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1. INTRODUCTION

N “‘X‘“

One difficulty in vsirg laser systems for communication through the earth's
¢ atmosphere is that there is a possibility that the beam may warder from position

to pasition, and may thereicre completely miss the receiver in some instances.
Since the spot dances from position to positioa in times of order 1 milliseconZ,
this =ould not be = problem for systems using pulses much longer than 1 milii-
second, but would be an important consicderation for systems using pulses short
compared with a millisecond. in this report we shall therefore stody the nature
of the beam wander and derive recctlts agpropriate for application %o laser com~
munications systems.

FINETY Yo
Bk e

A

2 DERIVATION OF BEAM-WANDER FORMULA

;\"‘» TITR

It is well understood {rom purely physical considerations that eddies which
are large commpared with the diammeter cf a laser beam teni to deflect the beam,
while those smaller than the beam tend to broaden the beam bt do not deflect it
sigzrificantiy. Let us consider the natare of the received spot on an aperture ina
turbulent medinm. If we look over very short times we sze 2 broadened spot: as
we look for longer times wxe see that the spot dances from position to position.
Therefore if we average the received istensity over very lozg times, the total
broadened spot xould consist of txo components: actuzl short-term beam
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a. broadeaing due to scatter by the small eddies, and beam wander due to the effect
= of the large eddies. The temporal history of the received spot would be as indi-
; cated below® in Figure 1.

5

. A spOT TERM SPOT SIZE

3 LOCATION AT 1=

4 S LOCATION AT 4at
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Z LOCATION AT 3at

H LONG TERM SPOT SIZE
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3

Figure 1. Time History of the Waxder of a Laser Beam
in a Turbulent Medium

TR e 240

In the above figure, At = D/v xhere D) is the Yeam diameter and v is the trans-
verss comsponent of the wind. The long-term spot is what is obtained by averag-
ing over times T >> Ar.

by &

TP

3 The tong- a2nd short-term beam irradiance can be obtained from the modified
ES 2

Huygeas-Fresxnel principle. The short-term imdiancel”"" is

- 4

2 (] 2 z .o T s

e, <l(p|>ST=(:,-5E) Ed p l!s.r(p.u exp!-x-t_;_:-_e‘

Ee

/

178 1B

2 - s pl .k
- S‘d 3 eolgé%: <, € -3) e::p}x—f §-p'2. (1

*The above argumest holds for ko> C2 L115 <1, =here i is the signal wave-
number, C is the inrfex of refraction structure coastazt, and L is the path length.
For kg™ C.2 L1155 >> 1, we expect that the beam will be brokea tp into muitiple
patches with negligible wander of the beam cexntroid.

1. Ko=n. A. (1970) Focusing of light in a turdolext medium, Radiophvsics and
Quartum Electrazics 13:43-59.

2. Fried, D.L. (1955} Optical resolution through a randomly irhomogeneous
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where ¢ is the aperture field of the transmitter, L is the poth length in turba-
lence, k o 18 the vravammber. and MST is the short-term r:odulation transier
function given by (assuxmng D> t where t is the inner scale of the turbuler:ce)

IF RNy R AUy A LR

-0.13 12k2p5’3

SLdz (6l o T f ar ;‘3’3[1 -10(9] } (2)

1)

where 7 is 2 number of order unity and an is the index of refraction strocture
constamt. In Eg.(2) the integral cn £ from 7 (p/P) to = indicates that the effec
on the MTF of eddies larger than D is excluded. For ¥ (/D) < 1, Eq.(2) can
be approximated by {assuming also that D< Lo where L ° is the outer scale size
of the turbulence)

Mo ~ up{ _(3%)513 2 -o.s:(lg)m s o.oos(—’g)m - 0.38 zo“’(—’g)lm]}. (32)

For 7 (p/D)>> 1, 7e can approximate Mg by

s'r‘p L= exp{

B

1 43
M = (3b)
where
-3%5
py = |136%> L’BS‘ ' PR . )

For Y%jof order 1. we have not been able to cerive any approximate resuits for
I!S... ard the vl expression of Eg.(2) must be used.

