo: BAD GRANT PRIVILEGE

-UCo0 C0CO: REDUNDANT GRANT PRIVILEGE

~U000 coco: REDUNDANT DENY PRIVILEGES

A Appendix G: Error Messages Page 86
4 -0000 COCO: -C NOT ALLOWED
; [} -U000 Ceco: BAD DENY PRIVILEGE
3 : -U0Co CoCO: REDUNDANT INDEX OPTION
3 -U000 C0CO: BAD INDEX
3 (] -U000 COCP: NCDE SETS NOT ALLOWED
Ej | -U000 CODE: BAD DELETE OPTION
3 -U000 CODE: STUP NOT ALLOWED
. -U000 CODE: END OF STATEMENT EXPECTED
-U000 CODI: NODE SETS NOT ALLOWED ;
. -0000 CoDI: CLOSED OR NOT A PORT :
-U060 CODI: END OF STATEMENT EXPECTED .
%) -Unoo CODP: NODE SE”S NOT ALLOWED :
| -U000 CODP: BAD PRIVILEGE TUPLE INDEX 3
-U000 CODP: END OF STATEMENT EXPECTED 3
- -U000 COLG: NODE SETS NOT ALLOWED :
g -1000 COLS: FILE/PORT LOGIN NOT ALLOWED -
- -U000 COLG: END OF STATEMENT EXPECTED |
1 -U000 COLI: BAD LIST OPTION .
g I} -U000 CcoLO: END OF STATEMENT EXPECTED :
TR -U000 CoLO: SOPEN $PRIV NOT IMPLEMENTED]
4 -U000 CGLP: BAD LIST OPTION 1
2 1 -U000 COLP: NAME NOT FOUND ;
438] -0U009 COLP: END OF STATEMENT EXPECTED
1 -U000 COLP: UNOPENED $DESC 40T IMPLEMENTED
1 -U000 COLP: n&n £HESC NOT IMPLEMENTED |
2 i: -U000 COLP: n&&n ¢DESC NOT IMPLEMENTED |
N -U000 COLP: nan CALLOC NOT IMPLEMENTED f
& -U000 COLP: na#dn gALLOC NOT IMPLEMENTED
1 B -U000 COLP: n&n LPRIV NOT IMPLEMENTED !
2 %, -0'000 COLP: ns&n PRIV NOT IMPLEMENTED ‘
g -U000 COMD: NODE SETS NOT ALLCWED
1 - -U000 COMD: FILE/PORT NOT OFEN
1 %s -U000 COMD: BAD MODE OPTION
£ -(000 COMD: END OF STATEMENT EXPFECTED
5 =000 COMD: MO DEFERRED READ
: }: -3000 COMD: PORTS CANNOT BE DEFERKED !
1 -U000 CCNL: NO PASSWORD FOR TOP NODE
1 -1000 CONL: BAD PATHNAME |
F -U000 CONL: NAME (IDENT) EXPECTED {
1 Ij -U000 CONL: PASSWCRDS IN OPEN PATHNAMES NOT '
iy ALLOWED
i | -U000 COOP: NODE SETS NOT ALLOWED
il I; -U000 COOP: FILE/PORT ALREADY OPEN
iF - -U000 COOP: BAD MODE OPTION
3 -0000 COOP: NO DEFERRFD READ
i T -U000 COOP: END OF STATEMENT EXPECTED
: g .] -U000 COOP: CANNCT OPEN FILE/PORT
13 -U000 COPP: BAD PASSWORD SPECIFICATION
: -U000 CRCM25: CAN'T FIND CANTEXT
g ! -Uu00 CRER: RHS FILE/PORT NOT OPEN:
i -U000 CRER: LHS FILE/PORT NOT OPEN:
. -U000 CRER: RHS PATHNAME NOT FOUND:
1 l -U000 CRER: LHS PATHNAME NOT FOUND:

A
&

TR, T

o

o

Iy

alie

AT

S S Lt

e

cuki-gs

R R S R S Sty

MR

o T A B s At ey
” il
wesid ..1'
[
..

s

By pesy o) e

e g eieed fpeed ey

Lo IR

Appendix G

-y000
-u0oo
-J000
-U000
-U000
-U000
-U000

-U000
-U000
-U%00
-Uoo0
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-Uoo00
-y000
-U000
-U000
-U000
-Uooo
-U000
-U000
-U000
-Uo00
-0000
-U000
-U000
-U000
-Uoo00
-U000
-yJo0o0o0
-U000
-U000
-U000
-0000
-U000

