REFERENCE RADIOGRAPHS FOR FULL PENETRATION ALUMINUM WELDMENTS

JUNE 1974

by MELVIN V. PYHTILA, WALTER F. WULF

U.S. ARMY TANK AUTOMOTIVE COMMAND
LABORATORIES

Approved for public release; distribution unlimited.

VEHICULAR COMPONENTS & MATERIALS LABORATORY
U.S. ARMY TANK AUTOMOTIVE COMMAND Warren, Michigan

20031219004
REFERENCE RADIOGRAPHS FOR FULL PENETRATION ALUMINUM WELDMENTS

BY
WALTER F. WULF
MELVIN V. PYHTILA

JUNE 1974

AMCMS CODE 5393-OM-6350

ARMOR, MATERIALS & COMPONENTS DIVISION
ABSTRACT

Standard reference radiographs were selected from weld flaw specimens fabricated from aluminum plate of various thicknesses to establish a military document containing reference radiographs for quality control of full penetration aluminum weldments. The various types of flaws known to occur in full penetration aluminum welds were prepared with production reproducible welding procedures, and were radiographically graded according to pre-established severity levels.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Object</td>
<td>2</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>3</td>
</tr>
<tr>
<td>Test Material and Test Equipment</td>
<td>4</td>
</tr>
<tr>
<td>Test Procedure</td>
<td>5</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>7</td>
</tr>
<tr>
<td>Application of Reference Radiographs</td>
<td>9</td>
</tr>
<tr>
<td>Distribution</td>
<td>10</td>
</tr>
<tr>
<td>Form DD 1473</td>
<td>18</td>
</tr>
</tbody>
</table>

Appendixes - The following five separately bound sections comprise the reference radiographs.

- **Section A** - Reference Radiographs for Full Penetration Aluminum Welds (1/16" to 1/4" Thickness Range)
- **Section B** - Reference Radiographs for Full Penetration Aluminum Welds (3/16" to 1/2" Thickness Range)
- **Section C** - Reference Radiographs for Full Penetration Aluminum Welds (Over 1/2" to 1") Thickness Range)
- **Section D** - Reference Radiographs for Full Penetration Aluminum Welds (Over 1" to 2" Thickness Range)
- **Section E** - Illustrations of Ungraded Flaws
ACKNOWLEDGEMENT

Appreciation is expressed for the excellent welding service furnished by personnel of the Armor Function and Experimental Division. Through their technical proficiency, the difficult task of achieving the designated weld flaw types and quality levels was accomplished at an unprecedented 50% efficiency factor.

This project has been accomplished as part of the US Army Materials Testing Technology Program, which has for its objective the timely establishment of testing techniques, procedures or prototype equipment (in mechanical, chemical, or nondestructive testing) to insure efficient inspection methods for materiel/material procured or maintained by AMC.
INTRODUCTION

The increasing use of aluminum in the fabrication of military hardware has brought into focus the need for a document to provide universal quality control for full penetration aluminum weldments.

In accordance with project authorization from Army Materials and Mechanics Research Center, this task was established under the Materials Testing Technology Program. The effort was determined necessary since there are no standard reference radiographs presently available for full penetration aluminum welds in the thickness ranges required for Army application.
OBJECTIVE

Establish standard reference radiographs for full penetration aluminum weldments ranging in thickness from 1/16 inch to \(\frac{3}{4} \) inches.
SUMMARY AND CONCLUSIONS

Standard reference radiographs displaying graded and ungraded illustrations of flaws found in full penetration aluminum weldments were established. Completion of the document provides the means for establishing universal quality assurance standards for military hardware containing full penetration aluminum welds.
TEST MATERIAL

2. Electrode wire of varying sizes for the MIG and TIG welding process of aluminum.

3. Argon shielding gas, welding grade, 99% pure (TIG).

4. Argon shielding gas, welding grade with 1% oxygen added (MIG).

5. Industrial X-ray film, size 4-1/2 x 17", fine grain.

6. Commercial photographic copy film, size 4 x 5".

7. Photographic projection print paper.

TEST EQUIPMENT

1. Constant-arc voltage rectifier power source, 500 ampere capacity, for the inert gas consummable electrode welding process.

