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Foroword 

The impetuous development of aviation, missile technology and 
the Naval fleet led to the necessity of fundamental improvement of 
the moans of navigation and control of moving objects. Besides 
high accuracy, a number of such specific requirements as universa- 
lity, reliability, short preparation time, electronic counter- 
measures, and sometimes concealment of operation are now placed on 
automatic navigation systems. 

Along with development of other principles,   special  attention 
has been devoted in  recent years  to inertial  navigation systems,  in 
which  the current position of a moving object  is determined by 
integration of the  on-board measured accelerations.     Inertial  systems 
have  such important  advantages as universality,  autonomy and 
electronic countermeasures over other means ol navigation.     However, 
realization of these  systems requires  highly   accurate and  reliably 
operating elements:     accelerometors,  integrators,  gyroscopes, tracking 
systems and computer devices.     The interest displayed in  inertial 
navigation systems   is explained both by  their principal advantages 
and also to a great extent by the  fact  that inertial  systems,  which 
provide  the  required  navigation accuracy,   can  be developed on the 
basis of modern components. 

The development of shipboard gyrocompasses by H. Anshutz- 
Kämpfo   (1908)   and Elmer A.   Sporry   (1911)   can  be  considered  the  first 
use of  inertial methods in navigation.     The next  important advance 
was  the  investigations of M.   Schuller,   who established the conditions 
of  the  unporturbability of   the gyrocompass   (1910)   and of physical 
and gyroscopic pendulums   (1923)   by horizontal  accelerations.    Further 
stages  in  the  development of  the  idea of  inertial  navigation are 
the  principle of power-assisted gyroscope  stabilization,   proposed  by 
S.  A.   Nozdrovskiy   (1924),   and also the  principle of  integral gyro- 
scope correction,  proposed  in  1932  by Ye.   B.   Lovental  and  in  1935 
by I.  M.  Boykov. 

rTrj-IIC-23-893-74 



For some time  the  development of  inertial   systems was related 
to gyropcndulum  systems and gyroscopic systems with integral 
correction,  which  simulate M.   Schuller's physical pendulum and 
which permit plotting of an acceleration-proof vertical on a moving 
object.     Significant results arc  related  to  the names of B.   I. 
Kudrevich,   I. V.   Gekkeler,  B.  V.   Bulgakov,   Ya.   N.   Roytenberg and 
A.   Vu.  Ishlinskiy. 

Another aspect of  the  inertial  navigation method,  namely,   the 
circumstance that not only the vertical can be plotted,  but the 
current coordinates of  the object and  its speed can be determined 
by using it,  developed somewhat  later.     The  first practical  achieve- 
ment   in this direction was  apparently  the development of a control 
system for  the FAU-2  rocket.     Further development of  this direction 
can be traced from data  of American publications.'! The beginning 
of development of  inertial  systems  in their modern  form in  the 
United States dates   from  1946-1947 and is  related  to development 
of control   systems   for ballistic   (Atlas  type)   and winged   (Navaho 
and Snark  type)  missiles.     Practical realization of inertial systems 
was possible at that time  because of development of  flotation gyro- 
scopes, proposed  in   1946   by Draper   (in  the  Soviet Union flotation 
gyroscopes  were proposed  in  1945  by L.   I.  Tkachev). 

During   the past  few years considerable attention has been 
devoted in   the non-Soviet  literature,   especially  in American 
literature,   to problems of  inertial  navigation.     A large number 
of articles     devoted  to  individual  theoretical   and engineering 
problems of  inertial  navigation  have been published  in various 
journals and  several monographs have been issued.     The most  signi- 
ficant of these investigations have been  translated  into Russian. 
In  1958  the  Foreign  Languages Publishing House  published       book 
by   research  associates W.   Rigloy,   R.  Woodberry,   and J.  Govorky of 
the Massachusetts   Institute of Technology entitled  "Inertial 
Navig.ition".     In  1964   translations of K.  L.   MacClurc's  book 
"Inertial Navigation Thiory"   (Nauka  Publishing  House)   and  the 
collection  "Inertial Control  Systems",   edited by  D.   Pittman 
(Voyonizdat)   wore also published. 

FTD-IIC-23-8rn-74 



During the past  few years a number of articles,  including 
several investigations of A.   Yu.  Ishlinskiy in which the fundamen- 
tals of a strict theory of inertial  systems^        have been outlined, 
have been published  in  the Soviet periodical  literature on the 
problems of inertial  navigation.     In 1961  the Publishing House of 
Physicomathcmatical  Literature published G.   0.  Fridlender's book 
"Inertial Navigation  Systems"   and  in 1962  the  Sovetskoyeradio 
Publishing House published I.   A. Gurenshteyn,   I.  A.   Schul'man,  and 
A.   S.   Safaryan's book   "Inertial Navigation". 

It should be noted  that   the numerous  investigations on the 
problems of the  theory of inertial  systems    published in the 
periodical press    are  usually of an  unrelated nature,   and  in the 
greater part of them  there is   lacking a clear  statement of the 
problems and  the required strictness of their solution.    The mono- 
graphs enumerated above are  limited   to consideration of individual 
classes of inertial  systems.     As a  rule,  various types of simpli- 
fications of  the structure of  inertial systems and the laws of 
motion of an object are  introduced  from the  very beginning.     Because 
of  this,   the exposition  falls   into  separate  and usually unrelated 
parts,   the community of  the basic principles of inertial navigation 
is obscured,   and the  theoretical results obtained are  sometimes un- 
suitable  for rough approximation.     Introduction of a priori  sim- 
plifications  is usually explained by  the insurmountable complexity 
of precise consideration. 

At   the   same  time   the  continunus   inrrpas*»   in   the  demands  on 
accuracy of inertial navigation systems forces consideration of the 
finer and finer circumstances of their operation,   such as  the 
asphericity of  the earth's shape,  the eccentricity of  its gravita- 

tional   field etc,   and  leads  to  the necessity of detailed analysis of 
the  dynamics of  their perturbed operation.     The desire  for univer- 
sality leads,  on the other hand,   to  rejection  of  the  simplincations 
possible during development of a navigation system for a fully 
defined object. 



In this book the author sets himself the task of 

systematic and strict exposition of the theoretical operational 

bases of inertial navigational systems from a common viewpoint 

without a priori simplifications and limitations, determined by the 

level of present technology.  The methods of analyzing the opera- 

tion of inertial navigation systems' used by the author^ are the 

development of the ideas contained in the investigations of aca- 

demician A. Yu. Ishlinskiy.  The basis of the book were the author's 

articles, published during the past few years in journals of the 

USSR Academy of Sciences:  Prikladnaya Matematika i Mekhanika and 

Izvestiya AN SSSR (serii Mekhanika and Tekhnicheskaya Kibernetika). 

The examples which concern schematic solutions and numerical 

evaluations are constructed on the basis of data from foreign 

publications. 

Main attention is devoted in the book to the equations of 

ideal operations (unperturbed functioning) of inertial systems, 

which determine their structure, and, to equations of inertial 

navigation system errors, an analysis of which permits evaluation of the 

operating stability of the system and establishment of the rela- 

tionship between the errors of the elements and the accuracy of 

determining the navigational parameters of the object: the current 

coordinates of position and its orientation in space.  Problems 

of autonomous preparation of inertial systems for operation are 

also considered.  The book is devoted to the theory of autonomous 

inertial systems.  The problems related to drawing up additional 

information and correction of inertial systems, are considered in 

another book of the author [inertial Navigation Theory (Corrected 

Systems)J which is directly related to the present book and which 

was published immediately after it. 

The book consists of seven chapters. 

J 



In  the  first chapter the  theoretical and mechanical bases 
of  inertial navigation are outlined,  the equations of accelero- 
metcr operation are derived,   the precession theory of gyroscopic 
devices for inertial systems  is presented,  the  basic equation of 
inertial navigation  is found and the general principles of con- 
structing an inertial navigational  system and the problems of the 
theory of  these systems are  discussed. 

In the second chapter the necessary data on the shape,  gravi- 
tational  field and motion of the earth are presented.     The main 
point in  this chapter is the  derivation of expressions  from  the solution 
of  the Stokes problem for projections of  the earth's gravitational 
field  intensity onto  its bodv  axes. 

The third chapter contains derivation of equations of the 
ideal operation of an arbitrary inertial  system»   first  for cal- 
culation of Cartesian and then for calculation of curvilinear co- 
ordinates. The various special cases and examples for the more 
commonly used coordinates:  geocentric, geographic and orthodromic, 
are also presented and an example of non-orthogonal curvilinear 
coordinates  is also  given.     The  theory of   so-called gravimetric 
systems,   which do not contain  gyroscopes,   is also outlined  in 
this  chapter. 

The derivation and transformation of  the equations of inertial 
navigation  systems errors are  presented in the  fourth chapter. 
Both equations of coordinate  errors  and equations  of orientation 
errors are  considered.     The  problem of reducing   the errors of  the 
inertial  system elements  to  equivalent instrumental errors of  the 
main   sensitive elements  - accelerometers  and gyroscopes  -  is given 
special  consideration. 

In the  fifth chapter the common properties  are considered, 
the   stability and  integration of error equations  are  investigated 
and   the  relationship of  errors  in calculating the   location of  an 
object and its orientation to the  instrumental errors of  the elements 
is considered.     The  case of Kepler motion of an object   is given 
special consideration. 



The sixth chapter is devoted to the theory of inertial navi- 
gation on the earth's surface.     Both inertial systems with three 
arbitrarily oriented accelorometers and those with two horizontally 
positioned accclerometers are considered.    The  latter are compared 
to Schuller's pendulum - gyroscopic systems,  the  strict theory of 
which is also presented in this chapter. 

Finally,   in the  last,   the seventh chapter,   the problems related 
to autonomous preparation of an  inertial  system for beginning of 
operation in the case of a  fixed starting point with respect to the 
earth,  are considered. 

For purposes of compactness,   the exposition  is performed 
primarily in a vector form,   and the elements of tensor calculus 
are employed when considering curvilinear coordinates.    The final 
results are usually written in a  scalar form.     References to the 
literature are given   in footnotes and,  moreover,   a bibliography 
is  presented at the end of  the book. 

The author is aware that the book is not devoid of deficien- 
cies.    Some results  could apparently be obtained by simpler means; 
improvements  in  the portion of selecting  the  sequence of outlining 
the  individual  problems are also probably possible.     Critical 
comments and desires of the readers will be gratefully accepted. 

The author  feels   it his pleasant duty to express deep grati- 
tulc to A.  Yu.   Ishlinskiy for unflagging attention and assistance 
in   the work on  the book.    The  author also  thanks Ye.  A.  Devyanin, 
I.V.  Novozhilov and  N.  A.  Parusnikov for participating in  the 
discussion of  individual  sections of the book. 



The  author did not set himself the task of presenting a 
complete survey of the history of development of the  ideas 
of  inertial navigation.    This task is specific in itself and 
can be  the subject of a separate  investigation.     There is 
apparently a need for such an investigation.    Ths  is es- 
pecially indicated by publication of H.  Helman's article 
"Development of Inertial Navigation" in the American  journal 
Navigation   (Vol.   9,  No.  2,   1962).    Problems of the history 
and priority are illuminated unilaterally and inaccurately 
in  this article.    References  to a number of other well-known 
investigations of Soviet authors are lacking in it.     The 
main  references from these  investigations are indicated in 
the bibliography at the end of this book.    Of course,   the 
list does not claim to be complete. 

See,   for example:  Ishlinskiy,  A.  Yu.  "On the Theory of the 
Gyrohorizon - Compass,"  Prikladnaya Matematika i Mekhanika 
Vol.   20,  No.  4,  1956;   "Equations of the Problem of Calculating 
the Location of a  Moving Object by means of Gyroscopes and 
Accelerometers,"  Prikladnaya Matematika i Mekhanika Vol.   21, 
No.   6,   1957. 



Chapter 1 

Theoretical and Mechanical Bases of Inertial Navigation: Sensing 

Elements, the Fundamental Equation of Inertia! Navigation and the 

Principle of Constructing Inertial Navigation Systems 

§ 1.1.  The Overall Characteristics of the Method of Inertial 

Navigation 

The main task of any navigation method is to determine the 

location of the object, i.e., to determine the coordinates of 

some point, for example, of the center of mass, in a given system 

of reference.  The problem of an inertial navigation system usually 

includes calculation of the rates of variation of these coordinates 

and also calculation of the parameters which characterize orienta- 

tion of the object in a given system of reference and calculation 

of the variation of orientation parameters. 

The principal characteristic of the inertial method of navi- 

gation includes the fact that the coordinates of the object are 

obtained essentially by integration of the equation of motion of 

its center of mass in the absolute (inertial) system of coordinates. 

The vector of the composite force, applied to the object.which is 

required for integration of this equation, is determined by the 

indications of special devices - accelerometers (specific force 

sensors) - in the form of projections onto the directions of their 

axes of sensitivity.  The axes of sensitivity of accelerometers 

are oriented into the inertial system of coordinates by using 

gyroscopes or by the indications of the accelerometers themselves. 

The inertial (Galilean) system of coordinates, in which 

Newton's laws of dynamics are valid, is the main system of refer- 

enct; in inertial navigation. 

S 
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The indicated circumstances are more typical for the method 

of inertial navigation and it is associated with them by its name. 

I 1.2. The Operating Principle and the Equations of Operation 

of the Accelerometer (Specific Force Sensor) 

The idealized scheme of a spatial accelerometer can be repre- 

sented (Fig. 1.1) in the form of a mass point m, suspended in the 

housing of a device in a three-stage weightless elastic suspension. 

Fig. 1.1 

To derive the equations of operation of the accelerometer 

let us introduce a right-hand orthogonal system of coordinates 

0 C*n*':* - some inertia! (Galilean) system in which, by definition, 

Newton's laws are valid.  Selection of the position of point 0 

and orientation of the axis £*n*^* are not subject to any other 

conditions. 

Let the accelerometer housing move arbitrarily in this co- 

ordinate system.  Let us consider the motion of point 0, in which 

the sensitive mass of the accelerometer is concentrated.  The 

sensitive mass of the accelerometer is obviously affected only 

by the sum F- of the Newtonian forces of attraction of the sensitive 

mass by the entire aggregate of celestial bodies, including strictly 

10 



speaking, the attraction by the masses of the object, in which 

the accelerometer is installed, and force t,  which is determined 

by elastic deformation of the suspension.  Thus, if r  is the 

radius vector of point 0 in the inertial system of coordinates, 

then the equation of motion of point O has the form: 

-^f'-Pi(r„)«-/. (1*1) 

The differentiation in equation (1.1) is absolute, i.e., 

d2!-* /dt2 is the absolute acceleration of point 0 in the coordinate 

system o C«n*C#. 2 

To an observer, bound to the housing of the accelerometer, 

the only effect on the sensitive mass m of the accelerometer is 

that of the elastic forces of the suspension, while the parameters 

which characterize this effect are the magnitudes of deformation 

of the suspension, whose function is elastic forces.  Only the 

extent of deformation of the suspension can be measured and these 

deformations are the indications of the accelerometer. 

By assuming that deformation is small and assuming that force 

t  is proportional to the vector n of deformation of the suspension, 

we have: 

/-»<• (1.2) 

The equality   (1.2)  assumes the  isotropy of the elastic prop- 
erties of the  suspension.    The  three-dimensional suspension depicted 
in figure  1.1  satisfied this condition at  small deformations. 

Having taken for simplicity the ratio m/k equal to unity, we 
find from equation (1.1) the following expression for calculating 
the value measured by a three-dimensional accelerometer: 

/    II (1-3) 

m       ,II>       r "M' 



Höre F=F,./m, where F is the attractive force acting per unit 

of aensitive mass, i.e., the intensity of gravity at point 0. 

Thus, the specific force, i.e., the effective force of sus- 

pension per unit of sensitive mass, is measured by means of an 

accelerometer.  It is equal to the difference of acceleration of 

the sensitive mass and of the intensity of gravity at the point 

of the current location of this mass. 

Other names of the described device are often used in the 

literature - accelerometer and specific force sensor.  The first 

name, and to a known degree the traditional  one, does not 

accurately reflect the physics of operation of the device.  The 

term specific force was introduced by Draper.     The name specific 

force sensor or the specific force meter accurately corresponds 

to the value measured by the device.  We will usually employ the 
2 

term newtonometor, introduced by A. Yu. Ishlinskiy.    This name 

correctly reflects the essence of operation of the device as a 

force mctor (the name Newton has been given to the unit of force 

in the international system of units). 

In the diagram shown in Figure 1.1, where the three-dimensional 

elastic suspension is realized by three pairs of springs, the in- 

dicationn of the newtonometer will be numerically equal to the values 
♦ -♦ 

of projections n  of vector n to unit vectors e of the spring 

axes 

\ ■ ■ '• 
(1.4) 

The actual designs of newtonometors are usually single-com- 

ponont.  An idealized diagram of a one-component linear (axial) 

newtonometer is shown in Figure 1.2.  The sensitive mass of this 

newtonometer has one degree of freedom with respect to the housing 

and can move only in a straight line, called the axis of sensi- 

tivity.  It is along this axis that the reactive force of the spring 

of the suspension, deformation of which is being measured, acts on 

the sensitive mass.  It is easy to see that in this case the reading 

of the newtonometer will also be numerically equal to the projection 
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of vector n to the direction of the axis of sensitivity e. 

txoir^y^m^ 

Fig.   1.2 

Along with linear newtonometers,   so-called pendulum newton- 
ometers are used.     An idealized diagram of a pendulum newtonometer 
is shown in Figure  1.3 and is a plane physical pendulum  (its axis 
of suspension is perpendicular to  the plane of the diagram),  connec- 
ted to the housing by springs whose direction of axes are normal 
to the axis of suspension and the axis of symmetry of the pen- 
dulum.     It  is obvious  that with small deformations of the springs, 
i.e.,  at small deviations of the pendulum from the average position, 
this diagram of the device  is equivalent to a linear newtonometer. 

f 

Fin.  1.3 

Schemes of newtonometers,  called integrating newtonometers 
or  intogrator-nowtonometers are possible   in which  the readings of 
the; newtonometers  are  proportional  to  the  integrals or even to 
double  integrals of n       in  time.     These  schemes are completely 
equivalent  to that of a  linear newtonometer:   the  first   (or, 
accordingly,   the   second)   time derivative  of  their readings  is 
equal to n       and is calculated by equations   (1.3)   and   (1.4). 

13 



In  the considered schemes of newtonometers   (Figures  1.1,   1.2 
and  1.3),   the elastic  suspension  of the  sensitive mass  is provided 
by using mechanical  springs.     In  real designs of newtonometers 
elastic   (restoring)   forces of a different nature, most often elec- 
tromagnetic  forces,   are  usually employed.     However,   this circur,;- 
stance  is unimportant  to explain  the principle of operation of the 
newtonometer and to derive equations   (1.1)   and   (1.3).     Therefore, 
henceforth only a mechanical elastic   (spring-loaded)   suspension 
will be considered.     Let us note,   incidentally,   that the condition 
of smallness of deformation of the elastic  suspension of the new- 
tonometer  is not the principal one and we can disregard  it.     Of 
course  the presence  of  a  linear dependence  between deformation 
and the elastic force of the suspension is  also not compulsory. 
This  function  should be  only single-valued.     However,  henceforth 
for purposes of simplicity,   the  relationship of deformation and 
force will be assumed  to be  linear,  which does not negate  the 
essence of the consideration. 

As already noted,   real designs of newtonometers are one- 
component.     Three one-component newtonometers whose axes of sen- 
sitivity are not coplanar,  may be assumed equivalent to a single 
three-dimensional newtonometer. Thus,   in  speaking of vector n, 
we will henceforth have  in mind equation   (1.3).     We will assume 
that  the  readings of  the newtonometers are  the projections n 

-► ♦ es of vector n  to unit vectors e    of the axes of sensitivity. 

The readings of  the newtonometers are  the main information 
which  is  used in  inertial navigation  systems.     The accuracy of 
operation of  inertial  navigation systems  is determined mainly by the 
accuracy of the   specific  force measured by  the  newtonometer.   There- 
fore,   it  is very  important to have  a distinct  concept of  the  principal 
sources of errors of newtonometers.     The  first of them is  related 
to  the inaccuracy of measuring the extent of deformation of  the 
springs,  which  is the  carrier of information about the magnitude 
of   the elastic  force.     The  second  source of  errors  is determined by 

14 



the fact that the actual dependence of the extent of deformation 

on the magnitude of the elastic force can be distinguished from 

the calculating relation used.  The third source of errors may be 

the presence of unaccounted for forces, acting on the sensitive 

mass of the newtonometer, in addition to the force of elasticity 

of the suspension.  These forces may be, for example, forces of dry 

and viscous friction, which occur in the device when the sensitive 

mass moves with respect to the housing. We note that the indica- 

ted categories of errors generally occur in any measuring device. 

Therefore, we can be concerned with them not only in the case of 

a mechanical spring-loaded suspension, which was discussed as an 

example, but also in the case of an elastic suspension of any 

nature. This in itself means that all the indicated errors can 

be both deterministic and random. 

The essence of the method of inertial navigation reduces to 

integration of equation (1.3).  Integration of this vector equation 

obviously requires conversion to three scalar equations, which can 

be obtained by projecting the vector equation to any three non- 

coplanar directions.  Equation (1.3) is valid in the inertial system 

of coordinates 0 C*n*^*, while vector n, contained in this equation, 

is known by its projections n  to the axes of sensitivity e of 
e -'s 

the newtonometers.  Thus, the most natural conversion to scalar equa- 

tions is the projection of equation (1.3) either to the axes of 

the coordinate system 0 C*n»C* or to the directions of the axes of 

sensitivity e of the newtonometers.  It would be simplest if the 

directions of e were f\>:ad in the coordinate system 0 C*n*5*, 
m 2 

for example, if thoy coincided with the directions of the axes 

of this coordinate system. 

■♦ 

If the directions of e  vary their orientation in the co- 

ordinate system 0 ^«n*C*» then one must know at each instant of time 

the position of the directions of e with respect to axes f^nn^*. 

One must also know the rates of change of the directions of e in 
s 

the coordinate system 0 '>*n*'!;*, because the right side of equation 

(1.3), which contains the second derivative d2r /dt2, is projected 

to the movable direction of e . 
s 
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§   1.3.     The  Procession  Theory of Gyroscopic  Devices of Inortial 
Systems 

1.3,1.     The  Free  Gyroscope 

One of the possible methods of fixing  the  direction of the 
axes of sensitivity of  newtonometers  in  the  inertial  system of 
coordinates or to obtain  information about the  position of  these 
directions and  the  rates of their change  is to  use gyroscopic de- 
vices.     The gyroscope,   like  the newtonometer,   is  the main sensing 
element of  the  inortial  navigation system. 

Let us consider the  operating principle and  the equations  of 
operation of  the main  gyroscopic devices which can be  used  in 
inertial  systems. 

When deriving  the   equations of operation of  gyroscopic devices, 
we will  not go beyond  the  bounds of precession  theory.     This  theory 
makes  it possible  to obtain  the relations of  interest  to us simply 
and  clearly.     At  the  same   time  restriction  to  laws of  the precession 
theory of gyroscopes only,   as was  indicated  in A.   Yu.   Ishlinskiy's 

4 
investigation, does  not  lead  to any appreciable errors or in- 
accuracies in  the consideration of those  aspects  of  the phenomena 
with which we must be concerned.     The operating  principles are 
usually selected and the  circuits of gyroscopic devices are con- 
structed usually on  the  basis of this theory.     We  resort to  the 
complete equations of motion of  the gyroscope  in most cases only 
to  provide stability of operation of  the  circuit   (the  stability 
of  the operating conditions determined by precession equations) 
a; 3   the  smallnoss of deviations of  real  from procession motion. 
I;    those  cases when  the  motion of  the gyroscope within  the en- 
v    ons of precession motion  is of a pre-oscillation nature,   the 
co.nplete equations are  required to investigate  the  stability of 
the  natural oscillations  and  to  find  their amplitudes,   respectively. 
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Henceforth,  when outlining  the theory of gyroscopic devices 
of  incrtial navigation,  wn  shall employ the methods of precession 
theory  in  the  form developed by A.  Yu.   Ishlinskiy. In this 
case we  shall assume  that  the  considered procession  conditions are 
stable and wo will not be  concerned with the nature of the tran- 
sient processes which provide  this  stability.     Let us also note 
that precession  theory  in  the  problems which will  be   subsequently 
investigated yields high accuracy.     This  is a result of  the cir- 
cumstance  that small and slow      time-variable  rates of precession 
are being considered. 

Let us consider an  ideal  free gyroscope   (Figure   1,4)that 
is a henvy disc    rotating at constant angular velocity and  Installed 

without friction  in  a weightless gimbol  suspension with three degrees of 
freedom.       The center of mass of the disc is located  at the point 
of  intersection of  the  suspension axes,  which are assumed to be 
mutually perpendicular.     The  rotational axis of  the disc coincides 
with  its  axis of symmetry. 

o 

The equation of motion   (rotation)   of a heavy  solid with  respect 
to a   fixed point has  the   following  form in  the  incrtial coordinate 
system   (the  theorem of angular momentum): 

'•it 

(1.5) 
(i '<) 
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where K is the vector of angular momentum and M is the vector of 
the total moment of external forces with respect to the point of 
the  suspension. 

It is assumed in precession theory that the angular momentum 
of a gyroscope is  determined only by its natural   rotation and is 
always directed along the axis of its figure.    Therefore,  by de- 
noting the moment of inertia of the gyroscope with respect to the 
rotational axis by C,  the angular velocity of natural  rotation 
by (j and the unit vector of  the gyroscope axis   (the axis of natural 
rotation)  by c, we will have: 

Assuming that the kinetic moment C    of the gyroscope is con- 
stant and denoting it by H,  we  find the equation 

f-f. (1.7) 

-► 
which relates the rate of change of direction of vector L' to the 

external force moment. 

If M equals zero, it follows from expression (1.7) that 

a.    , (1.8) 

Thus, a free gyroscope maintains a constant direction of its 

rotational axis (the axis of the kinetic moment) in the inertial 

coordinate system. 

If three free gyroscopes are taken and the directions of 

the axes of sensitivity of the newtonomctors are related to the 

diroctions of their kinetic moments, for example by aligning them 
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identically (e =,-s)f a
ncJ H the directions of o arc combined with 

the directions of the coordinate axes f;*,n* and f;*» then the new- 

tonometer readings of n  will be projections of equations (1.3) to 
es . ' the axes of the inortial system of coordinatrs.  It is easy to sec 

that two free gyroscopes, with whose axes I   1 of C» and n», for 

example, can be combined aro sufficient.  The equalities e =c , of 

course, do not have to be fulfilled.  It is sufficient to have 

only two free gyroscopes with non-collinearly arranged kinetic moments 

and to be given the position of the directions of the axis of sen- 

sitivity of e' with respect to the directions of their kinetic 

moments.  The position of the directions of e is completely de- 

termined by this in inertial space. 

In real designs the moment M is distinct from zero because 

of friction in the suspension axes, residual unbalance of the 

rotor,etc.  Therefore, 

*  A d-9) 
"rfT 77 ' 

where M^ is the perturbing moment.  Consequently, the axis of the 

gyroscope rotor will be slowly processed (the so-called free de- 

flection of the gyroscope)  by varying its orientation in space 

with time. 

We note »-hat, along with the effect of the above perturbing 

moments, a number of effects  determined by the characteristics 

of the dynamics of motion of a free gyroscope in a gimbal suspension 

and related primarily to the effect of equatorial moments of inertia 

of the gyroscope rotor and the moments of inertia of the suspension 

rings, is also added to the free deflection. 
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1.3.2.  A one-component absolute angular rate meter. 

Let us consider a gyroscope   (Figure 1.5),  mounted on a platform in 
a suspension with two degrees of freedom.    The center of mass of 
the gyroscope coincides with the center of the suspension.    The 
gyroscope housing is connected to the platform by a spring, which 
creates  an elastic moment around the axis of the housing as it 
rotates  with respect  to  the platform. 

Fig.   1.5 
For  comparison of  the equations of motion of  the gyroscope, 

let us  introduce a right-hand orthogonal system of coordinates 
Oxyz,  bound  to the platform.     Let us locate  its origin in  the 
center of  the gyroscope  suspension,   let us align  the y axis along 
the axis of  its housing    and  the  z axis normal  to the plane of the 
platform.     Let point 0 be  fixed in the inertial coordinate  system 
and lot  the platform rotate arbitrarily with respect to this point, 
so  that projections of its absolute angular velocity to to  the 
x,   y and   z axes are   u   ,u   ,   and  u   . x y      z 

Let us connect the trihedron Ox y z obtained from the tri- 
i i i 

hedron Oxyz by rotation of it by angle 6 around the y axis, to the 

gyroscope housing.  Rotation is counter clockwise if we look from 

the end of the y axis (fig. 1.6), so that the vector of relative angular 
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velocity   6 is directed along  this  axis. 

PfcJ 

fig.  1.6 

Let us  apply  the  theorem of  the  kinetic moment  to  the  gyro- 
scope housing with rotor.     Let us project the vector equation   (1.5), 
given in  the  inertial system of coordinates,   to  the mobile x,   y 
and z axes. 

Let 
K^K.x ^ K-,y f K.i. 

a.iQ) 

where K  ,   K    and K    are projections of vector K to  the x,   y and  z 
axes,   and x,   y  and z are  the  unit vectors of these axes.     Then, 

(time differentiation is denoted by  the dots). Since dx/dt,   dy/dt 
and dz/dt are  the velocities of  the ends of the unit vectors of  the 
mobile coordinate system, we  have 

ti rfv <ti (1.12) 

Consequently, 

III 
(1.13) 

The  vector  K    x  + K v+K  z  is   the derivative of vector K,   if we x y       z 
asisumo  that   the  coordinato  system   xyz is  fixed with respect  to   the 
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inertial system. This derivative is usually called the local 

derivative of the vector. 

ThU8 f-*+»xc 
(1.14) 

(K is the local derivative) and from expressions (1.14) and (1.5), 

we find: 

(1.15) 

kf f M,^, — MtKt — Mr 

Limiting ourselves to within the scope of precession theory, 
let us take into account during calculation of K only the kinetic 

moment  M 0f  the gyroscope rotor. 

It  follows  from Figures  1.5  and  1.6  that 

AO^/ZslnA,   /f,- (I,   K,^Hwt>. (1.16) 

It is obvious that in the considered case the moments M , x 
M    and M    are made  up of  the elastic moment of the  spring  and of 
the moments  of the  normal  reacticn? of  the  suspension pins   of the 
axis  of  the housing.   By noting  that normal  reactions do not  create 
a moment with  respect to  the y axis of  the  suspension and  by assum- 
ing  that the  elastic moment  is  proportunal  to the deformation of 
the  spring,   i.e.,   to angle o,  we   find  from relations   (1.15)   and 
(1.16) : 

whc;ro  k  is  the proportionality constant 

Thus, 

(1.17) 

6i, slnA —(n, nisArs -u,,, (1.18) 
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then from equality (1.17), we find: 

(1.19) 

By assuming that angle 6 is small and by assuming cos 6=1 and 
sin 6=5, according to equality (1.18) we can write: 

„    1 (1.20) 

If now 

then 

//«, (1.21) 

*«4f-%. (1.22) 

Thus, the value 6 of elastic deformation of the spring is propor- 

tional to  the projection of u      of the absolute angular velocity 
of the platform to the axis x , and if 6 is small and if condition 

i 
(1.21)   is  observed,   then  the  value of  6  is proportional  to   the 
projection  of to    of  the  absolute  angular velocity of  the platform 
to its x axis.     The value of  the elastic deformation of the  spring 
can obviously be measured.     The considered device may be  called 
a one-component absolute  angular rate meter. 

1.3.3.   A   two-component  sing]e-gyroscopic  absolute  angular 
rate meter.     Wo  can show  that  two components of absolute  angular 

velocity of  the platform can be measured with certain  assumptions 
using a  single gyroscope,   i.e.,   the   rate of variation of some 
direction   in   the  inertial system of  coordinates  can be measured. 
This    possibility is indicated by  the  circumstance that a  free 
gyroscope maintains a direction of  the vector of  the kinetic moment, 
fixed  in  absolute  space. 
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Lot us  consider a diagram   (Figure 1,7)     which differs  from 
that presented in  Figure  1,5 by  the   fact that the gyroscope  is 

mounted on  a platform in a suspension with   three degrees of  freedom. 
The gyroscope housing is connected  to  the  frame of the gimbal  sus- 
pension by  a  spring    whose deformation leads to generation of a 
moment which acts on the housing and which  is directed along  its 
axis   (as  in a one-component meter).     The  frame of the device   (the 
platform)   is  connected to the housing  in the same  fashion.    Con- 
sequently,   the gyroscope housing is  mounted  in a  flexible  suspension 
with  two degrees of freedom.     The  total elastic moment of the   sus- 
pension is   the only external moment which acts on  the gyroscope. 
The vector of the  elastic moment,  divided by  the  value of the 
kinetic moment of   the gyroscope H,   determines the  rate  of variation 
of the    direction of the gyroscope axis in  the inertial  system of 
coordinates  according to equation   (1,7).    Therefore,   the projections 
of the absolute angular velocity to  the axes of the housing and 
frame  can bo  determined by measuring   the values of the  deformation 
of the  springs. 

Fig.   1.7 

Let us  analyze  in more detail  the  operation of  the  device. 
Let us  connect  to  its housing a  right-hand orthogonal system of 
coordinates   Ox'y'z'    (figure  1.8),   whose origin we   locate   in  the 
center of mass of  the gyroscope,  we direct  the y'   axis along  the 
axis of  the   frame,   and we   locate   the   x'   axis   in the piano  in which 
the  frame  is   located,  when  the  spring  of its   suspension  is not 
deformed.     Let us connect  to the  frame   the coordinate system Oxyz' 
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obtained as a result of rotating system Ox'y'z' by an angle 6 around 

the y1 axis.  Let us also introduce the coordinate system Ox y z , 
iii 

rigidly bound to the gyroscope housing.  The trihedron Ox y z  is 

obtained from the trihedron Oxyz by rotating the latter by an angle 6- 

(Figure 1.8) around the x axis, which is coincident with the axis 

of suspension of the housing. 

iW 
Fig. 1.8 

Let  us now make use of the theorem of the kinetic moment 

[equation (1.5) 1, having applied it to the two mechanical systems: 

to the housing of the gj•oacopo and to the frame with housing.  If 

the values contained in equation (1.5) are denoted for the first 

syatom by K1 and 11' and those for the second system are denoted by 

J^ and l(2, we finds 

rtr' ■,»'. ■IK- 
Al (1.23) 

Equations   (1.23)   am  equivalent  to  two  systems of scalar equations 
of the  type  of   (1.15).     The six equations obviously permit calcu- 
lation  of the   unknown  values of  4   .S     and  four moments of  the normal 

1        2 
reactions of   the  axial  supports  of the   suspension of  the housing 
and of  the  inner gimbal. 

Since we  are primarily  interested   in  the  relationship of  the 
values of  6     and  6     to the  elastic moments of  the suspension,   we 

i ? 
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can project the equations (1.23) to those axes with respect to 

which the normal reactions do not yield moments.  For the gyroscope 

housing, this axis is the x axis of the housing suspension and for 

the housing-frame system, it is the y{y')   axis of the frame sus- 
pension.  Then, according to equations (1.15), we will have: 

«:■((..,*; ^(.vv^-iil I (1.24) 

Since only the natural kinetic moment of the gyroscope is 

taken into account,  we have 

//smiV. A'l=AfJ = //cnsA,.. (1.25) 

By noting  that moments H1   ,  M2     are  created only by  the  springs x   y 
of the suspension, and by assuming that they are proportional to the 

deformations of the latter, 

(1.26) 
Ail^ Mb 4« -*ö,• 

we   find  from equations   (1.24)   and relations   (1.25)   the dependence 
of  5|   and  62  on (j   ,   u    and 10    of interest to us: **      y z        . 

(1.27) 
//(i.if cos 6,411), sin Aj) 1-      khj,   I 

The  first equation  of   (1.27)   is  similar  to equation   (1.17), 
ind  since 

dl,C(n\-| h>t\lnli,      en,, (1.28) 

L can be written in the form of equation (1.19); 

t, .     -j 01,,. 

(1.29) 
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Since 

«.+Ä,' (1.30) 

then it follows from the second equation of (1.27) that 

Wco«*i 
(1.31) 

If we assume cos 6 = cos 6 =1, sin 6 =6 and sin 6 =6 , we have 
2 1 II 2   2 

(1.32) 

A      "    I' 

>  I  , "i 

If we    required  that the   following equality be  fulfilled 

(1.33) 

ftolO.  p-^K:«. 

we  find 

f.V   A.^..., 
(1.34) 

Thus, wc can find the projections of w  and u  of the 

absolute angular velocity of the gyroscope housing to its axes 

according to oquulitios (1.29) and (1.31) from the results of 

measuring the deformations A  and A of the elastic suspension, 
1        2 

these projections coinciding with those of u  and u of the abso- x     y 
lute angular velocity w to the axis of the housing suspension and 

to the axis of the frame at small values of 1  and  6  and if the 
1 2 

requirements of (1.33) arc fulfilled. 
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The considered device can be called  a  two-component single- 
8 

gyroscope absolute angular rate meter. 

1.3.4.  A three-dimonsional absolute  angular rate meter. 
Three one-component meters,   structurally connected  into a single 
block  so  that  their axes of sensitivity  form an  orthogonal  trihedron, 
are employed more often  than  other schemes   for measuring the absolute 
angular velocity of a   rotating  trihedron.     This  unit  is a platform 
(Figure   1.9),  on which   throe  gyroscopes G   ,   G  ,   G    are  installed  in 

12 3 

suspensions with  two-degrees  of freedom.     A  right-hand orthogonal 
coordinate  system Qxyz,   whoso  0z axis is  normal   to the plane of the 
platform,   is connected  to the placform.     The axes of the housings 
are parallel  to  the  plane of  the platform,   where   the x    and x    axes 
of  the housings of gyroscopes G    and G    are parallel  to the x axis 
of  the platform,  while  the y    axis of the  housing of gyroscope G 

2 2 
is parallel  to  the y axis of  the platform.     The  gyroscope housings 
are  connected  to  the platform by springs   (they are not   shown  in 
Figure  1.9),  which create moments around  the axes of the housings 
similar   to that which occurred  in a one-component absolute angular- 
rate motor   (figure   1.5).     In  the position  when  the  springs are  not 
deformed,   vectors  H    and H    of  the kinetic  moments of gyroscopes 

1 2 
G    and G    are normal   to  the plane of  the platform,   and  vector H 12 t- t f 3 

of  the kinetic moment of gyroscope G    is parallel   to the y axis. 

Fig.   1.9 
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The  orientation of  the gyroscope housings with respect to 
the direction of  the  x,   y and  z axes  is determined by the position 

of  the systems o.x.y.z.,  Ox-y?2?'  an<* 03X3^'3Z3 T^e ori9in 

of each of these  systems  is  shifted        with  the  center of the  sus- 
pension of the corresponding gyroscope,   the   z   ,z   ,and y    axes coincide 

i     2 a 
with vectors II   ,11   ,and  II    of  the kinetic moments,   while  the x   ,x   , 

12 i II 
and y    axes are  directed along  the  axes of   the housings  of the corres- 
ponding gyroscopes.     As was already noted,   when  the  springs of the 
suspL-nsions are not deformed,   the  z   ,   z    and  z    axes are normal  to 

12 3 
the plane of the platform (the xy plane).  In the general case, 

those axes are deflected from the normal toward the platform by 

angles 6   , 6    and 6 , respectively, so that the table of the direc- 

tion cosines between axes x , y , z ; x , y  and z and x , y and 
11 1 2 2 2 3 3 

z    anci between axes x,   y and z  has  the  form: 
(1.35) 

'i     M '' *i h     '» «i Vi             'i 
Jr     I       0 II iuiti, (I sliiA; I      0              II 

y    0 fcuA, -MiiA, 0 1        (I (I tnv\ MiiA, 

/     U MnA, lovA, iliiA, (i tulAj Ü »hlAj «nlA, 

Lot point 0   (the  center of  the platform)   be   fixed in  the  in- 
ertial coordinate  system.     Then   the motion  of the platforr.. consists 
only of rotation around point o,   so  that  the  projections of the 
absolute  angular velocity CJ of  the platform  to  the x,  y and  z will 
be  u   ,  H    and H  . 

Let us compose the equations of motions of gyroscopes G , G 
and C in projections to the x, y and z axes, having applied the 
theorem of   the- kinetic  moment  to  each  of the   three   gyroscope  housings. 

Projections of  the  kinetic moments K1,   K',   K3   to  the x,  y and 
z  axes  are   found  by  using   the   tables  of  tho   direction cosines   (1.35), 
if wo   take   into  account   that  the   vectors 11   ,   H     and   8 of   the  kinetic 

1 2 3 
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moments are directed along tho z , z and z axes, respectively. 

These projections are equal to: 

(1.36) 
Arl=.0, K\*--   //.sin»,.     K','=H,ci>'.\. 

Kl-.H,sink,.   K',^0. K'.^ll^oib,. 

By  projecting  the  equations of  the angular momentum for gyro- 
s  G    and G    to  the  x axis and  that for  gy; 

y  axis,   wo  find according  to  equations   (1.15): 
scopes  G    and G    to  the  x axis and  that for  gyroscope G    to the 

(1.37) 

"i(i.',cf„,\  I „1/S,nAi) ... „1     I 

/'j(...,-„1,\    (V,.s.\) ..i;;.  I 

We note that the moments of the normal reactions of the supports 

are not contained in the moments M1, M2 and M'.  Moreover, since x       y x 
the gyroscope  housings   are assumed  to be balanced with respect  to 
the axes of  their own   suspensions,   the moments  of gravitational 
forces  may be  assumed  equal  to  zero.     However,   one  should boar  in 
mind that  in  the previously considered cases  the origin of  the ro- 
tating coordinate system Oxyz  coincided with  the  center of  the 
gyroscopo  suspension   (and with  its center of mass).     In the case 
now boinq  considered,    the  centers 0,0,0     of   the  gyroscope  sus- 

12 3 
pennions  do not       incide with   the center of  rotation of  the plat- 
form 0.     Therefore,   additional   forces of  transient motion  inertia 
and Coriolis  force:?,  which,   generally speaking,   may create moments 
around   the  axes  of  the   housings,   act  on  the   gyroscope  masses. 
However,   because of  the   sm.ill   distances of  points  O   ,   0    and 0 

12 3 
from the  center of rotation of o and  because of  the limitation of 
values i* |  w    and tt .   tho;;o moments are negligible.     Also  taking x       y z 
into account that perturbing moments may bo  created by only  that 
portion of  the   forces  of  inertia, which determines  the  inhomogeneity 
of   the  incrtial  force   field within  the gyroscope  housing rather  than 

30 
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by all  the   forces  of inertia because of the  balance of the  gyro- 
scopes,  we  disregard  the  indicated moments  as   is accepted. 

Thus,   the only moments applied  to the  gyroscopes  along  the 
axes of the  housings  are  those of the  flexible  couplings of  the 
suspensions.     By assuming  that they are proportional  to the defor- 
mation of the suspensions,  we have: 

All rt     Mi,    M', m - »A.    M] m - Wi. 

By substituting these expressions into equalities (1.37) we 

find 

(1.38) 
tijCojA, .(-u^sinA, --> --J-ft,. 

u, iln «, — <.), co» Aj ■ - M A,, 

«, »In Aj — !■>, i us A, i-3   - -J- it 

In the  relations   (1.38),   as  follows  from  the  table of direc- 
tion  cosines   (1.3S), 

(1.39) 
UlCiisA,   j   (il^MilA,    *<■',,. 

0ld MnA;        i,lf tnsAi.     .        1l(| j 

UjMliA,      i.^ii.sA,   *    - U/i, 

DO   that 

/*/', *'■   "'■■    ///'■   "•'■   •*/,*'     f,i0) 

(1.40) 

The  system of  equation!;   (1.38)   should  be   solved   to  find   the 
values  of  M. ,   M    and   «_   from   the  known  values  of  6   ,   6     and   «S   . 

X y Z 12 3 
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The determinant of  the  system of  algebraic equations   (1.38) 
with  respect  to u  .   u    and  u    is 

0 col A,     sin A, 

— cosAj       0        5lin\ 

0 iin Aj   cus Aj 

(1.41) 

-COJAJCOSCA, — AJ 

This determinant is equal to zero when the following equalities 

occur separately or simultaneously 

(1.42) 
'*f. «,-»i 7' 

When fulfilling the first equality of (1.42), the vector H 

of the kinetic moment becomes parallel to the y axis, and when the 

second equality is fulfilled, the vectors of the kinetic moments 

I and H become parallel. 
1        2 

In our case angles 6,6 and 6  are small, the determinant 

(1.41) is different from zero and the system of equations (1.38) has 

a single-valued solution: 

%— Uft-U(ft****' fa***') 

a.43) 

We  note   that  formulas   (1.-13)   are accurate.     Their derivation 
did not require  restrictions of  the  typo of   (1.21)   and   (1.33),   which 
were   introduced  in one-  and   two-component   (simple  gyroscope) 
absolute   angular  rate  meters. 

If   the  values  of  angles   6   ,   6     and   6     are   small,   then,   by 
1 2 3 

ret.lining  terms of  the   second order of   the  smallness,   we   find,   from 
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formulas   (1.43) 

*,,     , (1.44) 

M   K- *L A *• A A 

Thus,   the  relations 

<■., = £*:.    %-      £> 
(1.45) 

I A 

determine the projections of the absolute angular velocity of the 
platform to its axes with an accuracy up to terms linear with re- 
spect  to  6   ,   6     and 6   . 

1 2 3 

We note that the arrangement of the gyroscopes presented in 
Figure 1.9 is not the only one. Other arrangements are possible 
which  satisfy the  condition  that the vectors 

(1.46) 
^Xi,.    //,<»<.    "4-<*« 

form an orthogonal set of three (here s , s and s  are the unit 
1 2 3 

vectors of   the directions  of  the  axes of the gyroscope housings). 

In  the  gyroscopic   indicators of absolute angular velocity con- 
sidered above,   the elastic moments around  the a>.es  of the  gyroscope 
suspension  were  croaLod  by  using   the   springs.     In   real  designs 
these  moments can   also be  created by  forces of different origin, 
for example,  by electromcKjnotic   forces.     The nature of  the  re- 
storing moments has no essential  significance  for derivation of 
the   relations which  determine   the  operation  of  gyroscopic   velocity 
meters.     As   in the  newtonometor circuit,   the elastic moment in gyro- 
scopic  absolute  angular   rate  meters does  not  have   to  be  proportional 
the  the angle of  rotation   (deformation of  the spring).     If  the de- 
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pendonce is linear, the corresponding relations become especially 

simple and principally important only in order that the dependence 

of the elastic forces onto the corresponding angles be known and 

single-valued. As a measuring device the gyroscopic absolute 

angular rate sensor is similar in many ways to the newtonoraeter. 

The sources of errors of newtonometers and of absolute angular 

rate motors, in particular, are similar in many ways.  The main 

errors of the latter are related to inaccurate sampling of the 

value of spring deformation, to an imprecise knowledge of the 

actually existing dependence of the value of the elastic moments 

onto the corresponding deformations (or the instability of this de- 

pendence from measurement to measurement) and to moments not taken 

into account. 

These moments are caused by two main factors: non-coincidence 

of the center of mass of the gyroscope to the center of its sus- 

pension and to the moments of dry and viscous friction in the supports 

of the axes of the gyroscope housings.  Besides the indicated factors, 

certain affects related to the dynamics of motion of the gyroscopic 

measuring device in the gimbal suspension with regard to the mo- 
Q 

ments of inertia of  the wheels of  the  latter, also  leads  to 
errors of  the measuring device. 

All  these errors can be  represented  in  the  form of certain 
perturbing moments H*   ,   M5     and M6   ,  which act along  the  axes of 

2X    2y       2X' 
the housings of gyroscopes G , G and G .  The instrument errors 

II        3 
Aw   ,   Aw    and  Au    of  the  absolute  angular rate meter will  then be 
equal  to: 

It   ,        < Ml (1.47) 

It is also necessary to bear in mind another circumstance. When 

deriving all the relations for angular rate meters  it was assumed 

that the natural kinetic moment of the gyroscope is constant.  More- 

over, in real gyroscopes the constancy of the rate of 
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turning of the rotor with respect to the housing can of course be 

maintained only with some finite accuracy»  The difference of the 

value of the kinetic moment of the gyroscope from the constant 

value also leads to errors in absolute angular rate meters. The 

nature of these errors is easily established by resorting to the 

initial equation of angular momentum (.1.5).  Since only the natural 

kinetic moment of the gyroscope was taken into account when deriving 

the equations of motion of angular rate meters, then by introducing 

the unit vector c of the direction of the kinetic moment vector, 

we find: 

^ (Ih) ™ M.   //-//„« A// (0, (1 • 4 8) 

where  AH(t)     is variation of  the value of  the kinetic moment.     Then, 
(1.49) 

(/M.w,"    „,_    rf Ml 

It   follows  from expression   (1049)   that variation of  the kinetic 
moment H by value AH(t)     leads  to  the  fact that only H+AH  instead 
of   H  should be  substituted in all  the derived equations,   because 
the  perturbing moment  -r.j-r AH is  immaterial  in view of the  fact 
that   it is  directed  along  the gyroscope axis. 

For a  free gyroscope  some   (small)   variation of  the value of H 
of  course lias no significance whatever. 

1.3o5.     Fren and   controlled  gyrostabilized  platforms.     In  con- 
clusion  lot us consider yet another  type of gyroscopic device,   used 
to maintain   fixed orientation  in  an absolute   space  bound   to the 
gyroscopes of a  trihedron  or  to  change  this orientation by a given 
lav;.     We have  in mind  dovicrs which  are called gyrostnbilized plat- 
forms.     Those  devices   are  employed  extensively  in  view of   a number 
of   their  inherent advantages.     Without familiarization with them, 
exposition  of   the operating principles of gyroscopic orientation 
displays would be essentially  incomplete. 
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A three-dimensional gyrostabilized platform  (Figure 1.10)   is 
a platform mounted in a suspension with three degrees of freedom. 
Three gyroscopes G ,  G    and G    are  secured on the platform in sus- 
pensions with two degrees of freedom in the same manner as in the 
previously considered three-component absolute angular rate meter 
(Figure lo9).     Unlike  the latter,   there is no flexible  coupling 
of the gyroscope housings  to the platform.     Sensors DU  ,   DU    and 
I))'    of angles  6.6    and 6    of rotation of the axes of  the housings 
with respect to  the platform aru  installed along the axes of the 
housings.     These attitude sensors control operation of engines En  , 
En    and En   ,  which create moments with respect to the axes of the 
gimbal suspension.     In the case of a controlled platform,  moment 
sensors DM   ,  DM    and DM ,  by means of which given   (control or correc- 
ting)  moments are transmitted to  the gyroscopes of the platform,  are 
installed along the axes of the housings.    The attitude and moment 
sensors are  denoted only by gyroscope G    in Figure  1.10. 

ÜB—~ 

Fiq.    1,10 
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Let us  introduce  the  right-hand orthogonal coordinate  systems 

0x.y.'.-    Ox'y'y,    Ox'y't" ■. ■   Uxyz, 

bound to the base on which the giinbal suspension of the platform 

is installed, to the outer ring of the gimbal suspension, to the 

inner ring of the gimbal suspension (to the outer ring of the ring 

mounting, Figure (1.10) and to the platform, respectively. 

The x  axis is directed along the axis of the out«:r gimbal 

ring.  The y^ and z^ axes form a right-hand orthogonal sa*: of three 

with the x^ axis. 

t.f-r'! 
*&,) r'/■;-) 

Fiq.   1.11 Fig.   1.12 
The coordinate  system Ox'y'z'   (Figure  1,11)   is obtained by 

rotating the  coordinate  system Ox^y^z^  around  the x* axis by 
angle a.     Counterclockwise  rotation   is  assumed to be  the  forward 
direction of  rotation  if we  look  from  the  end of  the x*   (x*)   axis. 
Thus,   the  relative  angular velocity vector a coincides with   the  direc- 
tion  of  the   xA    (::')   axis.     The  position  of  the  y'   axis determines 
the direction of the axis of  the  inner  suspension ring.     If  a=o, 
the coordinate   system Ox'y'z'   accordingly coincides with  the  coordinate 
system Ox^y^z^,   bound  to  the base. 

Trihedron   ^x"y"z"   (Figure  1.12)   is obtained  from trihedron 
Ox'y'z'   by  rotating  it by angle  0 around  the axis  Oy'    (the axis  of 
the  inner suspension  ring).     The vector  ^ of the  relative angular 
rate of rotation   is directed along axis y'ly").    Axis  z" of  tri- 
hedron Ox"y"z"   coincides with  the normal  to  the plane of  the  plat- 
form. 
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To convert to the coordinate system Oxyz (Figure 1.13), the 

trihedron Ox"y"z" should be rotated by angle y around the z" axis, 

which obviously corresponds to rotation of the platform by angle Y 

with respect to the outer band of the ring mounting. Rotation 

counterclockwise is assumed to be positive if looking from the end 

of the z" axis. Vector y of the relative angular rate of rotation 

is directed along the z" (z) axis. 

/'»/ 

Fig. 1.13 

The relative positions of the coordinate systems Ox^y^z^, 

Ox'y'z', Ox"y"z" and Oxyz is determined by the following tables 
of    direction  cosines 

(1.50) 

■•>*                'y- x y     t 

'•  '     0        0 *'   co5(l  0 ship x" cosy—tiny 0 
y. 0 cosa - sin« /     0        10 y  siny      cos y 0 

«, 0 sinu      cosu *'— »ln(l 0 cus(l *"     0            0    1. 

The vectors of the moments of the engines En , En and En 
12 3 

are directed along the axes x^x'), y'fy") and z" (z) which are the 

axes of the platform suspension.  The engine housings are installed 

on the base (object) (r.n ),  on the outer cardan ring (En ) and on 
1 2 

the  platform   (Kn  ),   respectively. 
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This position of   the  gyroscopes on   the platform   (relative 

to  the bound  system of coordinates oxyz)   is  the  same  as in the  case 

of a  three-component absolute angular rate meter   (Figure 1.9). 

Therefore,   to determine the position of  the gyroscope housings  re- 

lative    to the x,   y and z axes,   the  trihedrons Oxyz,       xyz 
11114    2     2     2 

and Oxyz,  bound  to them,     whose    orientation in  the  coordinate 
3     3     3    3 

system Oxyz is given by the  table of direction cosines   (1.35),   may 

be retained. 

Let the center of the platform suspension - point J - be  fixed 

in  the  inertial  coordinate   system and  let  the projections  to  the 

x,   y and  z axes of  the  absolute  angular rate to of the platform in 

its motion with  respect to point 0 be u   ,   w    and lu  . 

To construct the equations of motion of a gyrontabilized plat- 

form, six mechanical systems should bo considered: 1) the device as 

a whole,   2)   the  inner  gimbals    that    which     is 

distributed on  it,   3)   the platform together with  the gyroscopes 

mounted on it,   4)   the housing of gyroscope G   ,  5)   the housinn of 

gyroscope G  ,   and   6)   the housing of gyroscope G  .     The motion of 
2 3 

these   systems  completely determines   the  motion of all   parts of   the 

device both   relative to  the  inertial  system of coordinates  and 

relative to each other. 

The theorem of the kinetic moment [equation (1.5)) is used to 

compile the equations of motion. Having applied it to each of the 

systems being considered,  we  find: 

(1.51) 

Stw0       {!■■    I. I, 3.  4.  '.. (.) 

The  system of equations   (1.51)   is equivalent to 18  scalar equations, 

of which  in the general  case  18 unknowns can bo determined:   six 

angles  B«4«Y*4   , <S     and (5    and  12 moments of  the nor al  reactions 
1 2 3 

of the supports of six axes ( three gimbal axes of the platform 

tind three axes of suspension of the gyroMcopo housings on the platform) . 
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However,   on  the basis of equations   (1.51),  we can  find those   six 
relations  into      which  the moments of normal  reactions  do 
not enter.     To do  this,  wo  should obviously project the  i-th equation 
of   (1.51)   to  the direction M   ,   so  that  the projection of the vector N.   of 
the moment of normal  reactions  in  this direction  is equal  to  zero. 

According  to  relations   (1.15)   and   (1.51),   this type of equa- 
tion will have   the   form: 

+ ^i  ( u,^_Wl^)c<«(y:"V) t- 

(1.52) 

Since, 

M'.«>4CI*') i ^"»(yTV) i- Ai;<'>»(''rv)=«„<• d. 53) 

then we can select the directions of the suspension axes for the 

directions of |i . 

As before, on tha basis of precession theory, when calculating 

K , we take into account only the natural kinetic gyroscopic moments. 

By noting that all throe gyroscopes are contained in the first three 

systems into which we divided the considered device, we conclude 

that 

As already noted, this position of the gyroscopes of the 

investigated device with respect to the x, y and z axes is similar 
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to the disposition which occurred  in  the previously considered  three- 
component absolute angular rate meter.     Therefore,  when  lookincf   for  the 
projection of the    vector K'   to  the x,   y and  z axes,  we can use ex- 
pressions   (1.36)   to project  the kinetic moment of each gyroscope 
to these axes.     By  totalling  the corresponding projections and by 
assuming  for simplicity 

ll,^H,  --Hs-  II. 

wo  find 

^; = //slnV    /<;---H(-!.M, + r.>»«3). ' (1.51 / 

K',<=H(cos«, f cos«, — sin*i) 

Let us tak« the direction of axis Ox^fOx*) of the outer 

qimbals     of the device as the direction of y1 for the first 

system.  The cosines of the angles of this axis with the x, y and z 

axes, according to the tables (1.50), are equal to: 

(1.55) 
cos(jr'. A:)-^tospcosv.    cosU', y)=» — cospsiny, 

ro$(jt, z) = slnp 

By substituting expressions (1.53), (1.54) and (1.55) into 

equality (1.52), we find the equation of motion of the first system: 

//|[—sin6,4 i.i,(cosA, + cos4,-f slnftj) — 

— <ii,(     slnA,-fco5*j)]cospcosv—[-r (-sinA, fcosAj)-)- 

-f w.sln*,—(ii,(cosA,-|-cosA, ( sin6,)jcoi(lMnY + 

4 |— (cosA, f-cosAj f slnAj) ( m, ( - sinA, f cosAj) — 

— <ii,sinA..  vin(l| ■- .'!,■■ 

(1.56) 
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Lot us take the direction of the y' axis of the inner ring 

for the second system. Taking into account as the direction of 

that 

toMy'. jr)^»lnv. iot(/, y)^ cosy. tm(f, i) = 
(1.57) 

we 'ind the equation of motion of the second system: 

(1.58) 

-ui,( -slnft, f-CDsÄjjMiiy |-[ ^(    SIII.\ -4 cosAj f 

-{-(.^sinA, — u,(c<)sA, j coiij | slnAjjIcns v|--= .llj-. 

For the  third  system   (  the platform ),   the  direction of  u1  is 
the direction of the  z  axis;   therefore,   its  equation of motion  is 
simpler than  the two precoeding ones.   It has  the  form: 

,/ (1.59) 
y/l^-Ccusß, [ tos^H slnft,) 1 u4( - sinA, J-cosA,) — 

— Wy sin A; I ^=3 Mi- 

It remain?, for us to draw up the equation of motion of the 

gyroscone^ 0 ,G  and G . The directions of ü1 for them will be the 
i  ?       3 

directions of the axes of the housings. Since disposition of the 

gyroscopes with respect to the platform is taken the same as in an 

angular r^.to meter with three degrees of freedom, then the equations 

of systems 4, 5 and 6 will coincide with equations (1.37), if we set: 

(1.60) 

Dy combining equations (1.37), (1.56), (1.58) and (1.59) we 

find a.  complete system of six first-order differential equations 
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which describe the motion of the gyrostabilized platform: 

H, {{9 «InA, f w, (co««, + cnjÄ,-f sIpAj) — 

— u,(-«ln«,-f-cosftj) cospcujy — 

— »^((oiA, -f cosA,+ slnAj) cosHslny,-); 

-f; ^-(CO««,-f;lU!A, f slnAjH U,(-5ll A, + cojAj)r 

-«».InAj^slp/j }.= /»;.. 

// [^ »In A,-f; M,(c<» -■■'«Aj-f jlnA,) — 

-«.(—»In«, + COJA,) slpv + ~ (-«InA, f cosAjj-f 

-f «i, «InA,—(.^(CUJA,-(-cosA,-f slnA,) cosy =/V»'- 

tf  4-(co«A,+ co«A, + sltiAj) f 

-f it, {- tin«, + cos«,) - u, sin A,] ■ M]. 

//r(ü>fcoiA,-f (0.11««,)=.^;, 

// (w, «In A, — W, COS AJ =. AjJ, 

// (w, sin A, — u( cos A,)» Af\. 

I 
(1.61) 

i 

Let us consider the righc sides of equations (1.61). 

The moments M*, M2 and M' -hich act along the axes x  y     z 
of  the qimbals of the platfor.i, can be represented in the follow- 
nn form! ing form: 

M)-M].) ML, 
(1.62) 
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where M1   ,,  M2   ,   and M3     are  the moments created by the relief en- 
qines En   ,   En     and En    and which are dependent on  the  angles  6   ,   <5 

12 3 12 
and  ä    of the  rotation of  the gyroscope housings  relative to the 
platform,   and MJ„i»  M2   i   and MJ     are  the destabilizing moments.     The 
destabilising moments are   formed by the  friction   forces  in  the  supports 
of  the platform suspension axes and by attractive   forces   (within 
accurate balancing).     The  moments caused by errors of  forming  the  un- 
loading moments are also  related to  this. 

The moments M"*,  M5  and M8,  which  act along   the axes of the 
gyroscope housings,  may bo  represented  in  the  form: 

(1.63) 

A\\ =» .tl,', \ M'u. 

M] r» Mu    (- .1/;,. 

-"'. - Ml, -t 4i 

Here B j H5 and M8  are the controlling moments which orient the 
ix iy    ix J 

platform in thu given manner.  Moments M1" , M5  and M$ occur be- r * 2X'  jy      zx 
cause of friction in the supports of the axes of the gyroscope 

housinys, unbalancing of the housings  relative   to their axes 

and because of errors of forming the controlling moments.  The per- 

turbiiuj moments M1* , M5 and M6  are the main cause of errors in 
2X'   2y        2X 

orientation of the gyrostabilized platform. 

We note that equations (1.61) are sufficient to deacribe the 

motion of the system (within the limits of precession theory) only 

on the assumption that the friction forces in the supports of the 

axes are not: dependent on the magnitudes of the normal reactions. 

In the opposite case, it is of course necessary to retain all 18 

equations of (1.51).  Lot us note those, where the loft sides of 
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equations   (1.61)   are dependent only on a,  but are not dependent 
on  a.     Angle a is     thus  a cyclic coordinate. 

Together with relations (1.62) and (1.63), equations (1.61) 
describe the motion of both a free and controlled gyrostabilized 
platform.     In the case of a   free gyrostabilized platform 

««      «i*     ■•"     « (1.64) 

/ ■ 

In  the case of a controlled gyrostabilized platform,   these 
moments  are distinct from zero. 

Let us  first consider the  case of a free gyrostabilized platform. 
In  this  case  the  last three equations of   (1.61)   yield: 

(1.65) 

«,cu.*l + Utl|„41«o.    <üjSlnÄ,-^cos4,^o, 1 
U, SlllA,— (j, COJÄjtaO. I 

Relations   (1.65)   are a  homogeneous  system of  linear equations 
relative       to      w  ,   u    and w   .     Its determinant A,   according to 
expression   (1.41),   is equal  to: 

(1.66) 

When 
(1.67) 

ftl<f<   IM< |.  IM<| 

the  determinant is distinct  from zero and system   (1.65)   permits 
only a   zero  solution: 

(1.68) 

«, = di, tr? M, m 0. 

This obviously means that the platform retains its fixed orien- 

tation in the inortial coordinate system. 
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If in addition to equality (1.64), we assume that 

M\. =M], ^Ml^o. 
(1.69) 

then, by taking into account 'Jie solution of (1.68), from the first 

three equations of (1.61), we find: 

(1.70) 

«{(^-sln*,)co5pcMsY -(^ (    sin«, + tu«6,)]x 

Xcof>$lnV + [^ (cosft, f cos», fsinAjUlnp}«^ 0. 

«{(s«ln*j)»lnV-f [^(-«Ini.fcojijjcosYJ^O. 

// ~ (cot 4, + cos«, 4- sin *J -- Ü. 

In the case where  the destabilizing moments M 2x, M2y' M23x act 

along the x', y', z axes, values 6., 6», 6.  will vary with time and • 

can, in particular, take those values under which determinant (1.66) 

will become equal to zero. Then the existence condition for of 

solution (1.68) is broken and the orientation of the platform will 

no longer remain invariant. In order for this not to occur, that is, 

in order that angles 6., 6., 6^ will be small and that inequalities 

(1.67) be trivially fulfilled, the engines En,, En, and En- are 

introduced into the circuit of the device. These engines create unloading 

moments M1.,, M2 ,, and M'  , v/hich counteract the affect of the 
ix   iy       jx 

perturbing momenta. The unloading moments can be formulated in the 

following manner: 

(1.71) 

.',(,,    */. tiis(lui',Y - *i«|i"sn'in y, 

Al',— - ft/, sin Y f-*,«, cos v. 

ML -- - tA 

By taking into account inequalities (1.67), we note that the 

unloading of moments, calculated by relations (1.71), provides the 
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exittonce of a  trivial  solution  of the first  three equations of 
(1.61),   if of course  there are no destabilizing moments.     Having 

taken  coefficients k   ,   k    and k     sufficiently  large,   i.e.,   such 
that  the  values on the  right  sides of relations   (1.71)   exceed those 
corresponding  to the destabilized moments at small values of 6   ,  6 

12 
and  6   ,  we can provide  trivial   fulfillment of inequalities   (1.67). 

We  can easily ascertain  that the equilibrium    position      of 
the  circuit 

(1.72) 
A, ■ ft, - Aj  = 0 

is  stable   (within the limits of precession theory). 

At  small values of  5   ,   6     and 6   ,   from relations   (1.61),   (1.68) 
i        t i 

and   (1.71)   we  find; 

(1.73) 

//(Ä,m (1 cos Y I- ^i f<" f'sin Y + ^jsi"p) ~ 

= — ^,6, cos |Uln V      /t/ij cos |Uos \, 

H (A, si n Y -   ft| cos Y) - ''A cos | - */ij sin y, 

It   follows  from the  last equation of   (1.73)   that  at k  >0  the 
3 

value  of  8     approaches   zero  in  time.     Therefore,   the  stability of 
the equilibrium    position       of   (1.72)   is obvioufly determined by 
the properties of the  solutions of the system o;  the  two  first 
equations  of     (1.73)   at  6  =0,   which  in  this case assume   the   form: 

(1.74) 

//tbs(l(ft,cosY ) A|SlnY) = 

= — cos (I (*,A, sin Y -(' */, cos Y), 

//(Ä,sinY   ■ Äi cos y) — *,«, COSY— */,MnY 
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Having multiplied the first equation of (1.74) by cos y and 

the second by cos ß sin y and having added the results obtained, 

we find 

(1.75) 
cos f(HVf */,)---0 

Having multiplied the first equation of (1.74) by sin y  and 

the second by cos 3 cos y,  and having added the results, we find: 

(1.76) 
coipc/M, f »,«,) = 0. 

The  stability at 3 1lir/2,k  >0  and k >0 also  follows  from the 
1 2 

form of equations   (1.75)   and   (1.76), 

The  comment with respect  to disposition   [see   (1.46)]   of the 
gyroscopes on the platform,  made during analysis of operation of the 
absolute  angulai  rate meter,   remains  in force  for the  gyrostabilizer 
circuit. 

It  should be noted that consideration of the stability of the 
gyroGtabilized platform within  the  limits of precession theory is 
usually insufficient.     Final  solution of the problem of  the  sta- 
bility of  the equilibrium position of   (1.68)   and   (1.72)   requires 
consideration of more  complete equations  than   (1.61),   in which  the 
equatorial moments of inertia of the gyroscopes,   the moments of 
inertia  of  the gyroscope housings and the    gimbal     , 
as well  as  the dynamic processes occurring in the  formation circuits 
of  the  unloading moments,   should be  taken into account.     Complete 
investigation of the  stability of precession motion of gyroscopic 
devices is  a special problem which is not considered here.    A 
number of well-known  investigations, to which one  should turn 
if necessary,   is devoted  to the  solution of this  problem. 
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Let us now consider the case of a controlled gyrostabilized 
platform.     In   this case orientation of  the platform docs not  re- 
main   fixed   in   inertial  space,   as  in   the case of a   free gyroatabil- 
ized platform,   but varies  by a given   law.    Moment  sensors Dl',   ,   DMj 
and DM    mounted on axes x   ,   y    and x    of the gyroscope housings 

j 111 
(Figure   1.10),   are used  to  control  rotation of  the platform.     The 
corresponding momenta were  denoted by M        Ms    and M*   . 

ix,  iy     ix 

It follows from the three last equations of (1.61), provided 

that the conditions of (1.67) are fulfilled, that 

(1.77) 
< .       ""*! 

i  /<  ,  ML . .\ 

Expressions (1.77) are obtained in similar fashion to formulas 

(1.43), derived during analysis of operation of a three-component 

absolute angular rate meter.  If 6 , 6 and 6 are small, then, 
12        3 

similar to (1.45), we obtain from expressions (1.77) 

K    ..  «L    Mi (1.78) 
' ■ ir 

-?/-. «.,- r 

Thus,   if moments II    ,   M      and M       are  formed as  the  given  time ix'     iy ix ■ 
functions  and  if the value of H is assumed to be  constant,   then, 
according  to  the equalities  of   (1.78),   the projections  M   ,   w    and 
u)    are also  given  time  functions.     The values of M1*   ,  M5     and Ms 

z J ix'     iy ix 
or any other values which  uniquely determine  these moments,  may be 
usjd as  the   information source     of      the projections of u   ,   u    and r  J x'  y 
w of the absolute angular rate of the platform onto the axis of 
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the coordinate system xyz, bound to it. 

Equalities (1.68) for an uncontrolled gyrostabilized plat- 

form and relations (1.78) for a controlled gyrostabilized platform 

are valid if (1.69) is assumed.  If this assumption is not ful- 

filled, i.e., if perturbing moments M* . M5 and M* act along the 
2X   2y      2* 

axt s of the gyroscope housings, then in both cases instrument errors 

Aw , Au and Au , determined by the following equalities, occur: 
^   y      z 

(1.78a) 

The values of Au , Au and Aw are called "free deflections" x   y   n z 
of  the gyrostabilized platform. 

1.3.6. Free and controlled gyro frames . The gyroscopic platform ^may not 

be the load-bearing element but the friction in its suspension may 

be insignificant,  For example, the platform may be surrounded by 

a spherical shell and suspended in a liquid with a low viscosity 

factor. 

In this case, the angle of rotation sensors of the gyroscope 

housinqs with respect to the platform, the unloading engines and 

circuits of formation of the unloading moments may be eliminated 

from the circuit considered in section 1.3.5. 

The corresponding gyroscopic devices are usually called gyro 

fraiics (in the given case this will be a three-dimensional three- 

gyroscopic gimbal). Like gyrostabilized platforms, gyro frames 

may bo free or controlled, depending on whether the controlling 

moments are applied along the axes of the gyroscope housings or 

whether they are absent. In the first case the platform of the 

gyi ) frames retains its own fixed orientation and in the second 

cas i  it rotates at an angular rate u, whose projections onto  the 
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x,  y and  z axes of the gyroframe      are bound to the controlling 
moments of relations   (1.78).    The perturbing moments along  the 
axes of  the gyroscope housings lead to deflections of the  gyro- 
ftamv    according to the egualities of  (1.78a). 

1.3.7.  Additional  comments.     In concluding consideration of 
gyrrscopic devices of  inertial navigation  systems,   it  is useful  to 
mala   several comments of a general  nature. 

We have considered several methods of constructing gyroscopic 
devices,   by means of which information can be obtained about  the 

orientation  of some  trihedron connected  to  the  gyroscopes  in  an 
inertial  coordinate system.     All  these devices  can be  combined by 
a  single common name of absolute  angular rate meters.     This ex- 
pansion of   the  concept  "absolute  angular rate meter"   is useful be- 
cause  it permits  consideration of almost all gyroscopic devices of 
inertial  navigation systems from a  single viewpoint.     However,   it 
should be  noted immediately that there  is a considerable difference 
between  a  free gyroscope and  free gyrostabilized platform,   on  the 
one hand,   and  a controlled stabilized platform and essentially 
angular  rate meters.     Free gyroscopes and gyrostabilized platforms 
retain  a given  fixed orientation of  the  trihedron bound  to   them. 
Thus,   the orientation of  this  trihedron in an inertial coordinate 
system  is   immediately known. 

A strictly angular rate meter  and a  controlled platform permit 
onlj  measurement of  the value of projections of the absolute  annular 
rate   of a  mobile  trihedron  to its axis.     The orientation of  the 
mobile  trihedron  ir   the  inertial coordinate system can be determined 
by   those   values.     This   additional  problem  requires  solution   of  a 
syr.tom of differential  equations,   which,   as we  shall see below,   re- 

12 duces to the well-known Poisson equations. 
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One of  the consequences of the  noted difference is  the circum- 
stance that  the inconstancy of the quantities of the natural kinetic 
moments of  the gyroscopes in the circuit of the controlled gyro- 
stabilized platform   (or of the absolute angular rate meter)   leads, 
as was already noted,   to orientation errors   (or to errors  in deter- 
mining the projections of the absolute angular velocity),   and in 
the caae of  a  free gyroscope and  free  gyrostabilized platform the 
inconstancy of  the kinetic moments of the gyroscopes do not  induce 
any of  the  indicated errors. 

This is obvious from relations   (1.65),   (1.68)  and  (1.75)-(1.78). 
Relations   (1.65)  were obtained from the  three last equations of 
(1.61)  under the condition   (1.64)  and are not dependent on  the value 
of H.    The existence of solutions of   (1.68)  is also not dependent 
on H.    The stability of this solution is retained according  to   (1.75) 
and   (1.76)   at any values of I distinct from zero.    The valuj of H is 
essential   in  relations   (1.77)   and   (1.78).     When calculating u)  ,  to 
and u    from  the known values of M1*   ,  Ms     and Ms     [according  to 

z jx        iy ix 
formulas   (1.77)   and   (1.78)],   the difference of the  real value of H 
from the calculated value by the quantity AH leads  to errors: 

A *"      A A"      A A« AM, --ä w, -jj- ,       Adt- ^*   - Ci»y -ii- ,       Ad», =s    - (it, -j,- . 

In  the  circuits of a   three-component absolute angular  rate meter, 
free gyrostabilized platform and controlled platform considered 
abovo,   the  gyroscopes are  installed so   that their axes of sensi- 
tivity form an orthogonal  set of three.     The  axis of sensitivity 
of a  gyroscope   is here  understood as   the direction perpendicular to 
the piano,   containing the direction of  the natural kinetic moment 
and axis of  the  gyroscope housing,   and  determined by equalities 
(1.46).     The mutual orthogonality of  the directions of the axes 
of sensitivity of  the gyroscopic moments  is of course not compulsory. 
The condition of orthogonality is usually observed in most real 
designs of devices,   because   this condition  leads  to  simpler  relations 
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when calculating the values of the components of the absolute 

angular velocity, controlling and unloading moments etc.. As is 

well known, it is also suitable for a number of design and tech- 

nological concepts.  Construction of circuits in which the direc- 

tions of the axer of sensitivity are not orthogonal is essentially 

possible. It is important only that the three directions of the 

axes of sensitivity not be coplanar. 

The following comments, which it is necessary to make, concern the 

assumption made during derivation of the equations of the pre- 

cession motion of the gyroscopic devices considered. The fact is 

that the angular momentum theorem [expression (1.5)1 is generally 

valid only if the point,  relative    to which the angular momen- 

tum of the system and the external force moments are determined, 

is fixed in the inertial coordinate system.  In all cases when 

equation (1.5) was used, the stipulation was made that the origin 0 

of the trihedron Oxyz is fixed in the coordinate system 0 f;«r1»C*. 

Actually, the platform of the gyroscopic device is mounted on a 

moving object and, therefore, the origin of the coordinate system 

Oxy?. moves in inertial space. However, the derived equations remain 

valid La this case as well.  In order to prove this, let us con- 

sider the coordinate system 0^T|A^A, whoso origin is combined with 

the vertex of trihedron Oxyz, while the directions of the axes 

coincide with the directions of the corresponding axes of the in- 

ertial coordinate system 0 C*')*?;*.  The coordinate system Oi^n^C* 

moves in a forward direction with respect to the system 0 fi^n*^; 

therefore, the left sides of the equations of angular momentum, 

written in these coordinate systems, are coincident. The right sides 

differ by the value of the force moments of inertia of transient 

motion.  Since the motion of the trihedron 0^Ar)*C# is forward, the 

inertial forcen are parallel (there are no Coriolis forces) and they 

are determined by the acceleration of the translational motion of 

trihedron OC*()*C«« i.e., by the acceleration of its origin.  If 
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the gyroscopic elements of the circuits are balanced,   the forces 
of inertia of translational motion,  like the attractive forces,  do 
not create  additional moments,  hence  follows  the validity of the 
equations of motion derived for a fixed point 0,  and also 
for a moving point.    When considering unbalanced systems,  the mo- 
ments of inertial   forces should be  taken  into account along with 
the    moments of attractive forces.     In particular,  the inertial 
forces will create perturbing moments if balancing is incomplete. 
The given argument,   strictly speaking,  is exhaustive only if the 
origin 0 of the moving  trihedron coincides with the center of mass 
(and  simultaneously with the center of suspension)  of the gyro- 
scopes.    If several gyroscopes are placed on  the platform,  this 
condition is not  fulfilled and moments of centrifugal and Coriolis 
forces, which occur as the result of rotation of the coordinate 
system Oxyz   (of the platform)  with respect to the system o^n^C*, 
act on the gyroscopes.     However,  these moments are negligiole in 
view of the  limitation of the values of u  ,   u    and u    and the small 

x  y     z 
dimensions of the platform, as a result of which these 

additional moments are usually disregarded. i 

Finally, it is also useful to note the following.  In con- 

sidering gyroscopic devices of inertial navigational systems, we 

assumed that the gyroscopes are mounted in an ordinary mechanical 

gimbal suspension.  In modern gyroscopic devices, other principles 

of suspensions - floating, gas-dynamic, magnetohydrodynaraic, mag- 

netic, electrostatic etc. - are coming into use more and more. 

However, tne main relations which determine the operation of 

gyroscopic devices and those obtained above under the example of 

a mechanical gimbal suspension, retain their validity for any other 

type of suspension as well.  Therefore (as in newtonometer circuits) , 

there is no need to go into the details of the operating principle 

of this or that type of suspension.  We will also not find this 

necessary during further consideration. 
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1.4. The Fundamental Equation of Inertial Navigation. General 

Principles of Constructiny Inertial Systems. 

1.4.1. Conversion of the fundamental equation of inertial navigation 

anc integration of it with respect to fixed orientation axes. The 

fundamental equation of inertial navigation is equation (1.1) of 

motion of the sensitive mass of a three-dimensional newtonometer 

or relation (1.3), which relates the reading of the newtonometer 

as a measuring device to the acceleration of motion d2r /dt2 of 

its sensitive mass and to the total attractive force of the unit 

sensitive mass by the aggregate of celestial bodies: 

(1.79) 

The essence of the inertial navigation method consists, as 

already noted, in integration of equation (1.79), which differs 

from equation (1.1) only in its notations. 

Equation (1.79) can bo integrated, for example, in the follow- 

inq manner.  Let throe one-component newtonometers be mounted on 

a gyrostabilizod platform, considered in the preceding section, 

such that the directions of their axes of sensitivity form an 

orthogonal trihedron  whoso axes are directed parallel to the axes 

of the inertial coordinate system 0 C»n#C#«  Let us assume that 

the system of three one-component newtonometers is equivalent to 

a single three-dimensional newtonometer.  The readings of the newton- 

ometers will then be projections of the vector n onto the directions of 

thoir axes of sensitivity: n. , n  and n, .  Let us denote the 

projections of vector r  onto the axes of the inertial coordinate 
' 0 2 

system by r,^, r^ and j^,  in inertial space these projections are 

obviously Cartesian coordinates of point 0 of the location of the 
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sensitive masses of the newtonometers. 

we have 

rf'i 

13 From relation  (1.79), 

(1.80) 

(1.81) 

By  integrating equality   (1.80)   twice,   we  find: 

'' ' I 
Integration of equations   (1.80)   requires   that  the correspon- 

ding    computer and also  the clocks,   from which  the  absolute   (world 
or  Newtonian)   time  signals enter the computer,   are  contained in 
the  apparatus of  the  inortial navigation system.   It  is ob- 
vious    that the   farm of  functions Fr   ,  F       and F,   should be known  and 
that tho initial  values of coordinates  ^(0),   ri*(0)   and ?*(0)   and 
their  time derivatives  be  dr>4(0)/dt,   drilt(0)/dt and  df;t(0)/dt should 
also be known. 

The Cartesian  coordinates  E#|   n^  and C*  of the  point at which 
arc   located  the   sensitive     masses of  the newtonometers are obtained 
as  ■  result of double  intogration.v    The position of  this point on 
tho  object on which  the  inertial  system is mounted     is generally 
arbitrary.     In particular,   it may not coincide with  the center of 
masn  of  the moving object.     It  is not essential  to  determine  the 
coordinates of  the object,   because  tho resulting error obviously 
does  not exceed  the  linear dimensions of  the  object.     However, 
determination of   the  velocity and acceleration of the object along 
with   tho  coordinates may also be contained  in  the  task of  the  inertial 



system.     The  velocity and  acceleration of the  center of mass of 
the object may differ considerably from those of the sensitive 
mass of  the newtonometer     if the  latter is not located in the 
center of mass of  the object.     The resulting problems will be dis- 
cussed  i,n the  following section  of this  section. 

Relations   (1.80)   and   (1.81)   and  the concepts expressed in 
regard  to them fully determine  the essence of  the operating prin- 
ciple of inertial navigation systems.     However,   they do not yet 
provide a practical  method of realizing this   type of system.     In 
fact,   the inertial   coordinate system O C*n*C#»   to which are re- 
lated all the arguments,   have not yet been determined in practice. 
The  form of  functions Fr   ,   F_    and F       is also  still  unknown.     The 
fundamental  relations of  inertial navigation   in  the coordinate 
system    specifically bound   to those celestial  bodies   (or body) 
in whose  neighborhood and    relative to which  the navigation 
problem should be  solved,   must first be obtained for practical 
realization of the  considered principle.     A system whose origin  is 
combined with the center of mass  of some celestial body may be 
taken as  this coordinate system.     Henceforth,   wc  shall consider 
this celestial body  to be  the earth. 

Let us introduce  a  right-hand orthogonal  coordinate  system 
0  *;*rU';,k,   the origin O    of which coincides       with the earth's 
center of mass.     Let  the orientation of  trihedron 0  £*n*f;* be un- 
changed  in the  inertial coordinate  system.     Without  loss of    gen- 
erality,   we can obviously assume  that the directions of the co- 
ordinate  axes 0  C*n*^* and O  C^n»';* coincide       and retain their 
fixed position    relative          to the directions   from the earth's 

X .   '      center of mass 0    to moving   stars. 
1 I 

Let us denote  radius vector of point 0 of  the location of 
the  sensitive mass  of   the newtonometer    relative to  the  earth's 
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center of mass 0    by r  and the  radius vector of point 0    rel- 
'i i 

^tive       to  the origin 0    of the  inertial  coordinate  system by 
r (Figure  1.14).     It   is obvious  that 

01 
(1.82) 

Fig. 1.14 

By substituting equality (1.82) into relation (1.79), we finds 

^r,,   ,   ,i'r 
PiTm) (1.83) 

Force  F(r    ),  which  acts on  the   sensitive mass of the newton- 
omuter,   is   the  total  attractive   force  of  this mass by  the earth and 
by  the  remaining celestial bodies.     According  to  the  law of Newton's 
gravitational   force,   the   value  of  the  attractive   force  by  the  earth 
of the unit sensitive mass of  the newtonomoter  is dependent only on 
r.     Let  us  denote   this   force  by  g(r).     Lot  us  denote   the  attractive 
force  of  the  unit   sensitive mass  of   the nowtonometer  by  the   remaining 

celestial   bodies   by  F   (r).     Expression   (1.83)   may  then be   rewritten 
in   the   form 

(1.84) 

SP   I Ir-rO-ZV,-). 
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It is easy to see  that 

(1.85) 

til' 

In fact,  f  (0)   is  the attractive force of the unit mass placed 
> 14 

at point 0      by the celestial bodies,  with the exception of the earth. 
Therefore, equation   (1.85)  is nothing more  than  the equation of 

motion of the earth's center of mass within the gravitational  field 
of the  remaining celestial bodies. 

Taking into account equation   (1.85),  equality   (1.84)   assumes 
the  form: 

(1.86) 
*mWmm 'ir) * 'i(0* -1 ">• 

If the motion of the object  (and consequently,  of point 0) 
occurs  at a  small distance  from the earth's center, commensurate, 
for Gxample,   to  its radius,   then the  difference 

(1.87) 

of  the  attractive forces at points 0   and O    become negligible 
compared to  the  force  g(r)   even  for nearby celestial bodies,   in- 
cluding  that  for the moon and  sun.' 

Thus,   deflection  of  the  vertical,   induced hy  the difference 
of  the  sun's attractive   forces  at the center of  the earth and at 
some  point on  its surface,   does not exceed a value of O.OOe". 
Accordingly,   this deviation does not exceed a value of 0.017"   for the 
moon.     At the  same time, deflection of the  vertical,   induced by the non- 
uniformity    of  the earth's distribution of mass,   has,  as was noted 
in   5   2.1 an order of several angular  seconds..     Therefore,  we may 
assume with a  sufficient degree  of accuracy  that 

(1.88) 
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The coordinate system 0 C^H^C* moves in a forward direction 

to the inertial coordinate system 0 4*n*C*; therefore. relative 
we  can obviously assume  that  differentiation   in equation   (1.88)   is 
carried out in  the  coordinate  system 0 ?#r|*C*. 

This equation   (1.88)   is  valid in the coordinate  system 0  C^n^C» 
and has     the  same  form as equation   (1.79),  obtained  for the  inertial 
coordinate system.     Consequently, with respect to Newton's laws,   the 
coordinate system 0  C^n*';*  near its  origin is practically indis- 
timjuishable   from the  inertial  system.    At the origin  itself they 
are completely indistinguishable.    The principle of the equivalence 
of  the  general   theory of relativity,   which,as  is well known,   is of 
a   local  nature,  is essentially included in  this. The coor- 
dinate     system 0 C^n*?»  is distinguished near its origin from the 
inertial  system only  to  the  extent to which  the  gravitational  field 
in which  the earth moves is  inhomogeneous.     The difference   (1.87) 
also characterizes  this  inhomogeneity. 

From equation   (1.88),   similar to equations   (1.81),  we  find: 
tl,B9} 

U -= J" / («,. f *)"' <*' + &JP ' + I. (")■ 
i    f 

n. = f f («„. + f J« « 4 %fi i + n.(0). 

If wo assume that the earth's gravitational field is central (or 

rather spherical), we have 

(1.90) 

wlicre   ,:   is   the  product of  the  earth's mass by  the gravitational 
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constant. The equations (1.89) assume the form: 

(1.91) 

If the sphericity of the earth's gravitational field is taken 

into account, then the projections of gf , g  and g  in equations 

(1.89) may also be assumed unknown functions of coordinates C»» n# 

and c^ and time functions.  In fact, if the earth's body axis sys- 

tem 0 r, n Ci (rotating together with it), is introduced, then the 

projections of g , g and g of vector g to the axes of this system 

will be known functions of coordinates C» n and 5 of point 0.  The 

time motion of the coordinate systems 0 C»fl#^* and o ClC rel- 

ative to each other is known.  It is defined by the law of the 

earth's rotation with respect to its center.  Therefore, the pro- 

jections of g , g and g may be calculated as functions of coor- 

dinates ^j n* and J;# and as time functions. 

The problem of determining the coordinates of the object 

during its motion near thn earth's surface is essentially solved 

by equations (1.89) or (1,91).  In fact, since the earth's motion 

in the coordinate system 0 ^*n»^* is known, we can transform from 

Cartesian coordinates C*» n* and r,^  by appropriate calculation to 

any other coordinates, including the earth's body axis system.  The 

orientation parameters of the object in any coordinate system may 

also be found by using the required calculations.  In order to 

ascertain this, it is sufficient to recall that the angles of ro- 

tation of the gimbal rings of the gyrostabilized plat- 

form, which can be measured, determine the orientation of the ob- 

ject with respect to the coordinate system 0 4*1*^*/ because 

61 



in the considered case the orientation of the gyrostabilized platform 

relative    to the coordinate system o ?*n*'',* is fixed.  By knowing 

the orientation of the object in the coordinate system o C*n*^*» we 

can convert to the parameters which characterize its orientation 

in any other coordinate system, whose motion relative to the ays- 

tern o C*n«5# is defined, of course including that in thä  earth's 

body axis system. A similar case holds for the rates of variation 

of the orientation parameters. 

Let us consider in more detail the problem as to what extent» 

disregarding the inhomogeneity of the gravitational field, i.e., 

the  difference of the attractive forces determined by equality 

(1.87), is essential.  In other words, is this disregard essen- 

tially required or can we get along without it. 

We can show that the latter case is valid, i.e., that diff- 

erence (1.87) may be taken into account, and that the exact equality 

(1.86) rather than the simplified relation (1.88) may be taken as 

the equation of inertial navigation. 

Let there be k celestial bodies whose gravitational difference 

at point o  and at point 0 of the position of the sensitive mass 

of the newtonometor should be taken into account.  Let us denote 

the radius vector of the center of mass of the i-th of the ce- 

lestial bodies relative  to point O by r. .  The radius vector r". of 
i ^  i i 

the point o rolntivp to the center of mass of the i-th body is 

then equal to: 

(1.92) 
rj ™ r - f,. 

Let us assume that the masses of the celestial bodies taken 

into account and their motion in the coordinate system 0 4*n*C* 

arc known, so that 

r,-»-,(() 
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If we assume that the gravitational  field of each of the 
celestial bodies is spherical,   then on the basis of Newton's law 
of  universal gravitation, we can write: 

(1.93) 

^-^-S^-Ffft). 

The right sides of the projections of the vector equality 

(1.93) onto the axes of the coordinate system 0 5*0*5* depend 

only on C*i(t), ri*i(t) and ?*i(t) and on C*, n* and c*.  Introduc- 

tion of them into the integrands (1.89) or (1.91), although it 

complicates these expressions,   essentially does not change the 

methods of solving equations (1.89), (1.91) and, consequently, 

equation (1.86). 

Essentially, nothing changes if we reject the assumption of 

the sphericity of the gravitational fields of the celestial bodies 

taken into account.  In this case it would be nec^sary to intro- 

duce k additional  coordinates systems, rigid y linking them to 

the considered celestial bodies.  We may ast/me that the gravita- 

tional fields in the body axis systems arc def'.ied, while the mo- 

tions (rotations) of the latter  relative   to the coordinate 

system 0 C*n*C* are known in time. Projections of t'.e difference 

(1.87) to axes 5*, n* and ?;* will then be dependent on the time 

and parameters which characterize the disposition of the considered 

celestial body axis systems with respect to trihedron O f;*n*r.* at 

the initial instant of time. Taking into account the non-sphericity 

of the gravitational fields of each of the k bodies is therefore quite 

similar to taking into account non-sphericity of the earth's gravi- 

tational field. 

It follows from the foregoing that a knowledge of the required 

parameters of the gravitational fields in the coordinate function 
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is a necessary condition for realization of the principle of 

inertial navigation.  It is true that we shall subsequently see 

that the schemes which operate under specific conditions and with 

incomplete information about the gravitational field can be con- 

structed for solution of some special problems of navigation. 

1.4.2. Determining the velocity and acceleration of the center 

of mass of an object. The radius vector of point 0 of the position 

of its sensitive mass in the coordinate system o ?*n*';* is denoted 

by r in equation (1.88), which determines the readings of a three- 

dimensional newtonometer. 

If we assume that point n always coincides with the center 

of mass of the objoct, then equation (1.88) will determine the 

acceleration of the object, and as the result of integration of 

this equation, the velocity and coordinates of the location of 

the center of mass of the object will be obtained. 

Actually, the position of the sensitive mass of the newton- 

omotor does not coincide with the center of mass of the object. 

This is explained by the followin- factors.  First, even if the 

center of mass of the object occupies a fixed position in its body 

and if the center of suspension of the sensitive mass of the new- 

tonometer (the position in which the suspension is not deformed) 

coincides   with the center of mass of the object, the sensitive 

mass completes some motion  relative   to the center of the sus- 

pension as the result of deformation.  The velocities and accel- 

erations of this motion may be significant. 

Second, the center of mass of an object usually does not 

occupy a fixed position within the body of the object.  Its posi- 

tion varies because of motion of the mass on the object, combus- 

tion of fuel etc..  Therefore, even if the center of suspension of 
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the sensitive mass of the newtonomcter and the center of mass of 

the object initially coincided, they would subsequently diverge. 

Furthermore, a newtonometer can be established at some dis- 

tance from the center of mass at the very beginning.  Finally, 

additional variation of their mutual disposition is possible be- 

cause of deformations (or elastic oscillations) of the object. 

Because of the non-coincidence of the center of mass of the 

object and of the sensitive mass of the newtonometer, the accel- 

eration, velocity and coordinates of the center of mass of the 

object, strictly speakiny, may not be obtained directly from 

equation (1.88).  Moreover, equation (1.88) is the equation of a 

three-dimensional (three-component) newtonometer, whereas three 

one-component newtonometers with three sensitive masses are ac- 

tually used. 

Let us consider the posed problems in more detail. This is 

even more necessary since exposition of the operating principle 

of the newtonometer and interpretation of the objective content 

of its readings are not always accurate ani rigorous in the litera- 

ture on inertia 1 navigation. 

Let us link trihedron O'xyz to the housing of a three-dimen- 

sional newtonometer. Its origin will coincide with the center 

of suspension of the sensitive mass, i.e., with the position which 

it occupies when the suspension is not deformed and the readings 

of the newtonometer are equal to zero.  For the diagram presented 

in Figure 1,1, the x, y and z axes may be directed along the axes 

of the springs. 
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The position of point o*  relative   to the earth's center 

0 is determined by the radius vector r', and the position of 

point 0 relative   to 0' is determined by radius vector p. Vector p 

characterizes the motion of the sensitive mass relative   to the 

housing of the device and, consequently, the deformation of the 

suspension.  Obviously, 

(1.94) 
r = r' + p. 

Let us find the equation for p. It follows from that out- 

lined in S 1.2 and section 1.4.1 that the equation of motion of 

the sensitive mass of the newtonometer in the coordinate system 

0 C»n*C* may be represented in the form 

(1.95) 

where f is the total force acting on the sensitive mass on the 

side of the suspension.  By substituting the value of 1: from (1.94) 

and noting that the inhomogeneity of the gravitational field in the 

mass of the device may be disregarded, we find 

(1.96) 

If the force I is only the result of elastic deformation of the 

suspension, then f=kp and equation (1.96) is represented in the 

following form; 

(1.97) 
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Differentiation is carried out in the coordinate system o C*n*';*. 

By integrating in this same coordinate system, we find the expression 

for ~h'' 

(1.98) 

+ pl'coiv/ (ri-^'slnv/. 

where  p0  and dp  /dt  are  the corresponding  initial values. 

In order to maintain the analogy with relation   (1.88),   let us 
take  as  the  readings  of  the  three-dimensional  newtonometer the 
vector 

(1.99) 
»=.—v'p. 

It follows  from relations   (1.98)   and   (1.99)   that the instan- 
taneous  values of  the  velocity and acceleration of the point of 
the object  in which  the center of suspension of the newtonometer 
is  "ocatod,  may not be  found from the readings of the newtonometer. 
However,   there  is   the  following possibility here.     Let  the natural 
oscillation  frequency  v of the  sensitive mass be  taken so  large that 
the    variation of  function 

(1.100) 

over a period of T=2TT/V oscillations may be disregarded.  This meanr 

that the range of essential frequencies of the function q are consid- 

e .ibly below the frequency of v.  Solution of the problem then 

p ovides calculation of the average value of n of vector n within 

t)c period of natural oscillations. 
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According to equalities (1.98), (1.99) and (1.100) we have: 

(1.101) 

i--v«. S 

t*     f 

The  range of  integration  in variables   t*,   T  is depicted in 
Figure  1.15.    By changing the order of integration in equation 
(1.101),   we   find: 

+ f    rftj    »(tjsinvt/'-T).«*   . 

(1.102) 

Fig.   1.15 

The first integral in the square brackets is obviously equal 

to zero.  From the second integral, we find 

(1.103) 

I..JL   f   ,(,)|l-a»v(/-t)| rfT. 

Since  the  square bracket in the  integrand   (1.103)   does not 
change sign,   then,   according to  the well-known mean value  theorem, 
we will have 

'.? (1.104) 
"^■S"''/ I'-">«*■(/-t))rft. 
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Honce, 

i-qih  r-w+2se.  0<0<l. (1.105) 

Thus,  we  found  that  the mean value n of vector n during  the 
period of natural  oscillations of  the  sensitive mass  is equal  to 

-    .<•,• , (1.106) 

where the right side corresponds to some instant within the averag- 

ing interval.  Expression (1.106) coincides with equality (1.88) 

with the only difference that the right side of expression (1.106) 

does not depend on the radius vector r of the current position of the 

sensitive mass of the newtonometer, but depends on the radius 

vector r' of the current position of the center of its suspension. 

Conscjquontly, one can dcterminu the value of the velocity and 

acceleration of the point of the object corresponding to the center 

of suspension of the newtonometer with a lag not exceeding T=2TT/V 

from the newtonometer readings.  This lag is insignificant at large 

values of v. 

In practice the n wtonometer readings arc averaged due to 

damping of the natural oscillations of the sensitive mass, which 

is introduced to provide stability of the newtonometer operation. 

Damping is accomplished by forces proportional to the rate of dis- 

placement of the sensitive mass with respect to the newtonometer 

ho'.sing.  If the newtonometer is mounted on a gyrostabilized plat- 

fo'm, then obviously the damping forces will be proportional to the 

ab olute derivative dp/dt.  Then in equation (1.96), one should 

sei 

(1.107) 
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and,   instead of equation   (1.97),   we  find 
(1.108) 

By integrating equation (1.108) in the coordinate system 
0 f'*^iir'*t  we find the forced solution in the following form (the 
solution of the homogeneous equation vanishes rapidly and it can be 

discarded immediately): 

(1.109) 
i 

' u 

The rigidity of  the  suspension k and the  damping coefficient 
k    are sclented so that  the  values of v,  h,   (v2-h2)     are consid- 
erably greater than  the  maximum value of the  frequencies  taken into 
account  in  the  range  of  vector function d2r,/dt2-g (r*).     This 
function may   then be  assumed constant  in  the  subintegral expression 
of  the  right side of solution   (1.109).     In  this  case,   after inte- 
gration,  we   find  the  established value 

(1.110) 

i.e.,   wc again  arrive  at  relation   (1.106). 

Thus,  we  can   find  the  velocity and acceleration of the  sensitive 
mass of  the  center of  suspension,   i.e.,   the  velocity and accelera- 
tion of  the  corresponding point of  the object,   from the readings of 
a   three-dimensional nowtonometer. 
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Let us return to the problem of calculating the velocity and 

acceleration of the center of mass of an object.  Lot us denote the 

radius of the center of mass C of the object with respect to the 

center of mass 0 of the earth by r and the radius vector of the 

cent(>r of mass C of the object with respect to the center 0' of 

the icwtonometer suspension by p„„  Obviously, 

(1.111) 
rc^r' \ (ic. 

