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SECTION |
IMTRODUCTION

The questions associated with scale effects in transonic aerodynamics have assumed
increasing importance in recent years. Those aspects of transonic scaling involving
shock~induced separations have been widely discussed and are illustrated by dato measured
in 1968 on the Lockheed C-141 airplane. In contrast with prior experience, these data
showed that large differences in chordwise load distribution were caused by differences
between wind tunnel and flight Reynolds numbers. Figure 1 shows the variation of shock
location with Reynolds number for the C-141 and the correlation between shock location
change and rear separation as indicated by trailing~edge pressure recovery. The change
in shock location shown in Figure 1 approximatzly doubled the section pitching moment
coefficient, and is, therefore, very significant in defi.sing structural loads. Pearcey

(in Reference 1) discusses the basic phenomena involved in this kind of trensonic scaling
effects,
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Figure 2 illustrates the various component phenomena which combine to produce the
net scale effects which have been observed.

e At the shock, a separation will occur if the local Mach number forward of the
shock is sufficiently great.

e Bacause of curvatures introduced into the flow field by flow approaching the
separation region, the lower portion of the shock is probably compused of a
series »f relatively weak oblique compression waves, rather than a strong

normal shock. The sonic line may, therefore, extend well downstream of the
shock near the surface.

The flow geneially reatiaches downstream of the shock, enclosing a bubble of
separated flow.

The reattached boundary layer reloxes into conventional velocity distributions

and may separate again in the ad.2rse pressure gradient approaching the
trailing edge.

Pearcey preserted in Reference 1 a classification of types of flow, divided primarily
between Hodel A, those for which the trailing-edge separation resulted from an aft growth of
the shock-induced separation bubble, and Model B, those for which the trailing-edge separa-
tion spread forward because of aft pressure gradient effects. As confirmed by Reference 1 and
a number of other studies, the local separation at the shock shows only a minimal response
to changes in Reynolds number, while the rear separation is likely to show strong responses.

The manner in which trailing-edge separation causes a change in shock locaticn is
shown in Figure 3. In this figure (taken from Reference 2}, wind-tunnel data are shown
for a fixed Reynolds number of approximately 3 million, based on wing mean aerodynamic
chord. The data for the bare model show a trailing-edge separation which results in a
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Figure 3. Trailing Edge Separation Effects




modification of the entire subsonic velocity distribution downstream of the shock.
Addition of vortex generators behind the shock (at 70% chord) eliminates the trailing-
edge separation and restores the downstream velocity distribution. Since the shock must
establish a reconciliation between the upstream supersonic flow and the downstream
subsonic flow, the downstream velocity distribution changes resulting from trailing-edge
separation must cause shock location changes.

In recognit.on of the large differences in cerodynamic characteristics which can
occur as a result of differences in Reynolds number, intensive current development efforts
are aimed at the eventuc! construction of high Reynolds number wind tunnels. Future
evaluation of data from those tunnels would be enhanced by the existence of very high
Reynolds number data on a practical flight vehicle. Presence of the C-5A in an ongoing
flight test program provided an opportunity to obtain some data on wing pressure distribu-
tions and boundary layer characteristics which might supply at least a portion of the data
to be used for future high Reynolds number tunnel evaluation.

This report contains an analysis of those data with the objectives of, first, showing
whatever scale effects might exist and, second, correlating the measured bo undary layer
dcia against existing theories, to show the validity of this approach as a tunnel data
evaluation basis.
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SECTION I

EXPERIMENTAL DATA

Data for this analysis were obtained concurrently with other planned flight test work
on a C-5A airplane during 1973. The bosic objective was to obtain a limited amount of
wing pressure distribution and boundary layer data over the widest possible range of
Reynolds number for flight cenditions in which scale effect differences might occur. This
section reviews briefly the instrumentation used for these measurements, data reduction
procedures, and the scope of data obtained.