2. An AC-DC, 300 amp, power source for the inert gas tungsten arc welding process.

3. Industrial X-ray machine, 250 KVP, 10 MA capacity.

4. Commercial, 4 x 5", view camera.

5. Commercial, 4 x 5", condenser type photographic enlarger.
Section A (1/16" to 1/4" Thickness Range)

-1/8 " + 3/16"
-0" to 1/16"

Section B (3/16" to 1/2" Thickness Range)

75°
-1/16"
-0" to 1/16"

Section C (Over 1/2" to 1"
Thickness Range)

75°
-1/16"
-0" to 1/16"

WELD JOINT DESIGNS USED ON FLAW SPECIMEN PLATES

Figure 1
Section D (Over 1" to 2" Thickness Range)

WELD JOINT DESIGNS USED ON FLAW SPECIMEN PLATES

Figure 2
TEST PROCEDURE

1. **Weld Plate Preparation:**

 Plate size and thickness used for each of the four thickness ranges are as follows:

<table>
<thead>
<tr>
<th>Thickness Range</th>
<th>Master Plate Thickness</th>
<th>Plate Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section A</td>
<td>1/8" & 3/16"</td>
<td>6" x 15"</td>
</tr>
<tr>
<td>Section B</td>
<td>3/8"</td>
<td>6" X 24"</td>
</tr>
<tr>
<td>Section C</td>
<td>3/4"</td>
<td>8" x 30"</td>
</tr>
<tr>
<td>Section D</td>
<td>1-1/2"</td>
<td>10" x 30"</td>
</tr>
</tbody>
</table>

 Edge preparation for the weld groove was accomplished by sawing and hand grinding. A few plates requiring a more precise fit were machined. Joint designs used for each weld thickness range are illustrated on Figures 1 and 2.

2. **Welding Procedure:**

 Two welding processes were employed. The gas tungsten arc (TIG) process was used on the 1/8" and 3/16" plates comprising Section A. These plates cover the thickness range from 1/16 to 1/4 inch. The gas Metal Arc (MIG) process was used on the remaining plates.

3. **Radiographic Examination**

 Radiography of the weld plates was performed in accordance with MIL-STD-453. A minimum quality level of 2 - 1T, representing 1.4% sensitivity was maintained for all exposures. The following radiographic technique was employed for the various size plates.
<table>
<thead>
<tr>
<th>Plate Thickness</th>
<th>KV</th>
<th>MAS</th>
<th>FFD</th>
<th>SCREENS</th>
<th>Approx. Film DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8 in</td>
<td>80</td>
<td>150</td>
<td>36 in.</td>
<td>None</td>
<td>2.0</td>
</tr>
<tr>
<td>3/16 in.</td>
<td>80</td>
<td>180</td>
<td>36 in.</td>
<td>None</td>
<td>2.0</td>
</tr>
<tr>
<td>3/8 in.</td>
<td>80</td>
<td>325</td>
<td>36 in.</td>
<td>None</td>
<td>2.0</td>
</tr>
<tr>
<td>3/4 in.</td>
<td>100</td>
<td>700</td>
<td>48 in.</td>
<td>None</td>
<td>2.0</td>
</tr>
<tr>
<td>1-1/2 in.</td>
<td>150</td>
<td>550</td>
<td>48 in.</td>
<td>.005"</td>
<td>2.0</td>
</tr>
</tbody>
</table>

4. **Metallographic Evaluation:**

Weld cross sections were extracted from selected weld specimens for verification of radiographic findings. Photomacrographs were also made of typical flaw conditions for correlation with the reference radiographs.

5. **Selection of Reference Radiographs:**

Selection and grading of the radiographs was based on: (a) correlation of current USATACOM standards for partial penetration weldments (ATAC - STD-113 and 114), (b) Weld research programs conducted at USATACOM, and (c) Production welding problems experienced by government contractors.

6. **Reproduction of Radiographs:**

The original radiographs were photographically reproduced, utilizing a 4 x 5 inch view camera to copy the radiographic image as viewed with a fluorescent illuminator. Projection prints were then made from the copy negatives and assembled into a photo composite for each page of the document. Final lithographic reproductions were then made from the photographic composites.
RESULTS AND DISCUSSION

1. The primary objective of this effort was production of the standard reference radiographs. These are included as part of the report in five separately bound sections. Separate binding was performed to provide greater flexibility, and to accommodate later conversion of the document to either a TACOM or Military Standard.

2. Lithograph reproductions were selected for the final printing rather than film transparencies or photographic prints. This was done primarily to reduce cost and provide ease of application. When proper controls are exercised, lithographs will display 90% or more of the original print detail which is adequate for reference radiographs. The capability of viewing the radiographs with reflected light also permits wider use of the document by concerned engineering personnel that do not have X-ray viewing equipment.