-U000
-U000
-U000
-Uooo
~U000
-U000
-0000
-UGoo0
-J000
-U000

Error Messages Page
CRTN: OPERATOR NODE EXPECTED
CRTNS: INVALID OPCODE
DDCD: TEMPORARY CANNOT BE SUBNODE
DDCD: BAD OUTER CONTAINER SPECIFICATION
DDCD: BRAD PATHNAME SPECIFICATION
DDCD: NAME EXPECTEL
DDCD55: THERE IS AN OPEN FILE/PORT WITH

SAME NAME
DDCD60: DATA TYPE EXPECTED
DDCD: INNER LISTS NEED DIMENSION
DDSI: INNER LEVEL STRINGS NEEL COUNT
DDCT: NUMBER OR "," EXPECTED
DDCT: NUMBER EXPECTED
DDCT: MAX COUNT MUST BE LAKGER THAN MIN
DDCT: n)® EXPECTED]
DDKO: BAD KEYYORD OPTION ;
DDKO: REDUNCANT ALIGNMENT SPECIFICATION i
DDKO: BAD DESCRIPTOR FOR ALIGNMENT :
DDKO: BAD ALIGNMENT CPTICN 3
DDKO: REDUNDANT BYTE SIZE SPECIFICATION ;
DDKO: BAD DESCRIPTOR FOR BYTE SIZE i
DDKO: BAD BYTE SIZE ;
DDKO30: BAD DATATYPE FOR COUNT-IN-DATA]
DDKO: REDUNDANT VARIABILITY SPECIFICATION 3
DDKO: BAD DESCRIPTOR FOR COUMNT-IN-DATA g
DDK030: BAD COUKT-IN-DATA SIZE 3
DDKO: REDUNDANT VARIABILITY SPECIFICATION 5
DDKO: BAD DATATYPE FOR DELIMITER {
DDKO: BAD DESCRIPTOR FOR DELIMITER §
DDKO: DELIMITER MUST BE STRING OR INTEGER
DDKO: DELIMITER CAN ONLY BE ONE CHAR
DDKO: REDUNDANT FILLER SPECIFICATION |
DDKO: BAD DESCRIPTOR FOR FILLER 1
DDKG: FILLER CAN ONLY BE ONE CHAR i
DDKO: REDUNDANT INVERSION SPECIFICATION f
DDKO: NONINVERTIBLE CONTAINER
DDKO60: NONINVERTIBLE CONTAINER ‘
DDKO: BAD DESCRIPTOR FOR INVERSION
DDKO: BAD INVERSION OPTION
DDK0O60: NOT A LIST MEMBER
DDK062: INVERTED GRANDCHILDREN NOT READY
DDK0O63: T=I ALLOWED ONLY ON OUTER LEVEL
LIST MEMBERS

DDKO: LENGTH IN DATA NOT IMPLEMENTED
DDKO: BAD DATATYPE FOR LENGTH IN DATA
DDKO: REDUNDANT VARIABILITY SPECIFICATION
DDKO: BEAD DESCRIPTOR FOR LENGTH IN DATA
DDKO: BAD LENGTH IN DATA SIZE
DDK0O80: REDUNDANT VARIABILITY SPECIFICATION
DDK0B0: BAD DESCRIPTOR FOR PUNCTUATION
DDK0O80: BAD PUNCTUATION OPTION
DDK0O90: BAL DATATYPE FOR VIRTUAL DATA
DDK090: VIRTUAL CONTAINERS ARE NOT

