
rappPfD. .,MJ!V,..|Ui ijLiM!W^t'.i.lJ«!!IUJ.JfJfi'"*' J-U J#JW, - J-. J-"l- ^"«WMI' .^"PM! ■< UWIU!g«'P4L«i agM w ■. 111.. äj 1J-, 11 ffJV'^www jwy»■ ■ ■ "■ " ■ - -?-, i.iiiwJ.iww!» JJH.'.JJ rflPppp"j^wi|m.l"iHJ«..u'.j- -

DATACOMPUTER PROJECT

Computer Corporation of America

AD-A008 877

i

Prepared for:

Defense Supply Service
Advanced Research Projects Agency

31 December 1974

DISTRIBUTED BY:

Km
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

r

~.::^,^-::,:,. ^Tlk::^if:^:^^
Ij^^j^^l mmümn. mmtimm^^

pmnAPP> J' < iug<swjp|^4iB|iwiuiwwui|'i^|J|.' wmBPB&ssmgsi' >--;g^jC^;.^^^J7^^ijHQjflUei^y|ijW^ ™ ■-, ^^^.^^r y-.-.

■ —

III
£'■

1

fö-froow;

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

1.
r

ft*

i :

u

DATACOMPUTER PROJECT

SEMI-ANNUAL TECHNICAL REPORT

July 1, 197^ to December 31, 197^

I
1
I
I
1
I
I
I

This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitored

by the U.S. Army Research Office, Defense Supply Service—

Washington under Contract No. MDA903-74-C-0225. The views and

conclusions contained in this document are those of the authors

and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Defense

Advanced Research Projects Agency or the U.S. Government.
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

\$
a

i ji- .mjtßmmmmm^^ ■■^i!.M6*!Jp***».»- n

1 [j i L

L

I

I
T
I
I

Abstract

0

1 IT 1 *.

The Datacomputer system is being designed as a large-scale

data storage utility to be accessed from remote computers on

the Arpanet and, potentially, on other networks. The

development is phased, with each successive release of the

syste.:. offering increased capabilities to users. During the

present reporting period, the third major release of the

system became operational. This release, while still primi-

tive in many respects, is providing service for a wide range

of applications.

: *~
I
I

-il-

'i^iä^t^,MS^^-'^^^^£ä^i.it,^.i1^^ ,a ^^^ix^js^^.i.***,.**,- :ifc,- ■..:-. .-..^ ■^^«■si'itet^M

iMMM.LUJ.1 lujiuiw-stiiiifjjiwijBppgpjiywHyg "--■- M*wi^wHiM«ipjyijW]p»iM,iiw^ '-"i—y1 -'

n

I

I
I
I
I
i
I

Table of Contents

Page

Abstract \i

1. Overview 1

1.1 Review of Basic Concepts 1

1.2 Status of Proj ect 5

2. Software Implementation 7

2.1 Request Handler 7

2.2 Services 9

3. Network Services , 12

Figures

1. Logical View of Datacomputer 2

2. Hardware Overview of System 3

3- Hardware Block Diagram—CCA Installation 4

Appendix: Working Paper No. 10, "Datacomputer Version.

0/21 User Manual 13

.JJi-

.'■■ •**..''■*> ;^iK¥*n J*~ i>**'

■- ';- : f.;.-..^:.:.wii..a,-Mia>^aajJa»-.aa«.ai^ ..waäai.-,^..^-:,.

mmmmmmmßmm spp» "--*■'- -'WWW."-'.,UI J^"1- '■■■■,'l^aHlf .MW llj,.._ ~, gU|,t,l.,W,,,.,y.r>!^5.: ^

0

ü
1. Overview

1.1 Review of Easic Concepts

The goal of the project continues to be the development of

a shared, large-scale data storage utility, to serve the needs

of the Arpanet community.

hi

u

The system under develooment will make it possible to store

within the network such files as the ETAC Weather File or the

NMRO Seismic Data File, which are measured in hundreds of

billions of bits, and to make arbitrarily selected parts of

these files available within seconds to sites requesting the

information. The system is also intended to be used as a

centralized facility for archiving data, for sharing data

among the various network hosts, and for providing inexpensive

on-line storage to sites which need to supplement their local

capability.

i

!

I
f
4-.-

Logically, the system can be viewed as a closed box which is

shared by multiple external processors, and which is accessed

in a standard notation, "datalanguage" (see Fig. 1). The

processors can request the system to store information, change

information already stored in the system, and retrieve stored

information. To cause the Datacomputer to take action, the

external processor sends a "request" expressed in datalanguage

to the Datacomputer, which then performs the desired data

operations.

From the user's point of view the Datac'omputer is a remotely-

located utility, accessed by telecommunications. It would be

impractical to use such a utility if, whenever the user wanted

to access or change any portion of his file, the entire file

had to be transmitted to him. Accordingly, data management

functions (information retrieval, file maintenance, backup,

access security, creation of direct and Inverse files, mainten-

ance of file directories, etc.) are performed by the Datacomputer

A-l-

 --"-"- ■ ,i»m i*. ri.in.rr •;. i II laaiigiig^jgii^iji^^ m Mjgggjiigijiflj

I

I
I
I

&*

I
I

I
I
I
I
I Figure 1. Logical View of Datacomputer

•■■"...•:. -'««~.i.&: .„..^vsi^isftsgäsafiü^a^

ifim.Sit.r-' . -.^-aBij» ^i^M^a., ■ ■ ■ ,Mni|i||itB-fi — — ^rmii iii-ir.ii-»^*iM^i^nrtnMii^>-~i*i«MMaiMiii'iffl1it!

gnugfufp*1^mm. i wamzm *mmmmM9MB$ --' vi'jj>*&m >^m^^*'^w?™^*"m^^*°r?rT*f^-''~*'r-

\ u
S i

l_i

Ü

I..J

: 1 ,

i i

1

1

SECONDARY
STORAGE

IMP
INTERFACE

IMP

ARPANET

PRIMARY
STORAGE

MEMORY BUS

SYSTEM
PROCESSOR

;

I/O BUS

PERIPHERALS

Figure 2. Hardware Overview of System

A-3-

w:-. -■ ■..•-■.■-..-^«'..^■■—-■1 ■..•.=■
^^»mtoaa^j-.

I
I
I
I
I
I
1
I

IMP10
INTERFACE

TIP

303
MODEMS

, ARPA
NETWORK

DIAL-UP
LINES

Figure 3. Hardware Block Di.agra.rn - CCA Installation
(Equipment in dashed outline is planned for 1975)

M.

' • i»«t.i.5«

--*.■■.....-.,.■■■■.,.,.... ■ -■ - - ■.- ,.■,-„■—.a.^. ■ -~~».^^iiiii«fca*iii«i»iUMi„.^ ,.

ü

IMWldHIWIIMII'l !!■■ I i mi l II II l l «»»»HJOB»^»-?"«^"-'"«■'■

u

Li

system itself. The user sends a "request", which causes the

proper functions to be executed at the Datacomputer without

requiring entire files to be shipped back and forth.

The hardware of the system is shown in overviev; in Fig. 2 and

in greater detail in Fig. 3.

U

! r

The program for the system processor handles the interactions

with the network hosts and is designed to control up to three

levels of storage: primary (core), secondary (disk), and

tertiary (mass store). Currently, the CCA facility is operating

with primary and secondary storage only, with the addition of

tertiary storage planned for 1975- Installation of a tertiary

storage module will leave datalanguage unchanged, and will

therefore be imperceptible to users of the system (except

insofar as it affects performance and the total storage capa-

city available for data).

In addition to using the dedicated equipment at CCA, it is

planned that Datacomputer service will also make use of hardware

resources located at NASA/Ames, using CCA software. The two

sites will provide mutual backup for one another, thereby

guarding against accidental loss of data and providing for

satisfactory uptime of the overall service.

1.2 Status of Project

During this reporting period, Version 0/11 of the Datacomputer

system was completed. This is the third major version of the

system to offer Datacomputer services on the Arpanet.

0

New facilities in Version 0/11 include updating of fixed-

length containers, inversions on variable-length containers and

retrieval by index number. (See Chapter 2 and Appendix for

details.)

A^5-

-,„,..,,..^: ,,.^,.-^ ^~±. .~~^.- ,,imr*?iiiMim'iafi»r tjtktmmwäat*imtkM:mmitrr irirrifiMlMHiiii

>■«■"■■ Bjg in,»mmi-.-mv>,u• mP).HB lliliinimj"»»'/!»»»,»'.' iWhiliM "HMMMIP—BPTTTIFT ^7—TMWBTMirWBI

! S

I ! u

j r T

I

1
i

u

Li

The next version, 1/0, will be the first complete, though

minimal, database management system. Its main features are

full updating capabilities and concurrent updating and reading

of a file. Version 1/0 will be completed in June 1975.

The project continues to interact with actual and potential

Datacomputer users. A user's meeting was held to identify user

needs so that they may be considered in setting implementation

priorities. Several new applications are beginning, and major

presentations have been made to potential users.

A paper giving an overview of the Datacomputer system was

written. In addition to serving as a chapter of the Arpanet

book, it will be presented at the National Computer Conference

in May 1975-

« - >

|."

if

I
I
I
T

A-6-

V^^^JivxJ&^&Jü^

. rTITI^^...^^,,^IM^«ai

-S^^S^^HBBEHHKa ÜZZi'- .,'J» -■,;■•■'_ " ■ '■' "^r. .i^.-*-;.^-.^..

LJ

(t

2. Software Implementation

During this period, version 0/11 replaced version 0/10 as the

Datacomputer system offering service on the Arpanet. The new

features of 0/11 are summarized in this section. (See Appendix,

"Datacomputer Version 0/11 User Manual" for details.)

Specification and implementation of version 1/0 were begun.

i i i

U

LJ

I I

2.1 Request Handler

The following enhancements were released in version 0/11:

1. Simple updating

The user may specify value replacement for fixed length,

uninverted fields. The update request takes a master file,

and either a list of transactions or a constant. Since the

Datacomputer is making a sequential pass of port and file, the

information appearing in the transaction port must occur in

the same order as it appeared in the master file; that is,

outer and inner port list members must be in the same order

as those of the file. Lists which contain no information

different from the master file (which are not being changed by

the update) may be omitted.

I

2. Virtual Index

A virtual container is one whose value is net stored as data,

but can be derived. The kind of virtual container implemented

in 0/11 is the virtual index container: the position, by

number starting at 1, of a list-member within the list. For

the virtual index container to be used, it must bo included

in the creating description.

fc-7-

' ' '^:.:i^W

■ — -' ■■ i.ii.i....... - - -■" -T inimwMii
ÜM .t..,r»«. __ - —— MJMMfiÜÜ

IMIWVL JHIUAJWUMJ HI,! BWW^W^HfBj ;^JIIHM-«H^^.W.T,^»^WI,^.,I,^..

!

Li

("i

3- Integer Type

Two's complement integers have been added as a data type in

0/11. Sizes may be specified up to 36 bits. Conversion (to

and from ASCII strings) and comparison have been implemented

for integers.

Ü

L

4. CAT

The Container Address Table (CAT) is a new internal structure

in version 0/11 which will speed retrieval of variable length

data. The CAT is a table of pointers to the start of each

variable-length list member. The CAT is automatically formed

for those variable length lists which contain at least one

inverted string. The user can specify a CAT for lists which

do not contain an inverted string. The CAT will be used for

retrievals based on the Virtual index container for files.

Definition and design of release 1/0, currently scheduled for

June 1975, was begun in this period, Removal of the zero

prefix implies that 1/0 will be the first "service offering"

of the Datacomputer. As such, we are making a special commit-

ment to "clean up" and "flush out" the system. Removal of

restrictions imposed in previous releases will be a major

goal of 1/0. The major features of this release will be:

I
!

I
I

1. Full Updating Capability

The user will be able to change the value of any elementary

container, whether fixed or variable length, or inverted.

Append and delete facilities will be available for lists at

any level. Some ability to add list members in an ordered

list will be implemented, but the ordering will be maintained

by the user.

2. Intermediate Language

The method of compiling the high level datalanguage has been

changed. A new formalism, intermediate language, has been

A-8-

*****.:±M*mMai^M»^MMm±^ .»nk^a,--.-.^,,!,,,^..:...,^,
 IT

■MT,-T!T-*> .>--- ~-~yr.f T.-,\\i ■_..'■:■ .~™$,ii-;--,. '-\y-.'.:-;.,-fK'-^'^'i:f-r.'-:-'-

u

j!

D

0

n
I u
I I
1
I L

3 *

! U

l Ü

defined. The compilation process now translates datalanguage

into intermediate language, and then compiles intermediate

language into tuples (the system's most primitive operations).

This new method allows more advanced compile time optimization,

and makes the handling of datalanguage side effects more manageable,

These side effects were responsible for many of the restrictions

in previous releases of the system. Intermediate language also

provides an internal base language so that addition of high

level operators to the user datalanguage is greatly simplified.

3. Improved Directory List Features

The system will provide more information to the user about

stored data, including times created, read, modified and size

information on both base and inversion areas. Status information

on open files will be provided. All this information will be

available over the datalanguage (or control) path as well as

via system-maintained descriptions over data paths. This

allows user program control over format and content of list

output.

1«
V »

r U

2.2 Services

The Services subsystem of the Datacomputer has made significant

progress both in overall design and in code implementation.

Design progress has been made in the following areas:

' f

I

SDAX (Special Disk Area Index) is the scheme for buffering

on 3330 disk file data pages which will normally reside

on tertiary memory. The data pages for files currently

active will be buffered in the Special Disk Area (SDA)

until the file is no longer in use. This scheme is

expected to yield substantial efficiencies in internal

data handling. The design is complete and detailed.

Implementation is expected to take place over the next

six to eight months.

Ä-9-

ir.T.iiinT. 11, i—mi» *»«jMiiT<mitoriiiti«1i-iiiitifnrtigatflrMiiTiiiil«ll1BMIÜ Ml
_

..-...,-, -,, r-.^ _„^^,^r..,..,-.-.- . .V.—— ■".-■' -■■■■-; if- -■--,- ■ ■.".'--.VWi/Jv^-A"»?««^"-^/ ^

1- I
1

LI

10
D
0

• The RESERVE function has been designed and pre-

implementation work has been done for the purpose of

accomodating uhis design. This function will permit

users to gain exclusive access to specified components

of the file directory such as individual pathnames and

privilege typle chains.

Extremely high priority is being placed upon verifiable

integrity of the database. To this end, every underived

item of directory and volume-descriptor information will be

multiply redundant. The validation routines will have the

capability of cross-checking redundant items, isolating

faulty data fields, and, under programmer control, correcting

such errors. Portions of this design are now complete, and

are currently being implemented.

f

Implementation includes the following significant work:

. 32-bit mode. Since the Unicon is a 32-bit wide device,

and TENEX files/memory utilizes 36-bit words, files

stored on this device must not use the low 4 bits of

each word. This capability has required the following

changes to SV: (a) Added a new Datacomputer device,

the "Unicon file", which is just like a TENEX file except

that its VTOC is only 32 bits wide; (b) Required

changing VTOC bit manipulation subroutines to accomodate

32-bit sized words; (c) Also required formulating and

coding a new internal representation for date/times,

since the TENEX standard requires 36 bits; (d) Since

the width of a file is no longer implicitly 36, changes

were made to the space allocation and deletion routines

to pass the width as a parameter whenever manipulating

the free chunk bp.

A-10-

&**h**S*.-.ifcijfeüä£jsfc£B6ääS6<

...*■■, iaiiaaani»^—»■■..~J-^.. .„ - ■■.l..-fT«imil 1—_. I ^— I IIII T—

I l-».,M*j.«IUUIIU»*I...- - [j|^jlgp!IJ|Bgp;li. .'i.. ■!.' n.y-WW^JIWiltfWB

(i

l—i

A "slosh" program has been implemented for the purpose

of transferring data from one Datacomputer to another.

This greatly facilitates transfer of file directories

and data between different (and sometimes incompatible)

releases of Datacomputer software. Also, it has the

potential to be used to transfer files between physically

discrete Datacomputers.

Ü

Directory system validation routines. This collection

of routines -nay be run at any time in order to validate,

and to perform extensive internal verification of,

directory system information. Work is still being per-

formed in this area.

L,J

0
* i rt

0

i r 1" it

hi

F
A-ii-

■ .-L-.;-v-.■*.;;.-:■._;■■■.

^.^^g^^mmmsmm^mmmmuemmmmami i^tMmmmmmmmmtm

IWW.IM.I.UW>W^:A
SPBPWPW»« wtKM.uHAlJ»-W'.4W'WH

lJ.llH I I

1 I u

u

Li

l_J

, L

i L i

3- Network Services

During the present reporting period, emphasis has been placed

on getting operational experience with a range ox Datacomputer

applications.

One of the largest databases to be stored on the Datacomputer

is the seismic data. The amount of data to be stored

necessitates that the data be handled as efficiently as possible

if the application is to be feasible. CCA has worked closely

with the other organizations involved to identify the data

storage and retrieval requirements for this application and to

design the file formats. We have obtained several sample

seismic files for experimental purposes. One of these files,

containing data from the International Seismic Month, was used

in a demonstration at an international conference. The user

program SMART* was modified to access this data,

CCA took part in the ARPA intelligence show. A demonstration

of the Datacomputer and a datalanguage tutorial were given.

Accounts were set up to allow experimental access for potential

DOD users.

1 -i

f

u
0

As a part of the MIT-DMS message archival project, the Data-

computer will provide archival storage for network mail.

Several meetings have taken place between CCA and DMS in order

to design the application.

* SMART generates datalanguage for users at terminals, thus
providing them with convenient access to the Datacomputer.

/»-12-

-■-'.--,, .,. -

iTJffifri* ;a^^y^*:*Wa alämmmmin&a 11 imv m in 11 rrr ■■'■imf~^^'^-«Hm**l*m- ' Hi»

f^M wwsay IPB— BW ?'-■• ~- -■--.-.--^.-- -..t«imiP-<i-—,1-rraBBMM^

Ü

i

LJ

L

Appendix

i L:
Datacomputer Version 0/11 User Manual

Arl3-

• < ■-' :v .■,>^,.i^^i>-;!^ii.,,. y^Lt .^,

M^,,:^,.,^r-,r.v,ftwi»M^^ aaü gmüiü iggiiumgi .-^.-......- _.. .. , n „,„,„!

ßmw^m^mvii'iiwmwwtwmu --— jtmxmtmm.—m

L

f

U

C

Table of Contents

1» Introduction to the Datacomputer •••••••••••3

2* Containers • •••»••••«•••••••.... .4
Containers •••••••••••••«••••••4
Outermost Containers •••••••••••••••4
The Directory •••••«•••••••••••••6
Pathnames • •••••*•«••»••••..»•.7
Creating Nodes • ••••••••«•••••••. 7
Creating Containers ••••••••••••••••8
Byte sizes« • ••••••••••••••••• «12

3» Directory Commands • •••••«•••••••••• «14
OPEN. • .14
MODE 15
CLOSE » . • • 15
DELETE 15
LIST 16

4. Security and Passwords ••••••••••••••• .18
Introductory Concepts •••.••••••••••18
Gaining Access to Nodes: LOGIN ••••••••• «18
Privileges • •••••••••••••••••• «19
Privileg« Block ••••••.•••••••.••20
User Identification Fields ••••••••••• .21
Privilege Set Specifications •••••••••• ,22
User Classes • •••••»••••••••••• 23
Creating Privilege Blocks: CREATEP. • • • • • • .25
Deleting Privilege Blocks: DELETEP 28
Example •••••••••••••••••••••28

5» Assignment and FOR-Loops. •••••••••••.••32
Assignment Involving Outermost Containers • • • • 32
The Matching Rules ••••••••••••••• .32
Padding and Truncation ••••••••••••• »33
Conversion ••••••••••••••••••• «34
Examples •••••••••••••••••... »34
Selection of LIST Members* ••••••••*.• «38
Retrievals Using Inner LIST Members •••••••39
Retrievals Using Inverted Containers •••«•• »40
Retrievals Using Container Address Tables . • • .41
Assignment With FOR •••••••••••.•••42
UPDATE . . . 44
Mismatched FOR Loops •••••••••••••• 46

■■■■. .-« •: an

.^..».^.Mij.^ jjjfcfrjjij^dJB a—^^„^. IÜ am |aiift|g|i|ttM|||Ba<iai|^^ , .^^^^^.■^^.„^^^

mmmmmmmmm*m»'m*>v**ummmm~rmim

Page

6« Using the Datacomputer ••••••••••••..•• 48
Interacting With The Datacomputer ••••••••48
Synchronization ••••••••••••••••«49
Transmitting Data Through Datalanguage PORTs • • 51
Opening a Secondary PORT •••••••••• • • 52
Error Messages • ••••••••••••••*• 55

I !
i L

I

Appendices

A: Summary of Datalanguage Syntax» • •••«• «58

B: Reserved Words. •••••••• ••••••73

C: Inversion: Technical Considerations • • • . ,74

D: Network Interaction with the Datacomputer • .77

E: Implementation Restrictions •••••••• .79

F: Differences Between 0/10 and 0/11* • • • • • 84

G: Error Messages* •••••••••••••• .85

Index» ••••••••••••»• •••••••• .91

h

',■

ktaiiiyaJi^vJ-, sjUofti'.: .-.-„■«■..■....■.■.-«'■■-^•«'-"»»■"IIIT mi >|-|fiiiiiiiiniiil1tfll I i miirii ritiMimiMmttfiir'^-^

i^»—U» u*.m .inJiawim^-i.^^»^-^^-.
?ft^j«Bip^SPWflSHK?