3. Welding procedures used to produce the various flaws were for the most part those that could accidently be performed in production. Following are the procedures found most effective for the flaws illustrated:

 a. Scattered Porosity:

 Water contamination of the shielding gas using the MIG process proved most successful on the 3/4" and 1-1/2" thick weld specimens. On the 1/8", 3/16" and 3/8", contamination of the joint face proved successful.

 b. Linear Porosity:

 This type of flaw occurs in full penetration aluminum plates as a result of entrapped gas emanating from the root area. The severity level varies depending on the cleanliness of joint interfaces and joint fit. The method used to produce the reference radiographs was by contaminating the root area of the joint.
c. Clustered Porosity:

On the 3/4 in. and 1-1/2 in. thick weld specimens, this flaw was achieved by intermittently disturbing the shielding gas with an air draft. On the 1/8 in., 3/16 in. and 3/8 in. thick weld specimens, the condition was obtained by contaminating selected areas on the joint interface with small amounts of oil and paint.

d. Tungsten Inclusions:

This condition occurs only with the TIG welding process. It usually happens when the tungsten electrode is accidently inserted into the molten weld puddle during the welding operation.

e. Incomplete Penetration:

Most of the illustrations shown were achieved by reducing the welding current. This condition can also result from an improper gun position during the weld operation.

f. Lack of Fusion:

Most frequently this flaw is associated with incomplete penetration on aluminum weldments. It results from molten metal flowing beyond the point of penetration and filling most of the weld groove without fusing with the side walls. Unfortunately, however, it is often difficult to detect radiographically due to radiation angle problems. It is, therefore, considered as an integral part of incomplete penetration, and judged accordingly.
APPLICATION OF REFERENCE RADIOGRAPHS

1. The reference standards are a collection of radiographs illustrating types and degrees of weld flaws experienced in full penetration aluminum weldments. They are not quality level acceptance requirements; designation of required acceptable quality level should be made from the reference radiographs by the design agency.

2. The standards are intended to cover a weld thickness range from 1/16 to 2 inches. This may be extended to 3 inches, if applicable, at the discretion of the design agency.

3. Grading of the standards was based on correlation of existing specifications, welding research programs, and liaison with private industry. Standard 1 represents the highest quality normally expected in production welding which contains a few flaws to reserve a rating of "sound" for special applications. Standard 5 is designated as the lowest quality welds ever accepted in production welding. The intermediate standards are divided proportionally between 1 and 5.

4. Acceptance standards may be selected directly from one of five reference radiographs for all flaws illustrated except clustered porosity and incomplete penetration. Rules governing the standards for these flaws are specified on the appropriate illustrations in each section.

5. When only one type of flaw is present in the radiograph and is less severe than the specified quality level, the weld shall be regarded as radiographically acceptable. If the radiograph shows a flaw of greater severity than specified, the weld shall be rejected unless repair is permitted.

6. When two or more types of flaws are present in the same radiograph, the predominating flaw, if unacceptable, shall govern without regard to the other types of flaws.

7. When two or more types of flaws are present to an extent equal to that of the specified standard, the weld shall be judged unacceptable unless repair is permitted.
<table>
<thead>
<tr>
<th>ADDRESSEE</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Metals Information Center,</td>
<td></td>
</tr>
<tr>
<td>Battelle Memorial Institute, 505 King Avenue.</td>
<td>2</td>
</tr>
<tr>
<td>Columbus, Ohio 43201</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>Defense Documentation Center, Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>12</td>
</tr>
<tr>
<td>Commander, U. S. Army Foreign Science and Technology Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMXST-SD3, 220 Seventh Street NE</td>
<td>1</td>
</tr>
<tr>
<td>Charlottesville, Virginia 22901</td>
<td></td>
</tr>
<tr>
<td>Office of Chief of Research and Development</td>
<td></td>
</tr>
<tr>
<td>Department of the Army</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20310</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DARD-ARS-P</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>Army Research Office</td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. H. M. Davis</td>
<td>1</td>
</tr>
<tr>
<td>Mr. J. J. Murray</td>
<td>1</td>
</tr>
<tr>
<td>Box CM, Duke Station</td>
<td></td>
</tr>
<tr>
<td>Durham, North Carolina 27706</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Materiel Command</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMCQA-V, AMCQA-E, AMCQA-P, AMCRD-TC, AMCDL, AMCRD-EA, AMCRD-U</td>
<td>1</td>
</tr>
<tr>
<td>Alexandria, Virginia 22304</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Command</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMSEL-PA-P, AMSEL-CT-DT, AMSEL-WL-DO, AMSEL-VL-D, AMSEL-RD-EA</td>
<td>1</td>
</tr>
<tr>
<td>Fort Monmouth, New Jersey 07703</td>
<td></td>
</tr>
</tbody>
</table>
Commander
U. S. Army Missile Command
ATTN: AMSMI-RP, Redstone Scientific Info Center
 AMSMI-M
 AMSMI-Q, Mr. Robert O. Black
 AMSMI-QS, Mr. George L. Stewart, Jr.
 AMSMI-QSD, Mr. Leslie Conger
Redstone Arsenal, Alabama 35809

Commander
U. S. Army Troop Support Command
ATTN: AMSTS-QR
 AMSTS-M
 AMSTS-P
 AMSTS-R
4300 Goodfellow Blvd
St. Louis, Missouri 63120

