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SUMMARY

This document treats a variety of topics which must
be considered by the désigner of a star sensor system. The
intent of the document i to consolidate these factors and re-
late their interdependence to provide an orderly design pro-
cedure. An attempt is made to relate the star sensor de-
sign to its specific application, whether satellite or earth-

§ based. Among f - t. pics discussed are general systems

: considerations, star characteristics, atmospheric effects,
optics and photometry, and available sensor types. The

L prospective designer is alerted to avoid the many pitfalls
which he might encounter. Specific systems concepts are
not discussed since the referenced literature serves to ac-
. complish this in an adequate manner.
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1. GENERAL SYSTEMS CONSID ERATIONS

3 Rsaios)

Star sensors fall into two general categories, i.e.,
trackers and mappers. A star tracker is a sensing system
which detects, locks onto and follows a specific star. A
star mapper does not lock onto a specific star but obtains
a picture of a section of the heavens or celestial sphere. A

: fE star tracker is most often used in a closed loop system.
. Star mappers most often are operated open loop where only
0 . the measure of a particular position rather than its control

is desired. The star tracker or mapper may be either gim-
bal mounted or strapped-down. This is very much mission
. dependent. For example, satellite applications usually em-
ploy a strap-down mounting. An . rth-based application
such as a shipboard or aircraft ins allation most nften would
- utilize a gimbal mounting.

The actual star sensing element can be any of a num-
- ber of devices, but most frequently photomultiplier tubes,
image dissectors, image orthicons and a variety of vidicons.
Once again the detector type which one selects is very much
- mission dependent. TFor example, a photomultiplier type
star sensor, whether it is used as a tracker or a mapper,
would not be a good candidate for a three-axis gradient satel-

RTT

— e TE

- lite. Such a mission requires a star sensor which has some
1 inherent scan capability. Since electroinic scan is preferred
over a mechanical .nirror scan system, a TV camera tube
o 1 type sensor becomes more desirable. If on the other hand
I one is dealing with a spin stabilized sateliite, a photomulti-
i plier sensor makes good sense. The photemultiplier re-
7 quires much less sophisticated electronics than does a cam-
X era tube.
] In space applications it is always a good policy to
, maintain maximum simplicity commensurate with the mis-
t sion requirements and the operational parameters imposed
T by the spacecraft.
R
i1 .
| i - 13- Preceding page hlank
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Fig.1 FUNCTIONAL BLOCK DIAGRAM OF STAR TRACKER/MAPPER
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Figure 1 is a functional block diagram of a star
tracker /mapper. Figure 2 is a diagram showing a typical
satellite- Eairth orientation.

ARBITRARY ORIENTATION

- OF SPIN AXIS
/ ~ EQUATORIAL
\ \  SATELLITE PLANE

INDICATES SWATH OF
CELESTIAL SPHERE
COVERED BY STAR
SCNSOR

STAR SENSOR /‘0\7/
FIELD OF VIEW 5

Fig.2 DIAGRAM OF SATELLITE-EARTH ORIENTATION
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2. STARS
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Stars are conventionally catalogued and charted in
terms of the familiar astronomical coordinates system which
uses the equator as a base plane. In a geocentric system
Right Ascension is measured easwward from the vernal
equinox along the celestial equator to the hour circle of the
star, and is expressed in hours (or in degrees). Declina-
tion is positive or negative (North or South) and is mea-~
sured in degrees from the celestial equator along the hour
circle to the star. Figure 3 illustrates the geometry of this
system. Figure 4 is a navigational star chart in equatorial
geocentric coordinates.

e S
RS
e b A

]

Stars are divided into spectral classes and magni-
tudes according to their spectral radiation and the intensity
Ft of the received radiation. -

IR

1 SPECTRAL TYPES

The spectral distribution is used to assign to a star
{ a temperature based on fitting a blackbody radiation curve
to the measured spectrum. There are two primary temper-
ature scales. The first scale gives the color temperature
of the stars, and is defined as the temperature of a blackbody
radiating with the same spectral distribution within the vis-
ible region as that observed from the star. The second
scale gives the effective temperature of the stars, and is
defined as the temperature of a blackbody radiating with
nearly the same spectral distribution over the entire spec~
trum as that observed from the star. Figure 5 shows the
blackbody radiation curves for various temperatures.
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. CELESTIAL EQUATOR NCP — NORTH CELESTIAL POLE
. ECLIPTIC (APPARENT PATH OF THE SUN) SCP — SOUTH CELESTIAL POLE
VERNAL EQUINOX

. CELESTIAL BODY

EARTH

HOUR CIRCLE OF CELESTIAL BODY

. ZERO HOUR CIRCLE

. RIGHT ASCENSION
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Fig.3 CELESTIAL SPHERE AND EQUATORIAL COORDINATES
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The visual color temperz.iare for the main sequence
stars and the theoretical wavelength of maximum radiation

are:
Color Calculated Wavelength
Temperature of Maximum Radiation
Type (degrees K) (microns)

BO 38 000 0. 076

A0 15 400 0.170

FO 9 000 0.320

GO 6 700 0.432

KO0 5 400 0. 545

MO 3 800 0. 765

The effective temperatures are based on the total
radiant flux and result in a cooler temperature because a
star is not a classic radiator especially at the shorter wave-

lengths.
Effective Calculated Wavelength
Temperature of Maximum Radiation
Type (degrees K) {microns)

BO 22 000 0.132

A0 10 700 0.271

FO 7 400 0. 393

GO 5 600 0.491

KO 4 900 0.592

MO 3 600 0. 805

Figure 6 illustrates stellar type spectral distribu-
tion based upon color temperature. Figure 7 illustrates
stellar type spectral distribution based upon effective tem-
perature.
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Figure 8 shows the Hertzsprung-Russell diagram.
It is to be noted trat 99% of the known stars are contained
within the six letter classification shown for the main se-
quence stars. Each class is further divided into 10 subdi-
visions, from 0 to 9 in order of decreasing temperature.
Shown on the same diagram is the relative luminosity of the
stars in terms of the Sun.