If vectors dr'/dt and d2r,/dt2 are taken instead of drc/dt and 

dJrc/dt
2, the resulting errors of calculating the velocity and 

acceleration are vectors dp^/dt and d'p^/dt2. 

If the object is assumed to be a rigid body, then the vectors 

dp-Zdt and d'p /dt2 can be calculated as soon as the position of 

the center of mass C and the body of the object is known.  In fact, 

the projections of vector pc onto the axes of the platform can then 

be found by the angles of rotation of the gyiostabilized platform 

in | gimbil suspension, whose values can be measured, and the pro- 

jection of vectors dpc/dt and d
2p /dt2 can be found by differen- 

tiating these projections. 

It is more difficult to calculate the elastic oscillations of 

the object, because this requires knowledge of the time of its de- 

formation at each instant. 

It follows from the foregoing that if the problem of the in- 

ert il system is calculation of only the coordinates of the object, 

thoi it makes no difference where the newtonometers are located on 

the? )bject. 

But if it is necessary to calculate rather accurately the velocity 

of in object (for example, during control of a ballistic missile 

on the active leg of its flight), and even more so acceleration, 

the newtonometers should bo located near the center of mass of the 
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object.     In any case one  should keep  in mind that disposition of 
them  far from the center of mass may load to considerable errors 
in  calculating the  velocity and acceleration of  the center of mass 
of  the object,mainly because  of its elastic deformations. 

Let us  turn  to the problem of the correctness of replacing 

three  linear newtonometers with a single  three-dimensional device. 
To  do  this,   let us  find  the  precise equation of operation of the 
linear newtonometer. 

Let trihedron O'xyz again be rigidly bound to  the newtono- 
meter housing.     Let its x axis be the axis of sensitivity of the 
newtonometer,   i.e.,   the  axis along which  the sensitive mass may 
move  and along which  the elastic  force of  the  suspension  is applied 
to  it.     Let point 0'   correspond to  the position  of  the  sensitive 
mass  in which  its  suspension  is not deformed.     For generality,   let 
us  assume that the newtonometer housing,   i.e.,   trihedron O'xyz, 
rotates at an absolute angular velocity w.     Let us  compile  the 
equation of motion of  the  sensitive mass of the newtonometer along 
the x  axis. 

Lut us use equation   (1.95).     Instead of r,   let us substitute 
in   it   fch<  value 

(1.112) 
/•=-r' + P.   p=p.jr. 

and,   instead of  f,   the value 

(1.113) 
/= -(*(.,+MO* 

[the  unit vector of the O'x  axis  in  relations   (1.112)   and   (1.113) 

is   denoted by x] .     Wc   find 

(1.114) 

^'r ((.,*) | 2*p^ f v'p.jr ■ - [ ^1 - g {f')j. 
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Projection  to the O'x axis yields: 

(1.115) 

I• ,,-r((VT) + 2*p, + »V, - - jr • [^.l_f (r0J. 

Let us find the value  of  the first term in  the  left side of 

equality   (1.115).     Obviously, 

(1.116) 

* ■ ■£( (PrD^i1, + IP.* - % + P.* ■ TIT- 

Since  vector x is  the unit vector, 

*'* rfjr    rfx 

(1.117) 

But 

^ w X jr. (1.118) 

therefore, 

rf'je 
r = - (M V jr) ■ (w v jr) 

(1.119) 

According to the well-known Lagranqe  identity, the right 

side of equality of (1.119) is expanded  in the following mannen 

(1.120) 
(M K X)    (W   < JT) = uy — </, — <.>J + l'>',. 

whore  » #   w    and w    are  the  projections of the absolute angular 

vf.locity of  trihedron O'xyz on   its axes. 
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Taking into account equalities (1.116), (1.119) and (1.120), 

equation (1.115) assumes the form: 

'  xst      -i (1-121) 

P. +1^. + (v,-«',-<»!)(>, - -*• t*" - *"■ 'J • 

When 
(1.122) 

the  established value of deformation of the  suspension  spring is 
(1.123) 

Having  taken as  the nowtonometer readings  the  value 
(1.124) 

we  arrive  at  the  relation  similar  to  relation   (1.4),   by which we 
earlier determined  the  readings  of a  linear newtonometer.     We can 
find  the  same  relation by considering the equation of motion of 
the  sensitive mass of a one-component pendulum newtonometer. 

Now let three one-component newtonometers n   ,   n    and n    be 
x   y      z ■ 

mounted (Figure 1.16) on a gyrostabilized platform or on the plat- 

form of a gyroscopic absolute angular rate meter.  Let the axes 

of newtonometer sensitivity coincide with the axes of the trihedron Oxyz 

associated with the platform, and let the centers of the suspensions 

of their sensitive masses be separated from the vertex of the in- 

dicated trihedron by distance I   ,  %     and | .  Then the readings 
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of newtonometer n will be calculated according to relation (1.121) 

by the equality 

«x-f-vfr-rc-i)]-*. 
(1.125) 

whei-e r is the radius vector of the center of suspension of newton- 

omeUer n  relative   to the center of the earth ff . 
x \ 

T#-^ 
Pig. 1.16 

If the radius vector of point 0 relative 

center of mass is denoted by r, then 

to the earth's 

(1.126) 

By substituting equality (1.124) into relation (1.123) and by 

noting that the difference g(r)-g(r ) at a small value of I is 
1 " 

negligible, we find (at Ä = const) : 

(1.127) 

.-[£>-'">]•*+''-£ 

Similar expressions  are  also obtained  for n    and n   ,   so  that 
the projections of n   ,   n    and n    determine  the  vector r     J x      y z 

(1.128) 

•-M^^M-^-WM* 
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where 

Thus,   three linear newtonometers, mounted near point 0,  are 
equivalent  to a single three-dimensional device mounted at  this 
point,  with an accuracy up to  the error determined by the vector An. 

If orientation of the x,   y and  z axes is  fixed   (a gyrosta- 
bilized platform),   then d2x/dt2=d2y/dt2=d2z/dt2=0  and  this means that 
the    vector An is also equal to  zero.    If the newtonometers are 
mounted on  a platform rotating at angular velocity w   (for example, 
on  the platform of an absolute angular rate meter),   then,  accor- 
ding  to  relations   (1.119)   and   (1.120), 

A«.--'.("^^ , ! 
(1.129) 

At small values of I . i     and I  (usually of the order of several 

centimeters) and at limited values of u , u and w , the modulus x' y     z' 
of vector An is negligible.  It should be noted that since I   , I 

and I  are known, while projections w , u and w are measured by 

a gyroscopic meter, then in principle the error of An can be com- 

pletely eliminated. 

In the above consideration, the axes of sensitivity of the 

throe linear newtonometers formed a rigid orthogonal trihedron. 

Obviously, this does not change if this trihedron is not orthogonal 

or if it is not even rigid, but orientation of the axes of sensi- 

tivity of all throe newtonometers is independent.  If the axes of 

sensitivity are non-coplanar, then the newtonometer readings still 

determine the vector 

11.130) 
<t*r 

""-S/Y-gir). 
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where the radius vector of the suitably selected point, near which 

the newtonometers are located, may be taken as it. 

1.4.3. General principles of constructing inertial naviga- 

tional systems.  A typical block diagram. The method of integrating a. 

fundamental equation of inertial navigation, considered above (sec- 

tion 1.4.1), when the directions of the axes of sensitivity of three 

newtonometers form an orthogonal trihedron, invariant  oriented in 

absolute space, as already noted, completely solves the problem of 

calculating the navigation parameters.  This method, is, in any 

case, from the formal viewpoint, the more natural one and a direct 

method of solving the problem.  However, the formal simplicity 

and naturalness of constructing the diagram is not always, as is 

well known, related to the simplicity and even the possibility of 

its technical and engineering realization. 

Therefore, in real designs the directions of the axes of 

sensitivity of newtonometers may vary their orientation in inertial 

space during operation of the inertial system, where variation of 

the orientation of the newtonometers is usually a function of the 

coordinates determined by the inertial system itself.  The orienta- 

tion of newtonometers may be varied with respect to the inertial 

coordinate system, for example, by linking them rigidly to the con- 

trolled gyrostabilized platform, considered in the preceding sec- 

tion, and by forming in the required manner the controlling mo- 

ments M1* . M5  and M* .  A free gyrostabilized platform may be ix'  iy     ix ^ t- J 

taken as the base of the diagram and the required orientation of 

the newtonometers  relative   to the platform and, consequent- 

ly, relative to the axes of the inertial coordinate system can be 

provided by using a special kinematic diagram.  Finally, orienta- 

tion of the directions of the axes of sensitivity does not have to 

be a previously known coordinate function.  For example, newton- 

ometers can be linked to the platform of a three-component absolute 

angular rate meter and integration of the fundamental equation in 
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17 the coordinate system bound to the platform     can be accom- 

plished by taking advantage of the fact that rotation of the plat- 

form in inertial space is known from the readings of the angular 

rate meter. 

A number of circumstances must be taken into account in each 
cor rcto case in order to dwell on various schemes for construc- 

tiivf an inertial navigation system. One of the problems which must 

bo solved here is to select the reference  grid in which it is more 

con /enient for     sore     reason than in others to navigat». a 

specific object (or class of objects). The coordinates which de- 

turnine the position of point 0 with respect to trihedron 0 C*n*C* 

may be in the general rase some curvilinear and non-crthogonal 

coordinates »r1, «r2 and *'. They may obviously be transient as well, 

i.e., the coordinate surfaces x ■ const may alte^- its position in 

time with respect to trihedron 0 C^n»?«.  This, for example, will 

occur if coordinates x1, x2 and xi  determine the position of the 
object in the earth body axes system. 

If the readings of three newtonomete/s are denoted by n , n 
12 

and  n   ,   thn  values of n  ,  n    and n    with arbitrary orientation of 
J 12 3 

the axes of sensitivity will be some time functions, functions of 

the throe coordinates of *  and of their first and second time de- 

rivatives: 

,,==/,(«'. K'. *\ y.'. «!. x1. *'. 9». ■>. i) (1.131) 
((^1.2. 3) 

fiqualitios   (1.131)   are nothing more than projections of equa- 
tio     (1.88)   on  the directions of  the  axes of sensitivity of  the 
new   inometcrs.     The essence of the  principle of inertial  naviga- 
tio   ,   as  already noted,   reduces  to   integration of equation   (1.88). 
In    ho conciderod case  this  reduces  to integrating the system of 
thn o differential equations   (1.131),  which   (if the directions of 



the axes of sensitivity of ncwtonometers n ,  n and n are not 
I    2        J 

co-planar) are equivalent to the vector equation (1.88).  In order 

to inteyrate equations (1.131), we could, for example,proceed in 

the following manner: reproject equalities (1.131) to axes C*n* 

and T,^,   use equations (1.89) and find the values of *', K
2
 and *' 

from the obtained values of f;^, n* and c*.  This method presumes 

computer operations on the readings of the newtonometers until in- 

tegration of these readings. 

However, it is well known that the signals taken from the 

newtonometers are rather rapidly variable time functions.  Per- 

forming  the computer operations directly on these signals with 

the required accuracy is related to considerable difficulties and 

usually leads to significant errors, adding to the errors of the 

newtonomcturs themselves. Therefore, the solution of equations 

(1.131), in which the first operation completed on the newtono- 

meter readings is the integration operation, is more feasible. 

The condition of integrating the newtonometer readings until the 

jomputor operations on them have been executed is obviously a 

practically required condition which must be satisfied in construc- 

ting the diagr.ra of an inertial navigation system. 

At least two variants are possible.  The highest derivatives 

l*i «J and *3 occur in the functions of f., which are on the 

right sides of equations (1.131), as the result of projection of the 

acceleration d2r/dt2 on the directions of the axes of sensitivity 

of the newtonometers.  Because of this, the func- 

tions f. are linear in 'x'1, I" and K
3
, i.e., equalities (1.131) may 

bo represented in the form 

. - (1.132) 
«, —«„K' + ^K' + O,*

1
 ♦ /.'(M1. K'. K\ K'. K

1
. K', /). 

Coefficients a.., as we shall subsequently see, are functions of 
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the  coordinates *',   x'   and*',   time  t  and of the parameters  which 
dotormino orientation oE the directions of  the axes of sensitivity 
of the newtonometers.     The  latter can be either known time  functions 
or time   functions of coordinates;   K

1
,   »■ 2  and  »iJ.     Consequently, 

equalities   (1.132)   can be written  in  the  form 
(1.133) 

* (y. ■• l—T V fait»- --'»- *'\ i* + 

+ /l(>«1. «'. H*. "'• *'• •''•/) 

The first variant of integrating equations (1.131) therefore .in- 

volves the solution of equations (1.133) with respect to the sums 

Za..M    according to the relations 
1K 

J^-Zhilf***^^!** 
(1.134) 

+ 2]«,.('>)H,(U) <I.I3<) 
#-1 

•k     k 
The values of H and x are then found, which are then used 

to form the subintegral expressions (1.134).  This variant places 

no restrictions of any kind on disposition of the axes of sensi- 

tivity of the newtonomoters. Orientation of the axes of sensi- 

tivity with respect to the axes C*n«C* should be only a known time 

function and a function of coordinates x1,*2 and x'. 

The second variant presumes a completely specific dependence 

of the directions of the axes of sensitivity of the newtonomoters 

on the coordinates and time: orientation of the axes of sensitivity 

should be selected such that only a  , a  and a of all values 
11    22        3 3 

of a.. be distinct from zero in equalities (1.132).  Then, instead 
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of  relations   (1,134)   we  find the   following: 
(1.135) 

+ O.,(0)K,((') 
41     i-i 

Of course,  variants which are intermediate between relations 
(1.134)  and   (1.135)  are also possible,  when orientation of one   (or 
two)  of the three newtonometers is subject to deriving equations of 
type   (1.134), while the readings of the  remaining two   (or one)   are 
integrated according to relations   (1.135). 

To provide  the required dependence of the directions of the 
axes of sensitivity of the newtonometers on coordinates   x1,   N

2  and 
M1  and time  t,   it is obviously necessary to form some controlling 
effects that depend  in  the general case on the  coordinates  *  ,   their 
time derivatives and clearly reentrant time.    The number of con- 
trolling effects  may vary from zero, when orientation of the new 
tonometers  relative to axes C»»n*  and  c#  is fixed,   to six,  when  the 
directions of  the axes of sensitivity of all three newtonometers 
vary independently of each other. 

Selection of both  the reference    grid  x1,   x2  and «'  and also 
the directions of  the  axes of sensitivity of the newtonometers,   and, 
consequently,  of  the kinematics of the diagram and of the  form of 
the  controlling effects,  should of course provide  the greatest sim- 
plicity possible  of the   latter. One  naturally strives     in  th.ls 
case  toward simultaneous simplification of functions f.,  and not 
only of their parts which occurred due to projection of the  accelera- 
tion d2r/dt2  on  the directions of the newtonometer axes,  but also 
of  those which are obtained  from projecting vector q.     This 
usually leads  to  the necosrity of specifically orienting the axes 
of sensitivity of   the newtonometers    relative to  the gravita- 
tional  field. 
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Selection of the diagram Is greatly affected by the possibility 
of using one or another means of correcting the operation of the 
Inertlal system,   the  requirements placed on the process of pre- 
paring  the system for operation and on the process of operating  it, 
the    general characteristics of the object for which the system Is 
de; igned,  its velocity,  range etc. 

, Finally,   the given accuracy with which the navigational para- 
motors must be  determined and navigation must be accomplished,  both 
in selecting the structure and operating algorithm of the initial 
system and in selecting its elements, is of decisive Importance. 

Selection of the elements of the diagram and selection of its 
structure and algorithm  (equations of ideal operation)  are of course 
unrelated to each other.    The typical properties of the elements and 
devices  selected for construction of the diagrams usually place 
quite  specific requirements on the structure of  the diagram and on 
its operating algorithm.    And,  on the other hand,  elements with 
quite specific properties are required to realize the given struc- 
ture. 

Of course,   the method of constructing the diagram is primarily 
determined by the  characteristics of the sensing elements and mainly 
by the accuracy and the possible range of measurement.     But the pro- 
perties of the remaining elements and devices —  computers,  altitude 
and moment sensors,  tracking systems etc.   — may also be no less deter- 
mining. 

Thus, .if we  assume rather large and accurate computer facili- 
tit I   (for example,  a digital computer with sufficiently high speed 
am   sufficiently  largo storage capacity in combination with analog- 
to- ilgital converters with the required accuracy),  it is ob- 
viously [.  .ssiblo  to facilitate the task performed by the sensing 
elements,  especially by t.io gyroscopic elements.     In particular, 
in combination with accurate  tracking systems this makes it possible 

82 



to use free  gyroscopes rather than load-bearing gyroscopic com- 

ponents (of the stabilized platform type). 

It should be noted that the properties of elements which can 

be used In the system naturally affect not only the structure of 

the incrtial navigation system, but its structural performance as 

well, as far as arrangement of the system on the object. 

Thus, when using accurate tracking system and high-speed 

computers, the inertial sensing elements (gyroscopes and newtono- 

ometers) can be linked to each other by the tracking systems with- 

out forming a common rigid unit.  In the opposite case, the sen- 

sing elements should obviously comprise a monounit, in which the ar- 

rangement of individual sensing elements is rigidly fixed rela- 

tive  to each othfir. 

The concepts presented above about the common principles of 

constructing the diagrams of inertial navigation systems have a 

common nature and of course do not contain a number of important 

details, whose significance can be discussed only after detailed 

analysis of them.  However, these common concepts permit rather 

good rcpresontation of the typical block diagram of the inertial 

navigation system.  It may be represented as consisting of four 

functional blocks (Figure 1.17): the block of sensing (inertial) 

elements 1, computer block 2, time block 3, and initial data input 

block 4.  Of course (which follows from the foregoing), these 

functional blocks do not have to be common blocks in the design 

sense and in the configuration. 

/ .— 
■> 

__ J « 
- ... 

Fig. 1.17 
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The sensitive element block contains the newtonometers and 

the absolute angular rate meters. The block accomplishes given 

orientation of the axes of sensitivity of the newtonometers and 

of the absolute angular rate meters. Data is fed from the sensing 

elements into the computer block. 

The initial orientation of the sensing elements and input 

into the computer block of the initial conditions required to 

integrate the fundamental equation of inertial navigation are 

accomplished by the initial data input block.  World (absolute) 

time signals are cleared from the time block to the computer. 

The main purpose of the computer block is to integrate the 

fundamental equation of inertial navigation and to calculate the 

required navigational parameters. Therefore, the operational 

program of the computer block should contain double integration. 

If the block provides variation of orientation of the newtonometers 

and of the gyroscopes of the inertial element block, the task of 

the computer includes formation of the corresponding controlling 

affects. Finally, if automatic navigation is assumed, the task of 

forming the  programmed trajectory of motion of the object is also 

placed on the computer block and the number of output parameters 

will contain the instructions which control the steering gear of 

the object to maintain it on the programmed trajectory with the 

required accuracy. 

1.4.4. The main problems of the theory of autonomous inertial 

navigation.  Data on the principles of operation and on the equations 

of operation of inertial sensing elements were outlined in the pre- 

ceding sections and the fundamental equation of inertial navigation 

was also derived. An example was given for constructing the diagram 

of an inertial navigation system with directions of the axes of 

sensitivity of the newtonometers and of the gyroscopic absolute 

angular rate meters, invariantly fixed in inertial space. Some 

common concepts wore also presented on the possible methods of 
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constructing the structural diagrams and operating algorithms 

of intrtial navigation systems, and the more essential circum- 

stances were enumerated which should be taken into account when 

selecting the method of constructing the diagram in various 

specific cases. 

We can now formulate the essence of the problems which occur 

during theoretical analysis of operation of inertial systems. 

Thu first problem which occurred here may be called the 

problem of construction and analysis of the equations of ideal 

operations of an inertial navigation system, i.e., the mathema- 

tical algorithm of its operation with ideal elements and correctly 

given initial conditions.  This problem obviously includes de- 

termination of the form of projections of the fundamental equation 

of inertial navigation onto the directions of the axes of sensitivity 

of the newtonometers with different selection of coordinates x1,«2 

and »t3, which characterize the current position of the object in 

space, and which characterize it as a function of the orientations 

of tl. directions of the axes of sensitivity of the newtonometers. 

The indicated problem also contains a search for (with the given 

reference  grid *', K
2 and *3) of the newtonometer orientation 

which permits rather simple integration of the fundamental equation 

of inertial navigation directly in projections onto the axes of sen- 

sitivity of the newtonometers and which permits rather simple con- 

struction of the algorithm of integration itself.  This also in- 

cludes mathonatical formulation of the problems of forming the 

instructions for controlling variation of orientation of the axes 

of sensitivity of the newtonometers and gyroscopes with considera- 

tion of the kinematics of the gyroscopic devices described in §1.2, 

and also calculation, if possible, of the parameters which charac- 

terize tho orientation of the object. 
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Consideration  of  the equations of ideal operation and of 

inortial navigation  systems  should be preceded by the derivation of 
the required functions which characterize  the earth's gravitational 
field,   its shape and motion. 

The second important problem is derivation and analysis of 
tho equations of perturbed functioning   (motion)   of  the inertial 
nav gation system,   i.e.,  study of its operation with regard to the 
in.s rument errors of  the elements,   inaccuracies of the initial 
ar.:. ngement of the directions of the axes of sensitivity of the 
newtonometers and gyroscopes,  and also with regard to errors of 
.ntieducing the  initial conditions.     It is obvious  that perturbed 
'unctioning of the system is different from that which is attributed 
:o it by the equations of ideal operation,   and the navigational 
»arametors are determined <n  this case inaccurately and with errors. 

The equations which describe    time variation of deviations 
of perturbed motion of the system from unperturbed and  ideal motion, 
are therefore naturally called error equations.     Error equations 
are consequently equations in variations.     The importance of study- 
ing  tho  properties of  these equations is obvious,  because they de- 
termine  the operational  stability of the inertial system and they 
relate  the errors of  the elements and of the  initial conditions to 
the errors of calculating the navigational parameters.    The main 
purpose of analyzing the error equations is to establish a direct 
relationship between  the accuracy of the system and the instrument 
errc .-s of its elements. 

The next problem it  theoretical analysis of  the phenomena 
and   iffects which occur during correction of inertial  systems due 
to  . iditional data sources. 

The  use of outside  information sources  to correct an inertial 
systi'm has as its purpose  an  increase in   the  accuracy of calculation 
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by  the  system of navigational parameters,   i.e.,   reduction of  the 
magnitude of errors.     Accurate data on the coordinates of the ob- 
ject at some known time instants or on the rate of variation of the 

coordinates or,   finally,   the  possibility of "tying in"  to some 
direction whose orientation       relative      to the  inertial coordinate 

system is known,   for example,   to the direction of some celestial 
body   (astrocorrection),   can  be used as the data  for making the 
correction.     Correction  can  be  accomplished by different methods. 
The simplest method is obviously introduction of corrections  into 
the output parameters of the  inertial navigation  system.    The  second 
method is  to bring the   system at the point of correction to  a state 
similar to that in which  it was located at the moment of beginning 
operation at the starting point, with simultaneous introduction of 
corrections into the output parameters.    The first method generally 
has  no essential  effect on the inertial system.     The second method 
essentially differs in no way from preparation of  the  system for 
beginning of operation.     Both methods affect neither the error 
sourcos or the dynamics of their time variation.     Correction methods 
are possible which alter the  structure of the error equations;  they 
can be used to improve  the stability of the  inertial system,   for 
example,  a system unstable without correction can be made stable. 
Thuso methods make it possible  to avoid error accumulations.  Analysis 
of   thia  type of methods of correction is closely  related to  study 
of  the properties of the error equations of autonomous inertial sys- 
tems. 

Wc  can  further isolate  the  group of problems  related to  sim- 
plification of the equations of  ideal operation.     Simplifications 
arc  possible not only by selecting the reference     grid and special 
orientation of the axes of sensitivity of  the newtonometers and 
gyroscopes       rolative       to  this  reference    grid   -nd gravitational 
field. 
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The extent and nature of  time variation of various 
terms of the equations of ideal operation are determined to a great 
extent by the motion of  the object.     For a given  class of  the pro- 
grammod trajectories of motion of an object,  some  terms of the 
equation of ideal operation may be  small and may be disregarded. 
Other terms may be close  to  their values on  the programmed trajectory, 

and,   therefore,   it may be possible to  form them as  functions of 
their programmed values,   i.e.,   as time functions,   rather than  as 
functions of  the current coordinates of the object.     The equations 
of ideal operation may also be  simplified if the time variation 
of one or another navigational parameters are known  from the out- 
side information sources or from the  specifics of motion of the 
object or if the  functional relations which  link  some of these 
parameters are known. 

Introduction of simplifications  into the algorithm of ideal 
operation of  the system usually  leads   to the occurrence of addi- 
tional errors in calculating the navigational parameters.     Simpli- 
fications are permissable  if the value of the errors caused by them 
arc small compared to other errors,  for example,  to  those which 
occur as  the result of  instrument errors of  the elements.     The 
possibility of simplifying the equations of  ideal operation of the 
system can best be determined only as  the result of analyzing these 
equations  together with  the corresponding error equations. 

The given  list of problems    whose  solu'.ion is required when 
invostigating operation of  inertial navigation systems    is of 
course  not exhaustive.     Only the  main  groups of problems and only 
those in   the most common  form were touched on here.     These prob- 
lems may,  of course,  be more detailed only during their solution. 
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Chapter 2 

Ml  SHAPE,   GRAVITATIONAL  FIELD AND MOTION OF THE  EARTH. 

§  2.1.  The  shape of the earth.     The  fundamental earth body axis 

systems. 

The earth's surface   is usually assumed  to be a  fluid  surface 

of oceans and  seas which is thought of as continuing inside the continents 

along  thin  canals which  do not change the distribution of masses. 

The  shape of  this  surface is the  result of the  total effects 

of  the gravitational forces of the earth's mass and  of the centri- 

fugal  force caused by  rotation of the  earth about  its own axis. 

The  normal  to the quiet  surface of the ocean  thus coincides with 

the direction of the resulting gravitational  forces of the earth 

and centrifugal  force,   i.e.,   to  the direction of gravity.     This 

direction  is called the perpendicular direction or  the true vertical. 

The  level surface of the earth is very complex and may not be 

accurately represented by any true geometric  figure.     A special 

tor.n - geoid,  proposed in 1873 by  the German  scientist I,   Listing, 

was   used to define  it. 

A geoid can be approximated with a sufficient degree of accuracy 

by a   surface  formed by rotation of an ellipse around  its small axis, 

coincidina with the earth's  rotational  axis.     The ellipsoid of ro- 

tation obtained in  this case,  usually called Clairaut's ellipsoid 

will obviously be determined  if its semiaxes a and b are given. 

The ellipsoid of rotation may also be defined by being given one 

of  the  somiaxes,   for example,   the major semiaxis a  and the compression 

(2.1) 
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or eccentricity e,  whose   square  is equal  to 

In view of  the smallness  of a and e2  and,  consequently,  due 
to the proximity of Clairaut's ellipsoid to the  sphere,   another name 

of  the   level surface is  also used -  the terrestrial  spheroid. 

The ends of  uhe minor semiaxis b of the terrestrial   ellip- 
soid are called poles:   one north and the other south.    The cross 
sections of  the  ellipsoid  surface,  normal  to the  minor semiaxis, 
are circles called parallels.     The largest of them  is called the 
equator.     The plane of  the equator passes  through   the center of 
the earth.     The  cross  sections of  the  surface of   Clairaut's ellipsoid 

by  the planes which pass   through  the minor axis are called meridians. 
These are obviously ellipses with semiaxes a and  b. 

The  parameters of  the  terrestrial ellipsoid   (the reference 
ellipsoid)   are obtained by geodetic measurements  carried  out es- 
pecially  for  this  purpose.     In  different countries   the parameters 
of  the  reference ellipsoid are  taken as somewhat different from 
each  other. 

The  parameters obtained in   1940 by the Soviet  geodesist F.   N. 
Krasovskiy    are used for geodetic and cartographic work  in the 
Soviet Union.     The parameters of F.  N.   Krasovskiy's  ellipsoid are 
the   following 

(2.3) 
major semiaxis    a=6,378,245 m, 

minor semiaxis    b=6,356,863 m, 

primary compression 

a =  ~— = ^cfjyj- ^ 0.00335233, 
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square of  first eccentricity 

e2  =    äf— m  0.0066934, 

square of second eccentricity 

a? - bz 

Z2  =    g-j  -  0.0067386, 

polar radius of curvature of ellipsoid 

a? 

c =    -gf    =    6,399,699 m, 

radius of the  sphere of an identical volume with  the  terres- 

trial  ellipsoid 

R'  = 6,371,110 m, 

radius of  the  sphere of an  identical surface with the   terres- 

trial  ellipsoid 

R"  =  6,371,116 m. 

We  note  that deviation of  the normal  to   the geoid,   i.e.,   the 

true  vertical,   from the direction of the normal to Clairaut's ellip- 

soid »does not exceed  several   angular  seconds   (2-3")   with appro- 

priate  selection of its parameters,  while the deviation of  the geoid 

surf ice   from the ellipsoid surface   along  the normal   is of  the order 

f  f.-ns of meters   (100-150)    • 

For  further exposition of t.ie properties of tho   terrestrial 

( J.1: isüid,   lot  us  associate with  it  the right-hand orthogonal coordinate 

: fmtam   0 F.nr.   (Figure  2.1).     Lot  us   locate  tho origin  of  this co- 
l 

ordinato  system at  tho center of  the earth  O ,   and  let us direct 
i 

the  axis   0 ( along the minor axis of  the  terrestrial  ellipsoid in 
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the direction of the north pole.  The axes 0 C and 0 n will then 
i      i 

be located in the equatorial plane.  In order to finally determine 

this coordinate system, let us locate the axis o C along the line 

of intersection of the equatorial plane with the plane of the Green- 

wich meridian. 

Fig.   2.1 

The equation of Clerot's  ellipsoid in  the given coordinate 
system has  the  form: 

^♦f-l 

Let point 0 be some arbitrarily selected point in the co- 

ordinito system 0 ^n':.  Let us draw the normal to Clairaut's ellip- 

soid through this point.  It will obviously be located in the meri- 

dional plane0 containing point 0, and will intersect the ellipsoid 

at point A, the equatorial plane at point B and axis r. at point C 

(Figure 2.1). The location of point 0 in the coordinate system 

0 ^n? may be determined by angle »*, formed by the normal to the 

ellipsoid with the equatorial plane, angle A between the meridianal 

planes of point o and the Greenwich meridian and by the segment 

of the normal h from point A to point 0. Angles %'   and X  are 

called geographic latitudes and longitudes, and the value of h co- 

incides with the groatcfit accuracy to the height of point 0 above 

sea level. 

95 



Lot us  link the  right-hand orthogonal  trihedron Ox y  z 
»ii- 

point  O.     Let us direct the  z    axis  along the positive normal  to 
the terrestrial ellipsoid, let us locate the y axis in the meri- 
dianal plane, containing point o, and let us direct it in the di- 
rection of the north pole. The position of the x is now clearly 
determined.     It  is easy to  see  that trihedron    x y z    will be or- 

r i i 
iented along  the cardinal points by  the  accompanying  trihedron 

(Darboux's  trihedron)   on to the  surface h = const,   surrounding   the 
earth.     Orientation of this  trihedron relative to the earth's 
body axes  r,,   n   and c  is characterized by  the  table of direction 
cosines: 

I — ilnX — slni'toji coiif'insX 
«) (o>K — »inn'jinX cosij'sinX 
C 0 co» if' iin<p'. 

Having considered the meridianal cross section of the ellip- 

soid (Figure 2.2), which passes through point o and whose equation 

obviously has the form 

(2.5) 

'' ^ t" = 1 

we find the following expression for calculating I* 

(2.6) 

c.l   «f'--^-. 

It   is easy   to find  from relations   (2.2),   (2.5)   and   (2.6)   the 
expressions  to  calculate x  and  c  by   v',   h  and  the parameters of 
the ellipsoid: 

(2.7) 

XT^I 1 — -» Alcnsif'. 
Id-r'fln'fV' I 

*      1(1   -»'.In'»',''■ 1 
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The coordinates C and n are expressed in turn by x and A: 

(2.8) 

At  h=0  formulas     (2,7)   and   (2,8)   yield the expressions  for 
coordincitoH  r,,   r\  and r,  of  the point of  the ellipsoid  surface  to   '' 
a..J  X, 

Let  us  determine  the  radii  of  curvature r    and r    of  two 
2 i 

mutually perpendicular main normal cross sections of the surface 
h «const which pass through axes O* and fy , Having turned to 
the first formula of (2.7), we note that it yields an expression 
for the radius of the parallel of surf.ice h=const at latitude <f'. 
According to Hcnier's theorem , it follows directly from this 
formula that the radius of curvature of A normal cross section tan- 
gent   to   the   parallel  is 

(2,9) 

r-M- •      ((-»'«In'f'i 

i.   e.,   it   is  equal   to segment OC   (Figure  2,2), 

The   radius of curvature of  the  meridional  cross section is 
calculated  by  the  well-known  formula of differential geometry 

(2,10) 

(differentiated with respect to *  is aenotea oy prime).  By using (2,7), 

wo find: 

(2,11) 

(I -»'llnV)' 
v: +*. 
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If we  now draw some arbitrary normal cross section such that it 
♦ orms an   angle i> with the meridianal  plane,   then the radius of 

curvature of this  cross  section  is  calculated from Culer's  formula 

Utl't    j   10«'» 
'.   "'   '. 

(2.12) 

It  follows from formulas   (2.9),   (2.11)   and   (2.12)   that  tne 
racius of curvature of the normal  cross  section of the surface 
h = const   (and of the surface of  the terrestrial ellipsoid h^O) 
with    the anqle ( varying   from 0  to v/2 increases continuously 
from its minimum value r    to the maximum value r .     It is also easy to 
see    from  formulas   (2.9),   (2.11)   and   (2.12)   that the meridianal 
cross  section at the equator has  the minimum radius of curvature, 
when 

(2.13) 

while  the maximum value of the  radius of curvature corresponds  to 
latitude (,'=11/2, when 

(2.14) 

In view of the  smallness of eccentricity of the  terrestrial 
(llipsoid,   formulas   (2.7),   (2.9)   and   (2.11)   can be simplified.     By 

■ecomposing    the right sides of  these  formulas into series    of 
pOlt   rs of e2   and by  retaining only values of the  first order of  small- 
t."f     with respect to  the  square of eccentricity,   instead of   (2.7) 
.■ u    (2.8) ,  we   find: 

(2.15) 
l = [a(| -(. 'i slnV) (- AJccmi'cosJL. 

n = [«(l f y »l"'<r')+AJcosv'iln».. 

98 



Accordimjly, instead of formulas (2.9) and (2.11), we will havet 

(2.16) 

Alonq with the geographic coordinates f*l   A and h,   lot  us 
introduce   the  additional  geocentric  coordinates of    the point 0. 
order to calculate  them,   let  us combine point 0  with  the center 
of the earth   0   by the  segment of a  straight  line   (Figure  2.3). 
The direction   toward  the   center  of  the  earth may be  called  the 
geocentric  vertical.    The geocentric coordinates of point Q  will 
be  length  r of  segment   c  0,, angle  v  between the meridianal   plane 
and direction   0  0,   and angle   A  between  the plane containing 
axis n'.  and point o,  and  the  plane   0 f,Z, 

"\ 
.4/ 

c 

i 

( 

"\<  

'A 0, ^ 
■r 

\ 

A 
c y 

In 

Fiq. 2.2 

It is obvious that the geocentric longitude is equal to the 

geographic longitude.  Let us establish the relationship of , and 

r to  ' and h.  To do this, we note that coordinates ^, n and ( of 

point 0 are expressed by r, . and \   by means of the equalities 

l=»f CO»lfl(l$i.  l|a=^l.OSI( !S(nJl,  t^r sln^. 
(2.17) 

hence, it follows that 

(2.18) 

lanlf SlllX. 



But,   from  formulas   (2.7)   and   (2.8), 

,, I a f »(l-«•^ln•»')'• J 

(2.19) 

By  substituting  relation   (2.19)   into  formulti   (2.18),  we   find: 

Un » all —C , wmtf. 1    I      «MII   »'«IUV)1 J 
(2.20) 

It now follows from formulas (2.7) and (2.17) that 

(2.21) 

| (I     «■'•.In'O' I  ""♦ 

Having substituted  instead of  sin •   its expression by h  and  ip'. 
easily obtained   from relation   (2.20),  we   find  the dependence  of 
r on     '   and h.     The dependence of r on v     and h.may also be  found 
directly   from  formulas   (2.7)   and(2.8).     In  fact, 

(2.22) 

By substitutimi the values of f;, n and ( from formulas (2.7) 

and (2.8), we find 

ll<l-f>.ln>,)'.   |    ' 

, t lH -r'l   . .1/  , ,)'« 

Figure 2.3 
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Let us introduce  the moving trihedron Ox y z    (Figure 2.3), associated 
with the point 0  on  the sphere of radius r concentric to  the 
earth,   similar to  the  manner in which  the moving trihedron Ox y z 
on the  surface   h-const was introduced.    Let us direct the  z axis 
along the geocentric vertical  from the center of the earth.     Let us 
locate  the y    axis  in  the meridianal.  plane of point 0  and let us 

2 
direct it toward the  north pole.     Lr>t  us select the direction of 
the x    axis so  that the y and z    axes  are completed to form a riqht- 

2 2 2 

hand  orthogonal set of three. 

Orientation of the trihedron Ox y z to the coordinate 
2  2  2 

system 0 CnC is calculated by the table of direction cosines, 

similar to table (2.4).  The difference will be only in 

that, instead of geographic latitude ¥  , the expressions for the 

geocentric cosines will contain the geocentric latitude 9» 

It is easy to see that the x and x axes of trihedrons Ox y z 
2 1 .222 

and Ox y z coincide.       These trihedrons are expanded with 
i i i 

respect to each other by angle (?' - «P ) , i.e., by the value of the 

difference of the geographic and geocentric latitudes. The mutual 

disposition of these trihedrons is characterized by the table of 

direction cosines: 

(2.24) 

*l Vi 'i 

■». 1 0 0 

ft 0 (Cflf'       l() - sin(<|'' - n 
'l () Slllty'-.f) l(lS(l|' - '(» 

The difference ( »' - t)   is  calculated „"rom formula (2.20), hence. 

(2.25) 

ltl>(<f' — if)r* ae'slny' co<y' 

(l-r'shi'v-j'-lad -»i.inVj'i f*) 

101 



In view of the smallness of the values of e2 and ( ^   -if), 

formulas (2.20), (2.23) and (2.25) can be simplified.  By assuming 

that the value h/a is also small and by decomposing the right sides 

of the indicated formulas into scries in powers of e2 and h/a, we 

find 

,._fi,^(, _:lj$in2,':-^(l -l).l„2.f 

(2.26) 

(2.27) 

(2.28) 

The smallness of the values of e2 and (v ' - ,i) also simplify 

the table of directions cosines (2,24).  Assuming that 

COl(V' —T)«i, ,ln(9'_,). -t. 

wc find 

1 o 
(2.29) 

-4(l-f)sl„2, 

Substituting the value e2=0.0067 into formula (2.28), we 

find that the maximum deviation of the true vertical from the 

geocentric vertical is equal to 

(2.30) 

which  corronponcJs   to «11.6'   and  is  achieved  at latitude  ^  :45 
(or    ,'=45   )   on  the earth's surface.     As the  distance from the 
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earth's   surface   increases,   the  value  of  this difference decreases. 
However,   this decrease  is very slow in direct proximity to  the 
earth's  surface.     Thus,  at h=100 km,   from formula   (2.28)   we obtain 

I»'-fU..*0.0O355(l - jf),«0.0033. 

which corresponds   to all'. 

Therefore,   at  small  values of h,   we may  assume: 

^_,-^t'iln2»'p7«'»,n2»- 

(2.31) 
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and  I  is  the  second eccentricity of  Clairaut's  ellipsoid,   calculated 
by  the  fifth equality of   (2.3). 

The values of P    and Q    are constants which do not depend o o 
on  coordinates x,  y and  z.     They are calculated only by t.he value 
of Du  and by  the  second eccentricity. 

5 
For the potential       '   V of the gravitational  fiüld inside the 

spheroid,  the  following expression holds: 

i i i '2'35) 

where 

(2.36) 

is the potential of the spheroid to its centet, which is also a 

constant value. 

The projections F , F and F can be expressed by derivatives 

the potential vof coordinates x, y and z: 

(2.37) 

Formulas   (2,33)-(2.36)   are valid for the  interior points of 
a homogeneous ellipsoid,   also  including the points on its surfi 
which .ire maximum points. 

Wc are primarily  interested  in  the gravitational   field of a 
homogeneous spheroid outside   its volume.     In  this case expressions 
(2.32)   for F  ,   F    and F     remain valid,  but direct calculation of 
the   integrals  on  the  right  sides  is cumbersome.     The  resulting 
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difficulties can be avoided here by using Maclaurin's theorem 

that two confocal homogeneous spheroids of equal mass produce an 

identical effect in the entire space external to both spheroids. 

This theorem permits easy distribution of formulas (2.33)-(2.36) 

to the case of the extrinsic point by altering them somewhat. 

The scmiaxes of the ellipsoid, confocal to the given ellipsoid 

and passing through point A(x,y,j:), as is well known, are equal to: 

«'«/if+T. A'.j/jqr^ (2.38) 

where v is the positive root of the equation 

(2.39) 

the second eccentricity of the confocal ellipsoid is equal to 

(2.40) 

and  finally,   the density of the confocal spheroid,  having the  same 
mass    as     the given sphereoid,   is found from the equality 

!*• Ml »' ( S 

On   the basis of Maclaurin's  theorem,   projections  F  ,   F    and F 
for point A(x,y,z),   extrinsic with respect  to Clerot's ellipsoid, 
are  calculated by formulas   (2.33)-(2.36),   if a',   b',  t*   and D', 
i-^opectivoly,   from  formulas   (2.38)-(2.41)   are  substituted  in   them 
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instead of a,  b, ^,  and D.     By carrying out  this   substitution 
and denoting 

U       ft !• («•--»■)•■ 
(2.42) 

we  arrive  at  the  following  formulas for F  ,   F    and F   | x'    y z 

f.»  -Px.    F,~     I'y. F.~     Qt. (2.43) 

where 

(2.44) 

For potential V,  we  find  the  expression 

Vr~-^ Px'-^l'y' - IfiJriK. 

who re 

/C =. 2.n/>|i y fit'T 

(2.45) 

(2.46) 

Unlike  formulas   (2.33)-(2.36),   the values of P,   Q and K in 
formulas   (2.43)-(2.46)   are  variables,  because  they are function 
of i. ',   and consequently,   in  view of relations   (2.40)   and   (2.39), 
thoy  are functions of  x,   y  and  z.     However,   formulas   (2.37)   remain 

valid   for f .   F    and Fz,  because  it  is easily established,   for 
example,   that 

- I TF 
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Similar equalities are obtained upon differentiation of V with 

respect to y and z. 

Formulas (2.43) would yield accurate expressions for F . F and x      y 
F    if the  terrestrial spheroid were homogeneous    and  its density 
D and gravitational constant p were known with some  accuracy.   How- 
ever,   in  fact the distribution of masses in the terrestrial spheroid 
is non-uniform,   the value of p  is known  from direct measurements 
with accuracy only up to 0.1%,  while the average value of D  (or, 
which  is  the same  thing,     the earth's mass M)   is calculated only 
indirectly and also with an accuracy of the order of 0.1%.    Their 
values are equal  to: 

(2.47) 
(1 = 6.67-10"'-25^1.   P=MS.S2t.cm->,   4l»{,98IO"t • • • 

Therefore,   formulas   (2.43)   yield only sojpe approximate values 
for projections of the earth's gravitational  field intensity on its 
body axes. 

2.2.2.   Solution of the Stokes problem  for a level  surface 
given  in  the  form of a spheroid.     More accurate calculation of the earth's 
gravitational  field can be had by solving the Stokes problem for the 

terrestrial ellipsoid.     However,   before going into exposition of 
the  solution of the Stokes problem,   let us  show that  the  spheroid 
can be  e  figure of equilibrium of a homogeneous heavy rotating 
liquid. 

It is known  from hydrostatics that,   for the equilibrium of a 
liquid,   on which a   force having  the  components  f   ,   f     and  f    and 
arbitrary point   (x,y,z),   is  acting,   it is necessary  that  the  follow- 
ing equalities be  fulfilled 

(2.48) 

t-^r, §•«*. i-M. 
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t   » 

where p is pressuro and D is the density of the liquid at the 

given point.  It follows from these equalities that 

(2.49) 

Let  the pressure on the external surface of the liquid be 

equal to zero: dp=0.  Then, 

fi**+/,<ty + /,äi = o. 

Further, let the shape of the surface of the figure of 

equilibrium of the liquid be calculated by the equation 

Differentiation of this equation yields 

§*»-».#♦+§«•-» 

(2.50) 

(2.51) 

By  comparing this equality with equality   (2.50),   we  conclude 
that  the  partial derivatives of S  should be  proportional   to  the 
force  componerts: 

(2.52) 
• 

/,       ft        A 
-3r ■ W m W" 
V      ~i>>       "37 

But 3S/cix, 3S/3y and 3S/Dz are proportional to the direction 

cosines of the normal to the surface S.  Consequently, surface S is 

a level surface. 
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Let forces f . f and f  admit the force function W.  Then, 

instead of relation (2.50), we find 

*#.,,)*,,*    , (2.53) 
TT "^ +-V7'J'+ ar rf'—"P - o- 

Hence, it follows that W^ const and this means that the surface S 

is again level. 

For a spheroid, function S has the form 

5--+Ü + '  ,„,, (2.54) 

Therefore, 

(2.55) 
• 

«_«Jt  dS       Jy       iS      2, 

The components of gravity F by a homogeneous spheroid of unit 

mass, located inside or on the surface of a spheroid, are given 

by formulas (2.33).  By adding centrifugal forces to them we find 

/,_«.,_,.„. /t^u,y_P^   ria_Qti   (2SC) (2.56) 

where u is the earth rate. 

By introducing expressions (2.56) and (2.55) into the con- 

dition of equilibrium (2.52), we arrive at the equalities 

(2.57) 
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The   first of  them is  satisfied  identically,   and  from the  second one 
and  from   (2.34)   follows the  relation 

(2.58) 
_Jl!__;,+', UB-'I    s 

The   function on  the  right side of this relation  Initially 
increases as I   increases from zero,   reaching a maximum equal to 
0.22467 at £=2.5293,  and then decreases,   asymptotically approaching 
zero at when  I  increases without bounds. 

Thus,   at 
(2.59) 

W<0"467 

there are   two   (one at  the maximum point)   solutions of equation 
(2.58),  one of which corresponds  to  a  slightly compressed  spheroid. 
Lyapunov's  and Poincare's  investigations showed that stable  figures of 
equilibrium of a  rotating  liquid are obtained only upon  fulfillment 
of the condition 

(2.60) 

The  conditions of   (2.59)   and   (2.60)   are  fulfilled  for  the 
birth's parameters.     In the  first approximation equation   (2.58) 
iclds  for compression of   the  terrestrial ellipsoid a  the  following 
aluc  found  by Newton 

(2.61) 

5 0 = Tv, 
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u?a 
where q = —j-— , u is the earth rate and ge is the value of the 

acceleration o* nra"ity at the equator. 

Equation (2.58) relates the second eccentricity of Clairaut's 

ellipsoid to the earth rate and its density. 

Therefore, if the shape of the spheroid and the angular velocity 

of its rotation are assumed to be given, the completely specific 

value of density D is obtained from equality (2.58).  In this case 

the mass of the spheroid will not coincide with the earth's mass. 

Let us turn to the Stokes problem. The Stokes theorem is valid: 

"Let there be a fixed body uniformly rotating about a fixed axis at 

a constant angular velocity u.  Let there be known some level surface 

of gravity, which completely envelopes the body.  The potential 

function of gravity and its first derivatives (i.e., the force com- 

ponents) will be clearly determined both on the level surface itself 

and in the entire external space if the total mass of the body is 

known regardless of the law of distribution of this mass." 

The principal possibility of determining the potential of 

gravity and of gravity itself follows from the Stokes theorem if 

the shape of the level surface and the total mass of the body are 

known. The Stokes problem also comprises the search for the po- 

tential function W of gravity by the given conditions. The potential 

of gravity consists of the gravitational potential V and the po- 

tential of centrifugal forces U: 

(2.62) 
r iV, | u 

The potential of centrifugal forces does not depend on the 

shape of the level surface and is expressed by the obvious formula 

(2.63) 
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Tins,   the Stokes problem reduce«  to  finding the potential  function 
V  of gravitation. 
o    J 

Function V should satisfy the general properties of the poten- 

tial function of gravitation: 

1. Externally, it should satisfy the Laplace equation with 

relative to the level surface of the space 

(2.64) 

2. It should be continuous and finite and it should have  con- 
tinuous and  finite  first derivatives at any finite values of co- 
ordinates x,  y and z. 

3. It  should be  subject to the limiting condition 

Urn fVimpMt (2.65) 

vhere    r  =  / xz+y7+z:   ,   and M is  the earth's mass. 

Moreover,   the   following equality should be  fulfilled on  the 
}iven  level  surface 

(2.66) 

Lot  us  take Clairaut's ellipsoid as   the  reference surface  and   let us 

assume  that  the condition of Stokes  theorem is  fulfilled  for 
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it,   i.e.,   let us  disregard the circumstance   that the masses of 
continents are  not enveloped by  the  surface of Clairaut's ellipsoid 
Then,   solution of  the Stokes problem will be  the  function 

(2.67) 
.   Wm€K+V+U. 

where C is some arbitrary function; K is a function calculated by 

equality (2.46); V is the potential function of gravitation of a 

homogeneous spheroid limited by Clairaut's ellipsoid, taken at the ref- 

erence surface; and U is the potential function of the centrifugal 

forces  calculated by equality (2.63). ,. 

Then, for the potential function of gravitation V , from 

equalities (2.62) and (2.67), we find the expression 

(2.68) 

The  function V  ,   given by equality   (2.68),   satisfies  the  first 
of the conditions  formulated above,   because each of the  functions 
of V    and K is  individually a solution of  the  Laplace equation,   which 
is easy to  ascertain by  taking  the  second derivatives in coordinates 
from the  functions of V and K,   calculated by  formulas   (2.45)   and 
(2.46)   and by  taking  into account equation   (2.39)   and relation   (2,40). 
Function   (2.68)   also  satisfies the second of  the conditions  indicated 
above. 

The  remaining  two conditions,   i.e.,   the  conditions placed on 
equalities   (2,65)   and   (2.66)   can be   fulfilled by selecting  in  the 
appropriate munncr constant C and density D of  the homogeneous 
spheroid contained  in expression   (2.45)   for potential V according 
to relations   (2,44), 
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In fact, let us take for D the value resulting from (2.68) 

The surface of Clairaut's ellipsoid will then be the reference surface 

of function V + U, i.e., we will have on this surface: 

(2.69) 

V + Uncontt. 

But since function K on the given Clairaut's ellipsoid is also a 

constant, then condition (2.66) is fulfilled. 

Now, by forming the product rv and passing to the limit 

as r»L, we find 

llm /•V, ■ Cl.iPna'i + J nDpa'A. 
(2.70) 

By comparing the right sides of equalities (2.70) and (2.65), 

we conclude that, in order to satisfy condition (2.65), we must take 

(2.71) 

Thus, for the components of the earth's gravitational field 

intensity, we find the expressions: 

(2.72) 

where 

dK 
rt--p*+c£. F, — ^ + C-S7 

—    d'ft     »lit 

(2.73) 
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To calculate the constants D and C,   contained in expressions 

(2.72) and (2.73), the following equalities are used 

(2.74) 

Equation (2,39) and relation (2.40), by means of which the 

value of the second eccentricity of the confocal ellipsoid at the 

current point is found, and also equality (2.3), which determines 

the second eccentricity I   of  a level ellipsoid, must also be added 

to expressions (2.72), (2.73) and (2.74). 

Thus, formulas (2.72), {2.73),   (2.74), (2.39), (2.40) and 

(2.3) make it possible to find the values of F , F and F if the 

following are known:  the semiaxes a and b of the level ellipsoid, 

the earth rate u, the earth's mass M and the gravitational 

constant u. 

However, as already indicated above, the accuracy with which 

the gravitational constant and earth's mass are known is estimated 

by a value of the order of 0.1%. Therefore, the constants con- 

tained in the formulas (2.72) and (2.73) are best calculated in 

the following manner.  Find the value of DIJ from the first relation 

of (2.74) and obtain the value of C by comparing the acceleration 

of gravity, obtained from formulas (2.72), (2.73) and (2.74) to the 

measured value of the acceleration of gravity at any point on the 

earth's surface, for example, at the equator. 

From the first equality of (2.72), for the component of 

Leration of gravity 

soid, we find the value 

acceleration of gravity g on the surface of the terrestrial ellip- 

(2.75) 
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where   (3k/3x)     is  the  value of  the derivative of K with respect to x at 
the point taken on  the  surface of the reference ellipsoid. 

It follows  from equalities   (2.46),   (2.40)   and   (2.39)   that 

«K , - 2nOn -. <>» 7 

♦T» ^' 

(2.76) 

where 

?• [WT$+wfwV** v> ytT* 
(2.77) 

Having taken the point with coordinates y=z=0 and x=a at the 
equator and taking into account that v=0 on a level ellipsoid, we 
find  from   (2.75)-(2.77) : 

(2.78) 
f, = C2nO)ia -f P0a - «'a, 

whore g     is  the measured value of acceleration of gravity at  the 
equator.     Hence, 

(2.79) 

(?-**&*. Vn/V« 

117 



2.2.3.   Calculating  the projections of the earth's regularized 

gravitational   field intensity  onto the axes of  the geocentric and 
geographic moving  trihedrons.     Let us  find  the explicit expressions 
for projections Px  ,  Fy    and Fz    of the earth's  gravitational  field 

1*1 
intensity onto  the axes of the geocentric moving trihedron    Oxzyzzj, 
introduced in the preceding section* 

From relations   (2.72),   (2.73),   (2.76)   and   (2.77),  having 
taken into account the  table of direction cosines   (2.),  we find* 

#'» —2nD|i Uncr cos iff—-^--'-T-Zs u."1/'- 
I it'   *') ■ v 

 ' 2/') -    C,«'t "'-*'>   ] 

»W— *• (-^TTT^r [2"' - ,•"*,'') + 

+ coi«»|s .•»"/' - j^p- - 2/'|j + 

(2.80) 

By using equalities   (2.17),   (2.2)   and   (2.77),  we  find the 
following expressions  for  the  terms of the  right sides of formulas 
(2.80),  containing Ti 

(2.81) 

\'l     (*'f v)co.»v f-U' + v)«»'» 
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■ 
*-'••—-•——»■«■-■• 

The right sides of the second and third formulas of (2.80) 

can be expanded into rather rapidly convergent series by powers 

of e.  Let us find this expansion with an accuracy up to the terns 

containing the factor e1*. 

From equation (2.39) of a confocal ellipsoid, calculation of 

(2.40) of its second eccentricity and from the equalities for x, y and 

z, similar to equalities (2.17) for C, n and c» we find: 

  (2.82) 

f-i/      BSfl  • — 
coiity 

The expression for V   is easily represented in the form 

r-f* 
(2.83) 

where 

s-lJ»' /«^ «=l **m**+i$f$'**~y*nt+ 
(2.84) 

We now find: 

(2.85) 

(•■-»'I ' -•(^(l-|«*+4^-)' 
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By .substituting expressions   (2.83)   and   (2.84)   for 1'   and  s,  we 
fii.d: 

-(?)'-|-|+..(J-™..)(;ri+.... 

(2.86) 

Now let us find the expansions in powers of e of expressions 

(2.81), also contained in the formulas for calculating Fy and Fz . 

From relations (2.83), (2.84) and (2.40), we find 

(2.87) 

v==,.[,_(l_,.,|1,^)(l)' + ^.ln»JV(f)*+ ...   • 

Tdking  this  into account,   we  finds 

-t-T (i-'*f--''-cr-»-••■]• 
(»'-f v)cos'i(. f (a' i MMII'H   ■ 

.«•(l.   ,.„0,(1)' f--'^i„-.<r(i)
,
+ ...    , 

(*' ) vj'ios'if f-(a» ( v)'sin'<f - 

fr^l-iM^jfiff-...]. 

(2.88) 
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By substituting expressions (2.88) into formulas (2.81) and by 

performing termwise multiplication and division of the series, 

we find; 

(2.89) 

Cl'lT («•--»') 

T     [VY* "^ Pf v / '" 

+ ,«(!-» C0.',.-|s,„'2,)'l)V..]. 

Let us now substitute expressions (2.89) and (2.86) into formulas 

(2.80).  Converting everywhere to trigonometric functions of sin | 

and sin 2^, we find the following equalities: 

(2.90) 

'v.ro. 
f* m nDn*r» il,, »f (^ j' | _ | _ c + 

Those equalities are also the desired expansions in powers of 

c of the projections of the earth's gravitational field intensity on- 

to axes x , y and z .  The rapid convergence of the series ob- 
2    2        2 

tainod is provided by the smallnoss of the earth's eccentricity e. 

The riqht sides of formulas (2.90) contain the constants Dp 

and C, calculated by the first equality of (2.74) and by equality (2.79), 
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respoctivoly.  Let us find the exnlicit expressions for constants 

0): and C. 

From the first equality of (2.74) 

(2.91) 

hence, by expanding the function on the right side by powers of 1, 

we find: 

(2.92) 

By converting in  relation   (2.92)   to  the first eccentricity 
and  by using  for this  the  relation 

"-T^r. 

we find Du in the following form: 

(2.93) 

^-^O-Wi"*-)- 

It  remains     to  find C.     However,   it is more  convenient  to  find 
directly  the  value  of irDpC,   because   constant C  is  contained   in 
formulas   (2.90)   in  this combination. 

From  formula   (2.79) 

(2.94) 
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Accordiny  to   (2.34), 

(2.95) 

/•0-2.-,O,.^(..n-'/-T^7r). 

Expansion into a series in I  and conversion afterwards to 

the first eccentricity yield the following value for P 

By substituting expression (2.96) into formula (2.94) and 

taking into account relation (2.93), we arrive at the equality 

(2.96) 

«^^'^(-l^^"). (2.97) 

which also yields  the  explicit  representation of the  constant 

TIDIIC. 

Substitution of expressions (2.93) and (2.97) into formulas 

(2.90) leads to the following expressions for Fy and Fz : 
2 2 

(2.98) 

.v i , r, 
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where  the  ratio of  the centrifugal  force occurring because of the 
earth's  rotation to gravity at the equator is denoted by q,   i.e., 

t. 
(2.99) 

If we  take 10 

« = 0 378345 M,    «' ■ 0.00603.11 
*, = 978,049 cn/i.e», 

(2.100) 

then 

'0.00346775. (2.101) 

The  numerical  values of the  coefficient»contained in  formulas 
(2.98)   will   then be  equal  to 

(2.102) 

^W-,.)=-1.577.   n-,'^-^^ 1.008. 

l-4-^-f?(l-|4-i..oo.Ha7. 

^,l_|,«-).?(-.lf.^,jj  ,0.001027. 

|.,>_|,. | ,(_|+«(.>)„ 0.004878. 

«'(|»»- ^?)-=0.nyu'J0j. I 
"« 
I 
If -( 

'« 

ir. i' 
25 n.uooQM, 

. 0,000009 
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The  numerical values of  the  coefficients indicate  that 
formulas   (2,98)   can be written with an  accuracy of the order of 
0,02 cm/sec1  in  the following manner: 

(2.103) 

where 

(2.104) 

5 : 0.001 f.. 

I --^--f -j«? =0.0018. 

Formulas   (2.98)   or the similar  formulas   (2,103)   yield  expressiors 
for Fy    and  Fz       as    a   function  of  the  geocentric coordinates   |   and  r. 
At  the  same   time   it may happen  that the  directly known values will 
be  the  geocentric   latitude   |  and  the height above  sea  level.     The 
latter,   as was noted in   52.1,   coincides with great accuracy  to   the 
distance h  along  the normal  to Clairaut's level ellipsoid. 

Formulas   (2.23),  which yields  the  expression r  in  <*',   h  and 
the parameters of Clairaut's ellipsoid,  was  obtained  in   §2,1,     The 

following  value   is obtained  from  this  formula  for r2: 

:fl».)   A'- flVQ —fj •'IM'v 
l — e1 Half 

-•s-^j/r^ sm-t^ 

(2,105) 
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Let us consider the case of small values of h, when the ratio 

h/r has the same order of sraallness as the square of the first eccen- 

tricity e2.  Then with an accuracy up to values of the order of e" 

inclusively, we have: 

(2.106) 

With an accuracy up to values of the order of e2, the geo- 

centric latitude <f'   is related to the geocentric relation 

(2.107) 

..< '— 
i »n f — T-'ir • 

which ensues from functions (2.20) and (2.25).  From equality 

(2.107), it is easy to find in turn the expression for the square 

of the sin  of geographic latitude:        9 

(2.108) 
smV = sin'«f (I.+S»'cos'(f). 

By  substituting expression   (2.108)   into   formula   (2.106),   we 

find 

(2.109) 

— «'sin'ip     «'slu'if CUS'IJI] . 

Then, 

(2.110) 

(7) "l - * ' W - ^ *''5|"' '•' +''s"11"«+ »' ^"' »• 
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Let us  substitute expression   (2.110)   into  formulas   (2.98). 

After obvious transformations we  find 

+ #« (-1 »m»» - ^ im» jT) + 

4*'»(-5j»ln'(»+Tj«ln'2») + 

2*   .   ih'\ 

(2.111) 

These  formulas with an accuracy up  to  values pf  the order of e1* 
yield expressions  for Fy    and Fz      in  fand h. 

Let us  turn in  formulas   (2.111)   to the  geographic latitude  »•, 
Since  the  trigonometric functions of  the geocentric  latitude   .   are 
contained in   formulas   (2.111)   with  factors having an order of e2 

and e",   then  the values of sin2,,   sin  If and sin^?,   expressed by 
the   trigonometric   fun-Li   ,-.s  or   c.'oqraphic   latitude   -f'  with  an 
accuracy only  up  to values of  the order of e2, must be substituted 
into  these   formulas.     From equality   (2.107),  we  find 

sln'cf "=siii?'['(l — :V;tos?if'). 
sinSf^sinJcf'U  (-f'(2Mn'<(.'- l)|. 

sln'lty--*iii'Vll  ( ^'(4 5111'*'—2)| 

(2.112) 

By substituting relations (2.112) into formulas (2.111), we arrive 
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at the equalities: 

(2.113) 

+ .«(-|iln'f'-.^iln'2<f')-|- 

+',«(-?r,l"'»'+Ti,ln,2»')+ 

The right sides of these equalities are expressions in <?' and h 

of the projection of Fy and Fz  of the earth's gravitational field 

intensity on the y and z axes of the geocentric moving trihedron 
2        2 

x y z . 
2  2 2 

It is now easy to find the expressions in .' and h of the pro- 

jections of Fy and Fz of the gravitational field intensity on 

the y and z  axes of the geographic moving trihedron.  According 

to table (2.24) of the direction cosines, we find 

(2.114) 

f,, m I',, cos (-)/ - n) - f,. sin ('(' — <J). 
f., = /••„sln(.f' -f»4 f,, cosW - ■)) 

In order to write the explicit expressions for Fy and Fz 

only in h and ■;' , we need to have with an accuracy ap to values 

of the order of e1* of the value of sin ( ;' - v) and cos ( •' - •) , 

expressed by these variables. 
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From (2.25), we find 

(2.115) 

Hence, 

iln(T'-<)^r'sln't'cos»'(l f »»ilnV--M. 

co»("('-^)= I —-^-»In'ip'cos'^', 

(2.116) 

By substituting these expressions together with equalities (2.113) 

into relations (2.114), we arrive at the following formulas: 

^--«.['-T»"',T'+?(l+7SliiV) + # 

+''(-T slnV + 7& sln'2'f') + 

+*'♦(-^ln''p-ßs,n,V)+j«'(3Sin'»'-l) + 

(2.117) 

Formulas (2.117) yield expressions of the projection of Fy 
on the direction tangent to the ellipsoid and lying within the 
meridional plane, and projection Fz of the gravitational field 
intensity on   the normal  to  the  level  ellipsoid. 

Having sot h = 0 in formulas (2.117), we find the formulas 
which determine the projections fj and Fp of the gravitational 
field  intensity on  to   the earth's  surface   (on  the level ellipsoid) 

^.= ^1(1 f^slnV)sln2.(.'. (2.118) 
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If we now add the values of the projections onto the yi and zj 

axes of centrifugal acceleration, which occurs because of the 

earth's rotation, to the values of projections F0 and F , the 

first sum should be equal to zero, while the second sum should 

lead to the formula of normal gravity. 

Let us denote the projections of centrifugal acceleration onto 

the y and z axes by F'  and F' .  We have (Figure 2.4) 
i     i y i     z i 

F" =s — u'r Kis (f si n if'. 

f"t s>«'rios<(iai<|>'. 

(2.119) 

where u is the earth rate. 

Pig.   2.4 

From relations   (2.112)   and   (2.109),   with an accuracy up  to 
terms of the order of e2,  we   find 

(2.120) 

rco$(p-= i(l ♦ Y^nVJiosv'. 

By introducing the notation of (2.99), we find 

(2.121) 
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We now  find: 

(2.122) 

4 i ^-o. 

Instead of the  square of first eccentricity e2,  com- 

pression a may be  introduced into  the  second  formula of   (2.122). 

According to equalities   (2.1)   and   (2.2),  we  have  the expansion 

^- + -1-+   •• 
(2.123) 

By substituting the expansion   (2.123)   into  the  second equality 
of   (2.122),  we  arrive  at  the  formula 

(2.124) 
» = f,(l+(>»ln»<f'-f Pi^",2-p'). (2.124) 

where 

A-y» 17 
TJ«"' 

«'       5 

(2.125) 

i.e.,   to   the well-known  formula of normal gravity in Helmort-Kassmis 

form,ii which was required. 
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Calculations for the parameters of the Krasovskiy ellipsoid 

yields: 
»«=0.0053171,    ft =0,0000071. 

Formulas   (2.125)   are called   Clairaut's  formulas.     If the  accel- 

eration of gravity at the pole is denoted by g  ,   then it follows 
from equality   (2.124)   that 

(2.126) 

p __ 

We note that if coefficient Ö is calculated from formula 

(2.J24) from the results of observations of gravity at different 

latitudes, then Clairaut's first formula permits calculation of tne 

compression of the terrestrial spheroid, because the value of q 

is known with great accuracy. 

- • 

Let  us also  note  that  the   formula of normal  gravity was ob- 
tained only to  ascertain  that it results as a  special case  from the 
more general  formulas which we constructed.     This  is the well- 
known chock of  the  correctness of the  calculations made  above, 
nxprossion   (2.12 4)   for g may in  itself be  obtained simply from 
Somii'yan's  formula.11 

§2.3.     The Earth's Motion  Relative To  Its Center of Mass 

The  earth's motion  relative to distant   (fixed)   stars,   (or, 
in other words,   relative to the  inertial  reference system 0C#n*;«) 

consists  of  translational motion,   i.e.,   the  motion of its center of 
mass    and of rotation about  the  center of mess.     If the  position and 
velocity of the  earth's center of mass are   taken  at some moment of 
time  as  the  initial moments,   then  its   further motion is  calculated 
by   the resulting  attractive   force of  the earth's elementary masses 
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by  the celestial bodies.     Similarly,   rotation  about  the center of 
mass  is determined by  the moment of this resultant relative 
to  the  center of the earth. 

When  solving problems of autonomous  inertial  navigation near 
the earth   (or rather in  the  system of reference  bound to it),   it 
is  not necessary to know  the motion of the earth's  center of mass. 
If   fact,   the motion of  the  earth's center of mass  is not contained 
in  the  fundamental equation of inertial navigation   (1.88).     It 
disappeared  from this equation  in view of equality   (1.85). 

The earth's motion about the center of mass is another matter. 
This motion  should be known.    Actually,   the  fundamental equation 
of  inertial  navigation   (1.Ö8)   is written  in  the  coordinate  sys- 

tem   0  5*1*;*, whose origin  coincides with  the  center of the earth, 
while orientation of the  axes  is  identical  to orientation of the 
axes of the  inertial  system of reference  O.^/n^c*.    Therefore, 
orientation of axes r,^,   n*  and  Q^ may be  assumed  to be  fixed rel- 
ative       to  the directions   toward the  remote  stars.     If we assume 
the  earth's gravitational   field intensity g(r)   to  be  given in  the 
system of reference Oj?*n*C*» we can  find the  coordinates of C*»n* 
and  c*   from equation   (1.88).     Conversion  to coordinates £,   n and c 
in   the  trihedron OjCnc     bound to  the earth    obviously requires know- 
ledge of the position of  trihedron 0,CnC   relative  to  the  trihedron 
0  5*^*^*    i.e.,  one must  know the earth's motion  about its center. 

i 
Moreover,  as already noted  in   51.4,   the earth's  gravitational  field 
intensity   (taking into  account the non-sphericity of its gravita- 

tional   field)   is given  in   the  earth body axis  system o.^nc-     Re~ 
calculation of gravitational   field  intensity  to  the  coordinate 

trihedron 0|C*i)*C«  also  requires  ■ knowledge at every moment of time 
of  the mutual disposition of  trihedroi s Oj^nC  and Oj ?«n*i;*. 
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When considering problems of the theory of autonomous inertial 
navigation, we may assume that the earth's center of mass coincides 
with the center of Clairaut'ü ellipsoid, while the earth's motion 
about the center of mass reduces to uniform rotation about the axis 
of symmetry of Clairaut's ellipsoid, which retains its own orienta- 

tion  unchanged      relative       to  the directions  toward  fixed stars. 

Actually,   the position of  the  instantaneous  rotational axis 
of  the  earth does not coincide with the minor axis of  the  terres- 
trial ellipsoid     (the least major axis of the ellipsoid of inertia). 
Therefore,   it follows  from Euler's equations of the  rotation of 
a  solid    relative to  the   inertial center of mass  that the  in- 
stantaneous axis of the earth's  rotation will describe  a cone about 
its axis  in the earth's body.     Euler found the period of this 
motion    equal  to approximately  305 days.     S.  Chandler's processing 
of experimental materials  showed that the motion of  the earth's 
instantaneous rotational  axis   in  its body has two periods:   the  first 
is equal to'approximately  420  days and the  second  is equal to one 
year.     S.   Newcomb showed  that a   420-day period is  Euler's period 
with  regard  to  the non-rigidity of the earth.     The  annual period is 
related  to  the  seasonal  redistribution of masses on  the  earth's 
surface. 1 2 

The maximum deviation  of  the earth's  instantaneous  rotational 
axis   from the direction of  the  minor axis of   Clairaut's  ellipsoid 

does not exceed 0.67",  which yields  the error of determining the 
latitude of  the point on   to  the  earth's  surface.     This  error may 
obviously be disregarded  in navigation problems. 

The value of  the earth  rate   (its modulus)   is,   strictly 
speaking,  not  fixed.13       It has been noted  that  the  length 
of   days because of  tidal   friction  increases by an 
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average of 0.0016  sec    per century.     Moreover,   seasonal variations 
ot   the  length of the days by  a  value up  to 0.0025   sec    and irregular 
^..tormittent variations having values up  to 0.034   sec    have been ob- 

. rved.     All these variations are small and they can be disregarded 
the  consideration of problems.     The time determined by the earth's 

1   tation with respect  to the  distant  stars   (stellar  time)     may also 
assumed uniform and adequate  to Newtonian dynamic  time. 

Orientation of vector u of  the earth rate     in stellar 
space    does    not    remain    fixed.       The    main    cause 
of  this  is  the circumstance  that the earth's attraction by  the sun 
and moor   leads not only  to   resultant forces,   directed along  lines 
connecting the earth's  center of mass  to  the centers of mass of 
the  sun  and moon,   but also  to  resulting moments.     This is in turn 
caused by the  fact that compression of the earth leads  to asymmetry 
of   the earth's distribution  of mass    relative to   the directions 
from  its  center to  the  sun  and moon, * 

The  vectors of  the  resulting moments  from the  sun  and moon 
are   located within  the plane of  the terrestrial equator and accor- 
dingly  attempt to combine  this plane  to  the plane  of  the ecliptic 
(tho orbital plane of  the earth)   and to the plane of  the  lunar 
orbit. 

The action of the  indicated moments  leads  to precession of 
hM  earth's angular velocity vector     relative        to  the normal  to 

.' I  plane of  the ecliptic along a  cone with an angle  of 2c=23  27' 
the  vertex with a period  approximately equal  to  26,000 years, 
to nutation with  the main period of approximately  18.6 years, 

wl     dl   leads   to periodic  variation     of  angle  e  by  the   value  Ae=10". I« 

Because of the perturbing action of the planets, the earth's 

or  tal plane also docs not remain fixed in stellar space.  It 
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rotates about an axis, lying within the orbital plane at a velocity 

having a value of the order of 47" per century during the current 

epoch  This leads to slow variation (a decrease in the current 

epoch) of angle c. Moreover, because of the motion of the moon 

and earth about the common center of mass, the earth's orbit de- 

viates from the plane of the ecliptic, near which the motion of 

the center of mass of the earth-moon system occurs by a value of 

the order of 1". 

All the indicated effects of variation of the position of the 

earth's rotational axis in stellar space, which plays an important 

role during fundamental astronomical investigations, may obviously 

be disregarded in navigation problems because of smallness, and 

in any case if we bear in mind determination of the position of an 

object with an accuracy of the order of one km, and the operating 

time of the inertial system not exceeding, for example, one month. 

Henceforth, we shall usually assume that vector Ö of the 

earth rate coincides with its axis, whose orientation we shall 

assume to be fixed in sfollar space.   Let us assume that the 

value of the earth rate is constant (u-7.292116' 10"5).  However, 

we note that, as will bocoma clear subsequently, the problem of 

innrtial navigation can be solved in principle and with regard 

to the inconstancy of the earth rate.  It is sufficient to know 

only the projections uf(t), u it),and ur(t) of vector 3 of the 

earth rate to its bcly axes |rn and ;  as time functions. 

The Parameters of the ellipsoids taken in other countries can 

be found, for example in the book: Graur L. V. Matematicheska'/a 

Kartorjrafiya, lad- o LGU im. A. A. Zhdanov, 1956 
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2. Mikhaylov,  A.  A.,   Kurs  «ir.wimptr i i   i   tcorii   figury  Zemli 
(Course  in Grtivimc>try  .md Tlu^ory of  the Shape  of   the Earth), 
Redbyuru GVCK  for MR of   the  US'.IR,   19291  Grushinskiy,  N.  P., 
Tcoriy.i  fiyury  Zrml i   (Tlirory of  the Shape of  the  Earth),   Fiz- 
matgiz,   1963. 

i 
3. R.ishevukiy,   P.   K.,   Kur»  ill ( f ei en« i.U   noy    cjeomctrii   (Course  in 

Differential   f.eutnot i y) ,   ('.nut okhl zdit ,   1016. 
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0(   N.,  Teoriya pr I ty.izlien I yi   (Themy «if   Attraction),   Fizmatgiz, 
1961. 
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in Note 4  ami also   In   Iile I ' imn,   U.   I.,   Teoriya  potensiala  i ego 
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Grushinskiy,  N.   P.,  op.   eif. 
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7. Comfjan.',   for example,   the   literature    in Note  6. 

8. Andreyev,  V.   D.,  On Solving  the Stokes Problem  for a  Reference 
Surface Given  in tho Form of a Spheroid,   Prikladnaya matematika 
i  mekhanika.   Vol.   XXX,   Issue  2,   1966. 

i.     In  this case   (for the trihedron Ox?y-z?)   it  i 
replace  »•   by  v   in Table   (2.4). 

is  necessary to 

10. Mikhaylov, A.  A.,  op.   cit.;   Graur,  A.  V.,  Matematicheskaya 
kartografiya   (Mathematical Cartography),  A.  A.   Zhdanov    Press 
of Leningrad State University,   1956. 

11. Mikhaylov,   A.  A.,   op.   cit. 

12. Blazhko, s. H., Kurs sfericheskoy astronomii (Course in Spheri- 
cal Astronomy), Gostekhizdat, 1954. 

13. Kulikov, K. A., Izmenyayemost ' shirot i dolyot (Variability of 
Latitudes and Longitudes), Fizmatgiz, 1962. 

14. Dlazhko, S. N., op. cit .; Subbotin, M. F., Kurs nebesnoy mekhaniki 
(Course in Celestial Mechanics), Vol. 2, ONTI, 1937. 
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Chapter 3 

EQUATIONS OF THE  IDEAL OPERATION OF  INERTIAL NAVIGATION  SYSTEMS 

§3.1.  Calculating the Cartesian Coordinates of an Object. 

3.1«1.     Initial  relations.     Let us consider an inertial 

navigation  system constructed in  the  following manner.     Three 

newtonometers n  ,  n    and n     fFigure  3.1)   art; mounted on the plat- 
x     y z 

form of an absolute angular-rate meter with three degrees of free- 

dom.    The directions of the axes of sensitivity of the newtonometer 

coincide with  the directions of the x,   y and z axes of the right- 

hand orthogonal coordinate system Oxyz,  bound to the platform. 

In the general case the platform is installed on board  in a moving 

object in  a gimbal  suspension with   three degrees of  freedom simi- 

lar to  the way in which  the  gyrostabilized platform   (Figure  1.10), 

considered  in   §1.3,  was  suspended.     Let us a^teume that the  task 

of  the inertial navigation  system is to calculate  the Cartesian 

coordinates  C*,   %  and  c* of point  0 in  the coordinate  system 

0 (*fl«C«   (or coordinates r,,   t\  and  (  of this point in the coordi- 

nate  system o ClC)«  and also  the parameters which determine  the 

orientation  of  the object    relative to the axes of this  system. 

/>; 

OI^I 

Fig.   3.1 

The coordinate axes 0 ccl|ftC*«  which we introduced previously 
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to derive  the   fundamental equation of inertial navigation,   retain 
fixed directions relativu to  the  directions  to the  remote  stars. 
The origin 0    of this coordinate  system is incident with  the earth's 

i 
center of mass.     We  shall henceforth    assume that  the earth's  center of mas 
coincides with  its geometric center.     The coordinate  system 0 ^nc# 
also  introduced previously,   is rigidly bound    to  the earth.     Its 
origin is incident with  the earth's center and the  t,  axis  is direc- 
ted along  the  vector of  the earth    rate. 
The C  and  n  axes are  located  in  the equatorial plane.     Let us assume 
further that  the t, axis coincides with  the line of intersection 
of       the planes of the equate:- and of  the Greenwich meridian. 

Let us  assume that  the  sensitive  masses of the newtonometers 
are  located at point 0.     Let us denote   their readings by n   /   n   , 
and nz.     Let  us denote  the  readings of  the  absolute angular velocity   (rate) 
meters by mv,   mv and m^,   respectively.     Let us assume  that 

«,=-1.1,.    ni,   ici,.    m, 3 1.1,, Kiti.) 

where  OJ  ,   OJ     and »    arc projections  of  the absolute angular 
velocity of  the platform to  the axes of trihedron xyz bound       to 
it.     According  to  the accepted disposition of the  suspension  axes 
of  the gyroscope housings and the directions of their intrinsic moments 

of momentum /   the  values of m  ,   m    and m    are calculated by 
relations   (3.1)   and   (1.43)   or by   (3.1)   and   (1.45).     It  follows   from 
these  relations;   that the values of m  ,   m    and m    are proportional 
to the values of deformations of elastic  suspensions of gyroscopes 
G  ,  G    and G   ,   respectivoly,  with groat accuracy. 

2 13 

Lot us  use equation   (1.88)   of motion of the  sensitive mass 
of  the newtonomoter  to derive   the equations of ideal operation.     Let 
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UR  first  introduce  the coordinate  system 0 xyz,   whose axes  are  parallel 
to the coordinate axes Oxyz of the  same name,   and let us  take  as the 
origin  the  earth's cent« 
coordinates  x,   y and  z. 

Let us  turn  to equation   (1.88) 

origin  the  earth's center 0 xyz  can be obviously given in Cartesian 

(3.2) 
rf'r 

*mffr~§¥% 

The newtonometer readings of  the  considered  inertial  system 
arc projections of vector n  to  the  coordinate axes Oxyz.     These 
projections  are equal  to  the corresponding projections  to coor- 
dinate axes  0 xyz,   since axes Ox,   oy and Oz are parallel  to  axes 
0 x,   0 y and  0  z,  and,   thus,   trihedron  Oxyz moves  in a  forward 
direction with  respect to  trihedron  0 xyz.     Differentiation  in 
equation   (3.2)   is carried out in  the  coordinate  system 0 C«n*C*. 

' • i 
Thn  coordinate  system Oxyz has a  common origin with  it and  rotates 
with respect  to  it at an angular velocity u  to axes  0 x,   0 y  and 
O z are obviously equal  to ML.« M    and w  ,  because  trihedrons   Oxyz i ^      J x'     y z' • 
and 0 xyz,   as already noted,   have  an   identic 'x orientation  in  the 
coordinate   system 0 ^n^C*. 

Having  applied  formula   (1.14)   twice  to  r,  which yields  the 
expression  of   the  absolute derivative of the vector in a  rotating 
oordinate   system,   wo   find: 

(3.3) 
itf il'r 

icre 
(3.4) 

- 
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mmmmmmm 

while tho dot denotes the local differentiation in the coordinate 

system 0 xyz, i.e., differentiation of vectors r and w, given by 

relations (3.4), provided that x, y and z in these relations do not 

depend   on time. 

By substituting the second equality of (3.3) into equation 

(3.2), we find: 

(3,5) 

n -^»-f H;. v - gir) 

Taking into account equalities (3.1) and introducing the 

vector 

(3.6) 
m   ; m.jt f i>ity i "i,/. • • 

we write  the  equality   (3.5)   and the   first  relation of   (3.3)   as 
follows: 

(3.7) 
''' 

r — »■- m Xr. 

=»«    M • v t r(ri. . 

where 
»--^•»-f «,y + V' (3.8) 

since vector n  is given by its own projections  on the coordinate 
axes   Qxyz,  or,   which is the  same  thing,   on the axes of system  0 xyz. 
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3.1.2.   Integration of the  fundamental  equation during arbitrary 

rotation of  the  platform of an  inertial   system.     The  first group of 

equations of  ideal operation.     If we  assume  that vector g of the gravi- 

tational  field  strength    can be given in  the  form 

l*t»«*+4Ur4|pi (3.9) 

where g  ,   g    and g    are known  functions of x,   y and z and are  time 

functions,   then equations   (3.7)   can obviously be  integrated.     As 

the result of  integration we   find: 

(3.10) 
I 

• = J I» - m X * + *(/■)! d/+ •(()). 
n 

I 

r = J(II - m xr)dl + r(0). 

where  r(0)   and  v(0)   are  the values of  the  vectors r and v at t=0, 

i.e.,   the  initial  values of those  vectors. 

t- -* 
Equations   (3.1Ü)   permit us  to calculate  r and v in  the co- 

-► -♦ 
ordinatc  system o  xyz,   if we  assume  that  vector g(r)   is  represented 

in  the   form of   (3.9),   the  initial  conditions of v(0)   and r(0)   are 
-♦ -* 

gxven and  the projections of vectors n and m to axes x,   y and z  are 
■+ 

known.     Calculation  of  r in  the coordinate  system O xyz means,   as 

follows   from the   first  formula of   (3.4),   calculation of  the  Car- 

tesian  coordinates  x,  y and  z of point O  in  the  coordinate  system 
O xyz. 

i 

In  the  considered navigational  system  the  newtonometers  and 

absolute angular-rate  meters are  located along  the x,   y and  z axes. 

Vectors n and m are  represented  in the  form of   (3.6)   and   (3.8), 

and  the projections  of n   ,   n   ,   n   ,  m  ,  m    and m  ,   required for in- x       y       z       x       y z 
togration  of equations   (3.10),   are  known  as   time  functions.     This 

may not be  said of projections g  ,  g    and g    of vector g on axes 
^   x  y     z 

x, y and z, because vector g is known in the general case only in 
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the earth body axes system 0 Cn^. 

In the coordinate system 0 r,T]r,  the earth's gravitational field 

is clearly determined by the representation of the power function 

V(^,n»0. Vector g of the gravitational field strength is then 

expressed in the coordinate system 0 5nC by the equality 

(3.11) 

i.e., 

(3.12) 

where C/ n and £ are unit vectors of the correspondincj axes. 

To find the projections g . g and g ofr vectors contained 
X       jr Z 

in the first equation of (3.10), the relative positioi of axes 

x, y and z and of £,,   T]  and 5 must be calculated from ;he known 

projections of 3V/3C, 3V/Dn and 3V/H of vector g on ;he earth 

body axes f,,   r\  and c 

It is easy to see that the relative position of axes x, y and 

z and of ^, n and f; is required to find the projections g , g. and x  y 
g only in the case of an arbitrary gravitational field. If we 

assume that the earth's gravitational field is spherical, then 

(3.13) 

where |i ic the product of the earth's mass by the gravitational 

constant. 
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From the second formula of (3.13), the expressions for g , 

g and g by x, y and z follow immediately! 

(3.14) 

mm.       M        *   —       '"        »  _       ■ 

Thus,   in the case of a spherical gravitational  field,   formulas 
(3.10)   together with  relations   (3.14)   form a closed system of equa- 
tions  for finding x,  y and z.    The indicated circumstance makes it 
convenient for further representation of the power function of the 
earth's gravitational   field in the  form of  the  sum 

(3.15) 

where  the  first term characterizes  the spherical part of the earth's 
gravitational   field,  while E(C,   n,   C)   is a  slight deflection of the 
field from a spherical  shape. 

Equations (3.10) with known values of g , g and g permit 
calculation, as was already noted, of the Cartesian coordinates 
x,   y and  z of  the object. Equations   (3.10)   are essential 
similar to equations   (1.89)   and they could be called equations of 
the  ideal operation  of  the  inertial  system under consideration,   if 
the  task of  the   latter could be  limited  to   finding  the Cartesian 
coordinates x,   y and  z of  the object in the  coordinate  system 0  xyz. 

But     trihedron xyz  varies  its  spatial orientation arbitrarily 
in  time,  bocause no  limiting condition of any kind    has yet 
been applied  in  this  relation,,     Therefore,   a knowledge of the 
object's position  in   the  coordinate  system 0 xyz  is inadequate  for 
purposes of navigation.     To solve navigational problems,  one should 
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either find coordinates r.,   T\ ot r, of  the object in the earth body 

axes system or coordinates f^,   n« or (^ in the fundamental Cartesian 

coordinate system 0 ^n^C», whose motion with respect to the earth 

■ Ty be assumed known.  To find coordinates C» n and C from known 

ilues of x, y and z, one must know the relative position of tri- 

,'drons xyz and 5nC (which simultaneously solves the problem of 

inding g , g and g )» and to find the coordinates C*» n*and r,^, 

ne sliould know in turn the position of trihedrons xyz and C*n*C* 

• ith respect to each other. 

3.1.3. Determining the orientation of the platform.  The 

second group of equations of ideal operations.  Let us determine 

the relative positic J of trihedrons 0 xyz, 0 fjnC and 0 K*r\tr.t, 
1 l j      w     w     w 

We know the relative     position of these  trihedrons at  the  initial 
moment of  time,   the  angular rotational velocity w=m of trihedron 
0 xyz with respect to  trihedron 0  C*n*C*  and  the  angular rotational 
velocity u of  trihedron 0  f,r\r, with respect to   trihedron 0  C*n*?». 
It  is easy  to  see  that  the problem reduces  to  determining the para- 
motors which characterize   the orientation of a moving trihedron 
with  respect to  a moving  object,  with  fixed orientation by the known 
projections of  the absolute angular velocity on  its axes.    This 
problem leads  to  the well-known Poisson equations. e    us 

d3rivc  them. 

Let us introduce  the  direction cosines which  characterize  the 
'lativo    position of  coordinate  systems 0  f^n*^: 

(3.16) 

X y i 

u "ii "u ", 
\ «« ".? "j 

C Oil «,, n, 
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Unit vectors C*» n* and c* of axes C*n» and z^  are obviously 

expressed by unit vectors x, y and z Of the x, y, and z axes in the follow- 

ing manner: 

(3.17) 

l. = <'ii*-Ml,.y-(-iiIJ;. 

fc"%M oiiy + ci.!,*. 

Let us differentiate  the unit vectors  C*»  n* and c# in the 
coordinate system Oixyz.     According to formula   (1.14),  we  find: 

(3.18) 

#• 
>X%, 

But the coordinnte axes 0 C#n*^* do not change their orien- 

tation in absolute sp '.-e; therefore, the absolute time derivatives 

of the unit vectors of those axes are equal to zero: 

By combining these equalities with those of (3.18), we come to 

the equations 

(3.19) 

By  takinq  into  account equalities   (3.1),    (3.4),    (3.6)   and   (J.17), 
wo  conclude  that equations   (3.19)   may be  integrated in  the coordi- 
nate system o xyz. 

i 
As the result of integration, we find: 
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ff      < 

l.-/(|.X«)rf/-»t.(0). 
I 

t.-J«CX'm)rf/ + {,(o).   . 

(3.20) 

. here  vectors tg   (0)»  n*   (0)  and ^   (0)  characterir«  the   relative 
osition        of the coordinate  systems  0 xyz and  0 ?*n*C*  at the 
nitial moment of time. 

The vector relations (3.20) are equivalent to nine scalar 
equations which form three groups. These equations are easily 
tained by using equalities   (3.6)   and   (3.17).     They have  the  fo 

(0) I. 
"U—J(Ol)«l, —OnK^i/f-f. »II (0), 

•ii— /(0|,"i, - a^Jdl + aniO); 

ob- 
They have  the formi 

(3.21) 

■ 
»ai ■ / («n". - O;!",)«" + ",1 (0). 

c    ■ ' '  '' 
I 

•a - / («:**. - a„"<,)rf/ + oB(0). 

"n ^ / (»a*, - »i^.)« + "H (0)i 

(3.22) 

«tl~jl"H'>l,-<l1,'*,)<ll   I   «.,(11), 
I 

«„*-• Jtn,,«,-.!,,«,«// ) n,,^) 

(3.23) 
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Each of the systems of equations   (3.21),   (3.22)   and   (3.23) 
are also Poisson equations known in theoretical mechanics.    Equa- 
tions   (3„21),   (3.22)   and   (3.23)   reestablish the  table of direction 
cosines   (3.16):    equations   (3.21)   reestablish its first line and 
equations   (3.22)   and   (3.23)   reestablish the second and  thii ; lines, 
i^opectively. 

It is now easy to  find the relations  through which  the Cartesian 
coordinates  C*»  n# and  ?Ä are expressed by x,  y and z: 

(3.24) 

where unit vectors C*/   n*  and c«  are calculated by formulas   (3.17), 
while vector r is givan by the first equality of   (3.4), 

The scalar equations,  corresponding to tftelations   (3.24), ob- 
viously have  the  form: 

(3.25) 
t.-.anjf-f auVpl-o,,», 

H —<i;,jr f nny.f-n:1», 

The  relations  reciprocal to  relations   (3.25)   and   (3.17)   are 
obvious.     We note  that equations   (3.19)  may easily be  inverted, 
i.e.,   instead of equations   (3.19)   for unit vectors ^A,   n* and  c* 
in  the projections on axes  x,  y and  z,   the equation for unit vectors 
x,   y and  z  in  the projections on axes  f;^,  n* and  C* can be  found: 

#-•*• f-«H# t-üXA (3-26) 
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Equations (3.26) are obtained, if by using the principle of 

Galilean relativity, we assume that trihedron xyz is fixed, while 

trihedron C*n*C* is assumed to rotate with respect to trihedron xyz 

at an angular velocity of -ü)=-m,. Now using the relations inverse 

to relations (3.17), we can now turn to the scalar equations from 

vector equations 0,26).  The scalar will differ from the equations 

in (3,21), (3,22) and (3.23) by the fact that the first and second 

indices of the direction cosines a.. will exchange places and 

-m. , -m  and -m  will appear instead of m , m and m . 
t,*n»      o* xy     z 

Let us now turn to finding the mutual disposition of trihedrons 

0 xyz and 0 (!)(« Let us introduce the tables of direction cosines: 

"ii 

a'.,. 

(3,27) 

"Vccording  to  table   (3,27),  we have: 

^.■»o.'.i-M^n-i "'„i- 

(3,28) 

By differentiating unit vectors ^il,  n^ and c* in the coor- 

dinate system 0 fpr,, we find similar to equations (3,19): 
i 

t.4«Xt.-o 

(3,29) 
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ir 

c-J(;.x»)'« + t.(o). 

(3.30) 

Unit vectors C*f n# and c^ in equations (3.29) and (3.30) 

are given by equality (3.28), while vector u should be assumed to 

be represented in the form 

•}'«■ +uw» + jt» « ■ 

Local differentiation in expressions   (3.29)   and integration 
in  formulas   (3.30)  were carried out in the coordinate  system 0 Cn?. 

■ ■% 

Equations (3.29) can be inverted in the same manner that 

equalities (3.19) were inverted by equations (3.26). 

From vector equations (3.30), three groups of scalar equations 

are obtained: 

(3.31) 
<'ii=/(";.V",,",'.,)'" + "i.«"*' 

0 
I 

o 
f 

"li ■ / (0l,«n - "I'J«!) «+"Ü ("); 
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i 

(3.32) 

,,i>"/("i1-,-",;..«l}rf/ + «;i(n) 

(3.33) 

If the value of the earth rate u is assumed 

to be constant and the direction of u is assumed to 
with the axis 0 r,t   then coincide 

(3.34) 

It then follows from the throe equations (3.31), (3.32) and 
(3.33) that 

(3.35) 

The  remaining six equations   fall   into  three  systems  of second- 
order equations  of  the  same   type: 

0 J      " 

(3.36) 

m t »^(o), 
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«jl-./oi« + «;1(0). a;--./<«+«^(0). 
(3.37) 

(3.38) 

(0). 

The systems of equations (3.36), (3.37) and (3.38) have con- 

stant coefficients and are easily solved. It follows from them that 

oj, = aj, (0) cot •/4«;, (0) sin «/. 

■»i ■ "ii,0't0, "' ♦ "'/i'0*,ln "'• 
a^ — - a;, (U) >ln «/ f a;v (0) cos »I, 

oj, -a'„(0)coi tt f n'B(0)sinHI. 

a'a*=> -a'al(0)Haul )• «'„(0)cos«>. 

(3.39) 

If we assume  that axis  r,  coincides with axis  ^,   and axis 
f;#  is  directed  toward  the point of the vernal equinox,   then 

uu-«ii-»i-»o;,'-o.  0^=1. 

In this caso the table of direction cosines (3.27) determines 

the relationship between the Cartesian coordinates ?, + ,   n* and £* 

in the first equatorial coordinate system and the Cartesian coor- 

dinates /;, i and c in the coordinate system o Cl)C« 
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Of course, relations (3.35) and (3.39) may also be obtained 

directly from geometric concepts.  However, it will be more con- 

venient for us in the future to use more general equations (3.31), 

(3.32) and (3.33), rather than relations (3.35) and (3.39). One of 

the reasons for this lies in the fact that equations (3,31),(3.32) 

and (3.33), being equivalent to relations (3.35) and (3.39) with 

regard to premise (3.34), generally do not compel us to use this 

premise. 

By knowing a^^(t) and a!.(t), i.e., by knowing the relative 

position   of coordinate systems C#, n*?* and CnC and xyz, we 

can obviously immediately find the parameters which determine the 

relative position of trihedrons xyz and CK.  In fact, let the 

direction cosines between the axes of these trihedrons form the 

table: 

x      y     t 

I   fix   C'I; Pn 
1 fn TH Pn 

(3.40) 

It then follows from tables (3.16) and (3.27) that 

(3.41) 

»„^ 2 a,."', r        t- I. I, 3.    fmt, 2. 3. 

Along with expressions   (3.41),   the  direction cosines   ß..  may 

also be  calculated by means of equations  similar to   (3.21),   (3.22), 

(3.23)   or   (3.31),    (3.32)   and   (3.33).     According  to   table   (3.40), 
vo   have; 
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(3.42) 

Trihedron xyz  rotates with respect to  trihedron 5n5  at 
angular velocity of 

an 

mum - m. 
(3.43) 

By assuming that trihedron Cnc  is  fixed and by differentiating  the 
unit vectors   £,,   n  and (  of its  axes   in  the  coordinate system xyz, 
we find: 

(3.44) 
t-f-(m-ii)Xi^0.   n + C«-»)Xli=»0. 

By integrating equations   (3.44)   in the coordin 
xyz,  we  find: 

l-JlXC« - u)äl + liO), 
0 

f 

n = /nx(m~«)<» + i|(()). 

i 

C-» Jexcm —ii)d/ f {(U(. 

ates  system 

(3.45) 

154 



  

nar.ce, similar to equations (3.21), (3.22) and (3.23), we have the 
following scalar equations: 

w    . 

> 

# 
»■•-/iM«,-.,)-*,,,,,,-.,,),.,,.^,,,,. 

(3.46) 

»»=■ / Ifti («•. - «.) - fa («i, - K,)! rf/-f-hi (0), 

fa - / IM«, ~ «,) - fa («i, - «,)) rf/ 4- fc, (0) 

fa-^Jfa«»,-«,)-^",-«.)!"*-»,,«)). I 

(3.47) 

fa " /1',''('"'- •.) -M",■-«,)!rf/-f (i.,, (0), 
i 

fa mj tf), (m, - ,f,... ^ (/, _ ^ (1 (// + ^^ 

(3.48) 

\ccording   to   table   (3.40),   in  these equations 

(3.49) 
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Now, when the direction cosines 6..(t) are found which 

characterize the relative position  of trihedrons xyz and ^nc 

and which permit calculation of the Cartesian coordinates C/ n 

and c from the known coordinates x, y and z according to tables 

(3.40), we can go on to calculating the projections g , g and 
-♦ *  y 

g of vector g, contained in the first equation of (3.10). 

It follows from formulas (3.14) and (3.15) that: 

(3.50) 

The projections of grad c on axes x, y and z are equal to: 
(3.51) 

grid, t = 3j P,, h -^ P,; -f -^ P.„. 

The   factors  3c/8C»   dc/dr\  and  3c/3c»  contained  in equalities 
(3.51),   are  functions  of coordinates  ^,   n and  r,.    The integrand of 
the  first equation of   (3.10)   shoul 1 contain  only time  functions. 
Therefore,   coordinates   f,,   n  and  t,  :.n  the arguments of the  deriva- 
tives  should be expressed oy x,  y and  z,   i.e.,   instead of ^,   n 
and  C  the   following expressions  should bo  substituted 

(3.52) 

l — ri,«-1 feH M« I 

C^r.,« -t ('..-y+ 11..1.-. I 
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3.1.4.  The complete system of equations of ideal operation. 

By combining equalities   (3.10),   (3.11),   (3.15),   (3.20),    (3.24), 

(3.45)   and   (3.52),  we find the complete system of equations of the 

ideal operation of the considered diagram in vector form: 

(3.53) 
• - Jm - «i x •+#i rf/-f •(()). 

i 

r-jit-myrW+rm 

|,-/(|.Vill)rf/-f-J.(0). 