Commander
U. S. Army Natick Laboratories
ATTN: STSNLT-EQR
 STSNLT-GE
Kansas Street
Natick Massachusetts

Commander
U. S. Army Mobility Equipment Research &
 Development Center
ATTN: STSFB-E
 STSFB-M
 STSFB-MM
 STSFB-X
 STSFB-D
 STSFB-DO
 STSFB-O
 STSFB-J
 STSFB-W
Fort Belvoir, VA 22060

Director
USA Mobility Equipment Research & Development
 Center, Coating and Chemical Lab
ATTN: STSFB-CL
Aberdeen Proving Ground, MD 21005
<table>
<thead>
<tr>
<th>NO. OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPIES</td>
</tr>
</tbody>
</table>

Commander

US Army Tank Automotive Command

- AMSTA-RKMD, Mr. J. Duzinski
- AMSTA-RKAB, Mr. W. Wulf
- AMSTA-RHP, Mr. O. Renius
- AMSTA-QE, MR. P. Duika
- AMSTA-RWL
- AMSTA-RE

28251 Van Dyke Avenue
Warren, MI 48090

Commander

U. S. Army Armament Command

- AMSAR-QA
- AMSAR-SC
- AMSAR-RDP
- AMSAR-EN

Rock Island, IL 61201

Commander

Edgewood Arsenal

- SAREA-TS-A
- SAREA-PA
- SAREA-PA-Q
- SAREA-PA-T

Aberdeen Proving Ground, MD 21010

Commander, Frankford Arsenal

- SARFA-A2000
- SARFA-F6000
- SARFA-P3000
- SARFA-K1000
- SARFA-Q1000
- SARFA-N1000
- SARFA-N7100, Mr. Mondress
- SARFA-J1000

Philadelphia, PA 19137

Commander, Picatinny Arsenal

- SARPA-TS-S, Mr. M. Costello
- SARPA-FR-P, Mr. H. DeFazio
- SARPA-FR-S, Mr. T. M. Roach, Jr.
- SARPA-FR-G, Mr. A. J. Clear
- SARPA-QA-T, Mr. D. Stein
- SARPA-FR-M, Mr. W. Powers

Dover, New Jersey, 07801

12
Commander, Rock Island Arsenal
ATTN: 9320, Research and Development
 SARRI-LEQ, Mr. J. Hausman
 SARRI-LER, Mr. W. Kisner
 SARRI-Q, Mr. W. Betts
 SARRI-RS, Mr. V. Long
 SARRI-R, Mr. W. McHenry

Rock Island, IL 61201

Commander, Watervliet Arsenal
ATTN: SARWV-PPI, Mr. L. A. Jette
 SARWV-RDS, Mr. M. L. Slawsky
 SARWV-RDR, Dr. F. W. Scheideshoff
 SARWV-QA, Mr. J. J. Miller
 SARWV-QA, Quality Assurance Directorate

Watervliet, New York, 12189

Commander
U. S. Army Tropic Test Center
ATTN: STETC-XO-A, Drawer 942

Ft. Clayton, CZ

Commander, Aberdeen Proving Ground
ATTN: STEAP-MT
 STEAP-TL
 STEAP-MT-M, Mr. J. A. Feroli
 STEAP-MT-G, Mr. R. L. Huddleston

Aberdeen Proving Ground, Maryland 21005

Commander
U. S. Army Arctic Test Center
ATTN: STEAC-MC-AS

APO Seattle 98733

Commander
Dugway Proving Ground
ATTN: STEP-D-TO(D),
Utah 84022

Commander
U. S. Army Electronic Proving Ground
ATTN: STEEP-MT

Ft. Huachuea, AZ 8561

Commander
Jefferson Proving Ground
ATTN: STEJP-TD-I

Madison, IN 47250
Commander
U. S. Army Aviation Systems Command
ATTN: AMSAV-EE
 AMSAV-EEG
 AMSAV-FEE
 AMSAV-LE
 AMSAV-LEP
 AMSAV-LSA
 AMSAV-PV
 AMSAV-EFS
St. Louis, MO 63166

Commander
U. S. Army Aeronautical Depot Maintenance Center
(Mail Stop 55), Attn: AMSAV-FES, Mr. Bee,
Corpus Christi, TX 78419

Director
U. S. Army Production Equipment Agency
ATTN: AMXPE-MT
Rock Island Arsenal
Rock Island, IL 61201

Commander
Harry Diamond Laboratories
ATTN: AMXD0-EDE
Connecticut Avenue & Van Ness Street, NW
Washington, DC 20438

Commander
U. S. Army Test & Evaluation Command
ATTN: AMSTE-RA,
Aberdeen Proving Ground, Maryland 21005

Commander, U. S. Army White Sands Missile Range
WSMR, NM 88002
ATTN: STEWS-AD-L
 STEWS-ID-P

