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SUXMARY

The paper describes the development of a mathematical model for the

attitude dynamics of a spacecraft equipped with a lightweight flexible solar

array of RAE design. The theory has been developed using a continuous mechanics

approach and a computer programme prepared to generate the lateral bending modes

of a spacecraft comprising a rigid central structure carrying a pair of solar

arrays symmetrically situated about the central body. Furthermore the programme

will generate the effective inertia and mass as a function of the forcing

frequency. These are then formulated in the form of transfer functions which

are more convenient for control problem analysis.

Two models are considered. The first model assumes that the array cross

members are rigid whilst the second takes account of the flexibility of the

cross members.

Paper presented at the VI IFAC Symposiwm "Control in Space", Tsakhkadzor,

Armo nia, USSR, 26-31 Augzwt 1974.

Departmental Reference: Space 465
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I IRIfWCTION

As the power requirements for future generations of communication and scientific
satellites continue to escalate, radically different design departures must be made
frou the early spinning drum type of satellite with body mounted solar arrays.

These designs have already included rigid fold-up arrays (Skylab), semi-rigid fold-
up arrays (Boeing Wars mission), flexible roll.up arrays (FRUSA), flexible fold-up
arrays using BISTEMM (CTS) and flexible fold-up arrays using a central telescopic
mast (X4) and are usually sun orientated from a three axis stabilised spacecraft.
Designs embodying flexible panels have been shown (1] to be superior to rigid and
semi-rigid types in terms of power-to-weight ratio, stowed volume, adaptability and
development potential. The estimated end-of-life power to weight ratios of a two
paddle 2kW array of the thiniae; available soi-.r cells, for instance, complete with
orientation and power transfer mechanisms, range from 20 W kg"I for a rigid fold-up
type to 43 W kg"1 for a flexible fold-up type deployed by a pneumatic telescopic
rest. At the RAE (Space Drpartment) effort has been concentrated into the develop-
ment of the latter type of lightweight flexible array [2,3].

Fig.l is an artist's impression of the RAE type array fully oeployed, as
originally proposed for a spacecraft capable of demonstrating orbital manoeuvres

by "-ctric propulsion whilst Fig.2 illustrates the main features of the RAE proto-
type which has been developed over the past sb :-ears and has now satisfactorily

completed qualification tests for geostationary orbit.

Due to the lightweight structure of the array, the design of an attitude control
system for a spacecraft of the type illustrated in Figs.1 and 2 has to take into
account the flexible nature of the array since the natural vibration modes of the
spacecraft may be excited by the control torques and forces applied to the space-
craft for the purpose of attitude control, station keeping and orbit manoeuvres.
The present paper describes a method which has been employed to assess the various
modes of vibration..

2 BRIEF DESCRIPTION OF ThE RAE ARRAY

Each of the two arms of the deployed array consist of a number of panels (six
pairs in the current design) of thin (1OO tim) silicon cells mounted on flexible
Kapton sheets supported by-aluminium honeycomb cross members attached to a pneumat-
ically deployed telescopic mast. The mast is made up of a number of thin walled
aluminium alloy tubes of progressively decreasing diameter and wall thickness,
adjacent sections of tube being locked together at the overlaps to give a fairly
rigid connection. The cross membere are attached to the outboard ends of the
tubular sections and the panels are held under tension by springs connected to
adjacent cross members. During launch each arm of the array is folded concertina
fashion and stowed in an aluminium honeycomb compartment, the Lross member on the
outermost tube forming the cover of the compartment. Once deployed in orbit, the

present design of array cannot b, retracted.
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3 IELLING ASSWTIr4ONS FOR MlE ARRAY

Although such arrays are frequently investigated nowadays by using the method

of finite elements in the final phase of analysis, this can be expensive and time

consuming in the initial phase of design. The approach employed in this paper ýIas

been to use the traditional methods of continuum mechanics rather than a discre.'t

method since the geometry of the system is relatively simple aid the method can

give a quick insight into the problem involved. This method has also been

successfully used by Hughes [4,S,6].

Although torsional and in-plane vibrations will occur, initial estimates showed

that these modes of vibration are at much higher frequencies than the dominating

out-of-plane modes. Consequently only the lateral flapping modes of vibration are

considered, in this paper.