1. INSTRUMENTATIOM

Figure 4 shows the overall la' out of instrumentation used to measure the data for this
study. Chordwise pressure distributions were measured ot wing stations 592 and 921 on the
right wing. Multiple-tube plastic strips (called "strip-a-tube™) were bonded to the wing
surface ut those spanwise stations. Holes punched into the tubes formed static pressure
orifices for measuring pressure distributions. The tubes were connected to scanivalves
which were installed in the cavity under the wing spoilers. The scanivalves were timed to
sense 48 individual pressures in a 2-1/2 second scan time, All pressures were referred to a
reservoir also installed in the spoiler cavity. Wing stations 592 and 921 were selected for
measurer.:ents in this program because they represent two potentially different flow situations.
Station 592 is a spanwise position roughly midway between the inboard and outboard engines.
Station 921 is sufficiently removed from fuselage and engine locations to approximate "in-
finite yawed wing" conditions. "Strip-a-tube" has been used in this way in previous studies
and has indicoted no distortion of measured data.

Boundary layer properties were measured at the same spanwise stations on the left
wing, at 40% and ot 75% of the local wirg chord. At each of those four locations, a
total pressure rake, a thermocouple rake, a Preston tube, and a local static pressure
orifice were installed.

The upper photograph in Figure 5 shows a typical installation at the forward locations
(40% chorc). The Preston tube appears in the lower right-hand corner and contairs the
local static pressure orifice also. The lower photograph in Figure 5 shows the rakes
installed at*75% chord at wing station 921. The total pressure rake at this location con-
sisted of two probes attached to a mast which was traversed through the bounda.y layer by
a motor~driven screw. The traverse time for this rake was 11 seconds. Each of the probes
on this rake, both of the aft Preston tubes, and approximately half the probes or the
inboard aft total pressure rake, were directionally sensitive probes similar to that describeq
in Reference 3. These probes consist of a central total pressure tube cut off square, with
an odditional tube on either side cut off at o 45-degree angle. Flow-direction angle: are
determined os a function of the difference in pressure indizoted by the two diagonal tubes.
The flow angles are then utilized with appropriate calibration curves to determine total
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pressures in the direction parallel to the local flow direction. This procedure and the
calibration curves are presented in detail in Reference 3. Boundary iayer pressure deta
were sensed by scanivalves, except for the traversing probe data, which were sensed by

differentiai pressure transducers and recorded continuously as the probe traversed the
boundary layer.

The instrumentation system was calibrated for conventional lag effects wkich can occur

when siatic pressures are changing rapidly. All data presented were corrected to account
for these effects.
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Figure 4. Planview of the C-5 Showing the Locations of the Strip-A-Tubing and
Boundary Leyer Instrumentation

s e S e — - e o o _ N . _ - B




"

TR

TR

T T

U0l VT

T

i

W.S. 921 40% CHORD

T AT

Lt T e

TR

W.S. 921 75% CHORD

Figure 5. Photographs of Instrument Installations




TR 0 S Wowro

TR,

My R

T

L e

R

Flight condition data were ob.cined from total and static pressure tubes mounted on a
nose boom, and from an accelerometer mounted at thz airplane center of gravity. All
data were recoided on magnetic tape for a substen’tal time interval at eoch test condition.
Using an interpolation routine, we read the data out of the tape at a single instant for
each test condition. The measured dato were reduced to aerodynamic coefficient form
from conventional equations which are summarized below.

Pressure coefficient,

Boundary layer velocity,

U=Ma =M 49/7
y yy |y e

My is obtained from the local value of P/Hy, where p is the local surface static pressure,
and H,, is local total pressure in the bou:.dary layer.

-7/2
M2
F/Hy =11+ _Sl {Subsonic)
an2 7/2 5/2
6
p/H = 24 (Supersonic)
Yo\ 7M§ -1

Boundary layer temperatures were sensed as total temperatures and converted fo static
iemperatures by
T

p—_—
LA Y

Wall temperature was calculated from thie meosured edge temperature with an assumed
recovery factor of 0.88.

Preston tube pressure differences were converted to wall shea siress by using the
calibration curve of Reference 4.

Values of the surface static pressure measured in the vicinity of the boundary layer
probes showed rather large differences from those measured at the same location on the
right wing, with the maximum discrepancy occurring odjacen? o the probes. One attempt
was made to eliminate this discrepancy by changing the relative location of the probes,
but with no success. It is believed that the discrepancy is caused by disturbances due to
the flow around the boundary layer pressure and temperature rakes. Therefore, the
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boundary layer data were reduced by using the static pressure measured on the right wing. In

all calculations it has been assumed that the siatic pressure is constant through the boundary
layer.