Commander
U. S. Army Yuma Proving Ground
ATTN: STEYP-MTS
 STEYP-ADT
Yuma, AZ 85364
President
U. S. Army Airborne, Communications & Electronics Board
ATTN: STEBF-TD
Ft. Bragg, NC 28307 1

President
U. S. Army Air Defense Board
ATTN: STEBD-TD
Ft. Bliss, TX 79916 1

President
U. S. Army Armor & Engineer Board
ATTN: STEBB-TD
Ft. Knox, KY 40121 1

President
U. S. Army Aviation Test Board
ATTN: STEBG-MT
Ft. Rucker, AL 36360 1

President
U. S. Army Field Artillery Board
ATTN: STEBA-TD
Ft. Sill, OK 73503 1

President
U. S. Army Infantry Board
ATTN: STEBC-TE
Ft. Benning, GA 31905 1

Commander
Anniston Army Depot
ATTN: AMXAN-QA
Anniston, Alabama 36202 1

Commander
Letterkenny Army Depot
ATTN: AMXLE-QA
Chambersburg, PA 12701 1

Commander
Lexington-Bluegrass Army Depot
ATTN: AMXLX-QA
Lexington, KY 40507 1
Commander
New Cumberland Army Depot
ATTN: AMXNC-QA
New Cumberland, PA 17070

Commander
Pueblo Army Depot,
ATTN: AMXPU-Q
Pueblo, Colorado 81001

Commander
Red River Army Depot
ATTN: AMXRR-QA
Texarkana, TX 75501

Commander
Sacramento Army Depot
ATTN: AMXSA-QA
Sacramento, CA 95801

Commander
Savanna Army Depot
ATTN: AMXSV-QA
Savanna, IL 61074

Director
AMC Ammunition Center
ATTN: AMXAC-DE
Savanna, IL 61074

Commander
Seneca Army Depot
ATTN: AMXSE-RG
Romulus, NY 14541

Commander
Sharpe Army Depot
ATTN: AMXSH-QE
Lathrop, CA 95330

Commander
Sierra Army Depot
ATTN: AMXSI-DQA
Herlong, CA 96113

Commander
Tobyhanna Army Depot
ATTN: AMXTO-Q
Tobyhanna, PA 18466

Commander
Tooele Army Depot
ATTN: AMXTE-QA
Tooele, UT 84074

16
Chief, Bureau of Naval Weapons
Department of the Navy
Washington, DC 20390

Chief, Bureau of Ships
Department of the Navy,
Washington, DC 20315

Naval Research Laboratory
ATTN: Dr. J. M. Krafft, Code 8430
Washington, DC 20314

Commander
Wright Air Development Division
Wright-Patterson AFB, OH 45433
ATTN: ASRC

Director
Air Force Materiel Laboratory
ATTN: AFML-DO-Library
Wright-Patterson AFB, OH 45433

Director
Army Materials and Mechanics Research Center
ATTN: AMXMR-PL
AMXMR-M
AMXMR-P
AMXMR-RA, Mr. F. Valente
AMXMR-MQ
AMXMR-MS
AMXMR-MN, Mr. H. Hatch
Watertown, MA 02172
Reference Radiographs for Full Penetration Aluminum Weldments

Standard reference radiographs were selected from weld flaw specimens fabricated from aluminum plate of various thicknesses to establish a military document containing reference radiographs for quality control of full penetration aluminum weldments. The various types of flaws known to occur in full penetration aluminum welds were prepared with production reproducible welding procedures, and were radiographically graded according to pre-established severity levels.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
</tbody>
</table>

Security Classification
REFERENCE RADIOGRAPHS
FOR
FULL PENETRATION
ALUMINUM WELDS

(TIG WELDING PROCESS)

THICKNESS RANGE
1/16" TO 1/4"

U.S. ARMY TANK AUTOMOTIVE COMMAND
CONTENTS

<table>
<thead>
<tr>
<th>Reference Radiographs</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Scattered Porosity</td>
<td>1A – 2A</td>
</tr>
<tr>
<td>Coarse Scattered Porosity</td>
<td>3A – 4A</td>
</tr>
<tr>
<td>Linear Porosity</td>
<td>5A – 6A</td>
</tr>
<tr>
<td>Clustered Porosity</td>
<td>7A</td>
</tr>
<tr>
<td>Tungsten Inclusions</td>
<td>8A – 9A</td>
</tr>
<tr>
<td>Incomplete Penetration</td>
<td>10A</td>
</tr>
</tbody>
</table>
FINE SCATTERED POROSITY
(1/16" to 1/4" Thickness Range)

Cross Section of
Fine Scattered Porosity
2X - Mag.