«i)rf'-»-n.(0). .-/(1X 

t.»/(fcX«)'"-+t.(0); 

(3.54) 

l-|llX(m-«)|rf/4 K0), 

i 

^-J|tiX(m-«)|rf/+t|(0). 
i • 

■ 

(3.55) 

(3.56) 

S. = r-{.,    ti,     r.i|..    H-'  t.: (3.57) 

t^r-t.     i|  -f   n       i-r I (3.58) 

All the  vectors  in  this  system of  equations are  calculated  in 

coordinate system  o xyz.     Integration  in  equations   (3.53),    (3.54) 

. 
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and   (3.55)   is also carried out in  this coordinate system.     Equa- 

tions   (3.53)-(3.58)   are a closed  system of equations,  which,   accor- 

ding to  the values of m and n,  obtained as the  result of measurements, 

according  to initial  conditions r(0),   v(0),   C^CO),   n»(0),   C*(0), 

^(0),  n(0),   and  5(0)   and according  to given values of v,   c  and u, 

permit us  to find simultaneously  the Cartesian coordinates of the 

objects   x,  y and z in moving trihedron 0 xyz;   ?,   n and  c in tri- 

hedron O  C'K,   bound to  the  earth,   and C*,   n* and   c*  in  the  fundamental 

Cartesian coordinate  system. 

In  completing the  derivation of equations of ideal operation, 

we  turn  from vector equations   (3.53)-(3.58)   to scalar equations. 

Taking  into account the  first equality of   (3.4),   equalities   (3,6) 

and   (3.8),   relations   (3.21)-(3.23),   (3,25)   and   (3.46)-(3.48)   and 

formulas   (3.49)-(3.52),   instead of  the vector equations   (3.53)-(3.58), 

we  find  the  following  scalar equations: 

I".-("',",-«.»%'+ft)rf'+ "'(0)' 

I», -  (m^,- «,*•,)+ e,\-ii f «,«>)■ 

(«,- {n,x-m,i)\ril + ym 

i 

(3.59) 
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•,, - J (o,,«, - o,,«,) äl+a,, (0), 

a,,- J («iv", - a,,«,)«+«,i(0). 
» 

» ' 

1 

0»= J lyy—%q|«+^M 
1 

^-f(aui«,-o„«,)rf/4«J1(0). 

•■-= / C«"», - "»*•*)<" + oM(0); 

(3.60) 

(3.61) 

fci - / ^, («■, - «,) - p,, («, _ ^| rf/ 4. (,ii (0)   j 

fc»- J lhi(%-»,)- (I,,(„,_ „ju, 4 pli(0) 

■ .'   I ■'     " 

P« - / I»« («.-«.)- Pu («, - .,)) ,„ 4 n, (0). 

to-J IM",-«,)-&,(*.-,,,)| rf, + I^J,,, 

i 

!>»-=/ I|l,i(m, --«,)- (lu(m, - «.)) j/ + p^^n,, 

»« = J ll'ii('",-ii,)-nM(m,_«))|^ + pj|(,l) 

fc> ■ J IM«, - «,)— PJ, (m, - «,)),« f- p,}(0). 
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1.^0,,*-f. !!„)! +«I,,». 
n.-0liT+an)r-f,,J,/. 

(3.62) 

I -=Pii*-f-fijy-fP,j». 
(3.63) 

•.=•«^11+»Jin 4 »Jl.u: 

(3.64) 

(T, ■=• --7r + sf >ii + jj-j f.'i t~ fV 

(-1,65) 

If we use premise (3.34), then the direction cosines ß.. in 

relations (3„63)-(3,65) may be substituted for their expressions 

by ... and »•.. according to equalities (3.35), (3.39) and (3.41), 
Relations (3.61) are superfluous in this case. 
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The equations similar to (3,62) and (3.63) may be joined 

to the derived equations to calculate vr , v » v  and vr, v 

and v, from the known values of v , v and v . 
C x  y     z 

Equations (3,59)-(3.65), equivalent to vector equations (3,53)- 

(3,58), also permit calculation of Cartesian coordinates ?#, n* 

and c* and C» n and ? along with coordinates x, y and z. 

By knowing the Cartesian coordinates C4, n* and C# or C» n 

and Cf we can generally find the curvilinear and moving  coordinates 

of the object in coordinates systems 0 C#n*5* and O 5nC or in any 

other coordinate system moving in a known manner with respect to 

system 0 ^n«?« or 0 t,r\z  by using the corresponding calculations. 

To do this, it is necessary only that the relations which link the 

Cartesian coordinates f^, n* and c» or C, n and c to the curvilinear 

coordinates being introduced be given. Obviously, time may be con- 

tained in this relationship in an explicit manner. 

Let us turn to the second problem which should be solved by 

the considered inertial system, i.e., let us turn to determining the 

orientation of the object in the coordinate system 0 C^l*?*, To 

solve tnis problem, it is sufficient to determine the orientation of 

trihedron OXYZ, rigidly bound to the object, in this coordinate sys- 

tem.  The position of the axes of trihedron OXYZ with respect to 

trihedron OXYZ is completely characterized by angles a, ß and y  of 

the revolutions of the gimbal rings of the inertial sys- 

tem platform with the object.  These angles can be measured.  The 

following values of direction cosines between axes x, y and z and 

axes X, Y, Z(x^ y^ z^) are easily found from tables (1.50) by multi- 

plying out the three matrices included in those tables: 
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X     COlfriHV 
V    «lnutln|(cosY f 

'f coiY>>nr 

(3.66) 
y * 

-cotOilny llnp 
- slnuiln(lsltiY+ —ilnacojp 

-fcotacoiv 
/    — (niatln|tcoiv-t-    - iinailn|t<lnvf   cosoco«)! 

-f >liia<ln( -t ilaaioif 

The'.e direction cosines together with the table of direction 

cosines (3.16) obtained from equations (3.21), (3.22) and (3.23) 

obviously give the direction cosines between axes C#, n* and C# 

and X, Y and Z, which also determine the orientation of the object 

with respect to the coordinate system 0 C*n*C*. 

By using table (3.27), we can easily find the orientation of 

the object with respect to the earth body a^is system 0 CnC. 

If we measured the derivatives of angles x , 6 and f  with 

respect to time, i.e., the values of a, ß -and y,  we can also find 

the projections of the absolute angular velocity of the object 

on the axes bound to it. Actually, by noting that the relative 
•  •     • 

angular velocities of a , ß and y ^re directed along the axes of the 

gimbal mount, i.e., along axes x", y" and z", and by turning to 

tables of direction cosines (1.50) and (3.66), we find: 

(3.67) 

*>»•■*•.. «0» (I Co^V- <ii,io$|lsliiv (m.slnf fa. 
w,. «s M, («In n tin |l cos y f 101 H sin |) f 

+ m,( —tliiii\lii(i«inv | (m"Co«v) — 

<«, + |NM|M| f f. ciisa. 
•/='".(■- fcnn«ln|lco«V4 «UKUIIIV) V 

4 /II,(IO«II»|II(1»IIIV | slnnibsY)-) 
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The equations   (3.59)   of ideal operation    derived above    were 

based  on the  fundamental equation of inertial navigation,   taken in 
the     form of   (1.88).     Equation   (1.88)   differs  from the exact equa- 
tion   (1.86)   by the  fact that  the difference 

(3.68) 

^,=■^,(0) .r,(r) 

of the attractive forces of celestial bodies (except the earth), 

determined by expression (1.87), at point 0  (the center of the 

earth) and at point O (the location of the sensitive masses of the 

newtonomoters) is discarded. 

It is also essentially not possible to introduce this simpli- 

fication.  Let us show how the equations of ideal operation of type 

(3.59) can be constructed according to the exact equation of mo- 

tion (1.86) of the sensitive masses of the n^Wtonometers. 

Having assumed for simplicity that the gravitational fields k 

of the celestial bodies being taken into account are spherical, 

according to equality (1.93), we find: 

(3.69) 

"■•-.l-'ß-Fift)' 

where, by analoyy to equation (3.17) and (3.25), 

'I-OII'M + U.I'L, I (i,,t.(, 
J'i^Oitt.i+Unii, f a^,. 

'i "■"i.I.«+ ",.1,4 0^, 

(3.70) 
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The values of C*f (t) '   ^^ (t)   and C^ (t)   in formulas   (3.70) 
are  coordinates of the i-th  celestial body in the coordinate sys- 
tem O  CJIH*?;*.     These coordinates  should be known time  functions. 

Thus,   to find the equations of ideal operation,  which corres- 
pond  to exact equation   (1.86),   AF    .   AF      and AF      and  the given 

IX iy iz 
formulas   (3.69),  respectively,  should be added to  the  integrands 
of the  first three equations  of   (3.59)  and, moreover,  relations 
(3.70)   should be included in  the  system of equations  of ideal 
operation. Consideration of   the asphericity of  the gravitational 
fields of the celestial bodies  is for the time being only of strictly 
theoretical interest,  although it may be    performed   Except for com- 
plicating the relations obtained in this manner,  this consideration 
does  not cause any essential difficulties. 

It is easy to discern that the constructed system of equations 
of ideal operation   (3.59)  is not the only one possible.     It turns 
out that several systems of integral equation essentially equiva- 
lent but differing  in form,  which may be equations of ideal opera- 
tion,   can be constructed without altering the  functional   diagram of 
the  device  described above.     Let  us indicate  the main  variants. 

By using the solution of the  second group of equations of 
ideal  operation,   i.e.,  equations   (3.21),   (3.22)   and   (3.23),  inde- 
pendent of equations?   (3.59),   the  nowtonoraeter readings  could be 

projected on axes'V^n«" and ?*  and vector n  in projections  on these 
axes  could be obtained and double   integration of the   fundamental 
equation  could be carried out  in   the coordinate  system   O f^n*?*. 
This method is one of the most difficult to  realize,   because cal- 
culating operations with the newtonometer readings must be performed 
until   integration of them. 
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Double integration in equations (3.59) is carried out in the 

same coordinate system as that which measured the components of 

the absolute angular velocities and newtonometer readings, i.e., 

in coordinate system 0 xyz. Some variation of equations (3.59) 

is also possible.  Having turned to vector equations (3.53), from 

which were found the scalar equations (3.59), we note that the 

two equations (3.53) can be combined into a single equation: 

(3.71) 
r«| J [»-mx(r f ■X»Hil** 4- 

• i 

This variant is  interesting     in    that    coordinates 
x,  y and  z are obtained by double  integration and,  consequently, 
double   integrating devices can be  used here. •-However,   to  find 
the velocity r,  which is contained  in the integrand   (3.71),  we 
must differentiate  the derived coordinates x,   y and z.     Moreover, 
along with the coordinates  the  velocity of the object may be a 
necessary navigational parameter and the derivatives of coordinates 
•  •     • 
x, y and z may also be necessary to calculate it. 

This variant of constructing the equations of ideal operation 

is also possible.  First integration is carried out along the axes 

x, y and z, i.e., the first three equations of (3.59) remain un- 

:hanged.  The projections v , v and v of the absolute velocity 

)f the object are recalculated to other directions, for example, 

iy using direction cosines (3.21), (3.22) and (3.23) to the direction 

f axes  5<M n» and r^,  and the second integration is accomplished 

long the coordinate axes Of;*n*'r,*.  This variant usually does not 
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yield any advantage in the number of calculating operations, and 

it is always more difficult to perform calculations with deriva- 

tives of the coordinates than with the coordinates themselves, be- 

cause the former are more rapidly variable time functions than the 

latter. 

The second group of equations of ideal operation (3.60) may 

also be represented in other forms.  Instead of direction cosines, 

we can obviously take any other parameters which determine the 

orientation of trihedron 0 xyz with respect to trihedron o C^n^C*. 

For example, these parameters may be Euler angles or equivalent 

angles or Rodrigues-Ilamilton or Cayley- Klein parameters.  Con- 

struction of the integral equations by which the value of these 

parameters can be found from known values of m , m and m presents x  y     z 
no difficulty, and we will not dwell on this.  The more so since 

equations (3.60) are more convenient than the others when working 

in Cartesian coordinate systems and since thej have a very useful 

synunetry which facilitates their use as equations of the ideal 

operation of an ine/tial system. 

The foregoing is also applicable to equations (3.61) „  It was 

pointed out earlier that equations (3.61) can be substituted for 

equations (3.31), (3.32) and (3.33) and relations (3.41), and if 

the assumption (3.34) on the constancy of the value and direction 

of the vector of the earth rate  is  taken , 

then equations (3.61) can be substituted for relations (3.35), (3.39) 

and (3.41).  In the latter case formulas (3.64) fall out of the 

equations of ideal operation. 

Attention should also bo given to one characteristic feature 

of equations (3.59)-(3.65).  Equations (3.60) are a closed system 

which can bo solved separately from the remaining equations.  Equa- 

tions (3.61) and relations (3.64) taken together also form a closed 

I 
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system which can be solved independently. Equations (3.59) form 

a closed system with relations (3.63) and (3.65), solution of which 

at each time interval is possible only after solving equations (3.61) 

and (3.64).  Solution of equations (3.60) is not required for this. 

Finally, coordinates C*, n* and C^ are calculated by formulas (3.62) 

only after solving equations (3.59) and (3.60). 

The indicated relationships of the equations and, consequently, 

the required sequence of their solution are caused by the fact that 

the earth's gravitational field is given in coordinates £, n and c. 

If we assume that the earth's gravitational field is spherical, i.e., 

if we assume that E=0, then equations (3.59) with formulas (3.65) 

also form a group of equations separate from the remaining ones. 

Thus, three groups of equations split off from the system of equa- 

tions (3.59)- (3.65)s  the first group comprises equations (3.59) 

and (3.65); the second group comprises equations (3.60) and the 

third group comprises equations (3.61) and lf764).    These three 

groups of equations are solved independently. After solution of 

them, coordinates C*, n* an^ ?* an^ tt   1 and /; are found from formulas 

(3.62) and (3.63). 

3.1.5. Special case; fixed orientation of the platform 

in space and orientation of one of its axes along the direction 

toward the center of the earth.  When deriving the first group of 

integral equations of ideal operation (3.56) or (3.59) of the in- 

ertial navigation system being considered, it was assumed that the 

platform of a three-component absolute angular-rate meter (coor- 

dinate system Oxyz) was orx nted arbitrarily both with respect to 

inertia! space and with respect to the object. Various special 

cases are possible here. 

If the platform is Invariant relative to the inertial coor- 

dinate system, for example, if the direction of axes x, y and z 
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and C»» H* and C» are combined, then equations (3,59) are trans- 

formed, as one can easily discern, into the previously derived 

equations (1.89).  Equations (3.60) and (3.62) then drop out. 

The orientation of the object is obviously defined immediately by 

the table of direction cosines (3.66), and m , m and m in ex- x  y     z 
pressions (3.67) for projections of the absolute angular velocity 

the object on its axes should be assumed equal to zero 

n formulas (3.61). The corresponding orientation of the plat- 

i may be realized in this case by using a free gyrostabilized 

platform or a system of free gyroscopes. 

The platform of the angular-rate meter can be rigidly bound 

to the body of the object, for example, by combining the coordinate 

systems xyz and XYZ. In this case the gimbal mount of the 

platform on to the object is not required. The equations of ideal 

operations will be equations (3.59)-(3.65).  Relations! (3.67) drop 

out, because the orientation of the object coincides with the 

orientation of the platform and is given by equations (3.60) and 

(3,61), while the projections of the absolute angular velocity of 

the object on its axes are directly the readings m , m and m of 
x  y     z 

the gyroscopic angular-rate meter. 

A case intermediate between the two preceding ones is possible, 

where the orientation of the platform in the incrtial coordinate 

system O C^n^l* will be a known time function, and also a function of 

thu specific navigational coordinate system and the rate of their 

variation in time.  This orientation of the platform can be pro- 

vided only by using a controlled gyrostabilized platform considered 

in § 1.3, or by using a special functional circuit, which is mounted 

on a free stabilized platform and which gives the position of tri- 

hedron xyz,  alony whoso axes  the newtonometers are mounted. 
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relative to the stabilized platform. The stabilized platform, 

as in the preceding case, can be naturally replaced by a system of 

free gyroscopes. 

An example where orientation of a controlled gyrostabilized 

platform is a given time function may be orientation of it in which 

the axes of the platform retain their directions relative   to 

the earth.  Without loss of generality, we may assume that these 

directions are the directions of the coordinate axes o ^n^. Then 
i 

the controlled gyroplatform should rotate relative   to the in- 

ertial coordinate system such that the position of the platform 

is characterized at each moment of time by the direction cosines 

given in table (3.27). 

Let us form the expressions of controlling moments M1* ., M5.. 

and M  , required for this case, by using relations (1,78), which 

in the considered case assume the form: 

< 
(3.72) 

•«—-TT« ".■ -JT-   n-TP 

Relations (1.77), which take into account the finiteness of 

the values of 6 , 6 and 6 , may also be used of course, by first 
1    2       j 

inverting these  relations,   i.e.,  by solving them with respect  to 
M1*   ,  M5     and M6   .     The  latter does not cause  any essential diffi- ix       iy xx 
culties;   therefore,  we shall  limit ourselves to more  simple equalities 
(1.78). 

Having  taken  into account that the  axis o   C is directed along 
vector  u of   the  earth  rate about   its  own  axis  and,   consequently, 
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> 0, i<t -- «, (3.73) 

we find: 

At',.^0.   -H?,-0. -»!?, =.«« (3.74) 

Of course, besides fulfilling conditions (3.73), the initial 

conditions should be observed, namely, the initial position of the 

coordinate systems O Cnc and xyz should correspond to table (3.27) 

of direction cosines a. .(0). 

Having turned to equations (3o60), we note that m , ra and m 

arc now known time functions in them: 

»if-•«, T»O, mttii. 
(3.75) 

It  is easy   to  see  that integration of equations   (3.59)   in  the 
considered case  immediately yields coordinates  C»  1 and  c.     Equa- 
tions   (3.60),   (3.61),   (3.63)   and   (3.64)   drop out,  because even if 
calculation of  coordinates  C*,   n*  and   ^  along with C,   n  and  c  is 
also  required,   they are obtained algebraically  from the coordinates   c,   n 
and  c by using expressions   (3.35),   (3.39)   and   (3.62). 

Orientation  of  the object with  respect  to  the earth is de- 
termined by angle-.   ■«   |  and y of  the  rotations of the 
'lirnbal     rings  of  the  platform,   i.e.,   by  the   table of direction 
cosines     (3.66).     Table   (3.27)   should also be used to  find the 
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parameters  of orientation  relative to  the inertial coordinate 
system. 

If orientation of the coordinate axes  Oxyz  is accomplii hed  by 
a    special  functional diagram located on a  free gyrostabilized 
platform rather  than by a controlled gyrostabilized platform,   this 
functional  diagram  should continuously provide disposition of the 
coordinate systems 0^*1«^*   (stabilized platform)   and Oxyz   (a trihed- 
ron along whose axes  the newtonom'    ^rs are installed)   so that the 
direction cosines  between  the axes of the mentioned coordinate 
systems corresponded  to  table   (3.27).     In  this case    angles a,   ß 
and Y of    the rotations of the gimbal    rings of  the    sta- 
bilized platform determine  the orientation of the object 
olative  to  the coordinate  system 0 CnC  can be calculated by direction 

to the earth body axis  system 0 Znt can be  calculated by direction 
cosines   (3.27)   and   (3.66). 

Let us now consider a case where the orientation of the con- 
trolled gyrostabilized platform is dependent on the coordinates 
calculated by the   inertial  system.     Let us  require,   for example, 
that the  z axis of the platform is constantly directed along the 
radius  vector r. 

If the   z axis   of  the platform coincides with  r,  then 

rnr«.   x^y^O' (3.76) 

and 

(3.77) 

9mit 4 «•>,* - i*,y) 
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From equalities (3.76) and (3.77), we find: 

f«,-V *>,--*,. i-,-r 
(3.78) 

Turning to relations   (1.78),  we find the following expressions 
for the controlling moments M1    and M5   : 

ix     iy 
(3.79) 

Moment Msv, like w , remains arbitrary, because condition 

(3.76) permits this arbitrariness.  The value of this moment may 

therefore be ordered to simplif" the equations of ideal operation. 

For example, we can assume 

•«• (3.80) 

Aft, — 0. 

which is obviously equivalent to the condition 

«,-o 

(3.81) 

The diagrams obtained in this case,   in which  the projection 
of the absolute angular rotational velocity of the platform to 
direction  r is equal  to  zero,  are sometimes called "azimuth-free" 
diagrams. 
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prr=- 

form: 
From the condition of  (3.76),  equation   (3.59) assume the 

'- f («, + -4_j. + „J,,, + ,(0) 

x = y=.0. 
« 

r—J frf/ f '(0) 

(3.82) 

Equations   (3.60)   can be written in the  following 

i 

«,,-J (aIJ»iJ-ol,i.)rf/^o(l(0). 

»it —J(-«IJT--""'"')^ • a'><0 

,11«/lil±l';>rf, + ..1.(0,; 

manner: 

(3.83) 

.1! 

"a 

- f(«.yn,-a3,^-)rf» + ...,(0) 

I 

I 

(0). 

■t UoW- 

(3.84) 
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(3.85) 

■»-»«(0). 

■ / (- 0" T' -«'I'«.)'"-» «»(*'• 

"M 
•ll»! + ■ll'-f rfrfo„(0). 

If conditions (3.80) and (3.81) also occur as well, then 

M(saO. 
(3.86) 

should also be placed in  equations   (3.82)-(3.*85) . 

Since x=y=0,   then relations   (3.25)   are also  simplified. 

Orientation of  the object    relative to the coordinate 
2m 0  C*n»C* is obviously det< 

direction cosines   (3.83)- (3.85). 
system 0  f;*n*';* is obviously determined by table   (3.66)  and by 

Projections of the  absolute angular velocity of  the object 
on   the X,  Y and 2  axes  are  found from formulas   (3o67),   if the 
values of v /r and v /r are  substituted in  them according to   (3.78) 

y " 
instead of M    and M  ,   and  if M =0  is  also placed  in  them under the 
condition of   (3.80). 

If the orientation of  trihedron oxyz,   to which  the newtonometers 
are linked,  is accomplished by using a  free gyrostabilized plat- 
form and special  functional diagram which  gives  the position of 
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trihedron Oxyz       relative       to   the gyrostabilized platform rather 

than by means of a controlled gyrostabilized platform,   the func- 

tional  diagram should provide  relative position    of trihedrons 

Oxyz and 0 C»n*^*»  which corresponds to direction cosines   (3»83)- 

(3,85).    The position of the object in the coordinate system 

0 CaHaC«-   i.e.,   the relative    position of  the  coordinate  system 

O C»n*f;» and the  system XYZ,  linked to the object,  is deiined   ia 

this case by angles a,   ß and Y of the rotations of  the 

qimbal     rings of  the stabilized  platform on  the object. 

It should be noted  that we are talking  for the time being 

about determining  the orientation of the object relative to 

the coordinate system    O   C^n^C»  and 0  ^nc»   i.e.,  about orientation 

of it  in the main Cartesian system or in an earth body axis system. 

It also makes sense to talk about determination of the orientation 

of the object with respect to trihedron Oxyz,  along whose axes the 

newtonometers are arranged.    The relations wrftch we obtained ob- 

viously permit solution of this problem as well. 

§   3.2.   Determining  the curvilinear coordinates of the object 

3.2.1.   Initial  assumptions.     Let the position of point 0  of the 

object be given in  the coordinate system 0   C*n*C* by some curvilinear 

coordinates     *',   n*   and  * 3   non-orthogonal  and    moving        in  the 

general case   (here  and henceforth the superscripts are used to de- 

note different coordinates).    The  transient nature of coordinates 

• ',  ■ 2   and    ■■ s  is  understood as  the circumstance that the surfaces 

of equal value of coordinates,   i.e.,   surfaces  *   =  const,   may vary 

their position with   time  with respect  to trihedron 0   ^»n^C*. 

Radius  vector  r of point  O of the object  in  the coordinate 
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system 0 C^n*^ is equal to: 

(3.87) 

where C»» n# and r.^, as previously, arc unit vectors of the corres- 

ponding axes and C*, % and fg are Cartesian coordinates of point o 

in the coordinate system 0 C#n»^» or, which is the same thing, pro- 

jections of vector r to the axes of this coordinate system. 

For convenience in further expojition, let us replace the 

notations of axes f;^, n# and r,# of the coordinate system o ?*n#5* 

by C1, C2 and C3.  Let us call the coordinate system Of;1 C2 C1 

the fundamental Cartesian system. Then, 

r-W.-K'SH N» (3.88) 

where the subscripts arc retained to notate the unit vectors of 

axes f*| £* and ',*, 

It is obvious that r,1,   F,2  and C3 are functions of curvilinear 

coordinates  ', »' and  3 and of time: 

(3.89) 
f -_- l'(ii;. »». H', /). \f m l'(x'. »•.», K'. i). I 

l' = t>(M'. x'. K\ 0        / 

Equalities (3.89) can be taken to calculate coordinates ., l,   x2 

and i 3. 
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By solving equations (3.89) with respect to •-', x2 a'  is, 

we find: 

«'««'('.'. i', i\ /), a>M#^ i«. ;». /| (3.90) 

In order that there be clear matching of coordinates C1» C2 

and C3 and H ', «2 and «', relations (3.87) and (3.90)should be    ' 

uniquely invoritablo. 

The necessary and sufficient conditions for unique invert?bility 

consists, as is well known, in the Jacobians of the functions 5 ,£ , 
3 12       3 

and (,'   in the variables x , * ,and x  being different from zero: 

(3.91) 

p(t' t't') , 
D{*',*', «■) ' 

It?   3? ft 

i    5 ft 

§   f Sr 

*() 

and  of functions ■ ,« , and x3 in variables C1,?2, and 53 also being 

ditferent from zero: 

(3.92) 

TMT. P.TT * 0 

Wo  shall henceforth assume that this condition is always 

fulfilled. 
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Let us consider an inertial navigation system whose task will 

bo  to detormino  the curvilinear coordinates   *',   *2  and   »'  of  the 

object. 

Of course,   the diagram of  this type of system could be  repre- 

sented as a development of the preceding one.     By calculating  the 

coordinates  ?. + ,   n*  and  c*   (or f.,   n  and t,)  by using  the diagram 

described in the preceding section, we can find the coordinates 

«',   x2    and  «3 by recalculation from formulas   (3.90),  and we can 

also calculate  the parameters of the object with respect to any 

directions,   which are a function of coordinates   H
1,   x2  and   x3   in 

its  known orientation in the coordinate system 0 ^*n#C*   (or      CnC). 

Tliis method is obvious. 

We shall now pose a more general problem whose  solution in- 

cludes  the  above indicated method of obtaining coordinates  /;',   w2 

and  x 3, 
«v. 

Let us  represent the diagram of the system in the  following 

manner.    A free gyrostabilized platform, whose x,  y and z axes 

coincide with the directions of axes  E,1,  ^2  and f;3  of the coor- 

dinate system 0  c'^H3»  is used as its basis.    Three newtonometers, 

the   unit vectors of  the directions  of the axes of sensitivity of 

which are denoted by o  ,  e    and e  ,   are mounted on the gyrostabilized 

platform by  using a  special   functional diagram.     Let  us assume  that 

this diagram is such that it can provide the given dependence of 

orientation  of  the axes of  sensitivity of  the newtonometers on  the 

coordinates  ■■ ',   *2   and   < 3,   calculated by the system,   and on  time: 

r,-=f,(x'. H'.  KJ.  /).    I /•!     Q-ll 
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3.2.2. The general caso of constructing the equations of ideal 

operation.  Let us derive the equations of ideal operation of the 

described diagram of the inertial navigation system, i.e., relations 

of the type obtained in the preceding section, which would determine 

the coordinates K', »;2 and ,,' of the object by the readings of 

r.owtonomoters u     ,«  ,and «   and the parameters which orovide the 
ei    C2 63 

orientation of the directions of the axes of sensitivity of the 

newtonometers, required for this. 

n:   .ng the derivation and analysis of the equations of ideal 

opera..jn of the considered class of inertial navigation systems, 

it is convenient to use the symbolism and methods of tensor analy- 
8 

sis. 

Let us introduce  the fundamental coordinate basis,   formed by 
the vectors 

t     ,.",-* (3-94) 

Vectors r  ,  r    and r    are non-coplanar.     In fact,   in order that 
.k       ► 1       2 * J 

vectors r  ,  r    and r    be coplanar,   the value 
12 3 

(3.95) 
J^r,  (r,y. rO ■ r, (r, X r,) -= r, (r, >: r,) 

should vünifjh. 

But it follows  from expressions   (3.88)   and   (3.94)   that 

(3.96) 
.     PiV.V.i')  , o 
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n view of condition  (3.91)   of the  failure of the Ja- 
< oliian of functions  F,1,  K*  and C3  in variables K

1
» H

2
   and x* 

to vanish  . In the general case  the base vectors  are not or- 
thogonal  to each other, but their moduli are distinct  from unity. 

Since the three base vectors are non-coplanar,  any vector, 
given in the coordinate system 0 C'C2^3,  for example,   vectors 
r,  dr/dt and d2r/dtz,  can obviously be represented by using them. 
The arbitrary vector b can be  represented by using the base vectors 
by  two different methods.     It can be  represented either in the form 
of an expansion by the base vectors 

(3.97) 

or it can be given by three scalar products 

(3.98) 

The values of b    are called contravariant components of 
vector %,  and  the values of b    are called covariant components. 
It is easy  to see that if vectors r ,   r    and r    are orthogonal, 
while  their moduli are equal,   the difference between the  contra- 
variant and covariant components disappears. 

Along with  the fundamental  coordinate basis,   formed by vectors 
r  ,   r    and  r  ,   let us calculate   the basis, rocinrocal  to  the main basis, 
12 3 ► , ► 

laving defined it by vectors r1,   r?  and r5,   related to  the vectors 
)f  the main basis by  the equalitior. 

y. J.   ..   i ''" /tt'r,    ''     ,',■ r,.    t* 'yf.v, 
(3.99) 
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Let us  assume   that the value of J  is  positive  and that  it  is  al- 
ways possible   to provide proper  selection of  the order of numeration 
of the  variables of   n   .    Let us  note  that if  the vectors of  the 
main  basis  are  orthogonal  and  units,   the mutual coordinate basis 
coincides with  the reciprocal  basis. 

Let us now introduce metric space tensor A, determined by 
the curvilinear coordinates •;', -i2 and -i3. The covariant com- 
ponents  a  .   of  the metric tensor are equal to: 

a.»^r,rt. (3.100) 

Tensor A determines the metrics of the space given by the 
curvilinear coordinates  »lt   K

2
  and  -f3.     It follows from relations 

(3.88)   and   (3.94)   that vector dr of the distance between  two in- 
finitely close points of space is expressed by the base vectors 
in the   following manner: 

(3.101) 

Consequently,   the  square of  the distance between  these points 
is equal  to; 

(3.102) 
i    i 

rfS» ^,lr ilr ■--■- 22  i] ".i ''"'J** 

Thus,   the covariant components of the metric  tensor are co- 
efficients of quadratic  form in  the expression  for the  square of dS, 
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which also define  the metrics in  the coordinate system 
in  the neighborhood of  the point being considered. 

»  -2  „> 

Henceforth,  as is used in tensor calculus   (Einstein's rule), 
we will omit the summation    signs  in expressions of type   (3.97) 
and   (3.102),  in which the superscripts and subscripts are repeated 
(umbral indicies  and summation indicies),  by writing these ex- 
pressions  in the form 

(3.103) 

and by assuming that this writing assumes summation by umbral 

indices from one to three. Let us also assume that the non- 

repeating indices pass through values from one to three without 

mentioning this each time. Thus, instead of (3.98), we will sim- 

ply write % 

(3.104) 

Metric  tensor A may also be given by its contravariant a sk 

and mixed a     components; 

(3.105) 
--.r'. <*.   «.* = r.  r« 

Matricies sk, i . || and ||a""|| by definition pre symmetrical 
and reciprocal to each other. Matrix ||a || is a unit matrix. It 
is easy to show that the determinants of these matricies are equal 
to: (3.106) 

M-A   l«"l-7..   K'l  •' 
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From equalities   (3.100)   and   (3.104)   ensue  the following  relations, 
which link   the vectors of the main and  reciprocal basis: 

(3.107) 
^ = a"r..   r, = <,.,,♦ 

It is  sufficient to multiply both  sides of  the  first relation 
♦1 -> 

by r |  and  the second by r7  to ascertain the validity of the  last 
statement. 

Now,   from equalities   (3.97),   (3.98)   and   (3.107),   the  following 
formulas ensue, which relate the covariant and contravariant com- 
ponents of vector b: 

(3.108) 

And,  from relations   (3.107)   and   (3,108) ^we find: 
(3.109) 

Equality   (3,109)   together with  the  second equality of   (3.108) 
means  that  the  contravariant and covariant components of the  vector 
in  the main  base are  its  covariant and contravariant components, 
respectively,   in the reciprocal   base. 

Let us  indicate  the geometric sense of covariant b    and con- 
s - travariant b     components of vector b,   for example,   in  the main 

base.     The  segments 

(3.110) 
».  m _».       _»i_     _»._ 
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are projections of vector b to the vectors of the main base, while 

the segments 

(3.111) 

are equal  to  the sides of a parallelepiped,  constructed on vectors 
-»■-►-> -> 

r , r and r and having vector b as its diagonal. 
12        3 

To derive the equations of ideal operation we must find the 

expressions for the values measured by the newtonomcters, whose 

axes of sensitivity are oriented along the directions e , given 

by equalities (3.93). 

The values measured by the newtonometers will be projections 

the vector n on the axes of sensitivity of the newtonometers. Since 
3 are the unit vectors of the axes of sensitivity, then the mea- 

8 fc •• sured values  are equal  to the covariant components of vector n 

along axes e   f   i.e., 

(3.112) 
a, = « ■ e,. 

The scalar product of the two vectors b and c can be given 

by their components in the main or reciprocal basis in the following 

manner: 

».f^AV,«»,^. (3.113) 

By applying  relation   (3.113)   to  the scalar products of   (3.112), 

we   find; 

(3.114) 
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where n.   and n    are  the covariant and contravariant components 
of vector n  in  the main basis and e   ,   arc the covariant components 
of  the vector e   . 

Let us turn to finding n. and n ,the components of vector 

n. According to formula (1.88) 

— ^-to 
(3.115) 

Lot us introduce the notation : 

Tf"9-    lii^      Ji 

It follows from (3.88), (3.89) and (3.94^that: 

— ^• + ^ 

(3.116) 

(3.117) 

Therefore,   taking  into account relations   (3.98)   and   (3.108), 
wo find: 

(3.118) 

By differentiating equality (3.117) again, we find: 

(3.119) 
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To find the components w. and w from the vectors of the 

main basis, we must obviously find the components of vectors 

3r /a**, 3r /8t and 32r/9t2. s       s 

Vectors 

it, fr 
*•.•   *»' OH' 

can be represented by vectors of the main basis in the following 

manner: 

(3.J21) 
'i» = r,jrm. 

whore coefficients r™. are essentially, as can be seen from com- 

parison of equalities (3.121) and (3.97), contravariant components 

of vector rak in the main basis and are called Christoffel symbols of 

thn second kind. 

It follows from relation (3.120) that the Christoffel symbols of 

the second kind are symmetrical in their subscripts, i.e. 

r.f-r.: (3.122) 

And multiplying both sides  of equality   (3.121)   scalarly  by 

(3.123) 

r,, we find: 
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The scalar products on the left side of relation (3.123), 
-► 

i.e., the covariant components of vector r . in the main basis, 

are called Christoffel symbols of the first kind and are denoted by 

P . ^.  It is easy to see that they are also symmetrical in their 

first two subscripts. 

Relation (3.123) yields the expression of Christoffel symbols of 

the first kind in terms of symbols of the second kind: 

(3.124) 

By multiplying equality (3.124) by a  and by recalling that 

(3,125) 

we find a relation reciprocal to relation (3.124): 

r.U.T...,. 
(3.126) 

Chr;-.stoffel symbols of the first and second kind can be expressed 

simply by the derivatives of the covariant components of the metric 

tensor.  From formula (3.100) we find: 

(3.127) 

^.•'.-^-r^+r.,,, 

By changing the subscripts s, k and t in a cyclic 

we also have: 

%~r...,*r,....  ^—r,..^^,, 

order. 

(3.128) 
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Now subtracting equality  (3,127)   from the sum of the  two 
equalities of   (3.128), we  find: 

(3.129) 

By analogy with Christoffel  symbols  ^ i.  t and  r . ,  let us  in- 
troduce symbols  of the  first kind 

P        tt  ,    r     .   tt...» (3.130) 

SB and  symbols of second kind TQQ and TQ..     The  zeros in the subscripts 
indicate  that the  time clearly contained in adjunction rf*1, '.t) 
sliould be  taken instead of the corresponding coordinate when calcu- 
lating the derivatives.    The symbols of   (3.130)  are naturally equal 
to  zero in fixed coordinates.    Relations   (3.124)  and   (3.126)  remain 
valid for the symbols introduced.     But the symbols of  (3.130)  are 
of course not expressed by the components of the metric tensor simi- 
lar  to Christoffel symbols» 

Returning to equality  (3.119), we find the following expressions 
for  the contravariant and covariant components of acceleration in 
the rmin basis: 

(3.131) 

m,««„A*4 I'm, ,«"»" I •'o...*" I r«.i 

\ 
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It now follows from equality (3.115) that 

,'.= ;;'4 r.MVj sr-U'+r^-f'. i (3.132) 

s ~^ Here g    are  the components of vector g of the earth's gravi- 
tational  field  strength    in  the main basis: 

(3.133) 

Vector g is given in the rigid earth body-axis system 0 n'n2'!3. 

The coordinate system 0 ri1n2n3 is identical to the coordinate sys- 

tem o CnS introduced previously. Therefore, according to ex- 

pression (3.11), 

f-KiidVlti«; rf. if) 

It  follows  from equality   (3.134)   that     *•' 

(3.134) 

(3.135) 

But 

(3.136) 
1 ■ 'i,/' - 'i.V,. 

where n , and n. arc; the covariant and contravariant components K     x 
of unit vector n  in the main basis.  Therefore, 

«f,-> CUil'Til,..    fmtjttVlf. (3.137) 
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Formulas   (3.1.' -)   dctermino  the compononts of  vector 7> in  the 
main basis.     Turning   to equalities   (3,114),   we  find on the basis of 
formulas   (3.132)   and   (3.137)   the  following  expressions  for the 
values measured by  the newtonometers,       whose unit vectors e 

s 
of the directions of the axes of sensitivity are given by equality 

(3.93): 

«.,=.(,■• * ralSS'-j *£'+r4~tmtv1h*, 

where e .   are  the  covariant components of vector e   . 

From equalities   (3.138),  we  find: 

(3.138) 

(3.139) 

By solving the loft sides of equations (3.139) with respect 

(3.140) 
to  "   ,  we have: 

■k where   E  is   the  determinant  and  R'      is   the  cofortor  of   the   s-th 
line  and of  the k-th  column  of matrix   ||eclf||.     Now, 

f 

ski 
(3„141) 
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The elements of matrix | |e . (( which define the orientation 

of the axes of sensitivity o of the newtonomoters,should, of s 
course, be known.  If direction cosines of unit vectors e are 

s s 
known as functions of »    and time with respect to the axes of 

the stabilized platform, i-e,, with respect to the unit vectors 

£. of the main Cartesian system 0 C'cH3» then, by denoting these 
> i 

direction cosines by ys,  we find: 

On the other hand, it follows from relations (3.88) and (3.89) 

that 

(3.143) 

Therefore, 

«• 

(3.144) 

The equations which determine  n-  and  the relationship of 
rT   to ^     and  time,   must be added  to equations   (3.139),    (3,140) 
and   (3.144).     We can  turn  to  equations   (3,30)   to  obtain  the  re- 
quired  relations,  which,  by taking  into account  the conformity 
of  the  notation introduced and  the   notation    used previously, we 
writi;: 

(3.145) I,« J({, y«)." I I, (0), 
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Here, 

(3.146) 

where u are the projections of vector u 

of the earth rate on  axes on, and a'., are the direction cosines 

between the axes r,1,  £2,   £3 and n'f n2 and nJ.  These are the 

same direction cosines as a'.j. which form table (3.27), except 

that the second subscript in them has been converted for convenience of 
writing into a superscript. Equations (3.145) ore equivalant to 

equations (3.31), (3.32) and (3.33), from which the direction 

cosines a*, are also obtained. 

From the second group of equalities (3.146) and formulas (3.88), 
(3.89) and (3.107) we have: L 

V-u;V.   | (3.147) 

Relations (3.147), in which f5  are given by equalities (3.89), 

toyether with equations (2.21),   (3.32), and (3.33) fully determine 
k     k n^ and n  in the integrands of (3.139). 

v 
The contravariant components n0 of the unit vectors r' in the 

k main basis and the coordinates n may also be calculated in a somewhat 

different manner. ' Inverting equations (3,145), we may write them in 
differential form as follows: 

^-HfcX.-» (3-148J 
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From (3.148), (3.136), (3.121) and (3.130) wo will then obtain: 

<- / I'C ('/,-' t CH CLX«) rV ( i,*!") (3.149) 

To expand   the mixed  nroducts of  the vectors   n.,   u and r    it  is 
convenient   to   introduce   the  Lovi-Civita  symbols C,        and i    ns, kns 
defined  as   follows: 

6... =»-.(»•. -r,).   f'^r'-frxr') (3.150) 
The  Levi-Civita  symbols  are non-zero only when  the   indices n,   s  and k 
are  non-identical.     If   the   indices  are  different   and   follow  in   the 
order  1,   2,   3  or  in  the  order  obtained  from  the  standard  cyclic 
oermutation, 

€... -A   €,"-7'.        «^ (3.151) 
whore J  is  the Jacobinn  determinant   (3.96). 

If  the order of the  indices  is different  from the standard order 
we   have: 

.   ,...  .     ' (3,152) 

Fio-i   relations   (3.1 5)   «/o  obtain: 

€..,'"•   -rtXr..    f'-V,   -r'xr'. (3.153) 

Since the vector u may bo represontod in the form 

« «/ "V,. (3.154) 
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it  follows  from equalities   (3.150)   and   (3.136)   that the  mixed 
products  in  the  integrands  of   (3.149)   may be written as   follows: 

di, <«J <•'    (/"v, (3.155) 

But 

.,-« r,-«;.,;«.,. «v-'ifv (3,156) 

and therefore equalities (3.155) take the form; 

(M, x«) • '•, -- e" 'I/M:«,,,«.,«:, (3.157) 

In expressions   (3.156)   and     (3.157)   u~ designate the  orojections 

of the vector u of the earth rate    on    the O.n1  axes. 

Introducing equalities   (3.157)   and   (3.W9) ,   we obtain: 

<- -/In^(I•,^• ♦ «■/,) i e*v*jM*+im 0.158) 

Finally, fron relation.s (3.136) and the obvious equality, 

r-f* (3.159) 

we find: 

*.l%~. (3.160) 

Formulas (3.158) and (3.160) may be used instead of formulas 

(3.147), (3.31), (3.32) and (3.33) introduced above. 
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We note that use of the Levi-civita symbols enables us to write 

equations (3.31), (3.32) and (3.33) in a more compact form: 

^-/|€Mitf*HV» (3.161) 

Thus, the portion of the ideal equations relating to the determina- 
s tion  of  the  curvilinear  non-stationary coordinates  *     and  their rates 

* s of  change  a     may be written   in  the  form of  the   following  system of 
equations: 

•, _ (i-'„i^ 

(S 102) 

't"1^-.    H,"Jii,Jr + n,(0); 

(3.162) 

*~l%& (3.163) 

Fcfuations   (3.163)  may be  replaced by  the equivalent equations: 

n; ■ i^ o* 
(3.164) 

In  the   inortial  naviqation  system under consideration a   free 
'jyrostabilizod    platform was  taken as  the basis  of  the  functional  diagram 
The   rotation   anqles   ;<,   R,   and   >   of   the qimbal   rings  determine,   clearly,   the 
orientation  of   the  object   in   the  basic  Cartesian coordinate   system. 
The  direction  cosines  retain  the  anqles X,  Y and  7 of   the object and 
the   r.' ,   r,?,   f3   axes  are  qiven  by   table   (3.66).     The  only  change 
required  is   to  replace the  x,   y,   z axes by  the  r,' ,   r',   f;3  axes.     Since 
relations   (3.88),    (3.89)   and   (3.94)   qive  the  orientation of   the vectors 
of   the   main   basis,   those   relations,   together  with   table   (3.66),  define 
the orientation of  the object rolative  to the basic coordinate system. 
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3.2.3.     Orientation of  the newtonomoters along the  normals to 
the  coordinate     surfaces.     The  system discussed  above was one  in which 
the directions of  the axes of sensitivity o    occupy an arbitrary 
position.     The only conditions  imposed were that  these  directions 
should be non-coplan«3r and  that their direction cosines  with  the C'C2^5 

axes  should be known at each  moment  of time.    A  free    gyrostabilized 
platform,   relative to the  axes of which the directions  of the  e    axes 
are given,   was  taken as  the basis of  the  system.     It is  not difficult, 
however,   to extend  the results obtained for this  system  to the  case 
of a  three-component gauge of absolute angular velocity   (or a maneuver- 
able     gyrostabilized platform)   as   the basis,     the directions of e 
being given relative to the axes of  the gauge platform   (or the 
maneuverable    gyroplatform). 

For the   system  in question equations   (3.138)   were  integrated 
b 

by isolating  the  total derivatives  from the  sums »   esit-     Separation 
of variables was performed after the  first  integration. 

It was noted in Chapter  1  that   there  are two possible ways of 
solving  the basic  inertial   navigation equation in  curvilinear coordinates, 
Both  possibilities are based on the  assumptiop that the   first operation 
performed on  the newtonometer  readings  is  that of  integration.     The 
first possibility was discussed above.     The  second  is based on  consid- 
ering  the directions of the axes of  sensitivity of  the newtonometers 
as no  longer arbitrary,  but as  given  such that each newtonometer reading 
should contain  the second derivative  of only one of the  coordinates 
<   ,   i.e.,   such  that  relations   (3.138)   should  be solvable   for the  first 
derivatives. 

This condition may be  satisfied  by choosing  e .   such  that 

».»-» 0. «f.HI « ■ *. | 

'••     'H ■/ 0, n IN i  -> *    I (3.165) 

This choice implies that o are normal to r. for k ^ s, and 

therefore coincide with the vectors irs of the reciprocal basis. 
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The correctness of   this statement   follows   from the  definition 
(3.104)   of  the covariant component and  from formulas   (3.99),   qiving 
the vectors   r    of   the reciprocal   basis.   This  result  is   to be expected, 
since  the vectors  of the  reciprocal  basis are,   by definition,   normal  to the 
surfaces of  equal   values  of the  coordinates,   i.e.,  are gradient vectors. 

If condition   (3.165)   is satisfied,   i.e.,   if  the axes of sensitivity 
of the newtonomoters are  situated along  the vectors of  the reciorocal  basis, 
we  find  from  relations   (3.138): 

\~Pi ',:-■-• 4 *&t ^-..WKK, (3 l66) 

Since  os  are  ui it vectors and are oriented  along  the  vectors  r   , 
it  follows   from equalities   (3.110)   that 

''"7?Jr<   '""TW (3.167) 

Now from   (3.165)   and   (3.167)   we obtain* 

i.^^^r^-r.iH-K'-jr,,;!.' -r^ + BudTii;. (3.168) 

Intcgratim; equations   (3.168),   we obtain the relations 

i 

•'-- f »'in I «'im 

(3,169) 

Relations (3.1C9) enable us to determine the current values of the 

coordinates - s and their rates of change *s using the known values of 

n  and the initial conditions.  Those relations could alro be taken 

as the ideal equations of the inertial system under consideration. 

However, in ooualitios (3.169) the magnitudes n  of the newtonometer 

readings must be multiplied by .'a5  before integration.  The diagonal 

elements of the metric tensor nay bo, in the general case, variable. 

Therefore, this multiplication is undesirable according to the consid- 

erations presented in 151.4 (p. ri5) . 

197 J 



In order to avoid comp-itational operations on the newtonometer 

readings before their integration, let us transform equalities (3.168). 

Let us first divide the right and left sides of these equalities by 

/a  and then lot us subtract from both sides the quantity 

We then obtain (not summing over s!): 

or 

^(^H''~(r-:i""''f2r"i'+ 
(3.170) 

Integrating these equations, we find; 

»'"(par) V""- "'- /»''"4»' <ü). 

(3.171) 

(3.172) 

The systems of equations (3.163) and (3.164) remain valid, clearly, 
s     k 

for the determination of n. and n . 

Formulas (3.162) and (3.163) or (3.172) and (3.164) are the portion 

of the ideal equations of tho system in question which relate to the 
a 

determination of  the coordinates of tho  object and   their  rates  of 
chanqe   •" .     To determine  the orientation parameters of  the  object 
table   (3.66)   must be added  to  these   formulas,  and also  the  table of the 
direction  cosines   between ■     and  '', : s k 

t, k 1« 
ft, 
PS* 

C it 
1 «•r 

f 1, 
ypr- 

(3.173) 
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Table (3.173) together with (3.66) enables us to obtain the 

orientation parameters of the object in the coordinate system along 

the axes of which the newtonometors are oriented, i.e., in the reciprocal 

coordinate system.  Using the definition (3.94) of the vectors of the 

main basis, we can find the orientation of the object in the coordinate 

system defined by the vectors of the main basis. 

3.2.4.  Orthogonal coordinates.  Let us consider the case in which 

the coordinates »*t  *2,   ■■ 3  are orthogonal. 

In this case the vectors of the main basis are perpendicular. 

The directions of the vectors of the reciprocal basis coincide with those 

of the vectors of the main basis.  Only the diagonal elements ass and 

a  of the matrices of the contravariant and covariant components of 

the metric tensor are non-zero.  Introducing the Lame coefficients h , s 
we obtain the following expressions for a  and ass: 

For orthogonal coordinates only the following Christoffel symbols 

of the first and second kinds (not summing over Bl) are non-zero: 

' (3.175) 

Now, taking into account relations (3.174) and (3.175), we obtain: 

^».K7—| •••,--r^Vri 

In accordnnco with (3.175) for orthogonal coordinates only 
!k.s = rsk of the rmii sy"113013 are non-zero.  Taking this into account, 

along with the expressions obtained above for 3^1n/ass, we may rep- 

resent equalities (3.171) in the following form: 
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where the summation is carried out over all k different from s. 

According to expressions (3.130) and (3.174) we have: 

r«.-. <v 

III. . ' -  „ . A ' f,.   "_. 

while  for orthogonal  coordinates   for s  ^ k 

I'M,!* • - ''"■ > 

(3.177) 

(3.178) 

This follows from the fact that, for orthogonal vectors r , in this s 
case the equalities 

r, • r# •» 0 iipn i /. *. 1 

(3.179) 

obtain. 

Taking the partial time derivatives of these equalities, we find: 

which is equivalent to equalities (3.178). 

(3.180) 

We now obtain   from relations   (3.176)   (not summing over s!): 

*;>•«f I«,, -«. Iny-H'.;.; v+ 

+ M0)ii,t0)( 

(3.181) 

whore, as in expressions (3.17f>), k / s. 

s     k To obtain formulas for r\.   and n . we will once again use the 

systems of equations (3.163) or (3.164). 
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Taking into account equalities   (3.174)   and   (3.175),   formulas 

(3.163)   take the  form: 

+VW+r.l»,+r-i«"H 

d>   I «• •''' 

(3.182) 

where the summation is carried out over all m different  from k. 

Since in the case of an orthogonal  reference    grid 

/-*,Vi- (3.182a) 

it follows that 

€--±^S7- ur**** (3.183) 

where the plus or minus sign is selected as a .function of the order 

of the indices,  as  discussed with regard to relations   (3.151)   and 

(3.152).     Therefore  formulas   (3.164)   take  the form: 

■ 

(3.184) 

and the table of direction cosines   (3.173)   is written in the following 

form: 

I,        It I 

(3.185) 

For the case of the orthogonal curvilinear coordinates * , th«? fun- 

ctional diaytdm of the system may be constructed, clearly, on the 

basis of a mancuverablc qvrostabilized platform, since in this case 

e  form a rigid orthogonal trihedron which could be rigidly attached 

to the platform of the inertial system. 
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Let us form the moments Mj . M^ . MJ  required for control of 

the  gyroplatform. , 

To do this we first need to express the projections of the 

absolute angular velocity of the basis trihedron r.r-r* on the 

directions of the vectors forming this trihedron in terms of the 

coordinates i  and their derivatives >,' . 

Let us introduce the notation 

K~&- (3.186) 

Recalling the definition (3.94) of the vectors r,,, we may 

represent the vectors e  as follows: 

'•-TiW +**?■• (3.187) 

symbols  r0£: 

According to the definition of the Cristotfel  symbols and  the 

3ijr5?-'..'■-   3niP-'"l"r- (3.188) 

Therefore 

b 
Lot us  use  i-  .    and   c,,   to denote  the  covariant and contravariant conuor 

-♦ .^ 
rnts  of   r     rolativo   to  vectors  r,   of   the main   basis.   From  relations 

(3.189)  we have: 

(3.190) 

On   the otter hand, 

Z-iWit)] (3.191) 

whore r
s/

tr;:i
ss  is a unit  vector of direction r   .     Consequently, 
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L_ 

*miner'*+*s;Hiir} l3-192) 

If the vectors r    of the main basis form a riqid trihedron,   then, -> s 
using M to denote  the absolute angular velocity of this trihedron, 

we  obtain: 

AV"'} ** (3.193) 

Substituting expressions   (3.193)   into equalities   (3.192), we 

the relation between the vectors c    and the s 
velocity of the rotation of the basis trihedron: 

find the relation between the vectors c and the absolute angular 

r"' (3.194) 

We now have: 

I ■'— 

'   •-..      ' (3.195) 

For orthoqonal vectors r the non-diagonal components of the 

metric tensor are equal to 0, and so for s ^ k equalities (3.195) 

simplify and take the form; 

. t^-imyr,)rt. (3.196) 

or 

'--V.Xr.).r.. (3a97) 

Let us expand the mixed products on the rights sides of relations 

(3.197), using the Lc-vi- Civita symbols qiven by equalities (3.150), 

(3.151) and (3.152).  We have: 

(3.198) 
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Multiplying the right and loft sides of equalities (3.198) by 
n s k 

( '  we obtain (not summing over s or k!): 

'^ (3.199) 

Turning now to formulas (3.190), we find expressions for the 

jnor 

follows; 

components w and w, of the vector w (not summing over s or k!) as 

(3.200) 

For the case under consideration, in which the r are orthogonal, 

»i-««€"•<'■.-..«"' + '',...) 

(3.201) 

Using the known covariant components M. of the vector w and (3.110), 

the projections w-j,. of the vector u on r. are easily found (not 
summing over V.!) : 

-.-Jt-^^-^1'** (3.202) 

or 

••■„, •l^;€'-'«..(r/,i-.).i;,;) (3.203) 

In expressions   (3.202)   and   (3.203)   the  indices   s  and k are different. 

In accordance with  equalities   (3.175)   only  thosoChristoffel symbols 
k ... I        are non-zero in which  cither s  = m    or k =  m.     Since  according  to 

formulas   (3.174)   and   (3.182a) 

*( ■ \f"tf  J   "iV'.,- 
(3.204) 

wo obtain from relations (3.202): 
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,,">-*3ii7<r,-J''"4 r•", 

/i.»; Ci,.»" I »«,). 

"«••" IK (r>- '"* < '• ■> 

" "jjcvtm,*? I '"oi j). 

•'«a»>;(,'"">,;"^,'o..i)- 

■ " 757*7 (^'"■"'" * ' "'• * (3.205) 

In relations (3.205)   the  first expressions on  the  right sides 
correspond to  the following orders of  the indices   H,   s,  k:   1,   2,   3; 
2,   3,   1;   3,   i,   2. The second expressions correspond  to the orders 
1,   3,   2;   2,   1,   3; 3,   2,   1. 

U) 

The two expressions given by formulas (3.205) for each projection 

are identical.  This is easily demonstrated by noting that, in 

accordance with equalities (3.175) and (3.187), 

r,»,, • - r„. t. rM,," — r,, •- (3.206) 

Specifically,   if the  symbols  T«     .   are equal   to  0,   i.e.,   if the 

reference    grid  <s does  not change  its position  in  the main Cartesian 
coordinate  system,   then 

«.!)=• MT r„ ifm - i 
MT I"*..:«' 

«.J)« 
1 

Mi r^ ffm - 1 
M7 1'.,^ 

01,,,— 
1 

Mi '.- fm - I 
Mi r^.i (3.207) 

In this case, taking into account the expressions (3.175) of the 

Christoffelsystem in terms of the Lame coefficients, we arrive at 

the followinq expressions for '''/»jS 

I <)*, ■.  I Mi •. 

I .l/i, -, . I M,  ; 

(3.208) 
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Formulas (3.205) for the projections u... of the vector H on the 

if. directions enable us to form the controlling moments Mj , M'  and 

M Ix of  the   gy rostabilized  platform.     Assuming,   for example,   that the 
Ox,   Oy,   Oz axes of the platform coincide with rj,   r-,   and r., 
respectively,   and using relations   (1.78),  we  find: 

All. =•=//..M,.    ,<-.-//,.,,„.    Ml.-.H,.^ (3.209) 

Let us summarize the results obtained for orthogonal curvilinear 

coordinates and collect together the formulas defining the operational 

algorithm of the inertial system. 

For the case of a free gyrostabilized platform as the basis of 

the system, the ideal equations have the form: 

-f-r.Ux*)'-» W+tj. 
-er.d'i'ii;)|rf< | 

K' - ('',*') JT" x' ' / ■:;,"" + X'<0'' 

+ r.;(x,)'-( vjii'+rj- 
-er.d'i'ii;)|rf< | A^OJX'CO). 

(3.210) 

i»--/K(r>,+r;+r4jJ*)+ 

_»   t     ,  fir' 

(3.211) 

(3.212) 

(3.213) 

Formulae   (1.211)   and   (1.21?)   may bo ropl.iced bv  the equivalent 
formulas   (3. 184).     In  formula.'!   (1.210)   and   (3.211)   the   summation over 
s   is  not performed;   the  siimm.it ion over  k,   however,   is  performed  for   all 
values of  this   indrx different   from s. 

For   the cane of a  maneuvcrable     qyrostabilizod  platform as  the 
basis  of   the  system,   relations   (3.213)   drop out,   relations   (3.205)   and 
(3.209)   taking  their place. 
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3.2.5.  Comparison with the results obtained in 3.2.1.  It is 

interesting to compare the first group of formulas (3.210) with the 

first three formulas (3.59).  Formulas (3.210) define the operational 

algorithm of an inertia 1 system operating in orthogonal curvilinear 

coordinates, while formulas (3.59) define the operational algorithm 

for Cartesian coordinates.  Since in the latter case the position of 

the xyz trihedron is arbitrary, it is possible to superpose the unit 

vectors x, y, z with the vectors r^,  r,, r. of the mam basis.  Then, 

clearly, it is possible to move directly from the first three equations 

(3.59) to the first group of equations (3.210).  Let us demonstrate 

this. 

Using the Lavi-Ci/ita symbols and the indexation which we have 

been using in this section, the first three formulas (3.59) may be 

represented in the following form: 
I 

•W" f ['',.>-'".i(''l..6(..^T, + 'f'.i]rf/ + ,,">(0). (MH 
J (3.214) 

where v. ., w. . and g, . are the projections of the vector of the 

absolute velocity of the point O, the vector of the absolute 

rate  of  the rotation of the basis trihedron and the vector of the 

strength of the gravitational field on the direction of the vector 

rs, respectively. 

The projections v, . and g/s» "lay be expressed in terms of the 

covariant components of the vectors v and g in the main basis. 

According to relations (3.110) and (3.174) 

"-..^i'-. *r(„=fi (3.215) 

From formulas (3.118) 

«.=(*•.£->:. 

and from thoir expressions (3.174) and (3.203) 

(3.216) 

(3.217) 
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Substituting relations   (3.215)   —   (3.217)   into equalities   (3.214), 
we  find: 

(3.218) 

According to equalities (3.217) containing C pk # k are here 

different from s. 

Let us now leave only h_*  on the left, differentiating the 

6r  -s 
terms hs^r- • r and moving them to the right side under the integral 

sign. 

Differentiating, we obtain: 

Ä" iW<>»'/ ~ A; I ii/   .«     '     5? <w     '   / 

(3.219) 

Taking into account formulas (3.121), (3.130) and (3.175) and noting, 
in addition,   that  from relations 

there   follow  the equalities 

»■, r, r. 

A - AX,'. 
(3.220) 

expressions (3.219) may be reduced to the form, whore k / s: 

H*'/*-+*:+.w+$-^ 

Substituting these expressions into equalities (3.218), we obtain: 
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I 1 
(3.222) 

or, after grouping in the integrands, 

li       I *   M ■ 

4 ;f'■'■•'t x-l'-!«"-t r r«S\]«4 A.(0)«'(n) (3.223) 

Since it is orthogonal curvilinear coordinates which are being 

considered, in accordance with formulas (3.175) the only Christoffel 

symbols in the integrands of (3.223) which are non-zero are those of 

the form 

whore I /  p.  Taking this into account and noting that in equalities 

(3.223) s ^ k, we rewrite them in the following form: 

*,;'= J ^„.«.iTiS»' + r,;i'»r.'-(- 

+r.;(»,)'+2i,o;;'-(-i^-/f,|- 
W    « /A, r i ■ i   ft. |. J ■» 1 fit v *   i 

-*r*U,*'x r7ir"K-f,7[r:* + 

^ i w+i •--' + V7 pf) 1 *+A'(0,"' lü,• (3.2 2 4, 

But the: expressions in narenthesos in thu integrand are identically 

equal to 0, as follows from relations (3.206) and (3.175).  Therefore 

the formulas reduce to the form 
f 

*.*' -fU.,-*.|r„v ( r,.,i,i,+ 

4 r.;[W+wiV ► rj - ^'H,/, +. /,,m i.(0, 

Since, clearly. 

(3.225) 

«,„ = «, . /:• - cra.i'I'M;. (3.226) 
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equations (3.225) coincide with the first qroup of equations (3.210), 

as required. 

We note that this conversion from equations (3.59) to equations 

(3.210) enables us to write the first qroup of equations (3.210) for 

orthogonal coordinates also in the following form: 

*.(1
i*+£rJHK-A,(r":;,f 

+ r.;i,;, + r,:(xV fii-,,!/t- 

(3.227) 

This form will frequently prove useful. 

In discussing non-stationary curvilinear coordinates, we have 

hitherto considered the general case of non-stationaryness.  The 

surfaces of equal values of i  = const could freely change their 

position in the main Cartesian coordinate system O.fi'C'C3.  This is 

reflected in (3.89) and (3.90) by the fact that time explicitly 

appears on the right sides of these formulas.  The nature of this 

explicit time dependency is not stipulated, however. 

There is a particular special case of this dependency which will 

be of special interest below.  This is the case in which the curvi- 

linear coordinates :', **,  and « 3 define the position of the object 

in the O.n'n'n3 coordinate system rigidly bound  to the earth, 

such that 

'l' -'IMK'. x'. x').  M^n'Cx'. K», x'). i 

n1 -M'X', x1) 

(3.228) 

The coordinates •   ', ^ 2   and ' 'are  in  this case stationary  relative 
to  the O.n'n'n1   coordinate  system.     But  since this  coordinate system 
is    rigidly     bound    to the earth,   the  coordinates  • ', ^ ',   and * 3  are 
stationary relative to the earth,   i.e. ,   the coordinate  lines  and 
surfaces occupy  a   fixed position  relative  to  the earth. 
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Relative to the main Cartesian coordinate system O^'^C3, the 

coordinates •< ', >-. J and •. ' are non-stationarv. 

From equalities (3.35) and (3.39), and table (3.27)  of direction 

cosines we have: 

l' ^ii'liij/Oju.s«» f u;,(0)»in«(<| | 

+ )|'(-o;l((i)5in«r +<i'll(a)u>iui\ f ^ta^lD, 

^^ll'lo^lOmw// ) .l^(0)-,(ilur| | 

4-Il'| -nl.OijMn«/ ( <i^(0)n^/i/] ) nV^"). 

l'-^n'l"^("»'"'<"' I u'IJ(l>)'.inii/] f 

-+ I'l - <,(nHnH/ ( ii'1J(())'.')5n/| t-^V^CO) I 

(3.229) 

If we assume that the 0,^' axis at all times coincides with the 

O.n3 axis, and that the O.n1  and 0.n? axes coincide with the O,^1 and 

O.f;2 axes only at the initial moment of time, 

«3,(0) -<■;,((i).,^(0)-,i. 
(3.230) 

of the direction cosines i' .   (0) are non-zero and formulas (3.229) 

take   the   /orm: 

1'-   n'«In «/-f->|5 cus W j 

I'     i|V I 

(3.231) 

In calculating the elements of the metric tensor, the Lame 

coefficients and the Christoffel symbols for this case we may let 

t = 0.  The validity of this assumption derives from the fact that the 

reference qrJd ■■ ' , " ?, * ' moves as a unit and the properties of the 

space defined by the curvilinear coordinates i ', * ?, and *  3 are not 

functions of time.  Of course, the validity of this assumption may also 

bo domonntrated by direct computation. 

For the symbols rn.   and r,,,, „ we obtain, using relations (3.130) 

and (3.131), the following expressions, which are also independent of 

time: 
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T iix' (3.232) 

In concluding our consideration of the ideal equations the 

following points should be noted: 

In considering systems operating in Cartesian coordinates in S3.1, 

we took as the basis of tho functional diagram a maneuverable gyroplatform 

or a three-dimensional gauge of angular velocity [angular rate meter]. 

It was assumed here that the directions of the axes of sensitivity of the 

newtonometeis and the gyroscopic elements formed a single rigid 

orthogonal trihedron. 

In S3.2 it was assumed that the basis of the functional diagram was 

a free gyrostabilized platform, i.e., it was assumed thai; the directions 

of the axes of sensitivity of the gyroscopic elements were fixed, but 

that the directions of the axes of sensitivity of the newtonometers were 

given with the aid of some functional diagram relative to the gyrostabil- 

ized platform. The construction of a system on the basis of a 

maneuverable gyroplatform was also considered for the case of orthogonal 

curvilinear coordinates and the resulting equations were compared with 

the equations derived in the preceding section. 

Affine coordinat s, clearly, are a special case of non-orthgonal 

curvilinear coordinates. Systems operating in affine coordinates and 

constructed on the basis of a gyrostabilized platform are, therefore, 

a special case of the systems under consideration in this section. 

It is possible, of course, to imagine a maneuverable gyroplatform 

with non-orthoyonal positioning of the axes of the gyroscopic sensing 

elomont^, these axes not necessarily forming a rigid trihedron.  The 

relative positions of the axes, as well as their orientation in space, 

mat be a function of time and the coordinates determined by the system. 

In this; case, a system determining affine coordinates may be constructed 

on the basis of a maneuverable platform, and the directions of the axes 

of the gyroscopic elements and the newtonometers may be mutually 
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superposed.  Systems for determining arbitrary curvilinear coordinates 

may also be constructed on the basis of this type of "non-rigid" 

maneuverable platform. 

Finally, the trihedra fcmed by the axes of sensitivity of the 

gyroscopic elements and newtonometers, being variable as a function 

of time and the coordinates determined by the inertial system, may not 

coincide with one another. 

Analysis of all of the alternatives noted here and construction 

of the ideal equations for these alternative systems yield results 

which are not in any way fundamentally different from the results 

obtained previously, since simple summation of the results obtained 

above enables us to write all of the relations required to obtain the 

ideal equations for these alternatives. 

S3.3.  Examples of Ideal Equations for Inertial Systems Operating 

in Various Generally Used Coordinates. 

3.3.1.  Affine and Cartesian coordinates.  In the previous section 

wc- derived the ideal equations for inertial navigation systems operating 

in the curvilinear non-stationary coordinates * ', * 2, and " '. 

For the sake of illustration we will now obtain from these general 

formulas the operational equatirns for inertial navigation systems 

operating in certain more widely used reference  grids. 

Specifically, let us consider spherical coordinate systems: -- 

geocentric and qoodotic ,  as well as geographic coordinate systems 

and an example of non-orthogonal coordinates.  We will limit ourselves 

here to the positioning of the axes of sensitivity of the newtonometers 

along the vectors of the basis trihedron, i.e., for non-orthogonal 

coordinates, to equations (3.172), (3.163), (3.164) and table (3.173), 

and for orthogonal coordinates, to equations (3.210) — (3.213), 

(3.205), (3.209) and (3.134).  The ideal equations corresponding to an 

arbitrary positioning of the newtonometers and deriving from relations 

n.162), (3.163), (3.164) and (3.93), will not be considered here.  If 

necessary these equations could easily bo written, since expressions for 

all of the terms entering into these equations will be obtained. 
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Before procccdinq to the special cases of curvilinear coordinates, 

we note that the equations for affine coordinates may easily be obtained 

from equalities (3.172), (3.163), (3.164) and table (3.173), and the 

equations for Cartesian coordinates from relations (3.210) — (3.213), 

(3.205), (3.209) and (3.184). 

If the coordinates x', «?, and » J are affine but not stationary, 

i.e., if the directions of the axes of sensitivity of the newtonometers 

change their orientation relative to the main Cartesian system OjC'^'C3 

only as an explicit function of time, then in formulas (3.172) and 

(3.163) terms containing Christoffel symbols disappear, since for affine 

coordinates these symbols are equal to 0.  The components of the 

metric tensor become functions of time only, as do the elements of 

table (3.173). 

For the case in which the trihedron formed by e  (the axes of 

sensitivity of the newtonometers) is rigid, the elements of the metric 

tensor become constant and in formulas (3.172) the terms KS grln,/aS 

drop out.  In this case the trihedron formed by e rotates in the main 

Cartesian coordinate system as a unit; the absolute rate 

of its rotation is determined by formulas (3.200), in which, of course, 

the r m . symbols must be set equal to 0. 
Sin f K 

For affine stationary coordinates the symbols r«-  and rQ. 
are also equal to 0. 

If the coordinates » ', -< 2 and « 3 are Cartesian but not stationary, 

tho equations deriving from the general formulas (3.210) — (3.213), 

(3.205), (3.209) and (3.184) reduce to the two equations (3.59) — 

(3.65), derived in §3.1. 

Indeed, in this case 

• •■-^r,,««;-!. «•'.-..„ ^uJ-O (I/*),] 

m (3.233) 
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Consequently, 

But 

and   therefore 

*    *   '   ^-^-X- (3.234) 

(3.235) 

= « Xr, » i» <lu <r,y (3.236) 

Recalling  definition   (3.130)   of  the   symbols   TQQ .   and  T-     . , 

wo  find: 

'».»4 2ro,,,K" = r4liixr \ •» X (» Xr)-f-2« x r). 
(3.237) 

Substituting expressions (3.237) and (3.233) into the first group 

of equations (3.210) and noting that for the case under consideration 

(3.238) 

we  arrive  at the  equations 

*' - J h'j ~ r' ■ '*' X r-+ « X (« ■ r)4- 
0 

-f 2«Xr f K\\äl \ )i'(0), 

or  the equations 

>■_ n»,  -r, [(u -r) ( ,„ <-^-   j f]},/( ( «'(O) 

Since 

*       -t , 

it   follows   from  cquationn   (3.239)   that 

(3.239) 

(3.240) 
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Equation   (3.241)   coi iciden with  the  first equation   (3.53),   from 

which  the  first  three equations   (3.59)   were  derived. 

The second equation   (3.53)   follows  from  the  second and  third 
groups of equations   (3.210)   and equality   (3.240),   i.e.,   the  fourth, 
fifth and sixth equations   (3.59). 

From expressions   (3.211),   (3.235),   and   (3.130)   it  follows that 

'<-/Wi.-.JK*+<m (3>242) 

or 

.        »-/'iXi.-«*+%« (3>243) 

which coincides with the vector equations (3.55), from which the 

sealer equations (3.61) and (3.64) are obtained. 

From equations (3.212) we obtain: 

",I=r "'■ (3.244) 

which corresponds with (3.63).  Relations (3.65), clearly, are 

equivalent to relations (3.238). 

Finally, from equalities (3.213) 

S Jl  -yr.—X#, (3.245) 

which is equivalent to equalities (3.^4), from which formulas (3.60) 

are obtained. 

Formulas (3.62) do not follow directly from equations (3.210) -- 

(3.213), since the latter do not presunpose the transition to the 

Cartesian cor.rdinates fl , r,2, r3. 

It is easy to see that formulas (3.61), (3.63) and (3.64) also 

follow fron equations (3.184), which are replaced by equations (3.211) 

and (3.212) in the system of equations (3.210) -- (3.213). 
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Equalities (3.205) and (3.209) are satisfied identically on the 

basis of equalities (3.233) and (3.235).  This concludes the transformation 

from equations (3.210) — (3.213), (3.205), (3.209) and (3.184) to 

equations (3.59) — (3.65). 

For the case in which the coordinates are Cartesian, and the 

orientation of the trihedron r.^r-j coincides with trihedron 0,0'n'n', 

the derived coordinates are, of course, the Cartesian coordinates 

If the Cartesian coordinates n '   are stationary, the trihedron 

•i*2*3 ma^ ke considered, without loss of qenerality, as coinciding 

with the main Cartesian coordinate system O.^'t2?3.  Equations (3.210) 

together with equalities (3.59), then reduce to equations (.189). 

3.3.2.  Geocentric coordinates indeoondent of the earth's 

rotation.  Let the position of the point of the center of the sensitivity 

nasses of the newtonometcrs O be defined in the main Cartesian coordi- 

nate system O.r,'^'f;3 by the distance * ' = r of the point O from the 

center of the earth and the two angles a 2= A, and « 3= ?(Figure 3.2). 

The anqle <,  is taken to be the angle between the plane O,^1^' and the 

line 0^0.  The symbol X, designates the angle in the plane O,^^2 

between the 0i/.' axis and the line of intersection of the O,!'^,'  plane 

with the. f.*0,0  plane.  If the circle formed by the intersection of the 

O^f.1^2 plane and the sphere of radius r centered at the point 0, is 

termed the equator, then the antrles > and A, will bo the latitude and 

lonqitude of the point O on this sphere. 

Fiqure 3.2 
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It follows from the definition of angles | and \,   that 

I'«a r ros (fens;,,,    I'-^fcoj, slnA,.  1 

from which 

m <•£• d;- jj-^ —rcoKpsIn?.,. ^»»rcosijicojA,, 

4f"—'•'•?•••*•■ ^'»-'s'"*''«^. ■^«•/•COST. 

In this case the Jacobian determinant is 

(3.246) 

(3.247) 

'-ZMX""^ (3.248) 

Since, clearly, r /  0,   the reference grid degenerates only on 

the straight line 9 = +
TT/2, on which J = 0. 

The vectors r,, r- and r, of the main basis are equal to: 

<ir      ''r      ''r (3.249) 

From expressions (3.249), (3.247) and (3.RS) are found the 

diagonal elements of the metric tensor A" 

I =5 I.  fl„!='-UlV>(.   (t.„—C' 
(3,250) 

The nondiaaonal elements o*7 the metric tensor are equal to 0. 

"ho reference grid r, X1,   f is orthogonal. 

The directions of r, , Ty  and r-, coincide with the directions of 

r tangential to the parallel and tangential to the meridian, 

rosnoctivcly.  The voctorn r^ and r, arc directed, clearly, towards 

The Lame coefficients follow from enualities (3.250) 

», mm I. A,= f C(isi(. A, --r. 

(3.251) 

2J8 



Referring to relations (3.175), we find that for the case in 

question only the followinqChristoffel symbols are non-zero: 

■W' ■■'"».»■' c"s7 <(■  i"'] == r?j=—, 

I'a. j =• rB, i = - /■ sin (f cos if.    I'L = V], m — Ig if, 

fji. i = Tu, ,^r,   I'JI = r/j = -. Pn, , = — /• cos»ip. 

TB   =—rcosip,    Tji, jör'sliKfcos^.   rjjsasinif cos^. 

Pi*,- -r.   r],--.,. (3.252) 

Because of  the stability of the   reference    qrid  in question 

(3.253) 
rj^ri^rj^o. 

Now, substituting expressions (3.251), (3.252) and (3.253) into 

(3.210), we obtain equations for r, X, and v : 

i 

r= J(«l + f('f'-( X'ios's) f K"ilVn;jJ/-f f(0). 
0 

I 

ril cos T — J ("j — »i ('cos ■( - -if sin if) -|- 
o 

+ fC05ifBr.id'V'ii('jrfr| i-(0) cos ^(0)1,(0). 
i 

fiji^ f |iia -f<f — rijsin!(■ COST (- 
o 

+ rgtid'V^JI W(O)i(i(O). 
i 

r^frdt + n0). 
I 

I 

^ " J 7T^? ^icos f > <" + xi (O). 
I 
i 

i '    "    r" (2.354) 

Taking into account that the O.n3 and O.r,3 axes coincide, and 

therefore that 

«' «1=0. ul--u. 
(3.255) 

together  with  relations   (3.252)   and   (3.253),   wc obtain  the   following 
equations  for n.   from equalities   (3.211)i 
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<"~ii-<'*•**!-<'»+ 

+ «('i,',i;  I^I^'COSVIJ/ f ^w 

f f   ■ <v' >1? ■ 

I 

-i MfMt^ij -'I,1'!.1,)]-" i 'i;oi) 
(3.256) 

It   is easily demonstrated  by direct substitution  that the   following 
values  of   r\.   satisfy  these  equations: 

sin{>.,     «') 
ilj-^cos-fiosp.,     ui),    M, -= rcoi« 

'1,'" 
,      toj(),-»0 

n; .-= cm., si..{>., - i").   'i; - -T7,*'H-' 

,   _      tiny slri(?.| — »O 

(3.257) 

We noto th.it the values (3.2 57) of n» "»ay also be obtained directly 

from relations (3.88), (3.247), (3.251), (3.249) and (3.231), without 

reference to equations (3.211), by using the equalities 

(3.258) 

From relations (3.246) and (3.212) we also obtain: 

or, taking into account relations (3.257): 

(3.259) 
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Finally,   from   (3.213)   we obtain  the direction  cosines: 

f,     cosfpius?.,       coKfslnt.,      tlnf 
ft -»IIIX, cuiJ., 0 
tf    — slmj. cusX|    — sln^slnA.!    cojif. 

(3.260) 

Since for the case under consideration the vectors e,. are unit 

vectors cf direction rg, table (3.260) also defines the directions of 

?s relative to the f,1, C2, C3 axes. 

If equalities (3.184) are used in place of relations (3.211) and 

(3.212), we obtain from the first grouo of formulas (3.184) for the 
direction cosines a,' the  table 

•r 1'          V? 
('     msu/ -sin«/   0 
f    s'nul ens nl     0 

V     o Ü         1. 

k In this table the superscript of n' corresponds to the columns, 

and the  subscript to the rows .  It is easily shown that expressions 

(3.257) for rip derive from equalities (3.251) and (3.257), from the 

second group of equations (3.184), and from the above table. 

The projections W/n*» '''(?)'   an^ WI3J 0^ t^e absoi,ute angular 
velocity of the trihedron e,e2G, or, equivalently, the trihedron 

^1^2^3'   are found from expressions (3.205).  They are: 

U,,,^-»;, Sill If.      <..,„-   -»      M,),= 'lC05T 

Mow,   from   formulas   (3.209) 

M',, = 11)., cos rr.    .w;, - //,f.    ,11'. - //)., Mnif 

(3.261) 

(3.262) 

Thus, for the reference qrid under consideration and for the 

rase of a free gyrostabilized platform as the basis of the functional 
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diayran   the  operational  algorithm of  the inertial   system will  consist 
of equations   (3.254),   (3.257)   and   (3.259),  and table   (3.260).     For 
the case of a maneuverable gyrostabilized platform as  the basis of the 
functional diagram,       the  ideal  equacions are   (3.254),   (3.257), 
(3.259) ,   (3.261)   and   (3.262). 

We  note   that,   if the earth's gravitational  field   is considered  to 
be spherical,   then  accordinq  to expressions   (3.13),   (1.257)   and   (3.259), 
in equalities   (3.254) 

(3.263) 
and,   consequently, 

Kfjd' I'M;        '' .   Kta* r.i; ■ CM.!' I'M; ■ o. 
(3.264) 

It   follows from relations   (3.264)   that  for a spherical  gravita- 
tional   field   formulas   (3.257)   and   (3.259)   drop out of  the ideal 
equations. 

If we assume that the vector g of the strength  of the earth's 

nravitational field lies in the plane of the meridian, then, using 

q- to designate its projection on the n'n7 plane (the plane of the 

earth's cnuator), we may represent the projections of the vector q 

on the n' and n2 axes as follows: 

gt^iv ■  *;,';""•('■, -«') I 

(3.265) 

Then,   introducing g'J   to dosiqnate   the  projection   of  g  on   the   n3 

axis,   i.e.,   taking 

Cr.vlM'      A",'. 

and t.iking into account equalities (3.257), we obtain for the sums 

formu]ns: 

ni-,i'' Vn« onterinrj into the inteqrandn of (3.254), the following 
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(:t»ü'l'i|;=-/fJcojif I fninij - /;<. 

(.lid' Vi\l ; - 0, 

(3.266) 

In   these equnlitios g1   and g3   are the projections of the strength 
'octor of  the  earth's gravitational   field on the direction of  r and 
he direction of r,,   normal   to r and   lying   in  the Diane of  the earth's 
icridian. 

The functions g« and gl?, and, consequently, g1 and g', are 
functions only of r and P. In terms of the notation introduced 
in  12.3, 

(?'-/•■,..   f^/v 

3.3. 3.     Geocentric coordinates.     Nov/ let r,   A  and   9  be ordinary 
oeocontric coordinates.    Their determination  is analogous  to  that of  thu 
coordinates  r,   >,,  and v.     Only now r,   X  and $   are referred not to 

the  trihedron O.C'C'C*!  but   to CKn'n'n3,   rigidly    bound       to  the earth. 

Therefore   in relation  to  O.',' !   the coordinates   r,   X,   ^  will 
not  1)0  stationary.     Considering,   as  before,   that  the 0,^'  and  O.n3 

axe^  are  orientr-d along  t""^   vector   u  of 
the   absolute earth  rate     and   that  OjC'^f,3   coincides  with  0,ri1n2n'   at 
some-  initial moment of  tine,   we  find   from equalities   (3.232),    (3.246), 
(3.247)   and   (3.251)   the  non-zero  symbols   rJ",   Toy       and   roo     ,    V^: 

I'm. i "-   -(r/C0»f,     ('(.'i   =   -to'fcos'if. 

I'm, !■=»« r- siiitfifisfj.    l\} = u' sinif coiif, 

I ill. t™        ' '■-'.  I ' ~ 'tr *■"'*   1'     ' oi = — , 

M I ? Iw   —      nr COI if. 

r^i«"   - I'-ii :■- «'r'•inr^tosff. 

Vin     -w-inii t'^l'. 

I'OJ   —  - «i Ij; <f. 

(3.267) 
The   Christoffolsymbols  (3.252)   calculated   for  the   precedinq   reference 
gri'1 clearly remain valid. 
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Prom  the   first  three equations   (3.210)   and  formulas   (3.251), 

(3.252)   and   (3.267)   we now obtain  in  place of the  first   three  formulas 

(3.254)   the  following equations: 

r.. J («, +/• l<i>»-M« + i)> cos'Tl-+- 
i 

+ eitii'Vt]<]dl + r'(0). 

I 

fitoif^- I l^j— (i-f-2") (»■ cos 9 - f<f slnif) | 
o 

-f-rcos<rKrad'Vii;j<^ f f(0)cos «f (0)^(0). 
i 

/■? = J («j- üi f <•(>.-(- «)'5tii(rcosi,i + 

(3.268) 

They differ from the first three equations (3.254) only in that 

X + u replaces X. everywhere in the integrands.  The last three 

equations (3.254) remain valid for the case under consideration. 

In equations (3.256) it is also necessary to replace X^ by 

X + u, and to substitute X for X, ut in relations (3.257) and 

(3.259).  Table (3.260) now defines the direction cosines of the 

vectors e,, e. and e3 relative to the n1, n2, n; axes. In order to 

obtain the direction cosinns of the vectors e relative to the ^1, 

f,2,   5 axes, it is necessary, clearly, to replace X. by X + ut in 

table (3.260). 

From expression.' (3.205), (3.251), (3.252) and (3.267) are found 

io,.., w.-» and ''»/i)-  Thev arc: 

«I,)  "-(?.    (    «)MI1'(. <■).., <f.   I 

Corrosnondingly 

(3.269) 

Ali, --^ //.„,,,   • // (). -4 «) cos if.  Mi, - -  //•.!,,,=- Ilif. 

Ali« —//w,i, "II (.'• + u) sin if. (3.270) 

L 
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Exprossions   (3.269)   and   (3.270)   also differ  from exorossions   (3.261) 

and   (3.262)   only  In  that   ,\  + u appears   in place of  ^.. 

For a spherical  qravitational   field   formulas   (3.264)   remain  valid, 
and  if we assume that  the vector  q   lies   in the  plane of the meridian, 
fornulas   (3.266)   also  remain valid,   since  X.   does not  enter  into  them. 

3.3.4.     Geodetic  coordinates. The geocentric   reference     grid 
considered above has  a singularity  at  f  =  ±T/2,   i.e.,   at  the  poles. 
Realization of   the ideal  equations   in this  reference     orid gives  rise 
to considerable difficulty,   if  the  object with  which  the  inertial 
system  is associated  is moving  in   the  immediatc vicinity of  the  earth's 
poles. 

Figure   3.3 

Those  difficulties  make   it  expedient   to convert   to   the   so-called 
geodetic coordinate   system.     This  coordinate   system   is   also  sohorical. 
It   is  analogous   to the  geocentric  coordinate system.     The only differ- 
ence   is   that   the  pole  of  the  geodetic coordinate  system  does  not 
coincide   with   the  pole  of  the  earth.     Its   position   is   selected  such 
that  it   lies outside of  the area of  possible motion of  the  obiect with 
which   the  inertial   system  is   associated. 

It   follows:   from  the above descrintion  of gcüdet;c coordinates 
that,  an     geodetic       system  stationary  rolatiyc   to the   trihedron 
0, ' ' • ' ^3  does  not  differ  in any way   from a  stationarv qeocentric 
coordinate  system.     Using  the  arbitrariness  of   the orientation  of   the 
; '.   r.:',   ^3   axes,   we may  always   suuerposo   the  5'   axis  on   the   polar  axis 
of  a   stationary     geodetic       coordinate system. 
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The first system which we will consider, therefore, will be 

• gaodstic  coordinate system rigidly bound  to the earth. 

Let us define it as follows.  Let, in O.n'n'n3 rigidly bound 

to the earth and the O.n' axis of which is directed along the earth's 

axis, two lines emerqo from the point 0,, the unit vectors of which 

we will designate as ft.   and p, (Figure 3.3). Let us attach the 

geodetic    (right orthogonal) trihedron O.^'c2^3 to these directions, 

specifying the unit vectors Z1 ,  ?,',   and r1 of its axes by means of 
the equalities: 

■n,   ' k)   uns,   ■ 
(3.271) 

whore SQ  is  the constant angle between the vectors  p,   and  p-  such 

that 

cos .s,, ■■ (>, v, 

We will consider that the vectors p. and p9 are defined relative 

to the trihedron O^n'n'n3 by the geocentric coordinates f.| X, and fm, 
\~,     Then 

p,=>\llO-,,ilCiJs>.l   }   »(..tOKCSlllX, -)- ll,Silllf|t   j 

Let 6.. be the direction cosines between the n1 

', r2,   j' axes, forming the table: 

(3.272) 

n3 axes and the 

M1 ''., *kt • 
rj" '\-1 ■\.. » 
'i 1« ■v.. ,\ 

(3,273) 

Tiicn, in accordance with relations (3.272) and (3.271), the elements 

of thin table may be expressed in terms of 

follows: 

*II —cosif, cnO.,, 

6;i s^costj, siri>.|( 

*i|—SHI'IV 

ifftm -f-^-dosif^cns)., — cos if, f..O., ci.s.V0), 

1»   ^i»    <ji  and  \y as 

km .v, 
(3.274) 
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*»m'mK(sln <r' " 5", *v<>s ■<fa)' 
»   cs.  '     (cos.f, slii<i, .In >, - cosffj sli.<r, »I" »,)• 

11 Mil Ov 

v _ ._L.(sin«i uisif,in»).,   - tM'(!^tn■(,cos).,). 
P      sin if 

J       im •»( 

(3.274) 

(3.272) 

(3.275) 
,e.,   the 
point 

where according to the relation cos S0 = p, ' p^- and formulas 

cuiS,, -cmt^disii^mO.j -J.,) ( sliii(|Mnif, 

If we introduce the angle ij» between the goodotic plane, i 

C1;;2 plane, and the tangent to the geocentric meridian at the 

defined by the coordinates f. and A,, such that 

CO! .|,MI1(>,    - >,! 

•ln,lo--—„us; . 

(3.276) 
then  the  expressions  for  6.«  and  5., may be  renresented differently 
than   in   formulas   (3.274): 

A,,-- SIIHI, uis>.,ii'S i|n - sin).! sini|„. 

*„«=-.-sin i( | sin)., cos I!,, j cosX^in i|,,. 

6,,—;- sin'f, co?>.,sin i|'0 )-cosi|„sin).|. 

ti,, . sin 'f, ^in >■, »In 'lo - cos)., cos t,, 

AUi   cosif, sln'j,, 
(3.277) 

We will define the position of the arbitrary point 0 in relation 

to the geodetic   trihedron O^'r/^;3 by means of its distance .■.' = r 

from the origin 0, of the trihedron and the two anqles «? = S and 
■ i z (Figure 3.4).  The angle S is measured in the Ojr.'r/ plane f rom 
the OjC1 axis in the direction of the O.r;2 axis, and the angle Z is 

measured from the O.?1?* plane in the direction of the O,!;3 axis.  Thur,, 

the angles S and Z   are analogour; to > and v , by means of which we 

define the arbitrary direction in the trihedron n'n'n1«  Specifically, 

if the trihedra n't^n1 and r,1.;2?;3 coincide, then angles 8 and Z reduce 

to angles >   and v. 
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Figure 3.4 

In  the    geodetic       coordinate  system introduced  above,   thr; polar 
axis O^c'   nay be selected such that  the object moves   far away from it, 
for example,  in the vicinity of the o.^'r,2  plane.    The angles S and Z 
may bo termed the distance along the geodetic       and   the distance  fron 
the geodetic. 

In   analogy with  relations   (3.89)  we  have: 

f 1= rcm s cos S, 

P«=- rCH ,'SIM.S', 

(3.27fl) 

Thus,   the vector  r  in  the OjC1?*?'  coordinate system has  the   f orm: 

)  t,f cm z\\nS I 

(3.279) 

Using relations (3.278) ar.d (3.231), and table (3.273), we findi 

^^r(ANco<j»t>5,9 ) A,,ens .•Mil5 i^nSln j)cus«/ — 

- r (cV.CDsnusS-(-I\;CIII ••'.III.V | A_.,SIII.')SII.«/. 

J'^ ,(ÄU ens ; IDSS ( 6^1 us (tlaS i A|,'-|ii-l''|ni// | 

-f-r(A;liiis ncis.S if A^ios/slnS f A^Mii.-l^is«/. 

J>= r^,, ios 1 CMX -) Aj.lus/Miii' -f-AHsiii .•). (3.280) 

The coordinates r,   S and   z  are orthogonal.     It  is obvious  that 
the  Lame coefficients have  the  same values as  in equalities   (3.251). 
It   La nocesrjary only to  replace   V by  z.     Therefore 

I.    /ij-^rkosr,    Aj = 
(3.281) 
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Analogously,   from formulas   (3.2'j2)   expressions   for the non-zero 

Christoffel  symbols  may be obtained: 

r«,t— r,,., m r tos' /. r,J=rj ™ j . 

' ». 1 == ^IX J ■■ '< 
■•I   pi    i 

TJJ. i ™ - rcos'/, IVl    -:         f COS7 /, 

Tn. i = f'sin z coir, rn=-slnzcos». 

r«^-'. rj = -r. 

1 

(3.282) 

To write the ideal equations of an inertial system operating 

in geodetic coordinates in accordance with relations (3.210) -- (3.213), 

only the symbols TQQ, ro^ and F- remain to be found. 

From (3.280) we have: 

f—* f-* ^ = o 

»—^ a^—^r. »- 
l^-f dr    "7 «< 
•3j---/(—inCnsrslnS-)- b,2w?irf<S)cmut~ 

— /•( — ij, ens r sin5 -f ÄB tos / cos A)5ln «/, 

S /        A 
■J^"'«—%«•• • sinS -f A,,cosrCM5)sin«/ + 

-(- r(— «,, cos 7sin 5 4 Ä„cos / cos S) co» «/. 

ittar       r *' »-• 
ft                    df •Jr—'-*-ir 

^'f _  dj. 
e»/ ,(S   - " dJ ' 

JT^J- =   - urf - ^Msln.TosS —A^sin.-sin.V +. 

4 6ijCosr)i|iiu/ - Bf(—A^shi/cos."» — 

— 6„ !'i/slnS ) Aj,cos/)cos«/. 
an' 

JTc)/ rT'",( - AII sl" • os 5 — Ausiii t ■.in S -f- 

-t-A, j cos/) cos»/ - «r( —^;lslniCcs5 — 

—Ansln/slnÄ ( A,j cos;) Mm;/, (3.283) 

i 
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Now, using the definition (?.130) of the symbols rQ(.       and T-, 

wo find: 

P^ , = — «V11 — (A,, co^ icoi.V 4 

f A,,cos 7 sinÄ -(-«„sin^)'!. 

PJOJ»» —«/• (OVu - A;.)cos noiSilnS -t 

+ *JIAJI cos' ^ (^n' * — cru' S) ^ 

+ *M(A)I s'n5- 4„cos.V) sin r CM /| 

r(«i. s — - «''' K^ji cos S + «„ sin .S) KAj, cos S 4 

+ 4)) sin S) sin/cos ••4 Aj.,(slii3/ — cos'j)l — 

— ft .sin / cos/) 

•W, » "■ -  rB. I = "' lA,i t',s, / — 

— («j, cos S 4 tiflsin .V)sin .- cos /|. 

rm i«» - ra,. | «a «r (Aj, sin S — A,, cos S). 

^n.i=l — I'«,. » = «/■'lAj sin/cus/ 4 

4 (Aj^slni 4 4ilcos5)cus!/j 
(3.284) 

The remaininq symbols of this tyoe are equal to zero. 

Expronsions (3.284) were found directly from the definition oi 

the symbols r.-  and r..  .  They can also be calculated from formulas 

(3.232).  To do this it is necessary only to note that, in accordance 

with (3.278) and table (3.273) 

H'« r (A, .cos/cos S -i A,, cos/sin Ä4A,, sin/). 

«I'.^r^A,, ms/iosS f A;,cos/sin.V4 Aj, sin/), 

H' vsi r (Aj, cos / cosS { tiitcos / sinS 4 6^, sin /). 

Calculations  performed  in  accordance with   formulas   (3.232)   also 

lead,   of course,   to  expressions   (3.284). 

From   (3.284)   on  the basis of  formulas   (3.126),   (3.174)   and   (3.281), 

wc   further   find: 

Too rr= rv i ■ 
n I ' I* T 1   ^ JA P 
• 0) --= fT^Ji 'ft, >■ l!'<    " W   *" " 

I'oi -- 7rr0-?71'1,! '• ''<"' ■■ Ti 'i"' '• 

I ol »  - I'm, |. I'^i --    - ' (ii. !■ 

(3.285) 
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If the qcodctic   trihedron Oj^'r.^' coincides with O.n'ri'n3» 

in table (2.27J)   the nondiagonal elements are equal to zero, while 

the diagonal elements are equal to one.  It is evident that in this 

case expressions (3.284) and (3.285) for the symbols P- . and r. 

become equal to the corresponding expressions (3.267), since for 

the case of the correspondence of O.r.'r,'r,' and 0,n1n2n3 the angle 

z reduces to the angle <|>. 

Substituting expressions (3.281), (3.282), (3.284) and (3.285) 

into equations (3.210) and qrouoinq terms as required, we arrive at 

the following relations describing the algorithm for determination of 

the coordinates r, S and z by the ir.ertial system: 

/-= J («,+ f|i+ </(»«»InS-«„cos5)1' + 
g 

-f r|&cos I + «( —ftj^ln/cosS —AJ;l!rw;|nS-|- 

-M„cow)l- (-tMjM-.),1).«-)-(-■(0). 

i 

r^io5z= f |n;4 rii'-ui! - riinst — 
• 

— Jer |A„ccn /— sin /(A,, IMJ ^AJ,sin5)1 f 

■+ 2uri |i\,,s.n; + cu'i.'^jjShiS-fA,, cosS)l  f 

-f n'r JH/it — A!.)cns .• cos SslnS + 

-f A4lAJ,coj/(Jln'A' - cos'5)-) 

-f ftj^in J(A,| sni5 — Alec's 5)| 4- 

-f ftM»tn0Vtl\4l I  M'l).$('i)cos/{Ü). 
i 

r* =» f I«, — f/ — rJ1 sin 7 cos / — 
i 

— Iif«(iv,i sinS—A,.cos 5)—iVwilAnsin.-cos J 4 

+ cos'^(«V,, sin 5 ( I^CMDIH u'rl(f>niosS t 

+ ft.ij'.ln5)(slii2Cüs/(Aj1io-5 -f A|1Mn5) f 

+ A.i,(sln r — cos'r))—A.uMnicos r| f 

4 rcnfl'qfjtfH '(l))':(n). 
i i 

r^ jr,li 4 f(i)). 5-  J~j<^cMf)(ff-t-S(0). 

(3.286) 
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We note that the second and third equations   (3.286)   may be 
partially  integrated.     Simultaneously reqrouoinq  the expressions 
e mtaincd  in  these equations,   wc obtain: 

— ftjj sin z sin „V } a^jcdsz)!^ 

"jl^ + rli MCVln.S-^cos.SjiiisIn/ + 
o 

+ «(«ji coi / cus 5 4- «JJ cos / Mn I f Ä,, sin /)| _ 

-rlicosz i «(-«1,«In/cos5-63,sin/sinSf 
4 Ajjcos/)] + ' 105/crad'l't|/) rf/ \. 

-f r|l}|#f9cw«W4 «I - AJI sin/(O)ens5(0)   - 

-43,slii/(0)slnS(0)-f 6j,cni/(0))J. 
rI« -f «(«j, sin S~t„cos S)\ m 

■ / {ij - rl&iim +</(AJICUS/COJS + 
0 

-)- Äjjcos / siiiÄ4 AjjSlii/)| |icos t + 

+ ''(-«j|Sln/cos5--A1,5|ii/s|,iS.f A^cos/)] - 
—'•(/•♦-«(AjiSinÄ- A,jCos.9)| f 

+ t E'aJ' I'll,1) ill 4 f (0) (.- (0) f 

4 «(Aj|Slii5(0)-«IJcI)s5(0)|). (3.287) 

The fifth and sixth equations of system (3.286) may be similarly 

altered.  We note also that, since equations (3.268) are u special case 

of oauations (3.286), partial intoqration is also oossible in equations 

(3.268), an is their repros-mtation in the form of (3.287), 

Form (3.287) of the ideal equations is convenient in that the 

groups of variables contained in them may be simply expressed in terms 

of fche orojections of the absolute angular velocity of the trihedron 

rlr?r3 on ^t;3 a:■'e•s• 

Indeed,   from expressions   (3.205),    (3.281),   (3.282)   and   (3.284) 

Um^islo.-  I «(AJ^OS/UJS.V 1 
-(.«j.cos/siiiS I \,MII/), 

7 1 «(   A.IMII."; t ft./f^•s'). 

OS/    f 
4. i((A„cos/ -«„sln.'cns."!-A.^ln/'in."!) 

MlJI- 

(O^r-.S'lO-, /    f 
(3.288) 

Therefore, substituting relations (3.288) into the first equation 

(3.286) and into both equation:! (3.287), wc may represent them in the 

following form: 
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I 
i 

MM "■ J \ii — "'«ijiMii» — M« +■ 

-(-/• cus / E"«!'^'i;'! </'+ »■ (0)w^, (0). 

> 
— «»I,, a J («i —/■UdiMiji + rii»,,! •(-. 

o 
+ /•grid' V'i;;j dl - /•(0)H()I(0), 

In doing this, clearly, in place of the last three equations 

(3.286) we must write: 

,-j;<« f MO). 