D i'a^e 3

Chapter 1: Introduction to the Datacomputer

The datacomputer Is a shared large-scale data utility
system designed to serve the computers on the ARPA network.
It may be thought of as a "black box" that performs date
storage and retrieval functions in response to commands
phrased in a standard notation, called datalanguage» The
datacomputer in its full implementation will provide an
on-line storage capacity of one trillion bits and an
extensive set of services to user programs*{1)

This document describes Version 0/11r the currently
running version of the datacomputer system, and includes
information about how a user program can access the system,
transmit datalanguager process the datacomputer's responses,
and transmit and receive data over the network«

Version 0/11 is a preliminary version* While it is
sufficiently powerful for many types of applications, it
still lacks some desirable features, and contains some
undesirable implementation restrictions* The next version,
1/0, will offer a more complete subset of datalanguage* In
particular, it is planned that full updating facilities will
be available and that restrictions of the type described in
Appendix E will be removed* Versions beyond 1/0 will
progressively enlarge the range of services*

I
I
I
I
I

(1) See Datacomputer Project Working Paper No.
Datalanguage pegjgn GoncepUr December 1973-

6, further.

BUgÜÜ iftrftfitf1^ ma

Page 4

LJ Chapter 2: Containers

Containers

u

The container is a basic concept in datalanguage. A
container Is an imaginary box which, like a FORTRAN
variable, may contain data; a container may also enclose
other containers* For example, some information about
people could be represented as:

PEOPLE
PERSON PERSON)

NAME ADDRESS SOCSECNO NAME 1

FIRST LAST STREET CITY STATE

<
< o

FIRST /

<
<
a

<
1- <
O

<

Q

<
I-

<

a

<

O

J
/
/

I

Figure 2-1. A container structure

Here PEOPLE, PERSON, NAME, and ADDRESS are container«
enclosing other containers; FIRST, LAST, STREET, CITY,
STATE, and SOCSECNO are containers that enclose only data»

The description of a container has several parts. It
includes the container's ident, type, and size, and perhaps
some additional attributes. The container's ident. or
simple name, is a string of 100 or fewer letters, digits or
the special character %, by which datalanguage requests
refer to the container» The first character of an ident
must be a letter or the character %. Certain reserved words
may not be used as container idents; these are listed in
Appendix B of this document»

Viilmlirf-tk-ii-i -r'-^'niifM
t^g^tfj^^g^^ ^„,^^^.^^^^^^m llTri 11 iiiiiTifiiiifii

u

■WWW» HIHI,1 Ml. III. I mi npii IIHU IWUjIWtil IWH IIMHIIll *~W-»MU» *><•* uium. *■-»■! ■!

Chapter 2: Containers

Some sample idents are:

AVERYLONGIDENTABCDEFGHIJKLMNOPQRSTUVWXYZ
PEOPLE
WEATHEROSTATIONS
*CCA

Page

Containers
contents»

are of four types, depending on their

' n
i l_i

D
D

0
i.

A contai
other contain
data typer bu
PEOPLE (above

A contai
some number
identical de
containers t
description o
the STRUCT
the same orde

An eleme
(IÄI) contai
container of
bytes.(2) The
and STRs and
uninterpreted
complement*

ner that is a LIST contains some number of
ers* The LIST-members may be containers of any
t they must all have the same description*
) is an example of a LIST?
ner that is a STRUCT, or STRUCTURE, contains
of other containers, which need not have
scriptions.v1) The descriptions of all the
hat are enclosed by the STRUCT form part of the
f the STRUCT itself; and on every occurrence of
every one of its sub-containers must appear in
r. ADDRESS is an example of a STRUCT*
ntary data container of type BYTE or INTEGER
ns one byte of data* An elementary data
type a STR or STRING contains a string of
user can specify the byte size of BYTEsf INTs,

can indicate that STRs are 7- or 8-bit ASCII or
• BYTEs are always uninterpreted, INTs are 2's
(See below)*

A LIST or STR has a size associated with it* The size
may be fixed or variable* The size of a STR is the number
of bytes in itr while the size of a LIST is the number of
elements in the LIST*

Outermost Containers

A container that is not contained by any other
container is called an outermost container; outermost
containers are different in several respects from other
containers*

An outermost container in datalanguage has a function,
which is either FILEf PORTr or TEMPORARY PORT (which may be
abbreviates TEMP PORT)* A FILE contains data kept in the
datacomputer* When a FILE is created (see below),

(1) STRUCT and STRUCTURE are synonyms
Hereafter, STRUCT will normally be used*

in datalanguage*

(2) INT and INTEGER, STR and STRING are synonyms in
datalanguage* Hereafter, STR and INT will normally be used*

^gum^gguüij,

mmmm ?mr |j|j|j|f||JPiHilf»^^

Chapter 2: Containers Page

u

u

u

datacomputer space is allocated for it* A PORT describes
data that is transmitted to or from the datacomputer» A
TEMP PORT is a PORT whose description is not permanently
stored, unlike the descriptions of other containers» The
description of TEMP PORTs are deleted at the end of the
session in which they were created*

u

s i ;

L

LJ

IM DirgsVgrv

The
FILE or
entered i
conceptua
node may
represent
of a hypo
read as i
DATA, whi
bottom-mo
container

ident of
a PORT

n the da
lly a t
have one
s a con
thetical
ndicatin
ch in
st node
sr and t

an outermo
, is unli
tacomputer'
ree; the en

or more
tainerr in
directory

g that the
turn is s
s in this
hey represe

st container, whe
ke other idents
s directory* The
tries in it are c
subordinate nod

which case it can
is diagrammed bei
nodes F and G are
ubordinate to C

treer F and G
nt outermost cont

ther
t in

di
alle
esr
not*
ow;
sub

CA*
, ma
aine

it
tha

rect
d no
unl
A

it
ordi

On
y re
rs*

is
t it
ory
d_es.*

a
is
is
A

ess it
portion
may be
nate to
ly the
present

j L

I II
I *■■■*

I

0

C CCA

DATA

I

Figure 2-2* A portion of the directory.

Only a bottom-most node of the directory may be a container
ident; only an outermost container has its ident entered in
the directory*

Normally, the first thing a user does after connecting
to the datacomputer is LOGIN to a directory node* For most
purposes, he only sees his login node and the part of the
directory that is subordinate to his login node* (The LOGIN
request is discussed in detail in Chapter 4*)

■'-■<HSi

J.-.^^,^.^i>..,V^a^J^«»^a^.,,,.,:.^,^.^^^.^ fcjfcjMfiBffi xjmtteSGam mmm^mmMtm*^-,^ .-^.^.^^^^a^,^,.,^ . ;-*-. ^^rWMtlMiHMiMiMIMiitMfilli^

jlgipprSWSSessw^^ ^^j^^^.r^^^^-^r^TT^^rr^T^^^^ •

u
Ö

Ö

D

Chapter 2: Containers Pa^e

Pathnames are used to reference nodes in the directory
tree by describing a path through it« They have the general
hierarchical form

NCDE1.N0DE2*..N0DEn

where N0DE2 is a node directly subordinate to N0DE1.

There are several varieties of pathnames* The two
classes of directory objects referenced by pathnames are
closed nodes (including all nodes that are not outermost
containers and therefore cannot be open, and all outermost
containers that are not OPEN) and OPEN outermost containers»
There are three areas in which names can be found: the T0Pr
LOGIN and OPEN contexts* Thus there are six possible
pathname types, only five of which are reasonable* (A
closed node in the OPEN context isn't*)

Closed nodes can be referenced either by a complete
pathname (started with the reserved word JTOP), which causes
the name search to be anchored at the top of the directory
tree, or a LOGIN pathname, which anchors the search at the
current LOGIN node* Either pathname may contain passwords*
(Passwords are discussed in chapter 4*)

OPEN nodes may be referenced by a simple complete
pathname or a simple LOGIN pathname, neither of which can
contain passwords, or by an OPEN node simple name« An OPEN
node simple name is the name of the outermost container«

i

1 J

Creating Nodes

A node in the directory is created with a CREATE
request* Such a request has the form

CREATE <pathname> ;

Only one node may be created by a single CREATE request, and
a higher-level node must always be created before one
subordinate to it* The reserved words listed in Appendix B
may not be used as directory node names*

As an example, let us create the outermost container F,
a LIST of 4-character strings; the container's ident will be
entered in the directory as indicated in Figure 2-2» We
assume that nothing is presently in the directory, so we
must start by creating the topmost node*

CREATE CCA;
CREATE CCA.DATA;

mmmmtfm ——

**vUipJUMWi« --■""*'—! wmmmfmm^^immim

I i
Chapter 2: Containers face

CREATE CCA.DATA.F FILE LIST
XYZ STR (4);

Now that CCA and CCA.DATA have been created, we could
create CCA.DAT4.G with only one CREATE request; i.e.

CREATE CCA.DATA.G PORT LIST etc.

1 !

CrsaUns Containers

Outermost containers are created by a more complicated
form of the CREATE request. The CREATE statement must tell
the datacomputer all about the container. An outermost
container and all its subcontainers must be created at once,
with one CREATE request.

The CREATE request causes the description to be stored.
It also causes space to be allocated if the container is a
FILE.

The full BNF in Appendix A indicates succinctly the
precise syntax of the CREATE statement. It is worth looking
at a few examples before looking at all the details of
descriptions. One example, a LIST of STRings:

CREATE ALPHA FILE LIST SUBCONTAINEDSTRING STR (44);

Here the size of the outermost LIST is omitted, so the
datacomputer will calculate a default size«

A LIST of STRUCTs,
strings:

each of which contains three

CREATE BALLTEAM FILE LIST (25)
PLAYER STRUCT

NAME STR (20)
POSITION STR (2)
UNIFORM*NUMBER STR (2)

END;

The datacomputer will allocate enough space for the file
BALLTEAM to hold 25 copies of the STRUCT named PLAYER.
NAME, POSITION and UNIFORMJ.NUMBER are 7-bit ASCII STRs.
note that END is required to terminate the description of
the STRUCT.

The example diagrammed on page 4:

CREATE PEOPLE FILE LIST
PERSON STRUCT
NAME STRUCT

FIRST STR (15)

-'<■-■-■ -t**trf.ft«»*>a^

iiMiMiiiiiiiaiHiBMMiMiMBMMaiMMiii IMMBMMIMM

'""«"" ■■

0
D
D

PHP!

Chapter 2

jMjmnjviiummmm&mm!m^MipMB!imBmm&*?.

Containers Page

LAST STR (15)
END
ADDRESS STRUCT

STREET STR (15)
CITY STR (15)
STATE STR (15)

END
SOCSECNO STR (10)

END;

The elementary data types are BYTE, INT and STR»
Containers of these types contain data, not other
containers. INT is a 2's complement integer, while BYTE is
uninterpreted.

i i—

i ['

• { I.
I

i I Li

; r
La. I £

STRings and LISTs must have a size* For LISTs the size
is the number of LIST members (e.g., the number of PERSONS
in PEOPLE above.) The three forms for indicating the size
are:

(n) -- a fixed size of n
(m,n) -- a minimum size of m and
(,n) -- a minimum dimension of 0

where m and n are positive integers.

a maximum of n
and a maximum of n

Terminator Options; For an outermost LIST or STRing,
no size need be specified. For a FILE, the default minimum
is 0, and the default maximum is based on what will fit in
the default space allocation. For a PORT, the default
minimum is also zero, but the default maximum is effectively
infinite.

The datacomputer needs a way to find the end of the
data in variable-sized LISTs and STRings. The three options
are a preceding count, a trailing delimiter, and punctuation
(i.e., a device-dependent marker). A one-byte preceding
count is indicated with the keyword parameter:

,C=1

Version 0/11 cannot handle counts larger than one byte.
Thus, if there is a count, then the maximum dimension must
be small enough to fit into a one-byte- count. (Byte size is
is discussed further below.) The value of the count does not
include the count byte itself.

The syntax
delimiter is:

to indicate that there is a one-byte

—

,D = n

 *»**~^***x ■*■-■- um jügüüMüii
^^^^^

I <

ü

u

iu

j u

I n

0
j
i u

L

I

I

Containers

'.^f^W^Piy^^^Äfla^W^".1'-■■■■;. ■ ■■■-> "--:^: ^^•:^^^^^-^™^..-S.~«r---;.^r:R-7v.^ i.-" ^ ;.--ir'l'>.*v'/^ ■ r.''"<^ ■rst-> ■ y

Page 10

where n is a decimal number and
letter or special character«

a' is any ASCII number,

The datacomputer considers punctuation for ASCII PORTs
to be different from delimiters» Punctuation over the
network is a special character (specifically EOR, EOB, or
EOF) inserted in the data but not considered part of the
data* This is indicated by:

and

rPsE0R (carriage return, line feed)
,PsE0B (Control-L)

,P*E0F (Control-Z)

A fixed-size container (including a STRUCT) in a PORT,
may have a P, D, or C parameter, but no container (fixed or
variable) may have more than one of these* PORT's and FILES
may not have an outer level D or C parameter.

A FILE may be punctuated with an EOF, but the
datacomputer ignores this punctuation* No subcontainers of
a FILE may be punctuated* Variable length subcontainers of
a FILE must have either a C (count) or D (delimited)
parameter, fixed length may have*

If a variable-sized PORT does not have an outer level P
parameter specified, then it defaults to P=E0F.
Variable-sized subcontainers of a PORT must have a C or D
parameter, or be punctuated* A subcontainer of a PORT may
have a C parameter only if the PORT is a secondary PORT (see
Chapter 6)*

unctuation is hierarchical* A container that is
punctuated with EOR cannot contain one that is punctuated
with EOR, EOB or EOF* A container that is punctuated with
EOB cannot contain one with EOB or EOF* If higher
punctuation is found in a data stream where the datacomputer
is looking for lower punctuation (e*g*, an EOB where an EOR
is expected), the higher punctuation implies the lower*

Interpretation: The interpretation of a STR is one
of ASCII (i*e., 7-bit ASCII), ASCII8, or BYTE, as in the
following examples:

A STR ASCII (5)
P STR ASCII8 (1,10)
WALDO STR BYTE (73)

" ~™~>™*i*>*i«»ammmim tMMMM

1^.1— r*-n i. mi-- ;—--- mmm^am—...—.,_,,._ ÜMMH

™»^ - - 'T^^:"' ^V?»yr^..^ "--'•:-»-., V:T^-;->^'- ■ ■■■■■-- ;'f^ *-r-^-- -? -ry^yr^-Vy-- ^?H*-'^r^T*^r'77:F.}^S^Z'Z

Chapter 2: Containers Pae;e 11

BYTE is optional
with the keyword

The default byte siz*> for BYTE is 36 bits,
if the byte size is given explicitly
parameter

,Bsn

where n is a positive integer less than or equal to 36. The
,B = n option may not be used for ASCII STRings» If no byte
size or interpretation is givenr then the STR is 7-bit
ASCII,

L

Virtual Containers; A virtual container is one whose
value is not stored as data, but can be derived. The only
kind of virtual container implemented in 0/11 is the virtual
index container: the position, by number starting at 1, of a
LIST-member within the LIST» For the virtual index
container to be used, it must be included in the CREATing
description with the following format:

<name> BYTEr V=I

The name is user-specified within the container ident
restrictions; the data type must be BYTE and must be
followed by 'rV=l'f which stands for 'virtual container
equals index'. The virtual index container will take up no
physical space within the file» Virtual index containers
may exist in inner and/or outer STRUCT's»

Fill Character: At times the datacomputer needs to
fill in a value or a part of a value. The user can specify
a fill character thut ;

or

I
I
1
1
1
!

,Fr a

,F = n

where a is an ASCII character and n is a decimal number
representing a character code» The default fill character
is a blank for ASCII data and zero for non-ASCII data»

Note that a byte size and a fill character can apply to
a STRUCT or a LIST as well as a STRr INTEGER, or a BYTE»
Consider the following:

CREATE F FILE LIST
R STRUCT, B=36

A STR (5)
END;

The byte size of A is 7» A takes up 35 bits» There is one
"unused" bit after A before the next R. Thus, R must be
filled» Even though the data (i.e., A) is ASCII, R is
non-ASCII because it does not have a 7-bit byte size»

-■»«.-«s,ft:ä«4SÄägag

 II -—-"-'•-' - 11 IHlllHlHiiHlii.lll ÜI 11111

"\^^Ü "'' ^yyggyj^yrv ^-.--v—r-r------- -.
■ "... '-:.- ",-=r., :•-.-■-'

Chapter 2: Containers Page 12

Hencer the default filler of 0 Is used for the bit.

The rules for punctuation, byte size and fillers are
simple but not at all Intuitive* In general, specifying
punctuation rather than relying on defaults helps avoid
errors» Also

L

I
I
I
I
I
I
I
I

LIST <pathname> JDESC;

will output a complete description, including all default
lengths, dimensions, punctuation, byte sizes and fillers»
(The LIST command is discussed more fully in Chapter 3») It
is often instructive to look closely at the JtDESC to see
where it Is different from what is expected.

Inversion and CAT: BYTEs, INTegers and STRings may
be inverted» For members of outer LISTs, the option

,I = D

is used» For members of inner LISTs, the option

,1 = 1

is used» Inversions and the difference between outer list
members and inner list members are discussed more fully in
Chapter 5»

The Container Address Table (CAT) is a feature which
can be used for retrieval of variable length data* The CAT
is a table of pointers to the start of each variable-length
LIST member» The CAT Is automatically formed for those
variable length LIST's which contain at least one inverted
elementary data container» For example:

CREATE F FILE LIST
A STR (,10), I=D;

The user can specify a CAT for LISTs which do not contain an
inverted element» The CAT will be used to speed retrievals
(discussed in Chapter 5)»

CREATE F FILE LIST, CAT
A STR (10)
B BYTE, V=I;

Sills. Sizes

Containers have a physical byte size. These byte sizes
may be specified for FILEs for the purposes of packing data
and for alignment of data» For PORTs, the user may specify
byte sizes in order to model the transmission format of the

««fes&ä&Sä&ttSJI

 —**.*-■ ..~...~^^ .._■,.,.
"—' —■-■■ '■-■- - - ■ rtMlfil mm— - -t mami «Utt

«Ulli ■!■ I> J IJ.^flJW-l! S lii 11 ^ Kmw^^fv^'-" . •■^--^r^T:R'«'.a.S!!^W-,fS =? -v^r;*-- 7:T7rrm*T^'i-» w*a?s^rjr"['-7>\T; >;

I
I
I
I
I
I
I
I

Chapter 2: Containers Page 13

i t■

i.

host machine» When byte sizes are not explicitly given,
they have the following defaults: for STRs, the default is
7« For BYTEs and INTs the default is 36» For
non-elementary containers the default byte size is that of
the largest subcontainer» These defaults correspond to data
being sent from a 36 bit machine with a seven bit character
size -- for example a PDP-10» Byte size combinations of 8r
I6r and 32 can be used to model data formats on 32 bit
machines such as the IBM 360* In order to construct
containers with byte sizes different from the defaults, the
user must specify the byte size with the "B=n" option, where
n is a decimal number of bits*

t

In version 0/11r

1. containers have a maximum byte size of 36 bits

2« no subcontainer byte can straddle 2 or more parent bytes

3« this implies that the byte size of the subcontainer must
be less than or equal to that of the parent»

There are a number of temporary restrictions on BYTE size
combinations» The rules are given in Appendix Er #8»

utrntrnmamaMJim m *~-^--~~-~~-"~.~^ m • -

,j.-~jri.-.^.. -.; -. -,..-

E
I
E

Page 14

Chapter 3 Directory Commands

I
I
I
I
I
I
I
I

OPEN

Before data can be input to or read from a FILE or
PORTr the container must be open, and a mode must be
specified for it« The mode of a FILE or PORT, which is set
when the container is opened, determines the legality of
various operations on that container«

The possible MODES are READ, WRITE, and APPEND« Data
can be transmitted either out of or into a FILE or PORT that
is open in WRITE or APPEND mode, but can only be transmitted
out of a FILE or PORT that is open in READ mode« The
difference between WRITE and APPEND lies in their treatment
of any data that is already in the container when it is
opened« When an assignment is made to a container that was
opened in WRITE mode, any data it contained previously is
thrown away« A container opened in APPEND mode has
newly-arriving data written after the end of any
already-present data, which is thus preserved.

A variation of WRITE and APPEND is WRITE DEFER and
APPEND DEFER« When DEFER is indicated as part of the mode,
a more efficient technique of building an inversion is used«

When a FILE or PORT is created, it is opened in WRITE
mode« A FILE/PORT that already exists may be opened with an
OPEN request:

OPEN <pathname> <mode>

which spec!
opened and
complete pa
it can be
subordinate
for which t
argument ma
the contai
WRITE mode
the same id

fies t
the

thname
a logi
to th

he use
y be 1
ner i
If it
ent ma

he name
mode o
(start

n pathn
e curre
r has p
eft out
s open
is a PO
y not b

of t
f ope
ed wi
ame,
nt lo
rivil
of a

ed i
RT«
e ope

he container that is to be
ning« The name can be either a
th the reserved word JTOP) or
started with a node immediately
gin node« The mode must be one
eges (see Chapter 4). The mode
n OPEN statement, in which case
n READ mode if it is a FILE and
Two outermost containers with
n at the same time»

For example, to read data that was previously stored in
CCA.DATA.F, a file, either

OPEN *TOP.CCA«DATA«F;

• '[iiiiiiMHiim rr ■"-■»■-"■"- ■- - -1--' "■■ ■"'~~~~ «■■■-■- mi mi- ■- — —'-—

«IK* ill I _-4« k...«?^5W-iw.'«,J.i.L,pili UI^B^J^Utiil.W^^-MLVi'UW'PJSWIÄ^WJq^l^ ^'.. , 4. i .e5-^T?««W?«W^«f-: HWjWÄf^W J^M^JMf .;JvSJe^VTrw.Tsjp:-

1 Chapter 3: Directory Commands Paee 1b

or, if the current login node is CCAr

OPEN DATA.F;

will open F preparatory to data transfer requests.

j a

t ti

MODE

The mode of a container that is already open may be
changed with the MODE statement:

MODE <pathname> <mode> ;

The pathname can be a simple complete pathname (i.e. a
complete pathname with no passwords}, a simple login
pathname, or a node name«

CLOSE

The complement of the OPEN request is the CLOSE
request. When an open container is no longer needed, it can
be closed with

CLOSE <pathname> ;

where pathname must be the simple pathname of an open
container. Closing a FILE/PORT with a function of TEMPORARY
PORT has the effect of deleting its description from the
datacomputer.

