MAGNETIC AND ELECTRICAL PROPERTIES
OF NOVEL COMPOUNDS IN THE ALKALINE
EARTH - TRANSITION METAL - SULFUR
AND SELENIUM SYSTEMS

Hugo Steinfink

Texas University at Austin

Prepared for:
Air Force Office of Scientific Research

October 1974
Magnetic and Electrical Properties
of Novel Compounds in the Alkaline Earth -
Transition Metal - Sulfur and Selenium Systems

by

Hugo Steinfink
Department of Chemical Engineering
The University of Texas at Austin
Austin, Texas 78712

October 1974

This research was supported by the Air Force Office of
Scientific Research (AFSC) under the grant AF-AFOSR 72-2199.

Approved for public release; distribution unlimited.
The interrelationship between crystal structure and electrical and magnetic compounds has been investigated. It has been shown that the physical behavior of Ba-Fe-S compounds can be predicted from a knowledge of the crystal structure and the presence of mobile or localized electrons. An unusually large range of temperature independent electrical conductivity has been observed for BaCu₄S₃.
Qualified requestors may obtain additional copies from the Defense Documentation Center; all others should apply to the Clearing House for Federal Scientific and Technical Information.

Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.

Approved for public release; distribution unlimited.
Electrical and Magnetic Properties
Of Some Ba-Fe-S Compounds

This report covers the research effort from October 1, 1971 to August 31, 1974.

During the past several years we have synthesized a number of new barium-transition metal chalocogenide compounds. The crystal structures of most of these compounds are based on close packing of BaS₆ trigonal prisms with the transition metal filling some of the tetrahedral interstices. Table 1 summarizes the compounds whose structures have been determined and structural information can be found in references 1, 2, 3, 4, and 5. When iron is the transition metal some of the structures can be described in terms of FeS₄ tetrahedra which link by edge and/or corner sharing into infinite chains which are separated by about 6Å from adjacent chains. Other compounds have structures in which the FeS₄ tetrahedra are isolated, either singly or as bi- or trinuclear units. These arrangements produce one dimensional arrays of iron-iron and sulfur-iron interactions which are expected to give rise to interesting magnetic and electrical properties. It was the purpose of the research effort under this grant to evaluate the physical characteristics of these compounds and we concentrated on several iron compounds and on one copper phase.

Figure 1 shows the FeS₄ structural units for several iron compounds. Infinite linear chains of edge sharing tetrahedra are present in Ba₉Fe₁₆S₃₂; infinite double chains in BaFe₂S₃; zig-zag linear chains formed by corner sharing of trinuclear units in Ba₇Fe₆S₁₆; infinite linear chains of tetrahedra sharing corners in Ba₂FeS₃; infinite columns formed by four corner sharing FeS₄.
in $\text{Ba}_6\text{Fe}_8\text{S}_{15}$. Isolated trinuclear units formed by a central tetrahedron sharing one corner and one edge with two other tetrahedra are observed in $\text{Ba}_{15}\text{Fe}_7\text{S}_{25}$; isolated binuclear units in $\text{Ba}_9\text{Fe}_4\text{S}_{15}$; and isolated tetrahedra in $\text{Ba}_3\text{FeS}_5$.

Table 1.

Stoichiometries of compounds synthesized in Ba-T-X systems. Where the anion is not indicated it is sulfur.

<table>
<thead>
<tr>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3Se</td>
<td>2</td>
<td>1</td>
<td>3Se</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3Te</td>
<td>7</td>
<td>6</td>
<td>14</td>
<td>9</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>7Se</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>25</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5*</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3β</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2Se</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The formal transition metal valences that one expects from the stoichiometry of the compounds are summarized in Table 2. The magnetic moment for Fe$^{+3}$ is about 5.9 B.M. and for Fe$^{+2}$ and Fe$^{+4}$ is about 5 B.M. so that

**Table 2.**

Formal transition metal charges based on stoichiometries.