(3.289) 

i 

c_. f f CM — («„cosr-ftj^lnf cn5.";- 
's — J l /■ coj ^  cow ' " 

-«Ms(n/»lii5)j<//-t i'W, 

4.|i(-4„.lnS + »«co5S))^ + /(0). 

(3.290) 

Equations (3.289) and (3.290) are easily compared with equations 

(3.^2), obtained in §3.1 for the case of Cartesian coordinates, 

with a moving  trihedron on a sphere surrounding the earth taken as 

the trihedron Oxvz.  It is necessary only to note that for the sohorical 

coordinates r, S and z the following relations obtain: 

v,lt —/"im, I'ui ' ■ ^"'l:!. 

(3.291) 

with the x, v, z axes coincidinq with the di)ections of the vectors 

tj,, r-j and r, respectively. 

In equations (3.289), ar in (3.82), the first integration qives 

tho proiections of the absolute angular velocity of the moving 

trihedron on its axes.  From this point on, however, the solutions 

differ.  In equations (3.82) tho second integration is performed 

»long tho  axes of the moving trihedron Oxyz and tho Cartesian coordinates 

x - y = 0 and z - r are found themovinq coordinate system O.xyz. \ 

Then the projections of the absolute anqular velocity on the axes of 

the moving trihedron are used  to find the direction cosines of the 

x, y, z axes in relation to the f,Ä, ru, r* U'I t2,   T3) axes and the 
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conversion from the Cartesian coordinates x, y, z to the t.^,   %, c« 

coordinates or the r,, r],   r,   (n1» H » ')') coordinates is effected. 

When equations (3.279) and (3.290) are used, the projections of 

the absolute angular velocity of the moving     trihedron r/r^r, 

are expressed using equalities (3.288) in terms of the time-derivatives 

of the curvilinear coordinates S and z.  The coordinates themselves 

are then found by integration. 

We note further that comoarison of equations (3.82) with equations 

(3.289) and (3.290) shows also that in the determination of coordinates 

S and z the first inteciration may be performed not only aTonq the 

directions of ty  and r,, but also along the directions r • and r -, 

rotated relative to r', anc' ^3 through an angle iHt) in a nlane normal 

to t-, i.e., tangential to the sphere of radius r concentric with the 

earth. 

If 
TVT =  COS I -f- - — Mil If. 

'j 'j '1 
— =• - —i-slnl f—i-cosi|>. 
W| I'll IM 

(3.292) 
then   the  corresponding   ideal   ocruations may be written   in   the   following 
form: 

Clearly, 

'"■/ l«l t- '■I'",';"   ' "',''1  I  *** Vni' •" • ' (",• 
0 

I 

'^r i\n'r-r'<.r:>r '"','.,) 
-f-(f cos .• gn6 vifjtMii \ 

-4 (/•(.M>l'l'i|;piii.||rff  \-r(0)1.(^0). 

— (rtns/t;f.lil'I'll; iMin;   | 

-f (fUMll'l'll^niM, |r//   ,   HlllUtm 

'■'I'I,       '"11.   I   f 

■"i-, '    "'('.■, l''- 'I'       ■■','i,sl,ll|. 

(3.293) 

(3.294) 
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rquations (3.290) may now be usod to find S and z. 

It is evident that i>{t) is arbitrary.  Specifically, it is possible 

to calculate, in analogy with condition (3.81), to select iHt) such 

l it it satisfies the condition 

%,-• (3.295) 

Let us now turn to equations (3.211).  in accordance with relations 

.281), (3.282), (3.284) and (3.285), they reduce to the form 

i 

I 
-f- ft,, to» z - bj, sih / sin .V)] - 

^ uf' cos 1 (i|;.i; - l^j <ll + »ij (n)    , 

i i 

^.«(-^^(nicosS -AjjjinrslnS f Ajjcos/jl-f- 

' _|.-J!l_|_isinz - «(ftjjsinr-^ *J,cos/slnS + 

-t-Ä^osrcnsS)! t ^-(t,;,,; -.,;.,])|rf' ) n;(0). 

qj^- f    ii}~ ( iijtosrlicosz | u{(iucoiZcusS+ 

■ I AjjiOsrsinS^ A^shi/)! \  y-1-' I ■#»•••* - 

-b„c«iS)\ |-acMt(^     'W,)!«" i TjiO) 

(3.296) 

It is not difficult to demonstrate that for constant u equations 

(3.296) satisfy the following values of n^: 

■i      rciis»V      ii 'i' > 

H" v( Ai0'1 •tMS ■*»••■'',I"Ä 16iic''5')• 
^M^cattcnJ ( ä„II.S;MII.S' | fi^sin.-). 

i^^-   (—A^smrtosS—ft,;Mii/vlii.S ) ft^tos/j, 

H1, •-<*,,( us ? cos S ) ft^ios »sin.V f i^sni/). 

^.^(-«^sln^cosS-ft^slii/slnS ^ ft^cosi) (3.2   7) 
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In equalities (3.297) the direction cosines t..   are determined 

by table (3.273) and relations (3.274) or (3.277). 

As in the preceding cases, the reduced values of r\.   may be obtained 

not from equations (3.296), but from equalities (3.258).  They may 

also he obtained hy computing the direction cosines between the vectors 

1' r2'   ^3 and n>l' n2' ^3 and t^en dividing them by the corresponding 
Lane coefficients.  This is evident from the second group of equations 

(3.184), if we rewrite them in the form 

The terms in parentheses on the right siiles of equalities (3.297) 

are the direction cosines between r,, r,, r3 and n,, n?» ^2'  and t^e 

factors in front of the parentheses are the reciprocals of the Lane 

Coeffi nicnts. 

From equations (3.212) 

t»-<f (3.298) 

Taking  into account  relations   (3.297),  we obtain: 

l' == '(A/i ''l|,> • coss + *« coi: sin ."> |. A,,sin t). 
ifis r{fiil ens ^cosS-f-A,, lüsr Mn.'i  h*j|Sin.-) (3.299) 

The  direction  cosines  between   the   C.   axes  and  the  newtonomoter axes 
8     are   found   fron  formulas   (3.213). 

tablei 

Lot us denote those rUrertion cosines by Y^.:-  Let them form the 

li 5i {, 
r" tu \i, v,, 
'i Vi, V.v v., 
r'  Vj, fji V,, 

(3.300) 
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Using expressions (3.281) for the Lame coefficients and (3.283) 

for the partial derivatives of the C  coordinates relative to *s from 

relations (3.213) we obtain the following expressions for the elements 

of table (3.300): 

YII = (A||CüS/IUSS4 A,, cos; sin £ 4 A|]Slii J)coSB/ — 

— (ft,, cus r tus 5 -f ftn cos / sin 5 -(- *„ sin *) sin «/, 

Vu = (*ii i os 7 cos 5 +Al,co5i5lnS ^ «^ sin/) sin«/ -)- 

+ (ft,, cos / cos 5' + A,, cos / sin 5 -|- *j, sin /) cos ut, 

VII = *JI cos/cos5 I- Ajjdis/sln.? f ftusin/, 

V« =■(—4iiSlnÄ + ft„cos.S)co5ii/—(A,|Sln5-f ftnCos.Sjslnu/, 

Yn = (—ftn sin 5-f-ft,, cos 5) sin «f + 

Yn = — *3i a1" ^ + *JI cos S, 

Y« =( —4||Sln/cosS— ft,, sin/»In 5-f ft„co$/)cosB/ — 

— (— A,, sin / co» 5 — 6^ »In / ;ln5 -f- A,, co» /) sin ut, 

Yn^C- ft,, »In/cosS — A„5ln/slnS fA„cos/)slnM/ + 

-f (—A;1sln/cos5 — 6nsin/ slnS f A„cos/)cosuf, 

Yu = — *j| sin / cos 5 — Aj, sin / sin -"> - A^co» /. 

It is useful to note that the direction cosines (S. . may be 

obtained from the expressions in parentheses on the right sides of 

relations (3.297).  To do this it is necessary to substitute X. + ut 

and >2  *   ut in place of \^  and A, in formulas (3.274) defining ^. . , 

and then to substitute these new values of 5.', into relations (3.297). 

The projections of the absolute angular velocity of the trihedron 

12 3 on t^t' ^ir-ctions of the vectors forminq this trihedron were 

obtained above.  These projections are defined by equalities (3.288). 

It follows from these equalities and from formulas (3.209) that 

All, = //|icos / + B( —A,, Mn/cos5 — 

— A,, sin / sin S -|- Aj, cus J)], 

M], = //(/-" ( - Aj, sin .T 4 AH cos S)\, 

M], -- HlSiint f- «(A,, cos /cosS^- 

-f A^cos/siiii + A^sin/)].   ], (3.301) 

"^Viur;,   the  operational   alqorithm of  an   inortial   system  dotermin- 

in<j  rjeoCetic  coordinates,   when   the  basis  of  its   functional  diaqram  is a 
free qyrostabilized olatform,   includes   formulas   (3.236),   (3.297), 
(3.299)   and   (3.274),   as well  as expressions  for  the direction  cosines 
y.j.     In  nlace of  formulas   (3.2R6),   formulas   (3.289)   and   (3.290)   or 
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{1.293),   (3.294)   and   (3.290)   may also be used,   and  in place  of 
equalities   (3.297)   equations   (3.296)   may  be  used. 

If a manouvorablo gyronlatform  is   taken as  the basis  of  the   function- 
al diagram,       the expressions  for  the direction cosines y..   of the 
newtonomoter  axes  relative  to the  axes  of the  stabilized platform 
should be  replaced  in the operational  algorithm by equalities   (3.301), 
in accordance with which  the moments  Controlling  the nlatform are 
formed. 

Formulas   (3.286),   (3.289)   and   (3.293)   contain the comnonents of 
the gradient  of the   force  function  of  the earth's gravitational   field 
along  the axes  of  the O-.n'n2'!3  coordinate  system  bound  to  the  earth 
These  functions  should be given as   functions of the coordinates  n   . 

If we assume  that the gravitational  field  is  spherical,   then,  as 
is easily demonstrated,   equalities   (3.264)   obtain,   and therefore 
formulas   (3.296)   and   (3.297)   drop out  of the  ideal  equations. 

If we consider  that  the vector  gradV of the   strength  of   the 

earth's gravitational   field   lies  in   the plane of  the earth's meridian, 
then   in  accordance  with   formulas   (3.265) 

Ziicl'V — g*i.vs}.,    (jfjd'V —/.'.JslnV. I 

R(a(lsV-=/:J. ( 
••     (3.302) 

where g!j is the projection of the vector gradV on the plane of the 

equator, and g-, is the projection of this vector on the earth's axis 

of rotation.  The quantities g» and g^ arc; functions of • and r. 

The geocentric coordinates required for the formation of the right, 

sides of (3.302) -- the latitude » and the longitude X — are related 

to the geodetic   coordinates S and z   by the equalities: 

COS(( lüO. - - A,, COS .•UK.S   t   AoCOS/MII.^   l-A^MII/.j 

cosiftri*).   - fy, lüwios.*» t ^vcos / itnS-f-iV.sifi/.j 
(3.303) 
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The components grad V of the gradient of the earth's gravitational 

field enter into the integrands of formulas (3.286), (3.289) and 

(3.293) in the form of the sums 

End' I'll,', r cos 7Kra J' l't|(', 

fCMd'Vii;. 

(3.304) 
o 

where the components qrad V are defined by equalities (3.302), and 

n^ by equalities (3.297) 

Equalities (3.302) contain the geographical longitude X.  At the 

same time we may assume in accordance with sums (3.304) that they 

may be written in a form such that the lonaitude \  does not appear 

in them.  In order to find this form, we introduce g1 and g3, which 

wore defined in accordance with equalities (3.266) as the projections 

of the strength vector of the earth's gravitaf'"mal field on the 

direction r and the direction tangent to the goo' -ntric meridian. 

From equalities (3.266) 

^j = g'co5(p — ^'slnf. 

(3.305) 

Let us subti'-ute these values into equalities (3.302), and then, 

along v/ith relations (3.297), into the sums (3.304).  Then, after 

obvious simplifications using equalities (3.303) and the orthogonality 

of table (3.273), we arrive at the formulas: 

gt.d' Vt»! ■ ff'. 

as required. 

r cos zgiad' I'l); -= JC- ( - *„ sin 5 + ft,,,CMS). 

t gud' I'n; = Jf- ( - A« sin / cos S - 

— Aj^sinr ■.in."» -f \jCosi). 

(3.306) 

As   is  evident,   in   formulas   (3.306)   the  quantities 

( -6,iSlii5-( AnCns.V). 

—- (— 4JI sin / cos S — ftj, sin 7 sin .V -1 ^ cos /) 

(Ulf 

i 
cot (3.307) 
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arc? simply the cosines of the angles between r- 

and the bearing to the north at the current location of the object. 

e and r, = r„ 8      3    Z 

Comparing all of the above alternatives for representing the ideal 

f lations of an inertial system determining the geodetic coordinates 

r z and S, wo may conclude that the sinnlest and most convenient for 

< • case of a maneuverablo qyroplatform as the basis of the system will 

I  the set of equations (3.289), (3.290), (.•'.306) and (3.209), to 

»  ch the third equation (3.303) and the first equation (3.288) must 

added.  Let us write out these equations here.  Thus, assuming 

it the x, y, z axes of the maneuverable platform coincide with the 

d -octions of the vectors r2, r3, i^, respectively, we alter in an 

. jropriate manner the indexation of the quantities entering into the 

wi aations and, in addition, we introduce v and v into the formulas x y 
Ln accordance with  the equalities v    = a)..r,   and v.. = -u..r.     As  a 
result we obtain: 

y ' / 

;=Ji/t,»iw-v.+ff1^ tn'ti + 'no). 
o 

I 

_ «M^d,    ft   .|,i5-i-*J2cos..f)l(/M Uj(0), 

*JH f '*>, + ,.J|. 
X tHi ii (     ft,, sin Z CM S     »3, sill .• sin S i- 
'      cusv 

4 ft^,COS/)](«(  f,(ü). 

r ^ j r rf/  | t (0).    w. 

0 

— ft„slnr5ln5)]i// -f 5(0). 

/^ f I'M, f «( —^„siri.S \ I^COSj)|4f4-ff|^ 
o 

All, =    - //(it,,      4I|, -- //(),,      /l||r      : //oi,. 

(3.308) 
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If tho basis of the system is not a manouverablo qyrostabilized 

platform but a free platform, the last three equations (3.308) are 

replaced by the table of direction cosines (3.300). 

Equations (3.308) for the qeodetic   coordinates r, S, and z 

include as special cases the equations for the qoocentric coordinates 

r, X, and | and the coordinates r, X.^ind | examined above.  In order 

to convert from the qeodetic   coordinates r, S and z to the qeocentric 

coordinates r, X, and ., it is sufficient to require that the trihedra 

n1n2ri3 and r.'r;2'',' coincide. This is the case if, of all of the direction 

cosines &..  of table (3.273), only 

are non-zero.  To obtain the ideal equations in the coordinates r, X, 

and v. it is necessary in addition to set u = 0. 

To tho above ideal equations of inertial systems detormininq the 

coordinates r, X., f;   r, X, ■;and r, S, z, it is necessary to add 

further the table (3.66) of the direction cosines between the X, Y, 

Z axes attached to the object and the x, y, z axes of the qyrostabilized 

platform.  This table enables us to find the parameters characterizinq 

tho orientation of the object in space from the measured values of the 

rotation anqles a, R, and y of the yinkil »Tinq of the qyrostabilized 

platform (or the platforn of tho qauqc of absolute anqular velocity). 

This aspect of the problem does not differ in any way from the analoqous 

problem for the case of Cartesian coordinates considered in fi3.1. 

3.3.5.  Gooaraphical coordinates Lot us now consider an oxamole 

of a non-sohorical orthoqonal reforunce  qrid, in the form of 

qeoqraphici'l coordinateb: latitude ,', lonqitudo X, and heiqht h over 

tho surface of the ocean. 

We will consider the surface of the ocean to be an i llipsoid of 

revolution.  This ellipsoid is usually termed a Clairaut ellipsoid. 

Tho minor seniaxis of the ellipsoid is its axis of symmetry and coincides 

with the earth's axis of rotation. 
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The geographical  latitude "?'  will  be defined,  as usual,  as  the 
a-.gle between  the plane  of the earth's  equator and the external  normal 
to  the Clairaut ellipsoid. 

To apply  the general  formulas of the  preceding section,  we will, 
before,   stipulate   the equalities 

1,1 ^ i, K» ■=» >.. x3=r 

(3.309) 

Since the n1, n', n3 axes are rigidly bound to the earth and 

i n3 axis is directed along the earth's axis of rotation, according 

(2.7) and (2.8) we have: 

Ulf' !.in! tj'    / 

"'=;(T.--^^;A) 'si",■■ 

'sm'il      / 

(3.310) 

where a is the minor semiaxis, e is the eccentricity of the Clairaut 

ellipsoid, and n1, n7, n3 are the projections of the radius vector r 

of the point 0 at which the sensing masses of the newtonometors are 

locator! on the n1, n', n3 axes. The projections of the vector r on 

the %x, t,2, t,* axes of the main Cartesian system are related, according 

to rulntions (3.231), to the n', n2, i3 coordinates by the equalities 

X* -ill1 cos»/ -- ii-srn«/. 

X* m ii' sin ut f \,'coiul. 

(3.311) 

From expressions (3.310) &nd (3.311) we obtain; 

■or - - (j/r--7wv + *) ",s ?'>,n ,- 

£V _  /  ad !•>(   . „S ,  ,  , 
W " [iT- **ßW ^T'"! C05 '•• 
•'•l'    /  «(I ■»')     \ 

in'       Ox' Ox' 

i*'       i»' itx«      rf,»  (fc»       jj 

(3.312) 
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The Jacobian determinant is 

and the roforonco  grid is degenerate on the n5 axis, where 9* tTT/2, 

The components ass of the metric tensor A of the space defined 

by the coordinates h,X and v are calculated according to (3,312) as 

follows: 

/ 
(3.313) 

From   (3.313)   and   (3.174)   we obtain the Lame  coefficients; 

13.314) 

We 

(3.175): 

may now find the non-zero Christoffel symbols from formulas 

r„.,cr^-(Fr;-^Mp.r'. 
r»i. i = r« =» -*. _ «n- »*) 

(1--»'»In'rf)'1 

VI I  - r' tin n I 

XlJI     JJj I    t  AjMiuf'n'Sv', 

ij.rj-   (- i  .-^ ,..- {■»)''x 
\| I — f' ■.m't I 

I     ii   ,'MfivM 

TJI. j—' ii i ■ t *. 
< V) 

rj-ri-l . Hi   ;'. i *] 

1 -'.';.♦ /iM"i|'i 
all      '') 

»V 

»1 
•M 

'       ^ >'^(l - t') sin v'(Oil' I       a (I ->') 1 
"• ' (l-»'^^»')''        [(l-f'«lii'«.')'''    *     J' 

^«f—•ILr.'-V Ml '/'Tad    rl'inr^Ul 
Id-«'nil'*"/'       J (i-»'iinv/' 

24 3 
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Finally, using formulas (3.232), (3.177) and (3.178) we find the 
s s 

symbols roo g, roo, rok  and rok.  The following of them are non-zero: 

1(1-«'tin'« ) '   J 
x(* + Fr^Ä^)J",,r'C05,,/' 

r0;=.«/. '_—^f A)'1. 

L (I-»»iln'»')■'■ T ) 

x(* + 7T^inV"^""r't0',f' 

1(1—«'sin'if') ■    J 

(3.316) 

It is evident  that,   if  in  expressions   (3.314),   (3.315)   and   (3.316) 
we  set 

they  will  coincide  with expressions   (3.251),    (3.252)   and   (3.267). 

Equations   (3.210)   --   (3.213)   contain   the  Lame  coefficients,   the 
Christoffel   symbols   and  the   symbols   V^  and   rJ?.     All  of   these  have   been 
found.     Substituting   their  expressions   (3.314),    (3.315)   and   (3.316) 
into   the   firs',   three  equations   (3.210)   we  arrive  at   the   followina 
relations: 

I 

+ Kr.lJ't'.l) } </<  tA(0). 

(3.317) 
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I 
- f {e,-Ä(>. f 2«)cosT' + 

4 f__£i^!L_.-I-*] V'(1 + 2u)«ln9'+ 
• [(I —»•nn1»') '        J 

+ A/gia<l'fi);|^ f 

-fl.—/.rT^- + MO)] i(0)cos.r(0). 
T[Ki-«'«iii'v (0) J 

Id-»'.!.!'?') '   r    I'        i 

X(il-f «tfsliKp'cosV-f Ajgnd'V'ii; ]<// + 

4. / gl'.-'''    ■ + A (0)19' (0) 

(3.317) 

The Christoffel  symbol  r3|  does not enter  into the  third relation 
(3.317),   since  in equations   (3.210)   the summation  is carried out only over 
all  k different  from s. 

To  find n.   for the   case under consideration,   there  is  no need  to 
use equations   (3.211),   since  from the  relation 

and  from relations   (3.314)   it directly  follows  that 

"»-2" ^-«r^ i-qw (3.318) 

We will consider that the vector 

(3.319) 
of the strength oi   tho  earth's grwitational field lies in the plane 

of the meridian.  Then in the second equation (3.317) the sum 

'"    " (3.320) 

since this sum is the projection of the vector g on the direction r7, 

normal to tho plane of the meridian. 
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From the condition that the vector q lie in the plane of the 

meridian, the following relations likewise follow: 

ffi'Vtr. g^toiK   Biad»V = /fJsli.)., Kta<l1V = /fJ. 

(3.321) 
where glj and g^ are  functions  of  t'   and h. 

Using relations   (3.318),  we find: 

Br3d'V'tij= ffJcosip'KrJsln-p'. 

(3.322) 

By analogy with relations   (3,266), we  introduce the  orojections 
g- and  gi of  the vector  g = oradV on   the direction  of the normal  to 
the Clairaut  ellipsoid and the  direction of  the  tangent  to the  geo- 
graphic meridian.     Then,   clearly, 

«i^/rjeos«^ (-ifjslnii/,       jl 

(3.323) 

Here g^ and g^ are functions of h and v .  According to the definitions 

given in §2.2, 

Since the surface of the Clairaut ellipsoid is a reference surface 

i.e., a surface of constant qravitational force potential, in the 

intoqrand of th^ third equation (3.317) the sum 

W.  o.,) rr=vrMv^-
0- (3.324) 

Relations (3.320), (3.322), (3.323) and (3.324) simplify the 

intoqrand of equations (3.317).  Taking into account these simplifica- 

tions and adding to equations (3.317) the formulas for h, \,   and V , 

wo arrive at the following system of equations; 
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„J   I I (I-«'Ml''*)' J 

X (i + «)'c«'*'+ Ki (<(•'. *)) at 4- Ä (0). 

i 

= J ( n, - /i (>, + 2i/)füs.(.' f .(''(i + 2«) X 

^((1     »'sin',')'- '    J /       r 

+[7r^4^w^*(,"],(0,cos,''(0)' 

X Mil   f iKJMlI'f't"*1!1'        /lu'SIIUf'ldSlf'-i- 

+ / —f!!.-/1   . -t-/i(0) U'W. 

A-  I hdl +*(0). 

> 
/ 

r 

11(1   -»'MnO ' J     J 

(3.325) 
mho  system of equations   (3,325)   constitutes a portion of the  ideal 
equation of an  inertial  system operating in  a geoqraphic   roforence 
arid.     This  portion  of  the   equations dealr.  with  the  determination of 
h,     >,    ,,   h,   A and   -,   from  the  initial  values  of  these coordinates and 
the  readincri  of  the  newtonomotors  n. Newtonometer  d.    (its 1'  2'  3' 
axil of sensitivity) is situated in the direction of the normal r, to the 

reference ellipsoid, while nowtonomoters n, and r.-, are situated in 

a   plane p^r-pcmdicular to r, , i.e., in a plane parallel to the plane 

of tho gaographic horizon, the axis of sensitivity of newtonometer n, 

coinciding with the direction r3  lying in the plane of the meridian, 

and the axis of sensitivity of newtonometer n_ coinciding with direction 

r^, normal to this plane.  Tho vectors r, and r3 point, clearly, in 

the direction of increasing > and i?'. 
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1 
To determine the direction cosines of the vectors r,,   r- and r, 

relative  to the  £',   C2,   C3   axes of  the  stabilized platform,   relations 
(3.312)   should  be used.     From them we  immediately obtain  the direction 
cosines betv/een  the vectors   r    and  the  n'»   n'»   n3  axes: s 

rf cos if'i os >.        <os(('ilii^   sin^' 

r, —sin). uis). 0 

r^   — slnif'to$>.    — slnif'slnJ,   cos<p'. 

Those direction cosines, together with the direction cosines 

between the n1, n2, n3 and C1, fi2, C3 axes . 

<\< '1' rf 
V ens lit sin»< (i 

V Hunt f (IS /// i) 

V 0 (1 I 

fully determine the position of the vectors r relative to the Kx , 

K7 ,   £ 3 axes. 

The rotation angles a« ß, and y of the gimbal rings of the stabilized 

platform enable us to construct table (3.6G) of the direction cosines 

between the axes of the trihedron XY7. bound   to the object and the 

x, y, z (C1, %*,   r,*)   axes of the stabilized platform.  Table (3.66), 

together with the tables of the direction cosines between the n1, n2, 

n' and '', C1» ^1 axes, and betv/een the n,, r^-'   ^3 axes and vectors 
rl' r2' r3' ona'alG us to determine the orientation of the object 

relative to the plane of the geographic horizon and the points of the 

compass. 

If for the case under consideration the functional diagram is a 

manouvorable gyroplatForm, the rontrolling moments MJ_, M! , and M^ , 

are formed according to formulas (3.209).  The quantities '^/iw ^ {2\ ' 

'.,.,, roguired here am easily found from expressions (3,205), (3.315), 

(3.316) and (3.314)i 

Mil| = (). 1 uy ui'i'. "'..■, = r 

".«-^ + •1 ''    ' (3.326) 
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We note that equations (3.317) may also be represented in a form 

analogous to equations (3.289) and, further, equations (3.82). 

According to the well-known Dupin theorem, the surfaces of 

equal values of the coordinates of a trinle orthogonal system intersect 

along lines of curvature.  We will use r, and r3 to designate the 

radii of curvature of the normal sections of the surface h = const 

passing through the vectors r^  and r,, respectively.  It then follows 

from relations (3.314) that 

'»-*'Mö^#..,„vf. ' • (3.327) 

Since r, is the radius of curvature of the parallel of the surface 
■ 9 

of rotation h = const, according to Meusnier's theorem 

■»'Di imit+» (3-328) 

The projections v,^. and v,-. of the absolute velocity of the 

origin of trihedron r.r.r, may now bo expressed in terms of (. ,. and 

w,,)' respectively as follows: 

«".«^«W». "di = -U,!,'! (3.329) 

Before substituting these relations into equations (3.317), let 

us transform the second of these equations.  Wo may form the total 

derivative from a portion of the integrand of the second equation 

(3.317) as follows: 

^ „^f/-,—  « __-» ^„cosq.'!. 

(3.330) 

Integrating   this  portion,   wo   reduce  the   second  equation   (3.317) 
to  the   form: 
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r iiiMMii •Mima ii i •» wwi»*'>w jmhiit ip ■ 

(F^fc,"r+*)(i+","'5V'=' 
« 

•e J jd,-Ä(X +«)cn5(I>'-J- 

■» |(T^V)': f »I*' (i + •*•«' + A;C'a-1 »'•1,')'" f 

(3,331) 

Wo now substitute (3.326), (3.327), (3.328) and (3.329) in 

•. ■ lation (3.331) and the first and third equations (3.317).  Taking 
;o account equalities (3.323) and (3.320), we obtain: 

* ° / I«. *■ V% - ".Ä + fil <" + »(0). 

o 
i 

(3.332) 

Thus,   the  ideal  equations   of an   inortial  system operating  in 
qeoqraphic coordinates,  when   the basis  of the system is  a maneuverable 
gyroplatform,   may  bo  ropresontod   in   the  following   form: 

i 

* = / K-I- V, - V, * AC». •t')\<'i + HO). 
i 

l 

«. = / f»,  f t',", - *'■',) dl 4 v. (0). 
I 

i 

'•'- -7.- 

i' = - / <■','" 4 T' (0). 
I 

x-/(^—•)« + » i 
(0), 

/t«;, =-//,,,.   ,ir,*, =//„,,.   Af,.~Hm,. 
(3.333) 

. 
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■mil i in t»jm> 

Equations (3.333) wero obtaini-d from rol.itions (3.332), (3.329), 

(3.326) and (1.209).  The x, y, z MM ol the maneuvorable platform 

are superposed on the directions r,, r,, r,, the indices (1), (2), 

(3) in formulas (3.333) being reolnced by x, y, z. 

As for the precedinq cases, if the basis of  the system is not 

an all-movinq but a free gyrostabilized platform, the last three 

relations (3.333) drop out.  The appropriate tables of direction 

cosines should be used in their place to determine the required orienta- 

tion of the newtonometers. 

3.3.6.  An example of non-orthogonal curvilinear coordinates. 

In conclusion let us consider an example of non-orthogonal coordinates. 

Let the coordinates defining the position of the point O in the basic 

Cartesian system be the distance r of the point 0 from the center of 

the earth and the angles 0, and o, which form the vector r with the 

f;1 and r.'   axes (Figure 3.5).  Then 

t1-—rcüMi,. ['«=fcoso,. 

(3.334) 

This is a stationary spherical, but not orthogonal reference grid. 

Figure 3.5 
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From   (3.334)   it  follows  that: 

m 

3L- 

M 

3'. 
00, 

JCOJO,,   ->- -=iOSOj. 

> V'sln'n, - cos'n^, 

i - r sind,.  -J- = 0, 

e «Inn, mi n, 

y-^ 

■0-  ^—'•••*■ 

r' »run, sindj 

Tho reference  grid degenerates on the O,^1^2 

Let us assume that 

(3.335) 

•C'C1 plane, where J = 0, 

K1 =«r.  K,» =0,.  X1 —0; 

(3.336) 

Tlic covariant comoononts of the metric tensor will then be: 

0 

"n — "JI -0. "., -«i. =0. 

■B a 

f'iid'd, sin'»i, 

""   ■!•••, - (..»'.ij • 

r1 Sinn, coin, uln^rosn^ 

(3.337) 

In order to use formulas (3.129), expressing the Christoffol 

svnbols of the first kind in terms of tho derivatives of the covariant 

components of tho metric tensor, we write out the derivatives  83 

The following dorivaties are non-zerö: st 
IT 

da,,        tog _ ?r*>n'<<, sln'n, 
,1,    '~~ir'       iln1!!,   - tm'a, ' 

da,,        (»Ji,       >r*l«i CWi <»«iC»««t 
"5>   ''~ Ifr    ' sln'n, - tiH'n, 

da„       da,,       _ gr' Mn a, cm o, '■In' "i tns' n, 

■*r (sln'o, -cus1«,)' 

,»slnfljfri ij^fs'i, ifis* n, -I  iln1 ot ilti'o,) 
(Mir "i,  -  t'oifitf 

'if' *ln  it, ens'n, »(no, rns.1, 
"" («In'.i",  ■ "urt'Ö,")r' * 

Hl., Al,, 

5-, ' '1 

r* «Inn, inKt, (em'o, rm'n,  ( itn* <it »In'o^ 
(Mii'o, —tus'il,|' (3.33S) 
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Taking into account equalities (3.3.38), from formulas (3.12f>) 

we find the non-zero Christoffel symbols of the first kind: 

IS?' 

I («II, 

r     _      ' «'«II       p ■ • a i = - -j "y .    '»i = ' n. i 

«».1-1)1..= 7-5^ , 

• IJ.3 •=' n.i = 7 ->- .   In, 1 = 1111 = 7 y 

p i*"» I ^«11 
"■»       <*(!, 2   tkl, ' 

'».1 = 

r         «'"n        I   ''•'11 

I  da.. 

■"».l^1 1 <?l!l 
^   At, rÄJ = i «•"ii 

2 *T 
(3.339) 

Thus, to within  the constant  factor   1/2,   expression (3.338) 
contains  all  of  the Christoffcl  symbols  of the   first kind except the 
symbols   122  3 and  rj3  ?'   wflich'   according   to relations   (3.338)   and 

(3.339),   are: 

r^,-- f'slfin, cos rt, 
■ n.» = MH-t»JU (cos'',| C0,'oi -sl"'"i 5ii,'0»+ 

+ sin'o, ens'o..). 

n ,:—-n — ■ .-   (cos7«, C"s'iij —sura. Mil7", 1 

■t sin'II, cos'n,). 
(3.340) 

To  find tJie  Christofful  symbols  of the  second kind,   we must use 
relations   (3.126),   the right  sides   of which contain,   in addition to   the 
Christoffel  symbols  of the   first  kind,  the contravariant components 

f. t a       of   the  metric   tensor.     To  find   the  latter we  may  use  the   fact   that 
fct the matrix  composed  of  the  contravaricint  components  a "     of   the  metric 

tensor  la   the  inverse  of  the matrix  of the  covariant components a  . . 
SK 

Forming   the   inverse of   the  matrix || a   . jj,   we   find: 

••' — I,   «'• 

It 

^" = 7r. 

r öS "1 c|i: "i 

The  remaining  compononts  a '     are  equal   to   0 

(3.341) 
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From equalities (3.126), (3.341). (3.340), (3.339) and (3.338), 

we now obtain explicit expressions for the non-zero Christoffel 

symbols of the second kind T . : 

rj 

r,3= 

_ r Mn'o, R(fi»iif 

»In1», ■^topoj' 

— Pji— ^»lniit coiq, jtn o; cos o, 
flll'O, — COJ'ÖJ 

_ f »In'Ji sln'o, 
•In'0| — cos'tfj' 

. P,? =. i ,    IVJ = - to»'glco>'(i, 

•III'«! — CM1«,      ' 

MM «I, Ml <>! 'tn' n, 

•In' ^^MP ",    * 
iln*fl, sinn,fos«, 
sln'o, — cöjTöT-' 

■»• cos'ai sing, ms a, 
"    " «In' 0| - cos'nT""' 

CO»'»»! 10s'0| 
sln<il(shi1<i( - co?'«,) ' 

Since the coordinates r, o., o- are stationary. 

(3.342) 

ro: = iv,=o. (3.343) 

The rcferoncti     grid  under consideration is not orthogonal. 
Therefore  to obtain the  ideal equations we will   use   formulas   (3.172), 
(3.163)   or   (3.164),   as well  as   the  table of direction cosines   (3.173) 

Substituting  expressions   (3.343),    (3.342)   and   (3.341)   into  relations 
(3.172),   we   find: 

f [ r.ln'n, Rln1«,  . ■,   i  J|J. 

+ 2.'i|ö,cleolli(;rt,) |  Kr.id'l'i|;|rfr4 >(")• 
t 

rOi — J ^n,—^f"i-t „„rj, _ cos'"/ ' 
I , 

-f^slno^lnnj'  1  fRrid'V't|j]d/  ( r(0)o,(0). 

I 
i        f I« _9rn   t ■ .—-^—'-,—(li.^inii.slnnj V 

ra,^ J  [%—W"! I jin'o,      cus'<',v  '        ' 

i • 

, = f 'rät 1 MO),    o. = J }(".)'« 4 "i I0»' 
f I 

i 

_ o. = if .l(f(),)<*/ ( ",(0). 
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mw—rtiMWii mmm****1^*m* 

From formulas (3,163) wo obtain: 
i 

I 
—OjCOso^üSOj) f ^fi" «j^inOjSMiaj—OjCosdjtosrt,)] f 

r'u tlno, Moo.    , ,  ,        , -tv I ^^   .     i , 
+ Fii^^n7r; W- "'"S}'" +"'((* 

X|'|J(— OjCOlOjCOSO^-   Oj CCS 0, sill o,)  I 

4 t((—  Oj COIUjCOSU, -- O^lllOjCOSUjJ-l 

- «VfJ + sin (1, sin o, (i|;i|; - i|,ir|])J [ rf/ f MJ (0). 

( 

'''      J in' /■ ' Tiri'i;-:U1'^--' 
I 

x|l/(~ OjeotOjCcsii, — 6^0511^1110,) + 

+ '|J (—'',«<>• "»i cos 0^ - (jj Sill O^nsOj)] f 

+ ,,;1 7 + IT- ,■■-*■'->.— |a'5 "ico» "s ('V'il - 

— ti;il])-t slno.sino^nJiiJ-^'ii'Jdli// ( ii;(0). 

(3.345) 

valuer:  of   n 

Equations (3.345) are satisfied for constant u by the following 
k, 

i]] =. cos o, cos «/  f cos n^ sin«/. 

,]?=t.L(_ 5ino,cos«/ | com,coso,sin u/). 

r\> = •' (cos o, coiOjtu.«/ — sin I'J sm ut), 

i|* = — cus o, sin ul + cos o3 tos lit, 

H^ --     (sinOjSinu/ -i coto, rosu,cosu/). 

»l]   ■     (     cos o, cot"., MIIH/  - sinojius«/). 

i|J i - I -.in'it, — tos'Oj. 
c<,l"i i/na nj--->—r!'ii''<'i--<-<'s'<'i. 

(3.346) 

The quantities  ryi may  also  be obtained  from  the equalities 

'if = »I, • r». (3.347) 



in which n^ are expressed in terms of I    by means of the formulas 

i|l=|lco»«/-|-8,sliiw/.        1 
(3.348) 

In order to use equalities (3.347), r must be known.  Since 

(3.349) 

by taking into account expressions (3.341) for the contravariant 

components of the metric tensor, we obtain: 

1 r'«■/•).   r,=»-p-(r, —r,,coifl,coi(i,). 

if
s-=^r( -rjeoti^eotn, fr,). 

(3.350) 

At the same  time,   according to relations   (3.334),   (3.335)   and   (3.336), 

r,mlicoso, +1,COJo, -f-1, /slu'o,—cos'o,, 
.      . .  .      rslnn.coiOi 

I'tln'o, — cos'Oj 

ri =• — 8j r sin a, + fa-7===i==|=r. 
* '      ■ Kiln» o,-cos" o, (3.351) 

Substituting r,, r-, i^o into formulas (3.350) and 'ising equalities 

(3.348) and (3.347), wo obtain the same values of rip ^s those obtained 

using formulas (3.346). 

Turning to the second group of equations (3.163), we obt'.in: 

or, considering formulas (3.346), 

■ 

V • = r (cos «, CM ill  \- tn<; (i; sin lit), 

'l'-='(-   005 11,5111«/   |   CCISO,CI)S(,' 

if1 =i r l^sln' (i, — cos' tu. (3.352) 

The quant.iti'is  n1,^  and  n1   are  required  for the   formation of 
the  force  function V of  the gravitational   field,   which  is assumed  to 

9     s be a  function  of  theno coordinates.     Of course,   the  sums ctrad  Vn« 
may be  transformed,   as   in the preceding cases,   so as  to contain only 
gg  and g^ or  g1   and g1,   defined by  equalities   (3.266).     The   latitude 
V is  required   for  the  formation of  g»  and g^ or g1  and g'.      It may be 
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obtained  from a compariFon of relations   (3.352)   with the equalities 

if ~r cosn'cos k.    M' -'•''OS «f sin?.,    ^atfitof, (3.353) 

To complete the compilation of the ideal equations of the system 
in question,   only  the  direction cosines between  the newtonometers  axes 
|_ and the axes of  the  stabilized platform,   i.e.,   the  f;1,   ?',   C3  axes 
remain  to bu   found. 

From table   (3.173)   and expressions   (3.351)   and   (3.341)   we  find 
the  following direction cosines: 

V V V 
*i        cosoi coso, ]Ailii;o, -cos'oj 

*i      —slnOi     clgOgcnsiT, clgnlY*in-'al — IOSMIJ 

fi   cose», clg(i;     — slno,    c't'"iIr^"~oi — cos'tij. 
{3.353a) 

^3.4.     Ideal  ^nuations  of Inertial  Systems Not Containing Gyroscopic 
Gauges of Absolute Angular Velocity   [absolute  angular rate meter]10 

3.4.1.     General  considerations,     until  now we have assumed  that 
the  inerti.Vl  systems  which we have been considering have contained 
gyrosconic  sensing  elements as well as newtonometers.     The gyroscopic 
clenonts were used   to effect the  required orientation of  the directions 
of  the axes of  sensitivity of  the  three newtonometers  in  the main 
Cartesian coordinate   system,   i.e.,   basically,   in  some  inertial   reference 
system.     Specifically,   the  gyroscopic gauge of  absolute angular velocity 
was  used to determine   the  projections of  the  absolute angular velocity 
of   the platform of   the  gauge on  its  axes,  which  made possible  the 
integration of  the   fundamental  equation of  inertial  navigation  for   the 
case  in which  the axes  of  sensitivity of  the  newtonomters  are  riqid- 

ly  bound  to the  olatform. 

It war, also assumed  that the  sen.iing masses  of  the  three  linear 
newtonometers are always   situated at a single  point m  the object.     The 
determination of  the  location of this point  in  the main Cartesian 
conrdinuto  system was,   therefore,   a  problem which  was   solved with  the 
.mi  ol   the   ideal  equations  obtained  in   the   preceding   sections. 

257 



Even the most general considerations indicate, however, that in 

t le design of an inertial navigation system it is in principle possible 

to dispense with gyroscopic sensing elements .  In fact, let us return 

to the system considered in §3.1.  This system (Figure 3.1) consists 

of the platform cf a three-component gauge of absolute angular velocity 

to which are attached, three newtonometers, the sensing masses of which 

ire situated in the center of the platform gimbalson the object.  In 

:his case the newtonomter readings are the projections of the funda- 

nental equation of inertial navigation (1.79) or (1.88) on the axes 

)f the Oxyz coordinate system. 

The newtonometer readings are functions of the first and second 

lerivatives of the Cartesian coordinates x, y, z of the point 0 in the 

),xyz coordinate system, the projections and derivatives of the pro- 

lections of the absolute angular velocity u of the trihedron Oxyz on 

its axes, as well as the projections of the vector g of the strength 

of the earth's gravitational field on the x, y, z axes.  To integrate 

the fundamental equation of inertial navigation, i.e., to obtain the 

ideal equations (3.59) -- (3,65) and the formulas deriving from them, 

it was assumed that the vector g is a known function of the radius 

vector r in the earth body-axis system.  In integrating 

the fundamental equation and in converting from the coordinates x, y, 

z to the coordinates f>#, n*, f;*» we use the readings m , m , m of the xyz 
gauge of absolute angular  velocity,  which are  equal   to ui   ,   oi   ,  oi   , xyz 
respectively,   for errorless operation of this  instrurtuM.i . 

Let us now assume  that,   on  the platform or,   pquivalently,   in the 
trihedron Oxyz,   newtonometers  are  rigidly attached  not  only  at the 
noint  O,   but at several  other points 0X.     It  is  evident   that  the newtono- 
meter readings at  these  points will  differ  from  the  newtonometer   readings 
at  point 0 even when  their axes  of sensitivity  arc   identically oriented. 
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There are two causes  for differences  in the newtononetor readings 
(assuming that trihedron Oxyz  is rigid):     non-uniformity of the gravi- 
tational  field and rotation of  trihedron-Oxyz  in  inertial space. 
If we consider,  as previously,   the gravitational   field to be a known 
function of a point in  space,   then the difference  in  the newtononjeter 
readings at points 0    and 0,   caused by non-uniformity  in the gravita- 
tional  field,   may be calculated as a  function of  the coordinates 
determined by  the inertial  system.     Thus,  by comparing the newtonometer 
readings at the points O    and O,   it  is possible  to obtain information 
regarding the angular velocity of trihedron Oxyz,   whence derives the 
theoretical  possibility of dispensing with gyroscopic sensing elements 
in  the design of  inertial   systems. 

3.4.2.     Information  contained  in the readings  of  a group of mutually 
displaced newtonometors.   Let us  assume  that an   inertial  system contains 
a platform which  is  either  rigidly attached to   the 
object or  is  gimballed. As  previously,   let  us  attached  to  this 
platform a right orthogonal  trihedron Oxyz   (Figure   3.6).     We will   locate 

Figure  3.6 

the  newtonomcters on the platform  in the  following manner.     We will 
place  three nowtonometers,   the readings of which wo  designate as n°, 
n.0,»   nli   at the origin O of Oxyz,   directing their axes-of sensitivity 

y     z 

(the unit vectors of which in Figure 3.6 arc also designated as n", 
n,0r' n^ along the x, y, z axes in precisely the same way as in the 

y      ■ 
system   (Figure   3.1)   considered   in  iM.l.     We   select   in   trihedron Oxyz 
several   points  0    and place  at each of  these points   three newtononcters 
oriented   Similarly   to  newtonomcters  n0,   n",   n".      The   nevtononotrr x       y       z 
readings at  the  point o1   will  be designated by  n1,   n1,   n1. 

Kyi 
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As before, we will consider the task of the inertial navigation 
system to be the determination of the coordinates of the point 0 at 
which  sensing masses of  the  newtonomters n°,   n°,   n*   are located. 

■* i Let  p.   be  the radius  vector of  the point 0     relative to the point 
O,   and  let r be  the radius vector of the point 0  relative to the center 
of  the earth 0..    The radius vector of 0    relative  to point 0.   will 
then  be 

»V •='■.+Pi 

(3.354) 

Since the position of point 0 in the Oxyz coordinate system is 

assumed to be constant, 

ft^P/.jr-f p^+n,,*. 

(3.355) 

where  P^m$   P^   ,   PJ     are constants. 

In accordance with   (1.88), 

where 

(3.357) 

■* n "^i ■ Lot us  subtract  the  vector n     from the vector  n   ,   and denote  this 
difference  by no1.     From relations   (3.356)   and   (3.354)   we obtain: 

""'-"'    /i"--^' --/r(r HOl-ffC-) (3.358) 

Using relations (3.3), wu find that 

"' (3.359) 

where u is the absolute angular velocity of the trihedron Oxyz, and 

the dots, as before, designate the local derivatives of the vectors 

in ihn Oxyz coordinate system, or, eguivalontly, in the O.xyz coordinate 

nyfUcn, since these coordinate systems are identically oriented. 
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It  follows   from   (3.355)   that 

Pi=(>( = 0. 
(3.360) 

since in the Oxyz coordinate system the vector p. is constant.  Thus, 

rf«o 
S,i' ~ • ■< i'i ♦" ■ ■< <w y ft) 

(3.361) 

We  introduce  the notation 

''--Kin   *(; fi.,) (3.362) 

From expressions (3.358), (3.361) and (3,362) we obtain: 

« ' mm |.> ■. n, i'i • (M  t1,1 (3.363) 

Projectiny the vector defined by equality (3.363) on the x, y, z 

axes, we find the expressions for the difference between the quantities 
nv' nv' n7 and nv' nt'   nl  measured by the newtononters: 

4 ..i,(>>,!',. -; '■'..(•,,)- ('„(•■'; : "ii -"!• 

«J'-'-BJ - «J ■ •■\i;, —'V',, ♦ 

-+ •',("^■1. +,V».) " ^»K+*^)+#»' 

(3.364) 

Equalities   (3.364)   contain the newtononoter  readings n"1,   no1,   n 
x   y 

and  pix' piv' ^iz' which are known quantities given that the relative 

locations of the newtonometors are known, the projections u . u , u 

of the absolute angular velocity of trihedron Oxyz on its axes, which 

•are being sought, and the quantities a^, a1, a^. 

z 

To find u) , u) , and u  from equalities (3.364), we must first 

either use the latter equalities to find relations which do not contain 

a , a , a , or express a , a , a in terms of parameters determined 

by the inertial system, for example, in terms of the coordinates x, y, 

z of the point O in the O^xyz coordinate system.  The expression of 
av' aw' a^ i'1 terms of the coordinates x, y, z gives rise to certain 

difficulties.  These difficulties stem from the fact that the earth's 
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uravitntional  field  is dctorminud in  the O.^n''. coordinate system, 
"hich  is a  rigid earth body-axis  system.     In this coordinate  system the 

orojoctions  g.,   g  ,   g    of the  strength    vector g of  the  gravitational 

field on   the coordinate axes  arc  functions of  the coordinates  F.,   n.   ?• 

The O.xyz  coordinate  system,   however,   rotates  relative  to  the 0,r,r\r, 

coordinate  system.     The projections of the  strength     vector g of  the 

gravitational   field at  the  points 0 and 0    on  the  x,   y,   z  axes will 

he  functions  not only of the coordinates x,  y,   z of   these points  in the 

O.xyz  coordinate  system,   but  of   the  parameters defining  the orientation 

of  the  O.xyz  coordinate system  relative to  the O.^n?  coordinate  system, 

for example,   the direction cosines between  the corresponding axes. 

The  latter are defined in terms  of u)   ,   u   ,   and w    and 

the earth  rate  from relations   (3.61)   and   (3.64)   or 

the equivalent relations   (3.31)   —   (3.33),   (3.60)   and   (3.41).     To find 

a   ,   a   ,   a   ,   therefore,   it is  necessary to use  these relations,   as well 

as  relations   (3.62)   and   (3.63),   relating the coordinates   f^,   n*/   ^« and 

4,   »i,   C  with  the coordinates  x,   y,   z. 

As  before,  we will  use V  to  denote  the  force  function of  the  earth's 

gravitational   field: 

y^va.%i) (3.365) 

The projections g , g , g. of the strength vector g of the 

qravitational field on the 4, n, C axes will then be: 

*i*=-Jl • •«—HT- ft^Tj-- (3.366) 

Substituting  into  the  function V   (f.,   n,   O   the expressions   (3.63) 

for  the  coordinates   F,,   n,   C   in  terms of  the  coordinates  x,   y,   z and 

tint  direction  cosines   R..(t),   wo   now  obtain: 

i'    \-ix. y. ,.,) (3.367) 

Timo enters explicitly  into  relations   (3.367)   in  terms of  ß..(t). 
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The  function V(x,   y,   z,   t)   is  the  force  function of  the earth's 
jravitational  field in  the CKxyz coordinate  system.     Indeed,   from 
relations   (3.367)   and   (3.63)   we  have: 

-i7 - fc 4 0; Pa + .M' 
p., 

If - k, -f- 0;: t 
,)l' 
»; Ih 

dV rtV oV ,)i' 

i.e. , ~S7~~Si ''" f  d>r'Va"t ^'',u■ 

(3.368) 

(3.369) 

Differentiating equalities (3.368) with respect to x, y and z, 

we find: 

■jir -Tp P., + ,rni 1*,. + -jp P.n + 

•I'V d'l' ., , il'l' „, , d'V „, . 

(3.370) 

Now, taking into account the fact that the 0,xyz and 0,r,nC 

coordinate systems are orthogonal, the validity of the following 

equality is easily demonstrated: 

(fT , il'l  . 0V 
D "+ -üi>  ■+ mi'' "i; i/i|' 

(3.371) 

But since the function V(f, n, rj is the gravitational potential, 
12 

it satisfied Laplace's equation in the 01
rn'; coordinate system. 

Therofore: 

ö'V . •yv     w 
"ifl'   "'    Jy»  "»■   i(i'" (3.372) 
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As a result, th^ strength of the earth's gravitational field in 

the OjXyz coordinate system will bo the gradient of the function 

V{x, y, z, t): 

f   -XuJVix. y. t. 11 (3.373) 

Let   us  return to relation   (3.362)   and  find explicit  expressions 

)r ax'   ay'   and az- 

From  relations   (3.362)   and equalities   (3.373)   and   (3.355),   it 

follows  that 

-E'i'ii'C* f-p,,. y |-p„. i »-p,,.') (3.374) 

Assuming  that  o   ,   p   ,   p    are  small,  we obtain' 

•' ■= ;—r Pi 

O'V I'-V W   „ 
■jr> *'•• ~ Ji'.r, f'» ~tnip"- 

O'V d'V 
„,,iV"      Vyi''"      <))•"5.;■p"■ 
d'V   . rt'V '»'V 

(3.375) 
aJ" - dV,v''" - Try ,r*p^ " Vp" 

In relations (3.375) the second derivatives of V are taken at the 

point 0, i.e., at the point with the coordinates >:, y, z.  The second 

partial derivatives of V with respect to x, y and z are determined by 

equalities (3.370).  The mixed derivatives are found from expressions 

(3.368) and (3.363).  Thoyare: 

0'\'        0V „  „  , d'V „   , .''I' 

»'I'  ii'r.. . , tin'   . rt-r 

1 ^ ^(V I M»). 

"•" $;•**" l-l'..!'..» ( ,;[!,. WuKn I I'.A.) ( 
(3.376) 
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Relations (3.364) and (3,375) define the quantities n'1, n"1, 
i i n0     for arbitrary selection of  the  point 0   , 

f 

Figure  3.7 

It is convenient to take as the points 01 the points O1, 0},  and 03, 

situated on the x, y and z axes, respectively, at equal distances 

from the origin 0 of the Oxyz coordinate system (Figure 3.7); as will 

be seen below, this does not cause the analysis to lose generality. 

Then 
p Pi. = t% 

Pl»=Plj  I';,— 

= P:, ^PJ. ■ 
«= PJ, -" 

/. 

(3.377) 

Substituting equalities (3.377) into (3.375) and (3.64), we 

r vo at the following expresr.ions: 

■ 'H f «n 
,«;.- w(.;.,-( f •1   — 

r 0\ ily J' 

<■ ='( ". 1 ".''. 
my 

) 

■?• -i( •, H .../-, 

<—1{^ (- ■J-» 

•r- ■'(•j ^ •v ".- Oy B /' 

"';'" .1(^4 M • 1        
1 

cCl'  \ 

-A i. -f 
■) 

*: ■ »H i '"J4 
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It can bo shown that equalities (3.378), together with the first 

equality (3.356), exhaust the information obtainable from newtonometors 

rigidly situated in the Oxyz coordinate system near its origin: they 

exhaust it in the sense that the mounting of extra newtonomters in 

addition to the twelve situated at points 0, 01, 0?, and o' add nothing 

to the information already available . 

Indeed, let an additional nowtonomoter be situated at some P with 

coordinates p% p and pz# and let the direction of its axis of 

sensitivity e form constant angles with the x, y, z axes, the cosines 

of which are y,,   y? an^ Vj«  Then from equalities (3.356)* (3.364) 

and (3.375) we see that the reading of newtonometer np will be: 

"r ■ «'Yi + "JVj +■ «Ä + [('''A - "'A) + 

+«.>. {<■<;>, 4 'v.) - p, K+<■';) - 
fV PV d'V   „1t, , 

4 [(",(>. — u.p.) 4 u, ("A 4 WA) — 

- P, K + MJ) - d^SJ f* - W P'" "9 » hly' * 
4 [OV, - V.) 4 «, («.p. 4 <■>.",) - P. (•■'! 4 ty - 

g'V d'V 0¥    1 

(3.379) 

Grouping the terms on the right side of equality (3.379) reduces 

it to the form 

^.[-(■•^'■:tS)v,.h('.v..,-^)v.4 

4(-o,f........-^;)v,i f 

-'(•;'-"v. ^)V.KP.((- ^ ;;■;■). 4 

(3.380) 

Comparing equality (3.380) with rolationr, (3.378), we see that 

the expressions in parentheses on the right side of equality (3.380) 

are the right sides of relations (3.378), divided by I,     Therefore 

equality (3.380) may be represented in the form: 
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«, - "Jv. + <H + ^ ^ V-Ci'v. 4 «".'v, + «rvj + 

(3.381) 

Thus, the reading n- of the newtonometer is a linear combination 

of the readings of the twelve newtonomters n°, n°, n°, n', n', n', n*, 

nv' nz' nx' nv' nz situatecl at points O, 01, 02, and O3.  This demon- 

strates that addition of newtonometers to those situated at points 0, 

O1, 0'   and o' does not increase the volume of information contained in 

the newtonometer readings.  Of course, this demonstration is valid 

only under the assumption that i,   p , p  and p are sufficiently small x  y     z 
such that, in the Taylor series expansion of 5V/3x, 9V/8y, 3V/3z in the 

neighborhood of point 0, only linear terms in 4, p , p and PZ need 

be considered. 

3.4.3.  The ideal equations of an inertial system with only 

nrwlonomotorr, ns its sensing elements.  Let us consider the basic 

alternatives for compiling the ideal equations of systems in which only 

newtonometers are used as the sensing elements.  To do this we will 

represent equalities (3.378) in a somewhat different form. 

Forming the appropriate linear combinations of equalities (3.378), 

v:c  obtain the following relations: 

-nJ, + (iy + «;34- 
,.1    0V  ,  *¥   . ö'V \ 

4rtf+*+,fö 0'\ 
r i -37. - 

1 — 2/o.J. 

2/c)': 

(3.382) 

„•v 

(3.383) 
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nji — n« .= 2/^, 

(3.384) 

The nine equalities   (3.382),   (3.383)   and   (3.384)   are linearly 
independent and  therefore   fully equivalent  to equalities   (3.378)     Their 
Linear  independence  follows   from the  fact  that the determinant of  the 
;oefficients   for  n°",   n°   ,   n°s   (s   =  1,   2,   3)   is  non-zero: 

1 0 0 0 i 0 0 Ü —1 

1 1 0 1 -I (J 0 11 i 

1 (1 0 I) i 0 0 Ü 1 

0 I (1 1 1 i) 1 o 0 

(1 Ü 1 (1 B II 1 II (1 

Ü 0 0 (1 (j i I 1 <l 

0 -1 (1 1 ii II II II (1 

0 1 1 0 (i 0 1 B II 

0 fl 0 (i 0 1 II i II 

= l6y 0. 

(3.385) 

Equalities (3.382) may be s mnlified on the basis of the fact that 

it follows from the Lanlace equation (3.372) that 

"ill1 
<)'t' 
ill' '""" 

2 .n; 

l»V 
* ,ly' 

"OP 
O'V 
lit' 

,)'V (3.386) 

Let  us  substitute  these values  into   relations   (3.382)   and complete 
equalities   (3.382),    (3.383)   and   (3.384)   by   adding  to   them the  equations 
for  n',   n°,   and   n^  derivinq   from  formulas   (3.356),   (3.3)   and   (3.373). 
Wo  then obtain   four groups of equations: 

.ii' 

(3.387) 
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,)'l' -«4—<+<+<-«-gr 
&v 

-Vvf^ny-iyVit?-™ fir 
ä>V - V*?, = < -I- «f - nj1 - 21 ^r 

(3.388) 

d<V 
'"v, ="•;'+»7+2'5^-. 

d'V •M^-^+^+ir^. 
iHV »V.-»? (-^ + 2/-^;   J 

(3,389) 

2/^ = ««-»^. 

2/».---.(i"1-/i?. (3.390) 

The   first group of equations,   i.e., 

same as  equations   (3.59) 

equations   (3.387),   are  the 

They enable  us   to use n°,   n°, x  y x'  y' 

if » to determino the Cartesian coordinates x, y, z of the point O 

the force function V of the earth's gravitational field, the initial 

values of the coordinates x(0), y(0), z(0) and the initial values of 

their derivatives x(0), y(0), z(0) are known. 

The second and third groups of equations relate the projections 

of the absolute angular velocity w , M and w to the characteristics 

of the gravitational  field and the newtonometer readings.  Equations 

(3.388) contain, in addition n°, n0, and n°, the readings n', n2, and 

n' of only three newtonometers, while equations (3.389) contain the 

readings n', n^., n", n', n' and n' of six newtonometers.  Equations 

(3.388) and (3.389) are second order algebraic equations. 

The expressions w*, w^, and u* in terms of n°J n°5 and n°: and 

the second derivatives of the force function V are evident from rela- 

tions (3.388).  In order to find them, we have only to divide relations 

(3.388) by 21. 
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It is also easy to find expressions for w', w* and w' from x  .     z 
equalities (3.389).  They have the form: 

<• 

»3 = 
JSL1 

1 

(3.391) 

The fourth qroup of equations, equations (3.390), relate w , w x       y 
anc  u_  to  the readinas  of six additional  newtonometers.     These  are z 
the   same  six newtonometers the readings of which  are contained  in 
equations   (3.389).     Equations   (3.390),   as distinct  from relations 
(3.388)   and   (3.389),   are differential equations.     A noteworthy char- 
acteristic of equations   (3.390)   is the fact  that they are  linear and 
do  not contain any characteristics of  the  gravitational  field.     It 
follows   from equations   (3.390)   that; 

"'^ JW-'W+'MO), 
I 

■■•'-i/(-«;'+«?)««+<vo). 
t 

'"' -1 JK' «7}'" f',(n) (3.392) 

■ 

i 

Like equations (3.390), the systems of equations (3.388) and 

J9) contain, if the characteristics of the gravitational field 

.nown, three unknowns: u , o) and w .  However, only the system 

juations (3.390) permits complete determination of w , w and x  y 
■ means of formulas (3.392).  The quadratic equations (3.388) 

t determination only of the moduli |w I, lwvl» 
an|3 lwzl» but 

Wit  permit determination of the signs of these quantities.  It is 

v dnnt that knowing the signs of w , u and w at the initial moment x       y z 
of time is, in general, insufficient to determine the signs of these 
qu ntitien subsequently. Equations (3.389) also reduce to quadratic 
equations and   therefore  do not permit determination of  the signs  of 
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u)   ,   (i)    and (.1   .     Indeed,   if the  signs of  these quantities change, 
the   left  sides  of  equations   (3.389)   do not   change   sign. 

Thus,   use of  equations   (3.388)   to  find  UJ  ,   w     and  M- requires   the 
simultaneous  use  of all   three  equations   (3.390)   in order to  find  the 
signs of the projections.     But  sinco  the  signs may be  found using 
equations   (3.390)   only by  fully detcrmininc  u  ,   w    and .o    from these 
equc. Mons,   equations   (3.388)   become  superfluous. 

Consequently,   to find a)  ,   w    and »    we may either use the three 
equations   (3.390),   or some combination of equations   (3.389)   and 
(3.390).   J  From the point  of view of simplicity the  first approach 
appears to bo  the most appropriate.     The  second method  has several 
variants.     Thus,   it  is possible  to use one of equations   (3.390)   and 
two of equations   (3.389),   for example,   the  first equatior  of   (3.390)   and 
the  first and second equations of   (3.389).     It is  possible,   on  the other 
hand,   to use  two equations  from system   (3.390)   and one   fron   (3.389), 
for example,   the   first two equations   (3.390)   and  the  second or  third 
equation   (3.389).     The remaining equations   in systems   (3.388),   (3.389) 
and   (3.390)   are  superfluous here and may be   used  oily as  redundant 
information. 

To summarize,   let us  enumerate  the equations  which can constitute 
the operational algorithm of an  inertial  system without gyroscopic 
sensing elements. 

These are primarily equations   (3.391),   the integration of which 
yields  relations   (3.59).     Included,   further,   are the equations  for 
determining   the projections  u   ,   u    and »  i   cither  equations   (3.390) 
or,   equivalently,   equations   (3. 392),   or one  of the   above-mentioned 
combinations  of equations   in systems   (3.389)   and   (3.392).     The 
operational  algorithm will  contain equations   (3.60),   by means  of which 
the direction  cosines a. .   between  the  r,^,   n^,   ^  and x,   y,   z axes  are 
found,   and equations   (3.61)   and   (3.64)   for   the direction  cosines 
<• ■   between   the  ',,   n»   d   and x,   y,   z  axes,   or the  equivalent equations 
(3.31)   --   (3.33),   (3.41),   and   (3.60).     Finally,   the operational 
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algorithm will contain equalities (3.62), relating the coordinates 

f.«. n*i and 5t to the coordinates x, y, z, equalities (3.63), relating 

tlM coordinates r, n» C to the coordinates x, y, z, and also equality 

(3.365),by means of which the force function of the earth's gravita- 
tional field is determined in the earth body-axis coordinate sys- 

tem O.CtlCi and the equalities (3.368), together with the required 

relations from equalities (3.370) and (3.376), depending on which of 

the equations from systems (3.389) and (3.392) are chosen to determine 

the projections u) , u and w . 

The combinations of relations enumerated above form closed systems 

of equations.  From them may be found the coordinates x, y, z and the 

velocities x, y, z, the coordinates C*» n*f C* and C» n» C» and the 
projections .i , u , w of the absolute angular velocity.  Of course, x  y   z 

•   • •      •  •  . 
the velocities f;#, n*, ;;* and T,, r\,   t,  may also be found if necessary. 
These equations nay also be used to determine the direction cosines 
uii' a'ii   and 'li* characterizing the relative positions of the Oxyz, 

0|C«1*C« ■id 0,f",r'r, coordinate systems. The first of these coordin- 
ate systems is bound to the platform on which the newtonometers are 

mounted, the third is rigidly bound  to the earth, and the second 

is formed by the coordinate axes of the main Cartesian coordinate system. 

If the olatrorm on which the newtonometers are mounted 
is itself gimballed, the rotation angles of the gimbal rings 

determine, in accordance with table (3.66), the orientation of the 

OXYS coordinate system attached to the object in relation to the Oxyz 

coordinate system.  Together with the direction cosines m^..» table 

(3.66) defines the orientation of the object relative to the main 

Cartesian coordinate system, and,together with Sjai  in relation to 

the earth body-axis coordinate system O.^nC« 

In constructing the operational algorithm based on the relations 

enumerated above, we place no restrictions on the orientation of the 

Oxyz coordinate system, leaving it arbitrary.  As was the case with the 

Systems using gyroscopic sensing clomontr. analyzed in preceding sections, 

it is oossible to place various requirements on the orientation of the 

Oxyz trihedron.  Thus, it if possible to rigidly attach  Oxyz to the 

object.  It is possible to orient it identically to C.^n»';* or Ojf.nr. 
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Finally, it is possible to make its orientation a specific function 

of time and the coordinatcn calculated by the inertial system. 

Of special interest in this regard is the case in which the gravi- 

metric system is used only to orient the platform in a particular way 

relative to the gravitational field, for example, such that one of its 

axes always coincides during unperturbed rotion with the direction of 

the strength vector of the gravitational field.  In this case, since 

the coordinates are not determined, wx»i'> ,and u    also need not be 

determined.  They    can be    eliminated  from the equations.  The 

quantity to be determined will be the parameters characterizing the 

deviation of the platform from a given position in relation to the 

gravitational field. 

Up to this point it has been assumed that the gravitational field 

is known but arbitrary.  It is to be expected that, for a specific 

form of the gravitational field, the ideal equations may prove to be 

simpler than those derived for the general case.  They may also be 

simpler if the Oxyz coordinate system is oriented in a specific manner 

in relation to the gravitational field. 

If the earth's gravitational field is considered to be spherical. 

then 

where 

K-f. (3.393) 

'-IT *•+*•+«•. (3.394) 

and  ,:  is   the product of  th'j mass M of the  earth  and the  gravitational 
constant. 

Differentiating   equation   (3.393),   we   find: 

ilV 

HI 

'a? 
d>V 

in       dV             |iv 

--M'-*) 
M'-^)- (3.395) 
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If tho Oz axis of tho Oxyz coordinate system is superposiod on the 

radius vector r, expressions (3.395) simplify, since in this case 

x m y ~= 0. j = f. (3.396) 

It   follows  from equalities   (3.395)   and   (3.396)   that 

|1V 
lit 

dl' d'V 
'Only 

ÜV 
■3r 

I' d'f 
ix' 

d'l'              | 

(3.397) 

Turninq to equations (3.387), (3.388), (3.389) and (3.390), we 

note that for the case of a spherical gravitational field, its para- 

meters drop out of the first two equations (3.387) and all three 

equations (3.389).  In this case, as in systems (3.390), only the 

projections of the absolute angular velocity and tho newtonometer 

readings remain in system (3.389).  System (3.389) enables us to deter- 

mine u" V and u* algebraically using only the newtonometer readings. 
Corresponding formulas are derived from relations (3.391), if the mixed 

derivatives of the force function V are set equal to 0. 

3.4.4.  Using algebraic equations only.  Additional renarks. Let 

us consider equations (3.388) and (3.389) for the case of a spherical 

gravitational field in greater detail.  We substitute into these equations 

the derivatives (3.395) of the force function of the earth's gravita- 

tional field, after first having introduend the following designations: 

•* - ■ W - < - "'.')■ •• -1W -"" - '■'')• 

|i/rä~*. x/r  -x'.   y/r — y'.   i/r =t'. 

Aftor substituting we arrive at the equations; 
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w] --o,  ft (I  Sz'"). 

U^M, — «,, -f 3ft.« V,   lO^Crl^  ■«„ f 3*)''»'. 

x''l y-'l I*-1. 
(3.398) 

Equations (3.398) are algebraic.  They contain seven unknowns: 

x', •', z', u) , (j , w and k, which under certain conditions may be 

df    inod from these equations.  One of these conditions is knowledge 

ol   4  sign of at least one of the projections w , u . u of the 

absolute angular velocity, and also the sign of at least one of the 

coordinates x, y, z.  This is possible in certain cases.  Thus, if 

tho platform is mounted on an artificial satellite of the earth and 

the direction of its z axis approaches the direction of r, 

z ' r, and therefore z >0.  If, in addition, the orientation of the 

y axis is close to that of the normal to the orbit and the velocity of 

the angular oscillations of the platform around this axis is less than 

the angular velocity of the satellite's rotation around the earth, 

then tho sign of w becomes known. 

The first six equations (3.398) may be written in the form of the 

tennor equation 

T"'  •3ftTIJ' f ftT"1 (-T'^O, 

where 

•V",   "'."A 
T"1 =}«.>,"'.      •-•I    "V-, •   T"' 

jdi 
I    0    01 
nio 
o   o   11 

4 
y •<     r 

t'x'   t'y'   z 
y '• 

i 

(3.399) 

All of   these  tensors  are  symmetrical.     Tensors  T and T are 

dyadic products of  the vectors u and r/3k/r times  themselves 
T is  unitary.     The  componen 
moasurod by  the newtonomcters. 

14 
Tensor 

T    is unitary.  The components of tensor T   are the quantities 
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As  a  result of  the  fact  that tensors J and  T are the dyadic 
-♦■» -♦■♦ 

products wu and  rr3k/r?,   only  the  first invariants  of these tensors are 
non-zero.     They  are obvious: 

Let us examine the  invariants of the tensor kT*   '   + T     ': 

J^a, {a,  (a, - 3*. 
7,^ —3»' f 2*(<i,-f-o, fa,) —fl.n, - a,«,— 

-V. <".'. to,„ + al,- 
y,--= -*»-f*'(«,-f 0,4-0,) i-k(~a,a,- 
—ö (i - u ö f-rt* -f-u' -i-a* ^ + 2ii a o   — uMui      *r i '     ts*     iy  ' o/ '  •)' »' " 

— o* o ■-(?'«  - a3 a 
(3.400) 

The invariants J,, J-, and J, do not depend on the orientation of 

Oxyz.  Let us calculate the invariants by aopropriately selecting Oxyz. 

Superposing the z axis on the direction of r, we will have: x' = y' =0, 

z' =1.  Thus we  obtain: 

y,^,.!'  3». J,-i -j—'-,  J^O. (3.401) 

The relation J, = 0 is a cubic equation in k.  This equation has, 

in general, three distinct real roots  (k1<k?<k3).  One of these is the 

desired value k0.  The realness of the roots  derives from the fact 

that the roots of the equation are eigenvalues of the symmetric 
T (4) tensor '   .  Comparing expressions (3.400) for J, , J, and J,, it is 

evident that 

j   , .>/,  . U,      i)-J, 

aj3(k0) 
According to the second equality (3.401),  —r-r  = J2(k()>0f 

and therefore the desired quantity is the nif-.dlc root   i.e., k0 = k,. 

The equation J, = 0 has a double root k- for J- = 0 and a triole 

root  for J, = 0.  In the first case, in accordance with the second 

equality (3.401), the vector u of the rate of rotation of 

Oxyz has the same direction as the vector r. 
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In  the  second case u' 3k. 

92J3 
For Jj  ■  0,  depending on  the  siqn  of J,   = Yipr- =  w    -   3k,   either 

the roots     k,   and kj or  the roots     k,  and  k, will  coinride.     It  is 
evident   that   if 3,>0,  k^  =  k2 k0; if J1<0, 

k2 = k3 = k0' 

After k = k0 is found from the equation J3 = 0, w , (0 , u , x' , 

y' and z' may also be found.  Relations (3.400) and (3.401), along 

with the equations obtained from tfie invariants of T *   + T *  and 

T   + T l  , may be used for this purpose.  The following approach may 

also be used.  Since k,, kj  and k3 are eigenvalues of tensor T   , 

equations (3.398) may be reduced to the main axes of this tensor, 

after which they are easily solved. 

It is possible, on the other hand, to find x', y* , z', w , u and x  y 
H- by beginning directly with equations (3.398). In this case it is 

convenient to perform the following change of variables in equations 

(3.398): 

jt, = «.>, — x' \r.\k.  .r, = o), — y' |/ 3*, 

x, = ü)J-/'/3». 

y, = u, f x' 1' 3*. y, = o., + y' / 3*. 

VJ»'■', + /'»''a* (3.402) 

As a result wo obtain the following equations in place of the 

first six equations (3.3981: 

r.y, .<!, —ft, .t7y, ■-a, -   k. x,y,^a,     ft. 

VI'J 4 *t.V; 9»ir  v.v, I x,v,^7af,. 

v,>, I f,V, U„ (3.403) 

Substituting now y,,   y^  and y,   from the  first  three equations 
(3.403)   into  the  lar.t  throe,   we obtain  the quadratic equations 
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K-*)(^)'-2a,p^-lflr-* = o. 

(3.404) 
Since  x.   and y.   enter symmetrically  into equations   (3.403),   equations 

for i^/yi»   ¥3^2 and ^1/^3 coinciding  exactly with equations   (3.404)   are 
obtained: 

From equations   (3.404)   we obtain: 

(3.405) 

(3.406) 

The expressions for yo/Vi' Vs/V? and ^l^y3 dif^er f^oni t:he expres- 
sions for X2/X,, x^/Xj and x,/x3 only in that the signs + appear in 

the brackets in front of the root in place of +• This correspondence 

between the signs derives from the last three equations (3.403). 

We note that the equaticn for k may be obtained from relations 

(3.406) by multiplying the left and right sides of these equalities. 

It can be shown that this approach also leads to the equation J3 = 0 
obtained above. 

Denoting the right sides of equalities (3.406) by a-,, a,- and 

n.-j, and the right sides of the analogous equalities for yo/Vi » 

Vj/Vy  and yi/y* ty ^ll'  ^32 and ^ll' wo 0'3t',in two systems of homo- 
geneous linear equations: 

'1 - «JI'I - 0. «1 — '»'} = ". 
y, -»„y, -0. y,- /-„y,--»0. 

«11*1 = 

■A 
(3.407) 
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Solviny them, we can express x, and x, in terms of x3 and y, and 

y, in terms of y,: 

x,»«,,*,, -f,-^-. yi = »i.yi. ^ = -^7 (3.408) 

To find Xj and y, we can use the equations 

*', + /f'',= ". «.•'. H-J+-"'?=■''.-M, + a. (3.409) 

The first of these is obvious, while the second is obtained from 

the first equalities (3.400) and (3.401) or directly from the first 

three equations (3.398) by adding them. 

According to equalities (3.402) 

%«A|Ä. u,-*! 
2 

yi —_5i_  w* __ yi~ *i     .t __ yt — *i (3.410) 

Substituting here x., Xj and y,,  y2 from relations (3.408) and 

introducing the resulting expressions for w , u , w , x', y' , and z* 

into equalities (3.409), we obtain the following equations for x3 

and y^: 

>ä(*!.+*!A?. f) + <4(4 + «IX, -H)- 

4 »Vj',^!)«!,-» »n^o.ja,,-) l)=4(a,4fl,fo,). (3.411) 

Dropping y, (or x,) from these equations, we obtain a biquadratic 

equation for x, (or y3) . 

Up to this point we have analyzed a system without gyroscopic 

sensing elements, and which determined the Cartesian coordinates C», 

n«, ^n or C, n, r,.    The conversion to curvilinear coordinates may be 

effected in exactly the same way as with systems using gyroscopic 

elements.  We will not consider this case in detail, confining our- 

selves to the following considerations which may prove useful in under- 

standing the problems arising in converting to an arbitrary reference 

grid. 
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In the general case complete information is given, as was shown, 

by twelve newtonometers located at four points not  lying in the same 

plane.  The directions of the axes of sensitivity of the sets of three 

newtonometers at each of the four points should be non-coplaner 

within each set.  If the tetrahedron whose vertices are the 

four points at which the newtonometers are located, is rigid, the 

task of the inertial system reduces, essentially, to determination of 

the coordinates of the vertices of the tetrahedron.  To determine the 

coordinates of any of the vertices, the three non-coplaner newtono- 

meters whose sensing masses are located at this point are sufficient 

(if the earth's gravitational field is known).  It is also necessary 

to know at each moment of time the orientation of the directions of 

the newtonometer axes as a function of the coordinates being determined 

and of time.  The orientation parameters of the tetrahedron relative 

to the coordinate system Oif^n*^ become known, clearly, as soon as 

the coordinates of its vertices are known.  The orientation of the 

newtonometers in relation to the tetrahedron, on the other hand, should 

be given as a function of the coordinates determined by the system, 

and of time. 

In conclusion, let us consider one more problem.  In compiling 

the ideal equations we assumed that the earth's gravitational field 

was known.  Under this assumption, it was possible, on the basis of 

relations (3,368), (3.370) and (3.376) to determine the first and 

second partial derivatives of the force function of the gravitational field 

with respect to coordinates x, y and z which entered into equations 

(3.387), (3.388) and (3.389),  At the same time under this assumption 

wo obtained a superfluous system of equations for the navigation 

parameters of interest to us, since we had available the nine equations 

(3.388), (3.389) and (3.390) for w , M and w . The question arises as 

to whether it is possible in compiling the operational algorithm of 

an inertial system to have preliminary knov/ledge of only some of the 

characteristics of tlie gravitational field, and to determine the missing 

one? from equations (3.388), (3.389) and (3.390). 

It is evident that it is impossible to fully determine the charact- 

eristics of the gravitational field from equations (3.387), (3.388), 

(3,389) and (3.390).  In fact, if we assume that in (3.387) 
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v,~v   =■- v, m 0. 
(3.412) 

then the fifteen equations listed above are sufficient to find w , w , 

ID » x, y, and z and the nine first and second derivatives of V at point 0 

with respect to coordinates x, y and z.  There are, however, no 

superfluous equations, and if equality (3.412) does not obtain, the 

number of unknowns increases by 3 (v , v .and v ), and the number of x      y z 
equations  becomes  insufficient.     We  note  that the  introduction of 
gyroscooic   sensing elements  in addition to  the newtonometers  leaves 
the situation unchanged.     This  is due  to the  fact that  the  system of 
equations   (3.390)   does not contain  the parameters of the  gravitational 
field.     Thus,   if w   ,   w    and w    are determined using the  gyroscopic 
gauges of absolute  angular velocity,   equations   (3.390)   simply become 
superfluous. 

On the other hand,   equations   (3.388),    (3.389)   and   (3.390)   enable 
us  to determine u   ,   w    and to    and the  second derivatives  of V as 
functions of time,   such that if the  second derivatives are known as 
functions of coordinates   (for examole,  of C»   1 and ;;) ,  equations 
(3.388),   (3.389)   and   (3.390),   together with  equations   (3.61),   (3.62) 
and   (3.64),   also enable  ns  to  find  the coordinates x,  y,   z  as  functions 
of time.     In  this  case,   obviously,   equations   (3.387)   may not be  used. 
If equations   (3.387)   are  used,   the   first derivatives of  the  force 
function,   which enter into those equations,   should bo given as  functions 
of the coordinates,   i.e.,   the projections of  the strength     vector g 
of the earth's gravitational  field on  the axes of  th    coordinate system 
attached  to   the earth should be known   (as  functionb of  the  coordinates 
C,   n  and   ?) . 

In conclusion  we note  that,   for   the practical  realization of 
systems which  do not contain gyroscopic sonsinq elements,   extremely 
accurate newtonometers,  with  a  range  of measurement  from g 
to(10"9to   in"»»)? pro required. 
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1. Andreyev, V, D., On the general equations of inertial navigation, 
Prikladnaya matematika i mokhanika, Vol. XXVIII, Issue 2, 1964. 

2. A similar system was first considered as far as is known by the 
author, in 1944 by L. I. Tkachev. 

J. Here and below the coordinates of some point 0, near which the 
sensitivity masses of the newtonometers are located, will be 
understood as the coordinates of the object. 

4. Lur'ye, A. I., Analiticheskaya mekhanika (Analytic Mechanics), 
Fizmatgiz, 1961. 

5. Compare, for example, Lur'ye, A. I., ibid. 

6. Fridlender, G. O . ,Inert.sial'nyye sistemy navigatsii (Inertial 
Systems of Navigation), Fizmatgiz, 1961. 

7. Andreyev, V. D., On equations of nonperturbed operation of an 
inertial system determining curvilinear coordinates.  Prikladnaya 
matematika i mekhanika, vol. XXIX, Issue 5, 1965. 

C.  The necessary information from tensor analysis can be found, for 
example, in:  Lur'ye, A, I., op. cit.; Kil'chevskiy, N. A., 
Elcnt-'nty tenzornogo ischisleniya i ego prilozheniya k mekhanika 
(Elements of Tensor Calculus and its Applications to Mechanics), 
Gostokhizdat, 1954; ind Köchin, N. Ye. Vektornoye ischisloniye i 
nachala tenzornogo ischisleniya (Vector Calculus and Intro- 
ductory Tensor Calculus), Press of the  Academy of Sciences of the 
USSR, 1951. 

9t     Rarhovskiy, P. K., Kurs differentsial'noy geometrii (Course on 
nifforential Geometry), Gostekhizdat, 1956. 

Ij.  Andreyev, V. D., Devyanin, Ye. A., Dom'yanovskiy, A. P., Oi; the 
theory of inertial systems not containing gyroscopic sensirc, 
elements. Academy of Sciences of the USSR, Inzhenernyy Zhurnal, 
Mekhanika tverdogo tela. No. 1, 1966. 

11. Taylor, H. L. , Satcllitt orientation by inertial techniques, J. 
Aerospace Science, vol. 28, No. 6, June 1961. 

12. More precisely, tiie function V satisfies the Laplace equation both 
on and outside the surface of the earth. 

ij.  Of course, if the sign of at leasu one of the projections w , u , 
x  y 

or w  is not known from external information sources. 
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14. Compare, for example. Kochin, H. Ye., op. cit. 

15, The preceding results can also be obtained by other methods. Com- 
pare the article of Ye. A. Devyanin and A. P. Dem'yanovskiy, 
Determination of absolute angular velocity and distance to a cen- 
ter of attraction and construction of the vertical by inertial 
methods, and also the supplement by Ye. A. Devyanin to this article 
(Inzhenernyy Zhurnal, Mekhanika tverdogo tela, Nos. 2, 5, 1966). 

. 
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Chapter 4 

THE DERIVATION AND TRANSFORMATION OF THE ERROR EQUATIONS 

OF INERTIAL NAVIGATION SYSTEMS 

§4.1. The Perturbation Mode of Inertial Systems. Basic Instrvment Errors. 

The equations describing the ideal functioning of inertial navi- 

gation systems examined in the preceding chapter constitute algorithms 

on the basis of which various systems may be constructed.  In order to 

realize the algorithms it is necessary, clearly, to have available the 

required instruments and devices.  These are, primarily, inertial 

sensing elements: newtonometers and gyroscopes.  Further, computational, 

including integrating, devices will always form a part of such a system. 

In order to effect time integration and the synthesis of time functions, 

an inertial system should include a timer from which time signals are 

fed to the computer; these signals should mark absolute (newtonian) 

time, which may be assumed as corresponding to the astronomical siderial 

time.  Finally, the system should include devices which effect the 

interconnections between the various elements and instruments, including 

servo devices based on one or another principle of operation. 

The equations describing the ideal functioning of inertial systems 

include the initial values of the coordinates and their rates of change, 

i.e., the initial conditions of the motion of the object in which the 

inertial system is placed. These initial conditions should be known. 

Moreover, the 'sensing elements of the system should bo oriented in a 

particular way at the moment at which the system begins to function. 

Their initial orientation should correspond to the selected algorithm 

describing the functioning of the system. 

The ideal equations are sufficient for describing the functioning 

of an inertial navigation system only when all of its elements and 

devices are errpr-free (ideal) and when the initial conditions of the 

system correspond precisely to the initial conditions of the motion of 

the objf.'Ct. 
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In real systems these conditions are fulfilled only to a certain 

level of approximation.  Therefore, the mode of functioning of an 

inortial system differs fro;n that described by the ideal equations, 

and the navigation parameters are imperfectly determined by the system. 

This mode of functioning, or, in other words, the motion of the inertial 

system, determined taking into account errors in initial conditions 

and instrument measurements, may be termed the perturbed motion of a 

navigational system. 

Since the algorithm characterizing the unperturbed motion of the 

system is known, in dealing with perturbed systems we are primarily 

interested in their deviations from unperturbed motion. 

Equations defining the deviations of variables describing the 

stale of an inertial navigc.tion system from their ideal values will 

henceforth be termed error equations.  These equations determine the 

stability of the inertial system as a whole.  They also establish 

the connection between errors associated with system elements and 

errors in the initial conditions, on the one hand, and errors in the 

systems' determination of the navigation parameters, on the other. 

Thus, the properties of the error equations determine, in the final 

analysis, the functional accuracy of the inertial system.  Analysis 

of the properties of the error equations constitutes, therefore, one of 

the fundamental goals of the analysis of an inertial system. 

Analysis of the error equations permits determination of the 

roquirementr-; on the system elements which must be met if the system 

is to achieve a previously specified level of accuracy.  Study of the 

error equations further permits systematic selection of the algorithm 

describing the ideal functioning of the system (including the reference 

grid in which the position of the object is determined), and the 

orientation of the sensing elements.  Finally, the error equations 

permit, as wo will see below, rigorous determination of the acceptability 

of various simplifications of the algorithm determining the functioning 

of an interial system.  Moreover, it is only on the basis of the 
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properties of  the error equations   that   it is  possible  to  judge  the 
need for  corrections  in  an   inertia! system,   as well   as the  effective- 
ness of various correction  procedures. 

Before proceeding to derive  the error equations,   it is necessary 
to examine in  somewhat greater detail  the basic sources of  error which 
perturb the  functioning of   an inertial   system. 

The  essence of  the  functioning of  an inertial   navigation system 
consists   in the processing     according to a specific  algorithm    of  the 
information contained  in the readings of inertial  sensing  elements: 
newtonometers  and    gyroscopes.     It  is to be expected   that  the instrument 
errors associated with newtonometers and    gyroscopes  are the primary 
sources of error in  the functioning of  an inertial   system. 

The  primary content of   the algorithm determining  the   functioning 
of   an  inertial   system  is  the   integration of the  fundamental  equation 
of   inertial navigation.    This integration presupposes  knowledge of 
the  initial conditions of motion of the object.     Error in  these initial 
conditions  also leads  to  perturbations  in the  functioning of an  inertial 
system.     The algorithm selected  to  integrate the fundamental equation 
(different  algorithms may  be  used  in different  systems)   presupposes 
a  specific orientation of  the  sensing elements of the   system,   beginning 
at   the moment  at which  the   system  begins  to function.     This   applies 
equally to errors in  the  specification   (or the pre-start computation) 
of   the numerical values of   the initial conditions,   as well   as to errors 
in   the realizations of these  values  in the system. 

Further,   the solution of  the   fundamental  equation depends on 
a  priori  knowledge of   the gravitational   field of  the   earth,   i.e.,   the 
maqnitudo  of the gravitational   pull  as  a   function of  position in a 
earth body-axis  coordin.ite   system.     Solution  of  the   fundamental 
equation also presupposes a  given motion  of the earth  around  its center 
of  gravity.     Errors  in  specification of  the gravitational    field 
and   the earth  rate give  rise,   cloarlv,   to error. 
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Finally, the instrumcntational realization of tbe  algorithm for 

integrating the fundamental equation and the appropriate orientation 

of the sensing elements gives rise in a real system to error.  This is 

due to the instrument error of the timer, the computing and integrating 

devices, and the servo and transform systems. Engineering inaccuracies 

in the mechanical (kinematic) elements of the system are also of 

relevance here:  inaccuracies in dimensions, angles between datum planes 

and alignment directions, coaxial misalignments between elements, 

slack, elastic deformations, etc. 

An inertial navigation system includes, as a rule, a large number 

of elements and devices. All of these elements and devices contribute 

their error to the functioning of the system. However, it would be 

incorrect to attempt to reflect as large a number of elements as 

possible in the error equations. A more effective analysis of the 

error equations would result from the reduction, if possible, of the 

error contributions of all of the elements to a few characteristic ones 

covering all possible sources of error.  In other words, it is always 

expedient to use the smallest possible number of independent parameters 

defining the state of the system. 

In an inertial navigation system, error in the specification of 

initial conditions and the instrument error of the sensing elements, 

the newtonomoters and gyroscopes, may be taken as characteristic 

error sources of this typo.  Instrument error in the inertial sensing 

elements will henceforth be termed basic instrument error.  The instrument 

error of all other elements and devices in the system can in the over- 

wholminj majority of instances be reduced to a few equivalent basic 

error types, i.e., error in the sources of primary information.  Error 

in the specification of the gravitational field and the earth 

rate likewise rcducr» to equivalent basic error. 

The possibility of reducing the instrument error of any element 

or device in an inertial system to an equivalent error in the sensing 

elements is not, generally speaking, obvious.  It will be evident from 

the following that this possibility occurs only when all of the elements 
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and devices in the system fulfill, even though with a certain degree 

of error, their functions, i.e., all elements and devices transform 

the information fed to them in accordance with those portions of the 

ideal equations which they realize.  This means that at the output of 

any device there is always, along with an error signal, a basic, 

useful signal.  Error in this case may always be represented as some 

additive error introduced into the output of the device. 

It is evident that such types of error in the functioning of the 

elements and devices of the system are also possible when the algorithm 

defining the ideal functioning of the system (or of some part of it) 

breaks down.  This occurs, for example, in zones of instrument dead time, 

in air gaps and stagnation friction zones.  In these zones the elements 

in question may not fulfill their function in the system: the useful sig- 

nal may be absent at their output in spite of the presence of an input 

signal. 

We will return to this problem in Section 4.6.  In this section 

WP will use concrete examples to show how the error of system elements 

and devices may be reduced to an equivalent basic error.  In the 

meantime we will consider that, as a rule, the onl^ instrument error 

in an inortial system is the instrument error of the sensing elements: 

the  newtonomoters, the geometrical sum of whose errors we will designate 

by the vector An, and the gyroscope for measuring absolute angular 

velocity, the vector sum of whose errors we will designate as Am. 

The physical sources of instrument error in the sensing elements 

were discussed in Chapter 1, which included a derivation of the 

equations describing their operation, and we will not consider this 

question further here.  We will consider An and Am as given functions 

of time.  They may be either determined or random.  The form of these 

functions may of course be a function of the pa imeters of motion of 

the object on which the inortial system is mounted, in particular 

velocities and accelerations (g-loads). 

It has already been noted that the error equations link error in 

the cjtormination of the navigation paramctori; with the instrument 

rrror of the elements of the system and error in the specification of 
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the initial conditions.  In developing the equations describing the 

ideal operation of inertial navigation systems it is assumed that they 

should solve two fundamental problems: first, to determine the 

coordinates of a moving object and their rate of change, and, second, 

to guarantee the required orientation of the inertial sensing elements 

and to define the orientation parameters of the object.  It is 

accordingly necessary to obtain equations defining both error in the 

determination of the coordinates of the object and defining error in 

the parameters characterizing the orientation of the inertial elements 

and the object in space.  In the general case these two groups of 

equations are related.  However, a number of considerations make it 

expedient to begin by deriving the equations defining error in the 

specification of the coordinates, and this will be the subject of the 

next three sections of this chapter. 

S4.2.  Equations Describing Error in the ?pecification of 

Cartesian Coordinates 

4.2.1.  The vector form of the error equations.  Wo will derive 

the equations describing error in coordinate specification for the 

system examined in §3.1. 

Equations (3.53) -- (3.5H)  or (3.59) -- (3.65)  constitute, in 

essence, the functional algorithm of this system, i.e., the equation 

defining its ideal operation.  Equations (3.53) — (3.58) and (3.59) — 

(3.65) are fully equivalent and differ only in their form: equations 

(3,53) — (3.58) are a vector description of the operational algorithm 

of the system, while equations (3.59) — (3.65) are in scalar form. 

Equations (3.59) -- (3.65) based on the newtonomoter readings 

n , n , n  and the absolute annular velocity readings m , m , m  permit 
n W £ A y £• 

us   to obtain  the  Cavtosian  coordinates   of  the  object  x,   y,   z   in   the 
coordinate   system O.xyz,   and  also  the   coordinates   f,^,   riA,   C»   in   the 

basic Cartesian   system  and  the   coordinates   !.,   n,   '.   in   the   coordinate 
system O.CnC   rigidly bound   to   the  earth. 
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We  recall   that  the  force  function E   (CI   n.   (I   of  the non-spherical 

component of the gravitational   field which enters into equations   (3.56) 

and   (3.65)   is  considered as known.     Also considered as  known arc the 

projections uf,   u    ,   u      of  the  absolute angular velocity of  the earth 

around   its axis,  which enter  into  relations   (3.67). 

The   initial conditions of the   ideal  equations   (3.59)   —   (3.65) 

are: 

v
v(0),   v   (0),v_(0)   —  the values  of  the  projections of  the absolute x y ^ 

linear  velocity  of  the object   (more precisely,   the velocity of  the 

apex  of   the  trihedron 0        connected  to the platform)   around  axes 

x,   y,   z  at  the   initial moment of operation of  the  inertial   system; 

x(0),   y(0),   z(0)   --  the coordinates  of point 0 in the  coordinate 

system 0,;;yZ at  the initial moment; 

■ ^(0),   3..(0)   — the   initial values of'the direction cosines  between 

axes  x,   y,   z  and  axes   C#i   nA,   c»  and  f.,   n,   c 

Now  let  •im   ,   Am   .   Am  ,   An   ,   An   ,   An     be defined as  the  instrument 

error  of   the device measuriny absolute angular velocity and   the 

newtonornoters,   respectively.     Wo  will  consider  these quantities   to 

be  functions of  time,   either determined or  random.     At  the  initial 

moment  of  operation of   the  inertial   system  they may be  different   from 

zuro.     We will denote  their  initial  values by  Am   (0),   t.m   (0),   Am   (0) , 

.•.nx(0),   Any(0),   Anz(0). 

Also   let   'vv(0),   6v   (0),   'v   (0) ,   .'.x(O),   6y(0)(   Az(0),   6a. .(0),    , 
ä y z x j ■ 

lb..(0),      C#,   8fiÄ»   *C*.   8Ci   Ari/   8?   be  the  error   in  the  specification 

of   the  corresponding   initial   conditions. 

We  will  denote deviations  of   variables  and   functions   from  their 

values corresponding  to the  unperturbed,   ideal   functioning  of  the 

system  by   6^,   'V   ,   iva,   6x<   5y,   6B,      
6',ij'   6pij'   ''f*'   6 "*'   6!;*'6f-   » 

'- r»#  6C. 
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In  order  to obtain the error  equations,   i.e.,   the  equations: 
corresponding  to perturbations  6x,   öy,   ftz  etc.,   it is  necessary to 
substitute x +  5x,  y +  6y,   z  +  6z,   ...   for x,   y,   z   ...   in equations 
(3,59)   --   (J.65),  and in    +  6m   ,   n     +  6n   ,   ...   for m„,   n.   ...   and 

A X Ä X XX 

to subtract equations   (3.59)   —   (3.6tj)   from the resulting equations. 
If we  ignore the  squares and products of  the perturbation,   the 
procedure   for deriving the error equations  reduces to the derivation 
of the  usual equations  in the variants corresponding  to equations 
(3.59)   —   (3.65). 

The modification of equations   (3.59)   —   (3.65)   may proceed  in 
a completely formal manner    since we  are considering   the general  case. 
The significance of this remark consists  in  the  following.     Let us 
assume  that we are considering not  the general,   but a  specific case, 
in which   the orientation of  trihedron 0.        has  been  selected  in  seme xyz 
special   fashion.     In this case a  number of  terms may dro'^ out.     For 
example,   if wo  assume  that the  z  axis of trihedron 0 is directed r xyz 
along vector g,   then  in  the   first  and  second of equations   (3.59) 
projections g    and g    will be absent.     In this case the  formal 

modification of  these  equations will  not enable us  to obtain  ig    and 

6g    which,   clearly,   should enter  into  the  error equation,   since   in 

the perturbed mode the conditions under which the z axis and  the vector 
g would  coincide will  not be  fulfilled.       As  is well  known,     in  the 
compilation of equations describing  the variations  in dynamic  systems 
for the purpose of  investigating  their stability or the transient 
processes  occurring in   them,   it  is  always  necessary,  before attempting 
to derive  the perturbation equations  by means of  formal variation      i 
of  the  initial unperturbed equations,   to make certain  that  there are 
no     forces   acting   on  the  system other   than   those   occurring   in    the 
equation  describing the  unperturbed motion  of the system. 

In our  case,   as has already been  noted,   equations expressing  to 
a   first  approximation the  influence of perturbations  «".x,   6y,   fiz,   etc. 
may be obtained equations of variations  of   (3.59)   --   (3.65). 
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We now turn to the derivation of these variations equations for 

(3.59) — (3.65).  Tl.oso equations may be obtained eith- 

er by varying the scalar equations (3.59) — (3.65) or by varying 

the equivalent equations (3.53) — (3.58).  We will begin by deriving thp 

variations equations from the vector equations (3.53) — (3.58). 

Varying equations (3.53) — (3.58), we obtain: 

I*** j [\n -Am Xv -mx Ac4 bg-\ fig)dl+*v(,0) 

f 

V - J (A« - m X «r- Am x rldl + «*•(()). 

i 

*».= /(At.Xm+t.xAm)rf< ( *U0). 

i 

*i|. = j (Ai). X m -(- n, X AHi)rf< f Anjii). 

*{. ~ / «'*. ^ «• +1 X Amtrf/ -)■ H(o), 

(4.1) 

(4.2) 

*i =■ J l*f * (m- K) + J X (Am ~tui -Au)ldl + 6J(0), 
ii 

*M = J I'^'l < («    u)-f >lX(\« -iB-Aii);«// f 6n(0), 

*{«= Jl*;X(m -«) t-; <(\m -«ii-Aui;rf<-f-A;(0j, 

(4.3) 

tu   - ufii t-«n'il } «;*!;; 
(4.4) 

H, -= *r  I. f- r • A«..   A.|. ^ ,V   ii. + r ■ i\u. 

A;^   Ar   I t r ■ A«.        Ai|   : ^r • i| | r   Ai|. (4.5) 

The  variations  equationr,   (4.1) 
vectors 

"(4.5)   include,   in  addition  to   tho 

Am  ■ \m,.x i A"iy.w |  \m,f. 
An   = A«,* -( ,\nty ( An,.- 

(4.6) 
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of the instrument error of the device measuring absolute angular 

velocity and the newtonometers, the error vectors Ay and Au.  These 

errors may be expressed by means of the equivalent errors An and Am. 

For now, however, it is expedient to preserve them in the equations. 

There are two reasons for this.  First, the errors Ag and Au are in 

themselves characteristic of inertial systems. They reflect incomplete 

knowledge or specification of the force function of the gravitational 

field and the earth rate.  Second, using the errors A? and Au it is 

possible to demonstrate the procedure of reducing specific types 

of errors to equivalent basic errors.        • 

The variations of the variables entering into equations (4.1) — 

(4.6) are isochronous.  We continue as yet to regard the timer in 

the inertial system as ideal.  We will return below to this question 

and will show, in particular, that error in the specification of time 

may also be reduced to certain equivalent basic errors. 

