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SUMMARY

The paper describes the development of a mathematical model for the

attitude dynamics of a spacecraft equipped with a lightweight flexible solar

array of RAE design. The theory has been developed using a continuous mechanics

approach and a computer programme prepared to generate the lateral bending modes
of a spacecraft comprising a rigid central structure carrying a pair of solar

arrays symmetrically situated about the ceantral body. Furthermore the programme

will generate the effective inertia and mass as a function of the forcing

frequency. These are then formulated in the form of transfer functions which

are more convenient for coatrol problem analysis.
Two models are considered. The first model assumes that the array cross
members are rigid whilst the second takes account of the flexibility of the

cross members,
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| INTRODUCTION

As the power requirements for future generations of commmication and scientific
satellites continue to escalate, radically different design departures must be made
from the early spinning drum type of satellite with body mounted solar arrays.
These designs have already included rigid fold-up arrays (Skylab), semi-rigid fold-
up arrays (Boeing M;x:s mission), flexible roll-up arrays (FRU3A), flexible fold-up
arrays using BISTEMS (CTS) and flexible fold-up arrays using a central telescopic
mast (X4) and are usually sun orientated from a three axis stabilised spacecraft.
Designs embodying flexible panels have been shown [1] to be: superior to rigid and
semi-rigid types in terms of power-to-weight ratio, stowed volume, adaptability and
development pcteritial. The estimated end-of-life power to weight ratios of a two
paddle 2kW array of the thinne:* available soiur cells, for instance, complete with
orientation and power transfer mechanisms, rang: from 20 W kg"l for a rigid fold-up
type to 43 W kg'1 for a flexible fold-up type deployed by a pneumatic telescopic
mast. At the RAE (Space Department) effort has been concentrated into the develop-
ment of the latter type of lightweight flexible array [2,3].

Fig‘.l is an artist's impression of the RAE type array {ully aeployed, as
originally proposed for a spacecraft capable of demonstrating orbital manoeuvres
by . “ectric propulsion whilst Fig.2 illustrates the main features of the RAE proto-
type wiich has been developed over the past si> ;‘ears and has now satisfactorily
completed qualification tests for geostationary orbit.

Due to the lightweight structure of the array, the design of an attitude control
system for a spacecraft of the type illustrated in Figs.l and 2 has to take into
account the flexible nature of the array since the natural vibration modes of the °
spacecraft may be excited by the control torques and forces applied to the space-
craft for the purpose of attitude control, station keeping and orbit manoeuvres.
The present paper describes a method which has been employed to assess the various
modes of vibration., ‘

2. BRIEF DESCRIPTION OF THE RAE ARRAY

Each of the two ams of the deployed array consist of a number of panels (six
pairs in the current design) of thin (f(I) um} silicon cells mounted on fiexible ,
Kapton sheets supported by-aluminium honeycomb cross members attached to a pneumat -
ically deployed teles_c':opic mast. The mast is made up of a number of thin walled
aluminium alloy tubes of progressively decreasing diameter and wall thickness,
adjacent sections of tube being locked together at the overlaps to give a fairly
rigid connection. The cross member: are attached to the outboard ends ‘of the
tubular sections and the panels are held under tension by ‘springs connected to

" adjacent cross members. During launch each amm of the array is folded concertina

fashion and stowed in an aluminium honeycomb compartment, the cross member on the
outermost tube forming the cover of the compartment. Once deployed in orbit, the

_present design of array cannot be retracted.
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3 MODELLING ASSUMPTIONS FOR THE ARRAY

Although such arrays are frequently investigated nowadays by using the method
of finite elements in the final phase of analysis, this can he expensive and time
consuming in the initial phase of design. The approach employed in this paper has
been to use the traditional methods of contimsm mechanics rather than a discrete
method since the geometry of the system is relatively simple and the method can
give & quick insight into the problems involved. This method has also been _
successfully used by Hughes [4,5,6]. : - : . '

Although torsional and in-plane vibrations will occur, initial estimates showed
that these modes of vibration are at much higher frequencies than the dominating
out-of-plane modes. Consequently only the lateral flapping modes of vibration are
considered. in this paper. “

In order to model the system, certain idealisations have been made:-

' (1) the sections of the mast have been treated as uniform cylindrical beams uf
specified stiffness and density under compression due to the panels and the
overlap portions of the mast neglected apart from their mass contribution.
Rotary inertis and shear are neglected.

(ii)‘ the panels have been idealised as uniform membranes of specified density
- under uniform tension but with negligible flexural rigidity.