The full spectral class designation of a normal star
consists of three items: an upper case letter and an arabic
numeral to denote the temperature class, and a roman nu-
meral to denote the luminosity class. For example, «CMa
(Sirius) is A1V. In addition to the standard spectral nota-
tion, lower case letters may be added to show certain non-
standard features in the spectrum (see Fig. 8).

Astronomers also categorize stars by a widehand
UBYV photometric system. The designations U, B and V
each represent a filter with a given spectral distribution as
sensed with a photomultiplier tube having an S4 (blue-
sensitive) spectral characteristic. The ratio of any twa of
these filtered outputs from a particular star is representa-
tive of a given color temperature. This photometric system
j is not particularly useful for star tracker/mapper design.

MAGNITUDE SCALES

Several magnitudz scales are used in astronomy.
The brightness to magnitude conversion is constant for all
systems, but the speciral response of the detectors is dif-
ferent. Some detectors are more sensitive to the blue col-
ors and see blue stars as the brighter stars; conversely,
red-sensitive detectors detect more of the energy of the
cooler red stars. The common reporting scales are the
photographic and the photovisual; the reported magnitudes,
photographic and photovisual, are indicated with the symbols
mpg and mpy respectively. The photovisual and standard
eye scales are often used interchangeably although they do
not exactly match, Two additional magnitude scales are the

- 924 -
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Fig.8 HERTZSPRUNG-RUSSEL DIAGRAM
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bolometric (myq)) and the radiometric (m,..4). The bolomet-
ric magnitude scale is based on the total radiation from the
star ~ ultraviolet, light, radio, heat, etc. — irrespective

of wavelength, The radiometric szale is based on the total
radiation received through one air mass, i.e., at the zenith,

The conversions from one scale to the other are de-
fined as follows:

m - m

= BC (bolometric correction)
pv bol

m -m = HI (heat index)

pv rad

m ~m = CI (color index)
pg pv

The standard bolometric irradiance is 2.27 x 10712
watts/cm? and this defines the zero bolometric star. The
effective temperature describes a smoothed spectral distri-
bution of the star irradiance.

A short table containing the bolometric corrections
for the main sequence stars is shown in Table 1.

Absolute magnitude of a star is a measure of stellar
lumininosity and is defined as the apparent magnitude of a
star if it were placed at the standard distance of 10 parsecs
(32. 6 light years). Photographic and visual absolute magni-
tudes are symbolized respectively by Mp and M,,.

Table 2 gives a listing of the visual magnitudes of
the 25 brightest star. Figure 9 presents the Hertzsprung-
Russell diagram for the same celestial bodies. Figure 10
illustrates the relationship between stellar radiant flux
(watts /cm?2) and apparent visual magnitude in addition to de-
fining the stellar distribution as a function of magnitude,

- 26 -
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Effective

Type Temperature
05 35 000°K
BO 22 000°K
B5 14 000°K
A0 10 700°K
A5 8 500°K
FO 7 400°K
F5 6 500°K
GO 5 900°K
G5 5 500°K
Ko 4 900°K
K5 4 200°K
MO 3 600°K
M5 2 800°K
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Table 1

Star Type Effective Temperature
and Bolometric Correction

Bolometric
Correction

5.0
2.9
1.4
0. 60
0.20
0. 00
0. 00
0. 05
0.10
0.17
0.6

1.2

2.4
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4 Table 2
¢ The 25 Brightest Stars
’[ ‘ Apparent Absolute
| Magnitude | Spectral Magnitude
Celestial Body | Proper Name m Type Mv
aCMa Sirius ~-1.41 Al vV +0. 7
aCar Canopus -0.71 Fo Ib -5.5
aCen Rigil Kent -0.27 G2V +4.6
: aBoo Arcturus -0. 06 K2 Illp -0.3
I[ aLyr Vega +0. 03 A0V +0.3
! B Ori Rigel 0.08 B8 Ia -7.0
a Aur Capellax 0. 09 G8 III +0.12
GO IIX +0.37
aCMi Procyon 0. 34 F51V-V +2.8
: aBri Achernar 0.49 BS v -1.3
[ BCen Hadar 0. 61 BI LI ‘4.3
;? aAql Altair 0.75 AT IV-V 2.1
‘
' a Tau Aldebaran 0.78 K5 Iil -0.2
aCru Acrux 0.80 B1 1V -3.8
o Ori Betelgeuset 0.85¢% M2 Ib -5.5
aSco Antares 0.92 M1 Ib -4.5
aVir Spica 0.98 BlV -3.2
‘; BGem Pollux 1.15 KO I +0, 7
3 aPsA Fomalhaut 1.16 A3V +1.8
aCyg Deneb 1.26 A2 Ia -7.0
BCru Mimosa 1.28 BO IV -4.0
X aLeo Regulus 1.33 BTV -1.0
; ¢CMa Adhara 1.42 B2 I1 -5.0
| ¥ Ori Bellatrix 1.61 B2 111 -4.1
A Sco Shaula 1,61 B2 1V -3.3
B Tau El Nath 1.64 B71III -3.0
*Binary
tVariable
$Mean
- 928 -
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3. EARTH-BASED VERSUS SPACE-BASED SYSTEMS

o=

Earth-based systems usually have no severe limita-
tions placed upon weight, volume, magnetic moment, com-~
ponent motion, etc. In space applications weight, volume,
power consumption, etc. are always of great importance.
The use of magnetic materials is usually discouraged to the
limit of possibly 100 pole cm magnetic moment. The use
of moving components is avoided wherever possible to pre-
vent the introduction of mechanical moments or the need for
compensating systems.