2. ACCURACY

Overall accuracy of data presented in this report is affected by a large number of
factors which are not well defined, and which vary from one test condition to another.

Accuracy values shown are, therefore, qualitative estimates obtained from a cursory
assessment of dota scatter or repeatability .

Test Conditions: M =0.003 .
- X £0.1°
Measured Quantities: Cp =0.02
X/CSH +0.01}
Cf =0.0001
T £1°
Derived Quantities: o*, 3 £0.003 Inches, Forward Rokes

+4%  Aft Rakes

3  WING SURFACE CONDITION

One objective of the current study is to provide basic data for future correlation
against high Reynolds aumber wind tunnel doia. Therefore, surface condition of the
airplane might well be a foctor influencing such correlation. The basic surface of the
wing of the test airplane is representative of normal aircraft manufacture. The surface of
the wing between the forward and aft main spars (at 15% and 65% chord) is composed of a
series of metal planks running approximately along the axis of the wing spars and having
chord lengths of approximately 26 inches each. The joints between adjocent planks had
small mismatches, resulting in steps which averaged =0.009 inch in height. The slot
trailing edge forms an additional step ot approximately 15% chord. This step-down varied
considerably over the span of the wing, from a minimum of 0.050 to as much as 0.70 inch
at some points. Of course, this discontinuity could be measured only on the ground, and

the size of the step in flight is unknown. No leukage occurred through the gap ot the slat
trailing edge due to the preserce of an intemal seal.

4. DATA AVAILABLE

Many test points were available from the flight program. Test conditions had been
planned to cover the widest possible range of Reynolds numbers for basic test conditions
(Mach number ond lift coefficient) for which Reynolds number effects might be anticipated

1




Figure 6 shows Mach numbers, lift coefficients, and Reynolds numbers for which data were
measured. Table | contains o listing of all of the test conditions and values of the correla-
tion angle of attack, shock location, edge Mach number, skin friction coefficient, and the
5 displacement and momentum thickness measured for those conditions.

All of the measured data were ~onsidered in some of the analyses contained in this

report. In other cases, only a fe. _.uints were selected to show the effects of the basic
test—condition variables.

PN el S

3 5. ANGLE OF ATTACK DEFINITION

Correlation of data of the type considered herz, or isolation of individual influences
within the data, is complicated by aeroelastic distortions of the wing. Local angle of
attack (at any spanwise station) is influenced not only by gross weight, load factor, and
dynamic pressure, but also by fuel loading, center of gravity, and any factor contributing
to or modifying the structural deflection of the wing. Angles of attack used for correlation
in this report are defined, therefore, in terms of the chordwise pressure distribution over
the forward part of the airfoil section. To provide a practically useable method for
defining angle of attack, the difference between upper and lowzr surfoce pressure coef-
ficient at 30% chord was plotted against fuselege reference line angle of attack for one
test series from previous wind tunnel testing (AEDC Test TF-179, Refeience 5). These
plots, shown in Figure 7 for the two wing stations for which flight dota are available, then
form the basis for definition of angle of attack at any given flight condirion. Because of
the ceroelastic twist, the effective angle of attack is generally different for the two spon-
wise stations. Figure 8 shows correlation of the complete pressure distribution for two
cuses for which the angles of attack are defined by using the plots of Figure 7. As shown by
these comparisons, the entire forward pari of the pressure distribution is motched very

closely, even though shock locations and the extent of aft separation vary from case to
case.
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SECTION 1l

PRESSURL DISTRIBUTION DATA

Figures 2 and 10 show a sampling of pressure distributions measured at wing stations
592 and 921, respectively. These data are arranged to show the progressive changes in
pressure distribution as angle of attack or Mach number is increased.