In order to model the system, certain idealisations have been made:-

(i) the sections of the mast have been treated as uniform cylindrical beams 'if

specified stiffness and density under compression due to the panels and the

overlap portions of the mast neglected apart from their mass contribution.
Rotary inertia and shear are neglected.

(ii) the panels have been idealised as uniform membranes of specified density

under uniform tension but with negligible flexural rigidity.

(iii) the cross members have been assumed rigid in the' first instance so that they

can be considered as point masses possessing inertia. Flexible cross members

are considered later in the paper.

(iv) the central body is assumed to be rigid with the arrays being deployed

symmetrically about the centre of mass.

(v) small linear displacements and zero energy dissipation is assumed, i.e. zero

damping.

4 ANLYSIS OF TM LATERAL MOTION

Fig.3 shows the coordinate system used to describe the mode shape of the

idealised array at the ith s,-ction (i - I to N). [The index i will be omitted

wherever possible in the text to avoid unnecessary symbolic complexities.] The

quantity u(y) denotes the mast displacement from a fixed reference plane whilst

v(y) represents the corresponding' panel displacement.

Since the panels aia under tension T and each mast section under the same

compression force, the equations governing their motion are respectively

Tv".p9- 0 (l)

and

ou,'T'u,,.V, - 0 (2)
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(using the notation prime to signify partial differentiation with resp.ect to y

and a d-t to denote partial differentiation with reHpect to tire)

where ;j - mass per unit length of the panel

p - mass per unit length of the mast

E - Young's modulus of thie mast

I - area moment of inertia of mast - r - r

a - El

rI = outer radius of the mist - r 2 * h

r 2 - inner radius of the mist

h - wall thickness of the mast

t - length of the mast section.

Thus, when the system is vibrating with sinusoidal frequency p , the solution to

the panel equation (1) is

v(y) . uCt) sin ky + u(n) sir k(t -_ ) (3)
; ~s in 'kt

where u(O) and u(t) denote the mast displacement at the beginning arnd end of

the section respectively and k - p Similarly, it moy be shown (7] that the

mast displacement is given by

(62 £2 )u(•) - (62 cosey + e2 cosh 6y)u + (62 sin c+ e'sinh dy)1,

(cosh 6y - cos ey)Nt ! (sin "y _ sinh y)Vo (4)

where M - au" is the riast moment and V - -MI . The mast shear S is given by

S - V - Tu' , i.e. it is dependent upon the compression force and the quantities

OP 7, C and e are defined by

, T . p P.
2 4

6 2 +N/ + p4 e2 .72 + 4 (+-T- TT

Consequently, using equation (4), we may derive the transition matrix IJ - [u.j]

relating the quantities u, u', M and V at the two ends of the maist section,

namely

u' " u? (6)
14e t

where the elements of (e2 + 62 )Um are given by
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.2c* 62  6 2s _Ah 1
e (esh + e5) (c-ch)

6e(tsh - 6s) e ch + a c - +

a6 e'(ch - c) a6a(esh - 6s) 6 ch + e c -es Ash

222 2 3 2 2-a62e2(ash + es) -a6 e (ch - c) -6 sh + e s 6 ch + e c

using the notation s - sin et, c - cos e, sh - sinh at and ch - cosh at

Consider, now, the forces and moments acting at a cross member. These are s.hown

in Fig.4 at the junction between the ith and (i+l)th sections where the suffix
notation + and - has been used to denote 'just before' and 'just after' the

junction. The total lateral forces F. are equal to the sumn of the corresponding

shears in the mast S and the components TvI arising izom the tension in the

panels. Thus

P,- S+ Tv; - V, -Tu;+Tv; . (7)

The moments acting on the ith cross member arise purely from the neighbouring
nmnents M÷ • MiI(O) and M_ -Mi(L) existing in the mast sections. Thus if we
now introduce the state variable X - (u,u',M,F) we may write

- U+ and l U- uI(8,9)

LV.J0 LF-o 0 F_ L -_vJL

where the matrices Uý are derived by using equations (3), (6) and (7) to be

U 0 0 01

0 0 0

00 1 01 (10)

cos k - u1 1 ) T - T'u 1 2  T'U13L J

and

Uf-1 0 0 0l
0 1 O0T

0 0 1 0(1)
T'(cos kL u11 l*u1 - T'u3

where T' - Tk/sin ki and A - 1 + T'Ul . Purthermore, the equations of motion
for the cross member of mass and moment of inertia mc and I are

: ~\ :
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F+ - F- -- mu6

and
M÷- M. - Ica'

giving the transition matrix 'Uc defined by

1 ~ 0] 0 (12)

Hence, using the transitson matrices defined by equations (6), (8), (9) and (12)

the overall transition matrix A for a single array relating the state XN+ at

the end of the mast to that corresponding to the connection of the mast to the

satellite, i.e.