The long-term averaged irradiance <[> LT 'S givea by Eq. (1) =itk Mgp T
placed by the loag-term moduiation iraxsfer functisn My .. M. . is givea b7
Eq.(2) xith Y= 0, ard is

- oo [ (L)s”] ©
LT oo -

3. Qlifford. S.. Ovhs. G.. and Lewrence, R. (1974) Sataration of optici1 scin-
tillation ty st-ong tarbulence. J. Opt. Soc. Am. §4:148-154.
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In general, the exuressicne for the loag- and short-term irradiance must be
evaluated numericaliv, as we have done in Section 3. However, there are limiting
cases where approximate analytical results can be obtained.

{a) 71:0/1) >> 1. Inthis case Mg = 2, . = 1, and we get

2 2
5 (1487 -

<i> - <I> = R

-t
~z

2p2
e, = expl|- —|. @
D
and have defined
x D 2pt
a = -2 p 2 ko
= —4- B8 = 5 -
1SL

Therefore if the coherence length B, is much greater than the aperinre diameter,
the long- and short-term averaged irradiances at the receiver are the same as
=ould be present zt the receiver if the turbulert mediumr were replaced by vacuum.

) ;%jn << 1. Inthis case the short- and long-term averaged irradiznces
c2n be approcimaated by

s W v o, L]

<HAIR = z8 S }'d}‘.‘aiﬁ?ﬂ ex;:r(-‘;h) 1-9.57(7x) J—y (l+5")$.(8)

0 (4
axd

&= 573

- 2§ . . 5 2

\.Hp3>LT = 23 } FE 3 ey expg-(-%—i) -¥ (1632)}. 9)
2

Equations (8) and (9 are readily evzivated numerically. However, it is possiblc
to estimate the radivs of the beamn by appraximating

= (" | -osen]
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by exp (- _\'2 _v: ), where ¥ satisfies

py 33
(—‘,—9 [1-0.57 (7y°)"3] =1. (10)
L]

If we vse this approximation xe have

82 e
<UPIp = 1+E2or‘;2 expl 4(“324}_;2)}- (11)

From Egq.{(10) xe see that the mean square beam radius is

2 - nl Bz ‘-—) L 2
%Gt = WPy, (k‘ D
3.2 p? 112
<
= - —_— . 12)
w202 % 1 2p2.2
[+] [+] 0

If we solve Eq.(10! for Soe T€ find (for wo/D <)

-35
m1
¢ =l o (2 13}
‘o~ D =I\D ] g
so that
655
2 412 p® 412 )"
OT Y1252 % T 2.2 “0'57\T) . a4
kD k p
o [+ I+

Equation (14) gives the mean square short-term beam radivs. The long-term
mean square beam radias is readily obtained from Eq.(14) by seiting y= 0.
We get

2 112 p® 412
CLr S lzpzt Rt 2 7 as
o kopo

From Egs.(14) and (15) it is nox possikle 4 calculate ifhie mean scuare baam
warder O,... sizce the mean sguare beam wander is related t5 % T and Ost 35
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(-4 w -

Lt = %1 * (16)

if we vse Eqs.{14) and (15} in {15), we get

2 ”» 1121
c"‘(. = %‘;2 1- [1 - o.s7(-0—°) . (17)
ko P, X

Since xe have been assuming that ()rp\.’.’D' << 1, we can approximate Eg.(17)
farther by

3.2 e 3,2 4
a\g = 3'22{;;13 lgn = 207y L ¢ 4 C:(z') B, (18)
k°D P - DmLaB -
° ()
2

Nowx O, = L2 <¢2>. where <62> is the _aean square angle of wander of the team.
We therefore have for 10, /'D <«<y:

L
S az’ 2" (73 a9
(1]

4.70 71,3

2
<¢*> = =
plB ;33

We kave rot vet specified 71!3. bot estimates oMtaired by comparison with 2ata
appear to inZicate *hat 0.9<¥13 < 1.7. We shall ciose y¥> = 1.¢. since this
g€ives a reascnable {it with the data of Doxling aad Livings‘.nn.s and vith the theo-
retical results of Fried.2

3. NUMERICAL RESULTS

Egquations (14) 2nd (13) give the short- and long-term beai: snread for
WQ/D << 1. However, we will alsg often be interested in the case when
mc/l) ~ 1. In this case the loog- ard short-term irradiances must be evaluated
numerically. If we assame . & perture field is given by Eg. (7). then we must
evaluate