= Ty

1
A

et

Appendix G: Error Messages Page 88

INVERTIBLE

-y0oo DDKO: BAD DESCRIPTOR FOR VIRTUAL DATA

-y000 DDKO: BAD VIRTUAL DATA OPTION

-U000 DDKO: ONLY LISTS HAVE CATS

-U000 DDKO: ONLY OUTER LEVEL LISTS HAVE CATS

=-U000 DEID: BAD $TOP SPEC

-UQ00 PEID: END OF STATEMENT EXPECTED

=000 DEOD: ERROR IN REPARSING CD

-U000 DFDD: TOP LEVEL COUNTED & DELIMITED
THINGS DON'T WORK

-U000 DFDT: VARIABILITY REQUIRES TERMINATOR

-U000 DFFC: QUTER BYTE SIZE SMALLER THAN INNER

-U000 DFFC4: ASCII DATA REQUIRES ASCII FILLER

-U000 DFFCJ6: BYTESIZE TOO SMALL FOR FILLER

-U000 DFFCi5: BYTESIZE TOO SMALL FOR DELIMITER

-U000 DFFC20: BYTESIZE TOO SMALL FOR SIZE IN DATA

-U000 DFFC60: BAD VIRTUAL DATA OPTION

-U000 LFFCT75: BAD PUNCTUATION HIERARCHY

-U030 LFFF: ONLY ONE INVERTED LIST, PLEASE

=-U000 DFFF: NON-ASCII PORT HAS NON-EOF

-U000 DFFF15: PUNCTUATION ILLEGAL IN NON-ASCII
PORT

-U000 DFFF38: BAD PUNCTUATION HIERARCHY

-J000 DFFF38: INFERIOR PUKCT BUT NO INFERIORS

-U000 DFFF42: BAD PUNCTUATION HIERARCHY

-U000 DFFF50: BAD PUNCTUAfION HIERARCHY

-U0900 DFLA40: ONE MEMBER EXCEEDS DEFAULT SIZE

-U000 DIAN: CANNOT OPEN FILE FOR INITIALIZATION

-Uoco LAEX: INTEGER CONSTANT OVERFLOW

-1J000 LAEX: CRLF NOT ALLOWED IN STRINGS

-U000 LPAS: UNKNOWN COMMAND

-yoco LPAS: NAME EXPECTED

-U000 LPAS: END OF STATEMENT EXPECTED

-U000 LPAS: CONSTANT EXPECTED

-0000 LPBP: n)y® EXPECTED

-U000 LPFOR: NAME EXPECTED

-U000 LPFOR: BAD STATEMENT INSIDE A FOR LGCOP

-y00o LPFOR: NULL FOR-BODITS NOT PERMITTED

-U000 LPNN: IDENTIFIER EXPECTED IN PATHNAME

-U000 LFRE: PATHNAME EXPECTED

-U000 LPRE: BADM RELATION

-U000 LPRE: PAHNAME OR CONSTANT EXPECTED

-U00o0 LP?37: ILLEGAL REQUEST

-U000 LPSY: UNKNOWN REQUEST

-U000 LPSY: END OF STAT<MENT EXPECTED

-J000 SAAN: IMFLIED LIST INAPPROPRIATE

-Ucoo SAAS: FUNNY NODE TYPE

-U000 SAAS10: NO MATCH - BAD TYPE FOR

-yooo SAAS10: NO MATCH - NO MATCHING MEMBERS FOR

-J000 SAAS: CAN'T USE LITERALS WITH BIG STRINGS

U000 SAAS30: FORARG MUST BE LIST

-1000 SAAS30: NO MATCH--BAD TYPE FOR

-U000 SAAS30: NO MATCH=--NO MATCHING MEMBER FOR

A RN

P AR R

P T T B T PR

PR

[chenaia.) e

b

—

P
g

&

o

ety Shtemad Ay o s
. | .- H & i

Appendix G:

-U000
-iooo
-0000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-y000
-U000
-U000
-U000
-U000
-U000
-U000
-U200
-U060
-U000
-Uo0o
-U000
-U000
-U000
-U000
=000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-U000
-y0o0o0
-U000
-U000
-U020
-Uoo00
-Ucoo
-U000
-U000
-U000
-U900
-Ucoo0
-U000
-U000
-U000