(1i1) the cross members have been assumed rigid in the' first instance so that they
can be considered as point masses possessing inertia. Flexible cross members
are considered later in the paper. '

(iv) the central body is assumed to be rigid with the arrays being deployed
symmetrically about the centre of mass.

(v) small linear displacements and zero energy dissipation is assumed, i.e. zero

damping.

4 ANALYSIS OF THE LATERAL MOTION

Fig.3 shows the coordinate system used to describe the mode shape of the
idealised array at the ith scction (i = 1 tc N). [The index i will be omitted
wherever possible in the text to avoid unnecessary symbolic conplexities.] The
quantity u(y) denotes the mast displacement from a fixed reference plane whilst
v(y) represents the corresponding panel displacement.

Since the panels arz under tension T and each mast section under the same
compression force, the equations governing their motion are respectively
V' +ui = 0 B ¢ )
and ‘ ‘

aU™ + Tu" +pii = 0 . )




vhere the elements of (e

{using the notation prime to signify partial differentiation with respect to y
and a d~t to denote partial differentiation with respect to tire)

where u = mass per unit length of the pancl
P = miss per unit length of the mast
E = Young's modulus of the mast
1 « arca moment of inertia of mast = -} (r: - r;)
a = EI
r; = outer radius of the mast = Ty ¢ h

= jnner radius of the mast

h = wall thickness of the mast

= length of the mast section.

Thus, when the system is vibrating with sinusoidal frequency p , the solution to

the panel equation (1) is

« u(t) sin ky + u(®) sir k(¢ - y)
viy) sin kt )

where u(0) and u{t) denote the mast displacement at the beginning and end of
the section respectively and k = p Hﬁ . Similarly, it mzy be shown [7] that the
mast displacement is given by

(52 + ¢z)u(y) « (8% cos ey + e? cosh 8y)uy * (6 5:“ L AP s;”h Gy)ué

1 1 /[sine sinh 8y \.
* g (cosh &y - cos eyliy + 3 (—rl - “Tl)vo “

where M = au" is the mist moment and V = -M' . The mast shear S is given by
S$=V-Tu', i.e. it is dcpendent upon. the compression force and the quantitics
B, 7,8 and e are defined by

2
, p° = p |5,

2 /4 : [T (5)
52--7-2-9 Z‘-oﬂa ’ 02-'!2-0 Zr0ﬂ4 .

2
[ ]
Py

Consequently, using equation (4), we may derive the transition ratrix U™ = [uij]
relating the quantities u, u’, M and V at the two ends of the mast section,
namely

u u

] ]

o R (6)
] M

vl VO

2, GZ)Um are given by
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adzez(ch -c)

—aézez(dsh + €5)
L

using the notation s = sin et, ¢ = cos €2, sh = sinh &¢ and ch = cosh &¢ .

B ; 2
¢2ch + dzc EFE + é%h
se (esh - &s) elch » 62c

ase (esh ~ &s)

-aczez(ch - ¢)

1 -
g (ch - c)

é (8sh + es)

62ch + e

Zc

T
-§"sh + ¢

35

1
a {c - ch)

~e5 ~ £5h

Consider, now, the forces and moments acting at a cross member.
in Fig.4 at the junction between the ith and (i+1)th sections where the suffix
notation + and -~ has been used to denote 'just before' and 'just after' the

junction, The total lateral forces F,_ are equal to the sum of the corresponding .
shears in the mast S, and the components Tv; arising rrom the tension in the

panels. Thus

t

The moments acting on the ith cross member arise purely from the neighbouring

F, = S, +Tvy = v, - Tui + vy

dzch + Ezc

These are shown

)

1(s sh
ale é

—-—

(7)

moments M = Mi’l(O) and M_= Mi(z) existing in the mast secticns. Thus if we
now introduce the state variable X = (u,u' ,M,F) we may write

u u
u' - u’ u'
M M
Vlo Flo

and

u
ut
M
F

L

where the matrices U' are derived by using equations (3}, (6) and (7) to be

vt - [ 1

(]
0

and

T'(cos kt - u
L

T'{cos k¢t ~ ull)

1(1)

0 0
1 0
0 1
T~ T’u12 ) T'u13
A A
0 0
1 0
0 1
.y - R
'y, T T'u13

0]
0
0

O

= O O O

-~

(8,9

(10)

(11)

where T' = Tk/sin kt and A =1 + T'u14 « Purthermore, the equétions of motion
for the cross member of mass and moment of inertia m° and IC are
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and

Coe
M, -M - I

giving the transition matrix U° defined by

X, = UX, | |
0 ) S (12)
1
_IcPZ
0

O =~ O O
- O O C

t
3
_unoo.-

Hence, using the transit.on matrices defined by equations (6), (8), (9) and (12)
the overall transition matrix A for a single array relating the state XN+ at
the end of the mast to that corresponding to the c§nnection of the mast to the

satellite, i.e.

o " Mo a3)

A = ﬂ (Ui u] UT U;)‘ . (14)

: i
We will denote the elements of A by aij (i,j =1 to 4).
| .