An additional factor to be considered in spaceborne
systems is the influence of the radiation particle environ-
ment, For a synchronous altitude of some 23 000 miles,
the following environment may be encountered:

e B o BN

£

Three-year
Time Integrated

;4 1] Particle Energy Integral Flux

3 Particle (eV) (Particles /cm?)

: ‘ i Electrons 1.6 X 106 3 X 1010
Y

. 4 x 10" 3 x 10"

i Protons 3x 100 3 x 10°

1

- § 0.1x10%to5 x 10° 3 x 10%°

The above particles will be due to the outer Van Allen Belt.

The proton flux due to solar fiares is estimated to
be as follows:

1
ﬂ Protons of 1.2 x 10" eV energy at 2 x 10 2 protons/
B8 cm®.

- 31 -
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The tracker will be capable of survival in this type environ-
ment provided a high-purity fused silica is used as a lens
glass or as a protective cover plate over standard optical
materials.

ATMOSPHERIC EFFECTS

Attenuation

In spaceborne applications of star sensors, the de-
signer is not particularly concerned about the effects of at-
mospheric attenuation. However, in earth-bound star sens-
ing, the atmospheric attenuation can be quite significant and
limiting. Figure 11 illustrates the effect of one air mass,

i. e., looking to the zenith, as a function of wavelength in
the visible region.

Refraction

Refraction of light is the change in the direction of
a light ray as it passes from one medium to another. The
change is in the direction of the normal to the interface when
the ray enters a denser medium. Since the density of the
atmosphere decreases with altitude, a star will appear
closer to the zenith than to its actual position. Localized
density anomalies, moving with the low-altitude winds,
cause the apparent position of a star to move through small
angles around a median position. In a photograph, a star
image appears as a disc due to the random image motion,
The brightness of the image also fluctuates over short time
intervals. The brightness fluctuations appear to be produced
by densily anomalies moving with the high-altitude winds.

Table 3 gives a listing of the refractive corrections

for zenith angles at sea level. Table 4 shows refraction
corrections scaled for altitude.
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Table 3

Refraction Corrections for Zenith Angles at Sea Level

Apparent
Zenith
Angle True Zenith Angle
Degrees Degrees Minutes Seconds
90 90 35 21
85 85 9 51
80 80 5 18
75 75 3 34
70 70 2 38
65 65 2 4
60 60 1 41
50 50 1 10
40 40 0 49
30 30 0 34
20 20 0 21
10 10 0 10
0 0 0 0
- 34 -




e =

—

By R R e

DT er vy

T e )
! ! !

PR
— e d | ——

P
-~

TH—

THE JOHNS HOPXING UNIVERSITY
APPLIED PHYSICS LABORATORY
SAVER SPmNG. MARTLAND

Table 4

Refraction Corrections, Scaled for Altitude of Observer

Refraction
Altitude Pressure Temperature Scaling
(Km) {(mm Hg) (°C) Ratio
0 760. 0 +15 1.000
5 405.0 -18 0.589
10 197.0 -50 0.330
15 90,7 -59 0.172
26 42.0 -59 0. 084
30 9.0 -48 0. 041

Scintillation

The rapid changes in intensity that are independent
of image motion or size are called scintillation. The at-
mospheric effects responsible for scirtillatlion occur above
the troposphere and are diffraction effects. The amplitude
of the scintillation is inversely proportional to the telescope
aperture. The image of a planet disc does not scintillate as
rapidly or as noticeably as a star image because the scintil-
lation of one part of the disc is out of phase with the scintil-
lation of another part having a slightly different air path.

The amplitude oi the scintillation increases with an
increase in zenith angle. From zenith angles of 0° to 80°
of arc, the scintillation amplitude is proportional tc the se-
cant of the angle, i.e., to the air mass. The resulting vari-
ation from the average brightness may be more than 35% for
apertures less than five inches. The frequency of the scin-
tillation decreases with an increase in zenith angle. Near
the vertical (#0° zenith angle), alternate bands of light and
shade can produce scintillation frequencies as high as 1000
Hz. Near the horizon (= 90° zenith angle), the scintillation
frequency can be as low as 5 to 10 Hz.

- 35 -
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Shimmer

Shimmer, or image motion, is the random high fre-
quency displacement of an image around the mean position.
The instantaneous position may differ from the mean posi-
tion by as much as 20 or 30 seconds of arc for telescope
apertures less than four inches in diameter. The shimmer
increases with an increase in the zenith angle, and de-
creases as telescope aperture increases.

RACKGROUND EFFECTS

The dominant background effects are different for
spaceborne and earth-bound star sensors. In spaceborne
applications, one is concerned with star background illumi-
nation such as the Milky Way, and lunar, solar and Earth
glow interference. In an earth-bound application one is con-
cerned with all of these plus the atmospheric airglow. Table
5 gives a breakdown of the sources contributing to the night
sky illuminance. These sources are not uniformly distrib-
uted and may vary quite widely from the average values
given. The galactic light results from the Milky Way. The
zodiacal light is reflected sunlight scattered from a cloud
of dust particles surrounding the sun that are confined to a
region 25° to 50° wide centered in the ecliptic plane. The
airglow intensity is most severe when looking near the hori-
zon, The aurora occurring in the polar regions is brighter
than the night airglow. The aurora arises from particle
bombardment of the upper atmosphere and produces a spec-
trum that is brighter than the airglow spectrum. The aurora
could interfere with the operation of a star tracker. Table
6 gives the night sky radiance as a function of visible wave-
length. .
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Table 5

