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ABSTRACT 

We consider the problem of finding an optimal set of indices for a file. A general 

rrodel for a file is assumed together with a probabilistic model of the transactions condu.ted 

with it: Queries, Updates, Insertions and Deletions. It is shown that all the information 

assumed for each attribute can be condensed into two parameters and that properties of the 

optimal solution can be derived from this condensed information. An algorithm to find the 

optimal set of indices based on these properties is exhibited. 
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INTRODUCTION 

We consider here the problem of selecting a set of attributes for which a secondary 

index should be provided in order to minimize the oxpocfed cost per transaction conducted 

with a file. 

A proper solution to ths problem has to consider the system in which the file wilt 

exist as well as characteristics such as accessing mechanisms to it and statsficai properties 

of the transactions that are conducted with the file. Some systems which have been 

implemented use the simple approach of providing mdces for all attributes [2] while others 

do not provide indices at all [6]. For these systems the optimization profc'em does rot exist. 

Between these two extreme approaches there arc systems like XRM [S] which alow the 

user to specify which domains of the relation should be indexed. Some hirh level larruages 

have been designed [a] for which the system, while in the process of perfo^Mng a 

transaction, creates temporary indices for some attributes. After the transaction is 

completed, the user is Informed of the newly created indices and may then choose to Keep 

them or delete them. Systems such as these and others for which on lire transactions may 

be conducted with a file by users whose demands on the file change in t.me are best suited 

for solutions as described here. After collecting statistical properties of the transact,on that 

the current set of users conducts with the file, the system may compute an optimal set of 

indices to minimize transaction processing time. Then, it creates its optimal irdex set 

throwing away those indices which contmute to increase transaction time and creating 

indices which help to decrease transaction time. Since this overhead processing may be 

appreciable, the system will probably perform this updating only at son« fixed intervals of 

time. 

Recently, a number of studies have appeared in the literature which cor. der this 
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problem. Some of them have taken an empirical approach [9] while others [7], [10], [14] 

attempt to formalize the problem to obtain an analytic solution. Since Ihfl data baoe usually 

exists in a complex environment there are innumerable factors that will influence the index 

selection problem and, in order to hope for a solution, some assumptions must be made. In 

[7] the restriction was made that transactions could only specify one attribute value in their 

specification part while in [14] the transactions were reduced to queries and updates only 

and the statistical properties considered were minimal. We will now present a model which 

encompasses a variety of situations by allowing great flexibility in the specification of the 

statistical properties of the transactions as well as on the storage organization and retrieval 

mechanism for the indices. The mclucion or exclusion of an attribute in an optimal set of 

indices will depend on two parameters which are derived for each attribute when the 

specific properties mentioned above are knov n to the system. By studying properties of 

the optimal solution we are able to describe an efficient algorithm which makes use of these 

pairs of parameters to determine the optimal solution. 

SECTION 1 

In this section we present the model of the file, the assumptions on storage 

organization and retrieval, and the types of transactions conducted with it. 

We will assume a relational model for a data base [5] and we will consider the 

problem of index selection when tliere is a single relation in the data base (the results 

shown here can be directly extended to a multi-relational data hare provided we assume 

independence between them. 

The file F will consist of a set of N vectors (or records) v = (vj,V2,...,vm) where 

each v, C A , the j th attribute. Thus F c A jxA2X.. xA^ We also assume the existence of 

atoms for the domains [15]. Fach attribute will then be a finite set whose elements can 

appear in a transaction. 

M^MH 
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We will assume that the use of secondary indices is the only mechanism that will be 

jsed to facilitate the search for records in the file. Thus, we will consider h^re that the file 

is randomly stored in secondary memory and is not chlStei ~J according to any criteria. The 

approach of clustering records has been studied in the literature [1 1] but cannot be taken 

when we assume that the data base is used by several users with different requirements on 

it. Thus, the time required to retrie.e n records will be the time to bring the pages which 

contain them. Since the records are assumed to be randomly distnbrted and that selection 

of an optimal set of indices will result in a small expected number of records to be accessed 

*hen processing a transaction, this time will be en, for some constant c which measures the 

time required to bring a page to mam memory. 

Since the method for storing and retrieving indices is a fundamental characteristic of 

a system using secondary indices for processing trarractions we will not impose any 

restriction on it. The only structure tnat we impure is that, if an index Ij for the j-th 

attribute exists, Knowledge of a value a < AJ will produce a list of pointers to records (which 

we will in the sequel refer to as tid for tuple identifier) in time flj.a) for some function f. 