5 MODES OF VIBRATION <

is

In view of the symmetry assumptions male cmcemin:g the deployed state of the
two arrays, the lateral deflections car be considered as the superposition of two
classes of normal mode responses. The first class consists of those modes in which
the two masts bend in opposite directions (i.e. antisymmetrical deflections) so
that there is rotation of the main body but no translation. The second class is
comprised of the modes in which the two masts bend in the same direction (i.e.
symnetrical deflections) and there is then translation of the central body but no
rotation. These will be referred to as the rotational and translational modes
respectively. For the attitude control system it is only the rotational modes
which are of interest since it is these which affect the pointing accuracy of the
satellite. Another class of modes will be called the cantilever modes and refers
to the modes of vibration occuring when the satellite is rigidly fixed, i.e. of
infinite inertia and mass. '

In crder to determine the various modes of vibration the appropriate boundary
conditions must be applied to the transition equations (13). These will now be
considered in turr.




6 ROTATIONAL AND CANTILEVER MODES

If the rotation of the satellite main body, of mase Mb and inertia Ib , is
denoted by @ , the am length from the centre of rass to the array attachment
point by d and the applied couple sbout the centre of mass by C then the
boundary conditions at O_ are

u =&, u' = 9, L7 = Me2deC

and at N, M=F=0. From these conditions apﬁlied to equaticn (13) it
follows, after some straightforward manipulatioas, that the effective inertia
1, = C/8 of the satellite is

L) =1 P (15
12 "zD'— )
e p e
where NR - da31 + ag, 4 - daSS' (16)
dag  + 8y ay - dig
and o
L an
843 844

are independen® of the central body inertia.

Now the natural rotational modes of vibratiai 4, are those obtained when the
applied couple is zero, i.e. Ie(wn) = 0 . Alsd, the cantilever frequencies “n
occur when the satellite rotation is zero under an applied couple, l.e. @) is
infinite or ‘D@ ) = 0 . Thus by plotting 1 /and D, as a function cf p the
rotation21 and cantilever frequencies may easily be determined. Purthermore,
equation (15) shows that the dependence of the rotational frequencies on the
central body inertia may be deduced simply by a shift in the Ie ordinate axis.

It may also be shown that in the limit as p+ 0, I_(p) tends to the overall
inertia Ir of the satellite considered as a rigid body.

7 TRANSLATIONAL MDDES OF VYBRATION

Denoting the lateral displacement of the satellite centre of mass by Z and
the spplied force by P then the boundary conditions at O_ are

u =2, u' = 0 , Mo'z'-zrwp

whilst at N, M=F =0 . Again, applying these conditions to equation (13)
leads to an effective overall mass M, - P/1 given by

2N,

M(p) = M -—L as
e Mb ;TC )

Il
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where NT = |33, ag) (19)

843 141

which, as to be expected, is independent of the arm distance d . Furthemore, in
the limit as the vibrational frequency tends to zero, Me(p) tends to the overall
rigid mass Mr of the satellite. The natural translational frequencies of vibra-
tion a;‘ are those existing when the applied force is zero, i.e. M(‘(u;\) =0 and,
of course, Me(ﬂn) is. infinite at the cantilever frequencies. As with the
rotational natural frequencies, the translational natural frequencies may be
determined by plotting M, asa function of p and noting the zeros. Further-
more, as can be seen from equation (18), the effect of the central body mass on
the frequencies may be found again by a corresponding shift in the ordinate axis
M, '

8 TRANSFER FUNCTION REPRESENTATION OF THE SATELLITE

Knowing the natural modes of vibration we may thus express the response to-the
applied forces and couples in the form of transfer functions, namely

T

[ ﬂ(l* xl‘)]

P Mr 2
HL RARETS)

2 -
ﬂ 1+ 5 —_
nn(l + j[‘n)

o 1t ; (21)

T TTl’ s
' w2(l~i7)

where s = ip an. structural damping has been introduced in the customary manner
[8], i.e. the rigid inertia and mass have modification factors due to the
flexibility of the array so that the control block diagram is relatively simple
for the particular configuration choscn here (although it may be readily
generalised) and only requires knowledge of the natural frequencies. In practice
nly sufficient factors in equations (20) and (21) would be retained to cover the
bundwidth of the control system.

