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i INTRODUCTION

We consider here the problem of selecting a set of attributes for which a secondary
index should be provided in order to minimize the expacted cosl per transaction conducted
with a file.

A proper solution to ths problem has to consider the system in which the fle will

exist as well as characteristics such as accessing mechanisms 1o it and statstical properlies

implemented use the siniple approach of providing indces for all attributes [2] while others
do not provide indices at all [6]. For these systems the optimization prot'em does not exisl.
Between these two extreme approaches there are systems lke XRM (8] which al'cw the

user to specify which domains of the relation should be indexed. Some hizh level larzuages

l
E
:
t of the transactions that are conducted with the file. Some systems which have been

have been designed [4] for which the system, while in the process of perforring a

transaclion, creates temporary indices for some atlributes. Afler the transaction is

completed, the user is informed of the newly created indices and may then choose to keep

them or delele them. Systems such as these and otlers for which on lire transacticns may

be conducled with a file by users whose demands on the file change in time are hest suited

for solutions as described here. After collecting statistical properties of the transact.on that

the current set of users conducts with the file, the system may compute an optimal set of

indices 10 minimize lransaction processirg time. Then, it creates its optimal irdex sel

throwing away those indices which contribute to increase transaction time and crealing

indices which help to decrease transaction time. Since tlus overhead processin may be

appreciable, the system will probably perform this updating only at some fixed in‘ervals of

time,

Recently, a number of studies have appeared in the literature which cor:der this



problem. Some of them have taken an empirical approach {9) while others [7], [10], [14]
attempt to formalize the problem to oblain an analylic solution. Since th~ data base usually
exists in a complex environment there are innumerzble factors that will influence the index
selection problem and, in order to hope for a solution, some assumptions must be made. In
[7) the restriction was made that transactions could only specify one attribute value in their
specification part while in [14] the transactions were reduced to queries and updates only
and the statistical properties considered were minimal. We will now present a model which
encompasses a variety of situations by allowing great flexibility in the specification of the
statistical properties of the transactions as well as on the storage organization and retrieval
mechanism for the indices. The inclusion or exclusion of an attribute in an optimal set of
indices will depend on two parameters which are derived for each attribute when the
specific properties mentioned above are known to the system. By studying properties of
the optimal solution we are able to describe an efficient algoritiym which makes use of these
pairs of parameters to determine the optimal solution.
SECTION 1

In this section we present the model of the file, the assumptions on storage
organization and retrieval, and the types of transactions conducted with it.

We will assume a relational model for a data base [5] and we will consider the
problem of index selection when tiere is a single relation in the data base (the results
shown here can be directly extended to a mulli-relational data base provided we assume
independence between them.

The file F will consist of a <et of N vectors (or records) v = (Vlr"2r--"’m) where
each v, ¢ Aj, the j-th attribute. Thus F € AtxAzx‘..xAm. We also assume the existence of
atoms for the domains [15]) Fach atinbute will then be a finte set whose elements can

appear in a transaction.
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We will assume that the use of secondary indices is the only mechanism that will be
used to facilitate the search for records in the file. Thus, we will consider hare that the file
is randomly stored in secondary memory and is not clustei2d according to any criteria. The
approach of clustering records has been studied in the literature [11) but cannot be taken
when we assume that the data base is used by several users with different requirements on
it. Thus, the time required to retrie.e n records will be the time to bring the pages which
contain them. Since the records are assumed to be randomly distribited and that selection
of an optimal set of indices will result in a small expected number of records to be accessed
~hen processing a transaction, this time will be ¢n, for some constant ¢ which measures the
time required to bring a page 1o main memory.

Since the method for storing and retrieving indices is a fundamental characteristic of
a syslem using secondary indices fcr processing trarzactions we will not impose any
restriction on it. The only structure that we impuse is that, if an index Ij for the j-th
attribute exists, knowledge of a value a ¢ Aj will produce a list of pointers to records (which
we will in the seque! refer to as tid for tuple identifier) in time f(j,a) for some function f.
For example, if the indices have the usual two level hierarchical organization and are stored
on a disk, f(j,a) could be taken to be C]’Czﬁj(a)N where ¢ is the constant time required to
find the head of the appropriate list of tid's, ¢ is the transfer time per tid and Gj(a) gives
the proportion of the totat number N of records that have the value a as its j-th attribute.