At the inboard station (wing station 592), the pressure distributions show evidence of
a shorp but relatively weak compression in the flow forward of the strong shock which
terminates the lacal supersonic flow field. These compressions are believed to result from
flow disturbances originating at the leading-edge wing -fuselage juncture. Figure 12 (in
the next section on boundary layer data) shows a sketch of this shock pattern on the
planview of the wing for one test «ondition. The forward shock is more highly swept than
the wing leading edge, and it merges with the terminal shock inboaid of wing station 921.
The forward shoc': also appears to move aft as either Mach number or angle of attack is
increased, and it is not apparent 'n the data at high Mach number cnd @ combinations.

Rather abrupt inflections appear in the pressure distributions near 10% chord on the
upper and lower surfaces. These disturbances are probably caused by the slat misfit which
produced the slot trailing-edge step discussed in Section 1.

A progressive deterioration in trailing-edge pressure recovery is shown as the separa-
tion develops with increasing Mach nunmiber and angle of attack. Examination of the
pressure distribution plots also shows the typical arresting of aft shock movement when the
trailing-edge seporation becomes apparent. These trends and the interacticn of shock
location change with rear separation will be examined in somewnat more detcil in
Section V.

Good correlation between pressure distribution mecsurements made in flight and wind
tunnel testing has been demonstrated by the data shown in Figurs 8. To verify data
credibility, an enalytical determination of the pressure distribution at wing station 592 wns
made for one test condition by using the viscous, infinite swept wing calculation method
presented in Reference 6. Results of that computation are compared with wind tunnel dot:
in Figure 11. The correlation shown is quite good, with minor distortions attribuiable to
manufacturing tolerances, surface imperfections, or measuring accuracy.
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SECTION IV

BOUNDARY LAYER DATA

The boundary layer data considered here are subject to rather strong three-dimensional
effects because of the airplane geometry, and because of significant spanwise variations in
flow conditions at the transonic speeds which are of special interest in this study. It has
not been possible to isolate the three-dimensional effects in any detail, but a brief review
of the type of flow ex.sting at these conditions may be useful in keeping the following
results in their proper context.

Figure 12 shows a sketch of the shock pattem observed on the C-5A wing at one tesi
condition in prior wind tunnel testing. Spanwise pressure gradients are introduced by the
multiple shock system on the inboard wing, and further modified by disturbences at the
wing leading edge-pylon intersections. Chordwise pressure distributions at a number of
spanwise stations are shown in Figure 13. Plots of the pressure coefficients corresponding to
local values of M, equal to 1 are shown on each pressure distribution. The forward
inboard shocks are shown to be relatively weak but sharp and distinct pressure rises. In
most cases, the local velocities just aft of the terminal shock are quite close to sonic.

For the two spanwise locations ct which the flight data were measured (1 = 0.45 and 0.7),
both the flight and wind tunnel data are shown. Correlation between the flight and wind
tunnel results is fairly good except for perturbations in the region of the leading-edge
slat and a somewhat farther oft location of the forward shock at = = 0.45.

1. VELOCITY PROFILES

The pressure distribution data of Figure 13 were used as input to the three-dimensional
turbulent boundary layer computing process developed by Nash and presented in Reference
7. Boundary layer profiles from that computation are compared with the experimental
data for all four rakes in Figure 14. Comparison between theoretical and experimental
results is quite good, although a rather sigrificant distortion is apparent in the upper
portion of the profile ut wing station 592 oft. The source of that distortion canrot be
identified from any measurements available for this study. However, similar velocity
profiles are observed for other test points measured at similar Moch number and angle of
attack conditions, and do not change with a change in Reynolds number. It is possible
thot this distorted profile results from a disturbance introduced at the wing-pylon juncture
or by adjacent instrumentation.

Comparisons of velocity profiles measured at the inboard forward station with several
theoretical profile shapes are shown in Figures 15 to 17 for a variety of test conditions.
These profiles are presented in the form of Cole's universal velocity profiles, end include
data meosured by the Presion tube as the lowest point in each profile. Variations in Mach
number, angle of attack, and Reynolds number are shown by Figures 15, 16, and 17,
respectively. Since all of these profiles were measured in a generally favorable pressure
gradient (although perturbed by the pressure rise through the weok forward shock), they
contain very small wake components. Comparisons of the experimental data with the 1/7
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power law, the Van Driest | theory, Reference 8, and Coles wall-wake profile are all
fairly good, although generally ihe 1/7 povier law matches the experimental data some-
what better than the other analytical profiles.