Sa AXO (13)

is

A U- Lim) 1+ (14)

We will denote the elements of A by aij (i,J 1 to 4).

5 M1DES OF VIBRATION

In view of the symmetry assumptions made concerning the deployed state of the

two arrays, the lateral deflections cap be consilered as the superposition of two

classes of normal node responses. The first class consists of those nroles in which
the two masts bend in opposite directions (i.e. antisymietrical deflections) so
that there is rotation of the main body but no translation. The second class is

comprised of the modes in which the two masts bend in the same direction (i.e.

syrmetrical deflections) and there is then translation of the central body but no
rotation. These will be referred to as the rotational and translational modes

respectively. For the attitude control system it is only the rotational modes

which are of interest since it is these which affect the pointing accuracy of the
satellite. Another class of modes will be called the cantilever modes and refers

to the modes of vibration occuring when the satellite is rigidly fixed, i.e. of

infinite inertia and mass.

In crder to determine the various modes of vibration the appropriate boundary

conditions must be applied to the transition equations (13). These will now be
considered in turr.
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6 RerATIONAL AND CANTILEVER WDES

If the rotation of the satellite main body, of mas: b and inertia Ib is

denoted by 0 , the arm length from the centre of mass to the array attachment

point by d and the applied couple about the centre of mass by C then the

boundary conditions at 0 are

u do U - , Ii t 4 " - 2 Fd +C

and at N+ . M - F - 0 . From these conditionts applied to equaticn (13) it

follows, after some straightforward mnnipulatioas, that the effective inertia

Ie - CO of the satellite is

ZNR
Ile(P) -Ib -N (is)

where N .R d 31 ÷+ a32  a3 4 - da3 3  (16)
da4 1 + a42  a44 - da4 3

and

DC a a 3  aM (17)
a4 3  a4 4

are independen' of the central body inertia.

Now the natural rotational modes of vibration are those obtained when the

applied couple is zero, i.e. 1e(on) - . Also, the cantilever frequencies 15

occur when the satellite rotation is zero under an applied couple, L.e. I 9ln) is

infinite or DC(fln) - 0 . Thus by plotting Ie and DC asafunctioncf p the

rotationpl and cantilever frequencies may easily be determined. Furthermore,

equation (15) shows that the dependence of the rotational frequencies on the

central body inertia may be deduced simply by a shift in the I ordinate axis.e
It ma) also be shown that in the limit as p * 0 , Ie(p) tends to the overall

inertia Ir of the satellite considered as a rigid body.

7 TRANSLATIONAL MODES OF VTBRATI(N

Denoting the lateral displacement of the satellite centre of mass by Z and

the applied force by P then the boundary conditions at 0 are

u a Z u, - 0 , RZ - 2F+ P

whilst at N+ , M - F - 0 . Again, applying these conditions to equation (13)

leads to an effective overall mass Me P/Z given by

"Me (P) " o P"-- (18)



where - 3  ~(19)

""r a3o n1 a,,l
':[ 43 1 41

which, as to be expected, is independent of the arm distance d Furthermore, in
the limit as the vibrational frequency tends to zero, Me(p) tends to the overall

rigid mass Mr of the satellite. The natural translational frequencies of vibra-

tion Un are those existing when the applied force is zero, i.e. Me(€') - a ond,
n n

of course, Me. n) is infinite at the cantilever frequencies. As with the

rotational natural frequencies, the translational natural frequencies may be

determined by plotting Me as a function of p and noting the zeros. Further-

more, as can be seen from equation (18), the effect of the central body mass on

the frequencies may be found again by a corresponding shift in the ordinate axis

N e

8 TRANSFU RFUNCTION REPRESFMTATION OF THE SATELLITE

Knowing the natu-al modes of vibration we may thus express the response to-the
applied forces and couples in the form of tra-nsfer functions, namely

SF l + irn

"1(20)

and

- ''L fl~(l '~nj(21)

where s - ip am. structural damping Mas been introduced in the custo'wiry manner
(8], i.e. the rigid inertia and mass have modification factors due to the
flexibility of the array so that the control block diagram is relatively simple
for the particular configuration chosen here (although it irny be readily
generalised) and only requires knowledge of the natural frequencies. in practice
•nly sufficient factors in equations (20) and (21) would be retained to cover the
bandwidth of the control system.