Let N be the size of the file. Even though deletions and insertions will be allowed,
we assume that the size of the file remains fixed throughout the period between successive
computations of optimal sets of indices. For each attrnibute A, we will assume a distribution
(3, which gives the proportion {3,(a) of records in the file having a particular value a ¢ Aj as

its j-th attribute. (One simplifying assumption that sometimes 1s made 15 to consider ﬁj a

constant function.)




There will be four types of transactions conducted with the file: Queries, Usdates,

Insertions and Deletions. It is frequently the case that an Update or a De'etion is specified

in two components: a selection component which determines a set of records to be

processed, and an action component which, in the case of Updates determines how each
record in the set is to be updated, and in the case of a Deletion is null, simply meaning that
that set of records which was found is to be removed from the file. As will be discussed
below, finding the relevant records implies a number of actions. After they are done, we
can no longer assume that any part of an index is in man memory so that the updating on
the indices that results due to an Update or a Deletion can be assumed to be indeperdent of
the prc;cessing of the selection part of the corresponding transaction. For this reason we do
not include a selection part in the formal specification of an Update or Deletion.

A Query Q will be specified as Q = (@},9p5-4ap,) Where q; € A; U {x}, x is a symbol
not in any set A,. If q; ¢ A;, we say that the i-th attribute is cpecified in the query. Note
that a query to our model can resuli from a true query in the system, or an update or a
deletion as discussed above. An actual query is sometimes accompanied by an output part
which specifies that some attributes of the set of records found to satisfy the query are to
be displayed or further processed. These operations take time indepenaent of the set of
attributes for which an index exists and thus can be safely ignored for our analysis.

We will assume, as is done in most systems, that a query is processed as follows:

For each specified attribute j, for which an index exists, a list Lj is found containing .

all tids of records whose j-th attribute have the specified value.

From all lists Lj, an intersection list L is formed L = N L,. This list contains all tids of

records all of whose attributes for which an index exists and which are specified in

the query have the specified value. These records will be referred to as partially

qualified records.




3. All partially qualified records are brought to main memory where the values of those

specified attributes tor which there is no index are checked. Those records which

are found not to satisty the query are disregarded (these are sometimes referred to

as false drops) and a list of qualifying records (or their tids) is obtalned which can

be further processed. As wac mentioned before any further operation is

independent of the chosen index sel and will not be considered any further.

Let aj(a) be the probability that the j-th attribute is specified in a query to have the
value a ¢ Aj. For convenience we will denote as P the probability that the j-th attribute is
specified in a query. Thus,

p:

)" a(zAaj(a)'

)
The expected cost to process step | above is given by

LT aal
KO ach;] e

where D is the set of attributes for which an index exists. The cost of step 2 can
be considered negligible as compared to the cost of 1 and 3. The reason for this is that the
intersection list can be constructed in main memory and any processing time spent here is
small compared with the cost of interacting with secondary storage. It is not hard to see

that the expected number of tids in the resulting intersection list L is given by

Lj = N. l - p: 2 a. .
It j<nD[ P+ a(AjG,(a) B;(a)

Slep 3, as explained at the beginning of this section is proportional i« tha length of
L, clL]. The cost of removing the false droos 1o form the final list «an be considered, as in
step 2, to be negligible since it is done in main memory. Thus the expected cost o procees
a query is given by

CQ = X a:iA;xl(a) f(j,a) + ¢cN . i?DU " Pyt aziAc;l(a) Gl(a),




An Update U will be specified as U = (ViU ,Up,.,Up,) Where each u; CA; U {x} and
v ( F The intended meaning for an update is that record v (which can be identified by its
tid) has tc be updated on those specified attributes A, li.e, those for which y; # x) to have
the new value u;.