- -

I
I
I
I
I
I

DELETE

The ability to delete directory nodes is useful in
maintaining a data base at the datacomputer. The DELETE
request allows one to delete one or several outermost
containers and all the data they contain.

DELETE <pathname> ;

causes the node named by <pathname> to be deleted from the
directory. The pathname must be the login pathname. Thus,
only nodes subordinate to the login node can be deleted.
The node cannot have any subordinates.

DELETE <pathname>.** ;

deletes the node and all subordinate nodes.. If any of the
deleted nodes are outermost containers, the container
descriptions and any associated data are deleted as well.
The DELETE request need not be used on TEMPORARY PORTs, as
they are automatically deleted either when they are closed,

 - *YI, uaaiMBi ■ ..^,^^,.,^.,-.,,^^,^.^^^^^

y^i^n,»tpwBp>nwwni.n,mt.,.»umii.t^wwi";:T-ii'"i' .1 '" y- !,li»JipilUIJIjpi!liM»pi*.i*WJMJ PT *u«!^!»' ,' ^*'**-j?:~±??&g*.

Chapter 3 Directory Commands Page 16

or at session end«

If the data stored in a FILE is to be deleted, but the
container description itself retained in storage, the DELETE
request cannot be used. Instead, CREATE a port E with a
description matching the container A that is to be emptied,
and execute the assignment A = B with no data in B. The
effect of this assignment is to delete all the data from A»

LIST

The LIST request is the means by which the user
interrogates the datacomputer about his environment. The
request has two arguments: the node or nodes which are the
object of the inquiry, and the type of information desired«

% If

I
I
I
I
I
I
I

<pathname>
<pathname>
<pathname>
<pathname>
<pathname>
<pathname>«*
<pathname>«**

»DESC
»NAME
»SOURCE
»ALLOC(ATION)
»PRIV(ILEGE)
»NAME
»NAME

. ,: ■-

 urttV— - "--"■ ta&^ittfgjmmmmmmm mmmmam "~ «tt

mtamm^e^**?^^ '-^ *■*«■'** V"1 -f «*" --■---;-«-".-.->■= ■-.--.-.;-..f-«^;v -^-jp^ESF^1?:»^»^;,^ - 'a-B.^.i.jjr-, -»ITI

Chapter 3: Directory Commands Page 17

<pathname>«*#

JOPEN
fOPEN
*OPEN
JOPEN

»SOURCE
JNAME
*DESC(RIPTION)
JSOURCE
*ALLOC(ATION)

^■^■^^^^■^-^^^a^aaM^^-«^^^ ^-:,.,-.„,.:— , r „,] i iiiMt-fwrMiTiiiiiwiii-iiTMi-iirriitniiTrri i iM»»ir T iiiiitfiiäfiLiiBii—iitrtn—aii^iMiliti—

-: "' T ■fj^5j^gBwr■^^!g*JwPwgr■■'^''J'^-'^s;,^

Page 18

Chapter 1:

Introductory Concepts

Security and Passwords

The
file-level
attendant
described
blocks may
privilege
access to
to such us
FILE/PORT,
FILE/PORT'
user is '1
allowed«

0/11 ver
securi

data) by
in the
be asso
block d

the node
ers. Whe

the da
s privil
egal' and

sion o
ty (re
means of
follow!

ciated
efines
and the
never a
tacomput
ege bio
to dete

f the
stricte
a syst

ng sect
with a
a class
set of
user at
er wil
ck(s)r

rmine

datacom
d access
em of ££
ions« One

particul
of users

tempts to
1 scan
if anyf to
what priv

puter
to no

ivilege
or more

ar node
who may
to be

access a
that n
ensure

ileges

provides
des and
blocks,,
(or no)

• Each
be given
granted
node or

ode or
that the
will be

Chapter Organization

This chapter is divided into three principal parts«
The first sections describe what privilege blocks are and
how they provide file security functions for datacomputer
users, and introduce the reader to the security features of
datalanguage« The second part completely specifies the
datalanguage needed for creating, deleting and manipulating
privilege blocks, and completes the description of their
components begun in the first part. The third section
offers several examples of how to add, delete and look at
privilege blocks«

Gaining Access la Nodes: LOGIN

:

Every node in the directory has certain privileges
associated with it« For example, the ability to create
inferior nodes, or to read or write file data, is a
privilege which may be granted or denied to a particular
node« When a user initially connects to the datacomputer he
is automatically connected to the top node of the directory
tree ($T0P), and he (i.e., the JTOP node) is granted minimal
privileges. To acquire more, he must log in to some node,
and this node is called the login node.

i

I
1

Logging into this node establishes the user's identity for
subsequent pathname references (1). It should be kept in
min' that a user is identified to the datacomputer only by
his login node. Thus, throughout this chapter, the terms
"user-id' or 'user name' are to be understood to mean

(1) In addition to establishing a user identity for
privilege purposes, logging in performs various accounting
and pathname context functions.

g^g^gfsg^jgvvsv^ESHQfSBi^PPifspi^" " " i.ftSgwi^sij'wyH'jwy'aer^iCT?^^^

Chapter k, Security and Passwords Page 19

nothing more than the full pathname, including the specified
privilege block (if any; at each level (2), of the node to
which the user has logged-in.

|[i
I r~
! U

11 n

Whenever a logged-in user references a node, the login
pathname is compared against the user-id field of every
block in the node's privilege block list# If a block is
found whose user class description includes the pathname of
the login node, tue privilege-set described by the block
will be added to (or taken away from) the privilege set
already given to the login node»

Privilege
privileges to
to be denied (t
(as either gran
it) is passed,
subordinate* A
the given privi
of the super!
with the result

set 3pecificat
be granted (adde
aken away)« If
t or deny), then
unchanged, from
t each node leve
lege block are N
or node» Then t
, to yield the p

ions come in two flavors:
d) to the node and privileges
a privilege is not specified
that privilege (or denial of
the superior node to its

1, the deny bits specified in
OT-AND'ed with the privileges
he grant privileges are OR'ed
rivilege set for that node#

It is important to understand that privileges may be qdded
&M taken awav aJt, every level of. ih£ pathname. For example,
suppose the login node has the privilege set <CLWA> (3), and
a subnode's privilege block specifies: grant read privilege
(GsR), and deny write privilege (DsW)« The result at the
subnode would be the final privilege set of <CRA> CO«

0

,

(2) Pathnames may be qualified or unqualified» A qualified
pathname is one containing password strings for the purpose
of gaining particular privileges upon opening the node,
e.g.,

NODEK 'PASSW0RD1 ') .NODE2.NODE3C 'PW3')

first and third levels by the
, respectively. The pathname

Prior

is a pathname qualified at the
passwords 'PASSW0RD1' and 'PW3
NODE1.NODE2.NODE3, on the other hand, is unqualified*
to Version 0/10, all pathnames were unqualified»

(3) This is a shorthand way of saying 'this node has been
granted control <C>, login <L>, write-to-file <W> and
append-to-file <A> privileges.' Specific privileges are
described in detail below«

(4) The login privilege is not propagated to subnodes« It
applies only to the node for which it is explicitly granted.
See below«

afffmhi#tf^-'"-""-"^^^ rYritiiiMriWiri'iTrinTiirTii^-rii-iTiiiii

Et
i

i i
i !
Ü

-
l
i I 1
-■ 1
l: 1 i
i

Ü

- ^W«»»WWW*™W*^^

! { i

t i

I Li

Chapter H Security and Passwords

Note
at ,
possi
canno
acqui
Howev
to it
its
A.B.C
not
grant
read/
still

that a n
modifyr
ble at t
t look
re that
er, an
s subnod
subnodes
• D .E*•• •
have r
ed write
write p
has onl

ode s priv
or affec

he level o
at the p
privilege
inferior n
es that it
• For e
r A.B.C ma
ite privi
privilege

rivileges)
y read pri

ilege
t a
f the
rivile
for th
ode ma
s supe
xample
y have
lege,
at le

, thi
vilege

set
supe
supe
ge b
at n
y we
rior
r 3
onl
No

vel
s d

can
rior
rior
lock
ode
11 h
doe

cann
y re

D (
oes

never
nod

. Th
s for
from
ave p
s not
ing
ad pr
the n
thus
not

allo
e in
at is
a no

an i
rivil
have

along
ivile
ode A
awar
affe

w a
an

r if
der
nfer
eges
rel
the

ges,
.B.C
ding
ct A

Page ^!

user look
y way not

a user
he cannot
ior one.
relative

ative to
pathname
but does

•0 may be
A.B.CD

.B.C. It

Privilege Slag-K

p
access
one pa
PORTs
A node
blocks
privil
corres
passwo
reques
etc.).
bits
grante
descri

rivilege
to node

rticular n
and FILE
may have

When a
ege blockC
ponding t
rd string
t referen

If a mat
are exam
d/denied
bed below

blocks are
s. Each pr
ode. Any no
sr may have
any number
n attempt is
s)f those bl
o the curr
matching tha
cing the n
ch is found,
ined and t
the node,
in more deta

data st
ivilege b
de in the
privilege
(includin
made to
ocks are
ent logi
t supplie
ode (e.g
the mate

he appro
The ma

il.

ructure
lock is

direc
blocks

g zero
access
scanned
n path
d by th
. , LOGI
hing bl
priate
tching

s whi
assoc

tory ,
defin

) of
a node
for

name
e use
Nr OPE
ock 's
privi
algo

ch define
iated with
including

ed for it.
privilege
which has

a user-id
and for a
r in the
Nf DELETE,
privilege

leges are
rithm is

Each privilege block can contain:
user name
host name
socket number
password character string
grant privileges
deny privileges

Each of the above fields falls into one of two categories:
1) a description of the group of users which may access the
associated node; and 2) the privileges to be granted to
these users.

The privilege block is completely specified at the time it
is created. When a node is referenced, only tne password
string, if any, is required; the user-id (including host
name and socket number), has been retained by the login
process.

Privilege blocks are created by the datalanguage command
CREATEP. They are deleted by the command DELETEP. Existing
privilege blocks may be displayed via th<; LIST nodename

■ ■:■-.< »».■*«

~"'^Afi^WW'iMa^^,",'**'ii' _...;, . ,.::^. ... MüMMi — L^.— i latüMMMM MflgmggMiiai i

 : . , ,

D Chapter 4 Security and Passwords Pare d\

0

lj

0
D
D

ZPHIV(ILEGE) command,
described below«

The full syntax of these commands is

User »snUflcaUon Sl&lAs. (user-ip)

The user identification fields include some or all of
the following: a valid login pathname or a class of login
pathnames, the number of a host computer, the foreign host
socket number, and a password character
fields are discussed in more detail in
sections»

string« These
the following

Host

The host name is an optional field« If specified, it
must be a decimal number from 1 to 255 designating the
number of the host computer« The host name cannot be a
number greater than 255, or less than 1« It cannot be a
character string, except for the special cases LOCAL and
ANY«

.«

The host name may also be ANY, which means that any host,
foreign or local, is acceptable«

If a host name is not specified, the default value is ANY«

I r-

i I;

li

I:

User Name

The user name is the pathname or classname (5) of the
login node(s) which may gain access to the node associated
with the privilege block« Note that a different privilege
block must be created for each specific user permitted to
use a given password« For example, if two different users,
say CCA«WALDO and CCA.DINGLE, wanted to use the same
password string ('FQO') to gain access to a node, two
separate blocks would have to be created, one per specific
user name« Thus, in this example, one privilege block would
contain the information

CCA.WALDO ('F00');

the other,

CCA«DINGLE ('FOO').

;.

If no user name is specified, the default
grants any user access to the node«

• * which

(5) User classnames are defined below«

■ ~****mxwmmms&fl&

HYi^MfeiiMi.."^^

i i

Chapter 1: Security and Passwords Page 2t

Sagtet

u

|L

The socket number is a 32-bit decimal number, e.g.,
609103r

or ANY* This is an identification number assigned
by the foreign host to the user logged in on that foreign
host« Usage of the socket number in the CRBATEP statement
can ensure, for TBNEX systems, that only specified users at
the foreign host site may gain access to a particular node*

Socket number defaults to ANY*

' U

\ L

Password,

A password consists of an alphanumeric string enclosed
by single quote (') characters, e*g*r P='FOO'* Non-printin*
characters, except blanks, are not valid in a password
string* Blanks may appear at any point in the quoted
string* Tab characters are not permitted*

A privilege block need not contain a password* If it does
not, none should be given when referencing that node. Note
that IL£ password is not the same as, and is treated
differently from, a null password ('*)• The null password
is treated as a password of zero length, and must be
supplied as such whenever the node is referenced*

PrlVllgfiS ££l specifications

The following privilege bits are defined for 0/11:

LOGIN (L) In order to control login identities
more closely, the ability to log in to a
node is not passed to subordinates* As
a result, -L (deny login) is
meaningless*

CONTROL (C) Control Includes complete subordinate
control and privilege control* Control
is required for creating and deleting
nodes, files and privilege blocks* It
is also required for listing privilege
blocks* It is very powerful, and cannot
be removed by an inferior: -C is not
permitted* After 0/11, C may be split
into meaningful components

I

\ \

Data Control Privileges
READ (R)
WRITE (W) V Implies R and A*
APPEND (A) A does not imply R*
Conflicts are not allowed, e.g. ♦R and -R.

 ~ * ■'M™i>~'*^mäimmmäimiigm

lte*i i. i ii ii . ■ ... -.. .■-. --,-..,., ■- —w^.^-^-*»^^, mm;tmmmm mm -— — -- - ^.^^^^^

o^pfiiuif^^^ .,^.,.,1 ...i, ,u.^m»

Chapter 4: Security and Passwords

■y^i^R*^nr^.v-^^^.J PQg'M

Page 23

&£flg£lHB fit Privilege Blocfrs

The ordering of Drivilece
node is referenced, the privi
node are scanned linearly for a
password entered by the use
user-id o f the privil ege block
identity. If they match, t
granted/d eniedr and access a
privilege set are awarded to
privilege blocks is reach
password/ user-id match, the
privileges»

blocks la im
lege blocks
password st

r. If a ma
is compare

he associat
ppropriate
the node«

ed withou
node is

portant
(if any
ring ma
tch is
d to
ed priv
to the
If the
t fi
opened

i When a
) for that
tching the
found, the
the login
ileges are

granted
end of the
nding a

with no

Since the privilege blocks are scanned linearly, their
ordering defines their selectivity. FT example, suppose a
node to have two privilege blocks which specify the 3ame
password ('F00') but different login nodes, say, A and **
**, and suppose that the block with user name A grants
greater privileges (read/write/append) than that with **
(which permits read). The proper ordering, as displayed by
a

LIST WALDO.NODENAME $PRIV(ILEGE);

statement, is as follows: (6)

(1),U=A,H=ANY,S=ANY,G=RWA

(2),U=«*,H=ANY,S=ANY,G=S (7)

If the order of these blocks were reversed, so that the
block with the user name '»*' were first, then whenever the
password F00 was encountered the first block would be
selected; i.e., every login pathname would match the '*•',
and the matching process would be complete. Thus, the block
with the user name A would never be found, and the user A
would be unable to open the node with the greater privileges
which should be granted him«.

In 0/11 the user is responsible for maintaining the desired
search order, by adding and deleting privilege blocks via
their block numbers. The datalanguage for this process is
described below. Future versions of the datacomputer may

(6) Details of this command are given below.

(7) u = ** means that any user name will be accepted as valid.

äBÄuSüiü*^.^..^.:^ a>.;,MJ^-,^.u-M^1»,liW^ g^g mmsiLimm -liiiiiiiiiiiiiiiitiaiFii'nMMiiMiii

Chapter 4: Security and Passwords Page 24

i

provide an automatic ordering algorithm, which could be
manually overridden, if desired.

tfggr Classes ('Star' Feature)

Classes of users may be given access to a node by
specifying a user class as the user name instead of a single
user» This is done by means of the '•" and ***' ('star' and
'star-star') features* If a star appears in a pathname, it
is interpreted to mean: 'any single (non-null) partial
pathname is acceptable here'« That is, if the nodes A.B.N1,
A.B.N2, and A.B.N3 exist in the directory tree, usage of the
user classname A.B.* would specify any of these three
pathnames* Stars may appear at any number of levels; for
example, if the nodes A*X*N1 and A*Y*N4 exist, then the
user-name A ••* would specify both of these nodes, as well
as any of the previous three* The use of a star at any
level implies that there must be a partial pathname at that
level; e.g., the classname A**** could not specify node A or
A.J.

JLSL&T. ClaSSSS, ConU ('Star-atar' Feature)

The use of a single star in a pathname indicates that a
node must exist at the level corresponding to that of the
star, and a star must be explicitly specified for each
desired level* The star-star feature is designed to permit
access to several levels of nodes* A star-star (*»»') in a
user name is interpreted to mean: 'any number (including
zero) of partial pathnames are acceptable here'. Thus,
referring to the example of the preceeding paragraph, A*B»N1
could be specified by any of the following:

A.B.N1
A.B.N1.**
A.B.*.«*
A.B.**
A.B.*
A.*.**
A.**
*•**
ft*

For
The

0/11, only trailing *'s and/or a final ** are allowed.
following,

A.«.C
A***.C
A.*.**.
A.**.*
*.B.**
«ft.«

for example, are illegal:

'J''i'5'««-iiKMVj'St'SS,,SJSi

^■»^■^^.-^.^ ,^- -■^^■M-'«attlMi'
,^,_^..^^^.^.^.,^..,,,,^<^

Ü Chapter 4: Security and Passwords Page 25

(

Patalanftuasg LSLL Ills, security

Two datalanguage statements, CREATEP and DELETEPr
create and delete privilege blocks« They are discussed In
the following sections* The LIST command has a special
option, JPRIV (or ^PRIVILEGE), which allows the user to list
the privilege blocks for a node*

CREATEP and DELETEP are privileged requests« They are
accepted only when the associated node can be referenced
with control privilege <C>« (This means that it may be
necessary to login to some particular node before any
privilege blocks can be added to another, and that passwords
may be required for the login process or for referencing
nodes superior to the node for which the privilege block is
to be added«)

Creating PrlvUefie Blocks: CREATEP

Privilege blocks are created, and fully specified by,
the CREATEP command« A fully specified CREATEP statement
might appear as follows:

CREATEP NODEK'PW1').N0DE2, U=CCA.WALDO.••**, H = 3^r
S=604320,

Ps'SECRET PASSWORD', G=R, D = WA, N=2;

In this example, the node for which we are creating a
privilege block is N0DE1.N0DE2. We must specify ('PWl') for
N0DE1 in order, perhaps, to gain control privileges at the
first level« The parameters which follow the nodename are
the privilege keyword list« These are discussed
individually in the following sections, and are summarized
in Appendix A«

CREATEP; ilaSL ttflflg

The user name is specified by 'U=' followed by an
unqualified pathname or classname string« The pathname may
have any number of levels« It must not contain password
strings for any level«

[r

The following are valid pathnames/classnames«
CCA
CCA.WALDO.DINGLE
CCA«*«*
CCA.«*
..*

j^^-,^:^.,^-*::.^ m gj üüü

Chapter 4: Security and Passwords Page 26

0

CflEAIEP; Hogt Mumber

The host number is specified by 'H=' followed by a
decimal number from 1 to 255, or either of the strings LOCAL
or ANY.

H = 28
H = ANY
HsLOCAL

CflEAIEP; Socket Number

The socket number is specified by *S=' followed by the
32-bit foreign-host assigned decimal number corresponding to
the directory the user is logged into at that foreign host,
or the string ANY»

S=309483
S = ANY

CPEATEP? Password String

The password string is specified by '?-' followed by
any datacomj. uter string constant (tabs may not be included,
although blanks are permitted), e.g., 'PASSWORD 1*, '? *
++!!', or '* (null password).

Note that if no password string is specified at CREATEP
time, then that privilege block will have no password
associated with it. üo. password is different from null
password (P='')f which is a valid password zero characters
in length.

CBSATEP; Grant Prjvumg

Privileges are granted by *G=* followed by
C (control)
L (login)
R (read FILE/PORT data)
W (write FILE/PORT data)
A (append data to FILE/PORT)

in any combination and in any order, e.g.,
privileges), G=WAR (read/write/append), etc.

G=CRAWL (all

CflEAIEP; Psnv Primages

Deny privileges are spe<j*iied by 'Ds' followed by R, W
or A. Login (L) applies only to the node for which it is
specified. It is not passed to subordinates. Control (C)
cannot be removed by any inferior node, i.e., it is passed
to all subnodes.