This form is in contrast to the form employing mTodal gains [4,5,6] which require
the actual mode shapes to be calculated and use of their orthogonality properties.
The orthogonality conditions for the present model can easily be deduced by consid-
eration of the total kinitic energy of the system and using the 'conjugate
property' (9]. In essence, the Zransfer functions depends upon a mixed representa-
tion of the constrained and unco,,strained moa1es of (4,6].
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In order to obtain thj eifective inertia and mass as a function of frequency a

conruter programe was written to perform the matrix multiplications indicatqd by
equations (14), (15) and (18) as a function of the basic physical parameters (T,

p, E, p, r,, h, t)i, Mb, 'b and N . The programme was also organised to iterate

to the zecos of req Me and DC in order to obtain the rotational, translational

and cantilever frequencies and, if necessary, to print out the correnpondiig mode
shapes. (Normalised to have unity displacement at the tip of the mast.)

As an illustration of some of the results obtained Figs.S and 6 show the effect-

ive inertia and mass obtained for tne array having the physical characteristics

shown in Table 1. It will be seen that the rigid inertia of the two arrays is

390 kg m 2 whilst the lowest rotational frequency for a central body inertia of, say,
300 kg m2 is 0.44 Hz and decreasing to tha cantilever frequency of 0.3 Hz as the

central body inertia is increased. The behaviour at 0.9 11z ard 1.8 lIz is not shown

i', de:tail since there are other very close rotational frequencies corresponding to

panel excitation. These rotational frequencies, and their variation with mast
2stiffness, are shown in Fig.7 for Ib - 300 kg M2

i,,blo% I
Physical Characteristics of Single Array (QIass = 9.20 kg)- -- - - - r -
Sci t P Pt rI h p Pt m,

(Section (m) (kg/m) (kg) (rm) (mm) (kg/m) (kg) (kg;

1 1.295 0.9594 1.243 25.40 0.4572 0.2180 0.2825 0 I

2 1.295 0.9594 1.243 2S.40 0.4S72 0.2180 0.2825 0.0288
3 1.295 0.9594 1.243 22.23 0.4572 0.1766 0.2288 0.0288

4 1.295 0.9594 1.243 20.64 0.4572 0.162310.21O' 0.0288

1 1.295 0.9594 1.243 19.05 0.3810 0.1250 0.1619 0.0288
6 1.295 0.9594 1.243 17.46 0.3810 0.1143 0.1481 0.2268

Total 7.770 7.458 0.424

Panel tension 5N, Young's modulus of mast 7.03 x 1010 N to,2, width 1.37 m

10 EXTENSION OF ThE ?4)DEL FOR FLEXING CROSS Wm,!BiRS

For weight reduction purposes, the possibility of replacing the stiff cross
members by relatively flexible steel hyperdermic tubing is being seriously
considered. In order to determine the consequent change in flexibility of the

array, another model has been developed which will now be very briefly described.
The coordinate system is similar to that of Fig.3 except that the panel motion
v(x,y) is now a function of x and y whilst w(x) represents the displacement
of the cross member from its undeflected position and is renreser.ted by a super-

positicn of clamped-free beam modes vl(X) (10], i.e. w(x) - Zqi~i(x) with

Vi(0) a P!(O) - 0 . The -p satisfy, in particular, the equations (11]
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i/2 a % 4 a! p (22)
C c C

where the suffix c on the integr"l denotes integration over the length of thecross •u•mber and the quantities a.i LMd Pic/2 are tabulated in [lo3.
In order to develop the eqations of motian recourse may be made to familton's

principle, namely

61(L * W)t a 0 (23)

in which 6 denotes a virtual ýartiation, L is the array Lagrangion and V Isthe wrk done on the array, e.g. by the forces and mments at the root of the array.
Here the Lagrangian may be written as