We now move from the integral equations (4.1) — (4.3) to their 

differuntial forms, which we obtain by differentiating them vith 

respect to time in the coordinate system O.xyz, i.e., in the same., 

coordinate system in which the integration of relations (3.53) — (ß.55), 

and  consequently relations (4.1) — (4.3), was performed.  Considering 

equality (3.1) and shifting terns not containing variations of variables 

tc the right side, we obtain: 

6r f 2w X V + « •■'(w < Ar) ( w X 6r   -ig — 
■■Af-f An ~2,\mxr { .\mXr — 

— Am y (i.i x r) - «ii y U\m Y r); 

6\„ ) (a X AJ, — {, x Am, hi -f M < An = 11  < Am. 

A{,  ( <" <K,-i, X Am; 

< Am. 1 

(4.7) 

(4.8) 

As ( (w - B) / A* - - iy.(\m - \u - Au). 
Ail ^ (M - m X Ai| = i| • ( \m A« - A«), 

A; |(«     K) ■: A;  ^ { X (A«i — A« - A«) 

(4.9) 

In equations   (4.7)   —   (4.9)   the dots denote,  as before,   local 
differentiation   in the O.xy?  coordinate  system.     The  initial  conditions 

Of   the differential equations   (4.7)   —   (4.9)   derive  from the  integral 

oquations   (4.1)   —   (4.3).     The initial   conditions are: 
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ti.m. ^n.(<>). A;.(d), ^(0), AIKO). At(0) 
(4.10) 

Since the error in the computation of the initial value of the 

velocity appearing in the second equality (4.10) is 

Op. = *;„ -t «(0) x trm + A«(0) x r(0). (4.11) 

5?(0) may be represented as follows: 

Ar(0) - Ar0 + |A..i{0) - A/n (ll)| * r (0). (4.12) 

where tr0 is the error resulting from the introduction of the initial 

value r(0) into the system computer. 

If the initial value LI(0) is measured by a gyroscope measuring 

absolute angular velocity, and is not a calculated value. 

M") =Am(()). lr(S)«^ (4.13) 

Let us now transform equations (4.4), (4.5) and (4.7) — (4.9). 

Let us first determine the variation of 6g. From the first equality 

(4.4) we have: 

f)/! -'>i;"il ''- \  'V;raJ( (J. t]. C). 

(4.14) 

Wo introduce the vectors 

^^.(r A-.){. t-fr-AiOM. ( (rK.)i.   \ 
(4,15) 
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Then relations (4.5) may be written in the form 

V,   ..VH Ar,.    Ar^V | Ar,. (4.16) 

where vector   6'r is defined by equation   (4,7)   and the  vectors   or,  and 

ti.  are introduced through  the equalities 

From the  equalities   (4.17)   it  is easy to see the  physical   signifi- 

cance of the  vectors   ör, and   ftr.:     these designate the total  error  in 

the determination of  the coordinates of  the object  in  the O.r,^ n*C*  and 

0,fnc  coordinate systems,   respectively,   consisting of   the error  6r  in 

the determination of  the x,   y,   z  coordinates  in  the O.xyz coordinate 

system and  the errors   iTr,   and  or,   in the  conversion of  the x,   y,   z 

coordinates  to the  f,^,   n^,   CÄ and  (,,   n,   c  coordinates. 

Taking account of  equalities   (4.17)   causes  the  first formula   (4.4) 

to take the  form 

+(■>, pu })i«(v. (....i ;;-).H (.V.-.-J-*); .(4# 18) 

Let us   turn  to   (4.8)   and   (4.9). 

The trihedra 0,f;AnAf.# and 0, C n;    are  rigid, so the vector 

triple ti  +   &£*.  \  ♦   6n*f   C«  +  ^C*  and t  +  f-t,   ^i +   ö^,  "c  +  6c   likewise 

form orthogonal   trihedra.    Since the vectors  iX^t   6 *'*»   6^*'   and   6t •   6^l> 

and  6c   arc  small,   it   is posGible  to introduce  small   rotation  vectors 

0,  and   o,,   such  that   the equalities 

Ila^xii   N-   «iX<i.   AC=-fl,x; I l^.iyj 

will be valid to within the se;cond order of smallness relative to the 

vectors 6»*^, 6 n^, 6^^, 5f,, 6 n, and 6c. 
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Substitutinij rclationn (4.10) into formulas (4.15), wc find: 

V, ■>», ' r.   v, «, sr (4.20) 

In order to determine '(*. and iy  we proceed as follows.  We 

substitute the first equality (4,19) into the first equation (4.18) 

This substitution and a few simple transformations yield: 

"i ^ M «.'' i, i- «* v i«, < ;.i .\m . i. (4.21) 

■> We now substitute into relation (4.21) the expression for £» 

from the first equation (3.54).  This gives relation (4.21) the form: 

«i • t. t «i •' a. •  <») r w \ (11. v {.) i {. < \m (4.22) 

It   is     easy   to  verify  that   the   followimi   identity  holds: 

nr<(5. • ■••! ( M    (", ^f.) =(I.I -MI,) <*. (4.23) 

Using this identity, we derive the following equation from 

equality (4.22) : 

((i, t i.. \(i, Am) ;.--o. 
(4.24) 

But since the vector quantity in parentheses is essentially 

arbitrary, it follows that the vector J. should satisfy the equality 

(i, ) ii v u, \m (4.25) 

For  8_,   analogously,   from   the   third  equality   (4.19),   the   first 

formula   (3.55)   and   the  relation   (4.9)   we  obtain 

^iXl ( ".■ 'It • (<•>    «ii • (■■>    ID ■ (fl.. ■ ;) - 

I \II     Am j A«) .; \, (4.26) 
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which, using identity (4.23), may be reduced to a form analogous to 

(4.25): 

Ö, )• (M - ii) y 0, — Am - Ail — ft«. (AJ1\ 

But in accordance with the last equation (4.9) and the last three 

equalities (4.19), 

»am   o,xii. (4.28) 

We  therefore  finally obtain in place of   (4.27): 

Ö, I » <«;- \m    A» (4.20) 

In deducing equations (4.25) and (4.29) we made use of the 

first equalities (4.8), (3.54), (4.9) and (3.55).  The result, of 

course, is the same if we use the second or third of these equalities. 

In fact, -if, for example, in equation (4.24) f,^ were replaced with 

n^ or f*, the final result, i.e., equation (4.25), would be unchanged. 

We now return -o equalities (4.14) and (4.18)  If in relations 

(4.14) we insert 6{| 6 n, 6c fron, ^.he last throe equalities (4.19), 

we obtain the expression 

ftjrradr   -■     0, . mtit   f ,,'r.iaA,'. 
(4.30) 

in which the term grad 61 may be represented, according to relation 

(4.18), in the following form: 

■N«lt<-(*V«M4^}| I 

4.(v,.p*l^),f(lf,.»«l^)t (4.31) 

Let us now collect the transformed equations in a system equivalent 

to equations (4.1) -- (4.5).  For this we will use relations (4.7), 

(4.25), (4.29), (4.20), (4.16) and (4.30).  The error equations of the 

system under consideration will then reduce to the following system of 

vector equations on variations: 
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«r + 2» X V + « X (« X A^) »<;> X Ar - 

^ Af I An - ?A/(i x r - Am X r — 
- Am X (« X r) - « X (Am X r). 

6, ( •• X 0, ^ Am. 1 

0, 4 u X 0, ^ Am - A«; I 

(4.32) 

(4.33) 

«f, « 0, < r,       «r, ^ 0, x r.     j 
»rj = A/--t V,,    Ar, =ltr f Ar,   / (4.34) 

Tne initial conditions of the differential equations entering 

into the system (4.32) — (4.34) are given by relations (4.10) — 

(4.13). 

The solution of the error equations (4.32) — (4.34) enables us 

to find the vectors 6r, ör. or., i.e. the error in the determination 

of the Cartesian coordinates in the CKxyz, 0,?^ n*';» and 0.(,r\r, 

coordiiate systems as a function of the error in the specification 

of the initial conditions, the basic instrument errors Am and in, 

and the errors Ag and Au in the specification of the gravitational 

field and  the earth rate. 

4.2.2.  Equation'! defining orror in projections onto the platform 

axes.  Let us now turn from the vector error equations (4.32) — (4.34) 

to the sealer error equations.  The most convenient way of effecting 

thin transition is by projecting these equations on the the x, y, z 

axes of the platform of the inertia] system, since the local deriva- 

tives in equations (4.32) -- (4.3'1) were taken in this coordinate 

system. 

Kxpand'ng the vector products in equations (4.32), wc find: 
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—kfi $ - ii, ■KMdf i «M.IAI^ -= 

■sA^-t-Än, - 2(\m,/ —An.y) — 

— Am,z  t A»ii#jf     (üJ(Am,)' ) hmyft— 
~Am,{uty i-u,z) j l!A(r>, Am+IO,A/II(). 

if*"(■! + "i)*>' i (",,,,,
< ~
,,,.),,' ~ i»#i* + 

—(AgMil ^--0, XK'-KI'- t I;'."IIV)^ Äff, f A«,- 

— ^(Am,.! — Am,^)— Am,\ j  Am,z — 
— (i)r(Am,*  f Arr,*) — Am, (..),i  f w,.!:) + 

+ 'Jji(u),Am,+<.>JAm,), 

«i — (IDJ +■ or) 4 («/i/», — i'.i^Ax - •Ml fix + 

-(- (m/.i, 4 ö'^^y )- In,*)' - 

— (* f* T — OjVlii^i e + K' i"1 •«) " 

«=- A«, -t An,— 2(Am,>' —Am.jr) — to^y^Aw,*— 
— «.(Am, v 4 Amyy)— Am,(u, v + (•>,)■) 4 i 

4-2/ (i.). Am, + oi, Am,).  ) 

From equations (4.33) and (3.64) we obtain; 

(4.35) 

*ii +u»ni.—"-"ir"- v".- *k» ■♦ <'A,-<■>A. "*">,• 

K I "A»' \m,; 

6,, -f c^n,, _ „^n,, .-. Af«. - A«,, 

'•a, ► ",,n.', -'i,»;, - Am, - A«v, 

()„ + w.fl;, - Wr0„ = Am, - &„,. 
A«, ^Aa.p,,-f A«,^.., f A/rf,,,. 

A«, ^Az/jp,, f ABJ!.^  Nv.p,,. 

A», = Vmp,, f A/i,/l.., (-Airp,,. 

(4.36) 

(4.37) 

Finally,   from  relations   (4.34)   wo  find: 

6X, = 0,,^ - 0,,)', «JTj =Aj- + fix,. 

Ay, =. Il„.r -(\,t.        Ajfj = tf + tiy,. (4.38) 

*'i ■■ UJ,^ — Oi.y.      'Vv, — ft« +i>\;, 
h'l =» "i, Jt  - «;, /. Ay, ■■ Ay |  Ay,. 

*.-. • 0.,., 
3y, «rty |  ftyj,   i (4.39) 
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The initial conditions of equations (4.35) — (4.39) are the 

quantities: 6x(0), 6y(0), 6z(0), 6x(0), 6y(0), 6z(0); elx(0), Oj (0), 

el2(0); 62x(0), o2y(o). o2z(o) 

In accordance with (4.11) 

«jr (0) .=. 4.»'0-H«^ (0) _ Am, (0)U (0)- 

«yW^ftyo-f-IÄu.W-Am.cOjljr^)- 

— |«u,(0)-Am ,(0)1/(0), 

«i (0) = «/0 + liu, (0) - Am, (0)| y (0) — 

— |A(..,(0)-Am,(0)lx(0). 

(4.40) 

In equation  (4.35) the projections 

(* gtad i — 0, X grad e -f gtad «tj . 

(* gnu JJ- - 0, X «rad f. -f grad At] , 

(A grad ^ - 0, X g'ad e + gcad Ac) 

(4.41) 

have intontionall' been left unexpanded. Before expanding expressions 

(4.41), it is necessary to consider the following. For a gravitational 

field as close to spherical as that of the earth. 

lB>äJ'l'€|e"Jr| 
(4.42) 

and so 

lA^radrK'lAciad £| (4.43) 

Equations (4-35) — (4,39) are the essence of the equation in 

variations.  Thoy were obtained by formal variations of the equations 

describing the ideal operation of the equations (3.53) — (3.58) 

doscribinq the ideal operation of the system.  Only terms which are 

linear relative to variations of the variables were retained.  Terms 

containing squares of variations, products of variations with each 

other and products of variations and instrument error quantities were 

considered to be sufficiently small to be ignored. 
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Thus, in the perturbation ^rnd -*— only the linear terms are 

retained, i.e., 

»■Mi   *■£  - ;, ( .v I If *'). (4.44) 

At  the  same  time  igrad r has  the same order of   smallness   (which 
may be verified by performing   the corresponding calculation)   as  the 
quadratic  terms of  the  series  expansion of  the  spherical component 
of  the  gravitational   field,   which were  ignored  in equality   (4.44), 
the more complete  form of which is: 

WrU; -*"*'>-■^"<-r-{b"*'^ (4.45) 

Consequently, if only the linear terms are left in the expansion 

of the spherical component of the gravitational field, there iö no 

need to retain the variation of the non-spherical component. The 

variation of the correction for non-sphericity of the gravitational 

field is retained in the error equations, so that it is necessary at the 

same time to retain the quadratic terms in the expansion of the 

spherical component, i.e., in place of igrad £, determined by equality 

(4.44), the quantity 

e»d--fF-B,adV ^6'    r (4.46) 
fi        '    r'     r     '    Vr* f* 

must be used. 

We note that in rclaticns (4.4'1) — (4.46) the quantity 6r 

denotes not the modulus of vector it,   hut rather is defined by the 

equality 

Ar ■- \r \  V] (4.47) 
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It seems that it is senseless to speak of retaining the quadratic 

terms of the expansion of (4.4G), for the reason that the entire set 

of equations (4.35) — (4.39)  are linearized 

equations.  If, however, we return to the ideal equations (3.53) — 

(3.55), we notice that these equations are linear in i,  v =  dr/dt, 

'•*» "*' r>*' »i "» »i  excepting vector g, which is a non-linear 

function of these variables.  Therefore, when the instrument errors 

are absent, equations (4.1) -- (4.3) and consequently, also equations 

(4.7) — (4.9), if the perturbation «g is abstracted out, are exact 

equations for the perturbations 6r, 6v, 6^*, 6n*. ö?*. bt,   6n, 6;. 

In the investigation of the stability of an inertial system discussion 

will center around solution of the homogeneous error equations, based 

on the assumption that instrument error is zero, and only errors in 

the initial conditions are the source of perturbation.  Thus, with 

regard to the homogeneous equation (4.7) — (4.9) their accuracy is 

detormincd only by the accuracy of the expansion of (4.46). 

At the same time the homogeneous equations (4.36) and (4.37) are 

first order equations, i.e., linearized equations, since in introducing 

the small rotation of vectors e. and 6- and in making the transition 

from equations (4.8) and (4.9) to equations (4.36) and (4.37) we 

ignored terms containing the squares and products of small angles. 

But the homogeneous equations (4.35) remained exact in the sense that 

the degree of their approximation is determined only by the error in 

the approximate representation of (4.46). 

The stability of the system of homogeneous equations (4.35) — 

(4,39) is determined, obviously, primarily by the differential equations 

(4.35) — (4.37).  It is easy to see that equations (4.36) and (4.37) 

arc solved separately from the others.  The solution of equations 

(4.37) takes part only in the formation of 6gradt. in equation (4.35). 

Hquations (4.37) are not associated in any other wry with equations 

(4.35).  But 6gradc is a quantity of the second order of smallness. 

Tht; use of linear equations (4.35) — (4.39) in its formation can 
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give only a third approximation of the error, but the second 

approximation remains exact. 

It follows from these considerations that in the first approximation 

the quantity 6gr.ul- in equations (4.35) may be substituted for 

using equality (4.44), and the quantity 6gradi may be considered to be 

sufficiently small to be ignored.  In this c?so expressions (4.41) 

in equations (4.35) arc replaced by: 

(4.48) 

where 

r' ~ A» -) !•' i »» ■«' I r -f /». A, -. |r f Ar| - , -^ US. (4.49) 

The equalities (4.48) and (4.49) are equivalent to the vector 

equality 

IprfE  ;!( v( ir^) (4.50) 

The following conclusions may be drawn from the above. 

If we ignore the variations of the non-spherical component of 

the gravitati'mal field, the differential equaiton (4.35) may be 

solved independently of equations (4.3G) and (4.37).  The corresponding 

vector equations (4.32), as well as the first and second equations 

(4.33) may be dealt with in the same manner.  Thus, 61-, and 6r> become 

independent. 

If there are insufficient first order equations, their subsequent 

specification should consist in the following:    equations (4.8) and 

(4.9) should be taken instead of equations (4.30) and (4.37), and 

in equations (4.35) the projections of the vector ^gr:ul>. and the 
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quadratic terms of the scries expansion o*.'  the spherical component 

of the gravitational field (4.46) should be retained. 

We obtained the error equations (4.32) — (4.34) or, equivalently, 

equations (4.35) — (4.39), on th  ^asis of the ideal vector equations 

(3.53) — ;3.58).  It is possibli ,  -f course, to obtain these equations 

directly from the ideal scalar equations (3.59) -- (3.65).  In view 

of the importance of the error equations in the solution of the 

fundamental problems of inertial navigation, we will repeat their 

derivation in analytic (scalar) form.  This will perriit a clearer 

understanding of the transformations and assumptions made in the derivation 

process.  Moreover, we will henceforth need  certain scalar relations, 

the derivation of which will require the re-derivation of a large portion 

of the error equations in scalar form. 

In order to derive equations (4.35) it is necessary to differentiate 

the scalar equations (3.59) with respect to tinq,   and then to vary them 

except for dv . iv , iv  ,   and to substitute expressions (4.41) for 

'rJ„' 4<3. «f. 

In order to obtain equations (4.36), we must obtain the 

entiated equations (3.60), replacing m , m , m , with M ! 

Performing the differentiation and varying, we obtain 

«a,, 4 «■!,,'.>,- Mi,/.., 

«o„ ♦■*o,|W, - Nt,f«, 

^»JI t A")i"1, -^"«•", 

*"« f ^.•i''', — ^':l,■', 

An„ ) *u,/.i, - Ail,,", 

^-ii,,Amt ii|,Amr. 

- «,, Am, — 0,, \mr 

-«I, Am, - -i,. Am,; 

--«„Am, -«„Am,, 

-«„ Am, —II,. Am,. 

•=II,I Am,  «.jAm,. 

K, I A",!«,  •"'.I,/.I,  "„Xm, -u„Am, 
Änw-|- Aa„(i»# - Ao,/.», 

*«i) I" V,/«, " ^l||M, 

-iij. Am, -«„ Am,. 

-"„Am,  n„Am,. 

(4.51) 
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In  order  to  further  transform equations   (4.51),   we   introduce 
thf- notation 

Oi, = — »,. An,, — atltfi,i — n„*nu, 

U,,      "n'",, +-'':iA«n  (-"«'«11. 
8„— - a,, «n„ — u , Aa„ -u^ftuo 

(4.52) 

By varying the obvious  equalities 

a,,«,, 4 a./tj, + n,^,, ■ 0. (4.53) 

we  see  that,  with an accuracy to within terms of  the second order of 
smallness  relative to fiaJi»   the  projections 0.   ,   6.   .   8       may also 

be represented in the  following  form: 

"i. =«n*<'ij f-a^Ain l-a,,^. 

•i, ="17*0,, 4aa«o,1 r «j.A«,, 

(4.54) 

It is easy to see that e, , eiv' elz' defined by equalities (4.52) 

or (4.54), are the x, y, z components of some small rotation vector 

•-', of the trihedron O.xyz relative to the trihedron 0,C#n*C*.  This 

small rotation is characterized in a change by a magnitude 6a. . of 

the direction cosine a. . between the x, y, z and f.A, n#, c^ axes. 

Wc now multiply the second  equation (4.51) by «lo. the fifth 

by ij, and the eighth by a-^ and add.  Groupino, wo arrive at the 

criu:ility 

(4.55) 
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Taking into account relations (4.53) and (4.54), as well as 

< I ";, * "L ' (4.56) 

ind,   consequently, to within terms of the second order of 

smallness 

"ll^'il ♦ ''.i^';! )-".»1 ^l..l — 0, (4.57) 

we obtain from equation (4.55): 

a,,Äii„ t 'I;,*!,, * "„fci,, -'"/'i,^ Am,. (4. 58) 

But according to the first relation (4.54), 

-0,,-  n.,iVw —a.^Ao,, - «j.A,,,, 
(4.59) 

Replacing now J.3, '153» f,33 in the right side of equation (4.59) 

with their variations from the third, sixth and ninth equations (3.GO), 

we find that 

OnAu,., (-((..,*».,. ( »„A«,, -, 

;,V"ll'V'i; I .-_.,ftu„ J »„A,,,,) 

'■'.'"I.A"IH «„A.,,, f.,,,^^,) 

(4.60) 

Since the second term of the right side is equal to zero, 

--.o^K.A.i,,-r<i;, An.,+u, ■""!,.■) (4.61) 
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We now insert relation (4.61) into equality (4.59), and the 

latter relation into equality (4.58).  Taking equality (4.52) into 

account, we obtain 

6,, -f cijO,, - uj^ = A/n4. 
(4,62) 

If we multiply the first equation (4.51) by "13. the fourth by 

a^,, and the seventh by u-, and add, then, using equalities (3.60), 

(4.52), (4.54) and relations (4.53), (4.56), (4.57), we arrive at the 

equation 

*i,+«>,0|, -to.n„t=\m,. (4.63) 

Finally, multiplying the third equation (4.51) by a.., the 

sixth by a», and the ninth by a,.,, we find that 

Öl.+ O.n,,-!.»,!1!, =A(II,. 
(4.64) 

Comparing equations (4.62) — (4.64) with equations (4.36), 

we sec that they coincide. 

Equations (4.37) may be obtained from the sealer equations (3.61) 

in a manner completely analogous to the derivation of equations (4.62) 

-- (4.64).  This requires only the introduction of the small rotation 

vector $_, the projections of which on the x, y, z axes are 

0,, -= - p,,^,, - (1,,A|(M - (Ij.Ap,, .- 

= - en *r,i - iVi IP« - r..i ^u. 

(4.65) 

and, in addition, the use of equality (3.64). 
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We note that the homogeneous equations (4.51) are exact .  In 

going from equations (4.51) to equations (4.62) — (4.64), we modified 

equalities of the type (4.53) — (4.56) and ignored squares of 

variations of the direction cosincu 6a.. and their products.  The 

homogeneous equations (4.62) — (4.64) are therefore first approxi- 

mations of the effect of the perturbations.  Analogously, equations 

of the form (4.51), which may bo obtained from the equalities (3.61), 

will be precise, while equations (4.37) will be first approximations. 

This confirms the considerations expressed above * regarding the accuracy 

of equations (4.8), (4.9), and (4.36), (4.37), since equations (4.51), 

like the analogous equations for 6 6.•, are projections of the vector 

equations (4,8) and (4.9) on the x, y, z axes. 

In the process of deducing equations (4.36) and (4.37) directly 

from the scalar ideal equations (3.60) and (3.61), we obtained relations 

(4.52), (5.54) and (5.65), which link the variations 6a.. and 6ß.. 

of the direction cosinos to r,
1 , 8, , 0.  and 0   e  , 0_ , respectively. 

Those relations permit, in particular, expression of the initial values 
ö
lx(0), "ly(0), 

u
lz(

0)' :'2x(0)' 02y(0)' 022(0)'  in ternis of ^^W 

and ' (■ . . (0) . 

In addition, wo will show how equations (4.37) are obtained from 

relations (3.31), (3.32), (3.33), (3.41) and (3.21), (3.22), (3.23). 

From formula (3.41) it follows that 

+ 
U
!I
A,

'II •••i*"a-H4*> r« 

See page 300 [of translation]. 

308 



Substituting here the values «j^» a'.., 60.., 60'..  from 

expressions (3.31) (3.33) and (3.21) — (3.23), and noting that 

>lJ = "l'1
nll +',;i";,+ 0>„. 

and making use of the orthogonality property of the tables of direction 

cosines (3.16) and (3.27), we arrive at the equality 

«011 =*I1
IJ(">, - ",) -AM'", - ",> -f 

- »iilAn, - (AMu ♦ '"^"Jn + A<i;(»j,) — 
-(''l'll>ii + ",''Vü + «;'VJj)l. 

which also follows from relations (3.61), (3.64). The remaining 

analogous equalities following from these same relations are obtained 

in a similar manner.  The further derviation of equations (4.37) is 

obvious. 

We now derive relations (4.52), (4.54), (4.65) directly from 

relations (3.17).  According to (3.17) 

(4.66) 

Further from relations (3.17) and the first three equalities (4.19) 

we f ind: 

te„ -• -0 ."11 * M» 
*"IJ - -0 ."M i »,."„ 
Arin •m -0, ,"u 4 «„n,. 
tul{ -- -0, 

,".■1 1 K"„. 
*a„ m - O./'-i + ".,<•,>. 
*»» •m -0 ,<>n |-0i,"ii 
Aaj, m -0 ,0.1 ) "I/'JI 

tu n --= -0 ,«M + 01i'<u 
6a]i — -0 ,"1. + Mi 

(4.67) 
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If wo now multiply  the  third equality   (4.67)   by a,-,   the  sixth 

by u.j,   and  the ninth by a,-,   and add  the resulting equaJitics, 

takinq   into account   the  relations 

:■) (4.68) 

we obtain the expression for 0, 

6,,,=« —a,,*«,,- o«*";,—"„^ijj. (4.69) 

which coincides with the first formula (4.52), as required. 

The remaining five formulas (4.52) and (4.54) may be obtained 

in an analogous way from equalities (4.67). 

In order to obtain formulas (4.65) from the latter three equali- 

ties (4.19), the relations 

(4.70) 

must be used to write the equations linking the variations b?...   of 

the direction cosines with U2y' 02v' 'J2?' analogously to equations 

(4.f)7), and the same operations must be carried out on them as in 

the derivation of formulas (4.52) and (4.54). 

Thus, wo havu obtained equations (4.35) — (4.37) from the ideal 

sealer equations (3.59) — (3.65).  It remains to obtain equalities 

(4.38) and (4.39) and, in addition, to obtain from relations (3.65) 

the projoctionr. (4.41).  From equalities (3.62) we have: 
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*"=«Uill. ( "".,11. f «<l3lC.+ 

+ aii*l. -t-^iÄ'U + aji^,. 

*y — tout. 4 ^JJ'I. -4 f*h.i. f 
+ "u *i. + "n K -(- "3i AV 

+ "1,";. *".■ iAil. ) "JJN, 

(4.71) 

But according to expressions (4.17) 

auÄi. + <»?i*'l. +-«jj4t.=-A)',, 
"ii*',-+ Ov.All. ♦ u,,*;. = 4^ 

(4.72) 

On the other  hand,   using   fJjk,   n^,   c,  from relations   (3.62), we 

finds 

^lUll*"!! +".'|A"jl   f ",,'"'•'„I V  ;  {",;^||   )-";.A<';i   L 

(4.73) 

As a result of  the orthogonality of  the table of direction cosinos 
a..   it  is possible   to write with an accuracy to within  the second order of 

snallnessi 

but accorli-v;   VJ equalities   (4.52)   and   (4.54), 

«J|AO;,    1   "„A,!,,    (   tl,,^,,     ,   _n,,. 

Thus,   taking   Into account  the   first  equality   (4.72),   the   first equality 
(4.71)   assumes  the   form: 

A.v^Oi.y —U,,» 4 *Jf3 
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But from formula (4.38): 

We therefore finally obtain: 

»jr, ^ 0,,/ — nl()i,      Ajtj r-.- ix f «jt,, 
(4.74) 

which coincides with  the corresponJing equalities   (4.38).     The 
remaining   equalities of   this  group .aay be obtained  in an analogous 
manner. 

In order to obtain   the  last three relations   (4.39),   it is necessary 
to use  the  equalities 

(4.75) 

that   follow   from   formulas   (3.63). 

Completing the derivation of equations   (4.35)   —   (4.39)   from 
(3.59)   —   (3.65),   we  obtain   from  the   latter  equations   the  projections 
(4.41)   of   the variations   in  the   intensity of  the gravitational   field 
of the earth on  the x,   y,   z axes,   i.e.,  wc-  show  that  the  following 

expressions   for  ^gx»   fj(?v»   ^g-   obtain: 

*ff, " (^(.'•«) 7-0, X KMJ I + t-iad Af) . 

*ff, ■• ('lK'JJ 7 — <•, '< gwi ■ + E'ad ft) , 

tga = wzii'l 7 — 0, v g(aJ c + Rnii Ac]  . 

(4.76) 

The three equalities (4.76) are clearly equivalent to the single 

vector equality 

(4.77) 

«4 ^ft,;iiJ "r - 0, X K'"<' + K'^'f. 
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the correctness of which we are now certain on the basis of 

equations (3.65). 

From equations (3.65) it follows that 

«n 
+ ^(«<fb f^1i.j + 'fP.>. 

whence 

ftf=A(;,adü , ^JA, f ^A|-f ^*IH j[4t 

(4.78) 

(4.79) 

But according to the final tnree equalities of (4.19) 

(4.80) 

The validity of equality (4.77) follows from formulas (4.80) and 

(4.79). 

In conclusion wc will write the error equations in vector and 

scalai; fo''Tn. 

If the coordinates being determined are the C.^,   n*, r.» coordinates 

in the fundarnental Cartesian coordinate system, then the error vector 

equations form the system 

if-)-üi» -fir } H • tr  T  <■>   ' U*    ' t\r) i 

- Am  ■'r      \m .< (oi     f)     N     (\m • r). 

(l, ) u ■' ",     Am. 

fir,   i (I, ■' r.    *fj   lir+Äfi, 

(4.81) 
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1 
The initial conditions of system (4.81) will be the quantities 

(4.82) 

The following scalar equations correspond to the vector equation 

(4.81): 

»i + lvrty'-M'-2'')-'-',- <)*•+ 
+ (u.jM, - .i. - J^jt) Ay - 2«. *; + 

+ (oi^., 4 c-., - i^t] *z -4- H *' - 

= A»,-+ Aff, — 2(Am>i-Am.y)- Am,« + Am,y - 
- a, (\mty ^ Am,z) — Am, (M,y + u,t) -f 

+ 2x (M, Am, + u. Am,). 

«y+[T«- C + *' - 2v,' - "i - ">;] ^ *■ 

Ar- + (u,ü).+.'>, - a^)li + 2...«i 

=• A»,-+-Aff, — 2(\m,»— Am,z) — 

- Am,« | Amfz  - (i),(\m,j -f-Am,*) — 

— Am, («,/-( (.>,<) | 2y (iii. Am, f-u^Am,). 

+ (u.M, — M,   - •äpll« — 2ol, *X + 

+ (o.,a., f H,-^)Ay + 2(,.JAy = 

■= An, -(- .\^, — 2 (\ra,y -   \m,j:) — 

— Ä/Ji,y f Am,r — w, (\m,JT +• Am,y) — 
— Am,(i,i,j: 4- (ii,))+ If (I.I, Am, f i.i. Am,); 

(4.83) 

Ou + u/V —«•',ni, = A'«,. 
Ö„ + u,0,, — u,0,, = Am,, (4.84) 

«Jtl^O,,/       (I,,)..     Ay,    .ll^v    -(),, 

A.tj      A.v 4-A>|i     Ay,      Ay  I   ,\Vli 

A;,  =.A.-   ) ,V, 

(4.85) 
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The initial conditions of these equations will be the quantities; 

• ».i(O)  .Vv», *>■(())  Ay', Or (ü) :=«.-, 

6i I0)^fi',',   Ay(0)  ,y. !>-(0)^ii\ 
(4.86) 

where,   in accordance with relations   (4.40) 

4i0 = «.^ 4- ^.ij - Ang «• — («wj — Aw',) /, 

t'y" m Ayu | (4.,^ - Am1;) «• - ((w; - Am';) I», 

4i» ^ ftig -f (.V..^ - Am'; | f — p^ - Am',;) x". 

(4.87) 

4.2.3.  Additional remarks.  If the coordinates being determined 

are the Cartesian coordinates t,   r\,   c in the coordinate system attached 

to the earth, then the first equation (4.81) is retained, but the 

final three equations are replaced by 

o^+-«xo, - Am —A«.  1 
4r, -= 0, X r, 4r, ■ If + .Vr | 

(4.38) 

witli the initial condition 02(0) = 0_. 

Corresponding to equation (4.88) are the sealer equations 

*U 4- "•,•'.•, - »A, = Am, - AH,. 

^»4 "#8i, —»,0», - V«, - AH,. 

(4.89) 

4*, ^ O^t - «„>.. 4y; - 0]tx — II,, i 

4*, ^J4A' f Ai^, ^y, ■ - 4,,'4 'Vi. 4.-, -A.* 

(4.90) 

315 



The initial conditions of equation (4,89) will be the quantities 

defined by the following equalities, analogous to the final three 

equalities (4.86) : 

»..« - % - P,VV,': i PS, % i rL %. 
O„(0) = O]F=,P?I,Y;J toJ.Aft;, f-p3,ftp;„ (4.91) 

It may bo seen from equations (4.83) and (4.89), that the errors 

Ag and Au may in fact be replaced by the equivalent basic instrument 

errors in and Am.  One feature of this substitution should be noted, 

however.  If equations (4.83) and (4.89) are compared, the following 

circumstance is revealed .    The right side of equations (4.89) 

includes the projections of the vector Am - Au, while the right side 

of equations (4.83) contains only the projections of vector Am. 

Therefore the substitution of the equivalent value Am for Au is 

effected in the following manner: first, in equations (4.8S) the 

following substitution is performed 

i\»n'= Am-Au. ,.   nj) 

-» -♦ 

then   Am'   is   substituted  for  Am  in  the  right side of  equations   (4.83), 
• -+ 

while other  terms containing   Au are dealt with by  the  corresponding 
equivalent  variation of  the  error vector  An. 

Equations   (4.81)   for   the   corrcspondinn  sealer  equations   (4.83)   -- 
(4.85)   do  not differ     in  essence  from the   system  represented  by   the 
first  equation   (4.81)   and  equation   (4.8R).     They  differ  only   in   the 
right   sides  of   the   first  equation   (4.88)   and  the   second  equation   (4.81). 
By  virtue  of   the   reducibility  of   tho  error   Au  to  the  equivalent  errors 
Am  and  in,   this difference   is   insignificant.    Therefore  only   the 
system of   equationr.   (4.83)   --    (4.85)   will   be  considered  in  the   following 
discussion. 
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L 

Up to thii; point in this section, tho discussion has concerned 

the derivation and transformation of the error equations of inertial 

naviqation systems containing gyroscopic sensing elements,  Ii 

§3.4, however, it was shown that it is possible to construct an 

inertial system in which gyroscopic sensing elements are absent. 

Tn these so-called gravimetric inertial navigation systems, the only 

sensing elements are newtonomcters.  All initial information on the 

busts of which the operational algorithm of the system is constructed 

derivoj from these elements. 

The operatvonal algorithms of inertial systems lacking gyroscopic 

sensing elements may be of different sorts.  These systems may contain, 

as was shown above, from 6 to 12 newtonomcters depending on the 

algorithm.  The minimum number of newtonometers -- six -- corresponds, 

naturally, to tho number of degrees of freedom of an object freely 

movinj in space.  As was shown in §3.4, the equations describing the 

ideal operation of an inertial system containing no gyroscopic sensing 

elements determining the,Cartesian coordinates, may differ from 

equations (3.59) — (3.65) in that relations for the calculation of 

u , r, in accordance with tho newtonometer readings,,arc added to 

the latter. 

Tho error equations of an inertial system without  gyroscopic 

elements dot irmining the Cartesian coordinates  will therefore differ 

from equations (4.83) — (4.85) as well.  Tho diffei^co will consist 

only in the addition to equations (4.83) -- (4.85) of expressions 

derived by variation of the relations used to determine i , w , u . 

As was stated in §3.4, tho basic means for determining u , u . 

i r; the use of equations (3.392).  In this case tho error 

equations (4.83) -- (4.85) remain valid.  It is necessary only to 

sul).';t Ltuto  for Ai 

relations (3.392) 

substitute  for Am , Am , Am  the following expressions following from x   y   z J  ' 

Am,^.*.^--- -i ( (An;--.'W).» <-«rtJ(0), 

Am, -.4..., ■ g ( (An';' —A«;).// I .V.,,«). 
I 
I 

A«, -A..!,  J. |(\r'  W,'),/; I .V..((") 
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As  is evident,   this  changes only the right sides of equations   (4.83) 
and   (4.84). 

§4.3      Error Equations  in  the  Rcternination of Curvilinear Coordinates* 

4.3.1.     The general  case of  non-stationary oblique  curvilinear 
coordinfitpq.     we will derive the error equations  for an  inertial 
system determining arbitrary  curvilinear    and/in the/general  case, 

12 3 non-orthogonal  and non-stationary,   coordinates   .(,«,)<     of  an 

object   in  the basic Cartesian coordinate system O.f^n^c*.     As  in 
54.2,   we will  confine ourselves   for  the moment  to that  portion of 
the error  equations  which relates   to the determination  of  the  coordinates 
of an object. 

In order to solve this problem, it is sufficient to examine the 

inertial navigation system described in 53.2, in which a free gyro- 

stablized platform was taken as the basis of the kinematic system, 

and the newtonomcters wore oriented along the vectors r , r , r pf 

the mutually based trihedron.  The operational algorithm of this 

inertial navigation system is given by equations (3.172) and (3.163) 

or (3.164) and the table of direction cosinor. (3.173) characterizing 

the orientation of the axes of sensitivity of the newtonometers 

•II Qjt   e, relative to the stablized platform, i.e., relative to the 

axes of the basic Cartesian coord-'nate system O.f;'^2^3. 

As in the derivation of the error equations of an inertial system 

defining Cartesian coorflinatos which v>as performed in 5 4.2, we  will 

reduce the instrument error of the elements and devices of the system 

to a few basic instrument errors.  As before, wc will tako as the 

basic errors the errorn of the Musing olemonts.  In this case, these 

will be the errors An  of thr newtonometers and the orientation errors 
s 

V.   D.   Andreyev,   Krror equations  of  an   inertial   sytitcm determining 
arbitrary  curvilinear  coordinates  of  a moving  object.      Izv.   AN 
SSSR, Mejchanika« No.  4,  1965. 
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of the    gyrostablizod platform.     The  latter may be given  as  three 
angles  characterizing  the deviation of  the trihedron  associated with 
the platform from the required position.     It  is more convenient, 
however,   to define,   as before,   the orientation errors of  the    gyro- 
stablized  platform by means of  the projections Am  s of the absolute 

angular velocity of  its  rotation   in   inertial  space around  the  f, 
axis of  the    gyrostablized  platform. 

Varying  the basic  inertial navigation equation   (1.88)   and taking 
into account  the basic instrument  errors discussed above,   we obtain 

Am = Amt.J, -f Am^ii, -i Ara^t,. 

(4.94) 
On the other hand. 

»($-«)-*»-»(«Vj (4.95) 

From  expressions   (3.132)   for  the contravariant  components  of  the 
vector  n   in   the  basic  coordinate   system,   and   from which   the   formulas 
(3.172)   were  derived,   we   find: 

(4.9G) 

From relations (4.94), (4.95) and (4.96) wo now obtain the 

foHowinq three equations  (k ■ 1, 2, 3): 

fii*' t rJlv'V i wvü'+r^ -V) ( 
■( W \ r»Ji"«' \ tfoli" f IV - fOr'-fr,« (4.97) 
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Equations (4.97) will be the first group of error equations for 

an inertial system determininq arbitrary curvilinear coordinates. 

They clearly correspond to equations (4.1). 

Let us now expand the expressions appearing in equations (4.97) 
, i Since  P ,     r»,   rnn are  functions of  the coordinates mn   on  oo 

and time t, and the variations are, as before, isochronic, 

H*'^-^m'.■:.'•k' + n•^y."+l\;.-p,). 

■. *;<* f «■.!»-*;'+J, (r„:) »*n't>e -? 

(4.98) 

Accordina  to the definition of  r_s 

,. 
OH onn 

(4.99) 

From this, recalling thn definition of the Christoffel symbols, 

we obtain: 

rVÄr.-^Ax"!,,'. 
(4.100) 

Let  us  introduce  the vector  q and  its contravariant components 
-  k 

(fj)     according  to  the  cqu<ilities: 

*   k and  compute   the  values  of   (q) '. 

(4.101) 

For   the  vectorn   ',m and dr/dt   appearing   in  expression   (4.101) 

we have: 

Am —.V.'r,     A'i.r', 

-"' mm* J   •" 

From the «ccoiul equility (4.102), it follow;;: 

(4.102) 

320 



(4f).=«.,(*'-f-ö- 
(4.103) 

whore    I it )      and (gr )      denote the  contravariant and covariant 

components  of  the  vector  dr/dt.     Further, 

and,   finally. 

(-arj -*■ ' 4 Am'(r,:; + ftft 
1 Um \ / ä.\m \* 

Vkm 
&'■ 

Vfm »"C). 

(4.104) 

(4.105) 

Substituting   (4.102),   (4.103),    (4.104)   and   (4.105)   into  the  left 

side of equality   (4.   01)   and introducing the Levi-Civita  symbols   (3*150)« 

(3.151),   (3.152),   we obtain the  following  repre<=Gntations of 

expressions   (4.101): 

+ a„,{Am" f Arn'O^-x" H rfl)!-! /■']. 
^ Ar      I (4.106) 

b 
Let us find [.g .  Accordinq the formulas (3.11) and (3.15) 

fs-grad   f  f gradf ('I1, 'l'. 'i') 

Therofore, 

(4.107) 

I* yrr ■ '' ( gratfri,' -^ _ P'       << i'r< 
:Jr'"    „.'   IB'«1     'i,'. 

k    . wJioro   n,   is  defined   by  •quatioilfl   (3.1G3)   and   (3.164) 

(4.108) 

Wc  now  obtain 

hg* 
A(,". '■'■•)• B'»d'.   .,,'  I  grdd'A,,.. (4.109) 
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In order  to  find  of),   is it necessary to vary equations   (3.163) 

or  their equivalents;   the variations of the first components  in  the 

right side of  equalities   (4.109)   may be expanded  immediately: 

*(>-*H-'-^)f-fr.V (4.110) 

Usiny   formula   (4.44)   we expand the  first terms of the right sides 

of  equalities   (4.110): 

„ jj r'. ,tt*~$ r . rj'r ■ rjM - 

-7f*x-^,,   Ts-ös1* (4.111) 

Irt order to expand the second terms of (4.110), we consider the 

equalities 

r~1rfrm   '■„■(•r'^     r'  irm. (4.112) 

Thor. 

Uli M     f c»     i    ' 
r' Jr' w." 

(4.113) 

lUbltitUting   (4.113)   and   (4.111)   in        (4,110)   and  also   in 

(4.109)   wo   arrive  at"thG   following   expression:;   for   'ig   • 

(4.114) 

In considt-riny in S4.2 the error equations of inertial systems 

determining Cartesian coordinates, wo concluded that in the first 

approximation of the error equdtionr. the variations of the nonspherical 

eomponenta Of the earth's gravitational field may be ignored.  It is 

evident that thil conclusion in valid here as well. 
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In place of relations   (4.114)   we will  then have: 

I A«» iL   'V „»" '''■,   ')'■, 

(4.115) 

Taking these equalities and equalities (4.106), (4.100), (4.98) 

into account, we obtain from relations (4.97) the equations: 

ftX» + 2Tm\^ fix' + ^ (rnJ) &V 6H" + -^ (1^)6. 

+ 2 -^ (r4) 'y.nW 4- ZPol! IR* + Ji-ftx» - 
dx f 

3)4  ,,„ dr*   dr' .  .i        |i   dr'     mnp ». »  , 

+ (H1+rjliV f- sroix'-;- r^+ 

-|- nn.[Am" + JW»- 4- W)A'«']-j g-) • (4.116) 

Equations (4.116) constitute the first group of error equations 

of the inertial navigation system under consideration.  To them it 

is necessary to add the equations 

Of-MlOv'x'.i-r^Am*. 

I  «  " 2 dx' * 
fix» = fix» -f fix». 

(4.117) 

The  first group of  equations   (4.117)   is analoqous to equations 
(4.84)   of   the  preceding   section.     The equations of  this group define 
the  small   rotation vector   i,   of  tho  hydrostabilized   platform   in 

inortial  space,   resulting  from  its  free drift. 

The second and third groups of equations   (4.117)   define,   ana- 
logous     to   (4.85),   the  errors   ^w^,   in  addition   to  5M

S
,   in  tho 

determination  of   the coordinates   i s caused  by the  fact that  the  angle  0. 

is different   from  0,   and  total   error.-;   j«"   in  the determination  of   the 

coordinates   analogous  to  tho  errors   6x_(   iy^,   6z-,   in   equation   (4.85). 
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Before analyiunq equations   (4.116)   and   (4.117)   and examining 
special cases,   lot us  transform  then somewhat.     As a   result  of  the 
transformations we obtain  the   followinq  system of equations: 

dx" 4^ (Jx     .)x" I 

■i4|P.fM>|«lpA«,,«M(lll 4 n') + 

-M..|A«nf (r,:-;r i r„;")Am'|l-^|. 
k 2  dx' J 

of i üi(r(fx' ♦ r.n-Am*. 
ftx» = £■'♦« K Li?-, 

I\K»    I cSx'  I  Ax* 

(4.118) 

The  initial   ctjnditions  of  equations   (4.118)   are  obvious. 

Equations   (4.118)   contain   the   contravariant   components   An    and 
s * ■* Am    of  vectors   An and   Am of  the  instrument  errors of   the sensing 

elements.     The  projections   An       of   vector   An  on   the  axes of   the 
es 

sonsinq newtonomotors and the projections An.* of vector m on the 

axes of the  qyrostabilized platform, i.e. , on the axes of the basic 

Cartesian coordinate system, are known. 

Since in the system under consideration the unit vectors e of 

the newtonometer axes are disposed alonq the vectors; r  of the common 

basis. 

An,  . An c, 
.VI' 

I ■>■'' 
(4.119) 
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Hence   (not summing  over  s!) 

An' = An, j/u" . (4.120) 

From equalities   (4.94)   and   (3.88),   (3.89) 

I OK" 
(4.121) 

We note that the orientation errors of the newtonometers in the 

class of systems under consideration may be obtained by varying the 

elements of table (3.173).  We will not present here the relations 

obtained from this variation; this will be done below. 

4.3.2.  Orthogonal coordinates.  Cartesian and geocentric 

coordinates.  Let us examine several special cases of the derived 

ideal equations of an inertial system using curvilinear coordinates, 

For stationary coordinates, when 

("oj m o. r, * =« 0. oS =. 0, 

the first two groups of equations (4.118) assume the form: 

V „., *' <tr»|. „ 

(4.122) 

r An* - (■"• [:' \m '«i,,",,*' fa., (Am' + 

4AmWI£]. 

(4.123) 

Öf-Mir.fx^Am'. 

The third and fourth groups of equations (4.118) do not change, 

nor do relations (4.120) and (4.121). 

If the coordinates «      are non-stationary, but are orthogonal, 

then only the diagonal components o' the metric tensor are different 

from zero.  As a result, the first and third groups of equations (4.118) 

may be written in the following form: 
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■=An*-6"*|^(,\'«
,..„(xM «y i 

1  *  " ' . ...1 • 

(4.124) 

The second and fourth groups of equations (4.118) and relations 

(4.120) do not change, but equalities (4.121) take the form: 

Am' —An (4.125) 

Finally,   i*" the coordinates are  stationary and orthogonal, 

l'fij — r« •■«' — o. 
(4.126) 

must  be  substituted  into equation   {4.124J,   as  a   result of which 
these  equations  take  the  following  form: 

tot* >-'>/ t avJi"*«* i 
i-[iV(Xr.l+r^)+i.S'. 

(4.127) 

Equations   (4.124)   and   (4.127)   correspond   to   the   ideal  equations 
(3.210)   --   (3.213)   in   orthogonal  curvilinear  coordimtes. 

If x ',   x ?,   n.1   are  non-stationary Cartesian   coordinates, 
equations   (4.124)   transform,   as  expected,   into  equations   (4.83)   — 
(4.85).     In  fact,   in   this  case  the vectors  i,  arc  unitary,   and  the 

orthogonal  trihedron   formed  by them rotates as  a  unit.     All of  the 
Christoffel symbol:; are  equal   to zero,   while the  non-zero diagonal 
elements of the metric  tensor arc equal to one.     Taking  this  into 
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account, we obtain from equation (4.124): 

ti' + i', AX* i- ar,^ bit" + 

+l-A *& 4 O - A Ä ill M . 

"=A"'-e1,.[2Am
,{i' + <i;) + 

ftf +0i^,v*=»Am^ 

(4.128) 

Since the coordinates are Cartesian, 

and 
(4.129) 

(4.130) 

k      k The symbols r  and rQ     for the case in question have already 

been calculated in 53.3.  Turning to formulas (3.233) — (3.237) 

we find: 

^r(2r,'i'4r,.') = 
CM 

- (M X r„) ■ r, + a.,w, . r, • r.u'. 
dr '^-l,f''=&Kr)r'. 

(4.131) 

Substituting   (4.131)   and   (4.130)   into   (4.128)   we arrive at the 
equations 

-f Id» X r,,) ■ f* -I w'vi,,     r*r„i.i;| An" a 

e=Aa' —t"* |2.\m,|.', » («     r) ■/■,! t 

4|A»i, J An'd.   - r,)r |H,|. 

(4.132) 
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oince the coordinates are Cartesian, r = rs **&$  consequently, 

the contravariant and covariant components are equal; also equal are 
stk 

the Lovi-Civita symbols €stj. and ( ' . The indices in equations 

(4.132) are therefore disposed in such a way as to guarantee the 

summing rule. Expanding the mixed products in these equations, then 
. .   -»-♦•♦    12   3 

summing and noting that quantities r,, r», r.,; x , * , x ; w., w-» 

H~| Am,, Am», Am^; OJ, 6?, 0? in equations (4.132) correspond to 

the quantities x, y, z; x, y, z; M # u , Uiz;   Amx, Am , Am^; eix, 6.,   eiz 

in equations (4.83) — (4.85), we easily convince ourselves of the 

identity of equations (4.132) and (4.83) — (4.85). 

The error equations (4.118) were obtained by considering an inertial 

system the kinematic basis of which was taken to be a free gyrostabilized 

platform. In §3.2 it was also shewn that a maneuvcrable gyroplatform 

may also serve as the kinematic basis in the determination of ortho- 

gonal curvilinear coordinates. Equation (4,118) remain valid, of 

couruo, in this case as well, and only the instrument error Am 

changes, being specified not as projections Anus, but as projections 
-► direc— 

Am.   on the axes of the manouverable platform, i.e., on the r 

tions. As a result, in calculating the contravariant components 

of the vector Am in the basic coordinate system, instead of formulas 

(4.125) we will have formulas 

(4.133) 

where Am, , denotes the errors in the specifications of the projections 

of the angular presession velocity of the maneuvcrable gyroplatform 

on its axes (th-.   instrument errors in the formation of the controlling 

moments and the free drifts token with inverse sign).  According to 

formulas (3.209) and (1.78a), 

(4.134) 

I 
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1 

For purposes of illustration, let us derive from equations 

(4.118) the error equations for the geocentric coordinates r, X, 9 

in a trihedral bound to the earth. 

Since the geocentric reference grid is orthogonal, instead of 

relation (4.118) we may begin from equation (4.124) and the second 

and fourth groups of equation (4.118). 

We will use the values (3.252) for the Christoffel syiübols 

calculated above for a geocentric reference grid, the values (3.267) 
k   k 

of the symbols P., r00, and the values (3.250) of the diagonal 

components of the metric tensor.  Substituting these into the first 

group of equations (4.124), we obtain the following values for the 

individual terms in the left side of these equations. 

For k =  1: 

= 2|(rJ!;'-f-r0?)fti,+nli,Ai'|= 
— —Srl'fAif (-(i f»)cos'if«)l|, 

+fi-färr.l+Wr.l)]i.'- 
■=-^rli"(«')'+iV.(xY + ir,.ix'|Ax" + 

+ rj «x'ls''^V+K7(2^W
, + r^V)] =. 

—'■.((.'/•■l      M'.: r 2'")vi"'i «-us'i'l. 

|)X 

c^-ÄfH'cos'i) I A'(''('''sl|i,i,-l"ilf -f)—♦Wtfei'f, 
Hi     ,,    i>r'    Or'   .    . 3^,, 

rs rtx1    dx" r' 

(4.135) 

L 
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For  k 2: 

For  k 

4(i;1!i
l f r35;,)^i'l- 

+ 2^ i\.', +CIV-1 K"] Ax" 

-♦ r,! AH'| i1 (!•,!«' f 2r„D f ^(^«'4-2^ + 
4 iMi'-' + r^;1;'! 1- rj •»'I«' W«' + »«D+ 

-«>,[).(>. f 2«) f-4> + 2f 9i„'(J, 
1.. A.I      .1,1 

f 

»jLrfi ±1-^^=0. 
OH'   <)«' 

[-i^rui + r.;(i'-fra',)]6H°- 

+ r,U' t^'^br f 4-4J. ti    JM»   4  M»W» 

ir^"4r4)iic- 
-=2|(r^K' 4 i'oi) *H; + rj*3 M +■ r.j;' fti'l = 

+ 2(d7r'""f rt'"1'") "']*''" ^ 

l( 

0/ |i
,|r4i,4«rÄ4«rÄ,i^*i,4 

4ri|jrii,^+i,0'^i« f ir4)jfci'+ 
+ rn|x'{r1;x

, + 2r,,!)-4 ^(«•fli««^ 

-f 26).(X f «)(^tüi-f-. .fs,n,fjs|,)9 _ 

— ^|(>> I  2<i).)sln'9 + ii'|, 

A*" M Ü, 

(4.136) 

(4.137) 
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Noting that for thu  right sides of the first group of equations 

(4.124) the following relations hold 

du'   Ott1 

(4.138) 

and taking into account expressions (3.183) for the Levi-civita 

symbols t   ,   we have: 

»A«' 1 2]/-^-,,.|Am,(>;i+aJ)-Am:'(xH'"')l. 

A/i'-e^'j^.jj.Am'a,,^' ■(-o,1,)+ 

+ «„ [Am1 + A V(rm?i' -f r„?)| x') - 

= A/iH 2 ]/-^!-•|Am'(xH'<,,)-aml('<'+'!')|- 

- -/^^ h"' 4 Ara
:(K'r.] f rJ9■♦ 
+ Am,ii'n{ + AnlH,r,|)x', -f Am'x . in 

A«>-Cm|'"„A'"'''«K+''u
7)j-   ■VIM dJ\ i'JI 

-e,(2«„Am'1j,|(x'+-o,l,) + 
4 «„(Am'-f Am'(r„;x" 4 r,;"))x'|. 

+ /Sb I4''1' + A'"' C**+'"•8+ 
4 Arn'ov.«' f r,?) + An^r^iVri.«')!. 

(4.139) 

whore,according to the  first group of equalities   (4.1031, 

..= * (4.140) 

Comparing (4.140) with (3.232) and (3.130), we have: 

— «a'     'I  -  ,    • M      .   . 
(4.141) 

Whence,   using  relations   (3.246),    (3.247)   and   (3.250),   we   find 

a' --- ».    a'  -. a.    a'   = 0. (4.142) 

331 



We may now write explicit expressions for the right sides of 

the first group of equations (4.124) for the case of geocentric 

coordinates.  Substituting into formulas (4.139) the values a? 

from equalities (4.142), the values of the symbols r ?, r™, r" 

from relations (3.252) and (3.267) and the values a  , ass from 

(3.250), we arrive at the following expression: 

An1 -f 2rl cn-i <f (Am1 (i.-(-B) — Am'(rl. 

— T^TW-I-Am'tf f ii)5ln(fco5ir + 

+ A«>/ + Ami*]. (4.143) 

A<iM 2 cos if |A/ii'r — Am1 (J. 4 u)I 4 

H-rr-ffiii* 1 >ii*rf | ifci I >■ "t* t 

+ Am'(-;--(il„T)]. 

Here An  and Ams.are the contravariant components of the vectors 

An and Am of the instrument errors in the basic coordinate system. 

Ur,ing formulas (4.120) and (4.133) they may be expressed in terms of 
-»•     ■* 

the  projections An, . and Am, . of the vectors An and Am on the (s)       (s) 

directions r_. 

Substituting An, . and Am, . for An and Am we obtain the J   (s)       (s) 
Gxprossions 

, An,1, + 2/'|Am,3)(>!4«)cos.p     Am,,^), 

:[Am1,l9-2Am(,r'- - 

-Am,,, — Am|,|(>. (-i()«irii(|. 
rcosf   '   rosij i 

An,,, — 4- 2 -Am,,, —Am,,)(A,4 «)C05ir4 

+ &inw — Am,,,, (*• 4 ") s'"V- 

(4.144) 

Combining equalities (4.135), (4.136), (4.137) and (4.144), we 

obtain the desired first group of error equations for a geocentric 

reference grid. 
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»'-[^r-f "P'-M* I '0?"'*'•p]'V■- 

—12(*+'')('CU>''P—"f*'l"rc05l() + ficos'<(I*i 4- 
+ |r(i4 ii)!siinfn)si| —fry— feilte — 

»Ji+[£ - (i i-«)' - -I' 4-7— s'- im -iLn^J M + 
+ i|)i-2.|(i+ «)<.«,.() ft/-- 

- [2()i + K)^? y (>. + "Wl - llMt]*»-*- 

+ 2 (y - <ri«nT) «t — t<l  (  «) ^'nn V + 2 y (/ + «) ftr'^ 

A""1   i    '   r\ ..»    ''' 
f ens if   '   Cüsy  1,      ,,'l t3' r • 

— Am,,, - ABI,,^/. ) «jblnipj. 

«9 + [--'r - ('• f ")' s'"?V -1"7 4- }\ l»i + 

+ f2y(X 4-(i)sln<fCosif — 2cf(M-ii)slii;ir + 

4-üslni('C(.sijilAA.-)- — |(i -f-«)?'liiipcoii( )-<f]''' + 

-f 2(j. -(-i/)siiiif coscfftJ. 4-2 y'(■*'• 4 2y ftij ^s 

■■ — (- 2 A;«,,, - — A;,i(l, (/. + u) kos if 4- 

-j-A/ii,,, —Am^ci-r,.)sin'f   j 

(4.145) 

Equations (4.145) correspond to the first group of equations 

(4.124) or, equivalently, to the first group of equations (4.118). 

The second group of equations (4.118), if only the non-zero 

Christoffel symbols and 
01 

symbols  are  retained,   take the  form: 

i»l4 n!(i'ä!H,4-rJ)4-ü;r.l
,,>;,-=Am'. 

ö?4-o,,(^,^;, HV?) I oJO',:*' M'::i')4- 
4 0?(r)!x' t-FJbmtof, 

b] f o]r,y 4 o?(iv^'4- iw)4- ojr.lx'mam*. 

(4.146) 

L 
333 



Introducing tho values (3.252) and (3.267) of the symbols r  and 
mn 

k s !'_  and expressing Am in terms of ^m, . in accordance with formulas 

(4.133), we obtain: 

Ö| — 0]r (K + uicoi' if — \j',r'<f =* Ami,,, 

ii 

1 
« +ol-LLü-4 o!(f-*..„*)- 

— 0| (». -f- «)t»nT = r lotf' 

6? + 0{ f-f Ol (*-f a) sin (f cos f + 0? i. 

(4.147) 

Equations (4.147) correspond to the second group of the error 

equations (4.118). 

Finally, the third and fourth groups of equations (4.118) may 

be written, using formulas (4.138), (3.250), (3.251) and (3.183), 

in the following manner: 

*r, = 0. W.,^n;---C_,. ft,,,» _o|rco$T, 

br3 = A, + A,,, A)., r= A>. (. AX,, A<r, = A-p + Aq-, 

(4.148) 

(4.149) 

Equations (4.145), (4.147) -- (4.149) constitute a complete system 

of error equations for coordinate determination in a geocentric 

roferencc grid. 

We note that equations (4.145) and (4.147) — (4.149) may be. 

obtained from formulas (4.83) — (4.85), since the geocentric reference 

grid is orthogonal.  We also note that this grid is spherical, i.e., 

vector r, is directed along the radius of tho earth from its center. 

and vectors r. r, are normal to this direction. Moreover, we will 

consider that the x, y, z axes in projections on which equations (4.83) 

--   (-1.85) arc written, are superposed with vectors r», r3, r, , respectively 

u^ tiia main basis of the geocentric reference grid. In this 

case 

(4.150) 

should be substituted in equations (4.83), 
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According to (3.269) and the correspondence of the x, y, z axes 

and the vectors r», i*, and r,. 

(4.151) 

A/II„I = AI«J, Amu^^Am,. A»i„( = A(»r. 1 .^    152) 
Adm^A«,,  An,,, ^-An,. A/i,,)=\nr ) 

In addition, it is evident that the relations 

by m r ti>(,   it. = Ar, A* ^ Hr cos if 

are valid  to within  the second order of smallness. 

(4.153) 

Substituting expressions (4.153), (4.152), (4.151) and (4.150) 

into equations (4.83) and dividing the second of Ua resulting equations 

by rcosv and the third by r, we obtain equations (4.145). 

In order to obtain equations (4.147) from equations (4.84), we 

must take into account the further fact that in equations (4.84) the 

quantities 6. , ^i » 0^.  are projections of the vector 0, on the 

x, y, z axes, and that in (4.147) the contravariant components of 
;.;iis vector in the main basis are expressed in terms of 

0'  0?, 9'.  Therefore, in analogy with formulas (4.120) and (4.133): 

o„ •--o,l„-=nI. o,. ..o,,;,=u?,c.<sif. o.^n,,,,^,!)' 
(4.154) 

The substitution of (4.154)  in (4.84) gives equation (4.147). 

Fimlly, from relations (4.85), with the aid of relations (4.154) 

and (4.150), relations (4.148) and (4,149) are obtained. 

In the same way that (4.145), (4.147) — (4.149) were obtained, 

the general equation (4.118) may be used to derive the error equations 

for any reference  grid, in particular, of course, for those reference 

grids discussed in §3.3. 
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5 4.4 Reduction of Error Equations for Curvilinear Coordinates to 

Error Equations for Cartesian Coordinates. 

4.4.1.  The possibility of reduction.  The error equation (4.118) 

and the resulting error equations for specific reforonce grids are 

extraordinarily unwieldy and complex.  One may easily veri- 

fy this by referring to equations(4.145) and (4.147) — (4.149) for 

geocentric coordinates.  Especially complex are the first group of 

equations (4,1J8).  This is not surprising, since these equations are 

essentially none other than variations of the general case of the motion 

of an object   ( mass point) in curvilinear coordinates in a spherical 

gravitational field and under the influence of several arbitrary forces, 

i.e., variations of Newton's general equations in curvilinear, non- 

orthogcnal, and non-stationary coordinates. 

Although equations (4.118) are linear, their coefficients, 

determined by the trajectory of the object with which the system is 

associated, are complex functions of time.  Equations (4.118) and the 

equations derived from them for curvilinear coordinates do not possess, 

as a rule, a symmetry which is clearly enough expressed to facilitate 

their analysis.  Simplification of these equations by ignoring various 

terms is in general impossible, since various of these terms may be 

of decisive significance depending on the character of the motion of 

the object. 

Another possibility is to simplify equations (4.118) by dividing the 

possible trajectories of motion of an object into several classes on 

the basis of thoir practical interest, i.e., to simplify the equations 

by reference to the various categories of objects for which the inortial 

system is designed. 

However, even for a given class of trajectories the concrete form 

of equations (4,118) will vary as a function of the structure of the 

inortial navigation system, i.e., as a function of the coordinates in 

which it operates.  Thus, the problem in any case reduces to the consid- 

eration of a largo number of equations of the form (4.118). 
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This may avoided if analysis of the error equations for any 

reference grid is reduced to chieir analysis in any one reference 

grid selected in an appropriate fashion.  This approach, in conjunction 

with the reduction of the real instrument errors of the system elements 

to the equivalent instrument errors of the sensing elements, makes 

possible a general analysis of the error equations of inertial systems, 

as we will see. 

The expediency of this approach derives from the fact that there 

is no direct need to consider the error equations in the form of 

variations of the coordinates determined by the system.  In fact, with 

regard to the synthesis of the ideal equations, one of the problems to 

be solved is the selection of the reference grid on which the kine- 

matics of the apparatus to a significant degree depends.  Here it is 

necessary to be able to consider the ideal equations directly in 

those reference grids from which the reference grid which is to be 

realized is selected.  The real problem in the analysis of the error 

equations is to establish system characteristics such as operational 

stability, and also to determine how errors in the determination of the 

coordinates of the moving object depend on the instrument errors of 

the system elements and the errors in the specification of its initial 

conditions.  These characteristics, clearly, may be  obtained by examin- 

ing the error equations in other coordinates than those in which the 

actual inertial system operates.  The actual instrument errors and the 

errors in the initial conditions should, of course, be translated into 

the coordinates in which the error equations are being analyzed. 

The possibility of converting the error equation (4,118) from 

one coordinate system to another derives directly from the fact that 

the;3e equations are, essentially, variations of the basic inertial 

naviaation equation (1.88), which, clearly, is  invariant relative 

to the coordinate system selected for its solution.  Even equations 

(4.11S) have a tensor character and as a result their properties should 

not depend on the choice of coordinate syston 
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We will show this directly by transforming equations (4.118) 
into an invariant (vector) form. 

Let us consider the case in which the coordinates H
8
  are stationary, 

and there are no errors deriving from the gyroscopic elements, i.e., 

^-o. Am.,o. (4.155) 

We introduce the vector 

»•»•(rife (4.156) 

along with its time derivatives 

. 

± — ,. _ y'p (4.157) 

As usual, we will denote the covariant and contravariant components 

of these vectors in the main basis by p and ps, p and ps, 

and q and q , respectively, s 

Applying the operation of covariant differentiation to the contra- 
s    s * variant component"; p    =  Cx     of the vector P, we find 

p' = toi'^ r.^x'-V. (4.158) 

Applying the same operation again, we obtain: 

f «•*•• ~ r,,; 4 KVAHT,.; /V, (4.159) 
Ox 

According  to the definition of  the covariant and contravariant 
components,   wo  have: 

P =/»V, and f^yv,. (4.160) 

338 



On the other hand, for stationary coordinates, the following 

equalities hold: 

It =«».■ 

^=(K'-fr.:i-i")r.. 

Varying equalities (4.161), we obtain: 

which is equivalent to equalities (4.158), and also 

(4.161) 

(4.162) 

+¥+fjrilWftii' (4.163) 

Since the variations are isochronic, the operations of variation 

and differentiation should allow variation in the order of their 

performance.  Therefore, the bracketed expressions in equalities (4.163) 

should be equal to the expressions in the right sides of relations 

(4.159).  It is easy to show that this is in fact the case. 

Indeed, from comparison of these expressions it may be shown that 

they are equal if the sums 

•|^iv,;i-..;i^-^ij-r„„;,-|. 
(4.164) 

are equal to zero. 

But the bracketed expressions on the right sides of equalities 

(4.164) are simply mixed components of a Riemann-Christoffel tensor, 

i.e., a tensor of spatial curvature defined by coordinates « : 

/?„,' - tf r,: 4- tjri ~'JL. vj, - r„„;r,:        (4.165) 
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This three-dimensional space defined by the coordinates K  is 

Euclidean.  It allows the use of a Cartesian coordinate system. 

Therefore, the Riomann-Christoffel tensor is identically equal to zero. 
Consequently, 

«„„'ran. 
(4.166) 

It follows from this that the left sides of equalities (4.164) are 

also identically equal- to zero, which is what we wish to prove. 

Considering relations (4.155) and (4.166), the first group of 

equations (4.118) may be simplified to take the form: 

1  **■       ' J (4.167) 

Using equalities (4.166), (4.165), (4.164) and (4.159), we arrive 

at the following form of equations (4.167): 

»,+4*«*-*«-S-Äte.-*« (4.168) 

But in correspondence with relations (4.111) and (4.10 i, 

^*-,-^-W^^4—^ (4.169) 

Theroforo, equalities (4.168) take the form: 

and this is equivalent to the vector equality 

(4.170) 

or   the  equality 

as   required. 

f+«t    S» (4.171) 

£f I Iv-ZU, (4.172) 
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If  the coordinates  are non-stationary,   then the   left  side of 

equation   (4.118)   nay also be reduced to  the  form of   (4.171)   or 
(4.172).     In order  to demonstrate  this,   in place of  formulas   (4.158) 
and   (4.159)   the  following  formulas  should be applied: 

+ £*&+'«;) •*+ |-(r-,'K-+r„;)J ta* | 

(4.173) 

and, in addition to identities (4.164), the identities 

(4.174) 

should be  used,   the validity of which follows  from the  relations 

i'K Of 

-—-— I i.j    - - ~;   1 ikt    11 o.!1 UJ —  • UU* id- 

Considering that according to equalities (4.197) the terms on 
the right sides of the first three equations (4.118) containing tm 
arc obtained  by expanding   the  expressions 

h"'<£ ^-'•''• (4.175) 

we concluded that thn first group of equations (4.118) is equivalent 

to the vbctor equation 

,11'' 4 Iff \n .lAmx^ + igLx,. (4.176) 

Similarly, the second group of equations (4.118) reduces to 

the vector equations 
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^0, 
■\m 

(4.177) 

Finally,   the  third and  fourth groups of equations   (4.118)   reduces   to 
the vector equalities 

tir,^», xr.     .Vj _,V f Ar (4.178) 

It is evident that equations (4.176) — (4.178) and (4.81) coincide. 
In fact, in equations (4.176) — (4.178) the differentiation is absolute, 
i.e.,  carried out in  the basic Cartesian coordinate  system O,^1^2^3. 

The differentiation  in the  first  two equations   (4.81)   was  carried out 
in  the coordinate system CKxyz,  which rotntes  relative to the reference 

coordinate system 0.C1^2^3  with an  an angular velocity u.     It is 

evident   that  the  first and   second  equations   (4.81)   are the  same as 
equations   (4.176)   and   (4.177),   expressed in terms of projections on the 
axes of  the trihedron O.xyz. 

Projecting the vector equalities   (4.176)   —   (4.178)   onto the 
axes of  the basic Cartesian  coordinate  system and  recalling  that 

we  obtain: 

*'    grad' 

KAMU ~ 2(A;«(,i
1— AII.,VJ - Aifij,«5 ■( A»i  " 

*y M' ._:1|,-:"-,-Ati-, 

^A/it, —2(Aml,i
l- Am^')     A«^,'1 f Am^5. 

,1   0.       ,1   n. - 

o^A«,, -»(Amj.j»- Aff^l1) - ItmJff f Amt,;i; 

(4.179) 

(4.180) 
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Olv~/\mv.     0,,, = /^,,. 

61,.=» A",.: 
(4.181) 

(4.182) 

Equations (4.180) — (4.182) may also be derived from equations 

(4.83) — (4.85), if in the latter it is assumed that 

(.■=0 
(4.183) 

and the correspondence of the coordinates C1» C2, C3 in equations(4.180) 

— (4.182) to the coordinates x, y, z in equations (4.83) — (4.85) is 

taken into account.  Of course, equations (4.180) — (4.182) may also 

bo obtained directly from equations (4.118).  In order to do this, 

the Cartesian coordinates C', C2» C3 in the basic Cartesian system 

should be taken as the coordinates x s.  In this case, in equations 
k   k   k I (4.118) the symbols r  . r. , r.,,  and the quantities a»  van- mn  On  00        ^ 0 

ish,  the non-diagonal elements of the metric tensor become zero, 

the diagonal elements become one, and the Levi-Civita symbols are '1 

as a function of the order of their indices.  Considering all of this, 

and also the equality 

A ,■ = Zx*. 

(4.184) 

wo immedaitoly obtain equations (4.180) (4.182) 

Thus, analyiia of equations (4.118) may be reduced to analysis of 

the system of vector equations (4.81) or the sealer equations (4.83) -- 
(4,85) corrospomiing to this system. 
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4.4.2.  The relation between errors in Cartesian and curvilinear 

coordinates.  Conversion of initial conditions and instrument errors. 

Examples.  Varying equalities (3.89) we arrive at the following 
s       k equations relating 6(;  to  6K : 

*:•-£>. (4.185) 

Using the table (3.16) of the direction cosines between the 

f,', C2» f.3 and x, y, z axes, we find 

(4.186) 

In order to  find  6x,   6y,   6z we differentiate equalities   (4.186) 

».* = £.-..„ fci'-h 

,  /   A»'     •,  .    O'V   \    ,      .   lit' , »• 

(4.187) 

Here the direction cosines u..   are defined by table   (3.16)   and 

equalities   (3.21)   —   (3.23). 

The r.S e relation between the 9, components and the projections f-, » 

0, , 8.  is given by formulae analogous to formulas (4.186): 

o.,-^,,. o^-f:«^. 
Ox* 

'' "  dK» 
(1,(1,,,. 

(4.188) 
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Formulas (4.18), (4.187) and (4.188) permit us to find the initial 

values 6x(0), 6y(0), ft2(D); 6x(0), 6y(0), 6z(0); 0lx(0), 0^(0),   0lz(0) 

in terms of the known initial errors H
S
(0) in the *3  coordinates, their 

• a k derivatives x " (0)# and the initial errors 0,(0). 

In addition to converting the initia1 conditions in making the 

transition from equations (4.118) to (4.83) — (4.85), we also need to 

convert the basic instrument errors.  In equations (4.83) — (4.85) 

the quantities An , An , An , Am . Am , Am are the projections of 
■* •*■ -♦ 

vectors An and Am on the axes of the xyz trihedron.  The vectors An 
-+ 

and Am are given by their projections on the sensing axes of the 

newtonometers and the elements measuring absolute angular velocity. 

This means that we must obtain formulas for calculating An , An , An , xyz 

Am , Am , Am , in terms of the known An  , Amrp or ^/gw which are 

related to Ans and Ams by relations (4.120), (4.121), (4.133). 

In accordance with equalities (4.120) we have: 

A/it.=«A/.V, S.^/^An^.^ 

From (3.88) and (3.89) it follows that 

(4.189) 

(4.190) 

Therefore, 

whore the summation is carried out over all k. 

(4.191) 

If we now use table (3.16) of the direction cosines. An , An , x   y 

:,n  take the form z 

A». 1 ",A"'.;>- 

A«, . K? A«. 3]  „ , 

(4.192) 
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where  the   summation extends,   clearly,   over  the indices  k  and  s. 

Correspondingly, 

A«,  A'V«.,.  V«, -..V,,...;,. V„( .Sm.* (4.193) 

Formulas (4.193) give the values of Am , Am , and Am for the x   y       z 

case in which the basic inertial navigation system is a free gyro- 

stablized platform.  If the basic kinematic system is a manouverable 

platform, and the x, y, 2 axes coincide with its axes, then the 

vector Am will be given directly by its projections Am , Am , Am . 

It must be remembered, however, that selection of the rotating 

coordinate system OjXyz in which analysis of the error equations 

(4.63) — (4.85) is being performed, is not, in general, a function 

of the orientation of the newtonometer or platform axes.  In particular, 

if the x, y, z axes do not coincide with the axes of the maneuverablc 

platform, the projections Am , Am , Am , the values of which are 

substituted into equations (4.03) — (4.85), should be calculated on 

the basis of the given projections of the vector Am on the axes of 

the manouverable platform.  For this, it is necessary, obviously, to 

know the position of the platform relative to the x, y, z axes, in 

terns of the projections on which equations (4.83) — (4.85) wore 

derived. 

Since the goal of the analysis of the error equation is, basically, 

to sti dy the variation over time of the quantity |6r,| between parallel 

linos as a function of errors in the initial conditions and instrument 

errors, tau Invcraa transition from thu variations  6X1 ':'y, 6z, 

to -■■. s is, in general, not obligatory.  But this transition may bo 

useful in the experimental investigation of an inertial system, since 

rnc- pnrarnetors which may bo directly measured in such an experiment 

will   be the errors in the coordinates det.ermined by the system, i.e., 
s  s   s the variations of 611 ,1K ,, Sir ... 
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In order to effect the reverse transition from 6x, 6y, 6z to 

6K , we will use equalities (4.185).  They may be regarded as a system 

of linoar algebraic equations in 6H : 

»• 

,-JV^ (4.194) 

The determinant of  system   (4.194)   is   the Jacobian  J, 
which according  to condition   (3.92)   is different  from  zero over  the 
entire range of  the operational  values  of  the variables  xs.     Therefore, 
system   (4.194)   has  the unique  solution: 

ftx' 

6X': 

n   » UK' d«'      Ox' duTj-r 

lfi|ifÄÄ-ÄÄU 
^ ' Un' d«'       7«1  ix')'*' 

/ I * WKr (M        du'  da1 ^ ^^ 

+ *» IdF^f-d^dx'-j4- 
T "• id«'  ox'       d»r .'«J"/] • 

(4.195) 

In equalitier. (4.195) the quantities of,  should be expressed 

in terms of 6x, fiy, 6| and a 
i I 

Accordinq   to  table   (3.16), 

6t' = t*a,i f ftyu,) -(-fiin.j. (4.196) 

Iloncoforth,   wc  will  require  the   explicit  expressions  deriving 
from   relations   (4.186),    (4.187),    (4.180),    (4.189),    (4.192),    (4.193), 
(4.195),    (4.106),   for   the curvilinear   reference    grids  considered   in 
§3.3.      Let   us   dclonnjno   the  corresponding  relations. 
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For the first of the reference grids considered in §3.3, the 

quantities C were defined in terms of r, ip, A. in formulas (3.246), 

and their coordinate derivatives and the covariant components of the 

metric tensor in formulas (3.247) and (3.250).  We will assume that 
*       -*      ■* 

the axes of the trihedron 0,xyz coincide with the vectors r,, r,, r,. 

Then 

(4.197) 

From relations (4.192), (4.197), (3.247) and (3.250) we further find: 

A-i,»A»v fctaa*^, An,=A/i,|. 

From relations (4.193): 

(4.198) 

Am, -=> — Amj.slnJ.r -f-Am^cosJ-i, 

Am, =* — Am^.siiupcosXi — &nt^sintf%inyI -f 

-f- An/ft cos if, 

Air, ^Am^cnsif cosJ.] -(-Anijicosf sin?.| -f 

-f-AmjisliKc. 

From equalities   (4.186) 

dx-r ms v (,).,,    Ay =5 /• ^(-,    fa — j. 

(4.199) 

(4.200) 

From expressions   (4.187) 

tx^rtuMjM. I rro;.,Al ~ rii<im<tM.. 
(4.201) 

The  substitution of relations   (4.197),    (3.247)   and   (3.250)   in 

formulas   (4.188)   qives; 

o^ol,  I,-*      KmZ (4.202) 

Finally,   from   (4.195),   (4.196),    (4,197),   (3.247),    (3.248)   and 

(3.258),  we  find 

if -^ A/,    ö>.. 
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We note that formulas (3.203) and (4.201) may be obtained 

iminodiatcly from formulas (4.200). 

For the second of the referenm  grids, i.e., for the geocentric 

coordinates r. A, *, formulas (4.198), (4.199), (4.200), (4.201), 

(4.202) and (4.203) retain their form, with the exception of the 

substitution of 6X for 6A..  In formulas (4.199) the only change required 

is the substitution of A + ut for A, , 

Let us now consider the case of the geodetic coordinates 

r, z, S.  The relation between the quantities Ks  and these coordinates 

is given by formulas (3.280).  The time and coordinate derivatives of 

f,  are determined by formulas (3.283) and the components of the metric 

tensor by equalities (3.282).  Using these formulas, from (4.192) we 

find: 

*•"' ^-^ *•-** (4.204) 

Those  equalities are obvious as  a  result of   the  fact  that  the 
(juantities 

An, «nd Ai,,.    A/^indAn,,,    Afi..»ndiUr 

are projections of  the vector un on  the  same direction,   since  the x,   y, 
z  axes and  the vectors r..,   r,,   r,   (and   therefore also the  vectors e^, 
► -f 

o-j   /   e,)   coincide. 

From expressions (4.19i), and using table (3.300), we obtain: 

Am^-^AmiV,!. Am ^ \m .y,,. I 

Am,  Hv,,.      ( (4.205) 

From (4.186), (4.187), (4.188) and   (4.195) formulas corresponding 

to formulas (4.200), (4.201), (4.202) and (4.203) may be derived, if 

z and S arc substituted for v and A. in the latter. 
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For the geographical coordinates h,   X,   <f    the Cartesian coordinates 

Cs in the basic Cartesian system are given by equalities (3.309) — 

(3.311), from which formulas (3.312) and (3.313) for akk and dKa/^k 

derive.  In the case of a geographical reference  grid, which, like 

the preceding ones, is orthogonal, equalities (4.198) and (4.204) 

remain valid. 

From formulas (4.193) and the table direction cosines obtained 

from (4.197), (3.311) — (3.313), it follows for this case that 

Am^^s —ABIJ,slri(>. | u/)-f-Ara   cos(>. («0, 

Am^ö — Aml,sin(('cos(X-4-''') — 

— Am^siMT'sin^. | u/) f-A/n   rosip': 

Arn^ =« Am,, cos if' cos (?. f W)+ 

-4-Amj.cosej.'slntX )-«/) f Am^slnip'. 

(4.206) 

Expressions (4.206) are analogous to expressions (4.199). 

Further, from relations (4.18G), (4.197), (3.313), (3.312) and 

(3.311), we obtain; 

«x .-= A), cos -i' 1-,==^" - ,—- f-h] 
\)  I    •.■•MM'I,' / 

 <i(l->') 
(l-^sln'"/)'' 

lil.   fi:^--M 
(4.207) 

From equalities   (4.187)     or by    direct differentiation of 
relations   (4.207)   we   find: 

I  I'l        .•'SM,   .. / 

+ W.f/.c i': .-[/'i   -r"4   I'-    I)' 

y '   [(1 -*'Mn'.,•)■■ I 

J-VUH ^-'^^'-'"^'.c-o-5i. 1. 
'I (1- ,>S1r,Vi'' I 

*i«6Ä 

(4.208) 
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From   formulas   (4.195)   —   (4.197)   and   (3.311)   —   (3.313) 

d-.rect transformation  of equalities   (4.207),   we obtain: 

M^bt. 

(4.209) 

Finally,  we obtain the  formulas deriving  from  relations   (4.192), 
(4.193),   (4.186),   (4.187),    (4.188),   (4.195),   and   (4.196)   for the 
coordinates  r,   o.,   o-,   the relations of which with  C    is  given by 

equalities   (3.334). 

The reference    grid r,   o.,   a-  is stationary,   but not orthogonal. 
This   latter  circumstance makes it   less convenient than in  the preceding 
instances  to reduce the error equations  to the coordinate  system O.xyz; 

this   is due   to the fact that previously  it was possible to,superpose 
its  axes with  the vectors r-,   r,,   r,   (or equivalently for  orthgonal 

coordinates,   with the vectors r   ,     r  ,   r    ).     For coordinates r,   o,, 

c,»   wc will   therefore begin by considering    the case of arbitrary 
direction cosines 'J^^. 

From expressions   (4.192),   (3.335),   (3.341)   and  table   (3.16),   it 
follows  that; 

Afl1 = An^nnco"»!  f<i;iCosoa  | Uu J^lri'dj — co^»OJ)-)- 

+ A«,.   - «„ sino, + an --,- = . '^- J=. 1 + 
\ V »1"' "i — cos' 0,  / 

i   A      / i slnn, CMS f.       \ 

V rsln'n,   -(«is'di / 

A«, — A«, (ajjccisiii (a-coso; f-a,.. l'sln'ii, —COS'ITJ)-!- 

-f-An,,/    (i|,siiti, f-ci,,-.-...    .   ..-      vl-4- 

i   A_    / i i slno. ens n.       \ 4 An,, [-a,, sir. o,+ 0, =W). 
\ I sin'", - cus'o, / 

4/i, c - An, fiii in  ITJ  ) U}|cosn.. 4 "vi ^sln'ni — cos'ir) f 

i   A      / sinn, cosn,      \   . (4.210) 
\ J'sin'o, — rus'n, / 

■   s      / i slnn, cosn,       V 
+ A«,, {- aasin o, -( a^,-7- -^-^ J 

\ r Slll'o, — cos'o, / 
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Formulas (4.193), clearly, do not vary as long as specific form of 

the d'rection cosines a. . is given. 

By analogy with equalities (4.210), from relations (4.186) we 

find: 

4* =6r(a1,co5 0| -) (ij,cosOj 4 ual l'sln'o, —cuv'ö^)-}- 

+ eSa, ( - a,, sin a, -(- Oj, •7--   *i*      1=m ] . 

I, —l)r(itl7co\Oi + u^coso, 4- uM (^sin'o, — c<is',ir) + 

+ r6o,l    ci,,slrio, 4-«—,-:..-,=, 1-    f 

1      *-    / . 1 Mlltl. [01 o,        \ 
+ nV», ( - a„ sin o, 4 o.,., ■_ - .'    ,JlT]> 

\ I'sin'o,   -loi'o,/ 
4/ =*f(n1,cosO| -t a.,jC()SOj -f-in l^slrriii — CDS'OJ + 

+ .«<,, (-ousino, I *i»ÄÄSaJ I 
\ I'sin'o, — cos'(V 

1  '"■lü'J (4.211) 

From expressions (4.187) or the direct differentiation of relations 

(4.211) it is now easy to find 6x, 6y, 6z. 

The formulas obtained from relations (4.188) for 9j» P
T» 

8-'7' 

are fully analogous to formulas (4.211) for öx, 6y, 6z.  ft is necessary 

to substitute in the latter the quantitites oi, 0?, O1 '.or 6r 60^ 6a_. 

Let us find, finally, explicit expressions for ör,   f>^,   and 6o2 

in terms of 6x, 6y, 6z. Direct transformation of formu.^s (4.211) is 

not obvious, and so we will use the general formulas (4.195) and (4.196) 

Using relations (3.335) and (3.336), from equalities (4.195) we find: 

br -Ai'iosn, 1 i|'cing| 1 ^J,3 \ MHII, — ens'11 

4o, =   -( - Ai'sino,  ' A;-'iuso,eoi.',  . 

-♦-Ai'coliJ, l'Mll-ll| — KIS'U;). 

io, —-_ (AJ1 KA .,£01 ci;     ^i,-'sino;-t 

t Ai'cotn, J'Tin'o, -cos-'o,). 

rS where  6C are determined by equalities (4.196). 

(4.212) 
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Let us  now take  the basic  trihedron O.C   t,   C     as trihedron O.xyz, 

'  'hen,   clearly,   of the  coefficients o^.   only  the  terms of the main 

diagonal of  table   (3.16)   are different  from  zero   (and equal  to one). 
Therefore,   in place of  formulas   (4.210)   we obtain: 

Art, ■ An,, tos dj — An,, sin ttj, 

A», = An,, l^sln'o, — cos'o, f 

*(nO|Coso 

' K'ln'o,-cos'o, • »'«In'o, — coü'r, 

(4.213) 

Correspondingly, in place of equalities (4.211) we will have: 

ft* = 6r cos o, — rba, sin o,, 

6y--ftrcoso, -   Mo, sin n,, 

bi — ttr V sin'n, — cos'cij-)- 

,     rin, »Inn, ciisni_  .     rto, sin n, cos o, 

l'tln» er, - cöi>7>i       run'a,—37%* 

(4.214) 

From equalities   (4.1V'6) 

i|*a>te,    A«^Ay.    A«'= 4.. (4.215) 

Substituting equalities (4.215) into formulas (4.212), we obtain 

exprch-.sions for 6r, 60., 60- in terms of 6x, oy, 6z. 

For the case under consideration wo may select the trihedron 

O.xyt for the reduction of the error equations in a somewhat different 

manner, relating it to the basis vectors r.i r , r3.  For example, using 

the fact that the vectors r., r3 and r., r_ arc pairwise perpendicular, 

wc may superpose the x and y axes of the reduction trihedron on the 

dimctions r, , r_ ( or the x and z axes on the directions r^ r^) . In 

this case only the £  axis of the trihedron will not be incident with the 

third vector r^ of the fundamental basis, but it will coincide with the 

vector r', thu reciprocal of r. and t~. 
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Let us find the direction cosines a.. of the x, y, z axes 

relative to the f;1, ^2, ^3  axes for this case.  Using equalities 

(3.337), the first and second equalities  (3.351) and the third line 

of table (3.353a), we obtain: 

ii       COJO,      _. —-1^11,17;,-co»'»,    lu.u.coto, 
* sino, 

l< tot o, 

l> I'illl'U, — cix'tf, 

0 
rnüii, 

Ilnö7 

— lino, 

col 'jl^üi'i, —rt.s'ii, 

It is easy to see that table (4.216) is orthogonal. 

(4.216) 

Let us  substitute  the derived values of a.^   into relations   (4.210) 

After  grouping  and  simplifying,   we will   have: 

A«, -= A«,,, 

/[H. — for-r-^ ==—= + »»,,-7= -—-Jrprr , 
J sin*o, — cos1 o, fHit'Oi -f<>%'.?, 

A«, — An,. 
(4.217) 

Analogously,   substituting   the values of a.,   into equalities   (4.211), 
we  obtain: 

bx^tir. 

by ** ,/    ,     -      ,     (A"i sin o, MII o, -f- 611, cos o, cos o,). 
I stiro, — cos7»!, 

111 =* f A«,. 

Using formulas (4.196) and table (4.216) we find; 

(4.218) 

A;1 — A.» cos o, - -r-^,- l'slirO|- cos'n, t A.-cos u, col n,. 

A^' = At cos n) — Its simi,. 

A^a-Ajt J'liii'n, - cos'o, i Ay ;'--'   |- 

-i A.'colo, | sin i(, -   k'iit'rtj 
(4.219) 
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Finally, from relations (4.212) am. (4.219), after the required 

transformations we obtain: 

tir = ix. 

»» _*., l/<i"r^7 —cos1»;   . cot'icol"! 

to. A/ 
(4.220) 

In the case of the non-orthogonal reference grid r, o., o, in 

selecting the reduction trihedron O^xyz we made use, as was indicated, 

of the perpendicularity of vectors ^ and remaking them incident with the 

x and y axes.  In the more general case, in which the three vectors 

r, , Tjr   IS are not pairwise perpendicular, we may select the reduction 

trihedron in the following manner:  directing one of the x, y, or z 
*      "^S axes along any of the vectors r  (or r ), we place the second axis in 

one of the planes defined by the two vectors of the main or reciprocal 

basis (or one of the vectors of the main basis and of the 

the vectors of the reciprocal basis). 

S4.5.  Errors in the Orientation of the Axes of the Sensing Elements. 

Errors in the Determination of the Orientation of the Object. 

4.5.1.  Errors in the orioiitat.ion of the sensing axes of the 

newtonometers and  gyroscopes.  Inortial systems must not only determine 

the coordinates of a moving object, but also determine the parameters 

characterizing its orientation in space.  The relations by means of which 

those parameters are found were deduced in Chapter 3 in synthesizing 

the ideal equations. 

As wc saw, the problem reduces, in the final analysis, to the 

determination of the orientation of the object relative to the 

■•naing axes of the newtonomotcrs and gyroscopes.  The newtonomoters 
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and gyroscopes are in turn oriented in a particular way relative 

to the f;1, C2» C3 (?*» H^f C*) axes of the basic Cartesian coordinate 

system or relative to the n1» n2» n3 (C> n»^) axes of the coordinate 

system associated with the earth.  Therefore, determination of the 

orientation of the objects relative to the axes of sensitivity of the 

gyroscopes and newtonometers entails simultaneously the determination . 

of its orientation relative to the basic Cartesian coordinate system 

and relative to the earth. 

In the preceding sections of this chapter we obtained the error 

equations relating the errors deriving from the elements of an inertial 

system and errors in the specification of the initial conditions to 

errors in the specification of the coordinates of the object.  Let us 

now obtain the equations defining errors in the determination of 

orientation.  These consist, clearly, of errors in the spatial orienta- 

tion of the sensing elements of an inertial navigation system and 

errors in the specification of orientation relative to the axes of the 

sensing elements.  Let us therefore first consider errors in the 

orientation of the newtonometers and gyroscopes. 

Let us return to the system considered in §3.1.  This system 

determines the Cartesian coordinates of the object.  The newtonometers 

in this system are rigidly connected to the platform of the device 

measuring absolute angular velocity of the gyrostabilized platform 

(maneuvorablo or non-maneuvorable).  The axes of sensitivity of the 

newtonometers and gyroscopes coincide with the x, y, z axes of the 

platform.  The problem reduces, therefore, to the study of errors in 

the orientation of the platform. 

The simplest case is that in which the spatial gauge of absolute 

angular velocity is the basic functional diagram .  In this case 

tho orientation of the; x, y, z axes of the platform does not depend 

on the coordinates determined by the inertial system.  Errors in the 

orientation of the platform in the basic Cartesian coordinate system 

arc rharactorized by the angle 0,, the projections 0, . 0, , 0.  of 

which on the x, y, z axes aru given by equation (4.84).  Errors in 

orientation relative to the earth are characterized by angle 0-, 
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equations for the projection of which on the x, y, z axes, according 

to (4.88), differ from equations (4.84) only in their right sides. 

From equations (4.84) it follows that errors in the specification of 

the orientation of the platform of an inertial system depends in this 

case only on the initial error in its orientation and on instrument 

errors deriving from the measurement of angular velocity. 

The situation remains the same if the basic functional dia- 

qram  is a non-manouvcrablc gyrostablized platform.  In this case 

it is necessary only to set m    = ui = u = 0 in equations (4.84) and 

(4.88).  Analogously, the situation reduces to than of the preceding 

vhen  the diagram  .is constructed on the basis of a maneuverable 

gyrostabiiized platform if the controlling moments are developed 

only as functions of time.  The situation is somewhat more complex if 

the controlling moments are developed as functions not only of time but 

also of the coordinates of the current location of the object, these also 

being determined by the inertial system. 

In this case oquations (4.84) and (4.88) are insufficient for 

the description of the perturbed position of the trihedron  CKyz 

associated with the platform.  In fact, in this case, the quantities 

Am , Am , Am are the only instrument errors in the development of 

the controlling moments.  But those moments are developed according to 

coordinates determinod by the inertial system.  Errors in the specifica- 

tion of the coordinates give rise to a certain additional deviation in 

the position of the trihedron Oxyz from the position defined by the 

ideal equations.  This additional deviation is not taken into account 

in equations (4.84) and (4.88), although it is, of course, explicit 

contained in equations (4.83) -- (4.85) as a whole.  In the instances 

examined above, in which the orientation of trihedron  Oxyz was not a 

function of the coordinates, the error in the orientation of this 

trihedron in turn was not a function of the solution of equations (4.83) 

-- (4.80) an a whole. Now it will dopend on them. 
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Lot the orientation of the x, y, z axes relative to the C1» C2» C3 

axes be qiven bv the direction cosines c< ■ . [Table (3.16)] or relative to 

the   n1,    n2,   n3  axes by the direction cosines  ß..   [Table   (3.40)]. 

It   is  sufficient,   clearly,   to examine only  the  first  case.     The 
projections on  the x,   y,   z axes  of  the absolute angular  velocity H of 
the  rotation of the trihedron Oxyz,   corresponding  to  the given direction 
cosines  (

»JJ»   has  the  form: 

u, = "no,, -I- o,,«.,, f u^Uj, ■ - »„n,, — ändjj — ä,,^,. 

(4.221) 

These formulas follow from the equalities 

dl 

: - -~ * -= (W X *) • J( ^ - («I X <) • * = U,. 

dl ■ x —{a x *) ■ y = - & Xy) ■ x-w. 

(4.222) 

Knualities [A.222)   derive in turn from the fact that the vectors 

x', y, z are the unit vectors of the axes of the orthogonal trihedron 

Oxyz (or CKxyz), rotating with an angular velocity 3. 

The deviation of the position of the platform from that defined 

by the ideal equations is causcJ by the instrument errors Am , Am , Am 

in the development of the controlling moments and by the following 

qudntit.ites: 

tm. !*»•>,,     fi-'-    (*"»_ 

(4.223) 

..herti SCii ^Ci, 6^3 arc the total errors in the determination of 

the coordinates ',', f/, f]3 calculated from expressions (4.16) and 

(4.20) in the following manner: 
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Oli=(ir ^ 0, y r). ?i, .s-; ^ f, + 0| x r). ^ 

(4.224) 

[the vector 0. is determined from the second equations (4.81)]. 

The deviation of the platform is characterized, clearly, by the 

variations 5«^ of the direction cosines defining its orientation 

relative to the C1» r,? i   C3 axes: 

Aa„ = ÄJ, • 4C+ J, • A*. ^I,J =»«;,• Ji + 5, • 6y. 

(4.225) 

On  the  other hand,   in accordance with equalities   (4.224) 

toi/=*^(,v-f-o1yrM, (4.226) 

In formulas (4.226) it is assumed, of course, that summing is 

taken over s from 1 to 3. 

Comparing equalities (4.225) to equalities (4.226), we arrive at 

the relations 

It'*»«—%.#+^| idi.xn-ü, Kr.y, 

ll'%«"- ft{< ■ J' .'• ^jf II», X r) • {, I Ar ■ 5,1. 

{, • A^ - - AJ,. !■ + d| [((i, / r) ■ f, ( Ar ■ J,|, 
(4.227) 

which enable ur, to find the variations ix, cSy, 6z characterizing the 

deviation of the unit vectors of the x, y, z axes of the platform from 

their non-perturbod position. 

Formulas (4.227) are equivalent to the vector equalities 

«' = K«, X ;,) • x\ I, + -'^ n«, x /•) • J, t Ar. y f„ 

h - IC, x M-J4 i, + ',,;'' W X /■» :, i Ac ■;,[',. 

•• -■ IC, • f,) ■?! h -( -',','!',' K", <r).I i A/-. 5,1 {, (4.228) 
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In mak ng the transition from relations (4.227) to relations 

(4.228) wo used the first equalities (4.19), which, if we substitute 

{.I n-. C, for riitl   n», c^ respectively, take the form: 

61,-. n.y; 

In relations (4.228) summing is taken over s and i from 1 to 3. 

Let us introduce the small rotation vector I defining the position 

the trihedron x + 6x, y + 6y, z + 6z relative to x, y, z.  Its 

projections 0 , 0 , 6  on the x, y, z axes may be represented by analogy 

with (4.222) in the following form: 

:Ä> /    A7 y. Ot^-tti ■ x=~lixr 

■.bx-y = - fiy x ■) (4.229) 

Substituting the values of 6x,   6y, 6z from formulas (4.228) and 

using the table (3.16) of the direction cosines we find: 

0. = 0,3 [(0, x U • .v + -7 1 n, x /• + V)|,]. 

0, - a„ [(ü, x y■ t4 -jT'r A Xf+*i- U\. 
(4.230) 

But 

o,,^, xl,) .j'=(n, x*)-^^-o„. 

Substituting those expressions into equalities (4.230) and 

expanding the second torms in square brackets on the right side of 

these equalities, we obtain the following formulas for 0 8 
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<).•=■ -O.^ + a,,!^ p|l f O,,.«1- «1;-l') + 
A., 

H1 

"".IF ^C'i'+o.i.i'-o,..;')]. 

<».= -Ou-i ",;[^' en1-rü,i.;>-0,l.«') + 

+ Tp «V < M1 - M^ + 

(4.231) 

Formulas   (4.231)   define  the deviation of the xyz trihedron 
rigidly bound  to the  platform from  its  position as defined by 
the  idoal  equation.   They define,   consequently,   the errors   in  the 
orientation  of   the  platform. 

In  the  general  case,   as may  be  seen  from  formulas   (4.231), 
) 
z the projections 0 . 0 . 02 are a function both of the projections 

of the vector 9. and on the errors 6C  in the determination of the 

coordinates.  The latter are projections on the £', f;2» C3 axes of 

the vector (5r.  The projections (Sx, öy, 6z of this vector on the 

x, y, z axes appear in the first group of the coordinate error equations 

(4.8.i).  The projections 'i  , 0, , 0,  of the vector I. are found 

from equations (4.84). 