2-IT Radiographic
Quality Level

STD. 1 (Approx. 6 Pores Per Sq. Inch)

STD. 2 (Approx. 12 Pores Per Sq. Inch)
FINE SCATTERED POROSITY
(1/16 to 1/4" Thickness Range)

STD. 3 (Approx. 25 Pores Per Sq. Inch)

STD. 4 (Approx. 50 Pores Per Sq. Inch)

STD. 5 (Approx. 100 Pores Per Sq. Inch)
COARSE SCATTERED POROSITY
(1/16" to 1/4" Thickness Range)

Cross Section of Coarse Scattered Porosity
2X - Mag.

2-IT Radiographic Quality Level

STD. 1 (Approx. 2 Pores Per Sq. Inch)

STD. 2 (Approx. 4 Pores Per Sq. Inch)

3A
COARSE SCATTERED POROSITY
(1/16 to 1/4" Thickness Range)

STD. 3 (Approx. 8 Pores Per Sq. Inch)

STD. 4 (Approx. 16 Pores Per Sq. Inch)

STD. 5 (Approx. 32 Pores Per Sq. Inch)
LINEAR POROSITY
(1/16" to 1/4" Thickness Range)

Cross Section of Linear Porosity - 2X-Mag.

2-IT Radiographic Quality Level

STD. 1

STD. 2

5A
LINEAR POROSITY
(1/16" to 1/4" Thickness Range)

STD. 3

STD. 4

STD. 5

6A
CLUSTERED POROSITY
(1/16 to 1/4" Thickness Range)

Cross Section of Clustered Porosity - 2X-Mag.

2-IT Radiographic Quality Level

STD. 1

STD. 2

STD. 3

NOTE: Any condition more severe than Std. 3 shall be judged as scattered porosity.
TUNGSTEN INCLUSIONS
(1/16 to 1/4" Thickness Range)

Cross Section of Tungsten Inclusions - 2X-Mag.

2-IT Radiographic Quality Level

STD. 1

STD. 2

8A
TUNGSTEN INCLUSIONS
(1/16" to 1/4" Thickness Range)

STD. 3

STD. 4

STD. 5

9A
INCOMPLETE PENETRATION
(1/16 to 1/4" Thickness Range)

ABOVE - Cross section of two conditions that produce a single line image on the radiograph as shown.

BELOW - Cross section of two conditions that produce a double line image as shown.

ILLUSTRATIONS OF INCOMPLETE PENETRATION - Std. 1 - 1/2"
Reference standards are based on flaw length as follows: The accumulated length of flaw shall not exceed the limit stated for each standard in any 6 inch weld length.

Std. 2 - 1"
Std. 3 - 2"
Std. 4 - 4"
Std. 5 - 6"
REFERENCE RADIOGRAPHS
FOR
FULL PENETRATION
ALUMINUM WELDS

(MIG WELDING PROCESS)

THICKNESS RANGE
3/16" TO 1/2"
CONTENTS

<table>
<thead>
<tr>
<th>Reference Radiographs</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Scattered Porosity</td>
<td>1B – 2B</td>
</tr>
<tr>
<td>Coarse Scattered Porosity</td>
<td>3B – 4B</td>
</tr>
<tr>
<td>Linear Porosity</td>
<td>5B – 6B</td>
</tr>
<tr>
<td>Clustered Porosity</td>
<td>7B</td>
</tr>
<tr>
<td>Incomplete Penetration</td>
<td>8B</td>
</tr>
</tbody>
</table>
FINE SCATTERED POROSITY
(3/16" to 1/2" Thickness Range)

Cross Section of
Fine Scattered Porosity
1.5X - Mag.

2-IT Radiographic Quality Level

STD. 1 (Approx. 6 Pores Per Sq. Inch)

STD. 2 (Approx. 12 Pores Per Sq. Inch)

1B
FINE SCATTERED POROSITY
(3/16” to 1/2” Thickness Range)

STD. 3 (Approx. 25 Pores Per Sq. Inch)

STD. 4 (Approx. 50 Pores Per Sq. Inch)

STD. 5 (Approx. 100 Pores Per Sq. Inch)
COARSE SCATTERED POROSITY
(3/16" to 1/2" Thickness Range)

Cross Section of Coarse Scattered Porosity 1.5X - Mag.

2-IT Radiographic Quality Level

STD. 1 (Approx. 2 Pores Per Sq. Inch)

STD. 2 (Approx. 4 Pores Per Sq. Inch)
COARSE SCATTERED POROSITY
(3/16" to 1/2" Thickness Range)

STD. 3 (Approx. 8 Pores Per Sq. Inch)

STD. 4 (Approx. 16 Pores Per Sq. Inch)

STD. 5 (Approx. 32 Pores Per Sq. Inch)
LINEAR POROSITY
(3/16" to 1/2" Thickness Range)

Cross Section of Linear Porosity - 1.5X Mag.