<ifp)n.. = 28° Q—d 3 (as) expl-s2148% - £ )' (20)
10V = yéy J (a3 eXP |5 (1+87) - s(r‘-
(1]

5. Dowling, J. and Livingstoa, P. (1973) Behavior of focussad beams in atmo-
spheric turbalence: Measurements and comments on the theory, J.0p2.
Soc.Am. 53:845-358.
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‘ <HUpy 1 = 2p° S‘Q ydy J (ay) exp {-yz 1+ 8% -(%E)SB; , (23)
H [1]
4 where
£.6) = FSB(F_Z)SBgl - 0.91 S;Uds g [1 - Jo@]}. (22)

Equations (20) and (21) have beea evaluated numerically to determine the long-
term and shert-term beamwidth as a function of rpq/D. for various values of
52 xhen ¥ = 1. These results are shown in Figure 2. From this figure we can
readily determine the mean square beam wander since

2
c
2 o2 ;.51
R K Ly
Lt/
A 2
_ [41,2 p2\ b3 Ost
= 2 (1 72) TV o
l“ D P, OLT
N 2
2 2 (o4
_-D7--il¢—+l l-—s—T-. 22
{ Pof | LT
and OST/GLT is given in Figure 2.
ty —
8
06
c >
(2Z)
[e2 3
027
2 L ) |
GO 10 30 40

20
Polt
Figure 2. Ratio of the Short-Term to Long-Term Spot Size
of 2 Laser Beam in a Turbulent Medium
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Since the beam wander is a gaussian random variable.s we can now calculate
the probability that the beam will miss a point aperture. We have for the prob-
ability of the beam wander

2
Pw

5t -
l 20y

The probability that the beam will miss (by miss ®e mean that the amplitede at
the receiver «ill be reduced by more than e-l) a point aperture is equal o the
probability that th» beam wander exceeds the short-term beam spread. That is

?(D“J = -')_1—2_ exp (24,

20y

an

Puass = 2% S Plag) oy dpy
[+

ST
23
(
= exp -%(agy‘. {250
L1/ |
Upon using Eq.{23) in (25) we have
2
(163)
z \o
- \'LT
PMISS = _—— (26)

This result i plotted in Figure 3. For the tase of a receiving aperture of
radius AP. we replace oS‘l‘ by :‘.R - Osp in 2q.{25). In the next section we
will do an example to iflustrate the vss of Figeres 2 and 3 for zimaspheric

propagation.

4. AFFLICATION TO THE FARTH'S ATMOSPHERE

An important application of our results is to a laser communications link
between the earth and an orbiting satellite. Let us suprose the satellite is at an
altitode h s and at an angle 8 relative to the norma? %o the earth at the transmitter,
as shown in Figure 4. For this cas~ we may write

12
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3 < cos” [-—’ ] (28)

we can appraximate Eq.{27) by
dz = sec 8 dh ., (29)

and we may therefore evaluate p °° for the earth-to-satslite path 2s

2 h
_ 14k sec 8
posrs = —‘;33—S Y oy 2 ) w53 (30)
hs [¢]
A commoniy used distribution for C: is (31)

2 _ A2, £
c? - c2x cxplhlho].

so that for hs >> hc

-8R _ 2 ~38 M Z 83-v, -3
Py = 1.46 ko sec & 133-9 Co b L M (32}
where I is the gamma function. I we take C°2= 10-13, v=1/3 and b°= 1000

meters, we get

= n [8.c5x 10792 e.:i,5 (33)
Py = s[' 1 o S€C ] meters.

For 6 =30° and k_ = 0.92X 10 m ' (0.633 pira light), == have
= -4 \
P, = 2.63X 10 hs meters. (34}

Now suppase the transmilter diameter D is 1: 371 the satellite is at an
altitcde h_ of 200 k3. Thea p /2= 52.5 and 82=10"3. Consegoently. from
Figure 2 we have UST/:LT= 1 and from Figure 3 we see fhat the probabilite
that the beam {over times of order D/+) will miss a2 point receiver on the sa2tei-

lite is Pmssa'o‘ Of course as 8 - S0°, Pycs =111 ro longer be nearly ogual
to zero.
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