Sources Contributing to Night Sky Illuminance

Source Percent Contribution Range

Starlight 25-30

Galactic 7-10

Zodiacal 7-15

Airglow 45-60

Table 6
Night Sky Radiance

“ ‘ Spectral Radiance, Wavelength,
L 10710 watt em™2 sterad™! micron™! microns
} 1.4 0.32
: 1.1 0.36 -
] 1.3 0. 40
F‘ 2.0 0.45
2.0 0.50
'_; 3.0 0.55
5.0 0. 60
6.0 0. 65

o - 37 -
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4, OPTICS AND PHOTOMETRY

THE OPTICAL SYSTEM

The purpose of the optical sub-system in a star
tracker /mapper system is to collect and focus the stellar
flux onto either the detector directly, or to focus the flux
on a reticle or chopper located in or near the focal plane
from which the flux is modulated and then transferred to the
detector.

Major design considerations are:

Aperture size

Angular field of view

Optical resolution

Aberration .
Distortion

Spectral transmission efficiency
Compactness and weight of optical design
Ease of fabrication and alignment
Electro-mechanical means used for tracking/
mapping

Types of Optical Systems

There are three types of optical syster.s employed
in astronomical work: the reflecting, the reiracting, and
the hybrid or catadioptric (refracting-reflecting) system.
The Cassegrain type telescope, which employs a convex
secondary mirror on the optical axis, is a commonly used
reflective system for celestial systems. Several variations
of the Cassegranian system are possible, which differ con-
siderably in their aberations for off-axis images and their
ease of fabrication and alignment, Where refractive ele-
ments are added, iiie system becomes a hybrid.

- 39 -
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The principal advantages of the pure reflective over
the refracting system are high transmission efficiency
throughout broad spectral regions, small focal ratios or F
numbers yielding a more compact optical system, large
aperture size with relatively small weight and volume, free-
dom from chromatic aberration and good imagery on the op-
tical axis where a narrow field of view is employed.

The major disadvantages of the pure reflective over
the refracting system are its inability to cover more than a
small angular field of view (1° or less), high sensitivity to
stray radiation and thermal effects, loss of primary mirror
area caused by secondary surface blockage, and finally lack
of mechanical rigidity.

The hybrid system retains many of the advantages of
the reflecting system and reduces to a large extent the lim-
itation of a narrow field of view, The addition of a cor-
rector plate or lens in front of the primary mirror yields
good resolution over moderate fields of view even with small

F numbers.

Resolution

An important consideration in the selection of a suit-
able optical system is the optical resolution and its effect
on flux density distribution in the focal plane,

The image of a point focused by a perfect lens is a
minute pattern of concentric and progressively fainter rings
of light surrounding a central dot, the whole structure be-
ing called the Airy disk. The Airy disk of a practical lens
is small, and its linear radius in microns is given by the
following formula:

- F
R=1.2225

where X = wavelength of light, (in microns)
F = focal length of lens, in inches
D = objective aperture, in inches

- 40 -
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Rayleigh found that two adjacent and equally bright
stars can just be resolved if the image of one star falls
somewhere near the innermost dark ring in the Airy disk of
the other star. This distance d, in radians or in seconds
of arc, is the angular resolution of the lens. A practical
value of d with telescopes used for visual observation (at
A= 5600 b is

d=1.22 [ A (in &) ] radians, ord = [———3—3——— ] seconds of arc,

D(in cm) D(in inches)
where D is again the objective aperture (see Fig. 12).

However, Rayleigh criterion does not adequately de-
scribe the distribution of stellar flux in the focal plane, and
therefore does not provide a complete description of the op-
tical system resolution. Figure i2 gives the minimum an-
gle of resolution as defined by the Rayleigh criterion and
also shows the relationship between the resolving power of
an objective and the aperture diameter for various star en-
ergy percentages. It is obvious from Fig, 12 that, if 95%
of the stellar energy is desired for our tracking /mapping
system, the angular size of the detector or of the reticle
(from which the flux is modulated and then transferred to the
detector) in the focal plane must be fully seven times larger
than that specified by Rayleigh's criterion.

Focal length

The required optical focal length is calculated from
the angle subtended by the star field of view (FOV) to be
covered and the physical size of the detector element used,
that is

detector size
2 tan(3 FOV)’

Optical focal length =

PHOTOMETRY
The effective irradiance from a star as seen by a
standard observer may be readily computed from the follow-

ing formula:
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RESOLVING POWEHK OF OBJECTIVE (arc seconds}

,‘ L bl 1
0.1 0.5 1 5 10
APERTURE DIAMETER D linchas)

Fig. 12 RELATIONSHIP BETWEEN THE RESOLVING POWER OF AN
OBJECTIVE AND THE APERTURE DIAMETER FOR VARIOUS
STAR ENERGY PERCENTAGES
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I= Io (2.51) watts /cm

where:
I, = watts Jem? for a "0" visual magnitude A0 star
= 3.1 x 10713 watts /em?
m = visual magnitude,

The total available effective power P from the star
that is intercepted and passed through the lens is given by

- -m
P=35.43x10 2 gnd 2.51) v

where:
B = optics efficiency
D = objective diameter, in centimeters.

Based upon the use of a 2-inch (5 ¢cm) aperture ob-
jective with an efficiency B of 0. 65 and a +4 visual magnitude
A0 star, the computed value P is 9, 90 x 10-14 watts.

Figure 13 gives the available stellar power inter-
cepted by an objective of aperture D for various star visual
magnitudes.