-■■.^wia.Ä.tii-^gaiJiBgigÄ

u^^fa

ü Chapter 4: Security and Passwords Page 27

CBBATEPi. Privilege Block junker

Ü

u

(J

As privilege blocks
numbers by the datacomput
privilege blocks sequent!
order« Bloc!* numbers c
the total num?« * of passwo
Blocks can be explicitly o
by entering *Es* followed
block is to hj've in the s
than zero, a 1 not gre
privilege blocks currently
this number is not in any
in the privilege block;
block in the password bloc

are created, they a
er* Block numbers are
ally according to t
an range from one to n
rd blocks in the searc
rdered by the user at
by the number that the
earch sequence» N mus
ater than the total
existing for the node
sense a part of the da

it is merely the pos
k list.

re assigned
assigned to
heir search
, where n is
h sequence*
CREATEP time
newly added

t be greater
number of

• Note that
ta contained
ition of the

blocks in the privilege An example* Ii there were three
block list for a node (N0DE1),

1 U=AAA
2 U=CCC
3 U=DDD

and a new block were to be added between the first and
second existing blocks, i*e*r so that the new block would
then occupy second position, we add a keyword, N=2, to a
CREATEP command:

CREATE? N0DE1,U=BBD,P='Z0O',Ns2;

which results in the following privilege block list:

1 U = AAA
2 U = BBB
3 U = CCC
i» U = DDD

If N had been omitted, the new block would have been added
at the end of the list* Note that the numbers of the two
blocks following the new one have been bumped by one*
Similarly, if any block is deleted, the numbers of all the
following blocks are reduced by one*

LOOKING AI PRIVILEGE BLOCKS; JLIS1

In order to permit the user to list privilege block
information, the XPRIV (or »PRIVILEGE) option exists for the
datalanguage LIST request* It looks like this:

LIST CCA.WALDO *PRIV; (or)
LIST CCA.WALDO »PRIVILEGE;

iii' • ii iiitfiliamniimfiürf ,Ja,s«^M«,iilJo-i.j^,^J.Av . . , j,.:. i><»_wto-w- ^ ., „.^~. a^maMa

Chapter 4: Security and Passwords Page 28

U

i
i
! i

I L

Ü
I

11

Passwords cannot &£ listed with jJUL 1PRIV option (or in any
other way - so don't forget them!)» Privilege block
information is preceded by the number of that block« All
other information in the privilege block is listed in a
format similar to that which might be found in a CREATEP
command, e«gr either of the LIST requests above might
generate the following output from the datacomputer:

(1),U=CCA.WALDO,H=LOCAL,SsANY,G=CRAWL
(2)rU=CCA.».

#*rHsANYrS=ANY,G=RWAL
(3)rU = *»ttfH = 32rS = 65'»364rGsRLrD=WA

JPRIV may be used only when the node has control privileges»

Deleting Privileg BlosKs; DELETEP

Privilege blocks may be deleted with DELETEP followed
by the number of the privilege block to be deleted,

DELETEP N0DE1, 3

The controlling node must have control privilege«

fi&aiEls

I:

This e
controlling
Presumably,
restricted
as it were*
addition, a
required to
node« The
for creatin
permitted
programmers
(nodes, por

xample wil
node

access
to very f
This cou

nyone seek
be logged
person

g subnode
to use
could the

ts and fil

1 create
for al
to this
ew perso
Id be do
ing cont
-in to s
with ace
s, perh
the da

n create
es) in a

a node
1 other
controll

ns at that
ne by mean
rol privil
ome other
ess to CCA
aps one
tacomputer
their own

ny manner

which wil
nodes at
ing node
site; 'sup

s of a pass
eges for CC
(access r
would be r

for each
• These
directory

they wish«

1 be the
site CCA«
would be
er-users',
word« In
A might be
estricted)
esponsible
programmer
individual
structures

L The site-node CCA is created
requests:

by the following series of

!

CREATE CCA;
CREATEP CCA,P='HONCHO',G=CL;
CREATEP CCA,P='FLUNKY',G=L;
LOGIN CCA('HONCHO');

The user is now logged in to CCA« He has control
privileges« Next he creates a series of programmer-nodes,

-- •■■— -■■ - ■ ■-■ - --■■■- ...-,..»■.,-_
^^^^*^^^,^.^.,.^..^^^^,~<^.>,,

I'j

0

D

i i r

Chapter 4:

each with
blocks are
password (
individual
and is acce
subnodes.
without sp
privileges
the program

Security and Passwords Page 29

control privileges. Initially, two privilege
created for each programmer node» One requires a
known tor and probably specified byf the
programmer), and the other requires no password

ssible to anyone logged in to CCA or any of its
However, persons who log in to a programmer node
ecifying a password are not given control
and thus cannot modify or delete anything that

mer wishes to keep secure«

CREATE WALDO;

CREATE CLYDE;

CREATEP WALDO,U = CCA,P='TURKEY',G = CL;
CREATEP WALDO,U = CCA.**,G = L;
CREATEP CLYDE,UrCCA,:'='FSTCH' ,G = CL;
CREATEP CLYDE,U = CCA_<>* ,G = L;

I.

L

T

m

I
I
I
1

CREATE DINK; CREATEP DINK,U = CCA ,P='PODUNK ' ,G = CL;
CREATEP DINK,U=CCA.»*,G=L;

After this is done, super-user checks the privilege blocks
he has created, first at his own node level:

LIST *TOP.CCA('HONCKO') ^PRIVILEGE;

and he receives a datacomputer printout in the following
format:

(1),U=#*,H=ANY,S=ANY,G=CL
(2),U=**,H=ANY,S=ANY,G=L

He next verifies that each of the programmer-node privilege
blocks has been correctly entered, e.g.,

LIST WALDO JPRIV;

and the datacomputer replies:

(1),U=CCA,H=ANY,S=ANY,G=CL
(2),U=CCA.**,H=ANY,SrANY,G=L

At this point, programmer Waldo tells super-user that he
would rather have 'DONKEY' as his control password rather
than 'TURKEY'. Since the user name (U=CCA) in Waldo's
control privilege block is more restrictive than the user
name (U=CCA.*i) in the non-control privilege block, the
first privilege block must be deleted and the new one added
in the same position (N=1):

DELETEP WALDO 1;
CREATEP WALDO,U=CCA,P='DONKEY',G=CL,N=1;

WtätfMi&'rnitfiiiiii-* .,.:,-:■....: aaiissEÄilläi aMMüMSk 'I i riii ~ innliriM« IBMinftffi■"'-"! rf T ii'ilm rti ~ ■■

Chapter 4: Security and Passwords Page 30

He now have the following directory:

CCA
CCA.WALDO
CCA.CLYDE

I
mm

i

I
1
I
I
I
I

CCA.DINK

Each of the programmer-nodes listed above has its own
password which is known to the person having access to that
node» In addition, each is required to login to CCA before
being able to acquire login and control privileges at its
own level* (Most or all of the programmers at CCA are given
only the password FLUNKYr which does not give control
privileges» Thus, they cannot create or delete any nodes at
the programmer-node level or look at the restricted data of
any other programmers»)

As soon as he is informed that he may join the select
international hoard of datacomputer users, Waldo rushes to
his terminal to login:

LOGIN CCA('FLUNKY');
LOGIN WALD0('DONKEY');

Since he has logged in to his node using the password which
grants control privileges, Waldo now creates B00KFILE and
BOOKPORT and reads some data into B00KFILE from a TENEX file
named TENEX-B00K.FILE (8):

CREATE B00KFILE FILE LIST(,1000)
BOOK STRUCT

TITLE STR (,100),Cs1
AUTHORS LIST(,5)rC=1

AUTHOR STR (,50),C=1
PUBLISHER STR (,50),C=1

END;

CREATE BOOKPORT PORT LIST(,1000),P=E0F
BOOK STRUCT

TITLE STR (,100),P=EOR
AUTHORS LIST(,5),P = E0B

AUTHOR STR (,50),P=EOR
PUBLISHER STR (,50),P=E0R

END;

CLOSE JOPEN;

OPEN B00KFILE WRITE;

' " :- ■ imgm

■ .. ■■ ,-, —... --■ , . ■*— ^-—■^.r^M«

Chapter 4: Security and Passwords Page 31

0

OPEN BOOKPORT;
CONNECT BOOKPORT 'TENEX-BOOK.FILE'; (8)
BOOKFILEsBOOKPORT;

CLOSE {OPEN;

In order to permit others to look at his BOOKPORTr Waldo
creates a couple of privilege blocks* The first permits
anyone at CCA to look at his book list, while denying him
th? right to change anything« The second is for Waldo's
private use in changing the file:

CREATEP BOOKFILErU=CCA.»rG=RrD=AW;

CREATEP
BOOKFILE ,U = CCA.WALDOrP='READ«MORE*EVERY«DAY'rG = RWA;

I
I
i
I
I
I

(8) A TENEX filename is used in this example for the purpose
of didactic clarity* In practice, this would usually be
done only by local datacomputer users (users located at the
site of the datacomputer)* Remote users would have to
arrange for operator intervention, if connecting to a TENEX
file at the datacomputer site; or would specify the host
name and socket number from which the data would be sent to
the datacomputer*

— ^ MiMiWMMiMklMMIdll - -
wmmmnHHM

Page 32

Chapter 5: Assignment and For-loops

AaalfillBSnt Involving Outermost Cjpja&ftlflexa

Transmission of data is achieved with an assignment*
The syntax of an assignment request that involves two
outermost containers is

<ldent> = <ident>;

where the <ident>s are the node names of open outermost
containers» The first ident in the statement is that of the
receiving container; it must be open in either WRITE or
APPEND mode» The second ident is that of the transmitting
container; it can be open in any mode, but it must have READ
privilege (see Chapter 4).

The containers in the assignment may be either files or
ports. The various combinations are listed herer with a
description of the action of the assignment request in each
case»

Receiving Transmitting
container container

Comment

FILE FILE copies data from one FILE to another
within the datacomputer»

la

It

In

FILE

PORT

PORT

PORT

FILE

PORT

transmits data from some source
external to the datacomputer through
a PORTf into a FILE»

transmits data from a FILEf where it
is being kept in the datacomputer,
through a PORT, to the outside world,

transmits data from one place to
another in the outside world, using
the datacomputer only as a channel
for transmission»

■! r

]

JJLS. Matching Rules

In any assignment statement such as

X = Y;

'.„r-i

»ri*<l«ti«a«t«»^Mk»LJ-%Wi>a^w

;

: m

Chapter 5: Assignment and For-loops Page 33

(not only one involving two outermost containers) the two
operands, X and Y, each have their cwn description« The
datacomputer will transform the data in ¥ to match the
description of X» In order for the datacomputer to be able
to do this, the descriptions must match« This amounts to a
restriction that only similar objects can be assigned to
each other. Specifically, for two assignment-operands X and
¥ to match:

1«A« X and ¥ must have the same type:
data types STR, INT, or B¥TE,

AND
1.8. If X and Y are both LISTs, then

compatible sizes, or else X must be a PORT
compatible if the minimum size of X is less
the minimum of ¥ and the maximum size of X
or equal to the maximum size of ¥• This re
to cases where it is legal to assign ¥
assign X to ¥. Note that if X and ¥ are
with no list size specified, the datacom
default size based on the space allocation«
request with the JDESC option to find out
size is«)

AND
1.C. If X and ¥ are STRUCTs or LISTs,

one container immediately enclosed in X must
the same ident as, one container immediately

OR

LIST, STRUCT, or

they mu
• The s
than or
is grea

strictio
tc X bu

outermos
puter su
(Use t

what the

st have
izes are
equal to
ter than
n leads
t not to
t lists
pplies a
he LIST
default

then at least
match, and have
contained in Y,

k

I
I
I
I
I
I

2« X must be a STRing, INTeger or BYTE and Y a
constant« A constant is an arbitrary string of characters«
If they are enclosed by single quote marks, then it is an
ASCII constant« If they are not inclosed by quote marks,
then the string is used as a binary constant; a single or
double quote mark may be included in such a string only by
prefixing it with another double quote« The constant
*DON"'T' represents the string DON'T« (This rule is
included here for completeness«)

PatidlnK Ml Truncation

If two containers of type STR are used in an
assignment, the matching rules do not require that their
sizes match« There are three cases:

1« The two sizes are equal« The string is assigned
without change«

2« In the assignment X=Y, the size of X is greater
than that of Y« In this case, it is as if the string in ¥
is padded at the right-hand side to make it as long as X,
before assignment is performed« If a fill character is
specified in the description of X (i.e. if the parameter

, . .^,,, 'I, Mi »i,..i ■«.■dttfuMM ***«>^«^«««^^ aamtmum UUl am

0 Chapter 5: Assignment and For-loops Page 31»

,Fs'a' or rF=n is used in the CREATE request), then that
character is used» Otherwise, a blank is used for ASCII
strings and zero is used for non-ASCII data«.

3» The size of X is less than that of Y» The string
contained in Y is truncated at the right-hand side to be as
short as X, and the shortened string is then assigned»

Conversion

!

It is possible to assign the data type MR, if it
contains a number, to the data types BYTE and INT, and the
reverse. In such an assignment, the input ASCIx STR can be
any length, but its binary magnitude must fit in 35 bits, or
the specified size of the BYTE or INT» The only legal
characters are numbers, + and - signs, and blanks» Leading
and trailing blanks are allowed but embedded blanks are not»
Any number of sign characters may precede the number, mixed
with blanks; even numbers of minus signs cancel» A string
with no digits is an error; any error causes a zero result»
An input BYTE is treated as a positive number regardless of
the high order bit» If the input (right hand of the
assignment statement) INT or BYTE will not fit properly in
the output bytesize, an error statement is made, and the
result is truncated on the left» An output ASCII STR will
contain no more than eleven significant digits» If the
number being converted for output is negative, a minus sign
will appear in the first character position in the output
string» The minumum possible number of digits will be
output, with leading zeros only if the STRs minimum length
is greater than eleven» If the STR does not contain enough
positions to hold the entire number, an error statement will
be made»

r •
i ExawpUg

Let us consider a few examples of the operation of
rules» Suppose we have

the

i. CREATE M FILE LIST (25) RECORD STR(IO);
CREATE N TEMP PORT LIST (25), P=EOF RECORD STR(10)
M = N;

14

J

where M is a FILE in which data read from the PORT N is to
be stored in the datacomputer» The assignment M = N is
legal because M is in WRITE mode and both M and N are open
(opened by the CREATE statements and the MODES set)» In
addition, M and N match: their subcontainers have the same
ident (RECORD), and matching descriptions» They satisfy
rule 1»A, since the type is STR in both cases, and rules 1»B
and 1»C do not apply to containers of type STR»

The effect of this assignment is to read strings of

■ mutmtmmmmtitaimaotm mfm

L
Chapter 5: Assignment and For-loops Page 35

Li

length 10 from the PORT N, and to store them in the FILE M#
If an attempt is made to store more than 25 strings in M, an
error message is output, as space was allocated for only 25
strings«

L

A similar example, using the above description for M:

OPEN M APPEND;
CREATE 0 TEMP PORT LIST (25), PsEOF

RECORD STR (,15), P = E0R ;
M = 0;

Each STRing in 0 is no more than 15 ASCII characters and
ends with an EOR. Each one will be padded or truncated to
10 characters since M has fixed-length rather than variable
length STRings.

Now a more complex example»

L

CREATE FF FILE LIST (,25)
PERSON STRUCT

NAME STR (15)
ADDRESS STR (20)
CITY STR (10)
STATE STR (2)
ZIP STR (5)
S0CSECN0 STR (9)
DEPENDENTS LIST (10) NAME STR (15)

END ;
>•• requests that store data in the FILE FF •••
CREATE PP PORT LIST, P=E0F

PERSON STRUCT, P = E0R
NAME STR (15)
SOCSECNO STR (9)

END;
PP = FF ;

r

;.

r
. L

i.

V
I

Here, the assignment PP = FF is legal because: PP is in
WRITE mode, both FF and PP are open, and their descriptions
match. Rule 1.A: the type of both FF and PP is LIST, Rule
KB: PP is a PORT. Rule 1.C: the subcontainer PERSON
immediately contained in FF has the same ident as the
subcontainer PERSON in PP, and the two STRUCTs PERSON match.
We determine this last fact by going around once again with
the matching rules.

Rule 1.A: PERSON in FF and PERSON in PP have the same
type, STRUCT. Rule 1.B does not apply to STRUCTs. Rule
1.C: a container immediately contained by PERSON in FF,
NAME, has the same ident (NAME) and a ■aatching description
(STR (15)) as a container immediately enclosed by PERSON in
PP, that is, NAME.

The effect of this assignment is to create a new
instance of the struct PERSON for each instance of PERSON in

^■"^"»mamMta

-■.•.^i^s^ii^ijü^' *■ :. V ■Mg Mfru^dji^in ■- mggii^gnym mammmsem ■-•— — -

ö
• It

Chapter 5: Assignment and For-loops Page 36

FFr and add it to the LIST PP (that is, output it through
the PORT PP). Each PERSON that is output contains only a
selection of the data stored in FF: only the NAME and
SOCSECNO.

If the situation here were reversed, that is, if FF
were open in WRITE mode, and PP were in READ mode, the
effect of the assignment

FF = PP;

would be to read data from the PORT PP and store it in the
FILE FF. However, only the NAME and SOCSECNO would be
available as data. The datacomputer handles this situation
by assigning strings consisting only of blanks (the default
since no fill character is specified in the description) to
the unmatched STRs in the output LIST-member. Thus,
ADDRESS, CITY, STATE, ZIP, and all 10 instances of NAME in
the DEPENDENTS LIST would be blank in the FILE FF.

i «**

I
1
I
I
I
I

SYS|87

SAM £ SMITH | JONES OURFEE

FILE1 WORKFL

""■^

DATA5 I TEMPX I

Figure 5-3. The directory for a sample application:
providing backup file storage for time-sharing users

A directory of this sort would initially be set up by
several CREATE requests; i.e.

CREATE SYS87;
CREATE SYS87.SAM; CREATE SYS87.SMITH;
CREATE SYS87.JONES; etc.

^■y&^mmm

.ttitfr..Viil^-n,fif"~--: ~>*^*.*~.^-~*>~^*< — — manual n, „■■■„„ ■ IT iiifmitiiiiiMMri

Chapter 5: Assignment and For-loops Page 37

D
SI

Then, whenever a particular file was to be moved to the
datacomputerr a directory node for that file would be set up
by, for example,

CREATE SYS87.SMITH.FILE1 FILE LIST (,999)
A STR(80);

(describing a file with less than 1000 80-character records)
and the file would be moved with an assignment statement
specifying a PORT with a matching description, and the FILE
FILE1, open in WRITE mode. Thus:

CREATE T TEMP PORT LIST A STR(80);
FILE1 = T;

Note that the two outermost containers FILE1 and T in
the assignment statement FILE1 = T match each other*

In order to recover the file from the datacomputer when
it is again reeded, a PORT would be opened in WRITE mode
with

[

CREATE T TEMP PORT LIST A STR(80);
OPEN SYS87.SMITH.FILE1 READ;

T = FILE1 ;

and the reverse assignment would take place.

Selection SLL LIST Mefft'eerg

I
I
I
I
I

In the examples given above, there is one output LIST
member for every input LIST member. Subsets of the input
LIST member (i.e. the LIST on the right side of the =) may
be specified by the use of a WITH clause. For example,
consider the description

CREATE F FILE LIST
P STRUCT A STR(3) B STR(5) END;

and a matching PORT R. If only some of the P's on the LIST
F were to be output -- those with the string A equal to the
string '500', say — one could specify

R = F WITH A EQ '500';

referring to the set of all members P of the LIST F that
have the given property. Note that A is understood to refer
to F.P.A (STR A in STRUCT P of the outermost container FILE
F); see the section on the context rules below for an
explanation. Quotes are used in the expression '500' to

*-

w- .:,-....■-. ..,.,:,.,.,■.■,....: ..^^.^...i^^^-^-.^^^iiii-.^-^^.:^
- -'■-akJ"ii4if'ia'8f'""* in Ti«*jtt«fah -1"' 11 - ■ riiv 111 illü tu'

Chapter 5: Assignment and For-loops Page 38

D
0
0

indicate that an ASCII string constant is intended*

In a WITH clause, the expressions one can use to choose
certain LIST-members, which are called Boolean expressions,
must involve comparison of a container that is a STR, INTr
or BYTE with a constant (like '500' in the example), using
the comparison operators

EQ (equals)
NE (not equal to)
GT (greater than)
LT (less than)
GE (greater than or equal to)

and LE (less than or equal to)»

Combinations of comparisons with

OR, AND, NOT, and ANY

are also possible» In precedence of operators, ANY (see
below) is highest; NOT is next in precedence, then AND,
which is in turn higher than OR; parentheses may be used to
affect the order of evaluation of these operators» Some
sample input-specs are thus:

F
F
F
F

WITH A EQ 500
WITH A EQ '5C0' AND B GT 'AZZZZ'
WITH (A EQ '500' AND NOT B GT 'MONDA'" OR

(A EQ '600' AND B NE 'ZYYYY')

For ASCII containers, the operators GT, LT, etc» compare
the ASCII codes for the given strings and the giver, strings
must be of the specified length» This means that the
character blank is less than the digits, which in turn are
less than the letters» Consult a reference document for the
complete list of ASCII codes for all characters.

Also, while an input-spec like

F WITH A EQ '5'

is legal, it will not find any P s, since there are no
with only one character»

A's

Data will be compared to other data or constants
without reference to interpretation as STR, INT or BYTE»
Care should be taken to specify quoted ASCII constants for
ASCII STRs and unquoted integer constants for INTs and
BYTEs» A warning message will appear if the operands in a
comparison are of different types, but the operation will
continue»

—,— ■ ■ mm i ii um ÜgÜMi

I. Chapter 5' Assignment and For-loops Page 39

Retrievals üalag inner IU\ Members

Consider a description like

G FILE LIST
R STRUCT

A STR (4)
B STR (*»)
W LIST (20)
WA STR (5)

END

Each R has 20 WA's, since R contains an inner list (W). An
input-spec like

G WITH WA EQ 'ABCDE'

specifies all R's with at least one WA with value 'ABCDE'.
This may also be expressed as

G WITH ANY WA EQ 'ABCDE'

The former is called an implicit ANY and the latter, an
gXPUgU MX«

The container WA can be used in boolean expressions
such as

G Wl^i ANY (WA EQ 'MARCH' OR WA EQ '33103')

G WITH ANY (WA EQ 'MARCH' OR WA EQ 'WORD ')

G WITH ANY WA EQ * 123^5* AND B EQ 'CALl'

An ANY expression cannot be used within the object of
another ANY expression (nested A'iY's).