2-IT Radiographic Quality Level

STD. 1

STD. 2

5B
LINEAR POROSITY
(3/16" to 1/2" Thickness Range)

STD. 3

STD. 4

STD. 5

6B
CLUSTERED POROSITY
(3/16” to 1/2” Thickness Range)

Cross Section of Clustered Porosity - 1.5 Mag.

2-IT Radiographic Quality Level

STD. 1

STD. 2

STD. 3

NOTE: Any condition more severe than Std. 3 shall be judged as scattered porosity.
INCOMPLETE PENETRATION
(3/16" to 1/2" Thickness Range)

Cross Section of Plate 19B - 1.5X - Mag.

Cross Section of Plate 20B - 1.5X - Mag.

Linear Porosity frequently accompanies incomplete penetration when the plates are fit tightly together.

ILLUSTRATIONS OF INCOMPLETE PENETRATION - Std. 1 - 3/4"
Reference standards are based on flaw length as follows: The accumulated length of flaw shall not exceed the limit stated for each standard in any 8 inch weld length.

Std. 2 - 1 1/2"
Std. 3 - 3"
Std. 4 - 5 1/2"
Std. 5 - 8"
SECTION C

REFERENCE RADIOGRAPHS
FOR
FULL PENETRATION
ALUMINUM WELDS

(MIG WELDING PROCESS)

THICKNESS RANGE
OVER 1/2” TO 1”
CONTENTS

<table>
<thead>
<tr>
<th>Reference Radiographs</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Scattered Porosity</td>
<td>1C – 2C</td>
</tr>
<tr>
<td>Coarse Scattered Porosity</td>
<td>3C – 4C</td>
</tr>
<tr>
<td>Linear Porosity</td>
<td>5C – 6C</td>
</tr>
<tr>
<td>Clustered Porosity</td>
<td>7C</td>
</tr>
<tr>
<td>Incomplete Penetration</td>
<td>8C</td>
</tr>
</tbody>
</table>
FINE SCATTERED POROSITY
(Over 1/2” to 1” Thickness Range)

Cross Section of
Fine Scattered Porosity
Actual Size

2-IT Radiographic
Quality Level

STD. 1 (Approx. 6 Pores Per Sq. Inch)

STD. 2 (Approx. 12 Pores Per Sq. Inch)
FINE SCATTERED POROSITY
(Over 1/2" to 1" Thickness Range)

STD. 3 (Approx. 25 Pores Per Sq. Inch)

STD. 4 (Approx. 50 Pores Per Sq. Inch)

STD. 5 (Approx. 100 Pores Per Sq. Inch)
COARSE SCATTERED POROSITY
(Over 1/2" to 1" Thickness Range)

Cross Section of Coarse Scattered Porosity
Actual Size

STD. 1 (Approx. 2 Pores Per Sq. Inch)

STD. 2 (Approx. 4 Pores Per Sq. Inch)
COARSE SCATTERED POROSITY
(Over 1/2” to 1” Thickness Range)

STD. 3 (Approx. 8 Pores Per Sq. Inch)

STD. 4 (Approx. 16 Pores Per Sq. Inch)

STD. 5 (Approx. 32 Pores Per Sq. Inch)
LINEAR POROSITY
(Over 1/2" to 1" Thickness Range)

Cross Section of Linear Porosity-Actual Size

2-IT Radiographic Quality Level

STD. 1

STD. 2

5C
LINEAR POROSITY
(Over 1/2 to 1" Thickness Range)

STD. 3

STD. 4

STD. 5

6C
CLUSTERED POROSITY
(Over 1/2" to 1" Thickness Range)

Cross Section of
Clustered Porosity-Actual Size

2-IT Radiographic
Quality Level

STD. 1

STD. 2

STD. 3

NOTE: Any condition more severe than Std. 3 shall be judged as scattered porosity.
INCOMPLETE PENETRATION
(Over 1/2 to 1" Thickness Range)

Cross Section of Plate C-19-Actual Size

Cross Section of Plate C-20-Actual Size

ABOVE - Faint image due to tight fit of plates.

BELOW - Heavy image due to plate separation.

ILLUSTRATIONS OF INCOMPLETE PENETRATION - Std. 1 - 1"
Reference standards are based on flaw length as follows: The accumulated length of flaw shall not exceed the limit stated for each standard in any 10 inch weld length.