It is easy to see that if the direction cosines a.• are not 

functions of the coordinates E , then the angles 0,6,6". become ■    x  y  z 

identically equal to -0. , -0, , -0,  respectively, as should be the 

jase for i.. as functions of time only. 

Tormulas (3.231) arc valid for the derivatives of a.^ If.1,   f.2, 

, t).  For the sake of illustration we will consider the case in which 

the o?.  axis of the trihedron Oxyz in the non-perturbed position is 

361 



— 

directed along the radius of the earth, i.e., in which the trihedron 

Oxyz is a moving trihedron on a sphere surrounding the earth. 

This case is noteworthy in that 0. , 0,  fall out of the right side 

of the two first equations (4.231), as we will show. 

Formulas (4.231) may be represented in a somewhat different form, 

if the projections 0lx, 9,, 0lz are substituted into their right sides. 

In this case we obtain: 

+ ("u* - Oi.Oou + (0.,y -0.,-»)o,)l}. 

0, — - 0,, -f o,, | ta(, -(- '^ liO,,/ — Oj.y)a,, + 

+ (Ou* - »i,')",: f (0i,y — «i,')MJ • 

0.- -OL+a^ta,, +-£,'-1(0,,/-0,^)0,,+ 

+ (0i.« - »1^)0,, + (6,^ - O.^jajj. 
(4.232) 

where 

fan 
itd/i 

(4.233) 

This form permits an easier transition to the accompanying trihedron 

in equations for 9V» 0„» 9 .  In fact, if the Oz axis in the unperturbed 

position coincides with r, i.e. , 

(4.234) 

then, clearly. 

- 0, z .-, r. (4.235) 

If x and y in formulas (4.232) are now sot equal to 0, and z 

equal to the distance r from the origin of trihedron Oxyz to the center 

of the earth, these formulas simplify significantly: 

0, - - *tf  I "II [ta,, (- r -'^ (O,,«,,  "i.n,,)}, 

n,- -o,, t.-.j.v.,, (■';;■.';,("„"„ Ma») (4.236) 
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Further  simplifications of the  formulas  for 6,0,9     derive 
x  y  z 

from the relations 

which are a consequence of equality (4.234). 

(4.237) 

Considering relations (4.237), we find the following sums enter 

into (4.236): 

(the summation is taken over i and s). 

(4.238) 

In view of the orthogonality of table (3.16) 

(4.239) 

But according to relations (4.237) 

(V)' 

('>»). 
(4.240) 

From equalities (4.235), (4.238), (4.239), (4.240) and table 

(3.16), we now find: 

ro" Äjt ''.i=,l--7r = l. 

I + I?—1. 

(4.241) 
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The values (4.241) obtained for sums (4.238) entering into 

formulas (4.236) immediately significantly simplify the latter. 

We obtain: 

0. --= - 0.. 4-ii, Ai.. -l. rn . *ü '" " 0"+a"*"" + "'.»Jf (O.,",! - O,,*.*  J (4.242) 

Here the variations 6a,. ■  of the direction cosines are expressed 
3a. .    '3 

by the derivatives  i and the variations (S^s by formulas (4.233). 
3CS 

Since according to the table of direction cosines (3.16) 

ü'-a.^ + Vy + a.M (4,243, 

the angles 9 , I of the deviation of the z axis of the platform from x   y 

r significantly depend in this case only on the errors in determination 

of coordinates which derive from equations (4.83), 

Let us obtain explicit expressions for 0 and 6  through the x     y 

solutions fix, 6y,   6z of equations (4.83).  From eaualities (4.239) 

(4.240) and the first equality (4.242), we have: 

(4.244) 

Here the summation is taken over s from 1 to 3 and over all 

n different from s. 

From (4.237) wc obtain: 

e,- -^'-(^(«,/-., + ..„..,„) (4.245) 
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But since n ^ s, the orthogonality of table (3.16) causes the 

expression in brackets on the right side of formula (4.245) to be 

equal to 0.  The first term on the right side of the formula, if the 

6C from equality (4.243) is substituted into it, becomes 6y/r. 

Consequently, 

o, = _-^ (4.246) 

Analogously from the second equality (4.242) and expressions 

(4.237), (4.239), (4.240) and (4.243), we find: 

0'==T1 (4.247) 

Thus, formulas (4.242) take the form: 

%— 0,, + «,/«„ + <•''„ *'.' ((»„a,, - O.^a,,). j 

(4.248) 

The following  sums  enter  into the third equality   (4.248): 

"■"^"^ / (4.249) 

In order expand these sums, it is necessary to specify the 

orientation of the x and y axes relative to the £', t,'1,   C3 axes.  As 

yet only the direction of the z axis is fully determined, and the x 

and y axes arc known only to be located in a plane perpendicular to 

the vector r.  Thi:: is, clearly, insufficient. 

The simplest way to supplement tho definition of the position of 

the xys trihedron !■ to take as the unperturbed position 

m, ^ -ii (4.250) 
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In  this  case,   from  the  third equality of   (4.221)   it  followF  that 

rt«, 
•n-"»r-'n.   «..*'.'  -0 (4.251) 

Then, in the right side of t'ic third formula (4.248) all terms 

*/ith the exception of the third vanijh,  and the expressions for 

0 x' 0 take the form: 

<V «.=• -0,, (4.252) 

As a second example of the determination of the directions of the 

x and y axes of the moving trihedron, we will consider the case 

in which the y axis lies in the plane containing the axis of rotation 

of the earth, i.e., the C3.  In this case, of course, the x axis is 

parallel to the plane of the equator.  For the sake of precision we 

will assume further that the point 0 is located in the first octant 

of the ü,^1^2^3 coordinate system, and that the y axis forms acute. 

angles with the C'and C2axes.  It is evident that under these cono.  ins 

the trihedron Oxyz becomes the moving trihedron of a geocentric 

coordinate system, and its y axis points to the north. 

In this case we may write the following expressions for the 

direction cosines a , and a 0 of the x and y axes in termi' of the si     s2 ■ 
coordinates f,s: 

I'' -(SVJ" ' 
 t:^  
'I'-'-avj''' 

a„ = 0. 

"w . VV  
'I''-KW' 

r 
(4.253) 

Differentiating these direction cosines.with respect to Cs 

and forming the sums (4.249), we obtain: 

(4.254) 
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whi   e 

u,,«1 ^ (i, A«'-■=*»■. 

|r'-(lVI' a„ = linil 

(4.255) 

is  the geocentric  latitude). 

Considering  relations   (4.254)   and   (4.255),   the  third equality 
1.248)   takes  the  form: 

tt + rl),, 
<>.■= -0,, fUoT—7-^. (4.256) 

Noting that 

*jr f-HI,,^»,. 

and combining the first two equalities (4.248) with (4.256), we obtain 

the following formulas for the case under consideration: 

o. f» 

A,, 

*l 

((, = ■ (I„ | -r'-t.nV 

(4.257) 

Finally, if tlie x and y axes are oriented tangentially to the 

coordinate lines .: = constant and S - constant of the geodetic 

r<ference grid, then, proceeding in the same way as in the derivation 

! formulas (4.257), we anive at the equalities 

11,= -0,, | '''lan.- (4.258) 

Let us continue to consider questions associated with errors in 

orientation of the scfnsing elements of on inertia], system and turn 

he specification of ar! itrary curvilinear coordinates. 
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Lot the unit vector e of the axes of sensitivity of the newton- 

omoters coincide with the unit vector?; of the co won basis 

(4.259) 

The position of  these directions relative  to the   stablized plat- 

form,   i.e.,   relative  to  the C1». C'I   ^3   axes  is given by  the  table of 
direction  cosines   (3.173).     Let us denote  the elements  of  this  table 
by isk.    Then, 

'—''*. = *. £r (4.260) 

Varying those relations, we obtain: 

u.,~ie.l,4-e,iii,. (4.261) 

On the other hand, 

H.-g»H (4.262) 

Comparing equalities (4.261) and (4.262), we find 

or 

•».-I.—V«l,+-j£H 

^ = (-'.-^-t^K)f.. 

(4.263) 

(4.264) 

where on the right side the summation is taken over o and k  from 

1 to 3. 

Tne three formulas (4.264) are analogous to equalities (4.228), 

but in the formor MK. quantities e and I . are functions not of the 
5        o K 

coordinates ( | but of curvilinear coordinates H Formulas (4.264) 

define the vectors  e  characterizinq the deviations of the axes of 

sensitivity of the newtonometers from their position defined by the 

ideal equation. 
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Since the unit vectors :. of the t  axes do not change their 

directions in space, i.e., do not depend on the coordinates * 0, in 

equalities (4.264) 

-{,i(?^)- 
(4.265) 

According to the definition of the vector 0., and the errors fa,, 

*t.»-»,xi.. ««^.V-tAy;. (4.266) 

whore 

Itx'^iO, Xr)-r°. (4.267) 

In formulas (4.266) and (4.267) the small rotation vector 9, is 

defined by the second group of equations (4.188), and the magnitudes 

of lit  are defined by the first group of these same equations. 

Let us find the error in the specification of the directions of 

Oe caused by the deviations 6e .  We introduce a small rotation vector 
-►s s 

0 such that 

and obtain the equations for this vector. 

(4.268) 

Substituting expressions   (4.264)   into  formulas   (4.268)   and taking 

into account eaualities   (4.265)   —   ,'4.167),  we arrive at the  following 

eauation: 
0 X r, -1 f, ' r,  (0, x I,) | SM |A< ■ f (0, x r) • r"| ] 

or after obvious transformations, at the equations 

(4.269) 

(« i M,) <*,-•&(!«•+A X#)< n- 
(4.270) 
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If the unit vector? e , as before, are not a function of the 

coordinates M , it follows from equations (4.270) that 

»--=-«. (4.271) 

It is also easily shown that if the coordinates x 0 are Cartesian, 

equalities (4.231) and (4.232) are obtained from equations (4.270) as 

a special case. 

In conclusion let us consider one more question. 

In considering in §4.4 the error equations for arbitrary curvi- 

linear coordinates, we reduced equations (4.118)  derived for this 

case to the error equations of a system determining Cartesian coordi- 

nates, i.e., equations (4.83) — (4.85).  The procedure which was used 

to accomplish this permits the conclusion that an analogous reduction 

may be carried out with regard to equations (4.270), i.e., 

that equations (4.270) may be reduced to equations (4.231) or (4.232). 

We will show that this is the case using orthogonal curvilinear 

coordinates as an example. 

Equalities (4.231) may be replaced with the single vector equality 

0 -f 0, ~x(t ■ by) i y(x te) + t(y. f>x) + 

^«X^^»)^ *)+^:W (4.272) 

Multiplying  this equality by x,   we find: 

ß+tXMm* f-KO.XD.IJ^T. (4.273) 

For the sake of simplicity let the trihedron xyz coincide with 

the trihedron r.r-r,.  It is then evident that 

(4.274) 
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and   from equations   (4.270)   we obtain  for s =   1: 

Ox (O + OOXx^x + ^KO.Xr)./-'! 

But 

d*" (4.275) 

(4.276) 

Substituting these values into equation (4.273), we arrive at 

th   uality 

ftxou £.«£* xD-fi 
(4.277) 

which shows the equivalence of formulas (4.232) and (4.270) for the 

case of orthogonal curvilinear coordinates. 

For oblique-angled curvilinear coordinates the equivalents of 

formulas (4.232) and (4.270) is also easily demonstrated, by taking 

the unit vectors r,, r2 and r, * z2  as the x, y, z unit vectors. 

4.5.2.  Errors in the specification of the orientation of the object. 

Errors in the specification of nven directions in space.  The orientation 

of the- object relative to the trihedron Oxyz associated with the platform 

of the gauge of absolute angular velocity for the gyrostabilized 

olatform is characterized by the angles a,   B, y of the rotations of 

the rings  of the gimbal mount of the platform.  Errors in the specifi- 

cation of the orientation of the object relative to the axes of the 

platform will be characterized by instrument errors An, Aß, Ay in the 

measurement of the angles a,   3/ Y»  For small values of these errors 

the error in the specification of orientation may 'se  given by a small 

rotation vector 3' the components of which will be functions of the 

instrument error Ai, Ap,, Ay. 

Let us find the projections of vector (J, on the x, y, z axes of 

of a platform.  We will introduce t. . . to designate the direction cosines 

bi-'twc;on the angles X, Y, Z of the object and the x, y, z angles of the 

platform.  The table direction cosines will have the form: 
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_,.«.,••.— --,.-.,.- ■*,.— 

x     y     I 

X        tlt        »',;   £,, 

)■ 
«•.'l   '■.' Hi 

(4.278) 

The quantities E.. as functions of the angles a, ß and y are 

obtained from the comparison of tables (4.278) and (3.66).  The errors 

Aa, Aß,Ay reduce to the errors ät.• in the specification of the direction 

cosines c... The orientation found of the X, Y, Z axes will therefore 

correspond not to their actual position relative to the x, y, z axes, 

but rather to their perturbed position X', Y', z' relative to the 

x, y, z axes, characterized by the following table of direction cosines: 

X' «ii ♦ 'V,, c,; | .V,, r,, f JV-,, 
y e,, + Ac,, eM f Ar„ r,, f JV., 
*' «u ^-^u fj, f .VM ru+Ac ,. 

(4.279) 

From (4.278) and (4.279) we find that the deviation of the 

calculated (perturbed) orientation from the actual orientation is 

characterized by the following table of direction cosines: 

*" »„ tit, * i,, »•„ t r./,/„ 
•., f« ♦ '„ «r„ I r„ «,., ,h «,„ ,,„«,„, ,., ,,,, 

*  •,.«'. ♦'n^w ' r,.»»,. »„ V ,*,„ Af.,,,,, A*, 
»«•»i. I '.,",< r„Jr„ (4.280) 

As a result of the orthogonality of trihodra XYZ and X'Y'Z', 

the following equalities obtain: 

■■ -'«^n-tnAfii-fjiV,,. 

■  'n'»« -fiiAfi,-f,,«fu, 

(4.281) 
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indicating that the table? of direction cosines (4.280) is skew- 

symmetric. 

This fact permits determination of the mutual position of the 

trihedra XYZ and X'Y'Z'  by the small rotation vector ft-, the projections 

of which are: 

0« —'ll^il t '3l'*!,+'iltr7,. 

0v ='1,*,,  f fjAu 4-r;,Vi, (4.282) 

Equalities (4.282) are analogous to equalities (4.52), (4.54), 

and (4.65) introduced earlier in order to define the small rotation 

vectors 3, and 9m,     In accordance with equalities (4.282) the errors 

in the specification of the orientation of the XYZ axes, the variations 

in the unit vectors of these axes, are equal to: 

M^OiXX.   W~9,xr.   «Z-OjXZ (4.283) 

Lot us find explicit exf-rossions for the projections ^^x'   83y' 

03z in terns of 't, ß, y  and Aa, Aß, Ay.  From tables (3.66) and 

(4.278) wo have: 

*f|i -,   - AjiMiipiosy     Ay sin yu.'. (I, 

«€„ ■ Ap >.iii (1 «In y _ Ay cm |1 ms y, 

fcn — A(l crisp, 

tr„ m A«(cmu vinpins y — sinusiny)4- 

-f-Av(  -smusinP'.iny )-cusucosy)-f. 

4- \piiii(iC(ispc(/sy, 
fc-n = A(i(- ensu sinp sin y   - sin« cos y) _ 

- Ay (sin n sin p cosy - mctiiy)— 

— Ap-.in fiinsp slu y. 

*<■})=  -Aticnsiuosp ■( Apsinnsmii 
(4.284) 

Substituting the derived values SCJJ and the values of c^- 

[from table (2.66)) into formulas (4.282) and making use of the second 

equality (4.281), we obtain the following equations: 
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Ojj — - An    Av''ip. | 
fij^ = — AHiosa 4-Aviiiiuicsp. j 
0U--AflsMict - AvuiMicusf   | (4.285) 

Now,   projecting  the vector  cL  on  the x,   y,   z  axes,   from  the 

derived values of  93w   0,Y,   G,     and  the  table of direction cosines 

(3.66)   wo obtain: 

Oj, rs — An ins (\ tos Y — A(l sin Y. 

Oj, = Au :oi p ".in v — Ap cos Y. 

0.. = — AuslnR— AY 1 (4.286) 

The total error in the specification of the orientation of the 

object in space is composed of errors in the orientation of the platform 

and errors in the specification of the orientation of the object relative 

to the platform.  Thus, if we designate the total error by ^., 

n, = n -j n.. 
(4.287) 

where vector t53 is defined by its projections (4.286), and the vector 

0, by projections (4.2.31) or (4.232). 

Let us consider the following circumstance. 

-*■ 

The vector 9 characterizes the deviation of the trihedron xyz 

bound to the platform of the inertial system fron its unoerturbed 
position.  As was shown above, the expressions for the vector (J vary as 

a function of the moans of specifying the unperturbed orientation of 

the  inertial system platform relative to the f1, %*,   C3 axes.  Thus, 

in superposing the x, y, z  axes on  the f,1, r,',   f;3 axes for 9 , 9 , x      y 
I  ,   the  following  formulas obtain: 
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«,= -<'■,. <V= - Oi,. n.m -o,,: 

(4.288) 

if the z axis of trihedron xyz coincides with the vector r, formulas 

(4.248) apply;  if the z axis is superposed on the vector r, and the 

x axis lies in the plane of the meridian, formulas (4.257) etc. are 

valid.  Expressions for vector 0. will vary depending on how the 

vector 9 is  expressed. 

Formula (4.287) characterizes the error in the specification of 

the orientation of the object relative to the unperturbed position of 

the platform.  At the same time it may be necessary to define the 

orientation of  the object relative to axes not bound to the 

platform. 

Thus, if the basic system is a non-maneuverable qyrostablized 

platform, the unperturbed orientation of the x, y, z, axes will be 

invariant in inertial space, the x, y, z axes, for example, being 

superposed on the C', £2» ^3 axes.  In this case formula (4.287) is 

the error in the orientation of the object relative to these axes. 

At tho same time the conditions under which an inertial system is used 

may make- it necopsary to define the orientation of the object not 

relative to the C', C2, C3 axes, but relative to other axes, for 

example, relative to countries of the world, i.e., relative to a 

geocentric moving trihedron.  In this case, there arises the 

problem of finding the orientation errors.  Formula (4.287) does not 

as yet supply a solution to this problem. 

It can bo shown, however, that formula (4.287) can be extended 

to this case as well.  If we follow once again the derivation of 

fomulai (4.231) and (4.232), we will see that they are also valid for 

cases other than thu xyz trihedron bound to the platform. 

In fact, let a trihedron x0, y0, ■* be defined relative to the 
' ' , ■/'',   {' axes of the baric Cartesian coordinate system, and let its 
position be defined by the direction cosines u".• forming a table 
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analogous to table (3.16), and let u0;■ be functions of time and the 

coordinates of the object. 

We substitute in formulas (4.231) and (4.232) B'JJ for the direction 

cosines ü^., and (l
lxo, 

Oiy
,>'0izo 

for thu projections 0^, |. , 0  . 

The quantities 6 o» O
vo/ 6 o will clearly characterize the errors in 

the specification of the orientation of trihedron x", y0, z0. 

Therefore the vector equality 

(4.289) 

which is fully analogous to equality (4.287), will define the errors in 

the specification of the orientation of the object relative to the 

x0, y0, z0 trihedron not bound to the platform of the inertial 

system. 

We note that the extension of formulas (4.231) and (4.232) to 

the case of an arbitrary trihedron xyz not rigidly bound to the 

platform permits us to find the errors in the specification of any 

qiven directions in space.  These directions may be, for example those 

by which a projectile fired from a moving object is oriented.  They 

may be directions to terrestrial orienting points and celestial bodies 

being used for correction of an inertial system.  In particular, it 

follows from formulas (4.231) that, if a bearing on a distant star is 

defined, i.e., a bearing invariantly oriented in the ^'f;2?3 coordinate 

system and characterized by the unit vector p, then the error op in 

the specification of this bearing is a function only of the instrument 

errors of the gyroscopic elements 

^.i -^ (i, ;< p 
(4.290) 

and is not a function of the instrument errors of the newtononeters. 
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1 
§4.0.  The Reduction of Instrumont Errors to Equivalent Sensinq Eleirent 

Errors. 

4.6.1.  Reduction formula.1;.  In the preceding sections in deriving 

the error equations of an inertial system it was assumed that the only 

instrumont errors occurring in the system occurred in the sensing 

elements:  the newtonometer error An and the- gyroscope sensing element 

Am. 

Equations   (4.283)   —   (4.85),   to which,  as was shown,   the coordinate 
error equations  for any   fully independent  inertial navigation system 
reduce,   contain  the components  An An. An,  and Am. Am. Am    of the z "xr  y      z' x'      y 
vectors  /n  and Am along  the x,   y,   z,   axes,   in terms of  the projections 
on which  equations   (4.83)   —   (4.85)   were  compiled.     In  the solution of 
the problem of reducing error equations   (4.118)   of an arbitrary  interial 
system determining  the curvilinear  coordinates of an object,   formulas 
(4.192)   and   (4.193)   were obtained  for equations   (4.83)   —   (4.85)   in 
order  to   find the  corresponding values of  An  ,   An  ,  An     and Am  ,   Am  , 

x   y   z      "   y 
and Am . 

As was noted in §4.1, the retention of only the instrument errors 

of the sensing elements in the error equations is justified by the fact 

that under certain conditions other errors may bo reduced to equivalent 

sensing element errors. 

The conditions permitting this possibility uli.imately reduce to 

the absence in the system of bugs giving rise to distortions of its 

operational algorithm, i.e., functional disturbances in the operation 

of the system.  An example of such a bug is the non-correspondence 

of the functional arranqemont of the system to the selected algorithm 

describing the system's ideal functioning, i.e., incorrect connections 

in the system.  Bugs of this sort usually cause breakdowns. 
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If defects in the elements and devices of the system do not 

disturb its operational algorithm, the homogeneous error equations 

retain the form which they have in the absence of instrument errors, 

when the cause of the perturbed motion of the inertial system is only 

incorrectly specified initial conditions.  The presence of instrument 

errors changes only the right sides of the orror equations.  This makes 

possible the reduction of the instrument errors to equivalent sensing 

element errors. 

In order to demonstrate this, we turn to the first two groups of 

the error equations, i.e., to equations (4.83) and (4.84).  Their right 

sides are functions of An , An.., An , Am„, Am.., and Am characterizing 
xyzxy 7, 

the sensing element  errors. 

Introducing F   ,   F  ,   F     for the  right  sides of equations   (4.83), 
we will  have: 

F, = An, - 2(Am17 — Am,y)     Am,..- f Am^y - 

- «^ (^m,)' ^ *•«•!— '\'«4 <<v + «v) -t- 
4 2*(w, \m, (-co. Am,). 

r,cr\nt ~2{,\mtx ~Am,r)—\ni,x t i\m,! - (4.291) 
— ^(Am,^ f Am,.«-) - bin,(<■>,: f M,jf)4 

4 JyO.., Am, f ..., W.), 

F, = An, . 2(Amty - Am,*)- \»i(). -f- .\mrv  - 

— u,(\m,j: 4 Amf}.)_ A/K,(w,.r4 11,)') + 

4 ?/(/■>, Am, +M>Am>,) 

Analogously, for the right sides of equations (4.84) we introduce 

the designations 

A-Am., A, =Amv. /, = \m. (4.292) 

Let us assume that some group of errors other than sensing element 

instrument orrorü are to be taken into account.  Then, in place of the 

functions F , F , P , f , f , f in the right sides of error equations x   y   z   x   y   z 

(4.83) and (4.84) other functions F^, F' , f*   t f. depending x'  y' ' z 

on the yroui) of instrument errors under consideration will appear. 

378 



"1 

If wc  now transform the equalitius 

/•■,-=/'i. /', = /'',.   r', = r',. 

/,-/;• /,-/;• /,-/; 
(4.293) 

and, using expressions (4.291) and (4.292), we solve them for An , An , x   y 

An , Am , Am , and Am , we will obtain An» , An1 , An' , Am* , Am' , 
**    "    j" £• n jf £t A     y 

and An* i the substitution of which into the right sides of relations 

(4.291) and (4.292) in place of An . An,,, An,, Ani , Am.,, Am, transforms x   y   z   x   y   z 

those right sides into the functions F' , F' . F' , f , f . and f . 

The quantities An' , An1 , An' , Am" , Am' , Am'  will be the 
X       jr       z      x       y       Z 

equivalent sensing element errors for the group of instrument errors 

under consideration. 

Since it follows from equalities (4.292) and (4.293) that 

we obtain from (4.291), (4.293) and (4.294): 

+ ". (/;>' + /i') ♦ /• JV + "V) - u M+"•/^ 
A,; = r; 4 2(/;i - I'j) + /> - /!' + 

-t M,(/^ ♦•/I«) ► /;(V + "V,:) " 2>•(",./i + ,"-/;)• 
A«; = r;+2(/;y - /;.i) ♦ /Ji - /> + 

+'",(/> * /» + /l^v t-vv) -2'K/i + -/:)• 

(4.294) 

(4.295) 

Formulas (4.294) and (4.29rj) define the equivalent sensing element 

errors for some i-th group of instrument errors in the elements and 

devices of the system.  The functions F , F , F  , f , f , f  as is 
*»   y   z    x   jr   z 

evident from equalities (4.291) and (4.292), are linear with regard to 

the instrument errurs.  Therefore the total equivalent errors Am'  , 

'm' ' , Am"  , An' ■, An' '', and An'  may be represented in the form 

of SIMM of the equivalent errors of all of the groups and of the actual 

instrtlMent errors in the sensing elements: 
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Am^-Am. + VA«;'; 

M.1 - A., + 2 A<. A«;» - A«, -(- ^ A«;', 

A^-A^-f-^A«;'. (4.296) 

4.6.2.  Examples of use of the reduction formulas.  We will give 

several examples of the reduction of instrument errors to equivalent 

sensing element errors (basic errors).  For this purpose we will con- 

sider errors in the specification of the intensity of the gravitational 

field and the earth rate, integration errors, and errors in the posi- 

tioning of newtonometors and gyroscopes on the platform. 

In §4.2, in the derivation of the error equations, in addition to 

the sensing element instrument errors, the errors Ag , Ag , Ag in 

the specification (or formation) of the characteristics of the gravi- 

tational field and also the errors Au , Au , Au in the specification 

of the earth rate, were retained.  These errors were retained in order 

to demonstrate how they reduce to the basic errors.  At the end of 

§4.2, certain preliminary considerations in thin  regard were expressed 

which may now be elaborated upon. 

For the errors Ag , Ag , Ag we have: 

ft-iJ-Zf-* ^ ='V.. ^-«T,. '•;-A<r1 (4.297) 

Therefore 

A«; — AmJ ■ i\m't m 0. 

K^Ar, A«;^AA'r. A«;., v,. (4.298) 

380 



If wc retain only the errors Au . Au . Au , then 

f'.    i\ -r',   o 

and in accordance with equaltios (4.294) we obtain: 

Am^ =» - A«^. Am' = ■ A« \m' -= — &u . 

From formulas (4.295) in turn, wo find: 

(4.299) 

(4.300) 

A»; = - 2 (A«,* - Au.y) — Ai^ 4- A^y - 

— u,(A«,y + A«^) — A«, (i.>,y f u,2) 4- 

4-2x((.i,Au, 4-1^^«,), 

An' a — 2(A8ii — A«,/) — A«,t f It^l - 

— vt, (A«,r 4- A«,J() - A«, |%J f M,JT) 4- 

4-2y(i.i,Aii, 4-^AB,). 

A«; = — 7(Atfiy — ABr*) — Aii^ f Aii^t — 

— u,(Afitjr )-Aary) —Au,('.<tJf t" "',)') + 

4-2^(10^«, 4-<ii, A«,) 

(4.301) 

In   takiny account of errors    g   ,    g   ,     g    and    u   ,     u   ,     u 

simultaneously,   it   is   necessary,   obviously,   to  sum  the  corresponding 
equalities   (4.298)   and   (4.300),   (4.301). 

Let  us  sec how  several  characteristic errors  are  reduced  to basic 
errors. 

We will   first derive  the error due to  the counter of the  inertial 
r.ystem   to equivalent   sensing element  errors.     We  will  do  this   using 
as  a example  a  .system which determines   the  Cartesian coordinates of 
the  object. 

Turning   to equations   (3.59)   —   (3.65)   defining  the   ideal  operation 
of   this   system,   we  note   that  the error  in   the  specification  of  time, 
i.e.,   the  discrepancy between  timer  signals  and Newtonian  time,   reduces 
to  errors   in   the  computation  of  the   integrals   in   equations   (3.59)—(3.65). 
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Höre it must bo noted that the character of these errors depends 

M the way the integrals are computed in the system.  However, this 

romark has a wider siynificanco.  It is evident that errors in a 

■ oncrcte system realized by concrete elements are always to a groat 

<tont determined by these elements.  In other words, the reduced errors 

f various units of an inrrtial system may be different for various 

imcrote system elements which differ in the principle of their 

auctioning, even if the functions of the latter in the syj.tem are 

dcntical. 

Let us assume, for example, that integration in the system is 

perforned numerically, i.e., by the method of constructing integral 

sums.  This is possible when the system's computational device operates 

on the principle of a digital computer.  Let us assume, further, that, 

the timer, instead of the true time t, emits the quantity 

'' = /•)-T(0. 
(4.302) 

where i it)   is the error in the specificaion of time [T(0) = 0). 

Lot us assume that the integral 

u 

is computed. 

Then, taking equality (4.302) into account, we obtain: 

y''=/•«!' I I(OI>/|' | KOI 

(4.303) 

(4.304) 

This man«i therefore, that in the formation of the integral sum 

t ■ valiu.' of the integrand at the moment of time t' is taken in place 

o  t and is multiplied by the time interval At' instead of by At.  The 

ui jcr limit of irl.eqration remains the same (t) , since in an inortial 

sy ;tem integration is performed, as a rule, not up to some moment of 

tiiM specified by the timer, but up to a moment of time at which the 
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n 
coordinatos determined by the system attain  specified values.  This 

permits, incidentally, derivation of the error equations of an inertial 

system by isochronic variation of the ideal equations. 

From equalities (4.302), (4.303) and (4.304), performing a change 

of variables in equality (4.304) and using the mean-value theorem, 

we obtain: 

*> = /->'- i (0 •» (0 -• «(0 ;'• (/;. 

(4.305) 

Applying  formula   (4.305)   to equations   (3.59),   we arrive at  the 
following  expressions   for F',   F'   ,  F'   : 

** y 35 

d |    It;    .    d I   df\] (4.306) 

Analogous,   from equations   (3.60),   we  find: 

(4.307) 

Formulas (4.294) and (4.295) may now be used to find the equivalent 

errors. 

We have considered the case in which integration is carried out 

numerically, i.e., by the method of constructing integral sums.  But 

the operations of integration may also be performed by special continuous 

intograting devices.  Those devices are based on the use of some physical 

process, two parameters of which are interrelated in such a way that one 

of them is proportioned to the time integral of the other.  An example 

of such a device is the gyroscopic integrator, which makes U5;c of the 

fact that the angle of precession of the gyroscope is proportional to 

the integral of the applied moment.  In this case, integration is 
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performed in nntural newtonian time, and the integrator error may be 

reduced to an error in the coefficient of proportionality which may, 

in the general case, be a function of time or even a function of the 

qu.intity being integrated (for example, range of sensitivity). 

Denoting the normalized errors in the scale of integration by 

^v' kw' ^.1, k^, k^, ki,  we find from equations (3.59): x   y   z  x   y   z 

(I      '  '  \ 

i   u \  0    » 

(4.308) 

Analogously, we can use equations (3.60) to find f f x'       y'       z ' 
after which   formulas   (4.294)   and   (4.295)   may be  used   to determine  the 
correspundiny  values  of   the  equivalent  nowtonnmetcr  and-   gyroscopic 
sennintj  element  errors. 

Lot   us  now  turn  to a characteristic group of errors  in  inertial 
navigation  systems,     namely errors  arising as a  result of  the  non- 
coincidence  of   the  axes  of  corresponding  newtonometers  and     gyroscopic 
oleinents,   and also as  a  result  of  Hie axes of sensitivity of  the newtono- 
metr-rs  and     gyroscopes   not   forming  orthogonal   trihedra.     Errors  of  this 
sort  arise  both as a result of engineering errors   in  the  installation 
of   the newtonometers  and     gyroscopes  on   the platform  and  as  a   result  of 
deformations  in  the structural  elements of  the platform,   the newtonometer 
and   the    gyroscopes. 

As before,   let xyz  be  an   orthogonal   trihedron  along  the axes of 
which   the axes of"  sensitivity  of the newtonometers  and    gyroscopic 
elements are  aligned  in   the  absence of  the  above-mentioned errors. 

The dfrections along which  the axes of  sensitivity of the  newtono- 
mli rs   are   in   fact   aligned will   bo designated by  >:' ,   y',   z*   (the   trihedron 
O   '    '.  '   is   non-orthogonal).     Let  us   introduce   the  dir"Ction  cosines 
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charactcriziny the directions of the x'y1?.1 axes relative to the 

x, y, z axes: 

*   I «11 '11 

y hi   I  '» 

{4.309) 

where c.. are small, with t-. . ^ E... 

Analogously, the directions alonr which the axes of sensitivity 

of the gyroscopic elements are aligned will be designated by x", 

y",  z" and specified relative to the x, y, z axes by the direction 

cosines 

# f   f 

y    'n    1  »„ 
* 'si 'i, I. 

(4.310) 

where   e..   are  small,  with e..   / e... 

The  rolativi;  positions of   the x",  y',   and  z",  and  x",     y",     z' 
axes   are  specified   therefore   by   the   followiny  direction   cosines: 

x" f ,• 

/ fii+'ji    I   'ji-tfn 
(4.311) 

Table (4.311) is obtained from tables (4.309) and (4.310) under 

the assumption that o.. and t .. are small, such that their squares 

and products may be ignored. 

Accordintj to table (4.309) the quantities measuring by the newtono- 

metcrs aligned along the x', y', ■/.'   axes are: 

n,  =n, + tnn, ■> eu/i,. 
(4.312) 

FTÜ-IIC-23-893-74 
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In  accoi danci'  with   tobli'   (4.310)   we havo by analogy with   (4.312) 

(4.313) 

Referring now to the ideal equations (3 59), we find that in the 

ri'jht sides of the coordinate error equations corresponding to them 

the following additional quantities appear: 

''i-";.«,■♦ hA- ".('V. 4 ''/",) + '■,('!.•", * 'I,"',)- 

~Ti '"'i"'- + ')••"/'- yCi^'r -l-'.l"','!- 

fJ"M»+^A- '■.('■'/■•. f '^'V) * 1,.('.-.,", +'.-"-)- 

(4.314) 

where   according  to  relations   (3.59) 

and 

«, = I'M 4 «'V'/   - «''j''» — ff,. (4.315) 

«', ■ »f i.).,y —iV'. (4.316) 

Analogously,   from equations   (3.60)    it   follows   that   the;   following 

quantities  are  added   to  the   right   sides   of equations   (4.51): 

OijCV'Vf-'v/V 
cM'Wt-'V''/) 
nnfc,/.),+(V),) 

Owkji", -f-ru"',)- 

MIA I-'I.'"'.' 
"aj^n". f W) 
Oji (Oi'V + V^ 

-•II(M»J ■l-'.i"V'. 
-n,j(c;,M, + *„M,): 

-a;,(cL,<of + frf«,), 

-n^C.'i"', !■ '•u'".); 

- "3i(<,i,",
J   f  ^l'",). 

(4.317) 
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Therefore, the expressions added to the right sides of the error 

equations (4.84), in accordance with the procedure for deriving 

equations (4.8-1) from equalities (4.51), take the form: 

/i-V',-* '..'V /J—*rf»*+W | (4.318) 
I', = './". -• r,i\ 

Comparing expressions   (4.318)   and   (4.313),   it will  be noticed 
that  oxpn-ssions   (4,318)   .ire  a  direct  consequence  of  relations   (4.313). 
In  the  right  sides of equalities   (4.318)   there appear  the differences 
mv"     " mv     inv«     " m»/     In,«    " rn,  deriving  from relations   (4.313). 
H     ^  y    y  ^     i 

rornulas (4.294) and (4.295) now give the possibility of deter- 

mine/ 'M'   An*   An'   Am*   Am*   Am"  for the case in question. 
• % w £i J\ j £t 

We   have consiclerf.-d examples  of  the  reduction  of errors   in  an 
inurtial   navigation  system  to  equivalent  sensing  element  errors   for 
a  system  determining  Cartesian  coordinates.     The derivation  of  errors 
for  systems  determining curvilinear  coordinates  does  not  differ     in 
principle   from  the procedure  used   in   these examples. 

m>-irC-23-893-74 
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Chapter   5 

THE   ANALYSIS   OV  ERROR KOUATIONS.      THE   RELATION   BETWEEN   ERRORS 

IN   THE   SPECIFICATION   OF   COORDINATES  AND  ORIENTATION   AND 

INSTRUMENT  ERRORS   AND   ERRORS   IN   INITIAL  CONDITIONS. 

S5.1.     Ocnoral   Properties of   Error  Equations.     Possible  Means  of 

Invostiyatiny Them. 

5.1.1.     The  general  propurtier  of  error equations.     The error 

equations   for  an   incrtial naviqation  system derived   in   the   preceding 

chapter   include  equations   (4.83)   —   (4.85)   which define  errors   in   the 

determination of   the  coordinates  of  the  object  and equations   (4.232), 

(4.286)   and   (4.287),   defining  errors   in   the  specification   of   the 

parameters   of   its   orientation   in   space. 

The   coordinate error equations  reduce  to  two groups  of   differential 

equation?    (4.83)   and   (4.84)   and     to  the  algebraic  relations   (4.85). 

The   first group differential  coordinate  error equations  has   the 

crAn,     2(\'"(j      A"i,y)      Am,.-  |   \m,y 
-..^(Am,)'  j  Am,.')      Am^.^v  | w,/) ( 

( I« ('•>, Am, -f o». Am,). 

*> i 1^<S' i •'■, -•/>   ••■;   «5]^ *- 

-t (-vvi ,:,,.   fl^r}*« t .'•.•/,'  ■ 

An   _2(\m,.t- \m,h -Am,x-f AM.I — 

-,,,t(\m,: t-Am,.)-   Am^.p^-i <"«*)-|- (5.1) 
|  Vy(<),A'"I-t"'xAmT>' 

c=A«,-5(Aii,y-AM,.i)- Am^-fAm,*- 

- »..(Am,* t- Amry) - Am.^x + ■•>,)') A 

rTU-llC-2 3-89 3-74 
,'-*'f y' f/'• 
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Hero  by analogy with equations   (4.83)   the errors  Ag   ,  Ag   ,   Ag 

•..'noli arc   reduced  to  the equivalent   newtonometer errors,   are omitted 
Irom  the   right   sides. 

In  accordance with expressions   (4.86)   and   (4.87)   the   initial 
onditions   for  the equations  of  this group  a:.- the  following: 

'tx(0)-~ix'.    «y(0)-=«y<>.    *•• (••) = *.•'. 
«.i(0)--.4*» = «x3 t-(«..ij -AmJ)z» ■ (^ — Am;) >■», 

fty (0) =.«/ ^ *>> -)- (Au>; _ Ami)'''' - (K - AmI) '"• 

»i (0) ■ «i' ■ 6?0 + (Vi; - Am;) y" - ^..J - AmJ) x'. 

(5.2) 

The-   second  group of differential  error  equations  is   the  following; 

(5.3) 

with  the   initial   conditions 

OLW-UL    KW = 
ü

1>-    Ml-»* (5.4) 

finally,   the  coordinate  error  equations   include  the   algebraic 
relations: 

ix,**nitt—<\,v.        fly, -.^n^x — V,,!. 

»•i    ",,y    "„x. 
A.tJ = A.v   »  Av,, 6y,    -fiy f Ay,. 

A/,  ^A.- -f A.-, 

(5.5) 

Tfic error equations  defining   the  parameters of   the orientation 
c'   Ll.d object   in  space   incJude   the  sot  of  three  systems of   algebraic 
equalities    (4.232),    (4.286)   and   (4.287). 

FTU--ilC-23-89 3-74 
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The first systom consists of throe equalities of the form: 

<*., 0i= -Ou 4 'MJ'Vi,; f 'J'. 1(0,^-0,^),,,, 4- 

+ (0,^-0,,*)«,; |>f<Ur—VKrf}< 

+ (ü1,x-0u7)1.,, f (U^y-O.^Oajj. 

(5.6) 

where 

and the summation over s  and i  is performed-from  1  to 3. 
(5.7) 

The second system of equalities defining orientation errors 

includes the relations 

0^=» — A.itnspcosv- Apsiny. 

0^=. A icospsln v- A(\coi V. 

0,, =s     Ausinp—Ay. 
(5.8) 

'Finally,   the orientation error equations  include the   following 
relations  deriving  from  formula   (4.287): 

».,-«,+ V = o, ( »j,, 

",- - », + "'.v (5.9) 

Equations   (5.1)   define  the  errors   (Sx,   6y,   &z   in  the  Cartesian 
coordinates   x,   y,   ?,   in  the  trihedron   CKxyz with  its origin  at  the 

center  of   the  earth  and which  rotates   relative  to   the  basic  Cartesian 

coordinate   system   Oi^W'.*   (OjC^C'C*!   with  an  angular velocity     J. 

In   the   loft   sidon  of   thoso  equations   the quantities  w   ,   w   .   w     are x  y  z 

the projections of the vector 8 on the x, y, z axes, and |l is the 

product of the gravitational constant and the mass of the earth. 

KTD-IIC-2 3-89 3-74 
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lesignating  this  error.     The  initial  conditions  0°   .   0°   .   9?     of 

'1' o  right   sides  of equations   (r>.l)   contain An   ,   An,.   An,,   the  nowtonometer x y z 

ii.slrumont errors,   and  Am  ,   Am   ,   Am  ,   the instrument errors  deriving  from x y z 
the    gyroscopic elements.     The   Ir.ttor  are errors  in  the measurement or 
rormation  of  the  projections  u   ,   u   ,   ü     of  the  absolute rate 

)f  rotation of  the xyz  trihedron about   its axis. 

Equations   (5.3)   characterize  the error,   caused by  the  instrument 
■rrors   .'.m...   Am   ,   Am   ,   in   the  specification  in   the  orientation  of  trihedron 

ijxyz  relative   to  trihedron Ojf.1^2!;3»   fixed invariantly to  the  bearings 

.he  center of   the  earth   to  distant  stars.     The  quantities   0,    ,   6.   , 

>.     are   projections on  the x,   y,   z  axes   of  the  small   rotation  vector  6. 

o 
ly' 

ingles f'. , 0. , 0,  refer, as do the initial values (5.2), to the 

.noment at which the inertial system begins to operate. 

The first three equalities (5.5) are expressions for the errors 

ox,, ''Vi» ^Zi in the specification of the coordinates of the object 

relative to trihedron OjC^C't*«  The errors  Ox,, 0y,, Oz. result from 

the orientation errors i.    ,   ",,.» "T  
a'id characterize the errors in the 

specification of the coordinates of the object in the coordinate system 

0xClC2C3 given in terms of projections on the x, y, z axes. 

The final  three; equalities (5.5) are expressions for the total 

errors '::.,, '"»VS, St« in the specification of the coordinates of the 

object.  The total errors, as is evident from these equalities, are 

the Bun of the errors deriving from equations (5.1) of the group, and 

the errors i5x., Ay., ("iz,, deriving from equations (5.3) of the second 

group. 

Equation;; (5.6) -- (5.9) give the possibility of finding the 

errors Li! the orientation of the object. 
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According  to equations   (5.9),   angle   0.  is  composed of  angles 

0 and fU.     Anglo  0  characterizes  the total error in   the specification 

of  the position of  the x,   y,   z axes  relative to which the orientation 
of  the object  is  determined.     The  projections  6   ,   8   .   0    of  the vector 

U on   the x,   y,   z  axes  are computed according to  formula   (5.6).     These 
same   formulas  serve  to determine  the errors in  the orientation of the 
inertial  system platform,   if  its  unperturbed position  is a   function of 
the   coordinates.     In  this case  the  trihedron O.xyz   is  considered as 
rigidly    bound to the platform. 

The   first  terms   8.,   0.   ,   6,     of the  right  sides cf  formula   (5  6) 

arc   the  solutions   to equations   (5.3)   and  characterize  that  portion of 
the  error  in  the orientation  of  trihedron CKxyz which would occur if 

the operational algorithm of the inertial system did not presuppose that 
the orientation of this trihedron was a function of the coordinates 
determined by the system. The second torms of the right sides of 
formulas (5.6) define the orientation error caused by errors in the 
specification of the coordinates of the object for the general case 
in which the operation algorithm of the inertial system defines the 
orientation of  trihedron 0,xyz as a  function of  the  coordinates being 

detcrminod.     The  quantities  u. .    (f,1 ,   £2,   T3)   which  enter  into  the   right 

sid^s  of  formulae   (5.6)   are  the direction  cosines of   the x,   y,   z  axes 
relative to  the  r,',   Cz,   C3  axes. 

It   is  evident   that   the  second   terms  of   the  right   sides  of  formulas 
(5.C)   are  functions botli of  f-x,   Ay,   Az and   5x,,   Ay,,   6z,.     In  fact, 

Au..   in  the  brackets  art;,   according   to equalities   (5.7),   functions  of 

SC  i   i.e.,   of   Ax,   Ay,   Az.     The  expressions   in parentheses  are  equal 
to  Sx«(   Ay,,   Az,,   respectively   (see  relations   (5.5)). 

The projections  r,3   ,   ^-iw»   ^i-  of  the  angle  0,  appear  in   formulas 

(^.8).     The  angle   0     characterizes   the error  in  the  specification  of   the 

orientation  of  the  object relative   to  the  xf   y,   z  axes  of  the   inertial 
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system platform, caused by the instrument errors Aa, Aß, Ay in sampling 

angles a, ß, y  of rotation of the wheels of the platform gimbal rings 

on the object. 

We will now consider several general properties of the error 

equations (5.1) — (5.9). 

Let us first recall those of their properties which were examined 

in the preceding chapter in the process of deriving and transforming 

the error equations. 

The error equations of any inertial navigation system detcrraining 

the position of an object in arbitrary curvilinear coordinates, in 

general non-orthogonal and non-stationary, reduce to equations (5.1) — 

(5.9). 

Equations (5.1) — (5.9) permit us to take into account the 

instrument errors of any element or device in the system, since these 

errors may be reJuced to equivalent basic instrument errors, i.e., to 

neutonometcr errors An , An , An and the errors Am , Am , Am deriving x    y    z x   y    A 

from the gyroscopic measuring elements. 

The homogeneous equations (5.1) are exact  equations for the 

perturbations fix, Ay, 6z (with the (jxcoption of the terms of these 

equations resultinq fron variation in the  strength of the gravitaLional 

field, which contain only the linear portion of the corresponding 

incromonts).  The homogeneous equations (5.3) are first order approxi- 

mations.  When it is necessary to consider c.act homogeneous eqn^t-.icms 

of the second group, the homoqi-ncous equations (4.51), to which equations 

(5.3) correspond to within the second order of smallnoss are taken. 

Continuing tlu> diycussion of equations (5.1) — (5.9),  let us 

now consider tho following properties of them. 

The first group of oquationt; (5.1) permit    an interesting 

analogy: they are, osscntially, perturbation equations for the mo- 

tir.n nf .T mass noint in tho earth's uravitational field under the 

393 



Int uoncc of external   forces,   i.e.,   these equations are perturbation 
eqji tions   (to a  first approximation — equations  in variations)   for 
Newton's general equations of motion written  in  terms of projections 
on  the movable x,  y,   z  axes. 

This  analogy is  entirely valid and easily predictable.     It derives 
rom  the  fact  that  the  ideal  equations  of an   inertial  system,  by variation 
f which  the error equations   (5,1)   were obtained,   are,  essentially, 
he equations of motion of a       mass       point   (the  sensitive mass of the 
cwtonometor)   under  the  influence of gravitational   forces and some 
ystcm of surface  forces.     This  statement derives  from the  form of the 
asic  inertial navigation  equation   (1.88).     Therefore,   as has already 
een noted,   the  ideal  operational equations  for an  inertial  system in 

in arbitrary   (curvilinear)     reference grid,  which were obtained in 
Chapter  3,  may simultaneously be  treated as the Newtonian equations of 
motion of a       mass      point  in  this   reference    grid. 

Equations   (5.3)   are  analogous  in  form to  the well  known Poisson 
equations,   to which  reduces  the problem oT determining the orientation 
of ■ moving   (rotating)   trihedron relative to an  immobile   (invariantly 
oriented)   trihedron  using   the well-known projections  of  the 
absolute rate of rotation      of a moving trihedron on its axes.    This 
results   from the  fact   that  equations   (5.3)   were  obtained by  varying  the 
loiason  equations   (3.60). 

The  coordinate  and  orientation error equations   (5.1)   —   (5.9)   were 
lained  in  terms of projections on  the x,   y,   z  axes,  which  in  the 
io  of  a  system determining Cartesian coordinates were  rigidly   bound 
the     gyroscopic pjatform or,   equivalcntly,   to  the directions of the 
s  of  sensitivity of   the  newtonometcrs.     Equations   (5.1)   —   (5.9) 
,   however,   essentially  vector   (invariant)   equations and therefore 
also,   if  necessary,   bo  written  in   terms of  projections on  the  axes 

my  other  coordinate   system. 
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Equations (5.1) — (5.5) retain their form if the transition is 

made to their projections on the axes of any other orthogonal trihedron 

having a common origin with trihedron 0,xyz  and freely rotating relative 

to it.  Equations (5.1) — (5.5) allow, consequently, a group of 

rotations.  The existence of a group of rotations follows from the 

arbitrary specification of the vector w.  It may also be demonstrated 

with the aid of the corresponding change of variables. 

In passing from trihedron O.xyz to another which may be designated 

as O.x'y'z', ox', Ay', öz' in equations (5.1) — (5.5) should be 

substituted for Sxi ty,   6z, and 0lx,, ^ly,,   0lz, for 0lx, 0ly, elz, 

and projections w , u , w should be replaced by the projections 

w ,, u) ., H , of the absolute angular velocity of trihedron OjX'y'z' 

on its axes.  Moreover, it is necessary to replace Anx» Anv» 
Än
z» ^mv' 

Am , Am by the projection An ,, An ,, An ,, Am ,, Am ,, Am , of the yz x    y    2    x    y    z 

vectors An and An on the x', y', z' axes.  Analogously, x, y, z should 

be replaced by the projections x', y', z' of the vector r on the 

x', y ', z ' axes. 

The relation between (Sx, 6y, 6z, x, y, z, 0, , 6lv, 
ei2f 

Änv' Anv' 

Anz, Amx, Amy, Amz with 6x'f   Sy',   It», x', y', z', 0lx
,, flly

,, 0^', 

An ', An ', An ', Am ', Am ', Am 'is determined by the table of the 
**       j       Z      X       y Z 

direction cosines between the x, y, z axes and the x', y', z' axes: 

x'    y'    t' 

*  nil Pb Pb 

; j1 J \ ^.io) 
■  f.,i  P.iv Pal 

In ordor to obtain '" ' , ''1'v» 
u'- this table and relations ol  the 

form (4.221) may be used.  Thus, for oxamplo. 
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In accoraanco with what was said above, we will henceforth 

o./n.'iidor that equations (5.1) -- (5.5) are written in terms of 

nrojcctions on the axes of the arbitrary trihedron xyz, rotating 

relative to the trihedron t,]l.?t.3  with an angular velocity S« 

Let uf, consider equations (5.6).  They were derived in terms 

)f projections on the x, y, z axes, which are either rigidly bound 

to  the platform of the inertial system (when errors in the orienta- 

;ion of the platform are being considered), or are axes relative to 

/hich the orientation of the object is determined (when errors in 

;his orientation are being considered). 

The relative position of the xyz and c1^2?3 trihedra is char- 

icterizcd by the direction cosines ■JJCC*« 52» C3)- 

The nrojoctions of equations (5.6) on the axes of the freely rotating 

trihedron x1, y', z' are obtained using table (5.10).  After obvious 

transformations the expressions for 0 ', 6 '. 9 ' take the form: r xyz 

+ n"^P:i)l*i' + (0l,''-
0..y')0;^ 

+ («..''-0.. O-ii+ ("..>''-".»^"ul 

frnTp-UHP+Pv*-•»*}** + 

(5.11a) 

IIor'"<,   ■■   in •quationi   (5.6),   Kummation over  the  indices  i  and 

■   i...   taken    from  1   to  .3. 

In   th(   riqlit   Tides  of   tlWM   formulas   ■«' .     designates   the  direction s J 

eoaimia of tht- >:', y', /. '  axc-s relative to the f.' , r. •', C3 axes.  The 

meaning of the indicies s and j is the same as that of i and j in 

fcabl« (3. 16) for .i^. 
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As may be seen from relations (5.11a), equations (5.6) do not 

r;tain their form in the conversion to the arbitrary trihedron x' , y' , 

z• .  This is easily foreseen, since equations (5.6) clearly contain 

the direction cosines n. . (/;', f.2, C3) characterizing the position of 

the axes of the platform (or the directions of the axes of sensitivty 

jf the newtonomoters) as a function of coordinates e.   . 

Substituting a'j^ for a., in equalities (5.11a), we may rewrite 

.hem as follows: 

+ a;J*rpJi*i,+(",/-v),'..+ 

"I Ci,* -«1.••)<>„ t («„y - Hltx)at,\. 

+ a;J$(,JiAi'f(V-o
1.>')".1 + 

(.(0,,«: -(),,/;,,., HOLV-OHV)«,,! 

(5.11b) 

Equations (5.11b) may be considered as projected en the axes 

of somo arbitrarily oriented trihedron xyz.  We will henceforth consider 

this trihedron as coinciding with the one on which equations (5.1) — 

(5.5) are projected.  In equations (5.11b) the direction cosines If. 

characterize the relative position of this trihedron and the 

trihedron in terms of projection:? on the axes of which equations (5.6) 

are written.  The position of the latter trihedron relative to the 

<.x ,   C? / ^ * axes is characterized by the direction cosine P|^»  and the 

position of the xyz trihedron relative to the f,' , f •', r.3 axes is 

eharactorisod by the direction cosines '»:-:• 

Let us con.sidcr equations (5.8).  They are written in terms of 

projfetions on the axes of the trihedron bound to the platform 
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of the inertial system, but they may also be projected on the axes of 

an arbitrary trihedron xyz.  As in equations (5.6), they do not retain 

their form in projection.  Using table (5.10), we obtain from relations 

(5.8) : 

0a= - (An io^ p cosy f Apsliiv)!!;, f 

-f- (An cos(1 slii v -Apins v)|i;i-(A(( ship -f- Ay)(\'iy 

0Jt = — (A« cos p COJ v -f- Ap sin yjp^, -f- 

-f (An ens p sin y—Ap cos y) p|,i-(Aa sin p -f Ay)p',. 

Oj, ■ - (Aa cos p m y h Ap sin yOPj, + 

-f (Ancospslny-Apcosy)Pj,-(Aasliip + Ayjp;,. 

(5.12) 

Now equations (5.9) may also be written in terms of projections 

on the axes of an arbitrarily oriented trihedron. 

Thus, equations (5.1) -- (5.5), (5.11b), (5.7), (5.12) and (5.9) 

are error equations projected on the axes of the same trihedron xyz. 

Since the orientation of trihedron xyz relative to the basic Cartesian 

coordinate system is arbitrary, in the analysis of the equations in 

question it may be selected in various ways.  Careful selection of this 

trihedron can in many ways facilitate analysis of the error equations. 

5.1.2.  Various representations of the error equations. Henceforth 

it will be convenient to use, in addition to the arbitrary position of 

the xyz trihedron, the followinq alternatives for selection of its 

orientation. 

In one of these alternatives the trihodron on whoso axes the 

error equations art; projected is taken to be fixed in space, as, for 

example, trihclron f ''■,•'■. ' miqht be   In this case 

M, mmftmm,  -0, 
(5.13) 

should  be  substituti.'ti   into equations   (5.1),   causing them to take the 
form: 
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6* ♦ JV KV' -f *' — ^A?) M - 3.vy ^y - r«-; kI - 

E>Afl, - 2(AHiyi — Am^y)-  A«iyz -f A«i;y, 

= Arty — 2(N«4Ä- ■— Am,/) - Aw,.«-| Am4.-. 

t} 4. Ji- |(.i' -I  y» — 2.^) <N.' ■ - .VA A* - n.'y .\y| -^ 

= An, - - SfAvi.y   - tejr)     Az/i.y -f- Am,*. (5.14) 

Fcr   equations   (5.3) uncler conditions   (5.13)   we obtain: 

0,, ^ Am,.    (>,, m \mv.   fl,, m hm . (5.15) 

The projections of the absolute angular velocity H do not enter 

into equations (5.5), and so the form of these equations remains 

unchanqpei.  In equations (5.11b) u . should be equal to 0, if s ^ j, sj 

and,   in   addition,   t|j     should  be     set  equal   to  ^j_-\'        The  other   equations 

do not change. 

We note that if the vector equations (4.81), i.e., the equations 

6f -h 2w X AV -H w X f>r  f «i x («•> X br) -f 
,    |i  .        \ir 3 (r ■ Ap 

-I- TTor     7f      p 

= An — 2Am x r - Am x r — 

— Am X !■ X 0 - 6» X (A" X '')• 

(i, -f w x 0, =- Am, 

fir, — (I, xr,   ftr3 = Ar ♦ ftr,. 

(5.16) 

correspond   to  equations   (5.1),    (O.^),   and   (5.5),   then,   clearly,   the 

vector   equations 

«' + £ br \ir_ 1 (r ■ Ar) _ 
~ ?>     7» 

= A»i - 2Am X f -  Am X r. 

Ö, -  Aw. 

ftr, M II, x r.   Ar, -= Ar -f Ar, 
(5.17) 
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correspond to equations (,i.l4) and (5.15), 

Another trihedron which is convenient in the analysis of the 

error equations is often one having onn of its axes directed along 

the radius vector r. In this case the xyz trihedron becomes a Dar- 

boux  trihedron on a sphere of radius if surrounding the earth. 

Let the z axis of trihedron xyz be directed along the radius vector 

?.  Then, 

* = r.    .«: ^= y = o. 
(5.18) 

Taking this into account, we obtain from equations (5.1): 

*'+(£- "J - '-J) 0* f- (<vv - w,) H - 
— So), Ay -f- ((i^w, -f Mt) dz + 2(ii, Ai m 

— 2...rAi.t-(..y^   (r.gAv   |   2rvVc   ■ 

= A/ir | »'Am,?■-)- Am.r — iiir AH^T — «.^Aw.r, 

-2o.yAv | {..v,.y |  .:.,).V |  :■,,, Ay 

— A;;,-|-:'/•((.., Aw^   | M, A/"f). 

(5.19) 

Since xyz is  a  novinq    trihedron, in equations (5.19) 

'"" ■ *r    "■'. '     .V (5(20) 

whorfj v , v , v  arc the pcolectioi  of the absolute .mqular velocity 

of thio point O (i.e., of the object) on the x, y, z axes. 

Equatiuna (5.3) do not .:hcinqe, and so x and y do not occur in 

them.  Equations (5.rj) take the form: 

<V»'| >*t^< Ay,- -  (l,,/-.   A-,  0.  1 
!*,■ Av | kg,,    Ay,- Ay j Ay,. A.-, . A;. / 

(5.21) 

400 



Equations (5.11b) also simplify significantly in this case. They 

n y now bo written in the followiny form: 

/  iKi   , .   ''"'1 „. L 

(5.22) 

As a result of the fact that I = r/r, in equations (5.22) 

(5.23) 

Of   special   interest  below will   bo  the  case   in  which   u. •   =  3!., 

i.e.,   in  which   the  trihedron    bound     to  f^e platform of   the   inertial 
system will  also be ^ moving  trihedron.     In this case  SI.   =   1, 

ami   8JJ     =   o   (with   i   ^   j)   and  eejuations   (5.22)   reduce,   as  expected,   to 

equations   (5.6).     The  further  simplification of   these  equations   is  bisod 
on  n.-lations   (5.23).     The corresponding  transformation was  carried out 
in   S*'-''  and   the   final   result   expressed   in   formulas   (4.248),   which we 
cite  here; 

_ St.   o =. ^l. 

-»„   t   ll,,^!,,   |   fll,, ",.".:) 
(5.24) 

As   wa;:   shown  above,   if   .i..   are   not   functions  of   the  coordinates 
■,   but   only   function;;  of   time,   i.e.,   if 

(5.25) 
than  wa  obi.iin   from  equation::   (5.22)    in  terms of   projections  on   the 

ax<:;  of     the  moving   trihedron 
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wh*-- ■>re o. , 0. , 0.  are the solutions to equations (5.3) 

In equalities (5.12) the x, y, z, coordinates do not appear, and 

condition (5.18) does not effect them. 

The Darboux trihedron on a sphere surro nding the earth, in terms 

of projections on whose axes equations (5.19), (5.21), (5.22) and (5.24) 

wore written, is not yet fully defined relative to the basic Cartesian 

coordinate system.  Only the direction of its z axis is determined. 

The   moving    trihedron may be fully determined in the same way as 

in §3.5.  Wo may, for example, sot 

K~~\m  ",-->'.,• o.^-n... 

and then we will obtain a so-called free-azimuth trihedron, or place 

the y axis in a plane containing the £3 axis, i.e., the axis of 

rotation of the earth.  In the latter case the xyz trihedron be- 

cores a geocentric moving trihedron oriented to the points of the 

compass (the y axis pointing to the north). 

If 0, then from equations (5.3), (5.19) and (5.21) we 

obt.iin the following error equations: 

fix \ f^j  -ü.:JIU -t-w.w^fty f-uijAj f •%!•■■ 

^3 An,--2A/itr -  Am/-   - ititA'ntr, 

f>'y h(ji -liijW —I'I,/;.- - 2i..,A* f c..1.■l,*<•-- 

taAii, f ZAm.r (Aii.f -<.i(\m/, 

*-()   !■-•  t ...;)^   .,;,rft.v-2.„,^ + 

-f lii. Ay-f-2„i, Ay - An, I 2f(i,),A<ii, 4 wrAn,); 

(5.28) 

(5.29) 

*«i---'V. Ay, »,,,. 

AJT,     A!  + A.i,.    Ay,      Ay  |  Ay,.    A/,     ^.. 
(5.30) 
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Equation (5.24) converts to equations (4.252): 

«,_„,.    1 (-.-31) 

Equations (5.12) do not change. 

Finally, if the   moving   trihedron xyz is oriented by 

the cardinal points,   the direction cosines of its axes relative to 

the '', c2» 'i3 axes are expressed in terms of the coordinates c.1 ,   C2. 

Is by formulas (4,253) and (5.23). 

In this case the coordinate error equations will be equations 

(5.3), (5.19) and (5.21), and the orientation error equations will be 

relations (5.12), (5.9) and the equalities 

r r        r      l 

(5.32) 

to which relations (5.24) reduce. 

If trihedron xyz is a moving trihedron of a geodetic 

roferonco grid, then equations (5.3), (5.19) and (5.21) remain valid, 

as do the first two equations (5.32).  In the last equation (5.32), 

in accordance with the last equality (4.258), p should be replaced by z. 

Wo have considered several possible alternatives for selecting 

the xyi trihedron.  In a number of instances a trihedron, one of whose 

axes coincides with the direction of the absolute velocity vector of 

the object, and another coinciding with the direction of the principal 

norri.i] to if.i  trajectory (a so-called   moving   trihedron of tra- 

jectory), may prove to be more convenient.  A moving trihedron 

of trajectory in an earth body-axis coordinate system, i.e., 

a moving trihedron not of the absolute,  but of the relative 

(to the earth) trajectory of the object, may also bo used. 
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Analogously, the orientation of the x and y axes of the mov- 

ing trihedron on the sphere may be selected such that one of the axes, 

for example the x axis, lies in a plane containing the vector of the 

absolute or relative velocity of the object. 

5.1.3.  Possible ways of analyzing the error equations.  Let us 

■ irn to equations (5.1) — (5.9) and the relations deriving from them, 

ic basic problem in the analysis of these equations is, clearly, 

uilysis of the systems of differential equations (5.1) and (5.3). 

ic remaining relations are of finite algebriac equalities, and their 

lalysis causes no difficulty. 

The systems of equations (5.1) and (5.3) are independent of one 

lothor and may therefore be considered separately.  They are systems 

if linear differential equations with variable coefficients. The 

t igiit sides of these equations may be either determined or random 

functions of time. 

The systems of differential equations (5.1) and (5.3) determine 

the operational stability of the inertial system as a whole.  Their 

solutions, moreover, relate errors in the specification of coordinates 

to the instrument errors of the elements and devices of the system. 

It is impossible to determine the functional accuracy of an inertial 

system and to formulate requirements on the precision of its elements 

without analyzing these equations.  Analysis of these equations is also 

necessary for the selccticn of means of correcting the operation of an 

inertial system. 

It must, however, be said that analysis of differential equations 

(5.1) an'J (5.3), that is, their analytical analysis in a sufficiently 

genera) form, giv's rise to insuperable mathematical difficulties. 

Espccitilly difficult in this regard is system (5.1). 

Equations (5.3), as war, noted above, are variations of the well- 

knov;n Poisson equations, which reduce to the Riccati equation and 

which are in the general case not soluble.1  Under closer examination. 
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however, it proves to be the case that equations (5.3) are nevertheless 

much simpler to deal  with than equations (5.1).  The Poisson equations 

have a first integral, and this completes solution of the problem of 

analyzing tho stability of the solutions ro equations (5.3).  Because 
0lx' 0lv' ^Iz  arc so sma11' their squares and products may be ignored, 

and the solution to equation (5.3) may be constructed in quadratures. 

With regard to ways of analyzing equation (5.1), the following 

possibilities also exist. 

To begin with we note that there exists several special cases of 

the motion oi an object in which equations (5.1) or equations (5.14), 

(5.19) and (5.28) deriving from them, reduce to equations with constant 

coefficients. 

The simplest case is that of a basis fixed in the coordinate 
I r i r I system 0|C C C » in which 

, ==1,^ ^ o. r =3 consl 

Taking this irto account, we obtain from equations (5.19) 

6*4 '', In -=^1,      Amrr, 

iv I ". Ay -A«, ( Am/ .V- -|Sf*l •*•». 
(5.33) 

The equations for x,  y,  z have separated.  Since 

tho solution to oquations (5.33) is obvious. 

The second case, in which the coe-'fficicnts of equations (5.19) 

become constant, will be the case of tho motion of an object at a 

constant distance r from tho center 0, of tho earth at a constant 

velocity in n plane;, fixed relative to the trihedron 0,r,lt,?i^,  passing 

through the centor of the earth.  If the x axis is placed in the plane 

of motion of the object, 
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u, --wl -0,    uij-aconsl,    f.-=cnnsl 

(5.34) 

Substituting  expressions   (5.34)   into   (5.19)   or   (5.28),  we arrive 
t   the  equation 

*> "f y, iy m An, tämj - „,, ,\-i(,r. 

•• - (f + w;) 6/ - ^./.v =-- A«, f- 2,,.., Amr. 

[5.35) 

The second equation (5.35) stands out and has an obvious solution. 

The second and third equations (5.35) form a fourth order system of 

differential equations with constant coefficients.  As we will see 

below, the characteristic equation of this system reduces to a 

biquadratic equation and equations (5.35) prove to be fully soluble in 

their ycneral form. 

Special cases of equations (5.35) will be  equations for the 

ense of a fixed space, i.e., equations (5.33); equations for the case 

o' motion at constant velocity along the equator, with the y axis 

c linciding with the axis of rotation of the earth;  and equations for 

.e case of motion of a satellite in a circular orbit, with 

The final case of the rcdurtion of coordinate error equations 

(5.1) to equations v/ith constant coefficients is the case of an object 

which is fixed in relation to the earth or an object moving at constant 

velocity along tl.o parallel of latitude.   This case includes, clearly, 

all of the preceding ones. 
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If tho object moves along the parallel with a velocity v, then, 

placing tht y axis of tho moving     trihedron in a plane containing 

tho,earth's axis of rotation, i.e., in the plane of the meridian, and 

directing it to the north, wo obtain the following expressions for the 

projections of the rate of rotation of trinedron xyz 

around its axis: 
I,., =! o, 

01, ■-■ «CDS') -( "- -^i-niKl. 

<ii, =u sin "I" \   -!;,•<() = iulisl, 

(5.36) 

where | is the geocentric latitude of the parallel along which the 

object moves, r is the constant distance to the center of the earth, 

and u is the earth rate. 

The equatio is of the first group for this case are obtained from 

equations (5.19), in the latter u = 0, and u>    and m    are replaced by 

their values (5.36).  The characteristic equation of the system (5.19) 

reducfs in this case to a bicubic equation. 

In addition to the above-mentioned cases of the reduction of 

equations (5.1) to equations with constant coefficients, the first group 

of the error equations may also be :omplotely analyzed in certain cases 

in which the coefficients are variable, namely in those cases in which 

tho general intcyral of the equations of motion of the object is known. 

In those cases, it is possible to construct (on the basis of the 

analoyy described at the beginning of this section) the solution to 

equations (5.1) in quadratic forms, using the veil-known Poincare theorer 

for solving equations in variations.'  Tho specific case to which wo 

apply this approach is that of Keplcrian motion of the object. 

Thus, from tho point of view of practical applications there 

oxiit a number of interesting casi s of motion of the object in which 

the error equations of the first group, i.e., equations (5.1), may be 

completely analysed.  Using those cases as examples, it is possible 
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to olacidate the basic properties of the solutions of these equations. 

Moreover, tlie exact solutions which result may be used as first 

approximations in the construction of approximate solutions for those 

cases of the motion of the object in which equations (5.5) do not 

permit exact integration. 

§5.2.  Stability Analysis and Integration of the Error Equations 

of the Second Group. 

5.2,1,  Stability analysis.  Let us examine the second group of 

the diffeivjntial coordinate error equations, i,e, , the system of 

equations (5,3) 

iii, -f-<■',"!, —<'>4nir = Am,. 

*r, (-i>>,0,r-(■),(),, = Am, 

(5,37) 

and   the   homogeneous   system  coorcsponding  to   it 

(5,38) 

The homoyoncous equations (5,38) have a first integral.  In order 

to obtain it, wo multiply the first equation (5.38) by 6, . the second 

by • . ,, the third by I.  and add.  As a result wo arrive at the equality 

".A. I V»„ » V'I, ■* 
(5.39) 

which may, clearly, be intoqrater].  Taking the initial conditions into 

accounti wo have: 

*+*+*-•!:+<+< (5.40) 

As  applied   to  a    gyroiitabi 1 ized  platform,   the   first   integral 
(0.40)   has   a   simple  mechanical   significance.      In  the  absence of  perturb- 
iny moments    (free drift)   the    gyrostabilized   platform does  not   change   iti 
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p  ition in space, and, consoquontly, the intial error in its orientation 

n ains. 

The first intcyral (5.40) is a positive definite coordinate 

Lunction.  It may therefore be taken as a Lyauunov function.  The total 

erivalivc of the quadratic form (5.40) vanishes by virtue of 

juations (5.38), whence the stability of the Lyapunov solutions. 

The following circumstance should be noted.  Equations (5.38) 

re first-approximation equations.  Therefore, on the basis of integral 

5.4U) of these equations, we can arrive at a final judgment as to 

tlie stability of the inertial system with regard to the errors 0n„» 

n, . ••_.  If we return to equations (4.51), however, from which 

equations (5.3) were derived, we see that the homoqeneous equations 

(5.41) also allow first integrals.  Multiplying the first of these 

equations by '"«ii» the second by '•«•i the third by äu,, and adding, 

we find: 

•■"',, iV/|,   )   iVi.iVi,,  (   ■,HnAuIJ -=0. 

(5.41) 

from whJ>'h it follows that 

(5.42^ 

Analoyously,   from  the   fourth,   fifth and   sixth  equations   (4.51) 

we-  obt a i n : 
lA.1 ,)   | (ta  V  ( !'■<   '       ""' I 

(5.4:) 

Fin illy,    the   first   three  equations   (4.51)   qivo: 

,,.., ^ | ,,-., i  , (ta •■  itau* C5« 44) 

Tho   stability   of   the   homogeneous   Lyapunov  cauations   (4.51) 

tollottl   froi'i  expressioilfl   (^.42)   --   (5.44).     But   there  equations  are 

exact  equations   for   perturbations   Soi■,   since   ccjuations   (3.60),   by 

variition  of  which  equatiORM   (4.51)   were  obtained,   are   linear  in  a... 

Thur.,   tho  exact  equations   give  tho   same  answer   to   the  question of 

stability   as  the   first-uppiOximation  equation   (5.38). 
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5.2.2.     Integration of tho  equations of  the  second group in 
quadratic  forms for  free motion  of the object.     Let  us consider the 
integration of equations   (5.37).     The general solution to the homogeneous 
equations   (5.38)  will be  the expressions 

0„ = cla11 i-c/i.., -j  r,.!,,. 
(•„or,.!,. . f.«.. , r,»,,. 

"" m**" ■'■"■- ' '■""■' (5.45) 

where a^.   are elements of   table   (3.16)   of the direction cosines between 

the x,   y,   z axes and the  C*.   n»,   c*   U1»  t2,   C3)   axes,  and c.,  Cj,  c, 

are arbitrary  constants.     In order to      verify that the right  sides 
of  equalities   (5.45)   satisfy equations   (5.38),   it  is  sufficient  to 
substitute them into equations   (5.38)   and to  take  equalities   (4.221) 
into account,   by means of  which   u   ,   u   ,   u    are expressed  in  terms of 

•ij  and  "ij 

In  order  to find tho  general  solution  to the  homogeneous equations 
(5.37),   we may  now use tho  Lagrango method of  variation    of arbitrary 
parameters.     Assuming,   in  accordance with this method,   that  the parameters 
c,,   Cj,   c,  are   functions  o*"   time   and substituting expression   (5.45) 

into equations   (5.37),  we  arrive  at tho  following  system of equations: 

'i'hi f f/«ji f iV'.i —Am,, 

ißm hißm I «V^^Am,, 
«V'n "f fjUvi ) ^11, = ^«,. , ,      ,.,.  j 

Solving   this  system  relative  to c, ,   c_,   c-,  and   integrating   the 

resulting   expressions,   we   find: 

'■.,-/(W,.,,l < ,\,„>(I , ftmjQ* i rj. I (5.47) 

410 



Substituting relations (5.47) into (5.45) and taking account of 

the initial conditions, wo obtain a general solution to system (5.37) 

in the following form: 
0I« = <,II I / (A'","M  I '^"'."u  I A«i,ii|j)(// (- I 

Oi.ai,  | Hi./iu f «„a,,! -J- 

-t a,, I f (A/n/i;, f Am,u„ f Am.u^jrf/ f 
It J 

+o:.n", * i^ft < At] t "H [(A'«,"., f 

-4 Am(<i,H Am^,,)«" t "?.""• I ,li'."'- * "''""'1 • 

f (\m,",,  t-Am^i,, i Am/i,|)</( ) 
a 

4 0?,«M  I 0?,«?, •f-Uu«;',] +".;    /(Am,..;, f 
0 

4 An/i;; | Am.aijW/ f lUl HW»H ""'"^] + 

f a«    J (Am.aj, -)- Am,n , •+- Am,nj) i-'l r 

■     I 

o 

H CA I ">"' i ""'"''] ' «•■  /•A",.n-' f- 

+ Am/if; | Am,...,).// I O',',«?- ( »',',""H iWi] t 

-+-na,     f/A"./',,  | A".,".;  I  Am4.i„)rf/ f- 

-I nl',..1,-t ii,',"..-+ n?...i1,]. 
(5.48) 

Formulas (5.48) give the solution in quadratic forms. Thev coitain 

the quantities ,.• under the integral sign, these being known functions 

of bine if the motion of the object with which the inertial system is 

associated is specified.  It must, of course, be kept in mind that the 

intended motion of the object may be defined not only by the explicit 

specification of the coordinates as functions of t.-.mo, but also by 

differential relationa which are, in the general case, non-inteqrable. 

In this case it nay be more convenient not to numerically integrate the 

equations defining the intended   motion of the object and to substitute 

the results of the integration in quadratic forms (5.48), but rathe to 
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dotorminc u , » - » and to numerically integrate the initial system 

(5.37). 

Solution (5.48) to equations (5.37) may also be obtained in a 

somewhat different manner.  It is possible to project equations (5.37) 

on tha fixed 5«i n*/ c* axes.  Then in place of equations (5.37) we 

obtain equations 

V
=AB,

I,- W-*"%. ",:.-'Am{i 
(5.49) 

Interiratimj these equations and then again passing to 0. , 

lv' 0lz and Amx' Amv' Am2' we obta^n formulas (5.48) once again. 

From equations (5.49) the following evaluation derives: 

(5.50) 

In order to  obtain this evaluation, we return to the vector 

equat ion 

•it 

(5.51) 

which is equivalent to equations (5.49).  From equations (5.51) wo find; 

^-Am. 

Coniu'fuently, 

but 

n, -. n" i- j .\m,//. 

|U,i<|«?| f I \mdl 

J A"<'"    C l'| Am tit. 

from which   inequality   (5.50)   is   obtained. 

(5.52) 

(5.53) 

(5.54) 
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We note that an evaluation analogous to inequality (5.50) may 

1 

find: 

also be given for the modulus of vector 0..  From relations (5.8) we 

(5.55) 

Apropos  of solution (5.48) to equations (5.37) it is useful, 

in order to avoid misunderstanding, to present the following clarifi- 

cation.  Equations (5.37) are obtained by variation of the Poisson 

equations and are themselves analogous in form to these equations. 

However, between equations (5.37) and the Poisson equations 

all ♦ <V'll- W/F^^sO. 

a,, ) (.in,, - \iitiiu  . o. 

(5.56) 

there is a profound difference, as a result of which solution (5.48) 

to system (5.37) has no relation to the solution of the Poisson equations 

(5.56).  The difference between equations (5.37) and (5.36) consists in 

the fact that <». ., entering into equations (5.56) and related to 0 , 
1J x 

0 - 8 by equalities (4.221), are unknown, while at the same time in 
y  ■ 

equcitionn (5.37) the quantities 8 | 0 , 0 . of course, are not expressed 

in terms of ••_! 0, , 0. .  In the case of equations (5.37) the problem 

reduces, essentially, to that of finding the small deflection of the 

movinq trihedron in terms of the projections of the a! olute angul ir 

velocity of this d(flection on the axes of the moving trihedron, while 

in the case of the Poisson equations the final deflection is sought. 

5.2.3.  Special cases; an object fixed in absolute space; motion 

at constant velocity on the arc of a large circle and on a parallel; 

Ke£lerian motion.  Below we will require exact expressions for 0, , 

, , 6._ for the cases enumerated in the preceding section, when 

equations (5.1) are integrated.  Wc will need them so that, when wc 

obtained 6x, Sy, 67, fron equations (5.1), wo will then bo able to find 
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SXJI Äyj» *z3, and 0^, 0 . 0 .  Let us therefore write out the values 

ol I, . 0.   ,   0.  for the cases in question. 

If the object with which the inortial system is associated is 

;d in the O.^'^t",3 coordinate system, then in formulas (5.48) 

nay set 

0i/= I whan '«»/ 
o^ =« 0 wh«n l + u 

(5.57) 

Then from formulas (5.48) v;e find the following values of 0, , 

"iv 0iz! 

0„ = / An, rf/ -f 0?,.   0,, ■ J Am.rf/ 4 Of,. 
0 0 

f 

0,, ^ j Am.dl j 0",. (5.58) 

whicli  are  obtained   immediately  and  directly  from equations   (5.37)   by 

=  M     =   0,   which   is   the  case when  the  object  is   fixed setting »    = 

in   tfu--  O, I I r > r > coordinate   system. 

The   second  case,   in  which   equations   (5.51)   are   inteyra;cd   is 

that  of motion  of   the  object  at  ■   constant  velocity  v  at  a  constant 

■ li:    .incc   from   the  center  of   the   earth   in   a   fixed  plane   containing  the 

rei   or  O,   of  tho  earth,   i.e.,   the   case  of motion  at  a  constant   velocity 

'i    g  a   fixed  large  circle  of  ■   sphere  of  constant  radius   concentric 

the  earth,     Wc  m^y,   without   lose  of  generality,   superpose  the plane 

.otion  with   the   ;,'.;' plane, and   t.iko  as   the   initial   position   of  the 

ft   its   position  on   the   rl   axis.     The   x  and   y axes  of   the  CKxyz 

t     -icdron  will   then  lie  in  the   ■1:'   p].i;u',   and   the y  axis  will  coincide 

A     h   the   5     axis.     An  a  result   the   following elements  of   table   (3.16) 

A     1   be  different   from  0: 

U|1 -.-=    -%lll..l,f.      lln-TilOSU,/. 

0;,=    CO«Uf/. «l^j^JlnU,/,      U,(" .,.1 (5.59) 

where w. v/r. 
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Substituting expressions   (5.50)   into solutions   (5.48),  we obtain 
after obvious  transfornations: 

On ö 0?, cos io,l — 0?, »In u,/ -(- 

-f f |Ani,(t)c<i$wr(/ — i) - Am,(t)sin..),(/— tjl^T, 

I 

01, = 0';H /An,(i)rft. 
I 

0„ = 0|.iln<V j 0?,cos<.>1/ f- 
i 

+ f |A»i,(i)Mni.>,(r—tH Am.Cjjtos.., (/-i)|i/«. 
(5.60) 

As with expressions (5.58), formulas (5.60) may also be ot-tain^u 

directly from equations (5.37), since the coefficients of the system 

(5.37) are in this case constant: us,,  = 0, oi. = 0, w.. = const.  System mM '  o, u9 0,  to = const. 

(5,37) takes the form: 

Ö,,+ '"."..^"I- "i, •A".- •'i.-",».,--'"", (5.6i; 

The   second  equation   is  singled  out.     The  second   formula   (5.60) 
immediately   follows   from  it.     The  characteristic equations  cf   the 
remaining   second  order  system has   the  roots   tu   .     Representing   its 
solution  as  a Duhamel     integral,   we arrive at the  first and  second 
formulas   (5.60) . 

Let   us   turn   to   ttu    third  case  —   the motion of   the  object   along 
a  parallel.     As  before,   we will   consider   the  £'   as  coinciding with  the 
earth's  axi~  of  rotation,   and  the  xyz  trihedron  as moving on  a 
sphere   surroundina   the  earth,   and  oriented  to   the  points  of   the   compass 
(with   the  y  axis  directed  towards   the  north).     The  values  of  the  direc- 
tion cosine:;    i.j   for   this  case  nay  be  obtained   from  table   (3.260),   if 

we  note   that   the   unit  vectors  of   the  x,   y,   z  axes  correspond   to   the 
unit  vectors  o^,   ('•,,   e,   and  that   according  to  expressions   (5.36) 

(5.62) 
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Equality (b.b2) MSOMSi of course, tliat at the beginning of its 

motion tho object is located in the? O.f.'f.'r.1 plane. 

Therefore, introducing for the sake of simplicity the notation 

ii + —-— =»1*, 
""'■* (5.63) 

we   find: 

o,,-a     sin II/. Wftm   -srn<(cüSü>f. n,, = ro^ 7 f PS i.v/, 

0;, oil.' r.if,      U., ^ 'In'! Mill,./.      (t;i-=l(,. |( Mf,,.^. 

OJI—'
1
.    'IJJ = COSIJ.    a,, = 5(119. (5.64) 

Ke recall that in relations (5.62) -- (5.64), ■; is the geocentric 

latitude of the parallel along which the object is moving, and v is the 

velocity of its motion relative to the earth. 

Substituting the values (5.64) of the direction cosines in 

solutions (5.48) and perfornünq tho required transfornations, we arrive 

at the followin« formulas: 

ttt = 1)1, COSI./ +(0,(51^ T— 0'|', cos'ihini-ir -f- 

+ J 1^.(1)1,.w„f/-t) ( 

+ l*m(0)<ln'( — .^(TKosidsIn"^ — \)\d\. 

0|rrS: — ü'i', 5llM( slni.l/   -f  O", (sin''| COS (1/ +C0s'>()  (- 

-f 0,', slnifcosif (I - ensci/) f 
i 

+  f |-Am.fn-.fi'isini^/ - i) \ 
u 

-f Am,(t)K(>sw(/— ;)'.lii?'(  t cos .,| - 

— Am, (i) sin«f ens <; |(M«0 - T) - 1|) I/I. 

Pi» —n?iC0Si( Shll.i/   f-(l'|',Sll|i| vdS'l (I  —CPSM/)  ( 

-f Oj^COs'lfUiS.,./ -f   slll'.()   f- 
i 

4 J (Am^Tjrosif iln(j(/ —t) f- 

4 Am,(i)<liii;co5<j |1 — cosiii(/— T)| i 

4 Am.C^li.s'ii cus(.i(/— \) ) siii'i|||i/j 

(5.65) 

Fornulci::   (''•.6ri)   can,   of   courso,   bi>  obtained  directly   from equations 

("J,"!?),   rather   than   from the general   solution   (5.4SJ);  taking  equalities 
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;   .36)   and   (5.63)   int« accouiit,   equations   (5.37)   take   the  forms 

Qll — O^toXOHf r* Am,. 

The characteristic equation of the system is 

the roots of which are 

(5.66) 

(5.67) 

Pi ■ 0-    />: y„i (5.68) 

Putting   the  solution  to the  system   (5.66)   in the   form of  the 
Juhanel     integral   immediately gives   formulas   (5.65). 

We note   that with  f  =  0  formulas   (5.65)   reduce to   formulas   (5.60), 
and with   .   =     j    they  reduce   to  formulas   (5.58)   by  conversion   to  a 

free-azimuth   trihedron. 

Keplorian motion  presents a  somewhat  more difficult  situation 
than   the  previous cases;   in   this case   the  direction cosines  a. . 
entering  into   formulas   (5.48)   cannot   be expressed  as simply as   in  the 
exanploK  considered  above.     In  the  case of   Keplerian motion   it   is  possible, 
without   sacrificing  generality,   to  take the   0,f,'r2   plane   as  the  plane   of 

motion. Then, placing the x and z axes in this plane and directing the 
7. axis along the vector r, we obtain, as in the case of plane motion at 
a   constant  distance   from  the  center   of   the  earth: 

it,J — ii.t~Un   -=„^^0.   </,, 
(5.69) 

If we further assume that at the heqinning of its motion the object 

is located on the f,' axis, then in addition to equalities (5.69) wc will 

have: 

(5.70) 
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Taking relations (5.69) and (5.70) into account, formulas (5.48) 

sirplify and take the form: 

+ a« J (Am.aii + 4»»iO:j)rf/ -f 0?, . 

i 

t 

fli«="a„( J(Am,a,i \ Sm.a^dl + 0?, f 

+ 0;j| [ (Am,«.,-f .Wij,)<« fO?» i j J (Am,«;, (5.71) 

5.72) 

We will denote the anqle between the f;' and z axes by o.  Then, 

0,, = - slno, 0|j = co»<i. 1 

«/here, obviously, 

n--}...../' (5.73) 
I 

In order to obtain explicit expression.1; for 0.  and ü,   we have 

only to substitute into formulas (5.71) the values of o which, for the 

case of Kcplerian motion, may be found as functions of time. 

We note that: as in the preceding cases, the solution (5.71) for the 

.ilucs of I., determined by equalities (5.72) and (5.73), may also be 

•btainod directly from equations (5.37), which in this case take the 

orici: 

tu 1 "■>".- — Affjj 

6,r-Amr, 

6t, - •..,«,. .Am. 
(5.74) 

The second formula (5.71) follows directly from the second equation 

[5.74) <  The homoqeneoiiK equations corrospondinq to the first and third 

oquatiOM (5.74), after elimination of one of the variables, for example 

•',,  reduce to the second-order equation: 

418 



The   functions 

""-«;-'•.. H-Jo,.--^ 

Kill   j (I)VI//      H      COS   [   Utfät, 

(5.75) 

(5.76) 
.. J    L  be partial  solutions   to  this  equation,   as can easily be  shown by 

L    -et  substitution.     Using  the method of variation of  arbitrary 
; u imcters,   the general  solution  to the  system of  corresponding  non- 
1 or Dgoni!ous  equations we  find  in  the  form 

Oi, = 0?, cos | a), (tt - 0?, sin f (.i, dt + 

/ 'r' ' '       1 ■4 J    Am.COcosJ  L>yJx- Am.fTUin f m,4h\4t, 
o « I i 

Oit — tti.tinjufttt ) n"..c,is f c.i,'rf/-) 
(I 

ft '"' '"'1 
{ J    Am,(T)Mn| ..V/i-f-Am, (i) c.s [ ....rfij./r 

«   I ü .1 
(5.77) 

Using equalities ('j.72) and (5.73), we can easily show that formulas 

(5.77) and (5.71) coincide. 

§5.?,  Stability Analysis and the Solution to the First Group of 

Error Equations for Cases in which They Reduce to Equations 

with Constant Coefficients. 

5.3.1.  Stability analysis.  Lot us consider the homogeneous 

'.ions corresponding to the system (5.19), which is obtained from 

;ystom (5.1) when the z axis of the xyz trihedron is directed along 

•cctor r.  In 55.1 it was shown that the coeffficicnts of the left 

i  I of equations (5.19) become constant in three cases: when the 

■ i, -t is stationary in the O, ^ ' •; "^'"1 coordinate system, when it moves 

• '. ■ mstant velocity at a constant distance from the center of the 

i in a plane cont.aining the center of the earth, and when motion 

s at a constant velocity along I parallel. !Cl 
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The latter case  is the most general.  Analysis of the stability 

of the error equations of the first group is therefore most conveniently 

carried out for the case of motion of the object along a parallel. 

In this case, if the xyz trihedron is orientfd according to the 

points of the compass, we obtain the following system of homogeneous 

equations: 
6* -(- (■',    - or   - i.A tix -   h| *y )- Zi.ij Ai = 0. 

»yf/",   -i.i;W I i.y../M 2UI/A     0, 

Ai + (--7r  -w.JA^-   •%*■ ( .vi/y-O. 

(5.78) 

where \i/r3,   u , w  are constant and w  and w are related to the velocity y  z y     z 

of motion of the object, its distance r from the center of the earth 

and the latitude v of the parallel along with the object is moving 

by formulas (5.36). 

The characteristic equation of system (5.78) reduces to a complete 

cubic equation relative to the square of the unknown (p2 = q): 

(5.79) 

whoro wo liave introduced for convenience the notation 

;  .U|, (5.80) 

Since the charactoris-tic ecjuation lacks the odd powers of p, it 

cannot satisfy tho conditions of asymptotic stability (the Hurwitz 

conditions). 

For asymptotic stability equation (5.7')) must, of course, have 

negative or zero roots, and the linear olomunts of the denominator of 

the characteristic matrix 

/>' I '■>!, -"'I   >•<', V'v     2'V' 
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0 system (5.78) should correspond to the multiple root of the charactor- 

Lst ic aquation of this system. 

Direct analysis by this moans of the characteristic equation and 

tha clujractcristic matrix of system (5.78) with arbitrary ID and a 
y   i 

'jquircs, however, unwieldy calculations.  Therefore we will proceed in 

somewhat different way. 

We will make use of the fact that the system of differential 

-luations (5.78) may be regarded as a system describing the motion of a 

jint of unit mass under the influence of only potential and gyroscopic 

jrces. 

The expression for the force function of the potential forces may 

1 | written, clearly, in the following form: 

y— 71("\;-■■';-<'';)^'f(^-..-pV- 

(5.81) 

The  gyroücopic forces are represented by the terms 

- ;..., M I H I». K *■'• - 2-", •* (5 8, > 

•      •      • 
R ncc thay are proportional to the velocities  x,  v,  z, the coefficients 

Oi   proportionality form the anti-symmetric matrix 

2,.!,  (I      (I 

Equations (5.78) for the case under consideration have the energy 

j nt.cjr.i I 

Av- ,.'.)•' . .V-'— :<W —conjl 

(5.83) 
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In order to obtain this integral from equations (5.78), we must 

multiply the first of these equations* by öx, the second by 6y, the 

th^rd by 6z, and then add.  Integration of the sum will then give 

e-uality (5.83). We note that the gyroscopic  forces do not enter into 

t'o energy integral (5.83), since the influence of these forces on real 

(i splacenent is zero. 

If we now ignore the gyroscopic forces in equations (5.78), only 

o potential forces defined by force function (5.81) will remain.  For 

. lability of equilibrium under the influence of only potential forr°s. 

Mo force function should, according to the well known Lagrange th.orem , 

levc a maximum at the point of equilibrium. 

Since the force function (5.81) is a quadratic form, its maximum 

is determined by the well known Sylvester conditions5  of positive 

deTinitenoss of the quadratic form.  For this case they reduce to the 

oqualitios 

H'-?").?+'"J<0./ (5.84) 

It is evident that the areas defined by eacn of the inequalities 
(5,84) do not intersect (Figure 5.1), and therefore the force function 
does not have a maximum at the equilibrium point. Since for this case 
the force function is a homogeneous function of the second-order, 
•cwording to the well known Lyapunov theorem the absence of a maximum 
"; ■ this function implies that the system is unstable without any need 

connidor  terms of higher orders of  smallness. 

But we  have not yet  considered  the gyroscopic     forces.     Let us 
turn   to  them. 
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Fiqure  5.1. 

In  rrKiions   1  and  3   (Figure  5.1),  where  the  degree of  instability 
(tho   nunber of  neqative  Poincarc  coefficients  of   instability)   ir,  odd, 

b 
tho  gyroscopic     forces,   according  to  the  theorem of Thomson  and Tait, 
cannot   stabilize  tho  equilibrium. 

In  region   2,   whore  the  degree  of  instability   is  even,   the   theoreti- 
cal   possibility of stabilization by gyroscopic     forces  remains.     This 
stabilization,   as   is well   known,   has  an   intermittent  character  and  is 
disturbed by   forces  of  overall   internal  dissipation. 

Stabilization  by gyroscopic     forces   is  effected,   if,   for  example. 

dl'    ■ dl-       (il-   = t' 

(5.85) 

wore i ' is some sufficiently small maynitudr-, 

It can be shown that polynominal (5.79) (i.e., a cubic polynomial 

in u, not tho characteristic equation of the system) in this case satis- 

fies tho Uurwitz conditions.  Tho doscrininant D of tho cubic equation 

obtained from equation (5.79) by substituting 

.v   v tU+tl 

is negative 

/'    -'■':■■'■' <9. 

(5.86) 

(5.87) 
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Therefore,all of the roots of the characteristic equation of 

systc-n (5.78) with conditions (5.85) are prime  and purely imaginary, 

and so stabilization of the system by gyroscopic  forces is possible. 

Stabilization by forces of a gyroscopic  nature, expressions for 

;h enter into equations (5.78), is possible, as has already been 

>   ?d, only in region 2, where 

"I- '••i -••>;<o. 

(5.88) 
I er i   the  free  term in  the characteristic equation  is  positive,   and so 
the  degree of  instability  is even. 

For practical  applications   the most  interesting  region   is region  1, 
where 

"<•   <-«>* (5.89) 

In  this region  the  inortial  system is unstable during motion of 
the   object along a parallel.     It  should,   however,   be noted that 
instability of an  inertial  system does not  imply the impossibility of 
its   practical   realization  and  application. 

Instability  implies  that   the operating time of  the  system may be 
nmaI 1   relative  to the duration  of  the  transient processes defined by 

error equations.     Therefore an  inertial system may not be  stable in 
rigorous  sense of  the  term,   but  the divergence  of  the  amplitudes 
ie  solutions  to  the error  equations may be  small  relative  to their 

7 
ial  values daring  some  limited operational time  interval.     In  order 
•termino  the divorgenco  of   the amplitudes of the  solutions  relative 
ie   initial   conditions,   it   is   necessary  to develop  either  a  solution 

^o     'ie  en or equationü  or  some  set of  upper bound evaluations of these 
-.o  i tions. 
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The solution to the error equations depends on their initial 

conditions and the right sides of these equations, i.e., on the instrument 

errors.  Even if the solution diverges it is always possible, within the 

limits of a given operational time interval and the maximum allowable 

system error, to define requirements on the magnitude;» of the instrument 

errors and the errors in the initial conditions in such a way as to 

guarantee a given level of operational accuracy in the system.  If these 

requirements on the accuracy of the elements and initial conditions of 

the system are difficult to realize technically, then, clearly, 

correction of the inertial system must be based on other sources of 

information. 

Wo will return to the questions touched on here.  Now, however, 

let us proceed to the integration of the first group of the error 

equations for those cases in which they reduce to equations with constant 

coefficients. 

5.3.2.  Solving the error equations for the case of a stationary 

object.   As was stated in §5.1, the simplest of the cases in which the 

coefficients of the error equations are constant, is the case in which 

the object is stationary in the 0.f;*n*?* lOjC'C't'j coordinate system. 

In this case the first group of error equations (5.1) has the form 

fix  4 i-rftv— V; .-A»/ r, 

|y | i.^'Ay — .\nt  | \m r. 

(5.90) 

where u£ ■ u/r'. 

Equation« (5.90) art- written in terms of projections on the axes 

of trihedron Ü.;<y7, the I axis of which coincides with the vector r. 

Since the object is stationary in the OjC'C'C1 coordinate system, 

trihedron 0,xy:-; nay be consid'>rcd to be fixed relative to the •'' , r2, 

{* axes.  We recall that the first group of the error equations of any 

inertial system, if the object with which it is associated is stationary 

in the 0«£ s C' coordinate system, reduce to equations (5.90). 
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Th« initial conditions for equations (5.90) may be designated, 

■i proviouyly, in the followinq manner: 

A«((]) -fix0,    by(H) — by".    Aj(0) ■fii". 

U   } i». / (5.91) 

In accordance v^ith relations (5.2) and the selected orientation 

trihedron 0,xyz, 

lit' m fi:]; 
(5.92) 

Equations   (5.90)   are   three   independent   second-order   equations, 
The  general   solutions   to  the  honocjeneous  equations  corresponding  to 
equations   (5.90)   are  obvious; 

ttx = A, sin i.\,/ j Ö, cos •,/, 

*V — A, sin iV f- B, cos iV. 

hi ■■ A, cosh „^ \'11 + n, sinh  .■„ Yit. 

(5.93) 

The general solutions to the non-homogeneous equations (5.90) 

may ear.ily be found using the method of variation of the arbitrary 

parameters A , B , A , B . A , B , for the determination of which x'  x.'  y'  y' z'     z' 

the following system of equations is obtained: 

A, ■.in.../ | /),.M,V  ii. 

'K'\' '..I      /(,>\, SUM.,/  \n,      A/ii,?; 

I ■ 'n. i f I /'(, . iSi\/   II. 

/I,''i,i"sn,/   /),.(,- |..,, / . \m     f-Af/^r. 

'*, co»h..,l •'' I *i »'"h ...I'iV  n. 

'i^T t.nh '«I';/ ( /',M,|'.'eo»h H.r^- Ai (5.94) 
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Solving  these systems  for A   ,   B   ,  A  ,   B   ,  A   ,   B    and   integratinq 

tha  -solut ions,   wo   find   the   functions  A   ,   B   ,   A  ,   B   ,   A   ,   B   .     Substitut- 
ä    A    y    jr    Z     Z 

ing them into relations (5.9:5) and taking into account the initial 

conditions (5.91), we obtain: 

At0 

i 

+ ' J (An, - Am^)»!!!!.^^ —t)rft. -I 
Ay m Äynfos<V 4 3^ Mn i\t 4 

+i/^ ^-Am^iMiiMof/— T)</T. 

+ —jfj / A", (inh "V, Ki« - «A. 

(5.95) 

Integrating by parts, the first two formulas (5.95) may also be 

represented in the following form: 

»*r=Aj(0COS(V i 'lilln,/ - 

- r j •\mtcmi.\,{l -   „,/,  | 

I   Jj   J  A^.M^.-r^^—t;,/T. 