In most cases, the explicit ANY is not required.
However, consider the description:

FAMILIES FILE LIST (f100)
FAMILY STRUCT

MOTHER STR (10)
FATHER STR (10)
CHILDREN LIST (10)

CHILD STRUCT
NAME STR (,10), C=1
AGE STR (2)

END
END;

aaa ■ artiiftt^tHmtifii ■■■■■■ IMaM-a^^M.i.rrtw-^
mwammt

■■-

0

0

ü

0

in

i i

Chapter 5: Assignment and For-loops Page MO

The following expressions are not equivalent:

FAMILY WITH ANY (NAME EQ 'ELLEN' AND
AGE EQ '21')

FAMILY WITH NAME EQ 'ELLEN' AND
AGE EQ '21'.

The latter case is interpreted as:

FAMILY WITH ANY NAME EQ 'ELLEN'
AND ANY AGE EQ '21'

and refers to any FAMILY with an ELLEN who either is 21 or
has a sibling who is 21. The former refers only to FAMILYs
with a 21-year-old ELLEN.

In all of these examples, the inner list is the
second-level list. If there is a third level listr its
members may not be used in a boolean expression. For
example, given the description:

F FILE LIST F STRUCT
A STR(1)
L LIST (5)

L1 LIST (5)
B STR (1)

END;

L1 is a third-level list, and so B cannot be used in a WITH
expression. However, A may still be used in a WITH
expression.

Rp

Retrievals JLLLQ* Inverted Containers

An elementary data container may be Inverted if it is
contained in a FILE which is a LIST. This is useful if the
container will be used often in a boolean expression.
Inversion is specified by MI=D" or "1=1" as follows:

CREATE F FILE LIST (0,100)
P STRUCT
A STR (3), I=D
Q LIST (10)

B STR (5), 1=1
END;

The "I" of the above stands for inversion, the "=D" (for
distinct) is used with members of outer lists, the "=I" (for
indistinct) with inner lists.

An inversion on the string A increases the efficiency
of retrieving sets of outermost-LIST members by the contents

isuiittaiiutiuaiamuuLi. ^ .-^jmsaaMMi
■ '^'^ämmmmmUM

^ng^ggj^jggj^jj^jj^ t((Hiaa^
,^|ait^1f1n,. mj

 ir i. ii. ,.i mmmumM

Chapter 5: Assignment and For-loops

0

u

L

11

of the
that ar
based o
string
existen

Th
however
data st
based o
when it
be cha
particu
increas
frequen
other c
details

string
e defi
n a pa
is i

ce of
ere is

St
ructur
n inve
is in

nged
lar st
ed ret
cy of
onside
oonce

A — that is, retrieving subs
ned by their values of A« Ret
rtieular string is possible wh
nverted; only the efficiency i
an inversion on the string«
a certain cost associated

orage space must be allocate
e that the datacomputer uses
rted strings» Appending to a
verted, since the secondary da
as well» Thus, the decisi
ring will depend on the r
rieval time versus increased s
retrieval based on the particu
rations» Appendix C contains
rning inversion»

Page 41

ets of the ? s
rieval by content
ether or not that
s improved by the

with inversion,
d for a secondary

for retrievals
FILE takes longer
ta structure must
on to invert a
elative cost of
torage space, the
lar string, and
further technical

RgtrigVa.8 äal&Z. Container Address I3frig. (CAT)

The Container Address Table (CAT) is a feature which
will speed retrieval of variable length data. The CAT is a
table of pointers to the start of each variable-length LIST
member. The CAT is automatically formed for those variable
length LIST's which contain at least one inverted container»
For example:

CREATE F FILE LIST
A STR (,10), I = D;

The user can specify a CAT for LIST's which do not contain
an inverted container» The CAT will be used for retrievals
based on the virtual index container for FILES of a format
similar to the following:

CREATE F1 FILE L*IST (,50000), CAT
A STRUCT
B STR (,10)
C STR (5)
X BYTE, V=I

END;

Retrievals would be of the form (P1 a matching PORT):

or
P1=F1 WITH X EQ 2413;

P1=F1 WITH B GT '1000';

These retrievals can be executed whether or not there is a
CAT, but the execution is faster with a CAT» There is, of
course, a storage cost to the CAT, which is proportional to
the number of LIST members»

i

': ■•-■-,->•„ ,. .- v

■aitUafa. mmmtmiiwam .^^^.^^.^^^»^U^,^,.,,-.,,,;,^-..^!^^^ aga^aa»'MiUjaa aaaagiü "■"^Bl»

0

[

D

D

fi

0

11
i

**

Chapter 5: Assignment and For-loops Page 42

ftaalsnaent with EM

Containers other than outermost can also be used in
assignment statements, if the? are inside a FOR loop» FOR
causes some set of datalanguage statements (usually
assignment statements) to be executed several times, once
for each member of a given set of LIST-members*

The syntax of the FOR-request is:

FOR <output-spec>r <input-spec> <body> END ;

The <input-spec> specifies a set of LIST-members to which
the operations specified in the <body> are to be applied* A
new member of the LIST specified by the <output-spec> is
created for each member of the input set processed* If the
output-spec is omitted, the FOR-request generates no output*

The input-spec, The input-spec must specify a set of
LIST-members* The simplest kind of input-spec is an entire
LIST — i.e. the set of all the LIST-members* For example,
if

CREATE F FILE LIST
P STRUCT A STR (3) B STR (5) END;

then F would be a legal input-spec, and would refer to the
set of all P's in the LIST F (1)*

A subset of the LIST-members may be specified by the
use of a WITH clause in the input-spec* The input-spec on a
FOR-loop looks like the input spec on the assignment of
outermost containers (discussed above)* Thus

F WITH A EQ '500'

can be used in a FOR-loop*

I The output-spec The output-spec is an optional
argument* Like the input-spec, it must be the name of a
LIST-member. The LIST that contains the LIST-member
specified by the output-spec is often called the output
LIST* A new member is created and added to the output LIST
for each execution of the FOR-body*

§„ A FOR-loop may be loosely thought of as assignment
between two LISTs* However, the descriptions of the members
of the input and output LISTs need not match* Otherwise,

(1) Note the syntactic difference from version 0/10, LIST
(instead of LIST member) naming for loop arguments*

Sjttt&ihfcaa^j^Msi^^ ^ i^iYTT,1lMll*lti^>1tfllliMBIBMiiilttHa7a,iiTiflil^ "*t*MI^1l iBMifMliiHhWM

Chapter 5: Assignment and For-loops Page 43

0
i n

1
I p

i i u

3

[0

the restrictions governing the input and output LISTs of a
FOR are largely the same as those governing outermost LISTs
used in assignment:

1» Both LISTs must be open or contained in open
outermost containers*

2. The output LIST or its outermost container must be
in WRITE or APPEND mode.

3» If the input LIST is not an outermost container,
the LIST that most immediately encloses it must be the input
LIST of an enclosing FOR loop.

4. Similarly, if the output LIST is not outermost, the
LIST that most immediately encloses it must be the output
LIST of an enclosing FOR.

The FOR-bodv The operations that are legal in a
FOR-body are assignment and another (nested) FOR. The
assignment may be of the form

i .

<name> = <constant> ;

where <name> refers to a container that is a STR, INT or
BYTE (see matching rule number 2, page 33), or assignment
may be of the form

<name> = <name>;

to transfer data from one container to another. If the
latter is the case, then assignment is subject to

1. the restrictions specified in the matching rules
above,

2. the usual restriction that data can be transmitted
into a container only if it is open in WRITE or APPEND mode,
and

3. the restriction that assignment must occur between
objects, not s_e^j. £l objects.

4. In Version 0/11 of datalanguage, there are other
restrictions governing the containers that can be referenced
in the body of a FOR-loop. See Appendix E.

Let us look at a few examples, and describe their
operation in words. With F a FILE as above, and

CREATE Q PORT LIST
P STRUCT

A STR (3)
B STR (5)

END;
...
OPEN F APPEND;

then
F = Q;

and
FOR F, Q

mum am

Chapter 5: Assignment and For-loops Page Hk

P ;

Ü

D

END;

r 1 n

I L

0

1
I
I
I
I

have the same effect: a new member P is created and added to
the LIST F.

Likewise

FOR Fr Q WITH A EQ '500*
P = P;

END;

has the same effect as

F s Q WITH A EQ '500'

A final example: with FF and PP as given in the example
for the matching rules,

FOR PP, FF WITH STATE EQ 'Rl'
OR STATE EQ 'CT' OR STATE EQ 'MA'
OR STATE EQ 'VT' OR STATE EQ 'NH*
OR STATE EQ 'ME'

NAME = NAME;
END;

will have the effect of outputting through the PORT PPr the
NAMEs of all PERSONS in the FILE FF who live in New England;
i*e« with STATE equal to one of the New England states*

UPDATE

With UPDATE a vz?r can replace the contents of any
container which is neither variable length nor inverted«
Given a FILE and POPT:

CREATE FAMILIES FILE LIST
FAMILY STRUCT
MOTHER STR (,8), C=1
FATHER STR (,8), C=1
KIDS LIST (,10) , C=1

KID STRUCT
NAME STR (,8) , C=1
AGE STR (2)
KIDJNÜM BYTE, V=I

END
FAM*NUM BYTE, V-I

END;

CREATE FAMILIES PORT LIST
FAMILY STRUCT

MOTHER STR (,8), P=EUR
FATHER STR (,8), P = ECR

--"-- - •-"■ ■-"^^~-";~--^^^^

Chapter 5: Assignment and For-loops Page t5

i

I
I

I
I
f
I
i
I
I
I
!

I

KIDS LIST (r10)r P = EOB
KID STRUCT

NAME STR (f8)r P=E0R
AGE

END
STR (2), P=E0R

END;

then, with the FILE FAMILIES open in the WRITE MODE;

UPDATE FAMILIES WITH
MOTHER EQ MOTHER AND FATHER EQ FATHER,
PAMILIES
UPDATE KIDS WITH NAME EQ NAMEr KIDS
AGEsAGE; END; END;

When UPDATing, the datacomputer finds t
outer LIST (FAMILIES); then, if one is
match on an inner LIST (KIDS)« The da
UPDATE and proceeds to the next mat
will match the transaction PORT on MOTH
outer LIST), then on the NAME (in
replace the AGE with the AGE from th
Only the first match is UPDATEd; if ot
not be found» The EQ specifies those
match exactly between the master FIL
PORT; the ":" is the UPDATing assignmen
PORT element which will replace the
Since the datacomputer is making a sequ
and FILE, the information appearing in
must occur in the same orde; as it app
FILE; that is, outer and inner PORT LI
the same order as those of the FIL2»
contain no information different from t
are not being changed by the UPDATE) ma

he first mate
requested, t
tacomputer d
ch. The abov
ER, FATHER

the inner L
e transactio
hers exist, t
elements whi
E and the tra
t of the tra
master FILE

ential pass
the transact

ears in the
ST members mu
LIST member

he master FIL
y be omitted»

h on the
he first
oes the
e UPDATE
(in the
1ST) and
n PORT»
hey will
ch must
nsaction
nsaction
element»
of PORT
ion PORT
master

st be in
s which
E (which

If the datacomputer fails to find a match on MOTHER,
FATHER or NAME, it will give the error message (see Chapter
6):

;U000 dd-mm~yy hhmm:ss LEBARF: NO MATCH FOUND

Any UPDATing information occurring after the failure to
match will be discarded» This happens because the FILE
being UPDATEd is searched to its end for a match and the
datacomputer presently has no method of searching more than
once through a portion of the master FILE»

It is possible to do an UPDATE with qualifications both
on
EQ

the master and transaction LISTs
'ANITA', PAMILIES WITH FATHER EQ

case, the datacomputer finds the

(•••FAMILIES
'JOHN'...)»
match on the

WITH MOTHER
In such a
transaction

LIST and then the match on the master LIST»

■■"■'-■'"i-" -,..--■■■t. ... -■1-inaritMihnf,a-"-"^~äÜi%W-HI iaaü^üttjMM " - -'-'liYim^MaiMIMhiMfrm

G
D

0 I Li

D

i L

1D

*

i
i
i
i

Chapter 5: Assignment and For-loops Page 46

A common process would be to change some existing data
within a FILE and then to APPEND further information to the
end of a FILE» Care must be taken when doing this, to
remember to change the FILE MODE* An UPDATE requires the
FILE be in WRITE MODE, but if the MODE is not changed to
APPEND before attempting to add further datar what has
already been written in the FILE will be replaced«

Although an inverted container may not be changed by an
UPDATE in Version 0/11, if matching for the UPDATE refers to
an inverted container, the datacomputer makes use of the
inversion to perform the UPDATE more efficiently* The
requirement of exactly similar ordering still remains*

An UPDATE may be done without a transaction PORT or
FILE* For example:

UPDATE FAMILIES WITH MOTHER EQ 'ANITA'
UPDATE KIDS WITH NAME EQ 'JULIE'
AGE='24' END; END;

will determine that LIST-member with specified MOTHER and
NAME and change the associated AGE to 24* When doing an
UPDATE such as this one, in which the information is
contained in the request, the datacomputer will give no
message if the requested matches on MOTHER and NAME are not
found* Also, this type of UPDATE will change all instances
that fulfill the specifications, not just the first one*

UPDATing is one method by which a number of elements
can be changed with a single "= quoted constant" assignment*
If the restriction WITH NAME EQ 'JULIE' is dropped from the
above UPDA7C all KIDS in FAMILIES WITH MOTHER EQ 'ANITA'
will be given an <iGE equal to '24'*

Mismatched £Q1 LOOPS

It is possible, by using a mismatched FOR-loop, to
output selected information from the FILE LIST*

then

CREATE MISFAM PORT LIST
KID STRUCT
FATHER STR (,8), P = E0R
NAME STR (,8), PxEOR
AGE 3TR (2), P=E0R
END;

FOR FAMILIES
FOR MISFAM, KIDS
FATHER=FATHER; NAME=NAME; AGE=AGE;
END; END;

ataariaatawtaiiiia^^ iMMiliiril m I I n II tfiMii'rlitiBlli'

D
ü

Chapter 5: Assignment and For-loops Page i*7

will output all children's names and ages and the father's
name for each child* The selection may be further narrowed
by reference to the virtual index containers«

D
FOR FAMILIES WITH FAMJNUM GT 5
FOR MISFAM, KIDS WITH KIDfNUM GE 1
FATHER=FATHER; NAME=NAME; AGE=AGE;
END; END;

This will select the FATHER, KID HAHE and AGE of those
FAMILIES with one or more child, which are not in the first
five FAMILIES.

I i
I y
i

o

i P

i.

1

>"~^^-- '- .■:.^

 i ■ ■.■r»VJii-iinriaii-i»in-ii-m-iiriiWi[-ir'iiii i i Tninti™»iffilMiTtliii*ftiti»ill<%^^

ü
D

Page H8

Chapter 6: Using the Datacomputer

i n 1 ! I ü
I

0

Ml
i

0

lc
n

r
i.

V

We proceed now from the basics of the language itself,
such as containers and assignment, to a broader view of how
datalanguage might be employed by a user's program. We will
discuss such matters as accessing the datacomputerr
transmitting daUi to and from datalanguage PORTsr and
various aids to the maintenance of data and FILE and PORT
descriptions on the datacomputer.

Interacting with the Datacomputer

Typically, datalanguage requests will be sent to the
datacomputer by a user program residing on some oomputer on
the ARPA network. All interaction between the user program
and the datacomputer takes place over the network.

Information transmission over the network takes place
along uni-directional paths. For a two-way conversation,
two such paths are needed, one for transmission' in each
direction. The end of a transmission path is called a
socket: a socket can be either a send (output) or receive
(input) socket. Obviously, a transmission pat-fo.'requires a
send socket at one end and a receive socket at th'e other. A
diagram of the sockets involved in a two-way conversation
over the network appears below.

USER (HOST) COMPUTER DATACOMPUTER

USER OUTPUT
SOCKET

USER INPUT
SOCKET

DATALANGUAGE
INPUT SOCKET

DATALANGUAGE
OUTPUT SOCKET

I

1.

Figure 4-1. Network connections to the datacomputer

A host computer is identified on the network either by
a number or by an alphabetic name, like BBN-TEHEX. A socket
within a given host is identified by a number; send sockets

^^I^^.V.V.:;.^^,--:..:....!,-^.^^

i »ii unarm

ü
D
ü

Chapter 6: Using the Datacomputer Page 49

have odd numbers and receive sockets even ones» For a
connection to be opened, both hosts involved must request
that it be opened* Likewise, after data transmission is
complete, both hosts must close their ends of the
connection« The period of time during which network
connections are open between a user host and the
datacomputer is called a session«

u

In the user program s dialogue with
the transmission in one direction con
datalanguage requests, while messages from
are sent in the other direction, to the
sockets at the datacomputer that are used
are called the datalanguage input
datalanguage output socket« The te
input/output port are also used« The
PORTs that a user can create with da
requests, are channels for the inpu
information« However, the purpose of the
is to receive datalanguage and tran
messages; the purpose of a user PORT is
receive data«

the datacomputer,
sists largely of
the datacomputer

user program« The
for these purposes

socket and the
rms datalanguage
se ports, like the
talanguage CREATE
t and output of
datalanguage ports
smit datacomputer

to transmit or

The protocol by which a user program can set up
datalanguage input and output sockets connected to its own
output and input sockets is described in Appendix D of this
document«

D
V

* -

li

Synchronisation

Since use of the datacomputer typically involves the
interaction of two programs at opposite ends of a
communication network with a finite time delay, steps must
be taken to ensure that the programs remain in synchrony
with each other. If they do not, the user program might
blithely go on sending datalanguage vhen the datacomputer
expects data or might receive diagnostic messages when it
expects a list of directory node name?«

mm

E
To avoid such problems, the datacomputer generates a

variety of messages that keep the user program informed of
what is going on« The messages fall into several
categories: there are error messages, which will be
discussed in a later section; informational messages, which
can safely be ignored or merely logged by a user program;
and synchronization messages, some of which at least must be
processed by the user program to ensure proper
communication« The first character of the message differs
from category to category, allowing the user program easily
to differentiate the various classes of message«

M^mmämmmmmmtumtmäsä UBM Jl«MillBt«Mrf>t«^llii "fiBE'i 8«fr ma mm

D Chapter 6: Using the Datacomputer Page 50

IÜ

Prefix

?, -, or +

Type of Message

error message
informational message
synchronization message

Cther special characters may be added as datacomputer
message-prefix characters in future versions* The letters,
digits, tabr and space will never be used as message
prefixes, however.

I
1
I
I
I
I

The datacomputer's messages all follow a common format,
which includes the special header character just described,
a letter and three digits that a program can use to identify
the message, the date and time of the message's
transmission, and a variable-length string of text that can
be read by a human user» Specifically, the format is:

.X999 dd-mm-yy hhmm:ss (TAB) TEXT STRING (CR, LF)

wher
the
repr
hhmm
minu
(CR,
char
char
mess
prin
data
read

will
lden

e •
mes

esent
:ss
tes,

LF
acter
acter
age m
ter,
compu
able*
In t
be

tifyi

repre
sage
s the
repre
and s
) r
s th
s in
ay be
for

ter

sent
id

day
sent
econ
epre
at

th
ver
ins

mess

s the
entif
, mon
s th
ds, (
sents
termi
e me
y Ion
tance
ages

heade
ier (
th, an
e tim
TAB) r

the
nate
ssage
g (too
), so
may

r ch
for
d yea
e on
epres

car
the
are c
long
a u

have

aracter
example
r (for
a 24-h
ents a
riage
message
apitali
to pri

ser pro
to fo

, X999 r
, 1210),
example, 2
our clock
tab charac
return, 1

All a
zed* Note
nt on a
gram that
rmat them

epresents
dd-mm-yy
5-09-73),
in hours,
ter, and
ine feed
lphabetic
that the

72-column
processes

to be

his manual, only the invariant parts of messages
displayed; that is, the header character, the

ng letter and digits, and the message text*

To illustrate the use of synchronization messages in
pacing interaction with the datacomputer, consider these
two:

•1210 LAGC: READING NEW DL BUFFER
•J900 FCFINI: END OF SESSION

The first message, .1210, ±a sent by the datacomputer over
the datalanguage output socket, and hopefully received by
the user program over an input socket, whenever the
datacomputer is ready to accept datalanguage requests* The
user program will in general respond to this message by
transmitting a line of datalanguage* A line is some number
of characters (currently there is an upper limit of about
2500) terminated by either the character sequence carriage

■.*!*-. ■ ',^:.:-,[V?--i.:

HMÜ

1

E
i

I

Chapter 6: Using the Datacomputer Page 51

return, line feed (ASCII codes 15, 12 octal) or the single
character eol (37 octal)* On a line may be one datalanguage
request (terminated by a semicolon), several requests (each
terminated by a semicolon), or a portion of a request*

the r
to e
initi
it wi
again
datac
the u
reque
execu

In the
equest
xecute
ating
11 aga
ready
ompute
ser pr
st ha
ted as

first t
s (and i

them,
data tra
in send
to rece

r will c
ogram fo
s been
describ

wo cas
f they
(typi

nsfers
the .1
ive da
ontinu
r line
assem

ed abo

es, wh
conta

cally
as it

210 me
talang
e to s
s of d
bled;
ve*

en the datacomputer receives
in no errors) it will proceed
generating messages and/or
does)* Following execution,

ssage signifying that it is
uage* In the third case, the
end »1210 messages, prompting
atalanguage, until a complete
the request will then be

The second message, *J900, is sent by the datacomputer
at the end of a session* The user program may request that
the session end by sending the datacomputer a control-Z
(ASCII code 32 octal) in response to a »1210 message* The
datacomputer responds to control-Z by executing an end of
session procedure, which involves closing any open
containers, deleting TEMP PORTs, and sending the .J900
message* The user program may then close its network
connections with the datacomputer*

!-

Synchronization after an error is
section entitled Error Messages below*

discussed in the

I
I
I
I
I

IranStUtUnK Data vhrgWKh £he Datalanguage Ports

Often, a user program will need to send data over the
network to be stored at the datacomputer, or to process data
that it receives from the datacomputer* If all of the data
is described as ASCII, then f.is may be done by using the
datalanguage input or output pert*

To reference data that will be transmitted through the
datalanguage input socket, the user need only open a PORT
and use it on the right-hand side of an assignment in
datalanguage* When the assignment is executed, data will be
accepted through the datalanguage input port and assigned to
whatever container appears on the left side of the request*

Similarly, to output data through the datalanguage
output socket so that it can be picked up by the user
program, all that is needed in datalanguage is a PORT used
on the left-hand side of an assignment* Any data assigned
to that container will be transmitted through the
datalanguage output port over the network*

*._***■•* — I i- »I*M1W ■■!■■'**- '- ■"•*-"" ii mi rftiitrfiMif tf "**,^fa"M" jtftagaatiianiM

u Chapter 6 Using the Datacomputer Page 52

ri
L

Li

Of course, this requires the use of more
synchronization messages. To treat the data-input case
first:

.1231 OCPBO: (DEFAULT) INPUT PORT OPENED
•251 OCPBC: (DEFAULT) INPUT PORT CLOSED

After the user program has sent the datalanguage assignment
request that references the open input PORTf tie
datacomputer will transmit the »1231 message over the
datalanguage output port* The message signals that input
data is now expected through the datalanguage input portr
and the user program should send the data* Data
transmission is terminated by a control-Z character which
causes the datacomputer to send the »1251 message confirming
that data transmission i3 finished* The next
synchronization message will be *I210f a request for more
datalanguage*

'■I

i,

The synchronization procedure governing data output
through the datalanguage output port is similar* The
messages are

»12 4 I OCSOP: (DEFAULT) OUTPUT PORT OPENED
.1261 UCSCL: (DEFAULT) OUTPUT PORT CLOSED

When the assignment statement is executed which requests
that data be output through the datalanguage po.-t, the
datacomputer first sends .1241f followed by the requested
data, followed in turn by .1261. The datacomputer does not
output a control-Z at the end of the data. The user program
can use these messages to separate the data from all other
information.