<table>
<thead>
<tr>
<th>Compound</th>
<th>No. Fe ions</th>
<th>divalent</th>
<th>trivalent</th>
<th>tetravalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba$_2$FeS$_3$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba$_7$Fe$<em>6$S$</em>{14}$</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaFe$_2$S$_3$</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba$_6$Fe$<em>8$S$</em>{15}$</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba$<em>9$Fe$</em>{16}$S$_{32}$</td>
<td>2</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba$<em>{15}$Fe$</em>{7}$S$_{25}$</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba$<em>9$Fe$</em>{4}$S$_{15}$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba$_3$Fe$_5$S$_6$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tetrahedral articulation

- Corner, = chain
- Edge, corner and edge, = chain
- Edge, double = chain
- Corner and edge, = column
- Edge, = chain
- Isolated trinuclear unit
- Isolated binuclear unit
- Isolated single tetrahedron

these values are expected for compounds in which the formal oxidation state of iron is tetra-, tri- or divalent and intermediate values are to be expected for mixed valence states. The measured magnetic moment, however, cannot distinguish between possible models for mixed valence states. The electrons on the iron atoms can be localized or fast exchange can occur so that an average value for Fe exists. However, in compounds whose structures consist of infinite chains the electrical resistivity is expected to be relatively high when localized electrons are present and should be relatively low when fast electron exchange, i.e. mobile electrons, are present. Furthermore, Mössbauer spectra should also indicate
the oxidation state for iron atoms, i.e. different isomer shifts will be observed for different oxidation states. Table 3 summarizes the currently available data of the magnetic moments together with the electrical parameters, band gaps, and isomer shifts obtained from Mössbauer data.

The magnetic moment, the high electrical resistivity, and a single large quadrupole splitting at room temperature with an isomer shift value of 0.62 mm/sec. for Ba₂Fe₅S₇ are consistent with Fe²⁺ in agreement with the expected valence based on the stoichiometry of the compound. The magnetic moment for Ba₂Fe₅S₁₄ is consistent with the averaged values for the iron oxidation states expected on the basis of stoichiometry. The high electrical resistivity would indicate that the electrons are localized on the crystallographic iron sites or that delocalization occurs only within the trinuclear unit but no electron transport occurs between the units. A close examination of the environment of the three iron atoms in the basic trinuclear unit in this compound indicates that the iron atoms have a slightly different atomic environment and that three sets of quadrupole split lines might be expected at room temperature. Figure 2 shows the Mössbauer spectrum of Ba₂Fe₅S₁₄ and indeed three sets of quadrupole split lines are evident. The interpretation of these data leads to the conclusion that the electrons are delocalized and that the delocalization is restricted to the trinuclear unit. The 3.67Å distance between Fe-Fe located in the tetrahedral interstices or the corner sharing tetrahedra prevents the overlap of orbitals between the units and no continuous conduction band is formed.

In Ba₆Fe₈S₁₅, whose fundamental structural unit is an infinite columnar arrangement of FeS₄ tetrahedra, the magnetic moment is consistent with the average expected for 2 Fe³⁺ and 6 Fe²⁺ on the
### Table 3.
Summary of paramagnetic moment, room temperature electrical resistivity, band gap and isomer shifts.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Effective moment, B.M.</th>
<th>Room temperature electrical resistivity, ohm-cm</th>
<th>$E_g$, e.v.</th>
<th>Room temperature isomer shift,* mm/sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeS$_3$</td>
<td>5.29</td>
<td>$10^4$</td>
<td>0.60</td>
<td>0.62</td>
</tr>
<tr>
<td>Fe$<em>6$S$</em>{14}$</td>
<td>5.70</td>
<td>$10^3$</td>
<td>0.62</td>
<td>0.49, 0.36, 0.36</td>
</tr>
<tr>
<td>Fe$_2$S$_3$</td>
<td>4.85</td>
<td>0.5</td>
<td>0.16</td>
<td>0.41</td>
</tr>
<tr>
<td>Fe$<em>8$S$</em>{15}$</td>
<td>5.57</td>
<td>1.0</td>
<td>0.31</td>
<td>0.47</td>
</tr>
<tr>
<td>Fe$<em>{10}$S$</em>{32}$</td>
<td>5.57</td>
<td>1.0</td>
<td>0.14</td>
<td>0.20</td>
</tr>
<tr>
<td>Fe$<em>7$S$</em>{25}$</td>
<td>5.5</td>
<td>$10^5$</td>
<td>0.20</td>
<td>0.20, 0.60</td>
</tr>
<tr>
<td>Fe$_5$S$_3$</td>
<td>5.1</td>
<td>$10^5$</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