For example, if the indices have the usual two level hierarchical organization and are stored 

on a disK, f(j,a) could be taken to be ^ ^(^(aW where C] is the constant time required to 

find the head of the appropriate list of tid's, C2 is the transfer time per tid and (^{a) gives 

the proportion of the total number N of records that have the value a as its j-th attribute. 

Let N be the size Of the file. Even though deletions and insertions will be allowed, 

we assume that the size of the file remains fixed throughout the period between successive 

computations of opt-mal sets of indices. For each attribute Aj we will assume a distribution 

ß winch gives the proportion (3 (a) of records in the file having a particular valut a < Aj as 

its j-th attribute. (One simplifying assumption that somctimcr is made is to consider 0| a 

constant function.) 

mamm 
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There will be four types of transactions conducted with the file: Queries, Updates, 

Insertions and Deletions. It is frequently the case that an Update or a Deletion is specified 

in two components: a selection component which determines a set of records to be 

processed, and an action component which, in the case of Updates determines how each 

record in the set is to be updated, and in the case of a Deletion is null, simply meaning that 

that set of records which was found is to be removed from the file. As will be discussed 

below, finding the relevant records implies a number of actions. After they are done, we 

can no longer assume that any part of an index is in mam memory so thai the updating on 

the indices that results due to an Update or a Deletion can be assumed to be independent of 

the processing of the selection part of the corresponding transaction. For this reason we do 

not include a selection part in the formal specification of an Upd:te or Deletion. 

A Query Q will be specified as Q = (q,,q2,...,qm) where q, < Aj U {x}, x is a symbol 

not in any set Aj. If q( < A|, we say that the i-th attribute is specified in the query. Note 

that a query to our model can result fron, a true query in the system, or an update or a 

deletion as discussed above. An actual query is sometimes accompanied by an oufout part 

which specifies that some attributes of the set of records found to satisfy the query are to 

be displayed or further processed. These operations take time mdepencent of the set of 

attributes for which an index exists and thus can be safely ignored for our analysis. 

We will assume, as is done in most systems, that a query is processed as follows: 

1. For each specified attribute j, for which an index exists, a list L is found containing 

all tids of records whose j-th attribute have the specified value. 

2. From all lists l^ an intersection list L is formed L = fl L . This list contains ail tids of 

records all of whose attributes for which an index exists and which are specified in 

the query have the specified value. These records will be referred to as partially 

qualified records. 
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3. All partially qualified records are brought to main metnory where the values of those 

specified attributes for which there is no index are checked. Those records which 

are found not to satisfy the query are disregarded (these are sometimes referred to 

as false drops) and a list of qualifying records (or their tids) is obtained which can 

be further processed. As w^ mentioned before any further operation is 

independent of the chosen index set and will not be considered any further. 

Let n.ia) be the probability that the j-th attribute is specified in a query to have the 

value a ( A^.   Fo- convenience we will denote as p: the probability that the j-fh attribute is 

specified in a query.   Thus, 

The expected cost to process step I above is given by 

t        1 ct.laHO.a) 
j(D      a(A| ■ 

where D is the set of attributes for which an index exists. The cost of step 2 can 

be considered negligible as compared to the cost of I and 3. The reason for this is that the 

intersection list can be constructed in mam memory and any processing time spent here is 

small compared with the cost of interacting with secondary storage. It is not hard to see 

that the expected number of tids in the resulting intersection list L is given by 

M-N.    n[i  -p   ♦    I 0:(«) <!;(•)] 
KD >     aCA. J       J 

Step 3, as explained at the beginning of this section is proportional to \h$ length of 

L, c|L|.   The cost of removing the false drops to form the final list on be considered, is in 

step 2, to be negligible since it is done in mam memory.   Thus the expected cost to pro:css 

a query is given by 

Cn =     X I a.fa) f(j,a) ♦ cN .     n [I - p. ♦    I a.ta) ß.U. 
Q      j(D      a(Aj' )(D 1      «A; I        '     ' 

m^mmmm 
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An y^dcito U will be specified ds U - [v-.o^^y,^) where each u, ( Aj IJ {x} and 

v ( F. The intended meaning for an update is that rrcord v (which can be identified by its 

tid) has to be updated on those specified attributes A, (i.e., ^hose for which Uj ^ x) to have 

the new valiie u:. 