QP?nia& ä. Secondary ££I±

Instead of a datalanguage port, an additional network
connection or secondary port can be used for transmitting
data. Non-ASCII date, including an ASCII STR with a
preceding count or a non-ASCII delimiter, must be
transmitted over a secondary port (see Chapter 2,
delimiter). The CONNECT request sets up the secondary port.

r
iS ■

The CONNECT request names an open PORT, and gives a
host (that is, a computer on the network) and socket number
to which that PORT is to refer. As mentioned above, if a
CONNECT request ia never executed for a PORT, it will refer
to the socket from which the user program transmits
datalanguage (if it is a READ PORT) or thesocket at which
the user program receives the datacomputer's messages (a
WRITE or APPEND PORT). The form of the CONNECT request is

saum*m&& .-_,. -I, -jiriiiWii'-iin-ntii'ii'raaiiiiiiBii ■aiiiiirriüj",'j-:'i*''aa***tt^^ii" ■■■Hamm —.--).^-...J—,J._^...

u

0

[.

i

Chapter 6; Using the Datacomputer Page 53

CONNECT <pathname> <address> ;

where <pathname> is the node name, complete name (i.e.
starting with $TOP) or simple login name (i.e. starting
immediately subordinate to the login node) of an open PORTr
and <address> can have several forms* It can be one of

<socket-no> the decimal number of a socket at the
user's host computer»

<host-no> <socket-no> where <host-no> is the decimal
number of a computer on the ARPA network

<host-name> <socket-no> where <host-name> is the host
computer's TENEX alphabetic name

<host-name> <socket-no> where <host-name> is the host
computer's TENEX alphabetic name
(such as 'CCA')

OR '<loeal-file-designator>' This last form of <address>
does not refer to the network, but is
included here for completeness»
<local-file-designator> is a TENEX
file designator that refers to a file
at the datacomputer site»

A CONNECT may be executed any time the PORT is openr
but it does not actually establish the network connection«.
Those connections are established, used, and then closed
again during the execution of an assignment statement in
datalanguageT and CONNECT merely sets up the socket address
to be used when the PORT is later referenced in an
assignment»

A DISCONNECT request may be used to cause a CONNECTed
PORT to refer once again to the datalanguage input or output
port»

DISCONNECT <pathname> ;

Two CONNECT requests may be issued for the same PORT without
an intervening DISCONNECT»

Additional synchronization messages are generated at
the time a CONNECTed PORT is used in an assignment
statement» These messages are

.1230 0CPB0: OPENING INPUT PORT
;I239 OCPBO: INPUT PORT OPENED
.1250 OCPBC: CLOSING INPUT SOCKET
;I259 OCPBC: INPUT SOCKET CLOSED

. ■■ :■=,-« v ,: A- ;;-■ -.-,., .j^jjj^.

£V»-:£*^U^ &£>&«& a r~r^^^M^^*iS^(1Mt^ii>^aäak
mjmamtjmmmmll^

u Chapter 6: Using the Datacomputer Page 54

j •

Li

LJ

ii

L

i r

.1210 OCPCO: OPENING OUTPUT PORT
;I249 OCPOO: OUTPUT PORT OPENED
•1260 OCPOC: CLOSING OUTPUT SOCKET
;I269 OCPOC: OUTPUT SOCKET CLOSED

When a CONNECTed PORT is used on the right-hand s
assignment (that is, in READ mode), the «1230
sent over the datalanguage output port» This 3
user program that the datacomputer is attemptin
network connection to the host and socket specifi
CONNECT request for the PORT» The user program
open its end of the connection itself (if it is a
to a different socket on the user program's o
ensure that the third host opens its end of the
at this time (if it ic a connection to another
network)•

ide of an
message is
ignals the
g to open a
ed by the
should thus
connection

wn host) or
connection

host on the

The ;I239 message indicates that indeed the network
connection was opened correctly» After this message is
received, oata can be transmitted, terminated by closing the
network connection» When the connection is being closed,
the datacomputer sends »1250 over the datalanguage output
port and then ;I259, signaling the user program that use of
the secondary network conne.tion is complete» The »1250 may
precede or follow the closing of the connection on the
user's side»

The messages for output PORTs work similarly, with
•1240 signaling that the output network connection is being
opened, ;I249 that the connection is opened, and »1260 that
output is complete and the connection is being closed, and

;I269, that the closing has been completed»

If there are errors in the data, other messages will be
sent before the »1250 or »1260 message» This would be the
case, for example, if the data does not match the
description (see Appendix G)»

A user program can interrupt the datacomputer's
transmission of data; see Appendix D for details*

The form CONNECT <pathname> <local-file-designator>;
may be useful to those with large amounts of data to 3end to
the datacomputer* In some cases, the shipment of magnetic
tapes by air-freight produces higher bit rates than sending
the data over the network; the magnetic tape may then be
addressed from datalanguage as a local file* Contact CCA
for information on this procedure*

, , ..■.,,^MMMMj» •-^m;baa«a-i(tfiriiiiMr [lit jiiTiiiiiliiffilifTWiiiliMiMtWMi iMÜ UM

!. Chapter 6: Using the Datacomputer Page 55

*
I j

Error tt&aaag&a

Datacomputer error messages will in general be seen by
a human user, although they have header characters which
make them potentially processable by a smart user program*
Error messages fall into several categories, distinguished
by their first character*

l L
First Character Meaning

indicates a datacomputer or
system bug* A user program
should rarely see one of these,

I l

I L
Examples:

?U000 TRDN: NODE CHAIN SNAFU
?U000 DKWR: DISK I/O WRITE ERROR

! [

indicates a user error —
typically bad datalanguager datar
or i/o handing* A debugged user
program should rarely see one of
these* (See Appendix G)

Examples:
-U000 LPNM: FORARG NOT DIRECT LIST MEMBER
-1216 OCSOP: CAN'T OPEN OUTPUT PORT (BAD CONNECT AROS?)

+ indicates a circumstantial errorr
such as a file's being busyr or
an error which is due to current
datacomputer limitations*

Examples:
+U000 OCDOP: CAN'T OPEN FILE (SOMEBODY ELSE UPDATING?)
+L000 DHIN: DESCRIPTOR TOO LARGE

After the datacomputer generates one or more error
messages, it follows a special procedure to resynchronize
itself with the user* This procedure involves waiting for a
special character, control-L or form feed (ASCII 14 octal),
to be transmitted by the user* That is, after the error
message the datacomputer sends

.1220 LAEB: LOOKING FOR CONTROL-L

This is repeated for each line of input it receives on the
datalanguage input port until the user sends a control-L
character* Following receipt of a control-L, *I210 will

:: f in,',ni-r^mfYMiädtmirr:" -: ■ ■■■ ■■ ' ■ - -'
üüggijgimüjiilg f li iff f-iiiinrw Mjfjflraa,^^"*^i"^a' i -fiiiftiintr"ilflMill p^^saaga mi

Chapter 6: Using the Datacomputer Page 56

0

again be sent and datalanguage requests again processed»

More severe action must be taken following certain
system or ?-type errors« One of the following
synchronization messages may be generated:

• J151 FCSRRH: RESTARTING TH.1 REQUEST HANDLER
•J140 FCREIN: REINITIALIZING USER JOB
•J910 FCERRH: CRASHING JOB

The •J151 message indicates that TEMP PORTs have been
deleted; otherwise, the status of the session remains the
same (PORTs and FILEs will still be open, etc.). This
message will usually be followed by .1220, a request for
Ocontrol-L»

The .J140 message is more serious. The user's job is
completely reinitialized, leaving his status the same as
when the session was begun. This message will also be

f followed by .1220.
U The .J910 message indicates a condition so severe that

the datacomputer does not know how to recover. The user's
C job is crashed and the datalanguage network connections

closed. That is, the session is forcibly ended»
If this happens, and also if the user's network

r connections to the datacomputer are accidentally broken, the
datacomputer will do its best to close his open PORTs and

k FILEs in an orderly manner. However, if the user was in the
process of transmitting data into a FILE, the last few

| thousand characters of data his program sent may have been
Li lost in transit and not incorporated into the FILE.

Not much in general can be said about handling ? or -
errors, except that a human user will have to read and
interpret the text of the error message in each case, and
(in the case of - errors) correct the datalanguage he is

| having his program send.
1,

Appendix G of this manual is a listing of error
r* messages commonly caused by bad datalanguage and errors in

data streams, with a few examples of the type of
datalanguage that could cause these messages.

I + errors, on the other hand, could be processed by a
user program. The most reasonable thing to do in many cases
is to wait five minutes and retry the datalanguage request
that caused the error. For example, a FILE which was busy

L (i.e. in use by someone else) may be free by that time, so
the second attempt to use it may be successful.

Messages beginning with +L are an exception to this, in
that the appropriate time to wait may be several weeks
instead of minutes. Such messages indicate limitations of
the current datacomputer system, such as limitations imposed

 ^-^w^^*^'**^^ Trti"--ni i»^^^^^^»^^^..^ ^^.^^^^^^g

! L

i
;

Chapter 6: Using the Datacomputer Page 57

i L

L

by internal table sizes« A new version of the datacomputer
nay remove many of these limitations« Realistically, this
means that +L messages are like - messages in that a program
probably could not handle them«

. ■as.iMa^^

u Page 58

*

Ü

Ü
r -,

Addendix A: Syntax for 0/11

P
Li

1 1 i i

f"

>«
;

The following is the complete BNF (Backus Normal Form)
specification of datalanguage syntax for version 0/11 of the
datacomputer*

Requests

<request>

Directory Requests

<request> ::= LOGIN <login body> ;
CREATE <create body> ;
DELETE <delete body> ;
OPEN <open body> ;
CLOSE <close body> ;
CONNECT <connect body> ;
DISCONNECT <disconnect oody> ;
MODE <mode body> ;
CREATEP <createp body> ;
DELETEP <deletep body> ;
LIST <list body> ;

?
Data Transfer Requests

<request> ::= <direct assignment> ;
I <loop> ;

1

1

I

*'-•. ;.{

- ■ ■-■ -"■ "■■ ~**v-«
■ - — - urnm —■

Appendix A: Syntax for 0/11 Page 59

Directory

Pathnames

<pathname> ::= <complete pathname>
i <simple complete pathname>
! <login pathname>
! <simple login pathname>
! <open node name>

<node naae> ::= <identifier>
! <identifier> (<password string>)

<pas3word string> ::= <string constant>
<simple node name> :: = <identifier>

<complete pathname> ::= JTOP • <node name>
! <complete pathnams> • <node name>

<simple complete pathname> ::=
STOP • <simple node name)
i <simple complete pathname> • <simple node name>

<login pathname> ::= <node name>
! <login pathname> • <node name>

<simple login pathname> :: = <simple node name)
! <simple login pathname> • <simple node name>

<open node name> <simple node name>

<node pathname> i:= <complete pathname>
i <login pathname>

<open pathname> ::= <simple complete pathname>
i <sir.ple login pathname>
i <oper node nama>

...,. ^'■«-—"^,ü,M^ie-~-'-'ti ugimij^miiiiigigg ,„,,,,. | „ aMMaaBii jaKüüm
MM ^

Appendix A: Syntax f>r 0/11 Page 60

I U

I

u
10

Ll

f L

Directory

Requests

(login body> ::= %TQ¥
i (node pathnam»>

<create body> ::= <simple node name)
i <node pathname> • <simple node name)

<create body> ::= (data description>
! <node pathname..» • <data description>

<delete body> : := •*
! <login pathname)
i <login pathname> #•

<open body> ::* <node pathnane>
! <node pathname> <mode>

<close body> 5Ü0PEN
! <open pathname>

(connect bcdy> ::=
(open pathname> <tenex file specification>
! <open pathname> (network specification>

<t nex file specification>
(network specification> :

:s (string constant>
(socket number>

i (host specification> (socket number>
<socket number> ::s (integer constant>
(host specification> ::= (integer constant>

! (identifier>
(string constant>

(disconnect body> (open pathname>

(mode body> ::= (open pathname> (aode>
(mode> : := READ

WRITE
APPEND
WRITE DEFER
APPEND DEFER

it

i.

i

,*? *?*

ttlW'iMMiT-"- Afrll^«»^rrTr^^ in n ----— --*--

Appendix A: Syntax for 0/11 Page 61

i_

Ü

1 !

f"

<createp body> ::= <node pathnane>
i <node pathname> <privilege tuple speclficatlon>

lege tuple apecification> ::*
ivilege tuple option>

! <prlvilege tuple specification>
<privilege tuple option>

<prlvilege tuple optlon> ::= , 0 « (user ldentity>

<privi:
<pri

<user

(user

<user

<host
i
i

■
t

<socke
i
i

<grant

<grant
i
i

i
i

i
i

<deny
i
i

<deny

<privi

H = <host identlty>
S s <socket identity>
P s (password string>
G a <grant privilege list>
D = <deny privilege list>
N = (privilege tuple number>

identity> ::s ••
<user node>
(user node set>
(user node> • **
(user node set> • *§

(user node> • (user node set> • •*
node> :: = (identifier>
(user node> • (identifier>
node set> ::= *
(user node set> • *
identity> ::s ANY
LOCAL
(integer constant>
t identity> ::= ANY
(Integer constant>
privilege list> ::= (grant privilege>

(grant privilege listXgrant privilege>
privilege> ::= C

L
R
W
A
privilege list> ::= (deny privllege>
(deny privilege listXdeny privilege>
prlvilege> ::= R
W
A
lege tuple number> :: = (integer constant>

1

(deletep body> ::=
(node pathname> (privilege tuple number>

',M '•''"'C««

j:^i:;^Ä,^*^d SiaiiMiSiiioiiitaiiSskaiiÄailÄ aaaaaataaajlSna .,.,.,,^,^,^.^^^^,^

L
Appendix A Syntax for 0/11 Page 62

I I L

I (* s

<list body> ::= <list node set>
! <list node set> <list option>

<list node set> ::= »TOP
! iOPEN
i *
! **
! <open node name)
! <node pathname>
! <node pathname>
! <node pathname> • «

<list option> : : =
»DESCRIPTION
SDESC
»SOURCE
»ALLOCATION
»ALLOC
»PRIVILEGE
»PRIV

»NAME

5 .

 . , ...; ,-...- ..-...-- -■- — - — -- - • —MI i in w mutn

u
LJ

{ |
1. J

!.

Ü

Li
If
I

L

Appendix A: Syntax for 0/11 Page 63

Data Description

<datatype> ::= <conpound datatype>
i <simple datatype)
i <string>

<compound datatype) ::= LIST
i <structure>

<structure> ::= STRUCTURE
! STRUCT

<simple datatype) ::= BYTE
! <integer>

<integer> ::= INTEGER

<string> ::= <atring type)
i <string type) <string interpretation)

<string type) ::= STRING
! STR

<string interpretation) ::= ASCII
! ASCII8
! BYTE
i INTEGER
! INT

u

.-„n,,,, „,. .-. .- ...:.~.,.,.^. ,.- -^^^-^-J^„„-^^—..

* ■' -' . ■ 4 Lai,

---——"—^

I u

D

Appendix A: Syntax for 0/11 Page 64

<data description> ::s
<simple node name> <function>

<outermost description>
<function> ::= FILE

i PORT
i TEMPORARY PORT
I TEMP PORT

<outermost description> ::= LIST <description>
! LIST <list options> <description>
! <string>
! <string> <string options>
! <description body>

<descriptions> <description>
i <descriptions> <description>

<description> ::=
<description name) <description body>

D

0

<description name> ::= <identifier>
<description body> ::=

LIST <dimension> <description>
LIST <dimension> <list options> <description>
<structure> <descriptions> END
<structure> <compound datatype options>

<descriptions> END
BYTE
BYTE <byte options>
<integer>
<integer> <aimple datatype options>
<string> <dimension>
<string> <dimension> <string options>

i.

Js

1
1
I

:'|J'»: .'»'«KvVfi,

Kii^j^iawMa>a&tt^ ,.v-.JK^a^,„»a.^.„..^»ui„„»»J,,a|f>|lr.|„| .„^j^^^.M^.a.ui^^.^^^,,^^..^^^^

u
Ü

D

D
[

Appendix A: Sycax for 0/11 Page 65

<descripti
! <byt
! <fil
j <var
I <vir
! <con

<lnversion
! r i

size
Ler op

i r F
<variable

P
P
P
D
D

<inveraion option> on option> ::
e size option>
ler option>
iable length option>
tual data option>
tainer address table option>
option> ::= f I = D

= I
option> ::= t B = <integer constant>

tion> ::= r F = <integer constant»
s '<nonquote character»'
length option» ::= r C s 1
= EOF
= EOB
s EOR
= <integer constant»
= '<nonquote character»'

<virtual data option» ::= r V * I
<container address table option» ::= , CAT

<byte
<fill«

<compound datatype options» ::=
<compound datatype option»
i <compound datatype options»

<compound datatype option»
<compound datatype option» :s= <byte size option»

i <filler optiow
! <variable length option»

<simple datatype options» ::=
<simple datatype option»
! <simple datatype options»

<simple datatype option»
<simple datatype option» ::= <inversion option»

! <byte size option»
I <filler option»

<string options» ::= <string option»
i <string options» <string option»

<string option» ::= <inversion option»
i <byte size option»
! <filler option»
i <variable length option»

I.

<list options» ::= <list option»
! <list options» <list option»

<list option» ::s <compound datatype option»
! <container address table option»

 iflllliMflrillMwrnntii ll1iri-11-r-i-,-J-
,,^^j^»^.>^ilt, .^„^:,^ ml II1MI""-- - tmlumml - ÜÜ1

ili
Appendix A: Syntax for 0/11 Page 66

<byte options) ::= <byte option>
! <byte options) <bvte option)

<byte option) : := <siaiple datatype option)
! <virtual data option)

<dimension> ::= (<integer constant))
! (t <integer constant))
! (<integer constant) r <integer constant))

 II II III! Illl I

Appendix A: Syntax for 0/11 Page 67

Data Transfer

<data reference> <identifier>
! <data reference> • <identifier>

<constant> ::= <string constant>
! <integer constant>

<assignment> : := <data reference> s <data reference)
! <data reference;« = <constant>

<direct assignment) ::= <assignoent>
! <implicit for loop>

<implicit for loop> : := <assignment> <qualifier>

i L

L

<loop> <for loop>
<update loop>

<for loop> FOR <input> <loop body> END
FOR <input> Qualifier) <loop body> END
FOR <output> r <input> <loop body> END
FOR <output> t <input> <qualifier>

<loop body> END
<input> ::= <data reference>
<output> ::= <data reference>

<update loop> UPDATE <master> <loop body> END
! UPDATE <master> <qualifier> <loop body> END
i UPDATE <master> r <transaction> <loop body> END
! UPDATE <oaster> <qualifier> r <transaction>

<loop body> END
<master) ::= <data reference>
<transaction> ::= <data reference)

<loop body> <loop>
i <loop> ;
! <assignment list>
! <assignment list>

<assignment list> ::=
! <assignment list>

<assignment>
; <assignment>

<qualifier> WITH <boolean expression)

<boolean expression) :: = <relational expression)
(<boolean expression))
NOT <boolean expression)
ANY <boolean expression)
<boolean expression) AND <boolean expression)
<boolean expression) OR <boolean expression)

<relational expression) ::=
<data reference) <compa;rison operator)

<data reference)
! <data reference) <comparison operator) <constant)

; ^.^^w^,^ it^tmiätmitmmMtmHk n-r - ""'"•■

ü

U.
! U

1
Appendix A: Syntax for 0/11

<comoarison operator>
NE
GT
ÜE
LT
LE

Page 68

EQ

l
t *

'-' n
Li

i

li

■i ! niiifuMw- ■[- im amiiiiiirnfiiMil ^j

Appendix A: Syntax for 0/11 Page 6£

i L
Lexical Items

I

<lexical item> ::= <identifier>
<integer constant>
<string constant>
<autonomous character)

I I
l L-

<identifier> ::= <letter>
%
<identifier> <letter>
«^identifier) %
<identifier> <digit>

<integer constant) <digit>
<integer constant) <digit>

<string constant) ::= "<string constant body)'
<string constant body) ::= <nonquote character)

! <string constant body) <nonquote character)

■ i i.i ii' ivrrffia^aj^'iartffcirl
IlllillllllillllHinill- mmmmimmm^^

Appendix A: Syntax for C/11 Page 70

0

Character Set

<letter>
; B

: z
; a
: b

-4

0
r

BI f"
I 1

I i

<digit>
i 1

! 9

:= 0

<nonquote character> ::s <letter>
%
<digit>
<autonomous character>

(space)
(horizontal tab -- HT)

ii'

n it

<separator> (space)
! (horizontal tab -- HT)
! <eol>

<eol> ::= (end of line -- octal 37)
! <carriage return> <line feed>

<carriage return> : := (carriage return — CR)
<line feed> ::= (line feed -- LF)

■ ^..i^,^.^^.^,,^,:..^^.^-.^ - - ■■-■ ■ ■~~-.*~.
Ü1

Appendix A: Syntax for 0/11 Page 71

<autonooous character)

$
&
(
)

<

>
1
%

I
\
]
(up arrow)
(left arrow)
(at sign)
{
(vertical bar)
}
(up arrow)

■I Jr

]

!