* Relative to Fe foil

Based on the stoichiometry, the electrical resistivity is quite low indicative of rapid electron exchange. Thus all the iron atoms should appear the same and indeed the Mossbauer spectrum shows a single quadrupole splitting at room temperature with an isomer shift that can be interpreted as due to an iron atom of an intermediate oxidation state.

EaFe$_2$S$_3$ has a magnetic moment as expected for Fe$^{+2}$ but the electrical conductivity is low and thus indicative of mobile electrons. On the basis of stoichiometry one would expect that only divalent iron should be present and the low resistivity is rather unexpected. The Mössbauer spectrum shows a single quadrupole splitting indicating that all iron atoms are in the same environment; the isomer shift is almost exactly intermediate...
between the extremes of 0.20 and 0.60 which we have observed for Fe\(^{+3}\) and Fe\(^{+2}\) respectively. All the evidence points to the delocalization of nearly one half electron per iron atom.

The structure of Ba\(_9\)Fe\(_{16}\)S\(_{32}\) consists of an infinite chain of edge-sharing FeS\(_4\) tetrahedra and the Mössbauer data show a single quadrupole at room temperature with an isomer shift of 0.20 mm/sec. consistent with Fe\(^{+3}\). For this stoichiometry the formal charge distribution must be 14 Fe\(^{+3}\) and 2 Fe\(^{+2}\). The Mössbauer results indicate the equivalence of all Fe and therefore the electrons should be mobile. The resistivity of this material is of the same order of magnitude as for Ba\(_6\)Fe\(_8\)S\(_{15}\) and BaFe\(_2\)S\(_3\) and mobile electrons are present.

The measured magnetic moment of 5.5\(\mu_B\) for Ba\(_{15}\)Fe\(_7\)S\(_{25}\) is in good agreement with the average spin only magnetic moment expected for six trivalent and one divalent iron atoms. The Mössbauer spectra show quadrupole split lines with isomer shifts of 0.20 mm/sec. at 300\(^\circ\)K and 0.31 mm/sec. at 78\(^\circ\)K, consistent with the values found for Fe\(^{+3}\). A close examination of the Mössbauer spectrum indicated the presence of a small shoulder which we interpret to be due to one Fe\(^{+2}\) in the structure. A theoretical curve was calculated on the basis of a mixture of 6 Fe\(^{+3}\) and 1 Fe\(^{+2}\) using isomer shifts of 0.2 and 0.6 mm/sec. and, indeed the theoretical curve reproduced the observed features. It is concluded, therefore that the oxidation state of iron in this compound consists of a 6:1 ratio of trivalent to divalent iron and that the electrons are localized on the crystallographic sites. On the basis of the Mössbauer results this material can be expected to exhibit a high value of the electrical resistivity, comparable to that observed for Ba\(_3\)Fe\(_2\)S\(_4\). The electrical measurements confirmed that this
material is a high resistivity semi-conductor, Table 3.

The measured effective magnetic moment of $5.1 \mu_B$ for $\text{Ba}_2\text{FeS}_5$ corresponds closely to the value expected for $\text{Fe}^{+2}$ or $\text{Fe}^{3+}$. The isomer shifts obtained from Mössbauer spectra at 300°K and 78°K are 0.17 and 0.26 mm/sec. respectively. At both temperatures only one quadrupole splitting is observed of 0.50 mm/sec. The value of the isomer shift is consistent with $\text{Fe}^{+3}$ on the basis of our results in other related compounds in the Ba-Fe-S system. The apparent disagreement between the observed magnetic moment, consistent with either $\text{Fe}^{+2}$ or $\text{Fe}^{+4}$ and the Mössbauer isomer shift, consistent with $\text{Fe}^{+3}$, can be resolved by the supposition that back donation of electrons occurs. It becomes difficult to define a precise value of the oxidation state of iron within the tetrahedron if this back donated electron density is delocalized over the orbitals constrained to the tetrahedron. The delocalized electrons would not contribute significantly to the measured paramagnetic moment, but would cause the isomer shift to resemble that for $\text{Fe}^{+3}$. The electrical resistivity of this material is expected to be fairly high because the $\text{FeS}_4$ units are isolated, and the measurement yields a value of about $10^5$ ohm-cm, Table 3. The results of this research can be found in references 6 and 7.