To process an Update, one has to (I) rcirieve the record v, update its specified 

attributes, and store it back again and (2) update all relevant indices. The time required to 

perform (1) is independent of the existing set of indices and thus we do not consider it. 

Updating the indices requires reading and writing back the bucketd») for the old value of the 

attribute and doing the same for the new value. We will assume that both these operations 

are performed even if these buckets coincide. (As it turns out, consideration of this fact 

would only rest1» in a slightly more complicated expression for the parameter K{i) associated 

to the i-th attribute (see Section 2), but does not otherwise change the nature of the 

algorithm to find an optimal set of indices.) 

Let f{j,a) be the time required to read and write back the "a" bucket for the j-th 

index.   Then, the expected C0'..t of an update on the j-th index is 

b(Aj > a(Aj > 

where the first term inside the square bracket is the cost of updating the old bucket 

(assuming that the distribution of the number of tids on all buckets of the j-th index is given 

by (3^) and the second term is the cost of updating the new bucket.   Also we assume a 

probability ^(b) that the value b ( A: for the )-th attribute will be specified in an Update. 

Thus, if we have a set D of indices, the expected cost of an Update is given by 

CM =     1        * [V.a/a) ♦ MaljHj.a)       where 
j'.D      atA.   '  i i 

If; -       5!  H (b) is the probability that the j-th attribute is specified in an update. 
' b(A. J 

« A bucket is the set of all tids of tuples having the same value on an indexed attribute. 
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Insertions!   An insertion is specified as I(v).   It requires insertion of the record 

itself   plus  the  updating of  all  indices.    As was the case  for  updates  the  first  cost  is 

independent of the index set.   Assuming a distribution of values given by ß., the cost of the 

second component is 

I 1 ai(a)f,(j)a). 
j<D      a(Ap 

Deletion: A deletion T(v) of the record v requires a simlar set of operations as an 

insertion and the expression for the resulting cost is the same, Cj = Cj. 

Combining   all  expressions  obtained  .ibove, we  get   that   the  expected  cost  per 

transaction is given by:   E(D) = ""QCQ • ryCy ♦ rjCj ♦ rjCj where r^, ry, rj and rj are 

respectively, the probabili'.'es that the transaction is a Query, an Update, an Insertion or a 

Deletion.   This expression can also be written as 

E(D) =       1 H(j) ♦ G(D) (1) .where 
jcD 

H(j) -        X {rQaJ(a)f(j,a) • [r^fi^a) * |»j{i)) • i^r^ß^fHa]] and 

G(D) = r0cN       n [1 -p. ♦    1 a.fa) ^.(a)] 
y KD J      a(A; 

J       J 

The problem of finding an optimal set of indices can he now forma'ly defined as that 

of finding a smallest set D fc M = {1,2,...^} which minimizes the   hove expression for E(D). 

SECTION 2 

Analysis q_f the Cost Function 

A straightforward evaluation of E(D) for all suDsels of M would certainly solve the 

optimization problem Wr> zre interested in finding algorithms which take less than 2m to 

obtain the optimal set. Another approach would be to construct chains of sets 

DQ-^.D] J2'->\' w,'h each Dj»| a SIJPer5e' 0' D, obtained by adding ore more element of 

M, such that ElDj) resulted in a nomncreasing sequence.   Proceeding in this manner, we could 

HMBBM 
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find a collection of locally optimal sets D (i.e., all sets D such that, for all j, E(0) < E(D U {j}) 

and E(D) < E(D - {)}). In general, by following this procedure we may not find the optimal 

solution among the collection of sets found. For example, assume an optimization problem 

over a set {A,B,C} whose cost function P(D) is such that £'(♦) = 5, E'^A}) = 6, E'dB}) = 3, 

E'UC}) = 4, E'({A,B}) = 9, E'({A,C}) = 7, £'({8,0}) = 8, E'dA.B.C}) = 2. The above method 

would produce the collection {B} and {C} as local optimal solutions reached from ♦, thus 

missing the optimal set {A.B.C}. 