(20)

This form is in contrast to the form employing modal gains [4,5,6] which require
the actual mode shapes to be calculated and use of their urthogonality properties.
The orthogonality conditions for the present model can easily be deduced by consid-
eration of the total kinitic energy of the system and using the 'conjugate
property’ [9]. In essence, the transfer functions depends upon a mixed representa-
tion of the constrained and uncorstrained modes of [4,6].
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9 CQMPUTER PROGRAMME

In order to obtain the erffective inertia and mass as a function of frequency a
corputer prograrme was written to perform the matrix multiplications indicated by
equations (14), (15) and (18) as a function of the basic physical parameters (T,
#, E, p, Ty h, l)i. Mb' Ib and N . The programme was also organised to iterate
to the zecos of Tor My and D- in order vo obtain the rotationzl, translational
and cantilever frequencies and, if necessary, to print cut the correspondiing mode
shapes. (Normalised to have unity displacement at the tip of the mast.)

As an illustration of some of the results obtained Figs.b and 6 show the effect-
ive inertia and mass ootained for tne array having the physical characteristics
shown in Table 1. It will be seen that the rigid inertia of the two arrays is
390 kg m2 whilst the lowest rotational frequency for a central body inertia of, say,
300 kg m2 is 0.44 Hz and decreasing tu the cantilever frequency of 0.3 Hz as the
central body inertia is increased, The behaviour at 0.9 Hz ard 1.8 liz is not shown
i, detail since there are other very close rotational frequenéies corresponding to
panel excitation. These rotatjonal frequencies, and their variation with mast
stiffness, are shown in Fig.7 for Ib =300 kg m .

. fuble T
Physical Chavacteristics of Single Array (Mass = 9.20 kg)

t I KL n h £ pL m

Section | o N grm) | (k) | o) | o) | kem | o) | ke

1.295 10,9594 | 1.243 ] 25.40 1 0.4572 ] 0.2180} 0.2825] 0.0¢20
1,295 [ 0.9594 | 1.243 | 25.40}0.4572| 0.2180] 0.2825] 0.0288
1.29510.9594 ) 1.243 | 22.23 {1 0.4572, 0.1766 | 0.2288 { 0.0288
1.295]0.9594 | 1.243 | 20.64 | 0.45721 0.1623 ) 0.2, { 0.0288
1.29510.,9594 1.2431 19.05]0.3310} 0.1250, 0.1619 | 0.0288
6 1.29570.9594 1 1.243 ] 17.46 | 0.3810( 0.1143 0.1481 | 0.2268

[V R ¥ S

Total | 7.770 7.458 1.314 [0.424

Panel tension SN, Young's modulus of mast 7.03 x 10'C N 1%, width 1.37 m

10 EXTENSION OF THE MDDEL FOR FLEXING CROSS MIMBi:RS

For weight reductien purposes, the possihility of replacing the stiff cross
members by relatively flexible steel hyperdermic tubing is being seriously
considered. In order to determine the consequent change in f{lexibility of the
array, another model has been developed which will now be very briefly described.
The coordinate system is similar to that of Fig.3 except that the panel motion
v(x,y) 1is rncw a function of x and y whilst w(x) represents the displucement
of the cross member from its undeflected position and is represented by a super-
positicn of clamped-free beam modes vi(x) [10], i.e. w(x) = £qiwi(x) with
¢;(0) = ¢!(0) =0 . The v, satisfy, in particular, the equations [11)
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[w_:pj - ccij . [’i - = -1 Q‘li . !w;@'j' - ﬂicaij (22)
1

< ¢ ‘ ¢

where the suffix ¢ on the integral denotes integration over the length of the
cross member and the quantities ay &l fic/2 are tabulated in [10].
In order to develop the equations of motion recourse may be made to Hamilton's
principle, namely
6/(1. +t W)L =« (23}

In which & denotes a virtual variation, L 1is the array Lagrangion and W is

the work done on the array, e.g. by the forces and moments at the Toot of the array.
Here the Lagrangian may be written as