Figure 18 showe o comparison cf the experimental profiles from the inboard aft rake
with the 1/7 power law and the wall-wake profile for several test conditions for which
progressively increasing wake components are present. These profiles are shown in both
the universal profile form and as plots of u/ue versus height above the surface. A series of
cases for progressively increasing angle of attack was chosen for these comparisons,
although small increases in Mach number are also present. The boundary layer is obviously
quite close to separation for each of the two higher angle of attack cases as shown by the
u/ue plots. In these cases, the wall-wake profiles obviously must provide the best repre-
sentation of the boundary layer shapes, and the matching is quite good.

2. INTEGRAL BOUNDARY LAYER PROPERTIES

A number of measured characteristics for each test point from the flight testing are
listed in Table |. These data include skin friction coefficient, displacement thickness,
momentum thickness, edge Mach number, and shock location, along with test conditions.
Figures 19 and 20 present skin friction coefficients, displacement thickness, and mo-
mentum thickness values versus Reynolds number for a majority of these points from
the forward rakes. The boundary layer thickness values show distinct decreases as
the Reynolds number is increased. The edge Mach number, Mg, provided the best
parameter ‘or isolating effects other than Reynolds number in these data. This is
probably due to the fact that this Mach number is indicative of inzrecses in both
favorable pressure gradient and in boundary layer Reynolds number. Trends with Reynolds
number ore similar in the data from the forward rakes at both spanwise stations. As shown
by the upper plots in Figures 19 and 20, no significant trends in variation of skin friction
coefficient with test conditions can be identified within the scatter of data available.

For the data measured ot the rokes located at 75% chord, behind the shock, the only
distinguishable trend demonstrated by the data was a consistent increase in boundary layer
thicknesses and a decrease in skin friction coefficient as the Mach number increased (see
Figure 21). These trends result, of course, from the increase in pressure rise through the
shock as the Mach number increases. The forward rakes are alwoys ahead of the shock and
therefore do not experience these effects.

3. CORRELATION WITH TWO- AND THREE-DIMENSIONAL CALCULATIONS

Measured values of skin friction coefficient and boundary layer thickness are shown
in Figure 22 compared with data calculated by the Nash three-dimensional method of
Reference 7 and the two-dimensional method of Reference 9. In both calculations, the
boundary layer transition was assumed to occur at 8% chord. Boundary layer thickness at
the forward measuring station matches the three-dimensional theory quite well at both span~
wise stations. At the recr rakes, the experimental thickness is higher than calculated out-
board and significantly smaller inboard. The profile shape comparisons shown in Figure 14
amplify this comparison. At the outboard station, the experimental profile shape matches
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the calculated shape very well in the lower portion of the boundary layer, but deviates
slightly in the direction of a greater thickness in the upper portion. The distortion of the
inboard rear profile was discussed previously and is in the direction to produce ¢ low value
for the experimental thickness. The two-dimensional thickness calculation always results
in a smaller value than the experimental data.

=
if
3

VK v

As shown on Figure 22, the experimental skin friction coefficients are generally great-
er than either the two-dimensional or the three dimensional calculations. While the three-
dimensional calculation is obviously better than the two-dimensional, both in discrete val-es
and in the apparent trend with increasing chordwise position, the quantitative correlation is
5 not very good. The surface imperfections discussed in Section || probably form ¢ significant
: contributor to the higher values of measured skin friction. Experimental values of displace-
ment thickness and momentum thickness are compared with values calculated by the two-
dimensional method of reference 9 for variations in Mach number, angle of attack, and Reynolds
number, respectively, in Figures 23 to 25. At the forward rakes, the correlation ir. dis-

3 placement thickness is very good for all cases. The calculated values of momentum thick-
ness are generally lower thon the experimental results. At the rearward rakes, good

§ correlation can hardly be expected because of the strong three-dimensional flow com-
ponents introduced by the swept normal shocks which are present in the flow chead of
the rear rokes. The two-dimensional method, of course, contains no representarion of

such flow characteristics, and the approximate correlation shown in some conditions must
be considered fortuitous.