There is a simple condition on a cost function, which we call the regularity condition, 

which suffices to guarantee that the above procedure will obtain the optimal solution among 

the collection of sets which finds. The condition states that, if while performing the 

procedure, a set D is reached and there is an index j / D which increases the cost function, 

then the index j can be ignored in any subsequent search from D.   Formally, we have: 

Definition h Let E be a cost function defined on subsets o' a set S of points. Let 

A(D,j) = E(D ü{j}) - E(D). Then E is said to be regular if A(D',j) > A(D,j) for any point j and 

sets D, D" for which D e D' and j / D'. 

Note that if E is regular and for some D a. d j / D, AlD.j) > 0 then, for all D S D' 

with j < D" we have AID',)) > 0. 

The following lemma states that, for a regular function, the above procedure 

succeeds in obtaining an optimal solution. 

Lemma U Let E be a regular cost function and D a locally optimal set (i.e., 

E(DU {k}) > E(D)    and    E(0 - {k}U E(0)).     Then    E(D0) > E(D1 )>...> E(Dn)    for    all 

sequences of sets Dg^li-tDn = D sa*isfy|nB iD|i " '• 

Proof: We have to show that for any subset D' of D, EID' U {j}) < E(D') for all 

j ( D-D'   or   equivalent^,   A(D',))   <   0.    Assume   the   contrary,   and   consider   the   set 

MMH 
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D" = D - {j}. Clearly, D' S D". By awumption, A(D',j) > 0, which implies, since E is regular, 

that A(D",j) > 0.   This contradicts the fact that D is a local optimum. | 

Lemma 1 states that if D is a local optimum, it will be found by the procedure 

described above becaus* for arv^ chain ♦ = DQ,D|,...,Dn = D with 10,1 = i we have that 

E(DQ),E(DJ ),...,E(Dn) is a nonmcreasmg, sequence. (We note here that an analogous proof 

shows that Lemma 1 also holds if the sequence of sets is decreasing, i.e., S - DQ:Di,...,Dn 

satisfying jD,! ■ [SI - i, so, in particular, a search which starts from S will also find the global 

optimum. 

There is a class of cost functions which includes our particular cost function, which 

are regular.   They are characterized in the next definition and lemma. 

Definition 2: Let K be a function which maps subsets of S to a totally ordered 

domain with order relation r.iven by < . Then K is said to be monotone ponincreasi^o (mni) 

if D e D" implies K(D') < K{D). 

Lemma 2: Let E be a cost function such that A(D;j) = E(D I) {j}) - E(D) can be 

written as A(D,j) = A(j) - 6(0,]) where, for each fixed j, BiD,)) is mni.   Then E is regular. 

Proof: Let D', D be subsets with D £ D' and let j bo a point j < D'. We have, by 

definition, A(D',j) - A{D,j) - [A(j) - 8(0',))] - [A(J)-B{D,J)] = B(P,j) - BIO',)). Since, for fixed 

j, B(D,j) is mni then D S D' implies B{D\i) < B{D,j).   So, AID',,) _ A(D,j) as required. | 

Our first result shows that the cost function we are dealing with is regular. 

Theorem 1;   Let Z[D) =      1 H(j) ♦ GiDi as defined in (1). Then E is regular. 

Proof:   By definition, A(D,j) = H{j) » G(0 II {j}) - GID) 

H(j) - {p; - 1 a.MßA*)) G(0) = H(j) - F(j)G{0) where 
' a(A: '      i 

F(j) - p X a.{a)a,{a).   Smce G is clearly mm, E is regular, by Lemma 2. 
a(A. i      ' 
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Since JE^h) . Pk, we have ,„„ (, < m < , (assum.ne ^ > a and ^ ^ ^ 

This a5s„o,pt,c,„ i. ,„,.;,„„ ^ pk . 0 „ |Ak| . , ^ nk) _ 0 ^ ^^ ä(DW ^ o so 

ih. .-ih Minw. would not be pärl of an/ oplima| so|üiioa in |he ^^^ ^ ^ ^^^ 

this to hold for all attributes). 