LJGU6Zdy u+ f T'2 y -f~ v' 2 d.d a aw

p p c (2 4

where indicates stamation over all sections of the array and ac is thebending stiffness of the cross member.
Carrying out the variation in equation (23) and (24) lea•s again to the partial

differential equations (1) and (2) with solutions (4) and

vcx,y * - (x) s •n ÷ V )

where VoC(X) f u(0) + rq0 pi (x)

v1(x) a uM . r*q•¢i(x)

together with the boundary conditions at a cross member

- s ( ')cix - !(T v')dx p2mC(u 4 . (26)

and

V) v'F idX. v' -idx- gi qi+ pZnc (Lai + qi) 0 :T

1,2 ... )

where xi * a 4 c U Using equation (25), we may evalate the quantities

•- i /
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S- L2 * q) 4 (O aiqt) cos ] (28)

C

f ( v' dx V T' + Emjqi) cos ki ("+ aqq)] (29)
c

( v,)•.oi - , [ i <q -(u q cos k" ii l (3

' T1 a! " q cos ki,- ( q) U i (31)

and equations (26) and (27) become respectively

F- F + pmc(u + Eqi-a) - 0 (32)

amd

Gi - G- - Kiqi * p2mC(u2! + qi) - 0 (33)

(i -1,2,..

where F - S G o Furthermore, we have the equations of continuity at a cross

member, namely

U " , u' U', M - M , qi " q (34)

where we have assumed that the moments of inertia of the cross members are

negligible.

If we terminate the expansion for w(x) by retaining only n terms then

equations (32), (33) and (34) enable us to obtain the transition matrix Oc at a

cross member relating the state variable Y - (qi ... qn u u' M F G, ... G of

order 2n + 4 at "ust before' to 'just after' the junction, i.e.

Y+ - tY.

where the elements of Uc are given by

I

n+3 i On

-p mcal - -p- -- -p MC

nn

1(K P2mc) -p2zCa. 1

Si

/
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and in1 0u denote unity and null matrices of order n respectively.

Using the relation S - V - Tu' e•uatixn (6) may be modified to be

.u* (3S)

where C) Tu1  0o
U*M 0, I TU4 0

0Um  Tu2  0 0J- Tu 3 4 +O TU

21 44 T(u 2 2 + T22 4) -" 23  -

with eleaents vj.

Consider now equations (28), (29), (30), (31), (35) and the relation

FOj - (S + G)OA - These give 'n . 8 equations relating the 2(2n + 6)
quantities (q, ... q7n u u' M S F % Go ... G)O, . By eliminating the four
quantities (S, G0)Oj we are left with (2n + 4) equations relating the

Z(2n + 4) elements of Y0,1 i.e. a transition equation in the form

T1Yt - ToYO (36)

for the ith section of the mast. Besides the 2n equations (30) and (31), the

"other four equations are

E•v4T'aiqi * (1 * v1 4T')u, EvI 4T' cos kz ajqi + (vii ÷ v14T' cos

IN V1 2U+ V1z 3  + v14F0

t0

v 24 T'a~qi ÷ v2 4Tlut u - Ev24 T' cos kt ajqi + (v21 + v24TO cos kt)u0

. v22u6 . v A + v24Fo

Ev34T'aiqi + v4T'u1 * L " 1v34 '1T ces kL ajq• + (v3 1 * v34T' cos kL)u,

V 246 + v÷3  0  V34F0

E(v4 - cos kz)T'ajq! + (v 4 4 - cos kI)T'u• + F1

"cos ki - ) (v4 1 * , 4 4T' cos k+ - T')U + v42u.)l)T44O4 41

Z:V4+V26 4" 4F
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so that the elements of To and T, are determined explicitly. Consequently, the

overall transition matrix B for a single array relating the state at the end of

the mast to that at the root, i.e.

YN By 0-

is

N

B l 1

Knowing B , the effective mass and hiertia for th e translational and rota-

tional motion can be found ibi exactly the saw manner as the earlier discussion by

applying the appropriate boundary conditions. In particular it is to be noted that

Gi a O(i - 1 to n) at 0 a id N÷ . A computer programme has also been written

for the flexible cross mcnber model. Numerical results will, be given at the

symposium.
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