SPECTRAL PROPERTIES

Since the star sensor's spectral response does not
match that of the eye, equal visual magnitude stars will not,
in general, give equal outputs. It is necessary to relate the
sensor's response to different spectral classes of a given
visual magnitude, because stars are normally tabulated ac-
cording 1o visual magnitude and it is convenient to be able
to speak tae same language,
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Because it is essential to relate the composite star
mapper spectral characwristics to some measurable lab-
oratory photometric quantities, calibration of the sensor in
the laboratory is performed with a 2870°K light source, al-
though this is significantly different from the effective tem-
perature of the stars.

Expressed mathematically, the star sensor's spec-
tral dependence is given by

TR A e v R I e e
e M T O N R S A R R A S N T Bl BT - > "‘: "
£ £ &8 & B B3

g Wy (AR (A g Wi IR (M)A

X =

Fwyorgar [ wa)RMdx
0 0

——
R I Y P S

where:

X = relative response of star sensor to a soyurce of
spectral characteristic Wo compared to response
to a source of characteristic Wy

7 i A —

= e o e

W1 (X) = power spectral density of source 1 (watts/
unit wavelength)

Ws(A) = power spectral density of source 2 (watts/
unit wavelength)

Rs()\) = gpectral response of star sensor (amperes/
watt)

A
RV A S S LTy

R¢ (\) = relative sensitivity of eye at wavelength \.

By performing the indicated computations, it can be shown
that the sensor's response o an A0 star relative to its re-
sponse to a KO star is 1.30, This ratio corresponds to a
change in star magnitude of 0.3. Hence, given two stars of
types A0 and KO with equal visual magnitudes, the sensor's
output will indicate a difference of 0.3 magnitude., Similarly,
the sensor's response to a K0 source relative to a 2870°K
source is computed as 0, 955.

0 o o ¢

4

e =y

-
-

-
O
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5. STAR SENSOR DETECTORS

Detectors suitable for star sensing applications are
generally of the quantum type, in which either electrons are
Iy ejected by the absorbed quanta (photoemissive) or charge
: carriers are created within the material (photoconductive,
photovoltaic).

For the most part photoemissive detectors are uti-
lized. These include photomultipliers, image dissectors,
image orthicons, image intensifiers, correlatrons and cer-
tain intensifier type vidicons. The standard vidicon utilizes
a photoconductive retina. Its spectrai response runs from
0.4 to 1.1 microns. Figure 14 illustrates the spectral char-
acteristics of the photoemissive sensors most often used in
star sensing applications.

4

| Ak S Tul S MUSH B MOl B Al B S
1

PHOTOMULTIPLIERS

In a photomultiplier, photoelectrons are emitted by
quanta of light impinging on the photocathode. The photo-
electrons being emitted in a vacuum are electrostatically
directed into a secondary multiplier which consists of a
number of dynodes. Each dynode has a secondary emitting
surface. Primary photoelectrons striking the first dynode
cause two or more secondary electrons to be emitted for
every primary electron. These secondary electrons are fo-
cused to strike the second dynode where the process is re-
peated. After about 10 to 14 dynodes the amplified current
is collected on an anode plate or grid. The total gain may
range from 103 to 107 at 2 bandwidth of up to 1 GHz. Figure
15 illustrates some typical photomultiplier layouts.

= e
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IMAGE DISSECTORS

e

The image dissector is a television camera tube hav-
ing a continuous photocathode on which is formed a photo-
electric emission pattern that is scanned by moving its elec-
i tro-optical image over an aperture.

Lz T

Principle of Operation

From the optical image focused on the photocathode
(Fig. 16) an electro-optical image is derived that is focused
in the plane containing the aperture. Two sets of scanning
coils sweep this image over the aperture. At any instant,
only the electrons entering the electron multiplier through
the aperture are utilized. The output signal is taken from
- the multiplier collector,
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Fig. 16 IMAGE DISSECTOR SCHEMATIC REPRESENTATION
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No storage means are used, and therefore, the dis-
sector is not suitable at very-low light levels. But the out-
put signal is proportional to the light, free from shading
and, within reasonable limits, independent of temperature.
The electron optics of the tube are usually designed for
unity magnification. The aperture area determines the re-
solution.
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Properties

The dissector has the following unique and rather
unusual properties which should be taken into consideration
when selecting an appropriate camera tube for a specific ap-
plication:

e Non-Storage

Because no storage is involved, the scan rate on a
dissector can be varied at will without changing the signal
current amplitude. Dual or :.ultiple scan modes can be
adoptea, in which an earlier large raster scan is replaced
by a smaller scanned area for image analysis or image
tracking.

e High Resolution

Image dissectors achieve paraxial resolutions closely
predictable on the basis of selected electron beam defining
aperture size. For example, in magnetically focused tubes,
contrast ratios as high as 40 percent have been observed ex-
perimentally with 0. 001 inch diameter apertures at 1600 TV
lines / inch resolving power (800 line pairs/inch). These
high resolutions are quite compatible with the ultimate lim-
its set by the emission energies of the photoelectrons for
tubes of this type, as established bv G. Papp of ITTIL (IRE.
Tr. on Nuclear Science, Vol. NS-9, .vo. 2, April 1962. p. 93).

Off-axis resolution approaching the paraxial perform-
ance can be achieved with a moderate degree of dynamic fo-
cusing only in magnetically-focused varieties. For electro-
statically focused dissectors, off-axis loss of resolution,
even with dynamic focusing, is appreciable.

e Linearity
The basic multiplier phototube operating principle

used in image dissectors is linear over many orders of
magnitude, at least 4 to 5 orders in normal usage. The
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image dissector is therefore particularly useful where a
wide dynamic range of signal inputs with linear response is
encountered. Re-adjustment of the multiplier gain by alter-
ing the applied operating potentials can produce even greater

dynamic ranges.