As a result of the magnetic and electrical measurements combined with the structural information the interrelationship between physical properties and atomic structure for these compounds has become clear. We expect to continue work in this system and use this knowledge to guide us toward experiments that, hopefully, may lead to materials with technologically useful properties.
Electrical Properties of \( \text{BaCu}_4\text{S}_3 \)

\( \text{BaCu}_4\text{S}_3 \) has an \( \alpha-\beta \) phase transition at \( 640 \pm 10^\circ \text{C} \) and melts at \( 879 \pm 10^\circ \text{C} \). We synthesized this material and investigated the crystal structures and electrical behavior. The \( \alpha \) and \( \beta \) phases have very similar orthorhombic structures and consist of \( \text{BaS}_6 \) trigonal prisms which share the triangular faces to form an infinite chain. Adjacent chains are displaced so that sulfur atoms cap one of the rectangular faces in the \( \alpha \) phase and two faces in the \( \beta \) phase. The unique aspect in these structures is the interweaving of infinite copper chains, zig-zag in the \( \alpha \) and linear in the \( \beta \) phase, \( \text{(8)} \). This unusual array of copper atoms induced us to expend a considerable effort on single crystal growth and the evaluation of the electrical behavior.

Electrical resistivity measurements were performed on pressed bars and on polycrystalline chunks. The pressed bars had dimensions of about 2.5 cm x 0.5 cm x 0.1 cm, and were obtained by pressing fine powder into a die, under a pressure of 12,000 psi, followed by heating in a vacuum at a temperature of 400°C for 48 hours. The polycrystalline chunks were selected from the reaction product. Their dimensions were about 0.2 cm x 0.2 cm x 0.1 cm. The four-probe method of measurement was used, except for the very small samples which were measured by the two probe method.

One of the important problems in carrying out the measurements was the electrical contacts between the copper leads and the sample. When chunks were used, the contacts were made with silver paint. Better contacts can, in principle, be made when using pressed-bars. The current-carrying copper leads may be mounted into the die when the powder is poured in and pressed together.
Good contacts were obtained in this way, although the sample frequently broke when removed from the die. The low temperature measurements, to 78°K, were performed in a specially designed apparatus while the high temperature measurements were performed in vacuum or in a flowing nitrogen gas stream. The temperature was measured by a chromel-alumel thermocouple mounted next to the sample.

Typical results are shown in Figures 3 and 4. The resistivity of the $\alpha$-BaCu$_4$S$_3$ pressed bar is almost independent of temperature. The resistivity of the $\beta$-BaCu$_4$S$_3$ chunk has a behavior characteristic of a degenerate semi-conductor. The range of temperature independence for the $\alpha$ form is very unusual and this observation has been repeated on several different samples. We intend to do considerably more work on this material and we shall attempt to grow single crystals large enough for various measurements in order to elucidate the mechanism responsible for this behavior.
Fig. 2 Room temperature Mössbauer spectrum of Ba7Fe6S14. Brackets denote the matching of quadrupole split lines.
REFERENCES


Research Participants

The following personnel participated as predoctoral research assistants:

J. E. Iglesias
A. Chan

The following personnel held post doctoral research appointments:

K. Pachali
J. T. Lemley
J. E. Iglesias
Z. Eliezer

Publications


In addition to the above it is anticipated that at least two additional publications covering work done on the Ba-Fe-S system and on BaCu$_4$S$_3$ will result from work done under this grant.

Patents

No application for patents have been filed at this time as a result of this work.

Dissertation, Ph.D.