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INTRODUCTION

The special vulnerability of the head to serious or fatal injury is well documented in the publication: "A

Survey of Current Head Injury Research" prepared by the Subcommittee on Head Injury of the National

Advisory Neurological Diseases and Stroke Council, -'- ". Broadly speaking, depending on the state of the

skull, i.e.. whether or not the skull is penetrated or fractured in the impact process, craniocerebral trauma is

termed either open or closed. This investigation is concerned with the injury sustained in closed head impact.

Models of the closed head have been divided in much the same fashion as the major hypotheses proposed

to explain closed head injuries due to impact. One group, the rotational school, has contended that the rota-

tional acceleration induced by impact causes high shear strains in the brain matter, rupturing cerebral

blood vessels and tissue, while another group, the cavitation school, has claimed that there exist points

within the brain where the reduced pressure is sufficient to rupture the capillary walls. Normally, the pres-

sure differential across the capillaries is only a few mmHg During the impact, the pressure field at a given

time contains regions of negative pressure, i.e., less than atmospheric. The transmural pressure at these

locations is then suddenly increased, which could lead to the bursting of the capillaries therein. Certainly,

when the pressure is reduced to the vapor pressure of the brain substance, cavitation takes place. The

catastrophic collapse of the bubbles thus formed is a possible cause of brain damage. An advanced model

of the cavitation theory was given by this authorýrr' 11. Based on a suggestion by Goldsmith,"'- ) and the

ground work done by Anzeliuslr*', 2'), Guttinger(re" 9), Engin and Liu, -r1.;1 modeled the head as a fluid-filled
closed spherical shell under torsionless axisymmetric impact loading. The fluid is considered inviscid and
represents the cerebrospinal fluid and the brain matter. The shell is elastic, homogeneous, and isotropic and
simulates the skull. The wall thickness is thin but includes both the extensional and bending effects. The
infinite-series solution was obtained by Engin'-''f, through the use of the Laplace transform technique,

for the case of an impulsive axisymmetric polar-cap load. In his dissertation"r'r 1ý, the author has extended
the Engin result to include the following additional considerations: (a) An asymmetric ii.ipact loading
consisting of an axisymmetric pulse coincident with a tangential surface torque (b) A moderately thick shell
theory, which includes extensional, bending, rotatory inertia and transverse shear effects. Engin and
Robrrts "reI. recently examined the problem of the transient response of a fluid-filled elastic spherical
shell to an arbitrary velocity input to the shell. The excess pressure distribution in the fluid was evaluated
for various deceleration time pulses. As a model for head injury, this problem belongs to the noncontact
variety. Since linear deceleration or acceleration of the shell is the only input, the mechanism of injury can
only be the excess pressure.

As for models of rotation theory. Lee and Advani, modeled the head as an elastic sphere bonded to a rigid shell
undergoing rotational motion. The experimental foundation for this modelling advance is typified by the
recent work of Ommaya et al.(re". 14) and the earlier Holbourn(r-f. 11), Owings-fr.1'. , working onwork of
a dissertation supervised by Prof. S. H. Advani, is attacking the problem of the dynamic axisymmetric
response of an elastic spherical shell with an elastic core. Hickling and 'r" -1nerr"t 1- modelled the head as
a two-layered viscoelastic sphere using the exact equations of linear viscoelasticity. The loadings and motions
are considered axisyrnmetric. The above problems, because of their formulation, are capable of evaluating
the relative magnitude and duration of the normal and shear stresses in the elastic core. When the material
properties and failure criterion for the brain and skull have been substituted into the model, a tolerance
evaluation can be made for a given mechanism of injury.

For any given impact, the head will experience both a translational and rotational acceleration. Even if one
were to control the blow in such a manner that the force vector passes through either the center of mass
or center of percussion of the head, both motions will occur because of the constraint exerted by the head-
neck junction. Implicit in many of the papers of both the translational and rotational theory of brain damage
is the impression that translational motions induce only normal stresses or pressure and in rotational motion,
only shear stresses. This is not generally true. From continuum mechanics it is known that a normally
applied load induces shear stresses in all but the normal directions. Conversely, tangential surface tractions
induce normal stresses using a similar argument. Which effect is primary during a given impact is the central
question.
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It is the intent of this investigation to determine the relative magnitude of these two effects under a given

impact. To (1o so, a more realistic model has to he conceived. The inviscid fluid assumption must give way

to include viscosity and a multi-layered ellipsoid%..l shell should replace the spherical shell. In so doing, the

complexities of the loundary conditions together with the nonlinearities in the enclosed flow make a

closed-form solution nearly impossible. The approach, which shows the most promise for this analytically

intractable problem, is the finite element method.
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FORMULATION OF THE PROBLEM

Finite Element Method The traditional method of attacking a physical problem consists jr. choosing a

suitable "infinitesimal" element in the continuum and fomTnulating a differential or integral equation for

it. Such an equation, though derived from physical laws, is not itself a physical law; it is a formulation,
derived by a certain amount of prior mathematical deduction. The finite element method is a relatively
new technique in physical science. It is distinctly different from conventional mathematical or numerical
analysis. We cannot say that this type of analysis is inherently better than any other as it does have some
limitations, but it also has some distinct advantages.