To process an Update, one has to (1) reirieve the record v, update its specified
attributes, and store it back again and (2) update all relevant indices. The time required to
perform (1) is independent of the exsting set of indices and thus we do not consider it.
Updating the indices requires reading and writing back the bucket(s) for the old value of the
altribute and doing the same for the new value. We will assume thal both these operalions
are performed even if these buckets coincide. (As it turns out, consideration of this fact
would only resu't in a slightly more complicated expression for the parameter K(i) associated
to the i-th attribute (see Section 2), bul does not otherwise change the nalure of the
algorithm lo find an optimal set of indices.)

Let f'(j,a) be the time required to read and write back the “a" bucket for the j-th

index. Then, the expected cost of an update on the j-th index is

b(AJ

z _Pj(b) { aZZAjBJ-(a) f'(3,3) + 1'(3,b)]

where the first term inside the square bracket is the cost of updating the old bucket
(assuming that the distribution of the number of tids on all buckets of the j-th index is given
by B,) and the second term is the cost of updaling the new bucket. Also we assume a
probability }'J(b) that the value b ¢ Aj for lhe )-th attribute will be specified in an Update.

Thus, if we have a set D of indices, the expected cost of an Updale is given by

Cy = ,-(% a(zAj[X‘B‘(a) + }',(a)] f'(j,a)  where

Xj = bZAPj(b) is the probability that the j-th attribute 1s specified in an update.
(A
J

# A bucket 15 the set of all tids of tuples having the same value on an indexed attribute.




Insertions: An insertion 1s specified as I(v). It requires insertion of the record
itself plus the updating of all indices. As was the case for updates the first cost is
independent of the index set. Assuming a distribution of values given by Bj, the cost of the
second component is

B b

Deletion: A deletion T(v) of the record v requires a similar set of operations as an
insertion and the expression for the resulting cost is the same, Cy =Cr

Combining all expressions obtained above, we get that the expected cost per
transaction is given by: E(D) = 'QCQ + ryCy * r1C1 ¢ r1Cy where rQ w1 and ry are
respectively, the probabililies that the transaction is a Query, an Update, an Insertion or a

Deletion. This expression can also be written as

E(D) = X H(j) + GID) (0 , where
<D

H(j) = a(ZAj{rQuj(a)f(j,a) s [rU(Xjﬂ]-(a) + }'j(a)) + (rI‘rT)Bj(a)]f'(j,a)] and

G(D) = rQCN j?o[l = pj + az:AjCIj(a) ﬁ](a)]

The problem of finding an oplimal set of indices can be now forma'ly defined as that
of finding a smallest set D € M = {1,2,.,m} which minimizes the “bove expression for E(D).

SECTION 2

>

nalvsis of the Cost Function

—_— T —= " " —

w

A straightforward evaluation of E(D) for all subsets of M would certainly solve the
optimization problem. Wr zre interested in finding algorithms which take less than 2™ to
oblain the optimal set. Another approach would be to construct chains of sets
Do=¢0}.92,...0y, with each D,,| a superset of D, obtaincd by adding ore more elemert of

M, such that E(D,) resulted in a nonincreasing sequence. Proceeding in this manner, we could




find a collection of locally optimal sets D (i.e., all sets D such that, for all j, E(D) < E(D U {j})
and E(D) < E(D - {j}. In general, by following this procedure we may not find the optimal
solution among the collection of sets found. For example, assume an optimization probiem
over a set {A,B,C} whose cost function E'(D) is such that E'(¢) = 5, E'({A}) = 6, E'({B]) = 3,
E'({C}) = 4, E'({AB]) = 9, E'({AC) = 7, E{BC) = 8, E'({ABC)) = 2. The above method
would produce the collection {B} ard {C} as local optimal solutions reached from ¢, thus
missing the optimal set {A,B,C}.