s asid ool e datiaois i anb it g Lo TR ST T o R e

Error Messages Page 89
SACR: OPERATOR NODE EXPECTED
SACR: DIFFERENT INNER LISTS REPRESENTED
SACR: NESTED “ANY S NOT IMPLEMENTED
SAFR: CAN T HAVE 'FOR’® INSIDE OF °‘UPDATE’
SAFR: CRUFTY FORARGS
SAFROS: FORARG MUST BE LIST
SAFR25: FORARG MUST BE LIST
SAFR42: DATALANGUAGE TOO COMPLICATED
SAGM: BAD DATATYPE
SAMA: NULL SYNTAX TRFE POINTER
SAMA: NOT OPERATCR NODE
SAMA: BAD SYNTAX TREE OP CODE
SARE: NAME NODE EXPECTED
SARE: LEFT SIDE NOT STRING
SARE: NAME OR STRING NODE EXPECTED
SARE: LIST LEVELS DON'T MATCH
SASR: OPERATOR TYPE EXPECTED
SASK: BAD GRAPH OP CODE
SAUP: CAN'T HAVE °‘UPDATE’ INK °‘FOR’
SAUP0OS: FORARG MUST BE LIST
SAUP08: M_.SMATCHED “UWPDATE’S LOSE
SAUP0&: EXPECTING TRANSACTION LIST
SAUP10: FORARG MUST BE LIST
SAWI: NOT WITH NODE
SAWI4S: NO UNINVERTED PART
GGGOF2: UPDATE REQUIRES WRITE MODE
GGGOF: OUTPUT MODE IS NOT WRITE OR APPEND
GGGOF : NEITHER READ NOR WRITE
GGGOF : BOTH READ AND WRITE SAME
GGUP: ZERO LENGTH GRAPH NODE
SBAR82: RAN OUT OF FILE BLCCKS _
SBFR: LIST ALREADY IN USE (CLD CGAR CASE)
SBFR: INCOMPATIBLE LIST COUNTS
SBFR: LIST ALREADY IN USE (OLD CGAR CASE) ;
SBFR: USE FLAG GOT RESET i
SBIB: OPERATOR TYPE EXPECTED %
SBIB: INVERTED BIT NOT SET i
SBIB: BAD GRAPH 0O°® CODE g
SBIB: UNIARY AND/OR :
SBIB: INDEX EXPECTED BUT NOT FOUND [
SBIF: OPERATOR TYPE EXPECTED p
SBIF: INVERTED BIT NOT SET -
SBIF: BAD GRAPE OP CODE
SBIF: INDEX FXPECTED BUT GOT GIBBERISH
SBMA: OPERATOR NODE EXPECTED
SBMA: CRUFTY OPCODE
SBMA10: CAN'T HAVE CONSTANT ON LEFT SIDE
SBNN: NAME NODE EXPECTED
SBOP: CAN'T OPEN CONSTANTS
SBPP: CRUFTY OPCODE
SBPP60: CONSTANT NOT ALLOWED
SBSR: CAN'T FIND TCP NODE
SBUP: LIST ALREADY IN USE

’

RN

LA AT SRR SR SO

G

o

.

Bowsik g
v

Appendix G:

-U000
-U0CO
-U000
-U000
=-UC9o0
-U000
-v000
-0000
=-0000
-0000
-U000
-U000
=-0000
-U00C

-0000

-U000
-U000
~0000Q
-0000
-0000
-00090
-J000
=000
-0000
=0000
-0000
=000
-U000
-0000
=-U000
-U000
~0000
-U000
;0000
s00CO
0000
;U000

Error Messages

SBUP:
CHEB:
CHEBS50:
CHEBT70:
CHEB8O:
CHEE:
CHE . :
CHMB:
CHME:
GHAN:
GHAN:
GHANF:
GHANF:
GHAS:

GHAS25:

HFB:
GHFB:
GHFTI:
GHFTO:
GHIF:
GHNS:
GHPD:
GHPT:
GHRUN:
GHUBM:
GHUEU:
GHUTT:
GTCN:
GTES:
GTSB:
GTSS:
IGTU39:
IGTUY49:
DFCB15:
DFCB20:
DFCB20:
DFCBLO:

Page Y0

IN-USE FLAG GOT RESET

CAN'T START NON-EXISTENT CONTAINERS
ILLEGAL REFERENCE TO LIST MEMBER
ILLEGAL REFERENCE TO LIST MEMBER
INDEX NOT IN LIST

ARGS NOT MATCHED

SKIP STUFF NEEDED ??

IN-USE BIT IS NOT S.T

IN-USE BIT NOT SET

PUNCTUATION IN CONDITIONAL !EMBER
LIST IN USE

BACK CHAIN EXPECTED

SOMEBODY ZORCHED THE IN-USE BiT
ILLEGAL ATTEMPT TO CHANGE
VARIABLE LENGTH CONTAINER

NO CAN DO; COME BACK NEXT YEAR
(UPDATING INVERTED

CONTAINERS THAT IS)

NO BACK LINKED LIST

IN-USE BIT NOT SET

IN-USE BIT ALREADY SET

IN-USE BIT ALREADY SET

OPERAND NOT A CONSTANT
PUNCTUATION BRANCHING GLITCA

BIG COMPARE NOT IMPLEMENTED

ZERO BRANCH ADDRESS

BAD GRAPH NODE TYPE
PAGE/PUNCTUATION BRANCHING PROBLEM
IN-USE BIT NOT SET

IN-USE BIT ALREADY SET

ILLEGAL CONVERT CODE

BAD MODE

BAD CGRF/CGRE

BAD CGRF/CGRR

MISSING TUFLE JUMP ADDRESE
MISSING TUPLE JUMP ADDRESS

BYTE BOUNDARY PROBLEM IN

TAIL TOC LONG FOR

BYTESIZE MUST DIVIDE PARENT FOR
BYTE BOUNDARY GLITCH IN

SRS s e TR

T

e T e D T T e

1

T
L Y %

N

A TR TR

O L LT

| P

R &

SALLOC(ATION)