-

Pk L% i

Skin friction data resulting from the two-dimensional calculation are shown in Figure
26 correlated against the experimental values. The experimentel date ot the forward
= measuring stations show higher skin friction values than predicted, which is competible
with previous comments on the probable effects of surface imperfeciions. The correlation
4 shown by data from the rear rokes is surprisingly good. It would appeor thot the validity
of using this two-dimensional method for predicting this kind of flow conditicn should be

examined in more detail. In the absence of such an investigation, the correlation shown
should be regarded witi zaution.

Rt o A

T

4. CORRELATION WITH SKIN FRICTION THEORY

™

Skin friction coefficients were calculated for the measured local flow conditions at
each rake for each test point available, from the Spalding and Chi (Reference 10) and the
Von Driest Il (Reference 11) theories. Table |l contains a partial listing of the calculated
and experimental data. Since both of these theoretical methods ignore longitudinal velocity
gradients, the correlation of data from the rear rakes with calculated results is so poor as
to be meaningless. The difference between zalculated and experimental values for the
forward rakes is plotted against Mach number in Figures 27 and 28. These differences
scatter considerably for both theories, and seem to show a trend from positive values of
theory minus experiment at |>w Mach numbers toward negative values at higher Mach
numbers. Although not as well defined, a trend toward smaller scatter at high Mach

numbers might also be inferred from these data. No consistent trend with Reynolds number
could be extracted from these data.
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An examination of the data at various angles of attack, on the other hand, shows a
reasonably well defined trend toward lower skin friction values at higher angles of attack
Figure 29 shows this variation for the experimental data in a narrow band of Mach number
(0.798 = 0.005). Plots of the normalized difference betweea theory and experiment, also
shown in Figure 29 for both the Spalding-Chi and the Van Driest Il theories reflect this
trend, but the scatter remaining in the data is sufficiently large that an accounting for
angle of attack variations will not change any conclusion to be drawn from Figures 27
and 28,

Bl b i s

5. TEMPERATURE AND DENSITY PROFILES

i Peak values ot ‘ocal Mach number occuiring in the data considered here are of the
order of 1.3 to 1.4, Temperature changes through the boundary layer are, therefore, not
large. Temperature profiles measured for several flight Mach numbers are shown in
Figure 30, along with values calculated from the well-known Crocco relation for an
adiabatic wall:

T T 3 LT TR T L T

(L

T -7
(o] w

T -7
(o] w
e

The

Y .
U
e

The meatured data follow the calculated curves with ..., a small discrepancy for one
profile. The Crocco theory and the measured temperatures were used to calculate the
3 density profile through the boundary layer . (The static pressure is assumed constant.) These
4 profiles are compared in Figure 31 and also show near agreement.
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Figure 30. Comparison of Static Temperature Profiles with Crocco's Theory
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SECTION V

ANALYSIS OF SCALE EFFECTS ON SHOCK-INDUCED SEPARATION

As discussed in Section |, previous investigations have shown that the outstanding
effects of shock-induced separation on wing load distributions at transonic speeds have
been manifested as changes in the location of the normal shock which terminates the local
supersonic flow region on the wing upper surface. Data obtained in this investigation

which relate to this phenomenon and the scale effects indicated by these data will be
reviewed in this section.

1. VARIATIONS IN SHOCK LOCATION

Although the terminal shock in a transonic wing flow field functions as a normal shock
(since it provides the transition from supersonic to subsonic flow), the wing surface pressure
distribution does not disploy the instantaneous pressure rise characteristic of a mathematical
normal shock. Therefore, to provide a quaontitative entity for comparisons of shock loca-
tion, the definition illustrated in the following sketch has been adopted for shock location.

(@}

X/Cqpy
X,/C

A straight line is fitted to the shock pressure rise. The intersection of this straight
line with the line representing the local values of critical pressure coefficient for the flow
normal to the locul element lines of the wing is defined as the shock location.