Response linearity from one portion of an input im-
age to another portion of the same image is limited to some
extent, as it would be in any camera tube, by internal light
reflections within the camera tube envelope and variations
in sensitivity of the photosensitive film. Dissectors with
internal optical trapping can be supplied on special order.

o Noise

Noise in an image dissector camera normally arises
from three readily identified sources: dark emission from
the photocathode, background lighting on the photocathode,
and the signal flux itself. The multiplier gain is normally
high enough so that othernoise sources, such as amplifier
noise, etc., are negligible, With nearly all photocathodes
except infrared sensitive types the dark emission noise is
also negligible, so that the dissectors, in general, operate
either under a background-noise limited or a noise-in-signal
limited condition. Photon fluctuations of the flux input,
modified by the quantum efficiency of the photoemissive con-
version process at the photocathode, are then observable in
the dissector. For location of images on a dark background,
as in star tracking, the dissector may therefore be more
sensitive than expected because of the almost total absence
of dark noise in the nonsignal areas.

e S{pecial Apertures

Dissectors are readily adapted to the examination of
specialized portions of the input image using appropriately
shaped defining apertures. Apertures can range from a
long slit aperture for examining signal line scans of a spec-
trum to such complex apertures as pin-wheels, etc., used
with special scan modes to obtain additional picture infor-
mation or discriminate against certain input patterns.
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e Simple Miorating Theory

The operational theory of the dissector is simple
and straightforward, making it possible to predict, a priori,
what the resulting system capabilities will be. This is use-
ful to the system designer and in the system check-out.

e Reliability

The dissector is a simple, rugged, reliable device
without a thermionic cathode, which limits its lifetime and
consumes operating power, Shelf life is many years and
operating life is comparable, unless excessive input illumi-
nation occurs for long time periods. Momentary exposure
to sunlight or even the sun's image does no harm.

e Fast Turn On

The dissector is ready to operate at full efficiency
as fast as the associated circuitry can be activated.-

@ Scan Drive

The dissector is adaptable to both magnetic and elec-
trostatic deflection, although magnetic deflection has proven
to be more readily adaptable to low power transistor drive
circuitry. If fast fly back or fast random access is not re-
quired, a dissector with magnetic scan can supply large
amounts of picture information at high output signal levels,
with a minimum of total required system power.

¢ Spectral Response

This includes all regions for which suitable photo-
cathodes are available and therefore extends from the near
infrared to the extreme ultraviolet region.
® Raster Edge Effects

Unlike such beam scanning tubes as the image orthi-

con and vidicon, the dissectoxr has no scanned raster area
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surrounded by an uncharged unscanned area. As a result
no edge effects are encountered in the dissector resulting
from potential dic “ontinuities at the raster edge and show-
ing up as abnorn.a’ signal amplitudes along aill raster edges
as observed in image orthicons and vidicons. A small ras-
ter of for example only 5 or 6 short scan lines can be lo-
cated anywhere on the dissector sensitive area, with each
scan line, even at the edges, contributing proper signal am-
plitudes.

VIDICON

This type of star sensor has been used on slmost
every satellite containing a TV camera including the DODGE
satellite.

The vidicon is a small television camera tube that
is used primarily in industrial television and studio film
pickup because of its 600-line resolution, small size, sim-
plicity, and spectral response approaching that of the human
eye.

HORIZONTAL AND VERTICAL FOCUSING  ALIGNMENT
DEFLECTING COILS COIL COlL

...... m GRID2 CATHODE

LXK

| /
GLASS FACEGP:?;‘i jlp...............(....\...............IJI/!:'/ q

SIGNAL ELECTRODE | ST
AND PHOTO- o

CONDUCTIVE LAYER \

SIGNAL-ELECTRODE *
OUTPUT

B o™

GRID3 “GRID1

Fig. 177  VIDICON SCHEMATIC REPRESENTATION

As shown in Fig. 17, the tube consists of a signal
electrode composed of a transparent conducting film on the
inner surface of the faceplate; a thin layer (a few microns)
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of photoconductive material deposited on the signal electrode;
a fine rnesh screen, grid 4, located adjacent to the photo-
conductive layer; a focusing electrode, grid 3, connected

to grid 4; and an electron gun.

-

Principle of Operation

Each elemental area of the photoconductor can be
likened to a leaky capacitor with one plate electrically con-
nected to the signal electrode that is at some positive volt-
age (usually about 20 volts) with respect to the thermionic
cathode of the electron gun and the other plate floating ex-
cept when commutated by the electron beam. Initially, the
gun side of the photoconductive surface is charged to cath-
ode potential by the electron gun, thus leaving a charge on
each elemental capacitor. During the frame time, these
capacitors discharge in accordance with the value of their
leakage resistance, which is determined by the amount of
light falling on that elemental area. Hence, there appears
on the gun side of the photoconductive surface a positive-
potential pattern corresponding to the pattern of light from
the scene imaged on the opposite surface of the layer. Even
those areas that are dark discharge slightly, since the dark
resistivity of the material is not infinite.

The electron beam is focused at the surface of the
photoconductive layer by the combined action of the uniform
magnetic field and the electrostatic field of grid 3. Grid 4
serves to provide a uniform decelerating field between it-
self and the photoconductive layer such that the electron
i beam always approaches the surface normally and at a low
. [ velocity. When the beam scans the surface, it deposits

electrons where the potential of the elemental area is more

LB positive than that of the electron-gun cathode and at this mo-
B T ment the electrical circuit is completed through the signal-

] electrode circuit to ground. The amount of signal current
- 5. flowing at this moment depends upon the amount of discharge
¥ r in the elemental capacitor, which in turn depends upon the
L amount of light falling on this area. The signal polarity is
such that highlights in the scene swing the video-amplifier
input negative.
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Alignment of the beam is accomplished by a trans-
verse magnetic field produced by external coils located at
the base end of the focusing coil.