Other classes of funct,ons sat.sfy.g Lernma 2 (and thus the regular^ condition) 

have appeared -n ,he l.era.ure. In [3] the fo„ow,n8 cos, funct.on .s stud.d in connects 

with „ cplirr?l allocation of cop^s of f,les m an information network with n nodes: 

E(D)E     Jb^*    i/i^^ where Uk dopend only 

on parameters associated lo the k-th node m the network and 

Q,(D) =    Xj minDd(k        where Xj .s a constant associated with the i-th node and d, 

I. . cos, assocaied ,0 the M, between „odes i and k. E(D) is Ih. cos, associa.ed ,0 

seteCing ,he so, D o, nodes as .„^afan s,ocase „odes. A reso,, (iKe Lern™ I bo, 

specialized lo Ibis func,ion was obtained.  Since 

&ID■i, ■U| ■ 1.^ K.^ "  BB«W ■ 4 ■ ,1 Viav^i i 

where x . y = ^ x > y ^ „y ^ 0     (j, ^ ^ ^ ^ ^^ ^^ ^ 

condmons of Lemma 2.   Th. impl.es that ., .s regular and Lemma 1 ho.ds.   Thus, Theorem | 

in [3] is obtained as a special case of Lemma 2. 

SECTION 3 

Since our cost function is regular we know that a depth first search as described in 

Section 2 will find the op„mal solution. In ths seCon we wil. show that we do not need to 

examine all possible nodes which could be reached during an unrestricted search. Thus the 

t- required to find the optical set wH. be reduced. This result will be obtained by 

charactering properties of the optimal solution. 

IM 
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Definition: Let fK^^2,-Arn be the set of attributes for our file. For each A:, define 

a tuple (F{j),K(j)) where F(j) is defined as in the proof of Theorem I and K(j) = H(j)/F(j) and 

H(j) has also been defined. Thus wo gel a set S of m vectors, each having two components. 

Let s, = (F(i)1K(i))) and s: = (F(j),K(j)) be two such vectors. A partial order < can be defined 

as follows: Sj < Sj iff F{i) < F(j) and K(i) > K(j). If s( < s; then s. •> Sj. A decreasinp. chain of 

points in S is a sequence Si^,...^ such that S| > $2 i S3 > ... > sn. The following 

theorems characterize the set of points in an optimal solution. 

Theorem 2: Let S be i set of points as above. If s: < S belongs to an optimal 

solution . then all points Sj ^ S: such that s, •> S: are also contained in an optimal solution. 

Proof: Let S; < D', an optimal solution. For a given pair Sj, S:, let 

A(D) = A{D,i) - A(D,j). (Here, AlD.i) stands for E(D U {s,}) - E(D)). Assume Sj < D'. 

Consider the set D = D' - {s:}. Since D' is an optimal solution, A{D,j) < 0. 

Claim: It suffices to show that A(D,j) < 0 =* A(D) < 0 and A(DJ) = 0 => A{D) < 0. 

This follows because, if A{D,j) < 0 then A{D) < 0 so that A(D,i) < A{D,j). Since we have 

assumed Sj f D', we get E(D U {s,}) < E(D'), contradicting the optimality of D'. Thus s, ( D', 

an optimal ret. If, on the otner hand, A(D,j) = 0 th^n A(D) < 0 and so, A(D)i) < 0. If 

A(D,i) < 0 we get a contradiction as before, and so s( ( D', an optimal solution. Finally, if 

A(D,i) = 0, E(D Ü {s,}) = E(D') which means D U {SJ} is also an optimal set, which again, 

proves the theorem. 

To sec why the claim holds, A(D) = r(i)[K(i) - G(D)] - F(j)[K(j) - G(D)] = 

[F(i) - F(J)][K(J) - G(D)] ♦ F(i)[K{i) - K(j)]. Since s, » sj we have F(i) > F(j) and K(i) £ K(j) 

(but Sj * s, so F(i) > F(j) or K(i) < K(j)). Thus, if A(D,j) - 0 (i.e., K(j) - G(D) < 0), then 

A(D) < f>, while if A(D,)) = 0, (i.e., K(j) = G(D)) then AID) < 0 (if K(i) K K(j)) or A(D) = 0 (if 

K(i) = K(j)). In i:ny case, the theorem is proved. | 

MMM MMkMl^i^UdMrilUMttt^anAMi 
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Theorem 2 says that if an optimal solution contains a point s, than all points in a 

decreasing chain ending in s are also part of an optimal solution. Using this fact, the search 

for an optimal solution can be organized as follows: Partition Z into the smallest set of 

disjoint descending chains. Let w be the number of such chains. The set of candidates to 

be adjoined to a current partial solution D is obtained by considering the subsjt of 

independent points among the set of points which are maximal in each chan. Thus, at each 

step of the search, at most w points have to be considered If mi.nr^,...,^ are the number 

of points in each chain, the maximal number of sets examined dunng the entire search will be 

less than (1 ♦mjKI+n^) ... (1 «n^) < (1 ♦m/w)w. Assuming that all points have efferent 

components, the value of w turns up to be the length of a longest increas'ng sequence in a 