,.,.„„„.„...». .-^jmii.in.<M r-nir-tiTi-iiiiifiU'MrMi* 1 i- r-i-^Ti MiH—MMMMtMrn

L Appendix A: Syntax for 0/11 Page 72

L
Notes

Character codes are 7 bit ASCII*

I L

L

Separators are always permitted between lexical items,
except between 'j.'ant privileges, between deny
privileges, and inside string constants*

Comments may be inserted wherever separators are
allowed* Comments begin with */•* and end with '*/'
(e.g*, /• THIS IS A COMMENT */).

<carria?e returu> and <line feed> may appear together
only in that order (as an <eol>)* Otherwise they are
treated as control characters, which are rejected»

i l

0

Page 73

Appendix B: Reserved Words

i

AND
ANY
ASCII
ASCIIS
BYTE
CLOSE
CONNECT
CREATE
CREATEP
DELETE
DELETEP
DISCONNECT
END
EQ
FILE
FOR
GE
GT
INT
INTEGER
LE
LIST
LOGIN
LT
MODE
NE
NOT
OPEN
OR
PORT
STR
STRING
STRUCT
STRUCTURE
UPDATE
WITH
*OPEN
*TOP

■fifc^—.... ■—,.--a^^oiAfe dHHHMM MIMHWHH

i.

lü
Page 71

Appendix C: Inversion: Technical Considerations

I ^

Hi
(0
iC
I 8"

An inversion is a secondary data structure that the
datacomputer can use tc improve it« efficiency in retrieving
data by content from a FILE* Specifically, an entry in the
inversion is constructed for every container with the
inversion attribute* For each data value which occurs for
the container, the inversion contains pointers to all the
records in the FILE for which that container has that value«

For example, if

CREATE PEOPLE FILE LIST
PERSON STRUCT

NAME STR (15)
SOCSECNO STR(9),I=D
SEX STR (1) /• 'M' OR 'F'*/,I=D
ZIP STR(5),I=D

END;

then the data structure for the inversion on SEX contains
pointers to all instances of FERSONs with SEX equal to 'F'r
and similarly for 'M*. Thus, evaluation of a FOR input-spec
like

FOR ... r PEOPLE WITH SEX EQ 'M'

would not require a full sequential reading of th? FILE
PEOPLE.

An inversion is not only constructed automatically by
the datacomputer when the FILE is loaded with data, but is
automatically maintained whenever information is appended to
the FILE.

Unfortunately, even if an inversion for the appropriate
container exists, the datacomputer cannot always use it for
the evaluation of input-specs, and must sometimes resort to
time-consuming searches of the FILE. In particular, the
inversion can be used only when the container is compared
with a constant JISJU&£, tfre operators fift and NE. That is,

PERSON WITH ZIP EQ '02138' OR ZIP EQ '02139'
OR ZIP EQ '02110' OR ZIP EQ '02111*

:A*™*iiaüSs!^ — —TltfifiififM

Appendix C: Inversion: Technical Considerations Page 75

can be evaluated directly from the inversion* However,

PEOPLE WITH ZIP GE '02138'
AND ZIP LE '02111 '

i

while it still can be evaluated, cannot take advantage of
the inversion and so would normally be much less efficient»

Furthermore, when the container is a member of an inner
LIST, only the operator EQ can be evaluated using the
inversion* A sequential search is used for evaluating NE»

Complex Boolean expressions, those involving several
comparisons, fall into three classes: those with all
comparisons evaluable from the inversion, those containing
no comparisons evaluable from the inversion, and those which
mix the two kinds of comparisons» The first two classes
pose no problem; the datacomputer will use the inversion to
evaluate expressions in the first category, and not for
expressions in the second category»

For Piixed expressions, the datacomputer will use the
inversion as much as it can» For the present, this can be
stated as follows: if the Boolean expression is of the form

<expr> AND <expr> AND •••

(where <expr> is an arbitrary Boolean expression, in
parentheses if it contains OR, then the datacomputer will
separate the <expr>s into those that can be completely
evaluated from the inversion and those that cannot, and will
process those for which it can use the inversion first» The
<expr>s that cannot use the inversion are evaluated by an
exhaustive search of the set of records selected by the
earlier <expr>s»

For an example, take the above FILE, PEOPLE» Suppose a
list of all males with ZIP GT '02000' were desired. ZIP is
indeed inverted, but since the operator GT is involved, the
evaluation of that part of the Boolean expression cannot use
the inversion» As a result, in

FOR PEOPLE WITH ZIP GT '02000' AND SEX EQ 'M

I
I

the datacomputer will first use the inversion to find the
set of all PERS0N3 with SEX EQ 'M', and only this smaller
set of PERSONS would be searched for the desired ZIPs»

A more difficult example: consider the problem of
retrieving all the records for events that occurred between
10:05 on the 25th and 15:07 of the 30th from a FILE that is
inverted on DAY but not on TIME» A straightforward way to
do this is

^WÜÜ'MH.^ltoi!-^-—■■^■^■— ■-■ ■ _,■..-■•....^i^....:,,. ■ iurwMü'MiM

Appendix C: Inversion: Technical Considerations Page 76

I !

... WITH (DAY EQ '25' AND TIME GT '10:05')
OR (DAY EQ '26') OR (DAY EQ '27') OR
OR (DAY EQ '30' AND TIME LT '15:07')

) L.
--

i I
; L.

i

i .

but this is quite inefficient: the inversion cannot be used
at all, for this Boolean expression is mixed and is not set
up as a series of terms connected by AND* The best way to
express this condition is

'30')
... WITH (DAY EQ '25' OR DAY EQ '26' OR ... OR DAY EQ

AND (DAY NE '25' OR TIME GT *10:05';
AND (DAY NE '30' OR TIME LT ' 15:07')

In this case, only records for the correct six days are
retrieved by the first term, so only they need to be
searched through for the evaluation of the second and third
terms.

Futurs versions of the datacompute/ will automatically
optimize mixed Boolean expressions, freeing the user from
this task.

The computation of the space requirements for an
inversion is best left to the datacomputer's operational
staff at CCA, who should be contacted by any user interested
in setting up a data file with an inversion.

^.■!^.;.:i:.™ J^vy
I i-iinrii- -^~"—-- *-a....«JwiM»«i MMÜM *MMh mum

L

Page 77

Appendix D: Network Interaction with the Datacomputer

1

Ü

D
ID
p
1.

The procedure for establishing network connections with
the datacomputer is that documented in J* Postel, Official
Telnet - Logger Initial Connection Protocol. NIC 7103, 15
June 1971» The following is a simplified, informal
description of that procedure»

well
host
sock
will
comp
an e
rea'i
then
othe
at t
numb

The
-adve
numb

et»
addr

uter
ven n
one
imme

r us
he da
er»

datac
rtised
er 37
The

ess th
-- say
umber
32-bit
diatel
ers) •
tacomp

ompute
socke
(octal
user
is soc
from

or a r
byte

y clos
This

uter -

r 1
t, c
).
prog
ket
sock
ecei
of i
e it
byt

- sa

istens
urrentl
This is
ram wis
from a
et numb
ve sock
nformat
(leavi

e of in
y socke

fo
y nu

an
hing

so
er U
et»
ion
ng s
form
t D.

r c
mber

odd
to u

cket
• U
The

over
ocket
ation

D

onne
103
-num
se t
on

must
user
this
CCA
is
wil

ctio
(oct
bere
he d
his

r Of
pro
con

-103
a so
1 b

ns o
al) at
d or
atacom

own
cours

gram s
nectio

free
cket n
e an

n a
CCA,
send

puter
host

e, be
hould
n and

for
umber
even

■*

The last step is the opening of two network
connections, the permanent datalanguage connections. They
are

and
from D+1 at CCA to U+2 at the user host
from U+3 at the user host to D at CCA»

I
I
I
I
I
I

Note that U+2 is even (sinoe U is) and D+1 is odd -- this is
the datalanguage output socket» Also, U+3 is odd, and D is
even: the datalanguage input socket» These connections will
remain in effect until the end of the datalanguage session»

Two special network control signals, INS and INR, may
be used to interrupt the datacomputer» INS, for interrupt
the .gender, may be sent at any time during the processing of
a request and stops data output from the current request»
No error message or other acknowledgement will be generated;
the output simply stops» INS might be useful to a program
which receives output from the datacomputer and displays it
to a human operator sitting at a teletype; at the request of
the user, the program could send INS to stop an overly-long
printout»

INR, for interrupt the £ecei/er, performs all the
functions of INS» In addition, compilation or any other
processing that is under way when INR is received will be
aborted, possibly generating an error message and a request

rifirliiiiSiffi'f"*' • •'••• ■- — - — mm

t.

r i

Appendix * Network Interaction with the DatacomputerPage 78

for control-L. INR thus requests a more immediate halt than
does INS*

,..,,^»-w.,.^^^^^m,...,^,.,...., »„.„„..., .^.,.--,. ^^^.w,,-^,.^-,.....,.^,^,.«,*^^

u

Page 79

Appendix E: Implementation Restrictions

i.
0

1:

I i

A number of datalanguage restrictions specific to
Version 0/11 are collected here for ready reference»
Note that some of these restrictions have been
mentioned in the body of this manual, while others have
not»

1» There is a restriction on the containers
tnat can be referenced in the body of a FOR-loop»
Consider the following example:

CREATE FF FILE LIST
PERSON STRUCT

NAME STF (15)
ADDRESS STR (20)
CITY STIt (10)
STATE STR (2)
ZIP STR (5)
SOCSECN0 STR (9)
DEPENDENTS LIST (10)

NAKE STR (15)
END;

CREATE PP PORT LIST
PERSON STRUCT

NAME STR (15)
SOCSECNO STR (9)

END;
To output all the DEPENDENTS.NAMEs from the file FFr
together with the SOCSECNO of the PERSON whose
DEPENDENTS they were,

FOR PP,FF
NAME=NAME;
S0CSECN0=S0CSECN0;

END;
This example as written will work in datalanguage 0/1 *-
However, if SOCSECNO occurred after DEPENDENTS in the
description of PERSON in FFr the request would fail due
to a compiler restriction»

When an inner FOR-loop is processing a LIST which
occurs within a STRUCT, references may be made in the
body of that FOR to objects which occur before that
LIST in the STRUCT, but not after the LIST»

There are certain cases of assignment involving
inner LISTs which the compiler in Version 0/11 cannot

mmi

BpggH^WM- llM>.lWWUWPqWWIlgWlU| ■' ' ..|<p^^.^^it^Jaw»ivuxj»,.Jh'J>«ww'-.»-.VA-- '■ •m^MHMm^!f^^v^->J-u -'

n Appendix E: Implementation Restrictions Page 80

I.

handle« For example, given two structures of the
following format:

LI FILE LIST
S1 STRUCT

A1 STR (8)
A2 LIST (4)

B2 STR (6)
END;

and
L2 PORT LIST

SI STRUCT
A1 STR (8)
A2 LIST (4)

B2 STR (6)
END;

tht following FOR-loop will not work:
FOR L1 , L2

FOR A2r A2
S1=S1

END
END;

The A2 lists are in use by the inner FOR-loop (FOR
A2.B2,A2.B2) when the assignment SUS1 is encountered.
The datacomputer expands S1=S1 internally into:

A1sA1
FOR L1.S1.A2,L2.S1.A2

B2 = B2
END;

This constitutes a second use of the A2 lists, which
cannot be handled.

2» In Version 0/11 of datalanguage, there is one
general restriction on sequences of nested FOR-loops,
which can be stated as follows:

I

Sequences of nested FOR-loops are restricted to be
a number (possibly 0) of FOR-loops without output
LISTsr followed by an arbitrary number, at least 1, of
FOR-loops with output LISTS.

*

if

For example,
FOR A

FOR B,C
(ASSIGNMENT)

(ASSIGNMENT)
END;

END;

FOR A
FOR B

FOR A

FOR C,D END;
(ASSIGNMENT)

END;
END;

END;
The first two examples are legal, whereas the third is
not*

"-■-■-w-'vis:^,^ __ ,

;.-i;.;.-L...i... ..., .- „■ - ■■^■i.-.sa. .:....^.„-. ..:_.,_:__ :._...: -i. i.^i L_ :_,.-^.....,.,:, ..: ,.:_.,-„.->; -..-^i...J.;,, «/;':..i-.J

mmnsummm**'-

Ü

c

|D
i

! r

T

ggsj-af^wT^-^ ..._,j......, g^MMBWEIIPifppjgjpgj

Appendix E: Implementation Restrictions Page 81

3» A FuR-loop with no output LIST can contain
only one datalanguage statement as the FOR-body, not a
series of statements* Because of restriction 2, that
one statement must be a FOR«

This does not apply to a FOR with an output LIST*

4* The only comparison operators which can be
evaluated from an inversion are EQ and NE* All other
comparison operators must be evaluated by a linear
search through a set of records* If the container
being compared is a member of an inner listr only the
EQ comparison operator can be evaluated from an
inversion*

5* It is impossible to assign members of a LIST
without setting up a FOR-loop (either explicitly or
implicitly)* For example, given the PORT is:

CREATE L1 PORT LIST (5)
SI STR (3);

The following assignment is illegal:
SU'FOO';

because it treats the five members of S1 as if they
were a single data item*

6* Two outermost containers with the same name
may not be open at the same time* This is true even
though the containers may have different pathnames in
the directory*

7* If an output PORT is punctuated, all
assignments before each punctuation character must be
completed before any assignments are made after the
punctuation character* That is, the datacomputer
cannot back up over punctuation in an output PORT* For
example, given an output PORT of the form:

PP PORT LIST
S1 STRUCT

A1 STR (3),P=E0R
A2 STR (3)fP=E0R

END
assignments must be made in the same order as the STRs
appear in the STRUCT*

A1='F00';
A2= 'BAR';

will take effect correctly, but
A?='BAR';
Als'FOO';

will not*

I

Because of the internal paging of the
datacomputer, PORTs with STRUCTs containing long STRs
(i*e* greater than 2560 ASCII characters) have a
similar restriction, for example, the LIST

-^.w*™^ri.^.ii';^ ..:-:..,_fc_^.._ ..._,

PBPPBjPfBiPNgpHBPWi^^

;f

i

Ü

D
D
D
L

D
D
D
D

i F

Appendix E: Implementation Restrictions

FF PORT LIST
S1 STRUCT

Al STR (10000)
A2 STR (10000)
A3 STR (10000)

END
may have assignments done only in
they appear in the STRUCT»

Page 82

the same order as

I

8* The datacomputer checks all descriptions at
creation time to make sure that the byte parsing
algorithm can be followed* Whenever a subcontainer
byte size differs from the parental byte size the
following tests are made (in order); if it is accepted
by (any) test, the subcontainer is accepted:

1) If the entire subcontainer fits within the remainder
of the parent byter it is accepted» thusr in example 1
(below), the STRing "S" is accepted»

2) If a parental byte boundary could be crossed by the
subcontainerr it must be aligned on its own byte
boundary. In example 2f the description is rejected
because "S" crosses the boundary defined by R2r and
starts on an 18-blt rather than 7-bit boundary»
In example 3, since "S" is aligned on a 7 bit

boundary, it is accepted»

ex 1: R STRUCT, B = 36
I INT, B=18
S STR(2) , B = 7
END /« R */

ex 2: R2 STRUCT, B=36
I INT ,B=18
S STR(7), B=7
END /* R2 •/

ex 3: R3 STRUCT, B=36
I INT , B=18
PAD BYTE, B=3
S STR(7), B=7
END /» R3 */

3) The byte size of a subcontainer must be greater than
the remainder of 36 divided by the parental byte size»
This is because data is packed in the datacomputer into
36 bit words and parent alignment is not followed»

R STRUCT, Br32
51 INTEGER ,B=4
52 INTEGER ,B=16

.. -. .■^.....>_...^..^^J-~ .-^.J^^:xl^-.'-J^^-^^X^-~>Mji _ ■■■ ■ '■■ ■■' ■ '-■■■■ -'.^-
■• - ■■■- ■■ .. -■■■■■■■■■ --' ■ -^-^-

Miift^lPJIiElB'SW^iMJWMWf!-!^-' --Jg&WJ**** mm JieWV-J.WMWJ-ä«!DWUPW^WW*'*-^-^'-*^1
 »W^'ff ^WWWW*.ww»»fWW? ^ 55^^«m55l^jga r«p«7 ir-* ■- ~^ f> -*

0
D

1' r»

Appendix E: Implementation Restrictions Page 83

S3 BYTE, Bs12
St BYTE, B=4
END /• R •/

in this example, S3 would be legal because It fits
within the 32 bit parent byte, but S4 is not accepted
because it would fit in the remaining bits after the 32
in the 36 bit word buffer«

4) If the parental byte size is less than 18 bits, all
subcontainer byte sizes must evenly divide the parent
byte size» Again, this is because the 18 bit parent
bytes are packed into 36 bit words»

Please contact CCA if you need help with complicated
byte structures»

I
I
I
I
I
I
I
1
I

■ .-■.«r.-.-;--....,^ ..-..■..; ■■ ■:■ ■■ ■■■■ ■■■■--■ ■- ■'-■ ■■ ■ ■■ ■ .-- ■'■---<■■ ■■■-■-■■■■ '■■ ■-::..-w..:;. y ^...-■-..,- *...---■. liillflllliiilglliU

—■ ■ "-"——" ' ——————————

Li
„wl.^„. ,. ,- . ;J.-<^Tai,-

Page 84

u;

u
Appendix F: Differences between 0/10 and 0/11

The following is a list of user specifiable (i»e*
syntactic) differences between 0/10 and 0/11
datalanguage.

li
Additions

1 I-i

L
i i

i
I

Container Address Tables — the CAT option for LISTs

inversions and optimized indexing
for LISTs with variable length members

Virtual Data

LIST member indexing — the V=I option for BYTEs

Update (fixed length replacement) -- the UPDATE loop

WITH clauses on the left hand loop argument

Names on the right hand side of relational
expressions

Integer Constants

Modifications

LIST (instead of LIST member) naming for loop arguments

--■■■■■ .-'■■■--■■ ■■■■■■ ■■■■•■ ' ,■■....■■.::...;...,.■ ■■■ - .- ■ ■■■■-M

-y-^^y J. 'W—" ■!'* "■="

L

! *-

IL

Page 85

Appendix G: Error Messages

i.

li
i:

The following is not a comprehensive
all the possible error messages the dat
produce in response to bad datalanguage; a
will only see a few of them» Many of the
self-explanatory* Some messages will con
actual datacomputer session, a name s
example, the unopened FILE/PORT which t
assigned (CRER: RHS FILE/PORT NOT OPEN
non-existant pathname to which the user
(CRER: LHS PATHNAME NOT FOUND:). The e
are always one lin-j; in an actual session
contain the carriage returns used in
listing to increase legibility» The messa
contain the date and time of the printout»

listing of
acomputer can
nd most users
messages are
tsin, in an
pecifing , for
he user had
ED:) or the
had refered

rror messages
they do not
the following
ges will also

i

I 1

•uooo
•uooo
•uooo
•uooo
■uooo
•uooo
•uooo
•uooo
•uooo
■uooo

•uooo
•uooo
•uooo
uooo

• uooo
• uooo
• uooo
• uooo
•uooo
•uooo
•uooo
•uooo
• uooo
• uooo
• uooo
•uooo
•ucoo
■ uooo

IOOPEN
COCL:
COCL:
COCL:
COCL:
COCN:
COCN:
COCN:
COCN:
COCN:

COCN:
COCN:
COCN:
COCO:

COCO
COCO
COCO
COCO
COCO
COCO
COCO
COCO
COCO
COCO
coco
coco
coco
coco-

NET CONNECTION DIED
BAD CLOSE ARGUMENT
NODE SETS NOT ALLOWED
FILE/PORT NOT OPEN
END OF STATEMENT EXPECTED
NODE SETS NOT ALLOWED
CLOSED OR NOT A PORT
BAD HOST/FILE SPECIFICATION
BAD HOST-SOCKET SPECIFICATION
SURROUND HOST NAME WITH SINGLE
QUOTES
ZERO SOCKET NOT ALLOWED
END OF STATEMENT EXPECTED
ZERO HOST-SOCKET NOT ALLOWED
CONFLICTING GRANT AND DENY
PRIVILEGES
"," EXPECTED
BAD PRIVILEGE TUPLE OPTION
REDUNDANT USER ID
BAD USER-ID
REDUNDANT HOST
BAD HOST NUMBER
REDUNDANT SOCKET
BAD SOCKET NUMBER
REDUNDANT PASSWORD
BAD PASSWORD
REDUNDANT GRANT PRIVILEGES
BAD GRANT PRIVILEGE
REDUNDANT GRANT PRIVILEGE
REDUNDANT DENY PRIVILEGES