Finite element analysis suggests that we move the power of numerical analysis forward in the schema of
things, giving it a more direct or even central role in the analytic process. It is essentially a process through
which a continuum system with rnfinite degrees of freedom can be approximated to by an assemblage of
subregions or elements each with a specified but finite number of unknowns. In this study the displacement

formulation of the finite element method has been applied. We start by dividing the continuum geometrically,
in some convenient manner, into a finite number of elements of appropriate size. The elements are assumed
to be interconnected at a discrete number of nodal points situated on their boundaries. The displacements
of these nodal points are the basic unknown variables of the problem. A set of functions c:,lled displacement
functions, is chosen to define uniquely the state of displacement within each finite element in terms of its
nodal displacement. Each of these elements is then expressed in such a manner that it satisfies the basic
laws and the kinematic and constitutive relations, together with certain assumptions and boundary condi-
tions. WVhatever changes a system may undergo in a certain interval of time, this method of analysis demands
the straight forwa,-d criterion that at each instant every individual element must satisfy a balance of mass,
momentum, and cnergy. and must bear pertinent kinematic relationship to its neighboring elements. In
fact the finite element method is equivalent to the minimization of the total potential energy of the system
in terms of a prescribed displacement field. Its application can be extended to those problems where a
variational formulation is possible.

Material Properties and Constituti'e Equations The human head is modeled as a solid viscoelastic core
bonded Lo a viscoe~astic spherical shell, which simulates the brain matt~e and the skull, respectively. Linear
viscoelastic properties are assumed for both the brain matter and the skull along with homogeneity and
isotropy assumptions. In terms of stress matrix _. strain matrix ,__. and strain rate matrix ,. the constitutive
equations for the brain matter an,' the skull for the axisymmetric case in polar coordinate system are in the
forni:

D= D,+ D2 . (1)

where _r

17z rz Zand

Or, Z ).r ,u

D, and D, are 4x4 matrices, which are functions of the material property constants.

Derivation of The Equations of Motion In the displacement formulation of the finite element method,
the basic unknown variable are the displacements. The state of displacement u in a continuum system
is approximated in terms of the nodal displacements IT by a set of chosen displacement functions f, i.e.

u=fU (2)
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where ,

U= u ,U= and

h ,( r , z ) h ., ( r ~ z ) . . .h ,, ( r , z ]

f(r,z)= Lk(r,z) k. (r,z) • k. (r,z)j

Applying the principle of virtual w'.rk for dynamic systems, i.e.

8E SW - f [SujiT 'ui dv (3)
v

where E and W are the virtual strain energy and virtual work, respectively, for any compatible virtual
displacement. Su. The last term in the above equation is the work due to inertial force, and P is the density
of the material.

Taking first and second derivatives with respect to the independent variable time and spatial variables of
equation 2, we have

bi fUj , bi fU
and (4)

_ =gU , =gUT

where g = g(r,z) is obtained by taking first derivatives with respect to the independent spatial variables
of the displacement function matrix f(r,z), specifically,

h, (r,z) h. (r,z) h,, (r,z)
rr rk (r, Z) k. (r,z) . k,, (r, z)

g z ) z jz
g h,(r,z) h.-,(r,z) h,, (r,z)

r r r
Dh,(r,z) )k, (r,z) dh.(rz) d k..(r,.z) . h,,(r,z) + k,,(rz)

2 - r z 2 dz z 2r

From equations 1 and 4, we obtain

"-Dg U+D gUT (5)

Neglecting the body force, then the virtual strain energy and virtual work due to surface load p, are

E= fr T'dv

and (6)
W = f u~p ds

Substituting equation 6 into equation 3 and making use of equations 4 and 5, we have

f [SU]T gr[D, g U + D-- g U] dv
v

=f [8U]"'fpds-- [SU] T f TpfUdv

4



Since SU is arbitrary,
[[fg"Dgdv] U + [J gT D..gdv]J

=f fp ds- [f e f dv]tU

MU+ C U+IK U=vP (7)

where
M = f fr p f dv represents the mass matrix of the equivalent discreik system

C = f fg D2 g dv is the viscous damping matrix

K =I gT D, g dv is the stiffness matrix, and

P_=f F pds is the equivalent concentrated force due to the surface load.