Figures 32 and 33 show the variation of measured shock locations with Mach number
and Reynolds number for several angles of attack. To establish the shock location values
shown at fixed angles of attack, the variation of shock location with angle of attack was
first determined from the mass of data a.¢:*lable, and all data within a narrow band of
cngles of attack were corrected to account for the difference from the nominal angles
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Figure 32. Voriaotion of Shock Location with Mach Number, Reynolds Number,
and Angle of Attack. Wing Stotion 592
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Figure 33. Variation of Shack Location with Mach Number, Reynolds Number,
and Angle of Attack. Wing Station 921
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selected. The data shown in Figures 32 and 33 include all test points within +0.3 degree
from the nominal angles.

For the data measured at wing station 592, Figure 32, some scatter is shown by the
measured dota, but no consistent variation of shock location with Reynolds number can be
discerried. The shock location moves aft as the Mach number is increased from the mini-
mum values tested to a Mach number of approximately 0.82, following which a small
forward movement occurs.

At wing station 921, Figure 33, a similar trend with Mach number is shown, and a
small but distinct oft movement of the shock (approximately 5% C) with increase in
Reynolds number is observed. The reason for this difference is not readily apparent. A
number of factors contribute to making conditions at the outboard station different from

those farther inboard.

¢ Only a single shock is apparent in the flow on the outboard wing, while the
inboard wing experiences an additional sharp compressive disturbance forward of
the terminal shock.

¢ Flow disturbonces from the pylons and nacelles are stronger for the inboard station .

® Due to ceroelastic twist of the wing structure, the effective angle of attack is
always higher inboard than outboard.

Because of these, and possibly other, differences in flow phenomena, it is not certain that
the differences in shock location shown for different Reynolds numbers in Figure 33 are
actually scale-effect differences.

Figure 34 shows the faired curves of shock location versus Mach number for a = 1.5°
from figure 33, along with similar data from previous wind tunnel testing of a C -5A model
(Reference 5) and trailing-edge pressure coefficients from both the wind tunnel and flight
tests. At low Mach numbers, the high Reynolds number, :light measured shock locations
tend to ogree with the wind tunnel values better than the lower flight Reynolds number
data. This fact seems to confirm the conclusion that differences in flight shock
locations cannot be attributed to Reynolds number differences.

The direct correlation of shock location change and trailing-edge pressure recovery is
readily apparent in Figure 34. The flight data, because of higher Reynolds number, show
more positive values ¢f the trailing-edge pressure coefficient than the wind tunnel results;
and the initiation of separation, as indicated by a deterioration in pressure recovery, is
delayed to a higher Mach number. As the Mach number is increased from the lowe.* values
shown, the trailing-edge pressure coefficient first remains essentially constant at ¢ value
of approximately 0.16 for the wind tunnel case and 0.23 for the flight results. In this
range of Mach numbers, the shock first moves aft as a nearly linear function of Mach num-
ber, then decreases slope, reaching a peak value at a Mach number of 0.79 at the wind
turnel Reynolds number and 0.8 at the flight Reynolds number. The Mach numbers for
these peak values correiate closely with the Mach number at which significant trailing-

- dge separation begins, as indicated by the rather sudden decrease in pressure coefficient.

e
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Figure 34. Correlation of Shock Location Change with Trailing-Edge Pressure Recovery
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2. IDENTIFICATION OF SHOCK ~-INDUCED SEPARATION PHENOMENA

Consideration of the measured boundary iayer data in conjunction with the pressure
distribution and shock location data provides some insight into the reason that no influence
3 of Reynolds number on shock~induced separation is apparent in the dota obtained in this
investigation, Evidence leading to this insight is reviewed below.

3 In Reference 1, Pearcey shows quite clearly that scale effects can be anticipated only
in those cases where a trailing-edge separation becomes significant downstream of a flow

E which has reattached behind the terminal shock (or, possibly, does not separate at the
shock). Increasing Reynolds number should in all cases tend to suppress this kind of
trailing-edge separation, while ample evidence exists to show that increasing Reynolds
number has only minor effects on the separation in the immediate vicinity of the shock.
Therefore, for any given value of the adverse pressure gradient approaching the trailing
edge, it can be anticipated that a Reynolds number can be reached beyond which the

2 trailing-edge separation is suppressed to the point that seporation at the shock with no
subsequent r2attachment will become the dominont factor leading to flow breakdown.