L . C » .
L = %}: /pu7dy «/pv’dxdy »[ﬂc- (6 + w)%x
n P <

2
" 2 T.,2 32
- | au dy*['i‘u'dy-/—v'dxdy-/ac( ")dx 24
[ n pc : ;x'z ()

where Z indicates sunmation over all sections of the array and a° {e the

bending stiffness of the cross member.,
Carrying out the variation in equation (23) and (24) leads again to the

partia}
differential equations (1) and (2) with solutions {4) and .
V) = w0 SRy ) stk - as)
vhere vo(x) = u(0) + 2 v, (x)
| V() = u(t) + Ik, (x)
together with the boundary conditions at a €ross member
\
. T T 2 ,
< < : }\
and :
’ T T .1'
<

i=1,2..0

Cad :
where Ki -q 51‘: « Using equation (25), we may evaluate the quantities

b 3 s X A R A R At et d -
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12
/(g v').dx - 1 [(ul + In! q:) ( xqi> cos ki.] = Gg (28)
c
/(% v')‘dx - T -(ul + Ia! q:') cos kt - (‘b + Zalq )] = Ga (29)
c L
/({- v‘)\oidx = T ( a' +q. )- <u'0ai + q?) cos kz] = G(x) _ (30)
e 3

]
(2]
>

/(-CT- v')vidx .- T ("z“i . q;') cos ke - (uoa; . q?)] : (31)
c - - .

and equations '(26) and (27) become respectively

F-F ¢pm(u¢2qai) = 0 (32)

. 2
G - G - Kja; * pm(mf +q) = 0 (33)
G=1,2, ...)

where F =S+ Gy . Furthermore, we have the equations of continuity at a cross
member, namely '

+ - *

wo=ou ut o= ou M = M, q;-q; (34)

where we have assuned that the moments of inertia of the cross members are
negligible.
If we terminate the expansion for w(x) by retaining only n terms then

equations (32), (33) and (34) enable us to obtain the transition matrix ° ata
cross member relating the state variable Y = (qi ces Quu u'MF (31 ves Gn) of

order 2n + 4 at '‘ust before' to 'just after' the junction, i.e.

Y, = Uy
where the elements of U are given by \
— t ] ——
'
......... 13’_3_-______-0_ _0__._:..%‘.._‘ \\
2 c L2c ! 2 ¢ '
-pm ai ------ pm dr" : -p'm \
]
(K, - pinC) i -plray
~ | i
~ ] |
~ '
S e | i ! ln
~ | 1 !
N . | l I
K - pZm ) | -pzr'nca' 1
] n !

bt A e e e ne
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and ln' 0 o denote unity and null matrices of order n respectively.
Using the relation S =V - Ty' , equation (6) may be modified to be
u u
u'l . g ' (35)
M M
S . S 0
where 0 Ty o 0 7
U-m - um . 0 T\IZ‘ 0 0
0 'l‘u34 -0 0
Tugy Mg Ty + M) Tupy -Tuy,

with elements vij .

Consider now equations (28), (29), (30), (31), (35) and the relaticon
Fo,e = (S *+ Gg)g, - These give n+ 8 equations relating the 2(2n + 6)
quantities (q) ... q uu' MSF G, G ... Gn)O.'. + By eliminating the four
quantities (S, 60)0,9. we are left with (2n + 4) equations relating the
2(2n + 4) elements of Yo',‘ , i.e. a transition equation in the form

TIY,. = TOYO (36)

for the ith section of the mast., Besides the 2n equations (30) and (31), the
other four equations are

]
zvu'l"ai'qi +(1+ vuT')u'_ - Z‘v“’r' cos ke ai'q? + (v11 + v”T' cos k.‘.)u0
* V¥ * itto * Vo ?
) 4]
DvyaTlaiq + vy T'u, +u; = Zv,,T' cos ke ajq + (v21 + vy, T' cos kl.)uo :
* Voo * Vasto * vasTo
(] . 0
Ziv:,""l"aiq.1 + vMT'u’_ + Ml - rvMT' ccs ke aiqi + (v31 + v34T' cos kt)uo

* vty Vst vifo

L(vyy - cOs U)T'ﬂiq;' + (vgq = cos kt)T'y, + F)

= vy cos ki = 1T'ajql + (vgy + vy ' cos ki = Thuy + vy + vy + vasFo

e e el An TRt e € P 1 Y 2




so that the elements of Ty and 'l‘1 are determined explicitly. Consequently, the
overall transition matrix B for a single array relating the state at the end of
the mast to that at the root, i.e.

YN* = BYO-
is
N
B - ﬂ("i i Tm)'”é .
i=1

Knowing B , the effective mass and inertia for the translational and rota-
tional motion can be found in exactly the same manner as the earlier discussion by
applying ths appropriate boundary conditions. In particular it is to be noted that
Gi =0(i=1ton) at O and N, . A computer programme }ms also been written
for the flexible cross member model. MNumerical results will be given at the

symposium,
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