There is a simple condition on a cost function, which we call the regularity condition,

which suffices to guarantée that the above procedure will obtain the optimal solution among
the collection of sets which finds. The condition states that, if while performing the
procedure, a set D is reached and there is an index j § D which increases the cast function,
then the index j can be ignored in any subsequent search from D. Formally, we have:

Definition 1: Let E be a cost function defined on subsets of a set S of points. Let
A(D,j) = E(D U{j}) - E(D). Then E is said to be regular if A(D',j) 2 A(D,j) for any point j and
sets D, D' for whichD < D' and j ¢ D'

Note that if € is regular and for some D ard j ¢ D, A(D,j) 2 @ then, for all D < D'
with j ¢ D' we have A(D',)) 2 0.

The following lemma states that, for a regular function, the above procedure
succeeds in obtaining an optimal solution.

Lemma 1: Let E be a regular cost function and D a locally optimal set (ie.,
E(DU{k}) 2 E(D) and ED - {k}) 2ED). Then E(Dg) 2 E(D)) 2 .. 2 E(D,) for all
sequences of sets Dg,04,..,.0, = D satisfying D} = i.

Proof: We have to show that for any subset D' of D, E(D' t) {j}) < E(D') for all

j ¢ D-D' or equivalently, A(D'j)) ¢ 0. Assume the contrary, and consider the set




D" = D - {j}. Clearly, D' € D". By assumption, A(D',)) > 0, which implies, since E is regular,
that A(D",j) > 0. This contradicts the fact that D is a local optimum, |

Lemma | states that if D is a local optimum, it will be found by the procedure
described above becaus: for any chain ¢ = Dg0yrDp = D with D} = i we have that
E(Dg)E(D),..,.E(D,) is a nonincreasing sequence. (We note here thal an analogous proof
shows that Lemma | also holds if the sequence of sets is decreasing, ie, S = 0D} +-Dp
satisfying |D;| = |S| - i, 50, in particular, a search which starts from S will also find the global
optimum,

There i1s a class of cost functions which includes our particular cost function, which
are regular. They are characterized in the next definition and lemma.

Definition 2: Let K be a function which maps subsets of S to a totally ordered

domain with order relation siven by <. Then K is said to be monotone nonincreasing {mni)

if D € D' implies K(D') < K(D).
Lemma 2: Let E be a cost function such that A(D,j) = ED U {j}) - ED) can be
written as A(D,j) = A()) - B(D,)) where, for each fixed j, B(D,)) is mni. Then E is regular.
Proof: Let D', D be subsets with D € D' and let j be a point j § D'. We have, by
definition, A(D',j) - A(D,)) = [A()) - B(D'))] - [A(j)-B(D,))] = BID,)) - BID',)). Since, for fixed
j, B(D,)) is mni then D c D' implies B{D',j) < B(D,j). So, A(D',;i = &(D,j) as required. |
Our first result shows that the cost funclion we are dealing with is regular,

Theorem |: Let E(D) = "XO H(j) + G(Dj as defined in (1). Then E is regular.
J«

Proof: By definition, A(D,}) = H(j) + GID U {}}) - GID) =

H(j) - (p; - ¥ «.(a)B.(a)) GID) = H(j) - F())G(D) where
J a(Aj )

F(j) = P - ?Aaj(a)aj(a). Since G is clearly mni, E 1s regular, by Lemma 2. |
a .
J
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Since (IAak(a) = Py, We have that 0 < F(k) < | (assuming Pk > @ and A > 1.
a
k

This assumption is justified since Pk = 0 or IAkl = | imply F(k) = 0 and thus A(DK) 2 O so
the k-th attribute would not be part of any optimal solution. In the sequel, we will assume

this to hold for all attributes).