3 Figures 35 and 36 show the voriation with Mach number of severcl measured quantities
3 which can provide an indication of flow separation. Trailing-edge pressure coefficients
(at the top of each figure) generally reach values of approximately 0.2 for unseporated

1 flows, ond pregressively decrease as troiling-edge separation becomes more severe. Of
course, skin friction values must go to zero at the separation point. The flow direction

; angle measured by the directional Preston tubes is also indicative of approaching separa-
tion on a swept wing, and o 180° change in flow direction provides one definition of the

. separation point in g three-dimensional flow.

The flow direction angle at 75% chord for wing station 592 (Figure 35) indicates small
outfiow angles in the boundary layer at low Mach numbers and angles of attack. A rather
abrupt increase in outflow angle occurs when the Mach number is increased beyond a
3 threshoid value which decreases as the angle of attack is increased. The nearly vertical
: rise in outflow angle must be interpreted as a local separation. The skin friction coef-
ficient at the highest measured flow angles are very small (0.0004 to 0.0006) and also
indicate imminent separation. These indications of separated flow at 75% chord precede
3 by substantial morgins any significant deteriorction in trailing-edge pressure recovery. It
: appears quite conc lusive, therefore, that the final flow Yreakdown occurs as a result of
separation at the shock rather then trailing-edge separation. The dato indicate that this

condition exists ot all Reynolds numbers within the range covered by the flight tests
reported here.

The data in Figure 36 for wing station 921 show similar trends in indicated separation,
although the difference in the Mach number for separation at 75% chord and at the trailing
edge oppears to decrease as the angle of ottack is increased. This could result either from
a more ropid reorward spread of the shock-induced separation or from a more significant

development of trailing-edge separation. Unfortunately, the dato avcilable are insufficient
to determine which of these effects is more likely.
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The focts outlined above establish quite clearly that the flow conditions existing on
the wing of the C~5A in the range of Reynolds number covered by these flight tests corre-
spond to those classified as Model B by Pearcey in Reference 1. In these flow situations it
can be expected that details of flow reattachment behind the shock-induced separation,
and the subsequent tendency for the flow to sepcrate again, would depend heavily on
local pressure gradients at and immediately behind the reattachment point, since the
boundary " layer profiles are "weak" in that region. There{ore, an attempt was made to
correlate indicated separations with the parameter (8/0 u”)(dp/dx) as suggested by
r Alber in Reference 7. The range of values of the pressfre gradient covered by the data
available is too small to enable isolation of the factors leading to separation. It would
appear that a study of these effects, preferably in a high Reynolds number wind tunnel in
which conditions could be rigidly controlled and pressure aradients varied over wide
range, would be very profitable in develcping ¢ quantitative understanding of scale-effect
trends on transonic wings. Results of such a study could contribute significantly to o
3 capability for predicting the probability of scale effects on any given wing design, and
: ultimately to the development of methods for extrapolation of scale-effect trends if future
high Reynolds number tunnels are built with less than full-s.ale testing capability .
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SECTION VI

CONCLUSIONS

Lt S SR S EL e

T

Results of wing pressure distribution and boundary layer testing on a C-5A airplane
have been studied to investigate scale effects in transonic flow fields at high Reynolds
numbers. This srudy has led to the following general conclusions:

TR

TR

(1) Within the range of Reynolds number covered by the flight tests, flow breakdown

results from separation at the shock with no subsequent reattachment rather than
from trailing-edge separation.

o i

(2) Because of the mode of flow breakdown, no scale effect on shock location is
apperent in the Reynolds number range from approximately 35 to 90 million.

b W M AL Ll I

(3) Flight-measured shock locations are aft of those observed in previous wind tunnel

tests ot a Reynolds number of 7.4 x 106 by as much as 10 to 12% chord at high
subsonic Mach numbers.

et R KK

(4) Comparisons of the measured boundary layer data with several theoretical
y lay
predictions disc losed no unusual characteristics ot these high Reynolds numbers.
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