Deflection of the beam is accomplished by the trans-
verse magnetic fields produced by external deflecting coils.

Vidicon Operating Considerations

The temperature of the faceplate of the tube should
never exceed 60°C in either operation or storage. As the
temperature increases, both the signal output current and

' the dark current (current that flows when the photoconduc-

3 tive surface receives no light) increase; however, the dark

, current inrcreases faster and shading (unequalness of dark

! current at different points on the surface) in the output sig-

, nal current becomes a serious problem. Further, as the
signal-electrode voltage is increased, the signal output
current-to-dark-current ratio decreases, thus increasing
the shading problem.

Shielding of both the signal electrode and signal lead
from external fields is highly important.

A blanking signal shouid be furnished to grid 1 or to
the cathode to prevent the electron beam from striking the
photoconductive surface during retrace of the horizontal and
vertical sweeps.

Vidicon Signal and Noise

Since the vidicon acts as a constant-current genera-
tor as far as signal current is concerned, the value of the
load resistor is determined by band-pass and noise consid-
erations in the input circuit of the video amplifier. Where
the signal current is less than 1 microampere and the band
] pass is relatively wide, the principal noise in the system
s is contributed by the input circuit and first stage of the
video amplifier.
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In addition to the standard vidicon mentioned above,
there are a number of other more sophisticated types. One
is the SILICON TARGET VIDICON which functions similar
to the standard tube discussed above. The silicon target
vidicon uses a matrix of silicon diodes in the target. This
tube is approximately 100 times more sensitive and is not
susceptible to solar damage. Other vidicon types are ihe
SEC (Secondary Electron Conductivity) vidicon and the SIT
(Silicon Intensifier Target) vidicon. Both of these tube types
employ an imaging section in front of the vidicon target. In
both cases the light signals are detected by a photoemissive
thin-film semi-transparent photo-cathode. It is then an
electron image rather than a photon image that impinges
upon the vidicon target.

IMAGE ORTHICON

The image orthicon is a television camera tube hav-
ing a sensitivity and spectral response approaching_ that of
the eye. Commercially acceptable pictures can be obtained
with incident illumination levels of 10 foot-candles.

As shown in Fig. 18, the tube comprises three sec-
tions: an image section, a scanning section, and a multi-
plier section.

TRANSLUCENT TARGET HORIZONTAL AND VERTICAL FOCUSING ALIGNMENT 5.STAGE
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Fig. 18 IMAGE ORTHICON SCHEMATIC REPRESENTATION
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Principle of Operation

From the light image focused on the photocathode,
an electron image is derived that is accelerated to and mag-
netically focused in the plane of the target. These primary
electrons striking the glass target (thickness of the order
of a ten-thousandth of an inch and a lateral electrical resis-
tivity of between 3 X 1011 and 1012 ohm-centimeter) cause
the emission of secondary electrons that are collected by an
adjacent mesh screen held at a small positive potential with
vespect to target-voltage cutoff. The photocathode side of
the target thus has a pattern of positive charges that cor-
responds to the light pattern from the scene being televised;
since the glass target is very thin, the charges set up asim-

f ilar potential pattern on the opposite or scanned side of the
glass.

i In the scanning section, the target is scanned by a
low-velocity electron beam produced by an electron gun.
The beam is focused at the target by means of the axial mag-
netic field of the external focusing coil and the electrostatic
field of grid 4. The decelerating field between grids 4 and 5
is shaped such that the electron beam always approaches
normal to the plane of the target and is at a low velocity.
If the elemental area on the target is positive, then elec-
trons from the scanning beam deposit until the charge is
neutralized; if the elemental area is at cathode potential
(i. e., corresponding to the black picture area), no elec-
trons are deposited. In both cases the excess beam elec-
trons are turned back and focused into a 5-stage signal mul-
tiplier. The charges existing on either side of the target
glass will conductively neutralize each other in less than one
frame time. Electrons turned back at the target form a re-
i turn beam that has been amplitude-modulated in accordance
with the charge pattern of the target.

Alignment of the electron beam is accomplished by
the transverse magnetic field of the external alignment coil.
Deflection of the beam is produced by the transverse mag-
netic fields of the external horizontal and vertical deflecting
coils.
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In the multipiier section, the return beam is directed

L
o peys el .;

g - e -

to the first stage of the electrostaiically focused, 5-stage
multiplier where secondary electrons are emitted in quanti-
ties greater than the striking primary electrons. Grid 3 fa-
cilitates a more complete collection by dynode 2 of the sec-
ondary electrons from dynode 1.
is high enough that the limiting noise in the use of the tube
is the random noise of the electron beam rather than the in-
put noise of the video amplifier.

The gain of the multiplier

Orthicon Operating Considerations

The temperature of the entire bulb should be held
between 45 and 60°C since low target temperatures are
characterized by a rapidly disappearing "sticking picture"
of opposite polarity from the original when the picture is
moved; high temperatures will cause loss of resolution and

damage to the tube.

An overall potential of 1750V is necessary to operate

the tube (+1250V at 1 mA, -500V at | mA, and -330V at
90 mA for the voltage divider and typical focusing and

alignment coils).

Full-size scanning of the target should always be
used during operation. The blanking signal, a series of
negative-voltage pulses, should be supplied to the target to
prevent the electron beam from striking the target during
retrace. In the event of scanning failure, the beam must

not reach the target.

It is necessary to add a shading-correction signal,
of sawtooth shape and /or horizontal-scan frequency, to the
video signal after it has been clamped to obtain a uniformly

shaded picture.