Other classes of functions satisfying Lerma 2 (and thus the regularity condition)

have appeared in the literature. In [3] the following cost function is studied in connection

with G cotimal allocation of copies of files in an information network with n nodes:

n
ED) = k(zDUk s Il G;(D) where U, depenis only
I=

on parameters associated *o the k-th node in the network and

Gl-([)) = X min dik where A; is a constant associated with the i-th node and dik
kD

is a cost associated lo the link between nodes i and k. E(D) is the cost associated to

selecting the set D of nodes as information storage nodes. A result like Lemma 1 but

specialized 1o this function was obtained. Since

n n
ADj) =U; + I A( min d. - mind,)=U - % X(mind “d.)
PEEEN keDUGE™ kD TR T T 5 Nlmin iy = djy
where x wy = if x > y then x-y else 0 y it follows that this cost function salisfies the

conditions of Lemma 2. This implies that it is regular and Lemma I holds. Thus, Theorem |
in [3] is obtained as a special case of Lemma 2.
SECTION 3
Since our cos! function is regular we know that a depth first search as described in
Section 2 will find the optimal solution. In this section we will show that we do not need o
examine all possible nodes which could be reached during an unrestricted search. Thus the

time required to find the optimal set will be reduced. This result will be obtained by

characlgrlzing properties of the optimal solution.
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Definition: Let AI’AZ’""Am be the set of attributes for our fite. For each Aj, define
a tuple (F(j),X(j)) where F(j) is defined as in the proof of Theorem 1 and K(j) = H(j)/F(j) and
{J) has also been defined. Thus we get a set S of m vectors, each having two components.

Let s; = (F(i)K(i)), and 5 = (F()),K(j)) be two such vectors. A partial order ¢ can be defined

as follows: s; ¢ S iff F() < F(j) and KG) 2 K(). If s; ¢ ] then s > s A decreasing chain of

points in S is a sequence $1)52r-15n Such that sy > s5 > 55 > .. > s, The following

theorems characterize the set of points in an optimal solution.

Theorem 2: Let S be 3 set of points as above. If 5 ¢ S belongs to an optimal

solution , then all points s * 5 such that s; > 5 are also contained in an optimal solution.

s:;, let

J)
A(D) = A(D,)) - A(D,)). (Here, A(D,) stands for E(D U {s;)) - E(D)). Assume s; ¢ D'

Proof. Let 5 ¢ D', an optimal solution. For a given pair Sis
Consider the set D = D' - {sj}. Since C' is an oplimal solution, A(D,j) < 0.

Claim: It suffices to show that A(D,j) < 0 => A(D) < 0 and A(D,)) = 0 == A(D) < O.
This follows because, if A(D,)) < 0 then A(D) < 0 so that AD,) < A(D,j). Since we have
assumed s; { D', we get E(D U {s;}) < E(D'), contradicting the optimality of D'. Thus s; €D,
an optimal cet. If, on the otrer hand, A(D,)) = O then A(D) < 0 and so, A(D,)) < @. If
A(D)) < 0 we get a contradiction as before, and so s, ¢ D', an optimal solution. Finally, if
A(Dy) = 0, ED U {s;}) = E(D') which means D U {s;} is also an optimal set, which again,
proves the theorem,

To see why the clam holds, A(D) = F(i)[K(i) - G(D)] - F(K() - G(D)] =

[FG) - FOIKG) - GO + FOKG) - K()). Since s; > s; we have F(i) 2 F(j) and K(i) < K(j)

J
(but 5 # s; 50 F() > F(j) or K1) < K())). Thus, if AD,)) = 9 (ie, K(j) - G(D) < 0), then

A(D) < 2, while if A(D,)) = 0, (ie., K()) = G(D)) then AID) < @ (if K(i) # K(j)) or A(D) = O (if