.  n                   by'' -   r \fn"r 
6y--   (l/,iOii.\Jl i -iin,,^! f- 

■f r  | Am,!,^..,^      i),/t f 

i 

I   ;     )   \'l,^iu.\,(l      xi.lr 

(5.96) 

In particular, with  An , An , An , Am , Am  from equalities 
x    y    z x y 

(j.Orj) and (5.96) constant, and taking into account initial conditions 

(5.92;, we find: 
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4 !—i i-ilnci/. 

An,   /     An%\ 

■t-*»-^-^.^. 

*■•'; 

+ ~i i •'nh''J/.7r 

(5.97) 

5.3.3.  Motion of an object at constant velocity along the arc 

a fixed great circle.  Let us now turn to the case of motion of an 

ol'ject in a plane passing through the point 0. at a constant distance 

from the point, i.e., the case represented by equations (5.35). Let 

us rewrite these equations introducing in place of ij/r3 the notation 

UQ, by which this quantity is usually designated: 

ti -f (<..J - <„J)ft.v 4. 2,,,^/ ^ An, - AKV -. 

ky 1 (.rAyr^An^ f tmjt— ■ Am/, 

bi - l;:^ ( ,„;) A, _ 2,,^ Ai m M, 4 iv,,^ Am, , ,     ,!!. ^ 

Since trihedron xyz, in terms of projections on whose axes 

t;< lations (5.98) are written, is a moving trihedron, the initial 

( editions for equations (5.08) coincide with those of equations (5.90) 

t ! arc given by equalities (5.91/ and (5.92). 

The second equation (5.18), giving the error in the specification 

th<- location of the object in a plane normal to the plane of its 

1       ion, is separate from the two others.  The solution to this equation 

i analogous to the solution to the second equation (5.90) and has the 

1 irm: 

+ ^J l*%H A"','■—w,Am,f)sln(n,(/—t)Ji 

(5.99) 
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c      tfter  integration by parts, 

»j»_,,\m» 
4y ^= 4^" cos iV ■'   ' Hi "\i! + 

)rf» + H ^ J (A)i,-i.>,Am.f)s(ni,v,W-T: 

S ccifically, at constant An , Am , Am we obtain: 

tin,     •',l\mlr       I            Ml,  -M,Am,/-\ 
4y = —? /— -- -+ IW !—^,1 JCOS blj + 

ijl—rM—MiJ -j.    ' "f i—:—, EL - iln<t\,/. 

The  system of   the  remaining  two second-order  equations 

(5.100) 

(5.101) 

A/ - (ic' f M'JA* - 2(i. A.v ^= Ar^ + 2rar Am 

(5.102) 

gives the error in the determination of the coordinates in the plane of 

motion of the object. 

The characteristic equation of system (5.102) has the form: 

(5.103) 

If 

<<4 (5.104) 

. ., if the velocity of the object is less than the first cosmic 

■c  ority, equation (5.103) has two real and two complex conjugate roots 

re 

i'. H*" *A. (5.105) 

(5.106) 

429 



If u'   =  0,   then  \i  =   *uQ  n   /2 and  v  ■  tm~$  but   if w*  = ul   (the 

case of   the  motion of  a   satellite  in  a  circular orbit) 

|i m 0,   v.-.. „\ (5.107) 

The dependence of |i and y on w with continuous variation of w 

is represented in Fiqure 5.2. 

i-w'/ »n 

Figure 5.2 

The quantity ", showing small variation in the range 0<w <CJ. 

and, as has already been noted, being equal to w. at the points 

u     ~  Q  and w  = a)n, reaches a mnxirnurn at the point H  = UJ. * /5/8, 

at which U ■ Wg « /578 s 1.06] M . 

The (juantity n decrease's rnonotonically from the value of 

u0 x /2 down to 0 as w , varies from 0 to w..  At the point u  ■ — 
y o y      /2 

the U V'>  )   and '•'('■>)   curves intersect.  At this point (I ■ V • • 'V? 
1.057  U.Q.     It   sliould  bo  noted   that   in   the  region   from ■*    =   0   to 

1.1 .  = 10 ,/2, M decreases by less than 0.15 from its value at the point 

üi = 0.  All of the remaining variation in the value of w occurs in 

'"0 
the segment -2<wv

<uo» where it falls off vory rapidly. 
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Corresponding to the roots of the characteritic equation, the 

fr. tial solutions to the homogeneous system of equations (5,102) will 

b- the functions 

»luv/, imv/.sinh I* cosh pf. 
(5.108) 

The general solution to a homogeneous system of equations in 

i ir arbitrary constants may be represented in the following form: 

-H—i - v) cosh i./) f u  AJ^JI y 

c,?...,,., 

R-1 i^FP? "'sl" *' - v sinfi,./) -f- 
0,2,,, 

+ l?'f %T(l"s v' —cosh w), 
_ >t>v(..i» -O 

~iiTqTrf"',v'-<;osh |i/) + 

In formalas (5.109) the constants A , B , C , Dx represent the 

in tial values of 6x0, 6X0, ^z0, 6z0. 

In order to find the general solution to the non-homogencous 

j itions (5.102), we may again use the Lagrangc method of Vcriation 
: the arbitrary parameters A , B . C and D , which are determined from 

• i  following system of four first-order linear differential equations: 

f'H -J-vj ,;,., .„j.Z::^* 
^.«i-M, v;;;,;,(l0r/iiH(l,„^(^h)i0 ,0 

—^     Oi'.iin/  v SlIUIpA- 
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-ß^V""' - cor hi'') 4 ■^rrVx 

in 
^1,, (.„»-....;    -VJVMU^ 

_. VIM - ..• * ir,   •   , ii/l   - n, 

*.\-*H-'^',,+I'^^in»/-ii(M3-u;-v'), i,,h ii/) + 

4-   JM r MM - -'l -t I'l cos v/ ^- 

+ li'(a)3-u;-»')CJ.;i. M'] t- 

H 1     j   (cos v< — cocli MO + •*—"» 

+ /),2<.>>(fosv/-  Cül.MO^O'' I v'XA^-Am/). 

^sK-"1')^05''-^.;;!1''- 
-fl,2<.)>(._vSinv<-|i jjnl.yt)   + 

+ -f-'", • I- uM,- <J; - v'jvlii \i + 

+v(«;~>"5 I i'7)!;lnh NH-r^lM' *? ,^'**<< - 
-(",i~"'p MV™v'l = 

= (11' f-v5HA'',-t 2'<"x\",) 
(5.110) 

Solving   tho   system of  equations   (5.110)   for A   ,   ß   ,   C   ,   D  , 

integrating  the solutions,   substituting  the  resulting expressions   into 
equalities   (5.109)   and  taking account  of   the   initial   conditions   (5.91), 
wo arrive  at   the  following  formula.-   for the errors  ^x and  Ssi 

*'"FTski^fi I ^I11 N-'i- V) X 
KBin)l|l|r- T) | v(...3-wj f n'jslnvf/ -t)|,/T4 

+ PTV' J *"»IM " "'J - vVos "(' - ■>) - 

— ^+^»1 '»".kosh MC - 0 -cosv(/~i)Jrfi4 

(5.111) 
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»*• 

^•2.. 

-l'K-(1)J--v')sinhii'| | 

P+\r J An.lcosh ,,((_t)_cosv((-i):d» + 

I 
— I'("'3 - ""J - v»)sinv(/- »)],/!- 

— v sinhn(/ - ')Ji''-t- 

+ -irv<-.n^-("i"lv' "Vsi■i"1,"n- 

(*^" f-/-Am")2„. 
 l.'PT' ('"»v/- cosh )■/) f- 

 *^ 

(5.111) 
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.))cc) fically,   at constant  An   .   An   ,   Am   .  we will  have; 

X|K-uj4 (i») cos v/ - (^ - ^-v')cosh |i/] + 

X(|.slnv/-v .slnli I") f^')«oSv/-ros|1  „„. 

x(*'"-^),,'>l"v'-v-"•""- 

- ifry.^(t"5v' ~ cos,,'"» f 

1 it * L
A"' t-^^'^'W 

Xlli'H-^-v')«""/ f- 

+v'(...5   i..;+M')coshi"|- 

 JE— i(i((,.'- <r - »'isiin/ - 
IIVCM' + V'; I1 ^ I        >        > 

-v(i,.;-<..;f (i^sin'»!''! 
(5.112) 

Finally,  f the errors in the initial conditions are equal to 0, 

and the sources of perturbation are only the instrument errors of the 

i •.•tonometers and gyroscopes,  wc obtain from equalities (5.101) and 

•102): s.  ,    I 

I K    tj     v)coshi''||4 

+ TT-   -XT, '•      .,      x    T(l' 5i"v' - * slnhl")- K,-■■•;)(^ ! '•;)(" tv) 

«y 

ft.- 

.\nf \- rii| \/i 
'-(U.5..V,/ -   I)   i 

■ bim vA 

— o)J- t^cMK I \("1,    ■■•; i l''i cosh^'l} 
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Relation.'; (5.101), (5.112) and (5.113) enable us to evaluate 

comparatively easily the errors ix, <Sy, 6z  for the case in question 

as  a function of inaccuracies in the initial conditions of the operation 

of the incrtial system, basic instrument errors, and also as a function 

of the velocity of motion of the object. 

Let us turn to the general solution given by formulas (5.111) 

and (5.100).  First of all we note that at w  = 0, when 

(5.114) 

formulas (5.111) and (5.100) reduce to formulas (5.96) and (5.95), 

respectively. 

For formulas (5.111) and (5.100) we can also obtain expressions 

for äx, (5y, 6z  for  the case in which the object is a satellite moving 

in a circular orbit.  In order to obtain these expressions, we must 

substitute into equalities (5.100) and (5.111) the quantity w0 in 

place of u , and, in addition, substitute in place of u and v in 

equality (5.111), their values (5.107).  Ir. this regard, the following 

should be kept in mind.  In formulas (5.111) the denominators of the 

coefficients contain u and cu' - w^, which reduce to 0.  But it is easy 

to see that the nunerators of the same expressions also reduce to 0. 

Therefore, in subtituting the values of u and v it is necessary at the 

sane time to expand the resulting indetcrminacics of the form rr  . 

Wo could do this by means of 1'Hospital's rule, but it is 

simpler to proceed as follows.  Taking 

(5.115) 

whern i '   is jnall, we find from formulas (5.10G): 

(5.116) 
f      .Mr'.  v'...,^ ( ,'. 

Substitutinq (5.115) and (5.110) into formulae (5.111) and expanding 

where necessary the ftUlOtioni of the arguments u(t -T) and v(t -r) in 

series, we obtain for i,3»0 the desired expressions.  Performir.g the 
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indiratod  substitutions  and  the  required transformations,   we arrive at 
the following   formulas: 

i 

bx=--    |A/i,|-   3c.v,(/-t) |-4jln.\)(r   t)|rfi- 
*'• J 
i ' 

—/■jAm,di-t
2  JA«I,|I     cosn,(/-t)lrft4 

u n 

li*4.fMS 

f efti^slnV - iV) t- — (cosoV - 1). 

*>"-»■ Am" 

I 

.:, -f   '-J (An, — ruuAm.jslnüVjC/—t)rft + 

4 r j Am^cosovC— ')^». 

*r = =; /'KH-COS^^- ,)),/, j. 

It ,,,• 

X(l-Cü,.VH «.-"(J - 3a,s..,/) f if!.sl,1(1.,A (5.117) 

Al constcint An , ^n , An . Am , Am , Am , those formulas take the 
*» y ä x y z 

bx m AA" f —- (4 sin ■/ -   |ni) + 

4-CA/'l(sinV-   .v) |  ^'V".,..„/- |)-f. 
t.l0 

■   An, f       M"./^   .   «   . 1 +Tr i 1 *  i "T 
4 '(MIIM,,/ —M,/) (- 

4 j-'-fsimV- «iViO. 
'■'o 

fty = Av^cwir..,/ 4- Ä «in,%/ -) 

4     ^ (An, -- r>.i„Am,)(l — cusc.y), 

Vf.N.'- I rA»IVI 
A/ = - -(I _ ci.s... /) i 

1,1, 

*  ft.-'l I — ICMkvO  f- '■'    'ill   . /   f 

-' *•• ,    . Mw.. -j   -v- (H/ — Jin... /^ |       • 11    - ., . ,, .<, 

forn1.: 

, 

(5.118) 
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towards the north. The projections u and w entering into the 
y   z 

coefficients of these equations are given by equalities (5.36). 

We note that at | = 0, i.e., for motion along the equator, we 

arrive at the preceding case. At v = 0 and | = n/2, i.e., at the poles, 

..juations (5.121) reduce to equations (5.90). 

For an arbitrary parallel equations (5.121) form a coupled 

sixth-order system. The characteristic equation of this system reduces 

to a complete cubic equation in the square of the unknown (p2 = q): 

HH +• ",')'l -'"2('■•2   '"l-"'')(2"'2+•'I-Kl ■0- 

if 

,..J =...J = o. 

(5.122) 

(5.123) 

(5.124) 

then  equation   (5.122)   reduces to the simpler equation 

»'- ki9~H •* 

the roots of which are 

(5.125) 

which correspond to equations (5.90)  to which system (5.121) reduces 

under the conditions (5,123). 

As a result of the continuity of the dependence of the roots of 

equation (5.122) on M and U , in the vicinity of (5.123) there exists 

a region in which 

(5.126) 

such that tho root! of the characteritic equation are equal: 

(5.127) 
wh ere   the  numbers   u. ,   u-,   |i3   arc  real   and  positive, 
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It follows from the investigation of the stability of system (5.121) 

■arried out at the beginning of this section, that equalities (5.127) 

will obtain whenever 

<-4-«>* (5.128) 

Specifically, equalities (5.127) will obtain for the case in which 

the  object is stationary relative to the earth when 

.•here u is the earth rate and if  is the geocentric latitude. 

Let us solve the system of equations (5.121) for the case in which 

the roots of the characteritic equation are defined by equalities (5.127). 

The system (5.121) is of a rather high order.  It is therefore convenient 

fcO solve it using the procedures of operational analysis. 

We will use 6x(p)/ 6y(p), 6z(p) to represent the Carson-Heaviside 

transformations of the functions 6x(t), 5y(t), 6z(t), such that, for 

oxarriple, 

ilM^l t-''t>x(i)äi. 

(5.130) 

Wo introduce, further, the following notation for the right 

sides of system (5.121): 

/i(') — *«j — *",'■ — '■', *••, 

(5.131) 
c.u".  u>-  will designate  their transformations by f 1 (p) ,   f 2 (p) ,   f3(p)» 
renj^ectively. 

439 



Subjecting system (5,121) to the Carson-Heaviside transformation, 

wa obtain the following transform equations: 

-» lMtpll!(p) — /,(P)  {   p^x'+pix* — 

2«f/»6*(;.) ( {p:-i<'l--<l)'iyip)  f 

— 2II),/JÄX(/I) + <■>,•■<,by{p)  J> 

-t (/',:-2u,2-•■';)*'(/"»^ 

(5.132) 

Hero the initial conditions will be quantities given by equalities 

[5,fl) and (5.92). 

Solving equations (5.132) for 6x(p), 6y(p), 6z(p) and performing 

the required transformations, we find: 

+{t,m i /'•v,)r-,"../'0'?-2-:)) - 

-(/,</■»  /"V'H-V.nr I ■•(] r 

( A« /'(/'' — /' (■-  ;*.■•• -.•)..;|- 

- <";.;.■■■>' r C...;  s.-'i] ■ Ay'Vci./il/)^ • MJ-, 

-f M?
 -f '•• i t-c»?ß^i • i-'-' — .'eil r 

+ "J) -H "J -««öW-f-gi t|/1i/') t 
+ /. Ai"|(.v-, (.!/.'-...^ (...; | ,.,;,! | 

■M**»»,H" •■; <••;)/'(/'' 2r,g f 

+ ^"/''|/'1 - /•■■'(",; :■■■.; ■■i-;) - 

-^■■:.  •■■; i'-;) i .■.;.., i ■■■;! f 

i ".•'•••,■ v'C -/-' (-'■••.•: i <"; (";)|. 
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«»(/»-Al^llA^ ♦ ',Ai',||2V('',■* "'3)1 + 
4-|/2(p) f P^W","^!"-^ «■',' +"J)J+ 

+\/,(p) -i p»i'\\p' f P7(H + 2<"; -«5 + 
+ (..>3-o,J)(WJ.-.,.J-u.J)|- 

-ftx'J.y.(uj - nj - cj)(/;+..£)- 

— «A'>i.>i/»
?(A»? f SwJ —(üj-   (,ij)-f 

+ »/V(/>'  l /»7(2»'^2üiJ+3<.i-)-l 

+%'K+3i"J-2<";r+"v, *■'■•;!!• 

where  in  accordance with equalities   (5.127) 
(5.133) 

Nf»-(^ n'Oi/''H^^'-i'I) (5.134) 

Let us convert from the transforms (5.133) to the original 

forms (5x(t), i5y(t), 5z(t). 

Examining the right sides of equalities (5.133), we note that 

they include expressions of the form 

P}        UP)"- (5.135) 

where F(p) is one of the transforms f1(p), f_(p), f,(p) and Q(p) 

is a polynomial of order not greater than the fourth,and expressions 

of the form 

•w-^. 
(5.136) 

whore a is one of the initial conditions ir.xn, (Sy0, cSz", 6x0, <Sy0 , 

6z , and S (p) is a polynomial of order not greater than the fifth« 

But   if 
essß ■/('>■ /(/'i- /</). 

(5.137) 

■•/hero   the   symbol   ■♦"   denotef;   oorrcspondcMice  betwoen   the  pre-image  and 

the  transformation,   then,   as  is well known. 

I UK.'tn I /(')'/(' T;,/t (5.138) 
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Thus, the problem reduces to that of finding the pie-imago of the 

trans forma t ion 

«(;,) - /"*^1L»I/'J.+ *■•'■'.>-*''''j *.£±M 

(5.139) 

in which the coefficients b, may include coefficients equal to 0. 

In order to find the pre-imaqe corresponding to transformation 

R(p)i wo expand the right side of equality (5.139) into a sum of the form 

(5.140) 

Ecjuating the right sides of equalities (5.139) and (5.140), we 

find A. and B..  Expressions for A, and B, are obtained in this manner 

M folJows: 

„ h  MI', H.;.', 
"i = v I 

W—»wi i'1:) 
(5.141) 

Kxpressicnn for h-  and B, may bo obtained from formulas (5.141) 

if ',i.    is substituted for u-,   and vice versa.  In order to obtain A, and B,, 

it is necessary to substitute into tho numerators of formulas (5.141) 

the quantity |il in place of [ij, and to replace the denominators by 

(MJ + M|)X(II| + nl). 

For   tfie  terms   in   the  right  side of   (5.140)   the  conversion   to  the 

prc-inages   is  obvious,   since 

jr ■ ico  lii'j'. 
r -i'i 

jinli iij'. 

p+i'i.j /■ t-i'i.i 
(5.142) 

Performing tho indicated sequence of calculations, we obtain an 

exact solution to system (5.121) in tho following form: 
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«* = /l/i(t)|o„5lii(i1(/- t) f <i„sln(i,('-') + 
0 

4"IJ .sinhMjC     01 ♦ /»(Olnjiosi'iC -') + 

-i a„iOi 11,(1     «)fa;, sinhfiC     '» * 

4/jt')!",,""!'!" -  0 ( o^cosiijC/--i) + 
+ «ii coshlijC - ')l|i'« (- 

■   4».t,i('',ii sind' f «„sin|i,/4-o,, slnlil',') I 

-f 4y'(a,lio«(<iM-«n"'S)i,/ 4(i.,,cosh |ij/) |- 

4 »«"(«ijitiisli,/ f-a^cosii../ -f «„COHII MI') f 

44^(0;, ens ii,/ ( O^COSM/ fajjcosh M/) f 

4»/(o;,Sinn,/ (-^slriM/  t .^ sinhlV) + 

4 «^(«».sliuV )a;;SliMV4ai slnlUV). 
1 

*>■= / l/i(i)l*i|C0>Mi('-»)4*uf0SM,(/-t)4 
0 

4*11   coshMiC— t)| +/,(t)[A,,!in|i, (/—t)4 
4*„sin|iJ(/_t) )-*a gin}, me - DJ f 

4/>(I)I*JISIIIH,(« —t) |-»3jSin,,J(/_ t) + 

4-*u   sinhn,(t~i))]ät + 

+ «^(^,005 11,/  f/■„ir.iiljM  *lC0Sh   Mi') I 

4Ay'(*;i sinMi' 4 *flSiii|i.' f/1,, sinh ,1,/) f 

4Ai,,(*J1siri|i1/ ) ^^inii,/ ) *uSlnh ^j j. 

4 «.«"(A^vn)!,' I ^smii/  f ä;, ginl   |i/)-f- 

4»y"(''>»sM,' I *Jjf"SM/ f Kßlnh ut) 1 

-I ft/'(A;, cos ,■,/-( AJ.COSM,' I Wut(,Bli ,iy). 
I 

1 
t Cudiii.C Til 1 /jMJl^sinM.I' T) I 

4 f^sinii.C 1) 1 f., sinh I'." ')! ' 

4/4(1)1^, MMMiC/  -') )-<-j.''l'|i,.('     ') i 

-t fa sinh  H,(/ - i;||rft I 

4*i',(r,ic"sPi'4 <-i.'"iM;M  '■'•cosli     I',') ■ 

4ft/(f..,SHIM,' t rl;^'H'.i f ^1   sinli;',')4 

-( ^-"(f,, '"M','   t  <,.'ill|r,'  I  tm     sinhM,') ( 

I ^"(^„MIIII,/ 1 <•■,'■,'i"".' I '■,.   cnshM,')-! 

4 «/(<•:, ruMi,/  f-r   ..-|. '  :  1.,   cusll  ,1/) ( 

■) |(*{<^CM|I^ i f ,c.'"iM.' • '„ ccsh |.,') 
(5.143) 

Tho  quantiti'-t;   .   .,   -.?.,   b. .,   b?.,   c.,,   c0-,   arc  exprosr.ed by 
IJ ij 1J XJ X J L   ) 

neans of the   coefiicionts of .system (5,121) and tho  roots of tlM 

characteristic equation (5.127) by the followinq equalities: 
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"     W-i';;',-. tHj' 

«il 
-KM-M) 

0 _ HK^^f-'j -^)-n-;(^—;-^( 

- ?..., Ufej+..;.. »a -,.? H+j+^i 

. I»,^ rl'?) 

*" (.•?-.■;)(..? f ,.3) 

- cV.., M-,..;„.;)-3,.f) 

(i.,'-.go.,'in 

(5.144) 
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Only cightoen coefficients of the 54 entering into formulas 

(5.143), namely the coefficients a.,, aii» bii' bii' cil' cil' 

(  = 1, 2, 3) are written out here.  The remaining 36 coefficients are 

•    tained from relations (5.144) in the following manner.  In order to 

tain coefficients a.p» ai2' ^i?' ^12' ci2' ci2' lll an^ ^2 must change 

aces everywhere they occur in the relations (5.144).  In order to 

ml the coefficients a^T/ a^» ^ii» bi3' ci3' ci3' ^3 must  ^e substituted 

r ki!| and ut for nj in the numerators of relations (5.144), and in 

t o denominators ^(uj - ll|)x(ti| + l^) and uiv^  -  u^^^i  + ^3' nust be 

r. placed by M«(li| + U3)x(;i2 + P3) and (yf + MI)X(|I| + M3) » respectively. 

The solution (5.143) to equations (5.121) is unwieldy and in 

gtnori] difficult to inspect. In addition, we do not have explicit 

expressions in terns of the coefficients of the initial system for the 

root;; ;J,, ;J2, |i. of the characteristic equation (5.122) of system (5.121), 

which appear in solution (5.143).  It is, of course, possible to 

detorminn them by using the Cardan solutions for the roots of a cubic 

..■q.Mtion, but this loads to further complication of the form of solution 
(5.143] . 

5.3.5.  Motion of an object along a parallel at low velocity, 

h ■ solution to system (5.121) may bo simplified to a significant degree 

.issuming that 

(5.145) 

' dition (5.145) permits coverage of a fairly wide class of motions. 

Let us take the error equations in the form (5.28).  Instead of 
rj 12i) wo will thou have: 

6«, ((-; '■'>')JS>', 1 'vv'Vi t W./J ) 
f BM '•f -Arc — Ani r   - i.)f Am(r. 

— ZK^ A.» - An^ ( la f—«L Sm^. 

("    {•'■':, I 'v i «^)*« "V**i 'H,A;I * 
-I M, Ay, i .'.1, Ay,  A'l, I Jr (..i, V-i, ( '.>,, A«J ( 5 . 1 4 C) 
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t muum MI i 

Equations   (5.121),  we recall,   are written in terms of projections 
on the axes of  a moving trihedron oriented  to the points  of the 
compass and on a sphere surrounding the earth.    Equations   (5.146)   are 
also error equations  in  terms of projections  on the axes 
of a moving    trihedron,  but such  that the projection of 
the absolute  rate of its rotation around  the  z  axis  is equal  to 0. 
This trihedron was termed above a  free-azimuth trihedron.     In order to 
distinguish  it from a  trihedron oriented to  the points of  the compass, 
we will designate it here by x.y^z. 

If  trihedra xyz and x.y.z coincide at  the initial moment, 

their relative  position will afterwards be determined by the  following 
table of direction co   ines: 

■»        y     ' 
x,       cos if    •UM'    0 

y,    — slniji   cos if    0 

2 0 0 I. 

(5.147) 
The angle  $ is  found  from the condition 

■{-%+♦-« (5.148) 

and  therefore 

»—/«** (5.149) 
9 

In accordance with  table (5.147) we have: 

ij-, mtottMl t 'O'^'i'l'.     'Vi Ä.v sinij   | A_vcnsi|'.  1 

w,, — in, cüs i|" t i^siri'j',      *•')■, 7~   -(ti, siipj  f Mytostj-   | (5    150) 

Analogous formulas relate the errors An , An , Am , Am , to the 
x   y   x   y 

errors "n  , An  , Am  , Am  .  In addition, it is obvious that 6z, 
xl   ^1   xl   yl 

riz' r'mz'   ^n c><Iuations (5.146) have; the same significance and value 

a;; in cquutionr, (5.121). 
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E«—^—iiiiM  mm 

Therefore, if in equations (5.121) the projection H is equal to 

0, and u and w are constant, then H  and H  in equations (5.146) are 
y     z xl     yl 

functions of time.  Since tu    is  constant, it follows from formulas 

(5.149) and (5.150) that these will be periodic functions of time. 

Therefore, at first glance we have only complicated the problem by 

moving from equations (5.121) with constant coefficients to equations 

(5.146) with variable (periodic) coefficients. 

However, closer examination shows that this is not the case. 

The structure of equations (5.146) differs somewhat from that of 

equations (5.121).  The first two equations (5.121) contain the deriva- 

tives  Ax and 6y, but the first two equations (5.146) do not contain 

the derivatives bx,   and 8y«. The coefficients of <5x and 5y in the 

first two equations (5.121) contain »*.  The quantity w_ may be z z 
quite large  in  the case of  an    object moving along a  parallel   close to 

low velocity,   as  follows   from expr 

jl,   the quantities  w'   ,  »•   ,   »    M 
xl       yl       xl  yl 

a pole even at  low velocity,   as  follows   from expression   (5.36)   for  6   . 

In addition to  ui,   the quantities  w*   ,  u2   ,   M    H      are the coefficients 

of   tx,   and  Ay,   in the   first   two equations   (5.146).    They are  always bounded 

in  absolute valur .       Specifically,   in the case of motion of an object 
along a  parallel,   if  condition   (5.145)   is  observed,   the  following 
equalities  obtain: 

•<»<• '■C'",',-  "!•-I'V"..! (5.151) 

The coefficients of the system (5.146), of course, implicity 

contain ■■ .  It enters as a multiplier into H  and u  , as can easily 
z xl     yl 

• • 
be soon by difforentiating.  But w  and w  enter into the first two 

xl yl 
equations   (5.146)   only  as coefficients of   Sz,   and  into   the last 
equation only   ar  coefficients  of   Sx<   and   t<iy1 . 

These characteristics of the  utructure of equations   (5.146)   and 
conditions   (5.145)   permit us   to separate   the  last  equation of   (5.146) 
from the  first   two,  by  representing  it in  a   first approximation  as 
follows: 
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«i-2<.>;67-^\«, f 2fc,y\mx. (5.152) 

Then, ignoring in the first two equations (5.146) the terms 

containing quadratic functions of the projections w  and w and 

moving to the right sides terms containing 6z and &i,  we obtain 

equations for the determination of 6X, and 6y1  in the following form: 

— M,, kz — SHI,, it, 

-f-i'i,,«/ -)-2ci),,Ai. 

(5.153) 

The quantities 6z  and 6z occurring in the right sides of these 

equations may be found from the solution to equation (5.152). 

Equations (5.152) and (5.153) correspond to the following simpli- 

fications of the system (5.121).  In the left side of the last 

equation (5.121) all terms containing the multiplier w are discarded, 

and it reduces, thereby, to equation (5.152).  In the first two 

equations (5.121) terms containing 6z and 6z are moved to the right 

side, and, in addition, in the coefficient of 6x in the first equation 

u;' is considered to be small relative to w? - w' and therefore ignored. 

The first two equations (5.121) therefore take the form: 

ti+H   ■■,;')Ay f 2.../V ./,(o mj^tt. 

(5.154) 

where f,(t) and f-(t) in accordance with definitions (5.131) are 

the right sides of the first two equations (5.121). 

Change of variables in (5.149) and (5.150) reduces this system 

lations (5.153).  Therefore, at 'ü =0 equ. 

(rj.l5'i) correspond exactly to equations (5.121) 

to equations (5.153).  Therefore, at tt    ■ 0 equations (5.152) and 
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It should be noted that the transition to the simplified equations 

(5.152) and (5.153) is also possible for arbitrary motion of an object 

at a constant distance from the center of the earth, and not only for 

motion along a parallel at constant velocity.  This follows from the 

fact that inequalities (5.145) and (5.151) remain valid for variable 

x'  y'  z 

Comparing equations (5.152) and (5.153) with equations (5.90), 

corresponding to the case of a stationary object, we note that they 

differ only in their right sides.  Therefore the solution to these 

equations may be obtained by analogy to the solution (5.95) to equations 

(5.90). 

Introducing into the right sides of equations (5.15 3) the 

notations 
§m—tm.f- '•',,*'"/    /',(')■ 

.'5.155^ 

wo obtain the following formulas for the solution to equations (5.152) 

and (5.153) : A;n 

4"5  f|/|W—%*Mt)      -'"')|A.:(i)jMr,Mc,(/-i),/i. 

Iff ■ dWCMnJ  (  —'-'.mi;t f 

I 

} — \ U^U H'VMO f :VI,/I.:(I))MIJ,..((/..   T)./t. 

-f.sinh  tnYii t- 
I 

(5.156) 

v/herc f^ dosignatcs, in accordance witli the Jast equality (5.131), 

the right side of equation  (5.152). 
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In order to convert from the errors ^x, and 6y. to 6x and 6y, 

formulas inverse to formulas (5.150) must be used: 

6y  s   -Ar,sin(n,^ ( *>•, cosm,/. / .,. ICTV 

Multiplying, in accordance with these formulas, the first equality 

(5.156) by cos IO t and the second by sin u t and adding, we obtain 
z z 

expressions for 5x.  Multiplying the second equality (5.156) by 

cos H t and subtracting from it the first equality multiplied by 

sin ~_t, we find 6y. 

Performing the indicated operations, we arrive at the approximation 

formulas: 

+-- l(A>-u,A/)co5i../ fCAyH«.',A.»»)sin(.>,/) sin V +- 

•   "♦" Vv J '^ ~ ^ *'•u>,"«" ~ '' f" 
u 

+ (/» — w,<i>,Af)siri<.),(/ — ,)| tmu^U — x)dr, 

*)' = (Ay^ cos (ii,< — AJC" Mn i,,/) cus «V -( 

+ -t(A>'n f «•<1A.t'')c<)s.,i//-(Ai»-(„/Aj/')sln<.iJ/lsin<,n/ f 

4(/1-oy..1A2)io5w/(/- Olsinc^^— T)./t. 

(5.158) 

whore  the quantities  6z  and  S| entering into the   integrands are 

Jotormined  from the  third  formula   (5.156). 

For constant instrument errors,   recalling  the  value of  f-, 

wo  obtain; 

A/^6/o CMh itlf« f-^Ltlnh^1^«4 

+■ ff—L*«»«*%l^'^»). (5.159) H 
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•«f««utta, of tMs formuia yieids: 

(5.160) 
These values of   5Z   -nH   A: 

integral, ,Ie  requlre<i h'rei 
PrOSSl0" «"^f»«-.     Tho  foIl„„ing 

I 

4=7U 5""'''lüSM''-^„,/iln(,)j,j 

^/Sl,lK,'J—"    - u.   ^, 

/,-fsinh „. .A-, '' 

-fin5&^    .,,'.,_, ^us^(^v. 

-(■■''••.;-'..'ji..5,Vl„S(.,/ 

'Jrft-= 

(5.161) 

451 
: 



For the sako of  further  simplification of the  form of solutions 
(5..58),   we will confine ourselves  to the case  in which,   in addition 
t<   condition   (5.145),   the   following condition obtains: 

4 (5.162) 

We may then take: 

/, ^a cm f'iYsiii(.i7. 

/,•-= J_f.'ffil sInh    •'„ /h + CUSCH/SIPIO.,/) 

(5.163) 

In   the  fourth and  fifth equalities   (5.163)   the   terms    "z   cosh 
I/a» 3wo 

UQt^St" and ^ sinhuj-.^Jt appear in the parentheses.  They contain 

the small multiplier u  ,  but as a result of the rapid increase of the 

hyporholic sine and cobino, they are significant. 

Substituting expressions (5.159), (5.160), and (5.163) in 

formulas (5.158) and once again taking into account inequality (5.162), 

we obtain the following approximate formulas for Sx and 5y: 

-r ~       ^—   (1   - com,/tos w^)— 

An,  -TO, \mt ■   ,.., v,,^ 
CMI^ftblt^ — 

^Kl#. 

(5.164) 
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^i^-i^cosh    '^' * —pj sinh  ■■\lV
r2/j + 

liCgygt C..J uv,^ sin M./ + 

^ Ü ü—j^! J '(I -losWj/toscV) + 

(5.164) 

5.3.6. The case of an object which is stationary relative to 

the earth.  In order to obtain expressions for the errors 6x, 6y, 6z 

for the case of an object which is stationary relative to the earth, 

the values of u and ü)Z give by (5.129) must be substituted in 

formulas (5.164) and (5.159). 

The approximate solution to equations (5.121) consisting of 

formulas (5.158) and the third formula (5.156) may also, of course, be 

obtained by direct simplification of the exact solution (5.143). We 

will .show this, limiting ourselves to the case of an object which is 

stationary relative to the earth. 

In this case, in the characteristic equation (5.122) the quanti- 

ties » and w must be replaced by their values (5.129) .  Due to the y     z 

fact that u2  is small relative to w', the value of the root q, of 

equation (5.122) is close to that of 2WQ, and the roots q, and q, 

approach UJ'.  Therefore, taking q^ = 2a.'' as a first approximation and 

applying twice Newton's method of approximation to a root, 

we obL.iin   accurate to within  terms of the order U*/ttl  inclusively 

7j=i2.,)u'~4«»coS'.p--^;-.'-'' (1 ~IM##    (5.165) 
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Equation   (5.122)   now reduces,   when divided by q 

quadratic  equation with the roots 

»l.J = -ua'-"'(1  -|c<)s'.r)+-!^j
,J,-r-(4.-5Sl1i'(r):t 

qj»   to a 

Now,   according to equalities   (5.126) 

(5.166) 

If  in equalities   (5.166)   only  terms of  the order  u/w.  are 

retained,   i.e.,   if we assume that 

Vi~t>\)V2-    Mi, j —('\):F«sliHp. 
(5.167) 

then  the coefficients  a..,   b..   /   c..   of solution   (5.143)   take the 

following  appro>:irr.ate  values:     ''u53-0. ";., — 0'0i]~n-"Sa2^ 0'''i.i~0'^;M "  0'*aiKr C 

^,^0, A",---0. /.",=-=-0. f,3=-0. r?j^0. f,)i=  0. c3, = 0. 

1 I 1 urnscf 
(72,=-—, n2..-= -—-. nii—nu---—, n,,^« j^—-^, 

2..'0 H 2...,, M 

o" . 1 I ■ n I n „ Vu CO* if 

"SI1- 2*   "Ji f   "11 """H   " ■>"•   ".H 

4»  i '!>»(( 

*„=/.„.       __,/),,— ^|2_:_, 
2'i'n 2"\, 

•'"'ll IMS 

• 0 .0 I        .0 1        .i' i 
*3i — f»« -   - -jj • *" ■" k > "i-' •" - V 

e„ mm ~—   ,'  , r. 

r?3          

» rnsif 

a ■. tm 
V) 

':.■ 
It I <)S ') 

i 

•■v s H,l   J 

,fP   __ ,0 '""•'I      ,i, 
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M rns if 
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It  is  evident  from equalities   (5.168)   that a large proportion 
of the coefficients ofsinhii^t andcosh n-t in formulas   (5.143)   are 

equal   to  0  in the first approximation.     But since  these  functions 
rapidly  increase in  time,   it  is  necessary to determine  the magnitudes 
of  their coefficients. 

If  in expressions   (5.166)   for  the  roots of  the characteristic 
equation we  retain quantities of  the  order u'/w»,   then we may determine 

the first  terms of  the expansions   in U/üJ0 of   the coefficients b,,, 

b13'   b33'   b33'   ■lj< '13' '23'      23'   "IJ*   ^13* They are! 

*.!=   " 
10»' «In T ens' | 

27o,J 

C«1 sin if tos if 

M 
til'Hit'If 

lOu' pin if co»'if 
«» =■ - ' ^TT • Ü7W, 

«13 
S«' sin if cos if 

" Bi/VJI      ' orz-j 

.o         lOu'slnif cos'ip 

""-  iljj  
.n       Su' sin if cos if 

*MS=—S|— 
i) 40* rn^'if 

013=—TTT--' 

mf 

i) fkm 

N 
8«' slnif cos'9 

27^)        ' 

7W1 sin if COST 

(5.169) 

In order to determine the remaining coefficients it is necessary 

also to retain in equalities (5.1^6) quantities of the order u1*/^!, 

i.e., to take expressions (5.166) in their entirety.  Substituting 

the latter into relations (5.144) gives: 

. — J.1)«'".In'ij fs'if      .o 3.Sii' sin'if cos'ip 

*»=—ETHj—'  J1== ^^ 
f)\ -= f« • - 

JH1 ros' if n          n              4«'ens'if 
* -0: = r?— (5.170) 

Further  simplification of  solution   (5.143)   may be based on  the 
following comiderations.     We will  consider that errors  in  the  intro- 
ductlOB of   the  initial conditions,   i.e.,   the errors  iSx",   ay0,   6z0, 
5x*Aui   Ay0/1'«»   rü0A)0/2 arc quantities of  the  same order.     We will 

also considur  fjA'Q,   ^2^''Q'   *3//2'')0  as beincJ 0^  thc same order  relative 

to one another and  relative  to errors  in  the  initial  conditions. 

455 



The asBumptionr. made with  roqard  to  the  initial  conditions  and 

the perturbing   influencos  enable  us   to retain  the properties of 

solution   (5.143)   which are  required   for the evaluation of errors  in 

the  functioning of  the  system,   leaving  in  it only a portion of  the 

coefficients  of  the  first and  second  approximation,   namely: 

0|i> Ott, 031, a)], (ijj, On, H'I'J, a^ii "»i oiu bn, bit- 
*lli b». bit, bti, Ciy Cu- 

In  this  case   the solution take the   form: 

6*=i J i/i(T)is|,|i,i(/-^+slni,2(' -'»i- 

— /, (1) [cos |1, (/ — T) - cos p^/ — I)]) ,/T - 

H   | 
-f *^(cn.s|i,' | C0S|l/) ^.^'(s,,,,,^.! sinp.o-f- 

-f ■^(slnii,^—sln|ij/) ( ^-(-cosn^-f C()s|i,/i- 

_ ft^o **•]   ,mj - Ai" tSULm , A 

f 

fi>'= 2^ J (/»(OIsI'MhC- 4 I Mn|i2(/- i)If 
I 

+ /i(t)K"''l';(/ - t)-  tcs!!,(/-T)))(/t  |- 
f 

.    Sir Mut cc>si(    f   ,  ,  , .. v., 

■ • i ",J    ■ 

+-^-(c'M'i' | trntf) |-r.VM'ii'i'f siii|i./i h 
^ ^"'ii 

•f—(     Mll|l,/ | SillpV)  (   1,(-(COS|'l'- l,,sl1.'1 f" 

■    .'H'.'.IIHIM (isn   /',   , Ar° 

I ItSmjtj •■ 
I'lg I 

"hllj' 

nhjl   tt 

wh^r^ according   to equalitien   (5.167): 

(5.171) 

^-"SiV'J.   M,  -ov - ""•I'l'l.   I'i ■--■ ^ \-"''""¥ (5.172) 
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The approximate formulas (5.171) aro equivalent to the approxi- 

mate formuiar, (5.158) and (5.156).  With constant instrument errors 

this is easily shown to be the case if in place of f., f-, f- in 

equalities (5.171) their values (5.131) are substituted, and in place of 

M|< li.i P3 their values (5.172),  and also if expressions (5.129) 

and H and the condition of the smallness of u2 relative to 
y    z 

8 taken into account. 

§5.4.  Integrating the First Group of the Error Equations for the 

Case of Keplerian Motion. 

5.4.1.  The possibility of integration.  As has already been noted, 

in the case of the first group of the error equations (5.1) may be inte- 

grated in quadratic forms.  This possibility derives from the following 

circumstances. 

According to vector equations (5.17), the following vector 

equation corresponds to error equations (5.1): 

''*>• 1 I ..   Mr 1 (r Ar) 

• ttt   ' ' ' -    ji   • 

(5.173) 
A« *.xf+rxi£, 

The last two terms on the left side of this equation are simply 

■■f -—) , i.e., equation (5.173) is equivalent to equation 

Lot us consider the homogeneous equation (5.174).  It may bo 

represented in the following form: 

(5.175) 

But aquetion 

> • fr'-« 
(5.176) 
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is  the e-juation of motion of a point of unit mass moving in a spherical 

Newtonian gravitational field, i.e., an equation of Kcplerian motion. 

Therefore, the homogeneous error equation (5.175) is a variation of 

the Keplorian equation (5.176).  Here, of course, it must be kept in 

mind that the sensitive masses of the newtonometers must be considered 

to be located in the center of mass of the object. 

The general integral of equation (5.176), containing six arbitrary 

constants, is known. According to the Poincare theorem , the independent 

partial solutions to equation (5.175) are found in the form of the 

derivatives of the general solution to equation (5.176) with arbitrary 

constants, which permits us to find a general solution to the homo- 

geneous equation (5,173), which is also in turn a funtion of 

six arbitrary constants. 

But equation (5.173) is a linear differential equation with 

variable coefficients. And if the general solution to a homogeneous 

linear differential equation is known, then the general solution to a 

non-homogeneous equation in quadratic forms may be immediately obtained. 

The Lagranje method of variation of the parameters of the general 

solution to a homogeneous equation may be used for this purpose. 

Let us consider the following.  If the sensitive mass of a 

newtononeter is located in the center of mass of an object in Keplerian 

motion, then the newtonomotcr reading is clearly zero. However, 

analysis of the error equations for this case is not without signifi- 

cance.  This is because the solution to the error equations for 

Keplerian motion in the first approximation will simultaneously be 

the solution to the error equations for motions differing slightly from 

Keplerian motion:  deceleration in the upper layers of the atmosphere, 

manouveriny of an orbital spac; vehicle (with small thrust), ecc. 
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5.4.2.  The basic characteristics of Kcplorian motion.  Before 

moving directly to solution of the error equations for the case of 
10 

Keplerian motion, let us recall certain of the properties of this 

motion which wo will require below. 

As haa already been noted, Keplerian motion satisfied the vector 

equation (5.176), which corresponds in its projections on the K^, 

n*, C« axes to the three sealer equations: 

U %-'>■   <^7    "■   tH "k-0' (5.177) 

Equations (5.177) have six independent first integrals, which 

define the general solution to these equations. 

Three of the first integrals are called space Integrals.  In 

order to obtain one of them, wo multiply the second equation (5.177) 

by r,^,   and the third by n», and then subtract the second result from 

the first.  We then obtain: 

Ü-U -»C*Jt,-Ul ('1.V,     'I.I   "■ 

(5.178) 

whence, 

'U, öi. <-, ••••* (5.179) 

The other  two  integrals of  this  form are obtained  in a completely 
analogous  manner.     Combining   them with  integral   (5.179),   we  have: 

Specifically,   it  follown  from equalities   (5.180)   that  the  tra- 
jectory which  is   the  solution  to equation   (5.177)   is  in a  plane passing 
through   the center  of  the  earth.     Indeed,   multiplying  the   first of  these 
egualitier, by  r^,   the  second by  nA,   and  the  third by  f*   and adding   the 
rosultr.,   wo  arrive   at   the  equation of  a  plane 

'■:.fo.i.f^0. CimJ 

pMslng  through  the  center of  the earth. 
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Integrals (5.180) may also be obtained in a somewhat different 
-♦■ 

manner.  Multiplying equation (5.176) by the vector r, we find: 

r*9~'r\'*Tr}m% (5.182) 

i.e., 

rX#»* (5.183) 

The projections of the vector c defined by equation (5.183) on 

the .r#, n*, C* axes are equalities (5.180). Thus, the first integrals 

(5.180) derive from the moment of momentum theorem. 

The quantity 

"S-rX.lr (5.184) 

is, as is well known, the oriented doubled space of the trihed- 
-*■      -> -*■        -* 

ron formed by the vectors r, dr and r + dr, or, equivalently, the 

oriented doubled space of the sector marlced out by the radius vector 

r during the time dt.  From ecualities (5.183) and (5.184) we see that 

A-i«Mi. (5.185) 

The next integral of equation (5.176) will be the energy integral. 

In order to obtain it, we perform the sealer multiplication of equation 

(5.176) by dr/dt: 

rfV    jlr   .   |ir    it ~o 
•II'' '  Jf   ' >'"' ill   "   ' 

(5.186) 

Introilucing v  = dr/dt,   we   find: 

./(",') i-';:■-"•    " (5.187) 

The second   term on  the  left  side of  expression   (5.187)   is  the 

influence of gravitational   forces on  the displacement dr.     Since  the 

gravitational  forces arc potential,   this  influence  is equal   to the 

differential of  the   force function V of  the gravitational   field: 

■£'"    '"■   O (5.188) 
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Therefore, instead of relation (5.187) we may write: 

The integration of this relation is the energy integral: 

V   r (5.189) 

For the further integration of equation (5.176) we will make use 

of the fact that the solution to this equation is a plane curve. 

Let us place a right orthogonal coordinate system 0 £ 'n 't ' in 

the piano of motion, with the I. ' and n ' axes in the plane.  Let us 

further introduce the right orthogonal system O.xyz.  Let us superpose 

its xz plane on the V if   plane, and let us direct the z axis toward 

the moving point 0 (along r), and the y axis along the r'    axis.  The 

position of the coordinate system O^xyz relative to the 0.^ n' ?' 

systcn is then defined by a single angle o in accordance with the 

table of direction cosines below: 

I' -sdio 0 coso 

>)' tdso u siiiu 

P I        I       0 

According to tho definition of the orbital trihedron xyz. 

(5.191) 

In order to obtain the .solution to equation (5.176) wo must, 

clearly, express r and o as a function of time and tho initial condition:; 

llo./fvnr, it is simpler to first express r as a   function of the angle 0, 

i.e.,   to  find the orbit equation. 

Taking the second equality (5.191) into account, tho space integral 

(r>.l?ir)) is expressed by tho equality 

''" =r   -ccinsl 
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On the other hand, from relation (5.189) we obtain: 

(5.193) 

Let us convert from the independent variable t to the dependent 

variable o by rewriting equation (5.19 3) as follows: 

T i/o ill m      r< ilo  dl  ' (5.194) 

Eliminating the case in which 

da 
di 

(5.195) 

i.e., excluding the case of motion along the radius vector r, we 

arrive at the equality 

■J do (5.196) 

Let us  further express v2   in terms of r and a.     In order to do this we 
will  use the second equality   (5.191)   and the space integral  in the 
form   (5.192),   from which  it  follows  that 

*-$\[Wf+'\ (5.197) 

If we now substitute expression (5.197) into equality (5.196), 

we obtain the differential orbit equation in terms of the coordinates 

r and a; however, in order to obtain it in its simplest form, it is 

useful to convert in formulas (5.196) and (5.197) from the variable 

r to a now variable 

i 

(5.198) 

Performing  this  conversion and  sjbstituting expression   (5.197) 
into   (5.19G),  we arrive at  the equalitv 

/ I/'I. (5.199) 
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Assuming that 

(5.200) 

i.e., excluding a circular orbit for which 

for the general case of a Keplorian orbit we arrive at the equation 

(5.201) 

from which the variable u is easily foundi 

i , - /l, ms n — /1; sin (l. 

Introducing now the new constants 

(5.202) 

'-   , (-'IM^'      . 4 
w    • r '   "-t, (5.203) 

and converting from the variable u again to r, we obtain 

tmr=n&w=9' (5.204) 

It is known from analytic geometry that equation (5.204) is 

the equation of a conic section in polar coordinates, with the focus 

of the noctiop as the origin and the focal axis of the section as the 

anqlo between a. and the r,' axis. 

The quantity p -- the focal parameter of the conic section -- 

is equal to the length of the radius vector of the orbit directed 

from the focus perpendicularly to the focal avis.  The paramfiter p 

defines the linear dimensions of the orbit. 

The quantity e is called the eccentricity of the orbit and 

dotr-rmines its form.   For •<! the orbit is an ellipse, ono of 

whoso  foci   is located at the center 0. of the earth; for e>l 

wo have a hyperbolic orbit, and for e = 1 a parabolic orbit.  If wo 

use v0 and r" to designate the initial velocity of the object and the 

initial value of r, then the form of the orbit will be entirely 

determined by the quantity 

•-#. (5.205) 
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characterizing the relation between the initial kinetic energy of the 

object and the work which must be done for it to recede,  to infinity. 

when 0 < k < 1, e <1 always 

when k = 1, e = 1 a1wave 

wl en  k > 1,      e >1  alwayr. 

We note that if the initial point of the motion (the starting 

point) is located on the surface of the earth, then the speed of the 

object corresponding to the value k = 1 is usually termed the second 

cosmic velocity; the term first cosnic velocity denotes the velocity 

required for the object to move in c circular orbit; this velocity 

corresponds to the value k = 1/2. 

We will confine ourselves below to the most practically interest- 

ing case of an elliptic orbit, i.e., for e<l.  We will designate the 

large semi-axis by a and introduce the notation. 

w -- <i — o. — n 
(5.206) 

(in celestial mechanics the variable v is termed the "true anomaly"). 

FormuJa (5.204) now takes the form: 

«(I -V) 
'^T+Ti^V (5.207) 

The angle CJ = TI + a. defines the direction to the perigee 

of the orbit. 

In order to finish the integration of equation (5.176), it is 

sufficient to find a or, oquivalontly, v as a function of time t. 

From formula (5.207)tne space integral, (5.192) and equalities (5.1206) 

and (5.203) we have 

.'- 
tr = i-£~r (I i-rutiV)'. 

I-'(1-'»I' (5.208) 

Separating  variables and integrating,  we obtain: 

•Mi   7F*    V   j vWm»*f' (5.209) 
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whore  t0   is   the  time  at which  the  object passen   through  the perigee 
of  the orbit. 

We  transform  the  integral  in  the right  side of equality   (5.209) 
by converting  from  the  true anomaly v to  the eccentric  anomaly E 
according  to the  formula 

Since it  follows  from formula   (5.210)   that 

•"' - r=7snr • ' -r '"■"'—, (-^z • 

equality   (5.209)   takes   the   form: 

(5.210) 

(5.211) 

(5.212) 

Performing the integration on the right side of the resulting 

relation, we arrive at the Kepler equation 

n. 

relating  the eccentric anomaly E to  the mean anomaly M. 
(5.213) 

Noting that,   tailing into account the  second  equality   (5.211), 
formula   (5.207)   may be written in the form 

and   introducing   the   following  notation  for  the  pcridicity  of   the 
motion of   the obioct  in  its  orbit 

KS 
(5.215) 

wc;  arrive  at  the  following   formulas; 

M-~\(l-   /i)) I ^'o. 

v~i> 
/:•   f.m/-   -M. 
r     nil      < cos/.). 

n   -1' I M. 
(5.216) 
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In order to solve the third cf these equalities for t, i.e., in 

order to solve Kepler's equation, the usual procedure is to expand 

E - M = esin E in a trigonometric series in sines whose arguments 

are multiples of M: 

E-M^Zat^hM. (5.217) 

The possibility of this expansion derives from the fact that 

E - M is an odd periodic function. 

The coefficients of the expansion (5.217) are calculated from 

the formulas 

a, ^ | ("(/T- M^inkAUM. 

Integrating  expression   (5.218)   by parts,  we obtains 
7 

(5.218) 

«.^ 

(5.219) 
The   functions 

-(f-j«)ios*.lll   -J tos* II</(/;-  .«)==. 

J| J tmtMtKm ~ J <.n%k(V.-n\nl.)ili. 

■/»(A) • -   J u.s(ny      .tsiriy)r/y 

v.-cre used  for the solution of the Kepler equation by Bessel and 

bear his name.  According to the definition of these functions, 

<.,== J ),K«n.   r    H | »Yityä.»!«»«. (5.220) 

Returning to the Kepler equation, we obtain: 

„„,; »VA£1.*W1 (5.221) 
i i 

Formulas (5.216) define the motion of the object in a plane 

orbit.  Thoy contain four arbitrary constants: t0, e, a, w.  The 

general solution of equation (5.176) should contain six arbitrary 

constants.  The two Missing constants should be supplied by the 

definition of the orbital plane relative to the coordinate system 

fixed in inertial space. 
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In cnlostial  mechanics  the plane of an orbit is usually specified 
by  the angles Q and i  in such a way  that these  angles,   together with 
the  angle v + a),   form a system of  Eulor angles.     However,   in the 
analysis of equations  in variations Euler angles are  not always con- 
venient.     We  therefore define  the  position of  the orbital plane,   i.e., 
the  plane  f/n'»   somewhat differently with regard  to  the coordinate 
system 0, f^ii^c* •     For  this purpose we introduce  the  angles   a and ß 

(Fig-Te  5.3).     The orientation of  the coordinate system O.^'n'C' 

relative to  the coordinate  system O.^n*^* is  specified by  the following 
direction cosines: 

V          'i' t' 
I,            cosp             0 slnfl 

t|,       >lnuiln|l MM —slnncosp 

C,    —cosuslnp «Inu cosiunsp. 
(5.222) 

According  to  table   (5.222)   and  the definition of  the angle n , 
wo obtain  the   following  formulas  for  the coordinates   f.#,   n*,   C«l 

i^      r(cosn:,iiiusinf.  ( «IniTco^d), 

{, = r(— fosdcosasliip |-:.(ti<i *IIMI) 

Thu.s, the solution to equation (^.176) will be the vector 

(5.223) 

r=-U I'i.M. >«.. (5.224) 

dofinod by formulas (5.223) and (5.216) and a function of six arbitrary 

conotants: a, 3, w, e, a, t_. 

Figure 5.3. 
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Henceforth wo will consider the object to be moving in the plane 

f,tn#  such that 

a-fi ~- 0. (5.225) 

We now proceed to the solution of the equation in variations 

(5.173). 

5.4.3.  The integration of homogeneous error equations,  The 

vecto   juation (5.173), projected on the x, y, z axe«? of the orbital 

trih ■• i, results in the following system of equations: 

tx -f T r - «jj AJ: -)- i>, «* 4- l'w, 6i ~ 

= An, — 2\mtr - ,\m,r, 

6jr-f -"J tiy — A«, -)- 2 Am/ \ i\ri,r - ••<, Am^, 

Ü - &  f ..>,') Az -.;., ix - *.*, A.v -= 
(5.226) 

The coefficients of equations (5.226) contain, in addition to r, 

the quantities r and H .  Theso may be found from formulas (5.216): 

r a--,--       sint'.    v.   - n ■--1'— v I I — r-    — 
I  I      r' ' ' r> 

where   J   is defined  by ctuality   (5.215). 
(5.227) 

The system   (5.226)   breaks  down into a second order equation  in 
6y  and  a  system of   fourth order  equations  in  -Sx and  6z. 

It will  be more convnnient  below to  represent  equation   (5.173) 
in  tormr,  of projections on  the x,   y,   z  axes  somewhat differently  from 
(5.22G).     In order  to obtain  this  representation,  wo   introduce  the 
followinq  change of  variables   in   equations   (5.22G): 

jr,-=A.r.    jr, - iV, 

jr, - Ay.    .i-f, ■ ■ A-,, 

(5.228) 
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The introduction of the variables x, into the first and third 

equations (5.226) gives a system of fourth-order equations written 

in the Cauchy form: 

•*i = —"V» I ''i- 

i,^ -...,*,- ^-x, f .\n,  - 2.\mr;- Amrr. 

and from the second equation (5.226) a system of second-order equations 

is obtained: 

jrg = —'j .^-(-A", (-SAm.r )-Am^r — i», Aw,f 
(5.230) 

In equations (5.229) and (5.230), in accordance with (5.228), 

the variables x,, x,, x,. are the projections of the error vector fir 

on the x, y, z axes.  The variables x,, x4, x, are the projections on 

the same axes of the total time derivative d'r/dt of the vector 5r 

This is easily seen by noting that 

'"    ' (5.231) 

and recalling that x,, x,, Xr» are the components of 6c along the 

x, y, z axes, and that only the projection ID of the projections of 

the absolute rate of the rotation of the trihedron xyz 

about its axis is different from 0. 

As was noted at the beginninq of this section, according to the 

Poincare theorem the partial solutions to the homogeneous equation 

in variations (5.173) or, equivalent]'/, equations (5.229) and (5.230), 

will be the partial derivatives of the solution to equation (5.176) 

in arbitrary constants, i.e., the partial derivatives of the vector 

r, defined by equalities (5.224), (5.223) and (5.216) in terms of 

the constants a, ?,,   u, e, a, t«. 

469 



Differentiating the vector f with respect to these constants 

and takinq into account equalities (5.225) we obtain: 

w 
or 

r(CMV<MII  - tinV sillID)>I. 

rti      ,   ör 

.V 

/♦»i iir 

(5.232) 

where x, y, z are the unit vectors of the corresponding axes 

Perforrring the differentiation and simplifying as required 

[using relations (5.216)), we find expressions for /•-£-./• — ./--. r--, it 1 OT,  N  at      au    ui i • 
Or     or in the following form; 

HI, 

vi(I   I .   , i) 

ill 3v ((--/.,)    ,    . 

*■ «ilmMl1 • »CM») 

'£ ■~ r. 

— flf\   Mt  1' 

r 
1 

IV 

,ir ^  - flCttiV, 

,<r 
0. 

(5.233) 

It is convenic it to take as independent solutions to the 

homoyiincous equation (5.173) specially selected linear combinations 

q. of the derivatives (5.232) of the vector r: 

9i 
,'r                   1   * 

«. 
1          nr 

.j.'i'     «'/■     
--' rr 

»i ' 
1 _w 

' il   M ' 

«i 4(5^"-$* 0%t ■I- 

V. .li;;; ;;; :•■ 
,l 

(5.234) 

470 

J 



Takiny into account relations (5.233), the expressions for q. 

take  the   form: 

a -       3v('     M(l  (-/rcni.) 

2-(-/COJI' 

-I- I- _ 3* (' ■   >«)» 'In K 1 

«'   r^^^^5in"■t^cos,''■ 
2 -f » cou> 

V» —— sini'y 

(5.235) 

(5.235) 

We will use p. to denote the total time derivatives of the 

vector q^  Then, taking into account relations (5.227) and the 
obvious equalities: 

^r-0.    ft, -..-,'• ,?--'-«v. 

We obtain from relations (5.235) the following formulas for p. 
(5.236) 

V    « / # t- CO' V \ 
p, = 77!= I— .« — Ml Ml. 

"      I'l-»' t  \\   ffCOff / (5.237) 

(5.237) 

The vectors q. and p. form the system of integrals of the homo- 

gencous equation (5.173).  The projections of the vectors q,, qj, q,, 

q., p, , p2, p3 and p. on the y axis of the orbital trihedron are 

equal to 0.  The projections of these vectors on the x and z axes 

therefore constitute the system of integrals of the homogeneous equa- 

tion.'; (5.229).  Analogously, the projections of the vectors q5, a^, 

Pr,   p, on the y axis constitute the system of integrals of equations 
(5.230). 
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Let us form two matricos from thcso projections; 

1 
ft• J VJ ' 9»'M Vi * 

9ft VJ ' it* »< » 

fk'M P: * Pi* P* * 
P,   ' P: * Pi' Pi * 

t/'i-j' p  y 

(5.238) 

In  accordance  with   formulas   (5.235)   and   (5.237),   the  elements 

of iruitrix A are. 

A,,- 

. 2 t-»tu. f 
/<i2-=  (-—      - «inf. 

.        2 f»ro« i' . r 
A.y s^ fH —— CuS t'.      /!,. ra —., 

. r       3v (/   - U r Mn v . 

" "7 7i T? r'-- •    " " _ cos "• 

.        - v(l  ( >IOM0 

. — v tot i* a 
I I •    4. - ~

v'1 +»'■ j''' 
»i-f' 

whore  v  is determined by equation   (5.215) 

(5.239) 

For  the  elements of matrix  B we  have  the  followino  expressions: 

/(„ . - CM !■■  /»,; ■ - »In i 

.    —»IK» _      V(CIIW )-f) 

■  i i - «* (5.240) 

Wronskians   of the systems of partial solutions to the homogeneous 

equntions (5.229) and (5.230), respectively. 

Since the matrices of the coefficients of the rights sides of 

the homoqeneour; equations (5.229) and (5.230) contain no diagonal 

olonionts, according to the well known Ostrogradsky-Liouville 

Theorem the l.'ronskians  of Lhnse systems are constant-1 ^for all values 

of t. They are thoreforo easily calculated  by sotting t = t».  Since 
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for this value of t the angle v is also equal to 0, it follows from 

relations (5.239), (5.240) and (5.207) that: 

^,=.0, At,-.-0. 

A      _ 1+1        A     _ 

si r 
A   — •"*}lit*> 

Aa~0.    /1„^0. 

r I —t, Anr=\-   e, An^ 

Av 

(i - «•) n -»' =^=-. A 

V\  -«' (I -o 

»■ prrsr 
»n-l-'. «»--0. 0.-0. ll^^j^l. (5.241) 

We now find: 

\A\m V' 

2 |fl|-vl'l-«». 
(5.242) 

The Wronskians of these systems of partial rolutions 

are non-zero.  Therefore, ehe partial solutions in questions are 

linearly independent.  They remain independent for e = 0, i.e., for 

a circular orbit. 

Wo note that if the derivatives (5.232) of the radius vector r 

in arbitrary constants are taken as q^ in place of (5.235), the 

Wronskian of the corresponding system of solutions reduces 

to 0 for e = 0.  This fact, which is easily demonstrated by composing 

and expanding the determinant in question, results from the fact that 

in solving equation (5.176) the circular orbit was excluded by condition 

(5.200).  The linear independence of the solutions defining matrix A 

wa.s achieved for e = 0 as a result of the fact that the linear combi- 

nations (5.235) of the derivatives (5.232), rather than the derivatives 

(5.232) themselves, were taken as the partial solutions, as proposed 
12 

by A. 1. Lur'ye 

Since the system of solutions defined by the vectors q. and p. 

is linearly independent, i.e., a fundamental system, the general 

solution to the homogeneous equation (5.173) may be represented in the 

form: 
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*' lteA*    „r  '2te* 
(5.243) 

Then for the general solution to the system of equations (5.229) we 

obtiin the formulas 

(5.244) 

and for the general solution to the system (5.230), the formulas 

•«, ^/.A./ (' •* r>' (5.245) 

5.4.4.  Integration of non-homogeneous equations.  The solution 

to the non-homogeneous equation (5.173) may now be found from solution 

(5.243) by the method of variation of arbitrary constants.  Taking 

C. as functions of time, we obtain: 

ir-Vc^m,. l^^Vc.wp, 
(5.246) 

We obtain the following system of linear equations for C- (t): 

££,0)9, =0. 
e 

20,(1)p, m\n - Mm X — + r X •^-. 
(5.247) 

In terms of projections or. the x, y, z axes the sy .tern of 

equations (5.247) breaks down, in accordance with forr.jlas (5.244) and 

'5.245) into two systems:  one fourth-order system and one socond- 

ordor system.  The first, serving for the determination of C,(t), 

C2(t), C3(t), C4(t) has the form: 

2j ('i (0 AJI = A«, — 2\m,'r — Am.r, 
181 
4 

2 Cj (/) A« — An, + 2r(i)y Amy. 
(5.248) 
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The functions C5(t) and Cg(t) are found from the second system: 

9 

21 ^/, 4(') "J/ = ^"y + 2Am .r |- Am tr - w, A« (5.249) 

The determinants of the linear systems (5.248) and (5.249) 

arc the Wronskians |A| and |B|. They are non-zero and the 

systems (5.248) and (5.249) are uniquely solvable in C.(t) 

In order to solve the systems of equations (5.248) and (5.249) 

for C., we construct matrices D and E, the reciprocals of matrices 

A and B: 

D^A'\   E~B-\ (5.250) 

After the necessary transformations we obtain the following 

values for the elements of matrix D: 

ii 

D„^ 

'ie sin ti 

.•.il w    I) "-I **mt')(f t-custo 
'    " I  - fi ' 

v i-)-»ciirt~"'"~ • 
IT 

— Sin ti; 

cotVj 

jv (< - M _o V       1^ f cos t> (. <■' 
sin t'. 

D _ i r    iTrp   , 
1 - 71 ~ rRToTT(2 ^ ^cos v)sl111'+ 

•3v (/-/.) 

"•""-vl-i-.V-'-'inv 
I^L(I4-»«»^]. 

TfTö,.T (-v - cos v ~ e c"s V)J: 

(5.251) 
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_ II f+• HM 9 , 
43      v [ |'|- f»(l  (-cmv) 

44       Ml!-*')' »'I- f'd   | cn.sr, J (5.251) 

The elements of matrix E are; 

■        cosv + e       _   _      yi-.fi..lnv 

t7 Slllt' 
tu -- 

v(I•^-»cJ.^•/• (5.252) 

Using matrices D and E, we find: 

d, (0 = (A/i, — 241«^ — \m,r) Ü0 + 
4-(A/i,+ 2ri'),Am>)DM, 

(iM<(») ■ (An, + 2Am,r + Amxr — c, Am/) /?„. (5.253) 

Integrating the latter equalities, we obtain the following 

expressions for C.(t): 

C, (t) --^ j ((An, — 2Am,r — 4m,0 D,j -f 
o 

+ (Ad, -f- 2/'o, Am,) 0,,) til 4- C?. 
i 

0 , . 
-f-Anijr — n, /\m,r)l:ndl-\-C'i,). 

(5.254) 

in which C? are determined by the initial conditions of equations 

(5.229) and (5.230). 

For equ.itionr. (5.229) the initial conditions will be: 

(5.255) 
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For equations (5.230) 

•>1! ■■ */. *! ■ ^y1- (5.256) 

Using matrices D and E and expressions (5.255) and (5.256), we 

find that 

< 9 

/-I        /-I 
(5.257) 

Projecting the first equality (5.246) on the x, y, z axes and 

taking into account relations (5.254) and (5.257), we obtain finally 

the following expressions  for 6x(t), 6y(t), fizft): 

«* = V.i, ) J|(\^ -Hmjt- Am,/-)O,! 4 
l-l   I n 

+ (.4/1,4 2f..., \mx)/)„lrf/ + Vrf/t; 
/-I 

>  r' 
fty^V/j,, J(\n,4 ZN/M^rfAm^- 

> 
- <,irAm,/-)/:,,!// | ^/r?/*"^ 

/-i 

/-l  I i 
j    I 

-I (A/i, I Vm^Am,)/),,!^ | TOWj 
(5.258) 

It is easily demonstrated that, for e = 0, i.e., in the case of 

a circular orbit, formulas (5.258) reduce to the earlier formulas 

(5.117). 

In fact, for a circular orbit 

r^-.0, r-   n.   r     0, v -<.\,, /„• n, f r ^/. 1 
(5.259) 

Substituting those values into formulas (5.239), (5.240), 

(5.251) and (5.252), we find: 
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/I,,-I. 

/I,, MCM*!/) "I.'" sinn,/. 

/),,  _-. , /»., .- 2 ,,„.,<. /) .    i MM/. 
I.,    ■   ••», 

/.„  3/. />., -0. /'..  J - M./. 

i 2 

£„-0. /r„-=i. 

it* I, «J--0. üi = «•-t« 

£?i~oi„. /^-o. fJ,-=o. A« I. (5.260) 

Substituting now these values of the matrix elements in 

relations (5.258), integrating by parts the terms in the integrands 

containing Am , and '.m , and taking into account the relations between x       y 

x° and tx",   rty", 6z0, bx0,   6y\   6z0, i.e., equalities (5.255) and 

(5.256), wo arrive at formulas (5.117). 

In conclusion we make one comrient regarding the second group 

of error equations (5.3) for the ca.sc of Keplerian motion. 

The equations of the second group wore examined in §5.2, where 

the general solution to these equations in quadratic forms was found and 

expressed in formulas (5.48). 

In the ca.sc of Koplcrian motion, when the -^n« C,1 C2) plane is 

taken as the orbital piano, the general solution (5.48) to the error 

equation;; of the second group is expressed by formulas (5.71), (5.72), 

and (5.73) or the equivalent formulas (5.77). 

Formulas (5.77) contain u , and equalities (5.71) and (5.72) 

eoniuin thu  angle a.     In order to obtain explicit expressions for 

•   and ''■,   i   it is noccjüary to substitute in formula (5.77) for 
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(o the value of this projection of the angular velocity deriving from 

relations (5.216) and (5.227), or, in formulas (5.71) and (5.72), to 

substitute the value of 0 obtained from the solution to system (5.216). 

Formulas (5.258) give the solution to the error equations (5.226), 

In §5.4.1 it was stated that the homogeneous equation (5.173), and 

therefore also the homogeneous equation (5.258), are equations in 

variations of Keplerian motion.  Therefore, formulas (5.258), if it 

is asssumod that An = 0, An  ■ 0, An = 0, Am = 0, Am = 0, Am =0, 
" y <i A W tt 

also give the solution to the problem of the deviation of the motion 

of an artificial satellite of the earth from its calculated (nominal) 

trajectory (in a spherical field) for incorrect initial conditions. 

Moreover, formulas (5.258) enable us to calculate the change in the 

trajectory of a satellite (or an orbital aircraft) under the influence 

of small perturbing forces (resistance of the upper layers of the 

atmosphere, maneuvering with small thrust, etc.).  In order to do this 

we have only to substitute into formulas (5.258) the values x- x   , x  y 

X  of the projections of these forces on the axes of the orbital 

(nominal? trihedron for the functions An - 2Am r - Am r, An + 2Am r + x    y    y   y    x 

Am r  -  (j Am r,   An    +  2r^  Am   .     It is evident,   in  particular,   that  it 

la  posfiblc  to calculate  in  this manner  the change   in the trajectory 
of  a  sjtollito under  the   influence of a  non-spherical  component of 
the  gravitational   field.     The  corresponding values  of  the  funct.-ons 

.    ,   ,   ,    (    are  found  from  thu   formulas   for  the projections of  the 

strength     of   the   regularized   gravitational   field  of   the  earMi derived 
in   f52.2. 

It   follow-   that   formulas    (5.258)   also give  error  expressions   for 
the  case  of  an  object   in       noar-Ki'plerian motion.      Indeed,   in  this 
ease   tha   coefficionts  of   the   error  equations   (5.226)   will differ   from 
the  coefficients   for  initial   Keplerian motion by  amounts  of   the   first 
order  of   smallness.     Multiplication  of   these  small   quantities  by  the 
BMall  quantities  ^x,   Sy,   f,7.,   ^x,   Ay,   (5z,   An   ,   An   ,   An   ,   Am   ,   Am   ,   Am 

gives  magnitudes  of   the   second  order  of   smallness.      Therefore, 

479 



equations (5.226) and their solution (5.258) remain valid to a 

first approximation for near-Keplerian motion. 

$5,5.  Errors in the Determination of the Coordinates of an Object 

and Its Orientation.  Errors Deriving from Inaccuracies in 

Instrument Readings and Initial Conditions. 

5.5.1.  The case of an object which is stationary in inortial 

space.  In the preceding sections of this chapter we analyzed the 

first (5.1) and second (5.3) groups of differential error equations 

of an inertial system.  In §5.2 a solution in quadratic forms for fie 

case of arbitrary motion of an object was found for the second group 

of error equations.  In §5.3 and §5.4 exact solutions for the 

equations of the first group were found only for certain special 

cases. 

However, as war stated above, for example in §5.1, the solution 

to equations (5.1) and (5.3) in itself does not give expressions for 

errors in the determination by an inertial system of the coordinates 

of the object and the parameters of ics orientation.  It is these 

expressions, however, which are the goal of the analysis of the error 

equations of an inortial system. 

In order to obtain these errors and to establish their relation 

to inaccuracies in instrument readings and initial conditions, it is 

necessary to consider in addition to equations (5.1) and (5.3) 

relations (5.5), (5.6), (5.8) and (5.9), 

However, relations (5.8) and (5.9) do not boar on the 

solution to equations (5.1) and (5.3).  These relations give the errors 

, , 'i  , Sj in the determination of the orientation of the object 

deriving from the instrument errors Aa, Aß, A> in the measurement of 

tin angles of rotation of the gimbal rings of the gyroscopic platform of 

the inertial .'-.ystcm.  The errors 0, , 0  , n  are indopendont of the 

solution:; to equations (5.1) and (5.3) and, according to equalities 

(5.9), are simply added to the errors 0 , 0 , 0  obtained from the 
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solution to equations (5.6).  At the same time 0 , 0 , 0  are 
X      jr      Z 

completely independent of Ati, Aß, AA. 

Therefore, it is important here to make use of relations (5.5) 

and (5.6), combining the solutions to equations (5.1) and (5.3), the 

right sides of which are functions in part of the same quantities 

Amx, Am , Amz. 
\ 

Analysis of the errors in the determination by an inertial system 

of the coordinates of the object and its orientation, i.e., analysis 

of the functional relation between the errors 5x., 6y-, 6z- and 

•_! 0 , 0Z, entering into formulas (5.5) and (5.6), on inaccuracies 

in the instrument readings of the inertial system,and in the initial 

conditions of its functioning, becomes now our immediate task.  It is, 

of course, evident that we will be able to achieve an exact solution 

to this problem only for those cases of motion of the object in which 

equations (5.1) allow exact integration. 

The simplest case that in which the object is stationary in the 
0]/»*ri*r-* coordinate system.  In this case the solution to equations 

(5.1) is given by formulas (5.95) and (5.96), and the solution to 

equations (5.3) by formulas (5.58). 

Formulas (5.95) and (5.96) were obtained under the assumption 

that the z axis of the xyz trihedron was directed along the vector r. 

Tn this cast?, in the first three formulas (5.5) it follows that: 

•  ' "' * '' (5.261) 

Then 

*'■    "■•'•   **       "'•'■   "'    n (5.262) 

If and   '•,     from equalities;   (5.58)   are  ::ubntitut.ed   into  these 

•xprMalon>i   and  the rcrul t ing  oxprer.sions  toqothor with  relations 

(S.tSl   and   (5,96)   are  .substituted   into   the   last   three   formulas   (5.5), 

wo obtain: 
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■   .A       A« "fr IK 

i 

I 

| 

I 

o 

I 

+ —Jj JA/I, ..«,..., l'j(/- I,,/, 

(5.263) 

Relations (5.263) give for the case under consideration the 

total errors in tho dotennination by the inertial system of coordinates 

of the object as a function of instrument errors and errors in the 

initial conditions. 

Tn order to obtain the errors in the determination of the orienta- 

tion of the object, we refer to formulas (5.6) or, taking into account 

expression (5.261), to formulas (5.22). 

Hero, as wao explained in §3.5 and 55.1, two cases must be 

distinguished.  The first corresponds to the structure of an inertial 

systf-m in which the orientation of the xyz trihedron is not sot as 

a function of the coordinates determined by tho inertial system.  In 

this casr;, in formulas (5.6) 

'•",/ ="• *|''=0 (5.264) 

Therefor«i 

",-» -«i,. o, > -»!.• «.^ -"i.- (5.265) 
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9P1 

f 

and in accordance with equalities (5.58) we have; 

i 

04 «. - f Am, ill ~ 0?,. 

«. 

(5.266) 

In the second case the orientation of the xyz trihedron is a 

function of the coordinates determined by the inertial system. 

If the xyz trihedron in the unperturbed position is a mov- 

ina frue-azimuth ( J ■ 0) trihedron, then according to expressions 

(5.31) 

V-$.. «,-£-. o.^-o,,. (5.267) 

Substituting into the first two equalities (5.267) the values 

Sy and :x from relations (5.95) and (5.96) and into the third the 

value ••.  from formulas (5,58), we find: 

*>"        Ay" — t W 
»,■= -  --cosIO,,/ - — j~ siii..\/ - 

-  J Am, u.s..^/ - I),/T. 

«."        H"l-r.\m", 
0,"~-CM>\I  + — ^sln.V (- 

i • 

".=■-/ Am,..'(  o;,. 
(5.268) 

If the xyz trihedron, being in the unperturbed posi- 

uion amoving trihedron, is oriented to the points of the compass, then 

the third formula (5.32) applie:; instead of the third equality (5.268); 

<>.  ■■    "„ I '«vV'. 
(5.269) 

Which after substitution of 9,  from (5.5b) and 6X, from (5.263), 

takes the form: 
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0, ■=> - 0", - J An, dl  ♦- 

+ Jg J Aii,5lni.\,(/— T),/t4 
' | 

•'  ' I (5.270) 

Let U3 consider expressions (5.263), (5.266), (5.268) and (5.270) 

for the total errors in tho determination of the coordinates and 

orientation of the object.  Lot us first consider formulas (5.263). 

Since the first two of those formulas are analogous (which is evident 

from symmetry considerations), it is sufficient to consider the formula 

for f>x~,   for example, i.e., the first formula (5.263). 

It is evident from this formula that the portion cf the error 

6X, deriving from the initial conditions ftx"  an-i ^x0 and the initial 

value of Am", is a harmonic oscillation with a frequency CüQ.  Since 

we denoted the quantity u/r' by wi, the period corresponding to the 

frequency u!Q  is calculated according to the formula 

fmUjfE~wfE (5.271) 

If  the distance  r  from the  center of  the earth  to the moving 
object  is  approximately equal  to the  radius of the earth,   then T    84 
min.     This  period  is urjally termed   the Schüler period   (after  the 
Gerr.ar.  physicist who  first noted  the  remarkable properties  possessed 

14 
by pendulumf.  with  this  period) 

Tho   initial  value   8«     give:;   rise   to  a  constant  error   in   v.he  deter- 

mination of   the  coordinate  x.     Vhe   instrunont  error In     is   intarjrated witl 

woight     — sin.ijn(t  -   i),   and  the   instrument  error  Am    -   c  with  a  weight t»0 0 y 

r fl   - cos CQ (t   -   i)]. 
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-T=r- 

For constant An„, Amu, An , Am the first two formulas (5.263) x   y   y   x 
take the form: 

4 5 Mil' \,< fhmjt. 
(5-272) 

The error 5x, in the determination of the coordinate x is 
Anx 

composed of the error   + rO? . the error oscillating with a 

frequency (o-, and the error rAm t, increasing proportionally to time. 

For the quantitative evaluation of the dependence of the errors 

^x3' ^^3 anc' ^z3 ^n t'ie (3etermination nt  the coordinates on the 

instrument errors of the sensing elements of the incrtial system and 

the errors in the initial condition, we introduce sone numbers. 

If the object in which the inerliial system is placed i:; located 

near the surface of the earth, we may assume 

rmmlfi.Wm,   | MtMM1 (5.273) 

Then 

w,, t\M   H 'i/"c ...•  i.-.r, in''i Me (5.274) 

From the first formula (5.272) it follows chat the partial error 

•Sx-j = 1 km causes a nowtonomcter error of An =7.8 • 10~'*ni/sec2 

(  8 • 10"'' g) , the error 0°  ■ 1.6 • lO'^rad {-  0.55 angular min),the orrc, 

'x" ■ 1 km, and the error 'Sx11^ 1.25 m/sec.  For the partial error Sx., 

giving rise to the error .'.m , not to exceed 1 km in the course of 

one hour of the operation of the system. Am  should not exceed 
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4.4 10" 1/soc (■» 0.009o/hour) .  It is evident that for numerical 

Values of the error 6y3 evaluations may be obtained by the same 

procedure as was used above to determine 'Sx,. 

The third formula (5.263) shows that the error 5z, in the 

determination by the inertial system of the distance r to the center 

of the earth is a function of the errors Sz" and ^z0 in the initial 

conditions and the error An deriving from the newtonometer oriented 

along the z axis, but is not a function of the errors An or An J x     y 

of the newtonometers oriented oriented alonq the x and y axes, or 

the errors Am , Am , Am  in the measurement of the absolute anqular 

velocity.  However, as is evident from the first two formulas (5.263), 

the error Am docs not enter into the errors 6x3 or 5y,. 

It follows from the last formula (5.263) that for long-term 

operation of the system xz3 increases exponentially.   For a constant 

error An we will have: 

",l I 
(5,275) 

The error ^.z-, incrcasoT very rapidly with tine, which is explained 

by the rapid growth of the hyperbolic functions cosh ku /2 t and sinh ^Q»'? t 

Approximate values of these functions for various moments of time are 

proTentcd bo low. 

».mm 

r n 4. I 

cii..,!;» 2.1.1 i" 4'. n 
*%| ft IX m M " 
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Thus, as a result of the errors An , 6z0, and Sz",   the time z 
during which the inertial system is able to autonomously determine 

the distance r to the center of the earth to an acceptable degree of 

accuracy, may be small.  For example, for the values of the n wtonometer 

errors and errors in the initial conditions used above in computing 

the error fix,, the time in question is of the order of 10 - IS min. 

In fact, let the errors An and 6z0 have the same values as those 

which in the preceding calculation gave an error of 1 km for (Sx,, i.e., 

let Anz ■ 7.8 • 10"'' m/sec7 and Äz" = 1.25 m/sec.  Then the error 

6z3 reaches 1 km in ^ 18 min due to An  alone, and in a 10 min due to 

Az" alone.  In order for It. not to exceed 1 kn in 15 min due to the 

error 'zc, we must take ^z0 ~ 0.43 km. 

It should be noted that in the case under consideration, namely 

that of a stationary object, the increase in 6z3 has no effect on 

the magnitudes of the errors Sx, and 6y3.  If this property of the 

inortial system were preserved for a moving object an interesting 

po.';:iibility would arise.  This would be that the errors in the deter- 

mination of the coordinates of the object on the surface of the earth 

(for example, geographical latitudes and longitudes), i.e., the errors 

in the determination of the direction of r from the center of the 

earth to the object, could be small even for a significant duration 

of operation of the system, in spite of the largo or^or ^z, in the 

determination of the distance r to the center of the earth. 

However, in the case of a moving object the errors iSx, and «Sy-, 

also have components which increase exponentially with time, although 

these components contain the velocity of motion as a factor, and 

consequently may be small for small velocities.  We will consider this 

question in greater detail when wo consider errors in the functioning 

of an inortial system for various cases of motion of the object, but 

let us now return to the case of a stationary object. 

Wo have discussed relations (5.263), (5.272) and (5.275), 

characterizing errors in the determination of coordinates.  Let us now 

turn to orientation errors, i.e., to formulas (5.266), (5.268) and 

(5.270). 
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Formulas (5.266) were obtained for the case in which the orienta- 

tion of the object is defined relative to a trihedron, the position 

of whose axes relative to the O.^^n^C* coordinate system is not a 

function of the coordinates determined by the inertial system.  This 

could be, in particular, the case in which the system is based on a 

free gyrostabilized platform, and the orientation of the object is 

defined relative to its axes.  This case obtains when the basis of the 

system is a rpatial gauge of absolute angular velocity or a timc- 

maneuverablo gyroplatform, if the orientation of the object is determined 

relative to the axes of the platform of the element measuring absolute 

angular velocity or the gyroplatform.  Finally, included here also is 

the more general case in which the orientation of the axes of the 

sensing elements is a function of the coordinates determined by the 

initial system, but the orientation of the object is determined 

relative to directions which change their orientation as a function 

only of time. 

For all of these cases, as is evident from formulas (5.266), 

the errors in the determination of the orientation of the object are 

composed of their initial values and the integrals over time of the 

instrument errors Am , Am , Am .  For constant Am , Am , Am , the 

orientation errors increase only as a function of time: 

0 c  Am,/  (I,1,, n,--  A'"/  'i;,. 

0.= .\ml    n" (5.276) 

Formulas (5.268) and (5.270) are valid for cases in which the 

position of the trihedron relative to which the orientation of the 

objnet is determined (or the trihedron associated with the platform, 

if its orientation is in question), relative to the coordinate system 

^i *■'*'*» i5 a function of the coordinates, formulas (5,268) having 

been derived cor  the case in which thiü trihedron is a moving 

f rcv-jzimuth tr i liodron. 

It follow;; from the first two formulas (5.268) that the errors 

<;    and fj  are composed of harmonic oscillations with a frequency WQ 

and .implitudc:; determined by the initial values Ax0, Ay", 6x0 , Sy" , 
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Am0,   Am°, and of  the  instrumont  errors  An   ,   An   ,   Am  , Am  .     The  portions x        y                                                                         x         y         x y 

of  0    and 0     corresponding  to those  instrument errors are obtained x             y 

by  integrating  them with  the weights sinion(t  -  T)   and  cosun(t -  T). 
rw«    u ^^n 

For constant An , An , Am , Am formulas (5.268) give: 
x   y   x   y 

D, = - —J  ' (w  - —/ ) uu iV - — »h "V- 

(5.277) 

the values 

Thus, for constint instrument errors, 0  and I fluctuate about x     y 

*"'   ft- ^ is 

with a  frequency v'n  and   amplitudes 

(5.278) 

(5.279) 

The fundamental difference? between the first two formulas 

(5.277) and the corresponding formulas (5.276) consist, therefore, 

in the fact that: the latter do not entail an error in the orientation 

of the platform relative to the angles 0  and 0  which increases with x     y 
time, although in both cases the errors in the determination of the 

coordinator; have components which increase with time. 

The third formula (5.277) for a constant value of Am coincides 

with the third formula (5.276).  The deviation 0  in the azimuth is 

not a function of the errors in the determination of the coordinates 

of the object and for constant Am it increases proportionally with 

time.  Thu:;, errors in orientation are determined primarily by the 

instrument errors Am .  This fact gives rise in the case in question 

to more stringent roquirrmonts on the accuracy o' the uiRUtfl  "yro- 

scopes (the heading gyroscopes) of the inertial system. 
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Let us now consider formula   (5.270).     This   formula and  the  two 
first   formulas   (5.268)   describe the orientation errors   for  the case 
in which the  trihedron xyz  in  the unperturbed position  is oriented 
according to the points of  the compass.     Although  in the preceding 
cases,   i.e.,   the  third  formulas   (5.266)   and   (5.268),   0     was  not a 
function of  errors   in the determination of   the coordinates,   this  is 
now no  longer the  case. 

The third  term on  the right side of   formula   (5.270)   contains 
as a  factor   (the expression  in  brackets)   the component  6x, of the 
total  coordinate error.     For C  = 0,   this  formula,   of course,   reduces 
to the  third formula   (5.2^8).     For  $  = j ,   when tan $  tends  to infinity 

equality   (5.270),   of course,   becomes meaningless.     In this case,   the 
only conclusion that may be drawn from it   is that  in the immediate 
vicinity of  a pole   small  fix,  lead to a finite error  0   ,   i.e.,   to a 
finite error in the determination of  ehe bearing to the pole.     This 
result   is obvious   from purely geometrical   considerations.     It 
demonstrates once  again  that  if  the  trihedron bound to  the 
platform of  the inertial  system is oriented   to the points of the compass, 
it is  necessary to exclude the  vicinity of   the pole from the  possible 
areas   in which the  object may move. 

5.5.2.     Motion of an object on a fixed great  circle.     Motion  of 
a  satcjllite  in a circular orbit.     We  have  considered the errors  in   the 
determination of coordinates and orientation parameters   for an object 
which  is stationary   in the O.'^n*';*  coordinate system,   for which case 
the solution  to equations   (5.1)   and   (5.3)   was given by  formulas   (5.95), 
(5.96)   and   (5.58). 

Let us  now consider  the motion of an  object   in a plane passing 
through  a point 0,   at  a constant distance  from the  center of  the earth, 
for which case the   solution to equations   (5.1)   is  given  by formulas 
(5.100),   (5.111),   and   (5.117),   and the solution to equations   (5.3) 
by   formulas   (5.60) 
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In this case the xyz trihedron will be a moving trihedron. 

Its xz plane coincides with the C*'!« plane, i.e., with the plane of 

motion of the object, the z axis is directed along the vector r, and 

y axis is normal to the plane of motion.  The projections 6x, (Sy, 6z 

of the error vector ^r on the axes of this trihedron are the solutions 

(5.100), (5.111) and (5.117), and the projections 0. , |. , 0.  of 

the error vector 0. are the solutions (5.60). 

From relations (5.262) and the last formulas (5.5) we have: 

hx^fix-t «ltr.   ttom*9    "i.'-. I*i«to. (5.280) 

These formulas characterize the total error in the determination of 

the? coordinates. For the case in which u ^'n» the values of 6x, 5y, 6z 

from expressions (5.100) and (5.111) and the values of 0^ and 0, 

from equalities (5.60) must bo substituted into them.  When w = aj«, 

i.e., for the case of motion of a satellite in a circular orbit, 

expressions (5.117) must be used instead of formulas (5.100) and 

(5.111), and w  in equalities (5.60) must be replaced by OJ«. 

Our task is to analyze the relation between the errors 6x3, ■'iy-j, 
iSz, and instrument errors and errors in initial conditions.  It is 

also understandably of interest to compare the values of ^x,, ^y,, *7-> 
for the type of motion in question with their expressions (5.263) for 

the case of a stationary object, and also to examine the special case 

of u = 'J)0, i.e., the case of motion of a satellite in a circular orbit. 

It follows from the third formula i5.280) that tho total error 

•'z, in the determination of tho distance r to the center of the earth 

is not a function of the solution (5.60) to equations (5.3) and, for 

.i •''•in( is given by tho second equality (5.111), which for constant 

instrument errors reduces to tho second equality (5.112). 

Let us investigate the relation between 'Sz-, and the initial 

conditions and instrument errors, taking the latter to be constant, 

i.e., using tho second equality (5.112) to determine 4z3.  Lot us 
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rewrite this equality, separating terms which are functions of the 

initial conditions from terms containing instrument errors: 

-(|i«in\Y — vtinh(i/) + 

14 W-.-jH/i-vO* 
X|M'(...3—.r-v'jcotv/ 1 v'(^-...; 4 |.';c«i.|./l)- 

I'M, Anr 

(-V-(...;-(..;-f |l:)to.h|i/|- 

— ,-. **',— In td — (.)'' - v;)iln\t — 

-v(<..;-u;-f-iiVr.hii'i4 

-I- --rii-r.- (H»•• «• - v«mh,./) — 

Ji.«,«»» 

l^+v1 f (cosv/ - eothMO 

(5.281) 

Comparing this expression with formula {b.275) for fiz, for the 

caüo of a stationary object, we note first of all that expression 

(5.281) is a function not only of An , 62°, and 5z0, which appear in z 

formula   (5.275),   but also of  ^x0,   6x0,   An   ,   Am   ,   these  latter terms x   y 

being multiplied by w .  For w = 0 expression (5.281) reduces to 

formula (5.275). 

It is interesting to examine the difference between expression 

(5.281) and formula (5.275) for small values of HL Let 

(5.282) 

Expanding expressions   (5.106)   in powers of wv/w0,   we obtain the 

following approximate?  values: 

" ■^(i-Ml- ^('-üD- (5.283) 

Substituting these values into equality (5.281) and retaining 

only terms in the first power of w A)0, we find: 
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H 

2 A 
3 £|MHM "^"O»^/)]. (5.284) 

The first three terms of this formula are identical to the right 

side of equality (5.275), while the remaining terms contain the factor 

w Au.  Thus, for small values of w formula (5.275) is a good 

approximation to formula (5.281). 

If u is close to u0, then, defining 

MJ = oij — t', 

(5.285) 

whero L2 is small in relation to u)£, we obtain from relations (5.106): 

,4 = eV% 
v^(,+■£J)•■• (5.286) 

Substituting these values into equality (5.281), we are able 

to find an approximate formula for 6z,, which for r = 0 reduces to an 

exact formula for the case u    = ^n* 

For the latter case, from the third formulas (5.280) and (5.118) 

we have: 

fit, r.(|   ti.M.l/) I 

i",'  ilmV) '   il  ' /) 
•■•: 

(5.287) 

Kxpros; ion   tS*2t7)i   unlil-    MprttMiM   (S*2t4)i   i»  quite different 

frf)m  formula   (5.27r)),   whird   ipaoil it        ' .   '"i   tlM   case  of  a   stationary 

obj'.'ct.      tl  in   formul.i   d.J.T',)   tin-  trVOI      ■',   int-rcases  expodicntially, 

then   in  oxpro:j;, ion   (5.287)   tin i«     IH  only  <        term which   increases 

without   limit  with  time,   .iml   its   inrnM-i».   i-; only  proportional  to time. 

This  term   !■   •',"'< 
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Let us now turn to the second formula (5.280), which specifies 

the error 6y3 in a plane normal to the plane of motion.  We obtain 

from relations (5.101) and (5.60) for constant instrument errors: 

A«, — o, AiBjf   r Am, 

(5.288) 

Let us compare equality (5.288) with the expression for 6y3 

for the case of a stationary object, i.e., with the second formula 

(5.272).  The first point to be noticed is that equality (5.288) 

differs from formula (5.272) in that in the numerator of equality 

(5.288) the first term contains the quantity An - u Am r instead '     J  y   y z 

of An , as in formula (5.272).  More interesting, however, is the fact 

that formula (5.272) contains the term -rAm t, which is proportional 

to time, while in equality (5.288) only harmonic oscillations of 6y3 

at a frequency of u correspond to the errors Am and Am .  For small y      r x      z 
u) we obtain the approximate equality 

+ *ÜSi„,V rO'u-rSm.l. 

(5.289) 

corresponding to  formula   (5.272) 

For iti    = UQ,   i.e.,   for  the case of motion of  a  satellite  in a 
circular orbit,  wo have: 

(5.290) 

The  first  formula   (5.280)   remains  to be considered.     From this 
formula,   the  first  formula   (5.112)   and the second   formula   (5.60)   we 
find   for constant   instrument errors: 
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ft,, = ,0?,+ -/-"•-,■ I A«,' »- 

+ |l(u.J-l.iJ-V;)iinl.,l/|4- 
I"»ilv     /. .  An,-fVri,i.Ain.\ ,. , 

•^•^ (5.291) 

For small values of to we arrive at the approximate formula 

[taking into account equalities (5.283)] 

l(.Ml0/ , _  Mil M,,/ f 

(5.292) 

The first five terms of this formula form expression (5.272) 

for the error Is- for the case of a stationary object.  The latter 

terms, containing the factor oi . distinguish formula (5.292) from 

the first formula (5.272). 

The difference between the expressions for ^x, for the case under 

consideration anc". for the case of ■ stationary object is much more 

important than the difference between ^y, and Kz-,,   since expression 

(5.292) contains hyP^boli-0 functions v;:iich increase rapidly with time; 

fur   the  case of a stationary object only the expression for Az- 

contnins 3uch functions.  As a result of this, the error An  in the 

reuding of the newtonometer directed along the z axis and the errors 

in the initial conditions Az0and «Sz0 begin to play n significant role 

in the formation of the error Ax,. 



Since u is small, we may let 

i .■ i   .'■ i I     n, 

(5.293) 

Therefore, equalit-.y (5.292) may be simplified and written in 

the form 

(5.294) 

For the quantitative evaluation of the influence of the last 

term on 6x,, it is useful to consider the following example.  Let 

0   Anz       •                                             Lnx 
6z +   and 620/ion be of the same order of magnitude as cSx0  

An 
and tx°/un.     Under this condition the errors fiz0 +   and (SiVw« 

2w0 

will begin, obviously, to exert a significant influence on (Sx, only 

when, in proportion to the increase of the function sinh w0/2t and 

cosh w./Jt, the quantities (2u /S/Süj-Jsinh UjQ/7t  and (1M /3u.'0)cosh u^/Jl 

take on values close to unity.  The time required for this to occur is 

found from equalities 

UgWt i", (5.295) 

Since the argument '"Q^t takes on | rather large value, we 

asaume that; 

Mtk^Kfl mmmmtftim^f**9*. (5.296) 
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Substituting  these values   into equalities   (5.295),   we obtain: 

»i- 
I     i.   *v 

•"5JT ifrr' '  %*»   ^ (5.237) 

If we assume  that ui    is  of the  same order of magnitude  as  the 
earth rate u,   then 

■2» ^ *> « 17»n..i. M IJI • M*' I /..c 

For the first equality (5.297) we obtain in this case 

t. ' 35 min 

It is obvious that t, is somewhat larger than t,. 

If u)    is of the order of magnitude of 3u, i.e., if the object 

moves relative to the surface of the earth with a velocity of the 

order of 1000 m/sec, then u0/io  * 6 and t, ■ 25 min, and at a velocity 

of the order 2000 m/sec, UgA)   ■ 3.2 and t^  '  20 min.  The validity 

of the approximate formula (5.294) for WVA)Q ■ 1/3 should not be 

in doubt.  If the character of the variation of the roots ii and v of 

the characteristic equation (5.103) as a function of w  (Figure 5.2) 

is taken into account, it is easily shown that the accuracy of 

formula (5.294) is satisfactory for w/uj. = 1/2. 

The resulting values of t, characterize, clearly, the time 

during which autonomous operation of the inertial system is possible 

under the condition that error ^x, rloes not exceed the allowable 

limits.  Of course, those evaluations characterize the time t, only 

for velocities corresponding to the condition u 2
<'MQ. 

For a satellite moving in a circular orbit, i.e., for the case 

in which H  = MQ,  we obtain, taking into account the first formula 

('•.118), the following expression in place of formula (5.291): 
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«*j "■ rt( t «»" f •-,'' (4 Ml i,xj     3.V) -)- 

+TI4<''"*,W^' " I I"*" 
H ^(4»in<,iJ/ 3^/) f- -"-(■.IIII.„/-I,V) (5.298) 

It follows from comparison of expressions (5.298), (5.290), and 

(5.287) with expressions (5.292), (5.289) and (5.284) that, if in the 

case of slow motion of the object, when u2<<u)i, the major influence 

on the formation of the errors tSx, and fiz, for extended operation of 

the inertial system is An , 6z0, and 5z0entering into the coefficients 

of tht.' hyperbolic functions, then for a satellite moving in a circular 

orbit, i.e., for u = UQ, the greatest influence is exerted by the 

error An . 

This concludes our discussion of the relation between errors in 

the determination of coordinates and instrument errors for the cases 

in question. 

Let us now turn to errors in the orientation of the platform. 