SEE SAW* IMAGE CORRELATION TUBES

The ITT Industrial Laboratories announced the de-
velopment and commercial availability of a new type of

* Trademark applied for.
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electro-optical device, the See Saw image correlation tube.
For added flexibility in various application requirements
the See Saw image correlation tube is available in two dif-
ferent models. Type F4066 has a visual output presentation
whereas Type F4067 provides an electrical output signal.

The See Saw image correlation tube is essentially a
compact multi-channel computer, capable of automatically
generating an output signal directly proportional to a cross-
correlation integral between two consecutive input images.
An even more important feature of the See Saw image cor-
relation tube is that it has the ability of electronically de-
flecting one image across another image, generating a time-
varying output signal exhibiting a clearly defined peak for
the particular position of the two images for which maximum
cross correlation exists.

HIGHLY CORRELATED IMAGES

T

POSITION FOR MAXIMUM
IMAGE-TO-IMAGE CORRELATION

PARTIALLY CORRELATED IMAGES

UN-CORRELATED IMAGES

OUTPUT CORRELATION
SIGNAL GENERATED

Fig. 19  SIGNAL CORRELATION OF TWO IMAGES

The key internal component of the See Saw image
correlation tube is a composite storage mesh, similar to
the meshes used in IatronR and other direct view storage
tubes, counsisting of metallic mesh upon which a thin insu-
lating layer is deposited. The first of the two input images
to be correlated is stored in the tube in terms of a charge
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pattern, generated at the input photocathode, focused by a
magnetic field, and deposiied on the insulator layer. The
operating potentials of ihe tube are then shifted electronic-
ally such that photoelectrons from the photocathode, gen-
erated by the second input optical image to be correlated,
can no longer strike the insulator surface but are allowed
to partially penetrate or reflect from the mesh holes, de-
pending upon the magnitude of the stored charge paitern.

DEFLECTION COIL
/_ /—FOCUS colL

{ [ / i

1 —
l l —
| FIELD FREE DRIFT [ 12 STAGE —
! AND L ELECTRON '.—-.- —
'\ DEFLECTION SPACE :\ i MULTIPLIER/ [
\ N1 / |

ANY

[ W\ \
%FIELD MESH Zouwur ANODE
PHOTOCATHODE \—STORAGE MESH

COLLECTOR

Fig. 20 TYPE F4067 SCHEMATIC

Since the charge pattern of the first image, g(x,y,
8, m) modulates the mesh transmission simultaneously on
a point-by-point basis for the incident electron pattern,
j(x+Aax, ytay, 8448, m+am) of the second image, the tube
directly generates the desired cross-correlation function
image

fg(x, ¥,8, m) j(x+ax, y+Ay, 8+A8, m+Am) dx dy d8 dm
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for each individual set of values of the relative image dis-
placements, Ax, Ay, A6, and Am (6 and m are the image
rotation and magnification respectively). Deflection coils
are used to deflect the second image with respect to the
first, generating a maximum correlation signal when maxi-
mum correlation exists.

In many respects the See Saw image correlation tube
is the closest technological approach yet to a substitute for
the combination of human eye, optic nerve, and optical
nerve center of tae brain. It will undoubtedly enjoy wide-
spread application for such pattern recognizing operations
as map reading, V/H sensing, document reading, etc.

Figure 21 gives an outline drawing and preliminary
specifications for the See Saw Correlation tubes, types
F4066 and F4067.

‘Image rotation and zoom are closely interrelated image
manipulations achievable over limited ranges in the image
correlation tube with appropriate non-uniform magnetic
fields. Design of the required coils is, at present, left
to the tube user.
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Preliminary Specifications

(See Saw Image Correlation tubes,
types F4066 and F4067)

General Characteristics: F4066 F4067 Units
Photocathode type S-20 S-20
Wavelength of maximum respounse 4200 4200 Angstroms
Phosphor type P-20 ~
Focus Magnetic Magnetic
Deflection Magnetic Magnetic
Typical Performance Characteristics:
(for typical operating conditions)
Threshold exposure 1073 1073 Fc - Sec
Number of resolvable elements 105 105
Resolution (1000 line storage mesh) 20 20 line pairs/mm
Multiplier gain - 10t
Photocathode luminous sernsitivity 150 150 uA/lumen
Phosphor luminous efficiency 0.35 - lumen/uA
Viewing screen brightness level 2 -~ millilamberts
Typical Operating Conditions:
Overall voltage 3 kv
Write-correlate voltage shift 500 Volt
Magnetic focus field 100-500 Gauss
Mechanical Data:
7.251N - —— 9.68 IN —
r—fz.zs IN—— [~——4.25 |N—
! 8 aio ] 1 A
1IN 3.00 1IN 2.30 1IN
- —IN_4 _ _150INDIA- - - -INDiA— = = —+——150IN DIA- -
DIA DIA DIA DIA
| |
ﬁ
USEFUL PHOTOCATHODE STODE
PHCSPHOR F4066 T AT ARER F4067 PHOTOCATHODE
AREA
Fig. 21 CORRELATION TUBES OUTLINE DRAWINGS
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6. STAR SEWSOR SYSTEMS

A fair number of systems concepts are adequately
described in the references given in the attendant listing.
Mappers as well as trackers are dec=ribed in detail.

Table 7 lists some of the factors influencing the
frame rate for imaging type star sensor systems. Figure

22 gives a curve illustrating the false alarm probability as
a function of sensor signal to noise ratio.

Table 7

Factors Influencing Image Frame Time

Limitations imposed by mechanical mirror scan systems

Libration rate of the satellite

Input signal level to the detector

Detector sensitivity

Detector response time

Desired spatial resolution

Available transmitter RF power which has a direct
bearing upon system bandwidth

~ 65 -
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Fig. 22 THE RELATION BETWEEN FALSE ALARM PROBABILITY AND
SIGNAL-TO-NOISE RATIO
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