K(i) = K(j)). In any case, the theorem is proved. |
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Theorem 2 says that if an optimal solution contains a point s, than all points in a
decreasing chain ending in s are also part of an optimal solution. Using this fact, the search
for an optimal solution can be organized as follows: Parlition Z into the smallest set of
disjoint descending chains. Let w be the number of such chains. The set of candidates to
be adjoined to a current partial solution D is obtained by considering the subsat of
independent points among the set of points which are maximal in each chain. Thus, at each
step of the search, at most w points have to be considered. If m|,mo,..,m.,, are the number
of points in each chain, the maximal number of sets examined during the entire search will be
less than (1+m)(l1+m5) .. (1+m) < (1+em/w)¥. Assuming that all points have c.fferent
components, the value of w turns up to be the length of a lonzest increasing sequerce in a
permutation of m elements. There is no known expression for the average of this quantity
but empirical studies (1] have shown that the asymptotic behavior is 2m05, {Recently,
Steckin has shown [13] that this average is bounded above by em®9), So, an upper bound
for the average number of sets examined, assuming all permutations beirg equally likely is
(14m8572)2m% _ o (om® log m),

The partial order defined in the definition above, has induced a precedence in the
order in which points have to be examined. Theorem 2 established that this precederce was
partial as nothing was eslablished for independent points. Theorem 3 will provide conditions
under which a precedence can be established for these independent pairs of points. Notice
that if a precedence could be established for all independent pairs, then a total precedence
would exist and a linear =can would determine the optimal set.

Theorem 3: Let i, j be two independent points in S such that F(i) < F()) and

K(i) < K(j). If A(D,)) < A(D,)) for some D then A(D'y) < A(D',)) for any superset D' of D.




Proo’:  As in the oproof of Theorem 2, we have for D' oD,

A(D') - AD) = [F) - FHIGD) - GDY] < 0, since G(D) is rni.

Thus A(D') < A(D) < O as was io be shown. |

Theorem 3 says that, if while purforming the .depth first search procedure,
wienever two points in an independent set can be chosen to be included in a set D and the
one with smaller value of the F function is prefcrable to wne other (e, it decreases more
the value of the cost tunction), it remains preferable at any later stage of the search, which
extends the current set D. Thus, at some point during a partial search we may discover a
precedence between two points in an independent set. Using these results we may give the
following informal description of an algorithm to find the optimal sel of indices from a set S
specified by tuples (F(i),K(i)). The algorithm keeps track of the precedence that exists
between points.

1. Initialization (Dg is the current choice for global optimum, opt is the lowest value
of E(Dg) obtained so far, R is a pushdown stack whose entries are pairs D,,P,, where D, &S,
P; is a directed graph with at most || points): Dy « ¢, opt = oo, Define an initial directed
graph Pinit 2 follows: Nodes are all points i ¢ S such that Ald,)) < 0. (Points i with A(é,i)

2 O are never included in an optimal solution so they need not be considered.) Node i is

directed to j if cither F(i) 2 F(j) and K(i) < K(j) (thus i » j and Theorem 2 applies) or F(i) <

F(j), K(i) < K(j) and A(,i) < A(¢,j) (by Theorem 3). Let R « (®,Pinit)-

B P e —— T —
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2.While R ¥ empty do
begin ~ (D,P) « R; (pop the stack)
Delete all nodes  in P such that A(D,i) > 8 or i € D;

1iP=¢and VjCD(AD - {j}j) <0 ) (ie, found local optimal)

—

hen if opt > E(D)

then (local optimal found is best so far) begin opt « E(D); Dy « D end

2
v
1}

begin (let Source (P) be the set of all

nodes in P having no ingoing directed
edges. Note that Source (P) is an independent
set. Let I be the graph obtained by augmenting
P by joining i ¢ Source (P) to j ¢ Source (P)
whenever K(i) < K(j) and A(D,i) < A(D)).
For each i ¢ Source (P'), let R « (D U {i},P'); (push the stack)
end;
end;
As was mentioned above, an upper bound on the asymptotic average running time of
a deterministic version of this algorithm is 0(2'“0'5 108 M) which is a big improvement cver
2M obtained by enumeration. Empirical studies with it have shown that even this reduced
upper bound is still much higher than the actual number of nodes visited.
CONCLUSIONS
The problem of index optimization has been solved under very general assumplions
and properties of the optimal solution have been found which allows the existence of an
efficient algorithm to determine the solution. It is easy to see that previously reported

methods for solving this problem ([7), [12]), [14]) are special cases of the results shown

here.
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