‘DESC ® o 2 © & & o & & »
‘NAME ® O & © & & & & o o
’PRIV(ILEGE) ® N o o & o
‘sOURCE ® & & &6 & o5 o & o
;TOP L L J L J L] L J L) ® L L J L J

‘#° (user name) feature .
‘#%#° (yser name) feature

+ (message prefix) o o« o
- (message prefix) o+ o o
o (message prefix) o+ « o
; (message prefix) « « a
? (message prefix) o o« o
Address (in CONNECT reque
APPEND ® ® L] ® [3 L] L] ® L J
ARPA network e o o ® o o

Assignment (of outermost

Boolean expressions .
SBYTE o ¢ o o ¢ o @

Carriage return

o o o o o
CLOSE request « « o ¢ ¢ o«
CONNECT requesSt « o o o «
Constant o o @ & o o o o
Container « « « o o o ¢ »
Container Address Table .
Containers, outermost « «
Contrcl=L « ¢ ¢« o ¢ o o o«
CONtrol=Z « o« o ¢ ¢ o o @
Conversion <« ¢ o o ¢ o o
Count « o ¢ ¢ ¢ o ¢ & o o
CREATE request e o o o o

Data transmission « « « o«
Data types <« o o o o s o
Data, deletion of

Datalanguage 1nput/output
Datalanguage input/output
DELETE request e o o o o
Delimiter « « ¢« o ¢ ¢ ¢ o«
Description e & & o o » o

Page

Index

16
12, 16

16

e 3 & o o @
—h
o

o 2U
o 24

e 55

e 55

st) 53

« 14

® ue
containers) 32

38
5, 12

50

15

52

33, 43
'}

41

5, 8

10, 55
10, 51, 52
34

9

T, 34

e 51

e 9

e 16

ports 49
sockets 49
e 15

e 9

o U

91

"R

e

el =2

r——

r
i

_—

Dimension « o o o
Direz2tory o« o o o o
DISCONNECT request

EOB [3 a4 o ® o ®
EOF [3 L J ® ® o L J
Eol (character)
EOR ® ® L J [J [J [J

FI LE o ® ® ® ®
Fill Character
FOR request « o«
FOR=-body o o o
FOR=100D o o o ¢ o

»

form feed (character)
Format, of datacomputer

Function o« o o o o«
HOSt o o o ¢ o o &
Ident o o o ¢ o o o
Input-spec (of FOR)
INTEGER o o o o o o

Inversion ¢ o o o o

Line o o

9 & & @ * o 0

® 3> & 0

9
5

53

10
10
51
10

5
11, 34
42
43
42
55

me ssages 50

e o o o o o
Line feed o o o o o «
LIST ® & ¢ o o o o o
Local-file-designator
Login ® & o & o o o o

Matching rules + «
Message format o+ «
Messages, 2rror « e«

Initial Connection Protocol

Messages, informational
Messages, synchronization
MODE request « o o ¢ o

NodesS o o o o o

~ ®
Object o o o o o 2
OPEN request « o o
Output-LIST o o o o
Qutput-spec (of FOR

Pathnames . o o o o
PORT ® & & & & & o
Port, secoundary « «
Ports, datanlanguage
Pricedence o+ o o o
Precedi- count o

srotocol, initial conn

® e o 0 & & 3

¢

[
[
L]
[J
L]
L
t

\J

» & 9 0O

5
48

y
77

42

5

10, 14, T4

50
50
5
53
6

32
50
£5
49
49
15

6

43
14
42
42

7
5, 49
52

49

38

9

ion 77

Lo b anes B et e A AR A AL e

SRS, TR I AU R

G

& AP RN Ty M
Gmm.;

i = E=

| e

 wwm B oty Y o

]

PO

>y
4

)
porwar s

A

¥ ssuey
+

r—— = e -

Page 93

Punctuatior ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ 9, 35

READ
Reserved wo.ds

...........1"

® & @ » & .u

Restrictions, implementation 79

Secondary port ¢ o ¢ o
Session ¢ ¢ o ¢ ¢ ¢ o o
Session, end of ¢ o o o
Size e o = » ® o ® o o
Socket s e »r & & © o @
Scckets, datalanguage o«

space allocat . on o o o
star (user name) reature

52
49

51, 56
5, 9
48

4o

6

24

star-star (user name) feature 24

STR ® & & © o & o & o ”~

STRUCT < [] ® ® ® [] ® [J
Synchronization ¢ « o o

Tape, magnetic
TEMPORARY PORT o o o
TENEX file-designator

Type

* & o

UPDATE

® © e e & o » o
Virtual Container « « «

HITH ® & o o & o
WRITE o ¢ o o o o

5
5
49

54
5
53
5

by