{sei mutation of m elements. There is no known expression for the average of this quantity 

but empirical studies [1] have shown that the asymptotic behavior is 2m0-^. (Recently, 

Steckin has shown [13] that this average is bounded above by em^^). So. an upper bound 

for the average number of sets examined, assuming all permutations being equally l.kely is 

(Um0-5/2)2m0'5 = 0(2ma5 loe m). 

The partial order defined in the defmitmn above, has induced a precedence in the 

order in which points have to be examined. Theorem 2 established that this precedence was 

partial as nothing was established for independent points. Theorem 3 will provide conditions 

under which a precedence can be established for these independent pairs of points. Notice 

that if a precedence could be established for all independent pairs, then a total precedence 

would exist and a linear scan would determine the optimal set. 

Theorem 3: Let i, j be two independent points in S such that F(i) < F(j) and 

Kd) < K(j).   If A(D,i) < A(D,j) for some D then A{D\\) < ZMD'.j) for any superset D' of D. 
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Proo^:       As      in     fhc     proof     of     Theorem     2,      Me     have      for     D' o D, 

um - A(D) - [F(iJ - F(j)XG(D) - UID')] < 0, since G(D) is r-m. 

Thus A(D') < A(ü) < 0 as was to be showa ■ 

Theorem 3 says that, if while performing the ciepth first search procpHure, 

wiienever two points in an independent set can be chosen to be included in a set D and the 

one with smaller value of the F function is preferable to mo other (i.e., it decreases more 

the value of the cost function), it remains preferable at any later stage of the search, which 

extends the current set D. Thus, at some point during a partial search we may discover a 

precedence between two points in an independent set. Using these results we may give the 

following informal description of an algorithm to fmd the optimal set of indices from a set S 

specified by tuples {F(i),K(i)). The algorithm keeps track of the precedence that exists 

between points. 

. Initialization (D0 is the current choice for global optimum, 0£l is the lowest value 

of E(D0) obtained so far, R is a pushdown stack whose entries are pairs D^P;, where D S S, 

Pj is a directed graph with at most |S| points): D0 - ♦, opt = oo. Define an initial directed 

graph Pjnjt as follows: Nodes are all points i < S such that A(*,i) < 0. (Points i with A(*,i) 

> O are never included in an optimal solution so they need not be considered.^ Node i is 

directed to j if either F{i) > F(j) and K(i) < K(j) (thus i ■> j and Theorem 2 applies) or F(i) < 

F(j), K(i) < K(j) and A(^,i) < AOM (by Theorem 3).   Let R - (*,P(nit). 
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2.While    R i* empty do 

ber.in ' (D.P) ♦- R; (pop the stack) 

Delete all nodes I in P such that A(D,i) > 0 or i ( D; 

If P » ♦ and Vj < D (AID - {j},j) < 0 )   (i.e., found local optimal) 

then    if opt > E(D) 

then (local optimal found is best so far) begin opt *- E(D), Dg ♦- D end 

else    begin (let Source (P) be the set of all 

nodes in P having no ingoing directed 

edges.   Note that Source (P) is an independent 

set.   Let f' be the graph obtained by augmenting 

P by joining i ( Source (P) to j < Source (P) 

whenever KO) < K(j) and A(D,i) < A(D,j)). 

For each i ( Source (P1), let R ♦- (D U {ij.P'); (push the stack) 

end; 

end; 

As was mentioned above, an upper bound on the asymptotic average running time of 

05 i 
a deterministic version of this algorithm is 0(2m '    l0ß m) which is a big improvement over 

2m obtained by enumeration.   Empirical studies with it have shown that even this reduced 

upper bound is still much higher than the actual number of nodes visited. 

CONCLUSIONS 

The problem of index optimization has been solved under very general assumptions 

and properties of the optimal solution have been found which allows the existence of an 

efficient algorithm to determine the solution. It is easy to see that previously reported 

methods for solving this problem ([7], [12], [14]) are special cases of the results shown 

here. 

. —  
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