METHOD OF SOLUTION

The governing equations of the dynamic system are expressed by the second order differentia! equatiaon
in matrix form, shown in equation 7, which are essentially a state of equilibrium between the internal and
the external forces on each element of the system. Solutions to these equations are accomplished through
an itenative procedure to generate the time histories by first determining the insta-iLane-ou acceleration
over a short time interval for each degree of freedom and then performing integrations to obtain the velocity
and displacement changes over the short time interval. The!-- velocity and displacement changes are then
added to their previous values to update the time histories. The brief outline for the procedure is as follows:
Assuming the acceleration is linear over the small time increment At = t,, - t.-,, then

(i) The velocity at t, is calculated as

Utn = U--{ 12( t)~ (V.- + }'

The computation starts with an assumed value of U,, = 0 (or any other reasonable values)

(ii) The displacement at t. is then computed from

Ljn= Ujn- +_ ±/½ (At) (t.- + pUI} + % (.t,)::_ U

(iii) The error introduced by the assumed values of U,,, in step (i) is corry,cted by re-o'omrpu.irj ;,•_ celera-
tion U,,, from the equations of motion, eq. 7, with the velocity U. and rdsplacemevtt U,. g.an r' (i d a
(ii) i.e.

mut =P, - CU -KU,

with this computed value U,,, the calculations go back to steps (i) through (6ii1 and th:r pro"ýedurc is
repeated again until convergence has been obtained to the desired accuracy.

NUMERICAL RESULTS AND OBSERVATIONS

The geometric dimensionm and the material constants used for the inner solid viscoelastic core. w•ie'n repre-
sents the brain matter, and the outer viscoelastic spherical shell, which simulates the skull, ar- as
follows rf. 3, 1Q).

radius 3 in.
density 0.00116 (slug/in.:)
bulk modulus 3 x 10 lbf/in.2 Core
shear modulus 3.0 lbf/in."
viscosity coefficient 0.001 lbf-sec 2/in.'

!tll5
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the applied recýaný-usar pcs'le '.i e osii' bserved. Both t.he amplitud& and the pattern ol the pressure (stress)
field in the core a-e itered wi-h "L4, mcreasod- durdticn. Thfne press-,re histories at the impact pole for pulses
of different -:u: r.ti,.- are •;vs, i, firf s 7 -nd R. From these and t le foregoing figures, it is evident that the
increase in pulse length not, o.il- ;,ui¢eases the anipLitude of the pressure field but also increases the duration
of the rarefaction, i.e., rEduce,: pressure or tensile stress, in the core. Rarefaction or reduced pressure is the
cause of brain damage according to the cavitation hypothesis. The apparent wave speed in the viscoelastic
core can be calculated from figures 5 or 6 by observing the arrival time of the wave front at different locations
and the distance between these locations. The calculated wave speed is 53,700 in./sec which is very close to
the experimental wave speed in brain matter 5

re. 1).)

In general, the duration of an actual impact on the head is approximately one millisecond or longer and the
two rectangular pulses with durations of .01 and .06 msec respectively, as used in figures 7 and 8 are not
realistic. They are used here only to demonstrate the effect of the impact duration on the stress (or pressure)
field, rather than to simulate a physically obtainable impact. A more meaningful and realistic situation is
simulated by a pulse with an exponential time function as shown in figure 4. Results obtained with this
loading pulse are presented in figures 9 through 15.

The pressure histories of locations where rarefaction, i.e., reduced or negative pressure, occur are given in
figures 9 and 10. All those locations are situated along the axis of symmetry, or the impact diameter (The
diameter passing through the centroid of the impact area). These correspond to possible locations of brain
damage according to the cavitation hypothesis. The pressure histories for the locations at z=3.0 in. (the
impact pole), z =0.12 in, (close to the center of the sphere), Z 1.67 in., and z= -3.0 in. (the opposite
pole), are given in figrures 9 through 12, respectively. From these figures. it can be seen that the maximum
rarefaction occurs at the counter pole, which is followed by the one situated at Z= - 1.67 in. This one is 4
moderate in magnitude and lasts longer. Figure 12 shows that the opposite pole is under negative pressure
(tension) during a great part of the impact period.

As for shear stresses i, the viscoelastic core, from the e'ponential time pulse, there are two regions where
the shear stresses are significant. One is located along a line, approximately parallel to and 0.4 in. away
from the axis of symmetry. The other one is situated along the cicumference of a 2.2 in. radius circle, i.e..
approximately 0.8 in. frorz 'la rurface of the shell. The shear stresses in these two regions are given in
figures 13 and 14 respectively. In figure 13 the four curves represent the shear stresses at times t = 0.16,

6 Reproduced From
Best Available Copy



0.56. 2.48, and 3.34 msec. respectively. While the !hree cmu-m' L. figurt, ]4 show the F.hear ctri-.is at times
t = 0.18, 0.62, and 1.42 msec, resrpetively. Thl maximum shear stresi- is .upi, JtW~y 1.2 lb/ir,. With
shear stress of this magnitude, thiese two regions are possible locatiun.s of birain dainage, according t(, the
rational hypothesis.

The stress distribut~ons in the shell are showo in 7pigrte 15. The three curýes thetr? represent the normal
stress in the polar angle direction at times t = 0.16, 1.68, and 2.72 insec, r ~spci.ivey. From these it -an be
seen that stresses at the two poles are relatively I:.-rge. rIt i. generliky 1,elievd t.aa. skull fracture; are
due to high tensile stresses; and in vew of this, a skull fracture woudd prolmy)* oNcur at either proik or in
the neighborhood of a cone with an ex•,endei angle of 50(. Further, botia ,.ŽcaifluS also have hih-i. ihear-
stresses.
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