'ixifi

.._.., -. .:,._■.„.. ,. -■,-, ...-;./.-^ „. ^_ ■-=, ,,:...■ ■.^W.Vv/vf- ■ ■.■■ - ■■: ■■■-■■ ■■■■ ■ ■ ■ ■■■ ■■■■■■ ■ ■ ■ ■ ..■.•^•■.^.■-■-...:- ::■■:■..:■ ^ . "

L'±^4*W.«"«WW>#«W' ui^ppwpj BPWpil|B^i3PWiBS'W*SP3pJP|g?gpgBBPWgW^

««

Appendix G: Error Messages Page 86

U
n L!

i
i
i
i

-uooo
-uooo
•uoco
•uooo
-uooo
•uooo
•uooo
•uooo
-uooo
•vlOOO
•UOOO
-UOOO
•UOOO
•UOOO
-uooo
•uooo
•uooo
•uooo
•uooo
•uooo
•uooo
•uooo
-uooo
-uooo
•uooo
-uooo
•uooo
•uooo
•uooo
■uooo
•uooo
•uooo
•uooo
• ÜOO0
•UOOO
•UOOO
-UOOO
•UOOO
•UOOO
-UOOO

•UOOO
•uooo
•uooo
•uooo
•uooo
•uooo
•uooo
•uooo
•uooo
• uooo
•uooo
•uoao

coco
ccco
COC3
coco
COCP
CODE
CODE
CODE
CODI
CODI
CODI
CODP
CODP
CODP
COLG
COLG
COLG
COLI
COLO
COLO
CCLP
COLP
COLP
COLP
COLP
COLP
COLP
COLP
COLP
COLP
COHD
COMD
COMD
COMD
COMD
COMD
CCNL
CONL
CONL
CONL

COOP:
COOP:
COOP:
COOP:
COOP:
COOP:
COPP:
CRCM25:
CRER:
CRER:
CRER:
CRER:

-C NOT ALLOWED
BAD DENY PRIVILEGE
REDUNDANT INDEX OPTION
BAD INDEX
NODE SETS NOT ALLOWED
BAD DELETE OPTION
JTUF NOT ALLOWED
END OF STATEMENT EXPECTED
NODE SETS NOT ALLOWED
CLOSED OR NOT A PORT
END OF STATEMENT EXPECTED
NODE SETS NOT ALLOWED
BAD PRIVILEGE TUPLE INDEX
END OF STATEMENT EXPECTED
NODE SETS NOT ALLOWED
FILE/PORT LOGIN NOT ALLOWED
END OF STATEMENT EXPECTED
BAP LIST OPTION
END OF STATEMENT EXPECTED
»OPEN »PRIV NOT IMPLEMENTED
BAD LIST OPTION
NAME NOT FOUND
END OF STATEMENT EXPECTED
UNOPENED *DESC AQT IMPLEMENTED
"*" JOESC NOT IMPLEMENTED
"**" JDESC NOT IMPLEMENTED
"•" »ALLOC NOT IMPLEMENTED
"*•■ »ALLOC NOT IMPLEMENTED
H*" $PRIV NOT IMPLEMENTED
"••" JPRIV NOT IMPLEMENTED
NODE SETS NOT ALLOWED
FILE/PORT NOT OFEN
BAD MODE OPTION
END OF STATEMENT EXPECTED
NO DEFERRED READ
PORTS CANNOT BE DEFERRED
NO PASSWORD FOR TOP NODE
BAD PATHNAME
NAME (J.DENT) EXPECTED
PASSWORDS IN OPEN PATHNAMES NOT
ALLOWED
NODE SETS NOT ALLOWED
FILE/PORT ALREADY OPEN
BAD MODE OPTION
NO DEFERRED READ
END OF STATEMENT EXPECTED
CANNCT OPEN FILE/PORT
BAD PASSWORD SPECIFICATION
CAN'T FIND CONTEXT
RHS FILE/PORT NOT OPEN:
LHS FILE/PORT NOT OPEN:
RHS PATHNAME NOT FOUND:
LHS PATHNAME NOT FOUND:

mmmmm mmmmmmmmmm m li

^■!'!|'ll-.*Lim!PIMWI!|jl!IP|BPMW^

Appendix G: Error Messages Page 87

LI

I
1

I
I

I

uooo CRTN:
uooo CRTN5:
uooo DOCD:
uooo DDCD:
uooo DDCD:
uooo DDCD:
uooo DDCD55:

uooo DDCD60:
uooo DDCD:
uooo DDSI:
uooo DDCT:
uooo DDCT:
uooo DDCT:
uooo DDCT:
uooo DDKO:
uooo DDXO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDK030:
uooo DDKO:
uooo DDKO:
uooo DDK030:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDK060:
uooo DDKO:
uooo DDKO:
uooo DDK060:
uooo DDK062:
uooo DDK063:

uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO:
uooo DDKO80:
uooo DDK080:
uooo DDK080:
uooo DDK090:
uooo DDK090:

OPERATOR NODE EXPECTED
INVALID OPCODE
TEMPORARY CANNOT BE SUBNODE
BAD OUTER CONTAINER SPECIFICATION
BAD PATHNAME SPECIFICATION
NAME EXPECTED
THERE IS AN OPEN FILE/PORT WITH
SAME NAME
DATA TYPE EXPECTED
INNER LISTS NEED DIMENSION
INNER LEVEL STRINGS NEED COUNT
NUMBER OR %" EXPECTED
NUMBER EXPECTED
MAX COUNT MUST BE LARGER THAN MIN
")" EXPECTED
BAD KEYWORD OPTION
REDUNDANT ALIGNMENT SPECIFICATION
BAD DESCRIPTOR FOR ALIGNMENT
BAD ALIGNMENT OPTION
REDUNDANT BYTE SIZE SPECIFICATION
BAD DESCRIPTOR FOR BYTE SIZE
BAD BYTE SIZE
BAD DATATYPE FOR COUNT-IN-DATA
REDUNDANT VARIABILITY SPECIFICATION
BAD DESCRIPTOR FOR COUNT-IN-DATA
BAD COUNT-IN-DATA SIZE
REDUNDANT VARIABILITY SPECIFICATION
BAD DATATYPE FOR DELIMITER
BAD DESCRIPTOR FOR DELIMITER
DELIMITER MUST BE STRING OR INTEGER
DELIMITER CAN ONLY BE ONE CHAR
REDUNDANT FILLER SPECIFICATION
BAD DESCRIPTOR FOR FILLER
FILLER CAN ONLY BE ONE CHAR
REDUNDANT INVERSION SPECIFICATION
NONINVERTIBLE CONTAINER
NONINVERTIBLE CONTAINER
BAD DESCRIPTOR FOR INVERSION
BAD INVERSION OPTION
NOT A LIST MEMBER
INVERTED GRANDCHILDREN NOT READY
Is!) ALLOWED ONLY ON OUTER LEVEL
LIST MEMBERS
LENGTH IN DATA NOT IMPLEMENTED
BAD DATATYPE FOR LENGTH IN DATA
REDUNDANT VARIABILITY SPECIFICATION
BAD DESCRIPTOR FÜR LENGTH IN DATA
BAD LENGTH IN DATA SIZE
REDUNDANT VARIABILITY SPECIFICATION
BAD DESCRIPTOR FOR PUNCTUATION
BAD PUNCTUATION OPTION
BAD DATATYPE FOR VIRTUAL DATA
VIRTUAL CONTAINERS ARE NOT

;.-.;-, .-„;., „w&i-iv:

Appendix G: Error Messages Page 88

e

I
mm

I

uooo DDKO:
uooo DDKO:
uooo DDKOr
uooo DDKO:
uooo DEID:
uooo DEID:
uooo DEOD:
uooo DFDD:

uooo DFDT:
uooo DFFC:
uooo DFFCt:
uooo DFFC06:
uooo DFFCT5:
uooo DFFC20:
uooo DFFCoO:
uooo DFFC75:
uooo fiFFF:
uooo DFFF:
uooo DFFF15:

uooo DFFF38:
uooo DFFF38:
uooo DFFF42:
uooo DFFF50:
uooo DFLA40:
uooo DIAN:
uoco LAEX:
uooo LAEX:
uooo LPAS:
uoco LPAS:
uooo LPAS:
uooo LPAS:
uooo LPBP:
uooo LPFOR:
uooo LPFOR:
uooo LPFOR:
uooo LPNN:
uooo LPRE:
uooo LPRE:
uooo LPRE:
uooo L?SY:
uooo LPSY:
uooo LPSY:
uooo SAAN:
uooo SAAS:
uooo SAAS10:
uooo SAAS10:
uooo SAAS:
uooo SAAS30:
J'OOO SAAS30:
UOOO SAAS30:

INVERTIBLE
BAD DESCRIPTOR FOR VIRTUAL DATA
BAD VIRTUAL DATA OPTION
ONLY LISTS HAVE CATS
ONLY OUTER LEVEL LISTS HAVE CATS
BAD *TOP SPEC
END OF STATEMENT EXPECTED
ERROR IN REPARSING CD
TOP LEVEL COUNTED & DELIMITED
THINGS DON'T WORK
VARIABILITY REQUIRES TERMINATOR
OUTER BYTE SIZE SMALLER THAN INNER
ASCII DATA REQUIRES ASCII FILLER
BYTESIZE TOO SMALL FOR FILLER
BYTESIZE TOO SMALL FOR DELIMITER
BYTESIZE TOO SMALL FOR SIZE IN DATA
BAD VIRTUAL DATA OPTION
BAD PUNCTUATION HIERARCHY
ONLY ONE INVERTED LISTr PLEASE
NON-ASCII PORT HAS NON-EOF
PUNCTUATION ILLEGAL IN NON-ASCII
PORT
BAD PUNCTUATION HIERARCHY
INFERIOR PUKCT BUT NO INFERIORS
BAD PUNCTUATION HIERARCHY
BAD PUNCTUATION HIERARCHY
ONE MEMBER EXCEEDS DEFAULT SIZE
CANNOT OPEN FILE FOR INITIALIZATION
INTEGER CONSTANT OVERFLOW
CRLF NOT ALLOWED IN STRINGS
UNKNOWN COMMAND
NAME EXPECTED
END OF STATEMENT EXPECTED
CONSTANT EXPECTED
")" EXPECTED
NAME EXPECTED
BAD STATEMENT INSIDE A FOR LOOP
NULL FOR-BODI"S NOT PERMITTED
IDENTIFIER EXPECTED IN PATHNAME
PATHNAME EXPECTED
BAP RELATION
PATHNAME OR CONSTANT EXPECTED
ILLEGAL REQUEST
UNKNOWN REQUEST
END OF STATEMENT EXPECTED
IMFuIED LIST INAPPROPRIATE
FUNNY NODE TYPE
NO MATCH - BAD TYPE FOR
NO MATCH - NO MATCHING MEMBERS FOR
CAN'T USE LITERALS WITH BIG STRINGS
FORARG MUST BS LIST
NO MATCH--BAD TYPE FOR
NO MATCH--NO MATCHING MEMBER FOR

"*■''■■ ■"'■■V-\:

;. ,....■.., ,__.i ■__ , .i^-atüMäaä&dmiaif*^ AMMtttMJMtaaiaaBrt

*., pigf ^■pjsiwnjsitijq z*m.:VMHmm^ ^e^r^s^^r^^Tpr^w^^f^'hSTm'

t_ Appendix G: Error Messages Page 89

L

L

-uooo SACR:
-uooo SACR:
-Ü000 SACR:
-uooo SAFR:
-uooo SAFR:
-uooo SAFRÜ5:
-uooo SAFR25:
-uooo SAFR42:
-uooo SAGM:
-uooo SAMA:
-uooo SAMA:
-uooo SAMA:
-uooo SARE:
-uooo SARE:
-uooo SARE:
-uooo SARE:
-uooo SASR:
-uooo SASR:
-uooo SAUP:
-uooo SAUP05:
-uooo SAUP08:
-uooo SAUP08:
-uooo SAUP10:
-uooo SAWI:
-uooo SAWIt5:
-uooo GGG0F2:
-uooo GGGOF:
-uooo GGGOF:
-uooo GGGOF:
-uooo GGUP:
-uooo SBAR82:
-uooo SBFR*
-uooo SBFR
-uooo SBFR
-uooo SBFR
-uooo SBIB
-uooo SBIB
-uooo SBIB
-uooo SBIB
-uooo SBIB
-uooo SBIF
-uooo SBIF
-uooo SBIF
-uooo SBIF
-ucoo SBMA
-uooo SBMA
-uooo SBMA10:
-uooo SBNN:
-uooo SBOP:
-uooo SBPP:
-uooo SBPP60:
-uooo SBSR:
-uooo SBUP

OPERATOR NODE EXPECTED
DIFFERENT INNER LISTS REPRESENTED
NESTED 'ANY'3 NOT IMPLEMENTED
CAN T HAVE 'FOR' INSIDE OF 'UPDATE'
CRUFTY FORARGS
FORARG MUST BE LIST
FORARG MUST BE LIST
DATALANGUAGE TOO COMPLICATED
BAD DATATYPE
NULL SYNTAX TREE POINTER
NOT OPERATOR NODE
bAD SYNTAX TREE OP CODE
NAME NODE EXPECTED
LEFT SIDE NOT STRING
NAME OR STRING NODE EXPECTED
LIST LEVELS DON'T MATCH
OPERATOR TYPE EXPECTED
BAD GRAPH OP CODE
CAN'T HAVE 'UPDATE* IN 'FOR'
FORARG MUST BE LIST
MISMATCHED 'UPDATE'S LOSE
EXPECTING TRANSACTION LIST
FORARG MUST BE LIST
NOT WITH NODE
NO UNINVERTED PART
UPDATE REQUIRES WRITE MODE
OUTPUT MODE IS NOT WRITE OR APPEND
NEITHEK READ NOR WRITE
BOTH READ AND WRITE SAME
ZERO LENGTH GRAPH NODE
RAN OUT OF FILE BLOCKS
bIST ALREADY IN USE (OLD CGAR CASE)
INCOMPATIBLE LIST COUNTS
LIST ALREADY IN USE (OLD CGAR CASE)
USE FLAG GOT RESET
OPERATOR TYPE EXPECTED
INVERTED BIT NOT SET
BAD GRAPH 0° CODE
UNIARY AND/OR
INDEX EXPECTED BUT NOT FOUND
OPERATOR TYPE EXPECTED
INVERTED BIT NOT SET
BAD GRAPH OP CODE
INDEX EXPECTED BUT GOT GIBBERISH
OPERATOR NODE EXPECTED
CRUFTY OPCODE
CAN'T HAVE CONSTANT ON LEFT SIDE
NAME NODE EXPECTED
CAN'T OPEN CONSTANTS
CRUFTY OPCODE
CONSTANT NOT ALLOWED
CAN'T FIND TOP NODE
LIST ALREADY IN USE

m mmtmmim mmmm

UJJIMftllllllUJJWJ m»I.Wl ^'mmmm^ruTr^rmnaBcm ^
V"3?!£^££3!3£9SSBBl^^n B—— a—MW—wc ---^— - - r,

Appendix G: Error Messages Page 90

t-

Ü

!

> D

-UOOO SBUP:
-Ü0C0 CHEB:
-uooo CHEB50:
-uooo CHEB70:
-uooo CHEB80:
-uooo CHEE:
-uooo CHE :
-uooo CHMB:
-uooo CHME:
-uooo GHAN:
-uooo GHAN:
-uooo GHANF:
-uooo GHANF:
-uooc GHAS:

-uooo GHAS25:

-uooo OHFB:
-uooo GHFB:
-uooo GHFTI:
-uooo GHFTO:
-uooo GHIF:
-uooo GHNS:
-uooo GHPD:
-uooo GHPT:
-uooo GHRUN:
-uooo GHUBM:
-uooo GHUEU:
-uooo GHUTT:
-uooo GTCN:
-uooo GTES:
-uooo GTSB:
-uooo GTSS:
-uooo IGTU39:
-uooo IGTU49:
;U000 DFCBI5:
;UOCO DFCB20:
;U000 DFCB20:
;U000 DFCB^O:

IN-USE FLAG GOT RESET
CAN'T START NON-EXISTENT CONTAINERS
ILLEGAL REFERENCE TO LIST MEMBER
ILLEGAL REFERENCE TO LIST MEMBER
INDEX NOT IN LIST
ARGS NOT MATCHED
SKIP STUFF NEEDED ??
IN-USE BIT IS NOT SL'T
IN-USE BIT NOT SET
PUNCTUATION IN CONDITIONAL MEMBER
LIST IN USE
BACK CHAIN EXPECTED
SOMEBODY ZORCHED THE IN-USE BIT
ILLEGAL ATTEMPT TO CHANGE
VARIABLE LENGTH CONTAINER
NO CAN DO; COME BACK NEXT YEAR
(UPDATING INVERTED
CONTAINERS THAT IS)
NO BACK LINKED LIST
IN-USE BIT NOT SET
IN-USE BIT ALREADY SET
IN-USE BIT ALREADY SET
OPERAND NOT A CONSTANT
PUNCTUATION BRANCHING GLITCH
BIG COMPARE NOT IMPLEMENTED
ZERO BRANCH ADDRESS
BAD GRAPH NODE TYPE
PAGE/PUNCTUATION BRANCHING PROBLEM
IN-USE BIT NOT SET
IN-USE BIT ALREADY SET
ILLEGAL CONVERT CODE
BAD MODE
BAD CGRF/CGRF:
BAD CGRF/CGRR
MISSING TUFLE JUMP ADDRESS
MISSING TUPLE JUMP ADDRESS
BYTE BOUNDARY PROBLEM IN
TAIL TOO LONG FOR
BYTESTZE MUST DIVIDE PARENT FOR
BYTE BOUNDARY GLITCH IN

L mmmmmmmmm

—— niniii riimrwn i um mi i iM„ "''" '"' ' "v"" - "■•'••-• " '■' -J-^

L Page 91

L'
li

Index

L

i.

ID

I.

if;

JALLOC(ATION) 16
JDESC • . 12, 16
«NAME 16
*PRIV(ILEGE) . ~ I6r 27
»SOURCE 16
{TOP 7

'*' (user name) feature • • 24
'**' (user name) feature • 24

+ (message prefix) • • • • 55

- (message prefix) • • • • 55

• (message prefix) • • • • 50

; (message prefix) • • « • 50

? (message prefix) • • • • 55

Address (in CONNECT request) 53
APPEND . • . • 14
ARPA network 48
Assignment (of outermost containers) 32

Boolean expressions • • • • 38
BYTE 5r 12

Carriage return •••••• 50
CLOSE request •••••••15
CONNECT request 52
Constant ••••••••• 33r 43
Container •••••••••4
Container Address Table • • 41
Containers, outermost • • • 5r 8
Contrcl-L ••••••••• 10, 55
Control-Z 10, 51, 52
Conversion .•••••••34
Count •••••••••••9
CREATE request 7, 34

Data transmission • • • • • 51
Data types ••••••••9
Data, deletion of • • • • • 16
Datalanguage input/output ports 49
Datalanguage input/output sockets 49
DELETE request •••••• 15
Delimiter • .9
Description ••••••••4

^^«^■'^-'-'■Ä^i^^^ia^g^^jji

 --■■■-■■-- -1,1,1 .i .i «^iTMJMMaü ■
 — MMt^^^^mtt

m fiim-miMjawwrnj '^!^i^.^«H>«g«^ii»A«iiiuuj^^ ' . "*y-w ■'-y>-^M^jff.H;^>.»i'.iJM^JBWWü^

ü
I r ü

I r

Page 92

Dimension •••••••••9
Directory •••••••••6
DISCONNECT request • ... 53

EOB............10
EOF... 10
Eol (character) • •••*• 51
EOR • . * • • 10

FILE 5
Fill Character 11, 34
FOR request ••••••••42
FOR-body •• 43
FOR-loop •••••»•••42
Form feed (character) • • • 55
Format, of datacomputer messages 50
Function •••••••••5

Host ..•• 48

Idcnt ••• • . 4
Initial Connection Protocol 77
Input-spec (of FOR) • • • • 42
INTEGER 5
Inversion ••••••••• 17', 14, 74

Line ••••'^O
Line feed ••••..•••50
LIST 5
Local-file-designator • • • 53
Login •••••••••••6

Matching rules •••••• 32
Message format •••••• 50
Messages, error •••••• 55
Messages, informational . . 49
Messages, synchronization • 49
MODE request •••••••15

Nodes •••••?•••«.»6

Object •••••»••••43
OPEN request 14
Output-LIST 42
Output-spec (of FOR) • - o 42

Pathnames••«•• 7
PORT 5r 49
Port, secondary •••••• 52
Ports, datalanguage • ... 49
Precedence 38
Prciedi' count •••••• 9
Protocol, initial connection 77

- ""' ri'iiiliniWiijB,

i^R-i^jLiAi: ;■-

tiWKy*Mi-UUWJ*fc. ■■■' --■-J I ' 'M-Up,ut\^i..L<)^A.M-W!'^^m^umw.'.'-.r--'r^.'7Vr.
"1

Ü

D

0

Punctuation • ••••••• 9» 35

READ 14
Reserved wo.ds • ••••• 1
Restrictions, implementation 79

Secondary port •••••• 52
Session ••••••••••19
Session, end of •••••• 51 r 56
Size • • « >••••••• 5 r 9
Socket • . * 48
Sockets, datalanguage • • • 49
space allocation • • • • • 6
star (user name) feature • 24
star-star (user name) feature 24
STR 5
STRUCT c 5
Synchronization •••••• 49

Tape, magnetic • ••••• 54
TEMPORARY PORT .5
TENEX file-designator • • • 53
Type •••••••••••5

UPDATE ••••••••••44

Virtual Container • . • • • 41

WITH 37
WRITE 14

Page 93

D

[]

"minimum

m^^^m^^^^^^^mt^m^