Std. 2 - 2"
Std. 3 - 4"
Std. 4 - 7"
Std. 5 - 10"
REFERENCE RADIOGRAPHS FOR FULL PENETRATION ALUMINUM WELDS

(MIG WELDING PROCESS)

THICKNESS RANGE OVER 1” TO 2”
CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Radiographs</td>
<td></td>
</tr>
<tr>
<td>Fine Scattered Porosity</td>
<td>1D - 2D</td>
</tr>
<tr>
<td>Coarse Scattered Porosity</td>
<td>3D - 4D</td>
</tr>
<tr>
<td>Linear Porosity</td>
<td>5D - 6D</td>
</tr>
<tr>
<td>Clustered Porosity</td>
<td>7D</td>
</tr>
<tr>
<td>Incomplete Penetration</td>
<td>8D - 9D</td>
</tr>
</tbody>
</table>
FINE SCATTERED POROSITY
(Over 1" to 2" Thickness Range)

Cross Section of
Fine Scattered Porosity
Actual Size

2-1T Radiographic Quality Level

STD. 1 (Approx. 6 Pores Per Sq. Inch)

STD. 2 (Approx. 12 Pores Per Sq. Inch)
FINE SCATTERED POROSITY
(Over 1" to 2" Thickness Range)

STD. 3 (Approx. 25 Pores Per Sq. Inch)

STD. 4 (Approx. 50 Pores Per Sq. Inch)

STD. 5 (Approx. 100 Pores Per Sq. Inch)

2D
COARSE SCATTERED POROSITY
(Over 1” to 2” Thickness Range)

Cross Section of Coarse Scattered Porosity
Actual Size

2-IT Radiographic Quality Level

STD. 1 (Approx. 2 Pores Per Sq. Inch.)

STD. 2 (Approx. 4 Pores Per Sq. Inch)
COARSE SCATTERED POROSITY
(Over 1" to 2" Thickness Range)

STD. 3 (Approx. 8 Pores Per Sq. Inch)

STD. 4 (Approx. 16 Pores Per Sq. Inch)

STD. 5 (Approx. 32 Pores Per Sq. Inch)
LINEAR POROSITY
(Over 1" to 2" Thickness Range)

Cross Section of Linear Porosity-Actual Size

2-IT Radiographic Quality Level

STD. 1

STD. 2

5D
LINEAR POROSITY
(Over 1" to 2" Thickness Range)

STD. 3

STD. 4

STD. 5

6D
CLUSTERED POROSITY
(Over 1" to 2" Thickness Range)

Cross Section of Clustered Porosity

2-IT Radiographic Quality Level

STD. 1

STD. 2

STD. 3

NOTE: Any condition more severe than Std. 3 shall be judged as scattered porosity.
INCOMPLETE PENETRATION
(Over 1" to 2" Thickness Range)

Cross Section of Plate 19D-Actual Size

2-IT Radiographic Quality Level

ABOVE - Faint image due to tight fit of plates.

BELOW - Heavy image due to plate separation.

ILLUSTRATIONS OF INCOMPLETE PENETRATION

8D
INCOMPLETE PENETRATION
(Over 1" to 2" Thickness Range)

Cross Section of Plate 20D-Actual Size

Cross Section of Plate 21D-Actual Size

Incomplete Penetration and Lack of Fusion.

ILLUSTRATIONS OF INCOMPLETE PENETRATION - Std. 1 - 1½"
Reference standards are based on flaw length as follows: The accumulated length of flaw shall not exceed the limit stated for each standard in any 12 inch weld length.

Std. 2 - 3"
Std. 3 - 6"
Std. 4 - 9"
Std. 5 - 12"
SECTION E

ILLUSTRATIONS OF UNGRADED FLAWS FOR FULL PENETRATION ALUMINUM WELDS
<table>
<thead>
<tr>
<th>Ungraded Flaws</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Cracks</td>
<td>1E</td>
</tr>
<tr>
<td>Transverse Cracks</td>
<td>2E</td>
</tr>
<tr>
<td>Plate Separation</td>
<td>2E</td>
</tr>
<tr>
<td>Oxide Inclusions</td>
<td>3E</td>
</tr>
<tr>
<td>Undercutting</td>
<td>4E</td>
</tr>
<tr>
<td>Incomplete Weld</td>
<td>4E</td>
</tr>
</tbody>
</table>
UNGRADED FLAWS

Cross Section of Plate 1E-Actual Size

Cross Section of Plate 2E-Actual Size

ILLUSTRATIONS OF LONGITUDINAL CRACKS
(All Cracks are unacceptable)
UNGRADED FLAWS

Cross Section of Plate 4E-Actual Size

2-IT Radiographic Quality Level

Transverse Cracks - 3/4 Weld

Plate Separation and Incomplete Penetration Due to Improper Gun Alignment - 1 1/2" Weld.
UNGRADED FLAWS

Cross Section of Plate 5E-Actual Size

2-IT Radiographic Quality Level

ILLUSTRATIONS OF OXIDE INCLUSIONS
(Judge severity according to scattered Porosity)
UNGRADED FLAWS

Cross Section of Plate 7E-Actual Size

Cross Section of Plate 8E-Actual Size

Undercutting

Incomplete Weld

ILLUSTRATIONS OF UNDERCUTTING AND INCOMPLETE WELD
(Both conditions are normally detected visually)