For tho case in which the position of the platform (the trihedron 

xyz) is not a function of the coordinates, we have 

9,  • -»,.. o,- n,,. o. . n,, (5.299) 

Tf this trihedron is a free-azimuth moving trihedron, 

then 

*v    „   Ar 
•--  - ■ "... ". ■ ",. (5.300) 

The   case  described  by   formula   (5.269)   may  bo  oxcludc-d   from  the 
discussion,   since,   for motion   in  the   5»%  plane  and with  the  r,^  axis 
ii:;   the   polar axis,   we   sec  that   in   thi;;   formula   ,   =   0,   which   reduces 
it.   to  the   third   equality   (5.299). 
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From equalities   (5.299)   and   (5.60)   for constant  instrument errors 
Am   .   Am   .   Am    we   find, 

0.-^l-(0?J+-^'-)toso,r/ + 

+ (O'u-4^) «""»,'• 
0, = - 4m^ — 0?,. 
-. Am.        Irfl Amf\ . 

_(0?t-(-*=-•).In»,/ 
(5.301) 

As may be seen from the second formula (5.301), the expression 

for the orientation error I in the plane of motion has the same form 

as in the case of a stationary basis.  This error increase proportional- 

The expressions for the orientation errorc 0 and 0 in x     z ly with time 

a plane normal to the plane o* notion consist of constant components 

and harmonic oscillations at a frequency u .  The oscillations occur 

relative to the displaced equilibrium positions 

0' cs —' 

and have identical amplitudes 

Aw, 
(5.302) 

o:^v-y(«?.4^)'+(o';.-^)T 

(5.303) 

It follows from (5.301) and (5.302) that the total orientation 

errors about angles 0  and 0  for 0? 
X       Z      - XX 

maqnitudes 

0 o lz 0 do not exceed the 

(\.\mt\  | |'"\,«; f .W), ,!-(i\«,| I I'-K ' ^•'',) 
(5.304) 

correspondingly. 

For  Am., ■ K'1'', I = Am the total errors are equal. If the 

requirement is imposed that the total orientation errors should not 
in Jiis case exceed 1 angular min (= 2.9 • 10"" rad), wc obtain the 
inequality 

^(•+Kr)<M.lf. (5.305) 
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relating Am and M .  If we now assume that w is of the same order of 

magnitude as the earth rate 

(u = 7.3 • lO"" rad/nec), 

Am •' (i,O027iit . 
(5.306) 

For u) = 5u the magnitude of the allowable error Am increases 

to approximately 0.01o/hour, and for u ■ u>Q  up to 0.03<,/hour. 

If iij t is sufficiently small such that it may be assumed that 

cos (.it = 1 and sin uut = w t, expressions (5.301) for 0 and 0 
y y   y x    z 

take the form: 
0, •= - 0?, — Am,/, 0, = - Oi", - Am,/. 

(5.307) 

which coincides with the corresponding formulas (5.276) for the case 

of a stationary object. 

Let us now consider the case described by formulas (5.300). 

The third formula (5.300) coincides with the third formula 

J), tho corres 

(5.101) and (5.307) 

(5.2(J9), tho corresponding values of 0  being those given by equalities z 

In order to analyze the first two formulas (5.300) for the cases 

under consideration (for constant instrument errors), the values of 

in  and 8y from expressions (5.101) and (5.112) for the case in which 

iUv<Mji must be substituted into them; and for tho c:ir.e in which u = a)«, 

the values of i^x and ^y from expressions (5.118) should be used. 

For small values of ^ , such that ü)^<<UQ, and simplifying the 

expressions for 8y and ic.x in the same way as in tho derivation of 

formulas (5.292) and (5.280) for Sx« and Ay,, we obtain the equalities: 
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Sa,       I /    .      AII,\ »r* 
0. = '   - - Ay» - ^-y Um"V MoMj. 

'•*      r V •% / ■* 
e, M |b y 1 (AX»- A". \ cos „v -< Ä $i„ ,„„, _ 

HC+S)* ^'+ ' 
0, i  - 0?, - Am,/. 

■ li 

(5.308) 

'or  the  case  in which w    = w-,  we obtain: 

0, ■» —£ co» dV — — tin i v — 

 j (An, — /•(■y, AM,) (I — cos <^/), 

B, -= 1 {AxM Ä (4 „„ ,v - 3,V) I- 

2M. 
+ 6«2«(»iruV -(V) I -—(«"ScV-D-f 

An,  I ,VVV I 

.    VAm, JAn, 1 
4 ' {'■m ^ ■ <v) ^ —;- (Mn iv - <■>.;) . 

0, -= -  II?,     .\mtt. 

(5.309) 

The right sides of equalities (5.308) and (5.309) contain 

expressions 5x and 6y divided by r.  These expressions enter into 

formulas (5.289), (5.292), (5.290) and (5.298).  The analysis of these 

formulas performed above may therefore be extended to relations (5.308) 

ind (5.309). 

5.5.3.  Motion along a parallel of latitude 

For the case of motion at constant velocity along a parallel of 

atitude, the solution to the first group of error equations (5.121) is 

Lvon by formulas (5.143).  Trihedron xyz, in terms of projections on 

\  lose axes equations (5.121) and their solution (5.143) wore found, 

0 c moving   trihedron;; oriented to the points of the compass. 

1 icrefore the total errors in the determination of the coordinates are 

a so given by the final three equalities (5.5) toqother with formulas 

(5.262).  From them we find: 
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6*3 ■»« (- olvf. Ay, - Ay o,.f. *.•, --*•• (5.310) 

The orientation errors B  and 0  are found from the first two 

relations (S*2S7)f and the error 9  is found from expression (5.269). 

Once aciain, the formulas for these errors are: 

In formulas (5.310) and (5.311) the quantities e. . 0. , |, 

are solutions to the second qroup of differential equations (5.3); 

for the case of motion along a parallel, these solutions will be 

qivon by formulas (5.65). 

If we confine ourselves to the case in which 

(5.312) 

i.v.,   the case of relatively slow motion alonq a parallel not in the 

immediate vicinity of a pole, then, without loss of generality, we 

may consider only the case of an object which is stationary relative 

to the earth, such that 

tL -  ■■ «losrp,  i.^ ■ -//'.In (p. 
(5.313) 

For the case of an object which is stationary relative to the 

e.irth, formulas (5.143) for the determination of iSx, 6y, 6z may be 

replaced by the aDproximato equalities (5.159) and (5.164), in the 

riuht sides of which u and W- should be replaced bv their values 

from relations (5.313).  Exurcssionr, (5.65) for i«Mi 
nj < 8|  also 

simplify connidcrnbly for this ense.  Inteqrntinq the right sides of 

expression* (5.65) for constant instrument errors and notinq that. 

Cor the case of an object stationary relative to the earth and in 

;ocorddnce with equality (5.63), w becomes e.jual to the 

earth rate u, we obtain: 
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AiiiyMno'     Am. cimf o,,^—»   \    —- + 

-♦-(o^sln.p-O^cosfi  f'-^sln«/. 

O^r-s^iytOS ff   t   0?, Sill 'f)cii1(p— '—'sill 1(1-f- 

H cns'r(Amycos'pf Am^sliMr)/ 4 

-f- (0|, sin <p — 0|f cos (p) sin cp cos ut -\- 

(Am,               A«w, r, \ 
—^slnip— i cosip — Oi.l simp sin M/, 

OI, = sinrp(o"x cos if -f- 0|, sin <() -|- —~ cos ip -f- 

4-sln »pCAffijCosip + AwijSlnip)/ — 

— f 0?, sin ip — 0?, cos ip -f- -~] cos (p cos «/ 4 

/    f) A/Wy A/Wj \ 
; ,      -f ^0l^ 1* tln'P + -jp cos 'fj «I" «'• 

(5.314) 

For if = 0, these formulas reduce (u.  = u) to formulas (5.301). 

If ut is small it may be assumed that   cos ut = 1 and sin ut ■ ut, 
formulas (5.314) simplify and take the form: 

Ih -■■fl',', i Am,/, (l.v-.O',1,. I Sniyt. 

K ■■ --■ »i, + A«/,/. 
(5.315) 

It is easy to see that expressions (5.315) coincide with formulas 

(5.276), obtained for the case of a stationary object, since 

"i =-o,o. 
iy 

-6  and 0,  = -0 . y     Iz    z 

Let us now substitute for ^x, 8y and t| in equalities (5.310) 

the expressions which derive from relations (5.159) and (5.164), 

if B and M  in the latter expressions are replaced by their values 
y    ■ 

(5.313), and 0.  and 0  are replaced by their exDressions (5.314). 

He then obtain: 
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_ ll3as I (A..- M. ,% \r.jl + 1Ä. c<>.h ^,/ 2,) f 

,   Art, - A Nm, u «hi« , ■    .    . > - 

 j (M i ^ sin (« si» i().' 

K V ■ co« if (\rt/ )- ;V Am, u to« ^) 

H tMlM%K''4> 

(-^ ■)■ -     i 
ftyj-.;=|Ayncn<(min<[)< — AxoMii(M5lii'f)0fn"V  ( 

+ — |fty"c(is(usji>()'   -6i0slri{i.sMii))/|»liiii\/4 

«•■ft \ »'. 1  I J 

A«, —f Aw, ■ situ» .Bl, H *ilHi ,    .    y \ I    i ■j-' i-cosoV slii(Bsin>iO/ -f 

An-—r Am.u cojfc-fArti,uslnf 
-f —i 1 -^ 1  11 -cos <V co5(« sin ir)/| -{■ 

Sa'tlnf co>f (\n, f ?r Aw, iico<i|) •Mk^Klf- 

|Aw>8lllT-Aw,cn<if     / .      l*i**1    *"**,*^mrf I 

+ (()^5lnT-0i,,cn5V f-"')slni/r   . 

+ - 4n, f-?r Am,uco«T 

N 
^^(.».„„vl'*'-<). 

(5.316) 

Formulas (5.316) qive tho relntion between ^x,, ty-j, ^z3 of 

th<' total errors in the detcrnination by the inortial system of the 

coordinates and the instrument errors and the errors in the initial 

conditions for motion alonq a parallel. 

For v = 0» motion proceeds in the plane of the equator, i.e., 

in a plane containinq tho center of the earth.  It is therefore 

natural that, for v = 0, formula.'; (7*316) reduce to formulas (5.275), 

(5. 288) and (5. 20'!) . 
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For v   =    2   »   i«e.,   at  a pole,   the object,   being  stationary 
relative to the earth,   is  at  the same  time  stationary  in the O.^n^C» 

coordinate system.     Formulas   (5.316)   should then  be derived  from 
formulas   (5.2G3)   for the case of a stationary object.     It is easy to 
show that this can indeed  be done.     In fact,   for  |   = j,  the  first 
two equalities   (5.316)   take  the  form: 

6*, — (^"os///   (  Avn5lllu/)C05lV f 

-~ — Bui til Wl j cusiVios«/. 
■ II lu,, 

A)'i — (Ay" ••• «' - ft*0 sin «/) tos i.i^ -r 

+ — (ftC^to".«/— ft.v"nii HO^III i.\,'t- 

4" ^-^ , CI)SI.\,/ Mil Ut  \ 
'») 

An,   -rAm.u 
4 -' 5—:    (I   -CMI^tMdl   - 

•I 
-,[ A^   | (o;1.- -[-''Jens«/ i   (»?. |  -i-'^.UMwJ 

(5.317) 

The third equality (5.316) does not change. 

The exorussionr, (5.317) for ^x, and äy, are projections of the 

total error vector "r, on the x and y axes of the  xvz trihedron 

rotating with the earth (the z axis coincidi'iq with t'^o earth's axis 

of rotation).  Kxnrcssions (5.263), on the ot'icr hand, are projections 

of the vector i:.r, on the axes of a fixed trihedron.  In orrler to 

distinguish these trihedra, wo denote the latter by x'y'z'.  The 

relative oosition of the x, y, z and x* , y' , z* axes will then be 

determined by the following direction cosines: 

A' CUS1.V       AUIll       0 

y    — sin«/    in';;//     0 

f        I U I. 
(5.318) 
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In  formulas   (5.37)   Am   ,   Am   .   An   ,   An    arc  constant.     If  in x   y   x   y 
the first two equalities (5.263) wc substitute in place of Am . Am . 

■      y 
An   ,   An    the  following quantities x y 

Am', = tm. ens nl — A/t^sIn ///, 

Am' -a A/.it sin /// + Am^os ut, 

A/»^ = ABi cos ut — A/j^sIn «/. 

An' zsA/»^ $...(// fA/^cos«/ 

and   inteorate,   we  find  Sx'j  and  ^y'^.     If we now convert  from &x'2 

and   "iy^  to 6x3 and  5y,   in  accordance w.'.th the  formulas deriving 

from  table   (5.318) 

6.«, = 6.*;cos«H fty^ln«/.    «)'.,=     6.vJ sin «M ftyjeos«/ 

and take into account the fact that u is small, we arrive at equali- 

ties (5.317). 

Let us turn to formulas (5.294) , (5.288) and (5.275)  defining 

the errors ^x,. ^3» *z3 in the case of motion at constant velocity 

alonq an arc of a great circle, and compare them with formulas (5.316), 

giving the same errors for the case of motion along an arbitrary 

parallel (along an arc of a small circle). 

The third formula (5.316) differs from (5.275) only in that it 

has An + 2rAm u cosv in place of An .  The term 2rAm u cosg may bo 

iqnorod here, and so the third formula (5.316) coincides with 

formula (5.375). 

Accordi.no to the first two formulas (5.316), the errors 6x3 and 

öy- consist of: constant components, oscillations at two close 

frequencies i.<     + u simp and Iü  - u sinv, resulting in pulsations at 

a frequency u sin ;,  oscillations at a frequenry u and components 

which increase  exponential]v.  Moreover, the exnrcisinn for 'x, 

contains the comnonent rcos if (Am rcosg + Am sin,,) t, \vhirh increases 

linearly with time.  Formulas (5.294) and (S.ltt) differ fron 

expression (5.316) for 6x3 and f>Y->  not only in the coefficient;:, but 

also by the presence of uulsations at the two close frcquencio.. 
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WQ + u sin<j and w- - u sinv, and also by the fact that the exno- 

nential terms in the case of motion along a parallel enter into both 

5x-j and fy,, while in the case of motion along a great circle they 

enter into expression (5.294) for ox, only, and are absent from 

formula (5.288) for 6y3. 

The latter difference is the more significant, since for 

extended operation of the inertial system it is the exponentially 

increasing terms which give rise to the largest error.  The numerical 

calculation carried out in §5.5.2 for the orecoding case, i.e., 

motion along a great circle of a fixed sohere surrounding the earth, 
15 

showed  that these terms begin to decisively influence (5x3 in only 

30-35 min from the moment at which the system begins to function 

(for an object which is stationary relative to the earth at the 

equator).  The same time period, obviously, aoplies to motion along 

a parallel, since the angle ut remains small (<7.3 IG" x 35 60 = 

0.15 rad), such that we may consider cos ut = 1, and sin ut = ut. 

Taking this into account, and also that, as a rule. 

|A/;..|r-r«| \/H„| 
I A», ■ ii I Am 11 

formulas (5.316) may be simplified to the form 

A«,    ,    ^n"    ,   .» .. ,   i   /.v. n       *5J tlUm,SUL |  rO'ly | /-Am,'  i 

rTJii rwt f/, .„ ,   A"  \ 
»n,     ^ v        ^'II / 

AV) - 
M 

r(\nlr  - r Am,/ | 

_l .    ~co<hii 

I Mi 

lll-f 

H 

-SllKV    I 
fw1 stn if IMS i| (hf  i      ";, jco.h   .1     '/ 

w, I 
»inn in,, | ̂ ||| 

(5.319) 

(5.320) 

The first formula (5.320) coincide.; with formula (5.294), if 

in the latter wo set M„ = u cos,,; til« si-cond formula (5.320) differs 
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from equality (5.289)  or from the second equality (5.274) in its final 

term, the coefficient of which contains the square of the rate of 

rotation of the earth. 

It is evident from relations (5.320) that the exponential 

terms influence 6y3 to a lesser extent than fix,, and so the operational 

time of the system will be limited during motion along a parallel by 

the allowable magnitude of 6x3. 

Approximate formulas for the orientation errors may be obtained 

from expressions (5.311), if values for 6x, 6y, 6x3 and 0.     are 

substituted into them in accordance with equalities (5.164), (5.320) 

and (5.315).  Then 

■ * «* i ., vSi ""* v ■) sin iv " * 

0,=  -0?,- Am,/ ( HfH I  W  ♦ 7^' + 

+ Lh* _ AMcow f itmrnt - 

3"**       {\ HI 

(5.321) 

As   is  evident   from  these   expressions   for   the   orojections   0   , 

0     and   'i   ,   they  all contain  terms which  increase exponentially with 

time.     Quantitative  analysis  of   formulas   (5.321)   may  be   carried  out 

in  a  manner  analogous   to  the   analysis  of   formulas   (5.316)   and   (5.320) 

for   iSx.,  and  ("iy,. 
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5.5.4. Keplerian motion of an object. The case of an elliptic 

orbit with a small eccentricity. Let us consider the relation between 

errors in the determination of coordinates and orientation errors, on 

the one hand, and instrument errors and errors in initial conditions, 

on the other, for Keplerian motion of an object. We will confine our- 

selves here to the case of elliptical orbits, for which a solution to 

the first group of the error equations was obtained in S5.5. 

We note first of all that for the special case of a circular 

otbit, this question has already been considered in the analysis of 

errors for the case of motion at constant velocity alonq an arc of a 

great circle on a fixed sphere surrounding the earth.  The projections 

6X-, 6y3, ^z3 of the error vector 6r^ on the axes of an orbital 

trihedron are expressed for the case of motion in a circular orbit 

by tho formulas 

A/3  ft/. I 

(5.322) 

where ^x, 6y, «Sz are given by equalities (5.177), and 0.  and 01 

by equalities (5.60) with M  replaced by u-.  Expressions for the 

errors 0 , 0 , • in the determination of the orientation parameters 

are given by formulas (5.300): 

o.  ■&. V £..•.— V 
(5.323) 

For constünt instrument errors, the formulas for the determina- 

tion of Axj, 4y3 and Sf. reduce to formulas (5.20(5), (5.290) and 

("3.287), and the formuiaH for the determination of 0 , 0 . ft  reduce 

to formulas (5.309).  Expressions (5.298), (5.290), (5.287) and 

(5.309) arc characterized by the fact that they do not contain expo- 

nentially increasing terms. 

The error by-   j.'i the determination of the location of the object 

in a plane normal to the orbital plane, is, according to equality 
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(5.290), a hnrmonic oscillation at a frequency w. about some displaced 

equilibrium position.  The error Sz, in the determination of the 

distance to the center jf the earth, as follows from relation (5.287), 

includes, in addition to harmonic oscillations at a frequency u-, 

a component which increases linearly with time: 2An t/w..  The error 

■SXj, given by formula (5.298), contains the linearly increasing com- 
ponent (-3c?x0 - 6iz0iJ0 - 3rAm  - 2An AOt, as well as the component 

-3An t:,/2, oroportional to the square of time. 

The error 0  in the orientation of the object in the plane normal 

to the plane of motion, accordinq to the first formula (5.309)  is, 

like Sy«! a harmonic oscillation.  The error 0  is determined by the 
• y 

second formula (5.309).  It contains linear and quadratic functions of 

time.  The error 0 coincide: 

case of a stationary object. 

time.  The error 0 coincides with the corresponding error for the 

For an elliptic object with arbitrary eccentricity, the general 

formulas (5.322) and (5.323), of course, remain valid, except that 

x,  y, 8a must be replaced by their expressions (5.258), in which 

the matrix elements A.., B.., D.. und E.. are determined by Gqualities 

(r3.239), (5.240), (5.251) and (5.252).  Initial values x° are related 

to 'x0, 5y0, öz0, Ax0, Jy^, dt1 by equalities (5.255) and (5.256), 

and r and v are soecified as functions of time by formulas (5.216) 

and (5.221) . 

Formulas; (5.322) and (5.323) ^ilso corttain the picjections ''. . 

9|vi hi7-     An expression for 'i,  is given by the second formula 

(5.71).  As regard?. r,
1  and "i,.< thoy are obtained from formulas 

(r>.771 , If in them ..-  is replaced by v, in accordance with the second 

formula (5.227). 

From the formulas for the matrix elements A. ■, n. ., D. .,and E. ■ 

it follows that ''.y-. and 0 will be periodic functions of time, tz-, and 

B will contain linearly increasing term;;, and .Sx, and 0 will contain 

linear and quadratic function« of time. 
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The quantitative analysis of formulas (5.322) and (5.323) for 

the case of motion in an orbit with arbitrary eccentricity qivo«? rise, 

in general, to considerable difficulties, since the integrals in the 

right sides of formulas (5.258) and (5.77) even for constant instrument 

errors may he taken only in series. 

Let us consider the case in which the eccentricity of the 

elliptical orbit is small.  We then find from equality (5.221), 

retaining only those terms on its right side containing e to the first 

degree: 

»in/. ---Mn.WO | ru.s W). (5. 324) 

Setting  K(t0)   ■ v(t0)   =  0,   we obtain M«  =  0,   and   from  the  first 

relations   (5.216)   and equality   (5.324)   it   follows  that 

iin/; —sinvu - /„Ml-I fci.svif     tui\ 
(5.325) 

For the sake of simolicity we will henceforth consider that 

t0 ■ 0, i.e., that at the initial moment the object is located at the 

periqeo of its orbit (this, cleorly, does not limit the generality of 

the analysis).  Instead of (5.325) we will have: 

slii£"=^!.ln\7(l -f f cOivO. 

from which 

iml:     IOSV/     eMtvxt. 

It now follows from the fourth formula (5.215) that 

r    :«(!  fcovv/). 

ami from the second equality (5.227) we  obtain 

(5.326) 

(5.327) 

(5.328) 

(5.329) 
(.1, - O  I«   v(i • If (0 ^'1 

Integrating the latter equality and noting that v(0) = 0, wo 

f i nd : 

t- rw i irtta«« (5, 330) 
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Formulas   (5.239),    (5,240),    (5.251)   and   (5.252)   for   the  matrix 

olomonts A.■,   1**4   n..,and P;^.   contain   the  functions  sin  v and  cos v. 

On  the  basis   of   formula   (5.330)   wo  obt.tin   the   followinq  exorussions 

for   them: 

«ml'   iMm/)-« MII^V/.    ci>s;'     CMft     '.VMM:>/. 

(5.331) 

These expressions may also bo obtained from relations (5.326), 

(5.237) and the next to the last equality (5.216). 

We now substitute r, sin v, cos v and t0 = 0 into expressions 

(5.239).  Then, retainimi only terms containing e to tlie first degree, we 

arrive at the following values of A..: 

,                .1v/(l (-»fmvO        . .■   i      ,   i   •' o , 
AH  -  - -— ■ »J ■. Hum •■vl"v' i  mtwtowm, 

Au  -!'2(M\I — fO  ( 3<iri'v/j.    A,,-z\ — nuivl; 

/I,,      1     f(fn5\/ f -^-»inv/J.  A;): cos\Y )^fvli'v/. 

A„ -    iiwt * rsUiM,    A„ --0; 

''n  ■   "»I' \ ttmiH,    All     v(co<vf ■( ccos!v(). 

Asi v(sliu/ ( f:!n?vO.    /I4—v(,%lnv/; 

Atr-y\™ H{*l—* --"r)]. 

^ii—      vjiosx/ | (■(i.n'v/      2slii'vO|. 

Au-:- v(l  ( i-fnsv/). 

(5.332) 

Analogously,   fro^   .>:•.:       w   —   (5.240),    (5.32R)   and   (5.331)   wo   find: 

/I,, ■     \(MII\/ i rvin.'v/l. /I ■,--'i{im\l 1 MM HO (5.333) 

Further, from equalitiori (5.251), (S.32I) and (5.331) we obtain: 
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Dp r-r mi vY -f r sin 2v/,   0„ m co$ v/ J-»(cos 2\7 + cos' \i), 

0M.   -(2cojvf-3»5ln'vO.   n„=i(sl.vH (MlMk 

!)„«cosv/-?»slri'v/, /)„ = -sinv/ + «(aw-|slnZv/). 

DM r, 1 f- 2 «In vl +* (ivl - -5 Mn 2v/)] , 

O,, = i (cos v/ f »(cos\t - 3     tln»v/)l; 

D„ m — i,    D„-= 3\l + 2«(3Wcus v/ - sinv/)|. 

I ... |M t-f(3v/cosv/- 25liivOI. 

D^ = -1 - 2 + 3f (\l sin \l ♦- cos v/)]. 

I 

(5.334) 

Finally,   from  formulas   (5.252),    (3.328)   and   (5.331)   we   find  the 
following approximate expressions  for E. •: 

i?!! = COS V< -f » (i — 2 SII|! yl), 

fu =• — v f«"1 v/ f- -j sin 2v/|; 

Cn ^=slii\/ j eiln'2\t. 

Vn — flwil-'il -f siii'W)|. 

(5.335) 

In order to obtain expressions for 6x, 6y, 5z, it is necessary 

to substitute-the values (5.332) — (5.335) of the elements A., 
Bii' Dii' Eii of t^e matricGS A, B, n, E into the right sides of 

equalities (5.258) and integrate them (as previously, we will confine 

ourselves to the case of constant instrument trrors). 

The integrands of formulas (5.258) contain, in addition to the 

elements of matrices D and E, the projections An , An , An , Am , 

Am , Am of the instrument error vectors An and Am on the axes of 

the orbital trihedron xyz, the magnitude r of the radius vector r, 

its time-derivative r, and the angular velocity M of t; a orbital 

trihedron.  Formulas (5.258) also contain the quantities x?, which 

are expressed in terms of the initial values -Sx0, 6y0, (Sz0, ix", 

5yc, 6z0 by equalities (5.255) and (5.256). 
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The value of  r  is determined by  exorossion   (5.32fl),   from which 

it  follows  that 

r =-= — «fviim/. 

(5.336) 

Performing the indicated substitutions and the integration on 

the right sides of formulas (5.258), we arrive, after the appropriate 

transformations, at the following relations: 

bx =3 6A" + --P (4 sin v/-3v/) 4 16zn(sin v/-vO + 

H—^-(cos\7-l)f—,■ | y-+4(|_(,osv))-|- 

4(iAm¥ 2An, 
+  (»In \7 -• v/) f —-j-i- (sin \l - vl) f 

-f e Art. 1- cos\7 — —- s nv/ + -i-cosv/ — 

- TT + ^ ""' »») 4 A". (- T - Teo5 v' ♦ 

-f ^j sin «14 »sln 2v' _ -fiJ il"sl cos 2v') + 

4- 2n .\my f - G/ - M cos v/ 4- -^ sin v/ ♦- 

•4-^-sln2v/-~ sliiv7c(is2v/)4 «Uni-cosvO- 

—-^'-(v/ -f v/cos v/ —sin 2v/) — 

— 3 bt" (5\l f 2v/ tos \t — -j sin 2W - 4 sin «A 4- 

4--—-(I f cos3v/-2cosvo|, 

An, - nv Am, 
fty m --^-p  (1 - cos vO 4 ft/ cos v7   |- 

4 -i-sliisY +(■—-(! — cosv/ -) Ürftf — 

— ■|v/sliiv/]4-i^'!-(tosv/—I- slir-v/4 WslrivO + 

+ i^!i(v/tosv/-slnv/) ^(>y"{cn*\t-\-!.U<'l\l)\- 

oj. 4- -^- ( - sin \t  \  bin \V cos v 

( 5.337) 
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bz m 2J^1±1^A{, _t,)s v/) -f. um-.* tm vo + 

+ ^ilsl,,,/-! ^.(vZ-slnv/) | ^-(l-cnSvO + 

r.    /    3i' , tntvt  ,    I -f «|.\«,(   ^-sinvr- -:iv    <--.(v. ita« - 

--J sh.Sv/j M«^   J*«  f- 4 s'"-'v' - 

"-|r —pcosv/   Kisl"''v/ ,:o'i v') ' 
+ 2« Aw, ( - •)/ vin v/ H i -   ^ ms v/ | 

-|- - Slll; v/ \   ~ tns \7 ms Ml I   ---- (l - nw« / - 

— ^-slnv/l | .V"(     GV/SHIV/  f  10 - lUiusv/f 

•| fislirv/) |- ^(sinllv/      ^ MIUY)]. 

(5.337) 

The terms in formulas (5.337) which do not contain the orbital 

eccentricity o as a factor, characterize the errors ^x, «Sy, ^z for 

the case of motion in a circular orbit.  The^e terms differ from formu- 

las (5.118) above only in that formulas (5.337) contain v in olace of 

i.i-.  For motion in a circular orbit m»  = V. 

The exoression in brackets in formulas (5.337) characterize, 

clearly, the denondence of the errors 6x, fy, <5z on the eccentricity 

e of the orbit.  Examination of these expressions shows that they 

do not contain,the time t to a oowor hiqhor than the second, and that 

t' is contained in the square brackets of the expressions defining 

Sx  and 8l as a multiplier of An .  For the case of motion in a circular 

orbit, t?   enters only into the expression for 5x. 

I f wo comnaro the expression for «Sx for the case of a circular 

orbit with the first formula (5.337), we see that it is easily 

demonstrated that the extent to which the orbit differs from circular- 

ity, i.e., its ollipticity, doe?; not give rise to a significant chnnqe 

in the deoondenco of •'x on time. As for the case of a circular orbit, 

for the case of an elliptical orbit the time functions enter as factors 

in the corresponding instrument errors, are analogous in the sense 

that they contain time (outside of the trigonometric functions) to 

the same powers.  The same is not true with regard to Sy and 6z. 
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Thus, the expression for 6y for the case of a circular orbit contains 

time only in terms of a triqonometric function.  For the case of an 

elliptical orbit, on the other hand, the expression for 6y contains 

the term eaAm t cos vt.  (It should be noted that for the case of a 

circular orbit, |y in qcner.il is not a function of Am...)  It is 

evident from the third formula (5.227) that for the case of ah 

elliptical orbit, for all of the instrument errors and errors in initial 

conditions of which f>z   (after subtraction of iSz0) is a function, the 

time t appears to a power greater by 1 than for the case of a circular 

orbit. 

Let us now turn to the integration of the right sides of 

expression (5.71) for the case of motion in an ellintical orbit with 

small eccentricity.  The first and third expressions are to be 

integrated, since the formula for I.  does not differ from the formula 

derived previously for the case of a stationary object.  The first 

and third formulas (5.71) arc equivalent to formulas (5.77).  Let us 

substitute for u    on  the right sides of formulas (5.77) its value from 

equality (5.329) and consider, as before, the instrument errors Am 

and Am to be constant.  Then, notiny that 

Jo,rf/ = v/+ 2/situ/. 

(5.338) 

and therefore that, with accuracy to within terms of the first order 

of smallness relative to e, 

sin J (i), dl m «In \Y ♦• f Mn ?v/. 
n 

cos J cjij dl ^-{.uivl —'it »in v«, 
i 

wc find formulae for 0-  and B.y in thr following form: 

I n ^ •*! 
0i,; - (li.ins »'      M|,Min/ i  --'sinv/ — 

t Am.(/  , ':;')  ^M.-~H 
Am, 

Ot.^-OuMllv/  |  III, co<v/  \  —^{\-  cos»/)  f- 

-f A-'Mnv/ ) r\<i',.w.\l      ;f\",,s\n\t t 

(5.339) 
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The terms in formulas (5.340) which do not contain e characterize 

the errors 0.  and 0,  for the case of motion in a circular orbit. 

If we now substitute expressions (5.337) and (5.340) together 

with equality (5.328) and the value 

into formulas (5.322) and (5.323), we will find the relations between 

the total coordinate errors Sx,, fiy-w äZ, and the errors B , 0 , 0 

in the determnation of the orientation oarameters for motion in an 

elliptical orbit with small eccentricity. 
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Chapter 6 

INERTIAL NAVIGATION ON THE SURFACE OF THE EARTH 

S6.1.  General Considerations 

In the precerling chapters the theory of autonomous inertial systems 

was presented.  These systems determine the parameters of motion 

required for purposes of navigation on the sole basis of the readings 

of inertial sensing elements: nowtonometers and gyroscopes.  No 

additional information is used for this purpose, with the exception, 

of course, of the initial conditions, which are considered as knowa. 

The equations describing the ideal operation of an inertial system, 

i.e., the algorithms on the basis of which the functional diagrams 

an inertial system are constructed, as well as the error equations, 

i.e., the equations describing the perturbed operation of the inertial 

system, wore obtained for arbitrary motion of the object.  No limita- 

tions wore imposed on the trajectory parameters.  The only condition 

which might in a certain senae be considered as a limitation, was the 

assumption that the flight trajectory was sufficiently close to the 

earth so that gravitational attraction on the sensitive masses of 

the newtonometcrs caused by all celestial bodies except the earth 

could be ignored.  This limitation, however, is insignificant, since 

it leads to vanishingly small errors even for the case in which the 

disUince from the moving object to the surface of the earth is 

comparable to its radius.  In addition, this restriction, which we 

used in deriving the fundamental equation (1.88) of inertial navigation, 

is not fundamental in nature.  As was demonstrated, it could just as 

wol] not have been introduced. 

In the preceding chapter the operational stability of an inertial 

system was investigated, and solutions to the error equations for 

several typos of motion were obtained.  These solutions give the rola- 

tiomhip between the errors in the determination of the navigation 

parameters and instrument errors and errors in initial conditions. 

Analysis of the solutions to (he error eauations showed that operation 
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of an inertial system of unlimited duration is impossible if a given 

level of accuracy in its determination of the navigation parameters 

is, in the general case, to be maintained.  The total errors in the 

determination of coordinates and orientation increase with time. 

For motion at low velocities the coordinate errors increase exponen- 

tially, and for Keplerian motion they increase as a quadratic function 

of time.  Errors in the determination of the orientation parameters 

increase, at best, as linear functions of time. 

Let us assume that certain requirements have been placed on an 

inertial system with regard to its level of accuracy in the determi- 

nation of coordinates during some specified period of continuous 

operation.  Then, knowing how the functional errors of the system 

depend on the instrument errors and the errors in initial conditions, 

it is possible to impose requirements on the operational accuracy of 

the system elements and on the accuracy of the initial conditions, 

such that they will guarantee a given level of accuracy in the operation 

of the inertial system, taking into account the increase in the errors 

over time.  However, these requirements on the accuracy of the system 

elements and the initial conditions may be so rigid that they cannot 

be satisfied. 

This difficulty may be avoided by adducing additional information, 

i.e., through correction based on external sources of information 

This information could be the height of the object above the surface 

of the earth, as measured by means of a barometric altimeter for 

a radioaltimeter, the velocity of the object relative to the surface 

of the earth, measured by a Dopplnr velocity meter, the coordinates of 

the object relative to the earth, as determined by a radio navigation 

system or a panoramic radar, etc.        Correction of the operation 

of the gyroscopic devices in an inertial system may be based on 

astronomical correction, i.e., comparison of the orientation of the 

gyroscopes with bearings to stars, planets, or artificial satellites, 

on the basis of bearings to orienting points on the earth's surface. 

In the simplest case additional information may bo used in the 

following manner. From time to time the readings from the inertial 

system are compared with the values of the navigation parameters as 
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derived   from other  sources,   and are corrected on  the basis of  these 
values.     In this case,   the  sources of error and  the dynamic processes 
in  the  inertial  system do  not affect one another.     The  interval 
between corrections  is determined by the  time during which  the  increase 
in  the  system errors does  not exceed allowable  limits.     In  this 
mode of correction  th*>  inertial  system becomes,   essentially,   a device 
which stores,   for a certain period of  time   (usually  short),   precise 
information on  the  navigation parameters obtained  from the external 
sources.     Continuous correction has no significance  in  this case.     Of 
course,   this correction procedure,   i.e.,   simple periodic correction 
of   the readings of  the  inertial  system,   does  not  in any way  lead to 
nev effects  in   its  operation. 

Of much greater  interest are other means of using additional 
information,   in which such  information  is actually used to alter the 
operational algorithm of the  inertial  system.     The primary result of 
this approach  is that,   in addition to  the algorithm   (the equations 
describing ideal operation),   the  structure of the error equations 
changes,   i.e.,   the basic character of  the dependence of the errors  on 
instrument errors and errors   in initial  conditions  changes.     Such 
correction procedures assume,   of course,   continuous  use of external 
information during a relatively extended  time period or even  throughout 
the  entire operational  time of the  inertial  system. 

Let  us consider  the   following   instance.     We assume  that an inertial 
syntem is determining the  curvilinear coordinates  x1,   K

2
,   X

3
  of an 

object.     Let us   further assume  that,   on  the basis  of auxiliary 
information on  board  the object,   one of  the coordinates,   for example 
thf  coordinate   *',  may be  continuously computed.     It  is  then possible, 
clearly,   to use  this  value  of  the  coordinate   for  the   formation of  the 
terms  in   the equations describing  the  ideal operation of  the  inertial 
system  in  which   it  apnears.      By differentiating   x',   we  may  also  form 
terms containing  the  derivative  a'.     Conversely,   if  the derivative 
»'    i;; known  from   external      information  sources,   the coordinate  x1   may 
bu   found  by  intoqrating  this  value. 

Two possibilities arise  here.     All  of the  terms  in  the   ideal 
equations  containing   a'   may  bo  formed.     In this  case  the  task of the 
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inertial  systen becomes  two-dimensional.     Generally  speaking,   the 
ncwtonometer the direction  of whose axes of sensitivity  is normal  to 
the  coordinate surface  M'   = const.,   becomes  superfluous.     This  newtono- 
moter may be eliminated  from the system.     The equation containing 
6H

1
   then falls out of the error eauations.     In the  two remaining 

equations  the terms containing  6«     ar 
Tnoy  are now known  functions  of  time. 
equations  the terms containing  6«     and  fi*1   move  to   the right sides. 

It is  possible,  on  the other hand,   to use auxiliary     information not 
to  form,   in  the  ideal equations,   all of the  terms  containing x1   and *', 
but  rather only certain of  them,   namely those giving rise  to terms 
containing   An1  and  SK'   in  the error equations and  lending  these 
equations properties which  it  is  useful  for one reason or another to 
avoid.     In   this case the  system remains  three-dimensional,   i.e.,   all 
throe  newtonometers are  necessary.     The system of equations describing 
errors   in  the determination  of  the coordinates retains  its order.     The 
only  difference will be  that now some  cf the terms  containing  6K

1
   and 

AH'   move  to  the  riaht side  and no  longer enter into   the homogeneous 
error  equitions.     Tt proves  to be  the case  that both means  of contin- 
uous   uno of  auxiliary    information on  the magnitudes  of  x'   and H'   may 
lead   to interesting results. 

It was  assumed above  that information on the  coordinate «'   was 
knevn   from    external    sources.     Clearly,   the problem  is  in  no way 
different  if a relation between  the  three coordinates  of  the  form 

(6.1) 

is known  from    external     sources of  information. 

Clearly,   this  roldtion may be  regarded as  a specification of one 
of  the  coordinates,   for example   «',   as a   function of  the other two. 

The basic characteristics of  this means cf using     aixiliary informa- 
tion   in  the  oper.ition of  an   inertial  system are,   as  has already been 

noted,   the continuous participation of  this information in  the  formation 
of  the  equations describing  the  ideal operation of  the  inertial  system 
•nd   the  dependence of the structure of the error equations on the 
means of using this  information.     The oroblom,   therefore,   is not so 
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much that of the correction of an inertial system, as of the operation 

of a "complex" system, which includes devices by means of which 

auxiliary  information is obtained from non-inertial sources.  In the 

general case, a system of this sort loses the independence characteristic 

of a purely inertial system. 

Systematic analysis of the problems involved in the correction of 

an inertial system is not part of our task here .  There is, however, 

a extremely important special case of the use of auxiliary information, 

in which the system remains autonomous and purely inertial:  the case 

of motion along the surface of the ocean, i.e., the surface of the 

terrestrial spheroid.  This case includes, for example, the motion of 

marine vessels of all types. 

For motion along the surface of the terrestrial spheroid the 

position of the object in space is determined, clearly, by two coordinates 

on the spheroid.  The three spatial coordinates of the objects are 

related by an equation of the form (6.1), which is the equation for a 

spheroid. 

In terms of the rigid earth body-axis coordinate system, C, n, 

C(n , n2, n ) (v.-ith the 5 axis along the axis of symmotry of the earth), 

the equation of a spheroid has the form: 

The spheroid is symnotrical about the ( axis, and the vector u 

of the earth rate may be considered as 

coinciding with the ' axis.  Therefore, if the ( and Zt  axes are 

considered as superposed, equations (6.2) retains its form in the 

coordinates 'Jjk, nA, r^. 
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Below we will also require spheroidal eauations in spherical 

(geocentric and geodetic) and geographic coordinates.  In the 

geographic coordinates r, f,   \,   the spheroidal equation has the form: 

This equation is found from relations (2.20) and (2.21) or 

(2.20) and (2.23), if in these relations h = 0. It gives r in terms 

of the geocentric latitude ft 

— ji^^7 (6.4) 

In order to obtain the spheroidal equation in the geodetic 

coordinates r, S, z, we have only to substitute for cos2* in equality 

(6.4) an expression in terms of S and z.  The third equality (3,303) 

may be used for this purpose.  According to this equality 

iinv   itftrnttmB M^tCMtttoi • A,,'in.- (6.5) 

Finally, the spheroidal equation in geographic coordinates h, 

>, ;' has, clearly, the simplest form: 

■1'!/,) h    • (6.6) 

Relations (6.2), (6.3) and (6.r)), relating the coordinates of 

tho surface of the spheroid,  enable us to express one of these 

coordinates in terms of the other two in the equations describing 

the ideal operation of tho inertia] system. 

We note that for motion along tho surface of a spheroid the 

distance r of tho object from tho  center of the earth becomes a 

function of the coordinator; of tho  object on tho spheroid.  In our 

analysis of tho error equations it war; shown that tho greatest 

difficulty from the point of view of quarantccinci the operational 

stability of an inertial system arise as a result of the fact that 

nart of the task which tho inert:al system must perform is the 

dotormination of r.  The composition (in the ideal equations) of the 

gravitational field strength of tho earth on the basis.- of 
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the magnitude of r detemined by the inertial system itself is 

orocisely the factor which results in the appearance in the; solutions 

to the error equations of rapidly growing exponentially and power 

functions of time.  We will see below that use of relations (6.2), 

(6.3) and (6.6) will permit us to alter the ideal equations sufficiently 

such that those difficulties may for the most part be avoided. 

S6.2.  Systems With Two and Three Newtonometers 

6.2.1.  Derivation of the ideal and error equations on the 

assumption that the earth is a homogeneous sphere.  Let us determine 

the character of the changes which may be introduced into the structure 

of the ideal equations and the error equations for motion along the 

surface of the earth.  In order to avoid unwieldy calculations, it 

is expedient to first consider this problem under the assumption that 

the surface of the earth is a sphere of radius r«, and that its 

gravitational field is spherical, i.e., that the strength of the 

gravitational field is 

f—^. (6.7) 

Both of these assumptions are equivalent, clearly, to the 

assumption that the earth is a homogeneous snherc.  Under this 

assumption, motion along the surface of the earth is equivalent to 

the condition 

r = rt a const 
(6.8) 

and there is no longer any need to determine r. 

We will make use of this fact in order to vary the structure of 

the ideal equations.  There arc two possibilities in this regara . 

The first possibility derives from the fact that two of the newtono- 

meters of the inertial system are located in a plane tangent to 

thr» surface of the earth, while the third is complotely superfluous. 

In the second case, all three newtonometers are retained in the system. 

525 



nd no  restrictions are placed on  their orientation,   but the 

strength     of  the gravitational   fi .«Id  is  formed  in accordance with 

the known value of  r = rQ,   i.e.,   in accordance with equality   (6.7), 

it  is  assumed  that 

»—f- (6.9) 

If  all   three ncwtonometers    are  retained  in  the  system,   the 

ideal   equations  retain the   form that  they have  for the  case of 

general  motion,   except that 

jtV—K. (6.10) 

It was  shown earlier that  the error equations  for  an arbitrary 

inertial  system with  three ncwtonometers  reduced  to equations   (5.1)   — 

(5.9),   equations   (5.1)   being  the  projections on  the x,   y,   z axes of 

the  first vector equation   (5.17): 

äl>   "+ ~rr'        rF~7> 

-A—tämx£+,X*lp. (6.11) 

In deriving this equation, terms containing variations of the 

non-soherical component of the earth's gravitational field were 

considered sufficiently small to be ignored.  This means, essentially, 

that in our analysis of the error eauations the gravitational field 

of the earth was considered to be spherical.  In the present case, 

thin assumption is introduced from the beginning. 

If r« is  used only in the formation of the quantity u/rl in 

the ideal equations, and it is precisely this variant which we are 

now considering, then in equations (6.11) the only term which changes 

iu the last term on the left side, containing the factor 

This term will now be equal to 0.  Equations (6.11) therefore 

i:aker. the form: 

'"  '„        mm (6.13) 
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In terms of projections on the x, y, z axes of the moving 

trihedron, the z axis of which is directed along the vector r, we 

obtain the following equations: 

«i + {••i - uj - <•>]) bx f (i..^ - Ö,) Ay — 

= A/i, — Am/,, — frfjj Am, — /-IJM, Am,, 

*y + H - "'J- '"D *» + hft ~ ""')*''_ 

— 2M, tir H ('i),u, 4 "■',)*•<■ + *%!• ■ 

»= An, t Am,?,, - M^ ■'imi— 'u^'» Am/> 

6i + fi - <"1 - <•'',)*' + ("V' _ ':'^*Jt * 
-2u,*r \ («V'r > "^ ♦ *,k^— 

ö An, 4-2r (w. Am, + u, Am,). 

where 

4- ' i'/'3- 

(6.14) 

It is evident that the remaining error equations of the system, 

except for the first group of equations obtained above, do not change, 

since they do not contain the gravitational field strength. 

Let us now turn to the second alternative approach to the con- 

struction of an inertial navigation system for the case of motion 

along the surface of the earth, namely, to systems using two newtono- 

metcrs oriented in the plane of the horizon, i.e., in the plane normal 

to the vector r. Without decreasing the generality of our analysis 

we may consider, clearly, that the missing newtonometer is the one 

oriented along the axis coinrTidinq with the vector r. 

Let us consider the cases of the determination of Cartesian and 

spherical curvilinear coordinates. 

In the first case, the ideal equations are easily found from the 

genoral equations (3.59) — (3.65).  If wc consider that the z axis 

of the platform of the inertial system coincides in the unperturbed 

position with the direction of the radius vector r, then we must 

introduce the following changes into equations (3.59) — (3.65): 
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we must evi-rywhoro set x = y = 0, z = r0; drop equations (3.65) and 

the third equation (3.59); set ^v = % = 0» and v = 0 in the first 

two equations (3.59), in accordance with equality (6.7). Equations 

(3.59) will then take the form: 

VM -- J («, f mtvt)(tl  )- v,({i), 
o 
f 

0 

(6.15) 

Equations   (3.60),    (3.61)   and   (3.64)   do not change,   since  they do 

not contain  x,   y,   z.     Relations   (3.62)   will  take the  form: 

I. --»,/...    M.-"..,r... t.-■■„'•.. (6.16) 

Relations (3.63) will  chame in an analogous fashion: 

i --if,/- '\   iv/.,. ; r./,,. (6.17) 

For the case of spherical curvilinear coordinates, in order to 

obtain the ideal equations wo may also use the general equations 

obtained in 53.2.  For oblique  curvilinear coordinates, these 

will be equations '3.172), (3.163) or (3.174) and table (3.173). 

For orthoqonal curvilinear coordinates, equations (3.210) — (3.213) 

should be used.  If the basic system is a maneuverahle gyroplatform 

with fixed newtonometers, relations (3.205) and (3.207) by means of 

which the controlling moments are determined, should be used in place 

of equations (3.213). 

For spherical curvilinear coordinates, for the case of motion 

on a sphere, wo may take 

'' ' '•■ (6.18) 

such that relations (3.39) may BOW be written in the form; 

i« ^v,*,/), (6>ig) 

where the functions fs are the direction cosines of the radius 

vector r in relation to the (  axes, and x? and K
3
 are the curvi- 

linnar coordinates of the sphere. 
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For the case of obliauc curvilinear  coordinates the 

newtonometors n  f n , n_ are oriented along the vector r . 
•l   e2   e3 

In accordance with equality (6.18), the vector r1 has the same 

direction as the vector r. and, consequently, the vector r.  For the 

case under consideration, the newtonomoter n. is absent.  In 
el 

equations (3.172), therefore, the first and fourth equations for 

r and r, respectively, drop out.  In the second and third equations 

(3.172) the sums 

t'llil'l'll,7  "Ml'I'll1 

"■   "■'   ,"" (6.20) 

also drop out,   since they are  equal  to  zero,   according to conditions 
(6.9).     Equations   (3.172)   therefore  take the   form: 

11      r«"iü) 

<' = l~  J^Ö17". *'= j »'dl + H' (0). 

K' m f0. x1 = 0. 

whore s takes on the values 2 and 3. 

(6.21) 

As a result of equalities 

grjd'l'iij =0, c"<f I'M? ~n 

(6.22) 
s     k the need to compute nj and i\     falls avay, and therefore equations 

(3.163) drop out of the ideal equations.  Table (3.173) retains its 

form, except that now, as in equations (6.21), the index s takes 

on only the values 2 and 3. 

For the case of orthoqonal curvilinear spherical coordinates, 

the changes in the ideal equations are analogous.  The first 

oquationa from groups (3.210) and (3.212) drop out, equations (3.211) 

drops out entirely, and tho three first equalities of equality (3.213), 

i.e., those corresponding to s = 1, drop out.  Relations (3.205) and 

(3.207) remain unchanged. 
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As an example, let us write out the ideal equations for geo- 

detic  coordinates and the coordinates o,, o,,  examined in §3.3. 

For geodetic  coordinates, when the basis of the functional diagram 

is a manenverable gyroplatform, by returning to equations (3.308), 

setting 

(6.23) 

and dropping the first equation (3,308), we obtain the system: 

0 
I 

I 
s=Jh£i-;üb(A-c°sr-A"s""cosS- 

— 4i]Sln/sinS) rf/ i SCt), 
i 

»= f (-U, ■)-«(-A,|!.lriS-(-6J,cosS)Irf/ -»-/(O), 
ii 

u, ■ M, IR t + •— (t,, cos I i *,; sin Ä). 

At),--     //.....    M\.^lh',.    ,»0, =.//.i.. 

If in formulas (6,24) we set ■',, = 1, 6,, = 5,- 

(6.24) 

= 0 and sub- 

stitute vand A for z and S, respectively, we obtain the equations 

describing the ideal operation of a system determining geocentric 

coordinates. 

In order to obtain the ideal equations for a system with two 

newtonometers in the curvilinoar oblique anqlo coordinates o., c- 

on ■ sphere, the simplest procedure is to turn to enuations (3.344) 

Dropping the first and fourth of these equations, setting r = r« 

and r = 0 in the others, and taking into account equality (6.22), 

wo arrive at the equations: 
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_  f r?LJ s-il?-0-'-, (Ö, coso.coso, f Cltf», 

,-CO 

4 0,siM01
,.ino,)'Ji// +-0,(0). 

-f- ö, cos a, cos (i;)'| <// 4- Oj (0), 

/ . 
o, = J <f, <// 4 »i (0).    o, = J 0^ rf/ t "j (0) 

(6.25) 

We must add to these equations the table of direction cosines 

between the unit vectors e, and e, of the axes of sensitivity of the 

newtonometers nj, n3 and the axes £,,,,   n* and c«» deriving from 

(3.350): 

*l      - slno,      cosnjCli;!',   ctß fi| (''sln'n, -  cos'o, 

fj   coso, clgo,      — sinn,     ctßOj I'sm'iii —cos1 n^. 
(6.26) 

Lei. us   now obtain   the error equations  for  systems with  two 
newtonometers.     The   first group of  error equations  in terms of pro- 
jections on  the axes of  the    moving trihedron xyz,   the  z  axis 
of which coincides with  the radius  vector  r,  may,   clearly,   be 
obtained immediately  from equations   (6.14) .     In order to do  this we 
tust drop  the   third of  these  equations and set   6z =  0  in  the   first 
;wo.     We then obtain a  system of  two   fourth-order differential 
equations: 

*•' M':'   •<   ".)'"' t'("V',   ':'.)'l>■   HA>'" 
= \/i,      Am,^,,--rn, Ani.r,,     i.i. Am,r„ 

(6.27) 

There  is one  point which  needs   to be  clarified with regard to 
these  equations.     We obtained     them by setting 

i>i  is 
(6.28) 

in the first two aquations (6.14) 
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This equality is valid for small values of 6x and iSy, such that 

their squares (like the square of &z)   may be ignored.  Indeed, from 

the identity 

(6.29) 

it follows that 

(6.30) 

from which, if ix', 6y*,   6zf  are dropped, equalities (6.28) follows. 

If more than a first approximation is desired, the following 

non-linear system should be used in place of equations (6.27): 

«x + (I..J -...; - tQ* i (..,.., - «,)*>■ - 

— 2M#Ay ( (I.I.M, (-i'^Ai f ;'.., Ai = 

— .\n,   - \mtra-   M.A«!/,,     I.I, Am^r,,. 

»J+(,„;-   ...»     c.'.)\M (..MVI-M^V  f 

= A/I,  | Am.r,,-   i),Am^,, — 01, Noiy'i,. 

Av-  ( fiy'4 '>••■  i  !>,/:   '" 
(6.31) 

6.2.2.     Motion on  the  surface of a  terrestrial  ellipsoid. 
Taking  into account  the  non-sphericity of the earth's gravitational 
field.     We will now discard  the assumption  that  the earth and its 
gravitational  field are  spherical  in  form,   and consider the case of 
motion on  the  surface of  the Clairnut ellipsoid given by equations 
(6.2;,   (6.4)   and   (6.6)   and the expressions  for  the strength    of  the 
regularized  gravitational   field of  the earth obtained  in Chapter  2. 

Let  us  again begin with a  system using   three  newtonometers. 
Here,   clearly,   the  ideal   equations may be  retained   in  the  same   form 
as   for  the  case of arbitrary motion,   the only  change  being  in the 
means of forming  the  projections of the strength     of  the gravitational 
field.     Thus,   for example,   for  the determination  of Cartesian coordi- 
nates equationn   (3.59)   —   (3.65)   remain valid.     The only difference 
in   that now in equations   (3.65)   for the  formation of  the  spherical 
component of  the earth's  gravitational  field  the value  for r obtained 
from equations   (G.4)   or equivalent equations  must  be  used.     We must 

!.     s proceed  in  the  same  fashion  m  the  formation of   the  sums grad Vn„ 
for the case of curvilinear coordinates.     If  in  the  first group of 
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error equations we  ignore  small variations in  the non-spherical 

component of the gravitational  field,  as we did previously in 

deriving equations   (5.1),   then the error equations will be  the same 

equations   (6.14)   as   in  the  case of motion on  a  sphere,  except that 

now r  from relation   (6.4)   must bo substituted  for  r,..     Since  the 

products of the instrument errors times the square of the eccentri- 

city of  the Clairaut  ellipsoid are quantitites  of  the  second order 

of  smallncsp,   it is  permissible to substitute  r = a  for r0. 

We will  illustrate  these considerations by means of 'JO examples. 

The  first example is  that of a  three-newtonometer system determining 

geodetic coordinates.     Let us assume that this  system is constructed 

on the basis of a maneuverable platform such  that in the unperturbed 

oosition  the orthogonal   trihedron xyz of the platform along whose 

axes the newtonometers are oriented is   a moving trihedron 

of  the    geodetic reference grid   (the z  axis  of which is directed 

along the vector r).     The  ideal equations are   then obtained  from 

equations   (3.308),   if  in the integrands on the  right  sirles of the 

first three equations   (3.308)   in the  functions  g1(r,   J)   and q3(r,  f| 

r  is expressed in terms of V   by means of  formula   (6.4). 

The  functions g1 (r,   v)   and g3(r,   9)   are the  projections of the 

strength     of  the earth's  gravitational  field on   the  axes of  the 

geocentric    moving trihedron: 

«'('.•O^/•,,.   i:\r.n) ^Fy,. {6.22) 

where P - and F  _  are  deterninod by equalities   (2.98). 

In order  to got  ria of   r  in  the arguments  of  the  functions  Fz 

and  f"     .   wo must substitute   into  the right sides  of equality   (2.90 

the  expression   for  r   in   tcrru;  of   .   given by  formulas   (6.4).     However, 

wc  may also  use  resultr,  which  have  already been  obtained:   bv  turning 

to   formulas   (2*111)   anc1   dotting  h  =  0,   we obtain 

gHV)=.-g,[l _.ie:sln'<f-f-7(l-i|s|1,'.f,)-f 

+ f'?(-gsln'.f-f-^l-"2.p)]. 

(6,33) 
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Considering,   for  the  sake of simplicity,  only  terms of the 
order   of ez,  we will  have; 

a(.p)«.^^~*')slii2(f, (6.34) 

On the basis of these equalities, equations (3.308) take the forn: 

i 
-*, (l +f + 7(3?-^sln'v)](//-)- r(0) . 

0 

+ ^,(7 —''Jsi'ivC-ftjiSlnS-f-^cosS^/H »,(0). 

0 

-f • AT» (? —'') •*' (r(—AJI ■*■ •cos *— 
— 6j, sin r sinS-f ft,ucos i)\ ill 4 vy(0). 

1 

« 

5 _:   I     —lil (ft., COS Z — 6,1 Sill i COS 5 — 
J l cos /       cos * v J1 ■ 
I 

— ftj;slnzslnS)|rf/ I 5(0). 

/=   f [   -(..,    f-«(      ftuSilKf   f-ft,, COS 5)1«//   I   Z(0). 

II 

«In if • = ft.,| cos z cos .S" I A,,.-t"s ■s,n' f A,,sin z, 

dl, « wy I« r -f- -~ (A,! cos i" f- A,2sin5). 

Ml,   -      //.-,,    Mir^ll^y.    i&mmH*. (6.35) 

Settinry ^33  =  1,   '^i   =   a,,  = 0 and  replaciny S  and  z by  X  and 
.,   respectively,   v/c  see   th.it  equations   (6.35)   convert  into equationü 
for   the do termination of  geocentric coordinates. 

We will  take as our  second example a system determining the 
geographic coordinates h,   >,   v'.     Here we can begin with equations 
(3.333).     For  the case  in  question,   they re';ain  their bayic  form. 
Only   the   terms containing  g'   and g'     in which we  must  set  h =  0, 
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are different. Since gi and gi are projections of the strength 
of the earth's gravitational field on the x, y, z axes of a geo- 

graphic   moving trihedron, 

'      '•'   e'~ >' (6.36) 

where R      and Fy   are determined from equalities   (2.117).     Setting 
in equalities   (2.117)   the  altitude h = 0 and retaining only terms 
containing e2  and q,  wo obtain: 

*.. •f»[l   I » t |itf     i^slnV], 
(6.37) 

Substituting these expressions  into the first and  third equali- 
ties   (3.333)   and leaving  the  rest unchanged,   we obtain  the equations 
describing the operation of a  three-newtonometer  rystem determining 
geographic coordinates. 

We emphasize again that both  the system operating  in accordance 
with equations   (6.35)   and  the  system structured in accordance with 
equations   (3.333)   and   (6.37)   have as  their first group of error 
equations  the system of differential equations   (6.14)   or the equiva- 
lent vector equations   (6.13),   while equations   (3.308)   and   (3.333) 
correspond  to  the vector error  equations   (6.11).     This  difference  in 
the  error equations arises  as  a   result of  the  fact  that,  when equations 
(6.35),    (3.333)   and   (6.37)   are  used,   the quantitites  r and h,   computed 
by   the  inertial  system,   do not  tahc part in the formation of the 
projections g',   g1,   g'     g^  of  the   strength   of the earth's  gravita- 
tional   field,   as   is  the case   in  equations   (3.308)   and   (3,333). 

The claim that equations   (6.14)   are  to a  first approximation 
the  error  equations of the  systems   in question derives   from  the 
following  considerations.     Kquations   (6.35),    (3.333)   and   (6.37)   for 
the  case of motion on  the  surface of a  spheroid differ   from equations 
(fi.24)    (and  the equations derivino  from them  for  geographic coordi- 
nates)   in  that  the  former contain  terns of  the  first order of smallness 
(containing  the  factor e?) .     The variations of  these equations will 
therefore differ by terms of  the second order of  smallness,   i.e., 
they will,   to a   first approximation,   coincide.     This consideration 
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is, of course, easily supported by formal calculations. We will 

not, however, perform these calculations here, since we have analyzed 
3 

this question in detail elsewhere,  in an analysis of inertial 

navigation on the surface of the earth as a special case of navigation 

close to the earth's surface with altimeter correction. 

Let us now consider the operation of two-newtonometer systems 

for motion on the surface of the terrestrial spheroid, namely the 

operation of systems in which the newtonometers are situated either 

in the plane of the geocentric horizon (a plane normal to the radius 

vector r), or in the plane of the geographic horizon (a plane- 

tangent to the Clairaut ellipsoid).  The general case of the deter- 

mination of Cartesian spherical curvilinear coordinates may be « 

regarded here in the same way as the case  of motion on a sphere. 

We will therefore not deal with the general formulas, but will cite 

them only for the most important cases, geodetic   and geographic 

coordinates. 

For geodetic   coordinates the ideal equations are obtained from 

equations (6.35), dropping the first and fourth^equations and sub- 

stituting in the remaining equations for r and r the exprtcsions for 

those quantities deriving from equality (6.4).  Thus, for this case 

we obtain the following equations: 

n 

i 

», = J I", - ■>','■; t ''■', t- 
(I 

<-/f,(7-   r1)ii>'>l(       rt,| Mil JIM'. .9 

--4,^111 r >.in.V i A.iius/Jli// i <',(U), 

iKT 
i r- »Trr^i, ' 

tin? —flu cosrcosS ( ftnCos/slnS-f-ftjjSln», 

«■».»-v -.= ^• 

•s'=J"f^^■-T^v(A"c",/  Ai'ln/csS- 

i 

»^Jl    •■>,  I "(    A„s(nSfftJ?C(.5.V)|rf/-|-f(0). 
n 

u, = .,i, |H f •— (AII f" S-) «wsm S), 

Afl,:--       //..>.,    M'.^lli»,.    M'.^III*,. 
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Let us now assume that the coordinates being determined are 

the geographic coordinates X and | ', and that the x and y axes of 

the platform of the inertial system, along which the newtonometers 

are oriented, are situated in the plane of the geographic horizon. 

The ideal equations are then obtained from equations (3.333) and 

(6.37).  Dropping the first and eighth equations (3.333), setting 

h = 0 in the remaining equations and substituting for gi in 

accordance with the second equalities (6.37), we obtain the ideal 

equations in the following form: 

„, = J \n, - *,.,.. + ^ sin V]« + % » 
| 

0 

u, = '■', '.;•{'. 
< = , -//..... ,11;,-//...,. < = //..,. (6.39) 

Because •* is smnll, wo may expand the right sides of the fifth 

and sixth cquntions (6.39) into series in powers of eJ.  Retaining 

only term:; of the order of e7, wo obtain the approximate expressions: 

ri=--a\\-\ f*(|(irf«' -1)]. (6.40) 

These  allow  ur,  also   to  write   the   third  and   fourth  equalities 
(6.39)    in   the   following   form: 

(6.41) 
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Analogously,   the  third equality   (6.39)   may be replaced by the 
approximation 

r = o(l —-.-r'sln'cf), 
V  2   ' (6.42) 

after which substitution the fifth and sixth equalities (6.38) reduce 

to the fcllowing forms: 

.,., =« - ^ |i 4 -2- sin'.p]. m, ■ y (i f j »•"''() (6.43) 

In the preceding subsection, in which wo considered inertial 

navigation on the surface of the earth under the assumption that the 

earth is a homogeneous sphere, the first group of error equations 

(6.27) were obtained for two-newtonometer systems.  These equations 

will be to a first approximation the error equations for motion on 

the surface of the terrestrial spheroid, independent of whether the 

newtononeters are oriented in the plane of the geographic or geo- 

centric horizon.  This fact derives from considerations analogous 

to those presented above with regard to three-nowtonometer systems 

used for navigation on the terrestrial sphere and ellipsoid. 

f;6.3.  Schüler Gyroscopic-Pendulum Systems 

6.3.1.  The compound Schüler pendulum.  We will use the term 

compound pendulum to denote a solid body having an axis of dynamic 

symmetry and suspended from a noint on this nxis not corresponding 

to the center of mar;.s, which, clearly, also lies on the axis of 

dynamic symmetry. 

If the suspension point of the pendulum moves arbitrarily in a 

coordinate system O.f.^r.^r^,   the axis of dynamic symmetry will at 

each moment of time occupy in this coordinate system a position 

determined by the initial conditions of the motion of the pendulum, 

its parameters, the gravitational field of the earth, and the law of 

motion of the suspension point of a pendulum. 

Max Schuler, investigatinq the plane motion of the suspension 

point of a pendulum at a constant distance from the center of the 

earth, undrr the assumption of the contrality of the earth's 
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gravitational field, MtablisiMtT that the axis of dynamic symmetry 

of a pendulum, qiven that its parar'iotert have been selected in a 

specific fashion, may lie on a line parsing through the center of 

the earth at all timer; during its motion, if it lay on this line at 

the moment at which its motion began.  A number of works were devoted 

to the generalization of this theorem of theoretical mechanics to 

the case of arbitrary motion of the point of support of a pendulum, 

including works by D. V. Bulqakov and A. Y. Ishlinskiy.  Ishlinskiy 

gave a rigorous solution to the problem for arbitrary motion of the 

susnonsion point at a constant distance from the center of the earth. 

The Schüler theorem was the source of the ideas on which inertial 

navigation is based.  Inertial navigation systems developed at first 

as mechanical devices modeling Schüler's physical pendulum.  The 

classical examples of this type of model are the Anschutz-Heckeler 

pitch control gyrocompass and the twin vertical gyro. 6 

It is obvious that a mechanical device giving an alignment to 

the center of the eartn is equivalent from the point of view of final 

results to the two-newtonometer inertial systems considered in thr- 

preceding section.  Indeed, knowing this alignment, it is possible 

to solve the problem of navigation on the surface of 

the earth.  For this ourpose it is necessary only to include in the 

system gyroscopes for determining the orientation of the alignment 

to the center of the earth in the 0<C*1ftC« coordinate system, and, 

:or navigation in an earth body-axis coordinate system, a 

tim^r, in order to compute the change in time of the position of the 
01 *'•'« coordinate system relative to the earth.  These two approaches, 

however, are more than superficially similar.  The analogy between 

them, as wo will sec, proves to be much deeper. 

Let ur.   now consider .Schüler's compound D-Midulum.  Wo have two 

problems to solve:  to determine the conditions under which the 
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pof ition of the axis of dynamic .symmetry of the pendulum coinciding 

with the alignment to the center of the earth is a position of 

relative equilibrium, and to investigate the motion of the axis of 

dynamic symmetry about the posit on of relative equilibrium. 

Figure 6.1 

Let us consider the first of those problems.  Let us attach 

to the body of the pendulum the trihedron Oxyz (Figure 6.1), the 

origin of which wo place at the suspension point 0, and the z axis 

of which we align along the axis of dynamic symmetry of the pendulum 

away from the center of mass C, which, therefore, will have the 

coordinates 

■yc^f». 'c: (6.44) 

The x, y, z axes are aligned along the major axes of the ellip- 

soid of inertia of the pendulum, which is an ellipsoid of revolution. 

The moment;- of inertia of the pendulum are therefore equal: 

A^A.'-/,, =('. A.-•/„-''• J.,~c- (6.45) 

The equations of motion of the pendulum are most conveniently 

fnrmulated in the O'^n^r* coordinate system, the origin of which 

coincides with the point 0, and the orientation of the axes of which 

coincides with the orientation with   the axes of the O.r^ri^^^ coordi- 

nate system, i.e., fixed relative to bearings to distant stars.  In 

formnlatinn the equations of motion we will use the moment of 

momentum theorem.  Since the coordinate system 0{An*C* moves by 

translation in inertial space, the moment of momentum thcorum leads to 

the well-known Kulcr equations (in terms of projections on the x, y, 

z axes) : 
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H^BHiVHBBBH^HBB 

• ^?._(C-/t)ü>jU, = .»l,. 

(6.46) 

Here w.. re projections of the absolute 

rate of rotation of trihedron xyz about its axis, and Mx, M . Mz 

are projections on these same axes of the tctal moment about 

point 0 of the forces applied to the pendulum. 

Since the coordinate system O^n*?*/ in which the equations 

of motion have been written, is mobile, the inertial forces of 

translational motion and Coriolis forces should be taken into 

account, in addition to gravitational forces and the reaction force 

of the fulcrum, in calculating the moments.  The moment of the 

reaction force of the fulcrum is equal to zero, since the linear 

action of the force passes through point 0 (we will consider the 

fulcrum to be frictionless).  The Coriolis forces are also zero, 

since the motion of the O^n^r;* coordinate system is translational. 

For this reason the inertial forces acting on the elementary masses 

of the pendulum are parallel to one another and reduce to the single 

force Q,  applied to the center of mass C. 

We will consider the earth's gravitational field to be homo- 

geneous within the amplitude of the pendulum.  The gravitational 

forces reduce, therefore, to the resultant force 

'-■» (6.47) 

ipulLed at the center of mass C of the pendulum and directed along 

he- strength vector g of the gravitational field at point 0 

m donotinq the mass of the pendulum). 

Taking into account these remarks and equalities (6.44) we 

lind the following cxprrssions for the moments: 

'■l, ">('•, ( Q,).   M, «(/", | y,). w, -.u. (6.48) 
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Let us now assume that the axis of dynamic symmetry of the 

pendulum always coincides with the direction to the center of the 

earth, that the point 0 moves freely on the surface of the earth, 

taken as a sphere of radius rQ,  and that the earth's gravitational 

field is central.  Then 

f,-<V-» (6-49) 

It  is obvious  that 

(?,= -m«v   (?r=-m«i,.   Q,=   -m«-,. (6.50) 

where 

», =''.. + 'V, - <",",■    "V = «', -I '■',". - '"i'V 1 

(6.51) 

Since the z axis coincides with the direction to the center 

of the earth, and r0 = const, it follows that 

v, m /■„.■>,. f, --- - r."-,. ", = " (6.52) 

Substituting equalities (6.49) -- (6.52) into expressions 

(6.48) and also into equations (6.46), we arrive at the following 

equations describing tho equilibrium of the physical pendulum: 

(-4  - MM^(3jL- ",'•>,)-* '   ',">, =f,■ 

(A -m<"-„)(^- f "V..)     CM,..., - «1. 

c^-a (6.53) 

Equalities   (6.53)   should  bo  satisfied   idonticnlly.     For  arbitrary 
i.   ,   '.)   ,    .,   this   can  occur  if   the   following   conditions   are   satisfied 

X y Z 
■t   the  sanu;   time: 

/1/mu.  r,,.   c =n. (6. 54) 

Tho   first   condition   is   the well  known  Schüler  condition:   the 

reduced   length   of  a compound   PgndulUW  should  be  equal   to  the   radius 

of  tho earth.     Tho second condition requires   that  tho entire mass 
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of the pendulum be situated on its axes.  This condition may be 

replaced by another one.  For C ^ 0, it follows from the third 

equality (6.53) that 

•%•«{-«■* (6.55) 

• 

If we now take w° = 0, the first two equalities (6.53) are 

satisfied only if the first condition (6.54) is observed for arbitrary 

C.  In this case the projection of the absolute rate of 

the rotation of the pendulum on its axis is 

Condition (6.56) and the second condition (6.54) nay be combined 

into a single condition: 

K.^-Os^o. (6.57) 

We note that condition (6.56) has to do with the selection of 

the initial conditions of the motion of the pendulum.  Two additional 

analogous conditions should be added to it; a) at the initial moment 

of time the z axis should coincide with the direction to the center 

of the earth, and b) the projections w° and MC of the absolute x      y 
angular velocity of the pendulum at the initial moment of time should 

be such that the race of change in orientation of the z axis 

of the pendulum should coincide with the initial velocity of the 

change in the orientation of the radius vector r from the center of 

the earth to the suspension point of the pendulum. 

Let us now consider perturbed motion of a Schüler pendulum, 

i.e., swinging of the pendulum about its position of relative equili- 

brium.  This swinging occurs if the parameters of the pendulum or 

the initia] conditions, do not precisely satisfy the conditions cited 

above. 

Let us designate the trihedron xyz, attached to the pendulum at 

its unperturbed position, by xny0z0.  The perturbed position of the 
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pendulum (or, oquivalently,  the trihedron xyz attached to it) we 

will define by means of the angles a,   B,   and y   (Figure 6.2).  The 

direction cosines between the x, y, z and x», y0, zQ  axes will then 

form the table: 

*, to» Pfnt y- tin a iln p «hi | 

ft ■<<• 0 tht > . tin <i im prni \ 

'■ —col ii tin fi 

- (in n Hit v     CM il coi Y •  Kn a tot fl %Ui y   \ 

mt a coi v      iln 0 t'n v - Hn d roi (I Ci t y    I 
■tna toi'i(.»(l        ' 

(6.58) 

Let us consider first the case of small a,   ß and y,   for which 

table (6.58) simplifies and takes the form: 

X y z 
'o 1 -V (1 
i'o V i -a 

'o n ■ 1 (6.59) 

To describe the perturbed motion of the pendulum, it is suffi- 

cient to obtain equations satisfied by * , p, and y.     We will use 

equations (6.46) for this purpose. 

Figure 6.2 

Let us denote the projections of.   the absolute angular velocity 

of trihedron XQYQZQ  on it;; axes by u and 
'•o 

, respectively. 

In accordance with table (6.59) we then obtain; 

111, = U,,-f 1.1,.^ - <.i,_(l I-11, 

u» " "V. — «"..V -f-oi,,« +•((, 

(6.60) 
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To calculate the moments M . My and M on the right sides of 

equations (6.46), we require the projections w , w and u of the x       y z 
acceleration of  point 0 on  the x,   y,   z c.xes.     They are: 

where,   in accordance with equalities   (6.51)   and   (6.52), 
(6.61) 

*,. — 'oK + O- 
(6.62) 

Further, assuming that the earth's gravitational field is central, 

we find: 

".^-F.f.   F,^r,.n. 
(6.63) 

From expressions (6.48), (6.50), (6.61), (6.62) and (6.63), 

wc obtain the following values of the moments M , M ard M : 

At, =•0/',a foffif,,^+ (..;_)« I «''"„(';>,. + w„ogv. 

M. =0. if.64) 

Let us  now substitute  the values   (6.64)   of  thr moments,   together 
with  expressions   (6.GO)    for   the  projections   w   ,   w   ,   anJ  w     in 
ecjuations   (6.46).     Performing the obvious groupings ami Ignoring 
torms of  the  second  order of smallnoss   in   i ,   ß  and y»  we obtain  the 
equations: 

(^ - ma^f,)(.:.f( -...,_...,.) -( tty^ f A (■., Y + 

-fw^v-i'.fi-io.Jl t-'i) I (C--/l)( -MJn ♦• M^p |- 

-f ui^v - '■'„'••,,V t i'^'i  ( <■>,(•) — •'l\it  i 

+imftjkj 4 iij) t tmfjf*^ ^'■'•.'■',,)■ 

{A — mar0 .«i,, f M,.!!),,) — Ci.i,,!.!,,  (■ 

4- M (       M./y   - M^V   i  '■'(,"   f '''I," + P) — 

-(C   ■ /!)( -w,;.',« ( i.i;p f ■■',iY I 

+<.i¥ii..fiv-'.^(i t '•|,,'»)-"'",.n 4 """■„K, t-<.';.)P f- 

4o(iifl,< -i.i,, fw,...i,,)v. 

C ^r (M,, - r.i,,« 4 '"t^ f V) ■ 0. 
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The last equation (6.65) is intograblc.  From it we obtain for 

C ^ 0: 

<■>.. -'v« f "^+v=<■>,=<■>;. 
(6.66) 

where the superscript "0" designates, as before, the initial value 

of v 

Now let the  parameters of  the pendulum  satisfy conditions   (6.54) 
The  following equations  then  follow from equations   (6.65): 

(i'4-K-<-<)ti tK-'V'Jo -H2^<i = o. 
(6.67) 

where 

UJ=-^- (6.68) 

For a spherical gravitational field, such that 

F« = --,-. 

the expression for ui£ takes the form: 

(6.69) 

4-4—£. (6.70) 

If the parameters of the pendulum satisfy the first condition 

(C.")4) and condition (6.56), the following equations are obtained 

in place of equations (G.67): 

«i-H- '•'.)" -"..■",P^"' 
(6.71) 

Equdtions (6.67) and (6.71) have trivial solutions.  This 

domonstratos once again th.it the condi tions derived above guarantee 

the existence of a .Josition of relative equilibrium, in which its 

BXil coincides with the direction to the center of the earth. 

At first sight cquatinnr, (C.G7) and (6.71) are different.  In 

fact, however, thoy arc the same, but written in terms of projections 

OH different axes.  Indeed, the orientation of trihedron xnY(\7ni 

in terms of projections on the axes of whicli equations (6.67) arc 
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written, is not subjected to any conditions other than the require- 

ment that the z axis of this trihedron should coincide with the 

direction to the center of the earth at the fulcrum point of the 

pendulum.  Trihedron XnYg2«' on t^e ot*ier hand, in terms of pro- 
jections on the axes of which equations (6.71) are written, was 

selected such that the projection u,  of its absolute rate of 

rotation on the z axis is 

<■',. •"-"'S." - ni./l - Yi 
*  "   ' Y (6.72) 

which   follows  from equalities   (6.66)   and   (6.56).     It is  evident 

that,   if expression   (6.72)   is  substituted  into equations   (6.67) 

in place of m      and only  terms of  the  first order of  smallness  in 
z0 

c«,   I and y and their derivatives  are retained,   equations   (6.71) 

are obtained. 

Equations   (6.67)   and   (6.71)   describing the motion of  the 

pendulum about its position of  relative equilibrium were  obtained 

under  the  assumption  that  the angles a,   ß and  y are  small,   i.e., 

those equations describe  free  swinging of the  pendulum near its 

position of relative equilibrium.     Let us now derive  the  equations  for 

natural  oscillation of  the pendulum for  finite magnitudes  of angles 

a,   0 and  y. 

Let  us define angle y  by the position of   trihedron xoy0zo, 

i.o.,  we will  consider that  the position of  trihedron xyz   relative 

to  trihedron  x0y0z0  is  defined by  anglos i   and   ß only.     This does 

not diminish  the generality of our analysis.     We will  then  have  in 

place  of   table   (6. 58) : 

xyz 

x„ Wtp II sin ('. 
y,,       viriiiMij|l      ens«      - Einii uisp 

z„     -   losi/Miif,    vinn       nMCMp, ic   "Ji) 

As  before,   let  w     ,   u      and  n      be  the projections of  the 
x0       y0 z0 

absolut«   angular velocity  of   trihedron   VQVQZQ  on   its  axes.     Trihedron 
x()''o7'0   ^*  now not  attac'ie^  to  the  pendulum at   its  unperturbed position, 
.since angle  y   in   defined by    the  position of   this  trihedron.     But   this, 
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as will become evident  below,   will  not constitute a difficulty in 

derivation  of  the  required equations. 

In accordance with  table   (6.73)   we may write: 

^l —l« fM| f HI,,sin ii sin|l 

- ^i mmtnp t ■•••fc 
<i), — M^ciisuf ei,, slim | |'.. 

(a, ^cii^slnp     i.i,,Sinnens|l 4- 

) i,i,,iiis(icosp f-usinp. (6.74) 

Analoqously, 

^+^ = ,?,.cl,s(,-»V,.sill,"-|"P 

F, t-<?, =-<?i.c^(i + (r/i | «Jttoo. 
(6.75) 

Let us assume that conditions (6.54) are satisfied. We then 

obtain from relations (6.46), (6.75), (6.74), (6.89), (6.70), 

(6.50), (6.51) and (6.52) the following equations for the motion of 

the z axis of the pendulum about its position of relative equilibrium: 

ucos H—.'II|1 >.iii|i I  94      sinp | I.I„sin (i cos()— 

— H/.siJsiirosp) I ■^((Wp - co$ii) + 

-f i'i,, siniislMfl     ii,, cos «"in (I-f 

4 ('"J      '>],'   «^(1      tosucosp)  - 

— I.IJ ii)Sittus|i]'in«     i.^ i.i   cosusinp-- 

— «■•■."'/.siiiiismP | 

t i.'„>.',, (sin7« ens p      cns'iicnsp  |  li)Sil)^0. 

P + ii's'nptiisp ) V« . '..sinpciisp 

- in,, slnn ens'p ) ii^cosutns'p) | 

-\ I.IV,(CIIS«  -cusp) | i.ir,sinii  ) i.i,tsinn sin |l-f 

"f ('''H  - «.»] insiuos p     M'|sinpiiisii f 

.-+   I.i1 (tns (I        Cnsil|siti|l       i.r   Mir« Mnptlisp   f- 

(   '.'..''S.Csin'p       ins-'piMM«    I 

■(   l.l,,W,, (iDs'Pl.rs«        in. p        Shl'l'iuis«)   ( 

t-i.yi, f3cM«CWf       U I'llfl      (I. 
(6.76) 

It   is  evident   that   for  small ■   and B,   equations   (6.76)   reduce 

to oquntion.s   (6.67).     Kquntions   (6.67)   obtain   if   conditions    (6.54) 
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are satisfied.  For the case in which the first condition (5.54) 

and condition (6.56) are satisfied, the corresponding equations are 

obtained from equations (6.76), if, for w  , the following expression, 
z0 

deriving from (6.56) and the third equality (6.74), is substituted: 

'•'-. •<■•,.'»."' K IM),',^, . (6.77) 

6.3.2.  Schuler's gyroscopic-pendulum systems.  In §6.3.1 wo 

obtained conditions (6.54) and (6.56) for the existence of a position 

of relative equilibrium for a compound pendulum under the assumption 

of motion ot" its fulcrum on the surface of the earth, regarded as 

a sphere of radius r».  If the non-sphericity of the earth is taken 

into account, the distance from the center of the earth to the fulcrum 

of the pendulum will be variable. 

If in the first condition (6.54), r- is assumed to be variable 

(henceforth denoted by r), then A should also be a variable, i.e., 

in this case tho pendulum is not regarded as a rigid body, but as a 

variable mechanical system.  As a result of the variability of A, 

the following equations must take the place of equations (6.46): 

^(A,.) | (C- /l),,,,,^ -.11,. 

^(-H)  (C-,!),..,,..,^,11,. 

e*} 
in -0 (6.78) 

From equations   (6.78)   and   (6.48)   --   (6.51)   and  the equalities 

(6.79) 
analogous   to  equalities   (6,52),   we  obtain  in  plac«  of equations   (6.53) 
the   following  equation"   for   the  conditions   for  the   existence of  a 
position  of  relative  equilibrium: 

/iw,  |-(/I —m(if)((.i,  t l'',"'.)   CM.I.I,   •LVU'.M.I,      H.   i 

CI'I,    ii   ) (6.80) 
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If 
A >   mat.   Ci>t   * U. 

(6.81) 

then in each of the two first equalities (6,80) there remains: 

A     2fum     II. 

or 

rf/ (mur) - 2rum  .. 0. 

(6.82) 

(6.83) 

Equalities   (6.83)   may,   of course,   be  satisfied,   if we   take 

Conditions   (6.84)   complements  the conditions 

(6.84) 

A m mar.    CM. -=<) (6.85) 
obtained above. 

The simultaneous fulfillment of requirements (6.84) and (6.85) 

insurer; the existence of a position of relative equilibrium when 

r is variable, which is the case, specifically, for motion on the 

surface of the terrestrial spheroid. 

Let us now generalize the foregoiny analysis by considering an 

arbitrary mechanical system suspended on a moving object in a three- 

degreo-of-frecdom suspension such that the center of mass of the sys- 

tem does not coincide with the center of the suspension. We will denote 

the variable distance between the center of the suspension and the 

center of mass of the system by a. The system may include various 

mechanical devices which move relative to one another, including 

gyroscopes.  Therefore, a system of this sort may be termed a 

gyroscopic-pendulum system.  The compound pendulum analyzed above is 

a special case of a system of this sort.  Such well knov/n devices as 

the Anschutz-Hcckcler pitch control gyrocompass and the multi-verti- 

cal gyro fall into this cass. 
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Let  us attach  to  this   system a  trihedron    Oxyz 
(Fiyure  6.1),  with  its origin at  the center of  the   suspension,   and 
the  7. axis along the  line  connecting  the center of  mass with the 
center of  the  suspension,   directed away  from the  center of maus.     The 
coordinates of  the center of  mass  will   then  be: 

I%M    «,    r,     y,   =n (6.86) 

\r     us find the conditions under which the z axis of the system 

in the position of relative equilibrium will coincide with the 

direction from the center of the earth, and also let us study the 

perturbed motion of the z axis about this position. 

Let UL- apply the moment of momentum law to the system as a whole 

in its motion about the center of mass: 

«-.M. (6.87) 
or 

As  before,   in calculating the  moments we will  consider the 
gravitational pull  of  the  earth as  reducing to the  action of  the 
force 

^ Ti ;;r.i 11', 

(6.88) 

applied to the center of mass of the body and coinciding in direction 

with the direction of the gravitational field strength  , point 0. 

We will ignore the non-homoqeneitv of the aravitational field within 
the- compass of the system.  Adding to the moment of the gravitational 

force the moment of the inortial forces of translntional motion, as 

well as an artificially formed moment M , we obtain: 

«-• [/• ■^]+« (6-89) 

Here, as previously, r denotes the radium vector of point 0 

from th" center of the earth O, and a denotes the radius vector of 

thr' point C from point 0. 

;! 
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Substituting equations (6.89) into equalities (6.87), we obtain 

the following equations: 

»-•x(^ •&]+*, (6.90) 

We will denote the trihedron xyz at the position of relative 

equilibrium by xnyn
zn'  Then 0J0 0" 

(6.91) 

where x0, y«, z0 are the unit vectors of the corresponding axes. 

Since at the point of relative equilibrium vector a is collinear 

with vector r, we find from equations (6.90): 

ü 
'dl" X-ff '(.«:. ar„)x   (- 

Lct 

+('";. ^"^tVo 

-aF,,.    .1»',^ a/",.  «/'.-0. 

Equnlity (6.92) then cakes the form: 

rfAf 
lit'' - a X m 

(6.92) 

(6.93) 

(6.94) 

We now require that the condition 

(6.95) 

be fulfilled, i.e., we require that the distance from the center of 

mass of the system to the center of the suspension should change 

proportionally to the change in the distance to the center of the 

earth.  For this to occur, of course, the system must receive infor- 

mation regarding the vector r.  For the case of motion on the surface 

of the terrestrial spheroid, this information will bo, for example, 

a priori knowledge of relation (6.4) between r and the latitude1!1 . 

If condition (G.95) is satisfied, then in the position of rela- 

tive equilibrium 

Ar, (6.96) 
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„i X /.   =0. 

which means that 

" '%w    - (6.97) 

and therefore equality (6.94) may be written in the forir, 

(6,98) 
#• -;:('<") 

This  exprer.sion  may  now be   integrated,   M  a   result   of which we 

"btain: 

K   »me x ~    A. 
(6.99) 

ure h is a constant vector. 

Setting h = 0, introducinq the designation v ■ dr/dt and pro- 
jecting equality (6.99) on the x«, y,,, z0 axes, we find: 

K,,  | nun:,     I, h\.      "inv n. If* 
(6.100) 

Conditions   (6.100),   (6.9.3)   and   (6.95)   will   be   sufficient   for 
the  existence  of  a  position   of   relative equilibrium  for   an  arbitrary 
jyroscopic-pondulum  system,   the   I   axis of  which  coincides  with   the 
direction   to  the  center of  the  earth. 

From   these   conditions  we  obtained   the   above  conditions  of   rela- 
tive  ertui 1 ibriun   for  a compound   Schüler  nendulun,   as  well   as  analoqou.s 

conditions   for a  twin  vertical  gyro and a pitch control  gyrocompas.     * 

Let   us  now derive  the  equations  describing  the  oscillation of  an 
arbitrary  gyroscopic-pendulum system satisfying conditions   (6.93),   (6.95) 

and   (6.100) i   about   itr;   position  of   relative  tquilibrium.      To  do   this 

we  will  again  ur.c   the    moment  of momentum  lav/.     Varying  equation 
'0.87)   in   the vicini'y of  the  position  of  relative  equilibrium,   we 

obtaini 

.11 
Ml (6.101) 

553 



  

Let us find expressions for the variations 6K and 5M. The moment 

of momentum   K of the system should be formed in accordance with 

equalities (6.99), and therefore 

**-*'"*'-■£ M-rxiS.. (6.102) 
where 

n~rr0.   Ar-=A.vjru ( Igft (■**% 1 

(D. XU J) 

To obtain an expression for c5M, we must take into account that 

the variation of the moment is determined only by the variation 6a, 

and also by the variation i5M of the corrective moment. Therefore, 

taking  into account  relations   (6.89),   we obtain: 

w**(r •-«£)+«* (6.104) 

In this equality 6a may be exnressed, in accordance with 

equality (6.96), in terms of 6r: 

I«  .Mr. (6.105) 

Differentiating equality (6.102) and noting that 

<r^>*<<^^ (6-106) 

we obtain: 

^.^r.-;;;: f.rar<cr. (6.107) 

Wo  must   now   substitute  exnrosnion   (6.104)   and   (6.107)   in 

equations    (6.101).     Bnforo  doing   thip;  we  can   simplify expression 

(6. 104)    for   the   variation of   the  morricnt.     To  begin  with  wo  may   ignore 

the  variation   SN     of  the momunt M   ,   which  corrects   for   the  action of 

the  horizontal   component  of  the  gravitational   field.     Further, 

turni.ni-1   to   the   first equality   (6.91),   wo   find  that. 

,v, / /•    ,v, < (/,_.., ( / ,.>■„ ( \$) (6.108) 

On the riqht side of this expression we can ignore the product 

of Sa times tha sum of the first and second terms in parentheses, 
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since this product is of the second order of smallness.  With the 

same level of accuracy we can set 

'  H (6.109) r„ m - -p.. 

Then 

(6.110) 

Substituting here expression (6.105) for 6a, wo obtain the formula 

Mlii*lrx(|k-JSr)' (6.111) 

Let us now substitute expressions (6.111) and (6.107) in 

equations (6.101).  After combining and grouping terms using the 

first equality (6.10'J) we obtain: 

tmxtfjf.+*ft~* (6.112) 

This equation is  a vector equation  describing  the oscillations of 
the  z  axis of a    gyroscopic-pendulum system satisfying the generalized 
Schüler  conditions   (6.93),    (6.95)   and   (6.100)   about   its  position of 
relative equilibrium. 

To obtain  the sealer  form of  these  equations,   we must  substitute 
into   (6.112)   the expressions  for  r and  5r  from equality   (6.103)   and 
project the  resulting vector  relation on   the x0 and y-  axes.     In 
doing  this we  must  take into account the  equalities 

(6.113) 

in which ii  , w  and td  designate the project-ions  of the absolute 
xo  yo    zo 

angular velocity of trihedron ^y^z« on its axes. 

Performing the indicated transformations, after obvious simpli- 

fications and groupings of term:;, we arrive at the equations: 
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ftx' f Ay' f */' -f Jr f,t   10. (6.114) 

If in equations (6.114) WG retain only terms which are linear 

in 6x, 5y and 6z, then, according to the third equality (6.114), 

öz = 0, and in the first two equations (6.114) the last two terms 

drop out.  Equations then take the form: 

«y l (>'( -"'l. -">;.)«> ♦■(W ♦•'■'.,)Ajf + *•«,'• n (6.115) 

§6.4.  The Analogy Between Gyroscopic-Pendulum Systems and Inortial 

Systems with Two Newtonometers 

At the beginning of the preceding section it was stated that, 

from the point of view of final results, Schulnr uondu1um systems 

are analogous to inertial systems using two newtonometers.  Both 

types of systems permit determination of the bearing to the center 

of the earth at the current position of the object, i.e., the vertical 

at this point. 

Now that the enuntions describing the perturbed motion of 

Schüler gyroscopic-pendulum systems have been compiled, we can see 

that this analogy reaches much further. 

Let us compare the first group of the error equations for an 

inortial system with two newtonometers and the equations describing 

the perturhod motion of a Schüler pendulum system about its position 

of relative equilibrium. 

Lot us beqin with equations valid to a first approximation.  For 

the general cane of pendulum systems, these will be equations (6.115), 

for a compound pendulum, equations (6.67), and for an inertial system 
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with two horizontally oriented newtonometers, equations (6.27). 

It is evident that the homogeneous equations (6.27) and equations 

(6.115) coincide fully.  It remains to b'j demonstrated that equations 

(6.67) for a compound pendulum are also equivalent to equations 

(6.27) or the homogeneous equation (6.115).  To do this it is suffi- 

cient to perform the following change of variables in (6.67): 

Ax; = ^, 6)1 = -rjt. (6.116) 

Since in equations (6.67) r« is constant, this substitution 

immediately reduces them to equations (6.27) and (6.115). 

Let us now compare equations (6.114) and (6.76) with equations 

(6.31). Equations (6.114) are exact equations for the natural oscillations 

of a Schüler pendulum system under conditions of arbitrary motion of 

its point of support and under the assumption that the earth's gravi- 

tational field is spherical.  Equations (6.31) are exact error 

equations derived under the same assumptions for an inertial system 

with two newtonometers.  Equations (6.114) and the homogeneous equa- 

tions (6.31) fully coincide. Since (6,114) describe the natural vi- 

brations of an arbitrary gyroscopic-pendulum system about its position 

of relative equilibrium, they clearly also encompass equations (6.76) for 

the oscillations of a compound pendulum.  It is therefore clear that 

equations (6.76) are also equivalent to the homogeneous equations 

(6.31).  To demonstrate directly that this is the case, it is suffi- 

cient to perform the following change of variables in equation (6.31): 

A* s; rac><siiMii|l.    i\v   =    -rn»liiu,   1 

hi  ■ %fcw(i(n| • I),    I 

(6.117) 

the geometrical significance of which is obvious.  After 

solvino for äcosß and ß, the homogeneous equations (6.31) reduce 

to equations (6.76). 

It was noted above that equations (6.114) and (6.31) are exact 

eauations  if the earth's gravitational field is considered to be 

spherical.  The significance of this remark is as follows.  Equations 

(6.31) and (6.114) were derived for a non-spherical gravitational field. 
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Later, however, variations of the non-spherical component of the 

gravitational field strength were disregarded on the basis of their 

smallnoss.  The disregarding of these terms has the same character 

in each case.  It can be shown that retention of the variation of 

the non-spherical component of the gravitational field in equations 

(6.31) and (6.114) leads to the appearance in these equations of 

additional terms which are totally identical, such that the analogy 

between pendulum systems and inertial systems with two newtonometers 

according to the error equations remains complete in this case as 

well. 

The comparison was made above between the equations describing the 

natural oscillations of pendulum systems and the homogeneous error equa- 

tions of an inertial system.  This comparison is the only one which has 

significance.  If we take into account the instrument errors of 
12 

pendulum systems,  then the right sides of equations (6.67), (6.76), 

(C.114) and (6.115) assume a form which differs from that of the 

right sides of equations (6.27) and (6.31), since the sources of 

error are different.  It is useful to recall in this regard that the 

right sides of equations (6.27) and (6.31) are also to a certain 

degreu conditional, since they contain only the instrument errors 

of the sensing elements. 

We further note the following.  Equations (6.114) and (6.115), 

and equations (6.27) and (6.31), characterize the errors 6r in the 

detormination of the vertical (the direction to the center of the 

earth) at the current location of the object, since in both cases the 

error in the modulus |r| is assumed equal to zero.  This is especially 

clear from equations (6.67) and (6.76) for the motion of a physical 

pendulum, in which a and ß are the angles of the deviation of its 

7.  axis from the direction to the center of the earth.  In S4.5 it 

was also shown that the angles fl  and 0 of the deviation of the x     y 
z axis of the platform of an inertial system are related to the 

error-; 6x and ^y by the equalities 

ft. asto  ,i) = Ai- 
'       ' (6.118) 

which  an?   fuJly   analogous   to equalities   (6.116). 
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Equations (6.27) and (6.31) are only the first group of the 

error equations.  There is in addition to them a second group 

characterizing the errors in the orientation of the gyroscopes of 

the system.  Thus, the total errors in the determination of the 

coordinates consist of the errors in the determination of the vertical 

and of gyroscope errors (drifts). 

It has already been noted that a single pendulum system is 

insufficient for the determination of the coordinates of the object. 

This requires that gyroscopes be added to the pendulum system. The 

angles formed by the vertical (the z axis of the pendulum system) 

and the fixed axes of the gyroscopes will define the coordinates. 

Consequently, the total coordinate errors will contain the errors in 

the orientation of the gyroscopes, i.e., the same second group of 

the error equations. A pendulum system without gyroscopes cannot 

determine a reference bearing in the plane of the horizontal, for 

example, the meridian. A gyroscopic-pendulum system can do this. 

An example of a system of this sort is the pitch control gyrocompass. 

In this case, the error in the determination of the bearing to the 

north will be determined by the gyroscope and vertical errors, 

as in the case of an inertial system  using newtonometers. 

The above discussion implies a complete dynamic analogy between 

a navigation system based on a Schuler gyroscopic-pendulun, system 

and an inertial system using two newtonometers.  These systems are 

theoretically equivalent.  Indeed, although the pendulum system 

does not contain newtonometers as such, the pendulum itself, the 

axis of which coincides with the direction to the center of the 

earth, is a two-component ncwtonomcter measuring horizontal accel- 

erations.  Integration is also effected by the pendulum system itself 

as a result of its motion, since motion represents the integration 

of the differential equations which describe it. 

§6.5.  Analysis of the Error Equations of Two-Newtonometer Systems 

6.5.1. General propertios. Analysis of stability. As has 

already been noted, the second group of error equations for two- 

newtonomotor systems is the same M for threc-newtonometer systems, 
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and  therefore the  results obtained  in §5.2  arc valid here also. 

The problem reduces,   consequently,   to analysis of the  first 
group of the error  equations,   i.e.,  equations   (6.31),   in which r is 
to bo  substituted  for  rQ,   considering r to b'3  given by equalities 
(G.4).     They then  take  the  form: 

— 2M,Ay f (i.v.>, | ■'■•,)dt -f ?..irAi = 

t ■ An,     \mtr — M. Am/ -iu,Sinkr, 

t>'»-i[^-'\   >'^y Kv.-,:'.)lVt + 
+ 2K),A7 ( (cy.!,  - (i),)8/— 21.1^4/ ^i 

~~Anr -I-Aw/ — (^ Am/ — w, Awi,r, 

«.»'-My  f A/» f 2rA.' = 0. (6.119) 

To a first approximation these equations reduce, as I as already 

been noted, to the equations 

ti-i  (;; --.;  O.JJA.V ((„v,v-,:,,) Ay- 

Ay < (;.  ..,'  -rJAv (CV.-<:■,)■V' + 
f "(.i,Ai -Ac, ■) \cilr 'i.yAm/ »^AM^. (6.120) 

Equations (C.119) ard (6.120) retain their form under rotation 

of trihedron xyz through an arbitrary angle ö about the z axis, i.e. 

allow a group of rotations about this axis."  This property derives 

directly from the fact that equations (6.119) and (6.120) describe 

the deviation of the z ixis of the platform of the inertial system 

from the direction to the center of the earth.  This may also be 

demonstrated directly by performing the change of variables 

At Ai'ois» A-'-.ir.l, 

Ay A/v if» I Ay'tusO. 

It -A;' 
(6.121) 

and simultaneously cenvorting from the projections u , w , u , 

'm , ,'.m , Am . An , An of the vectors w, Am, and An on the xyz 

axes to the projections w , , y'  z'' Amx" Apiz" ■,Sl" and 
An of those vectors on the x' 

Any, 
axes, rotated relative to 

the x, y, z axes through an angle a about the z axis.  The formulas 
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Am., An and for the conversion from the projections ui,   w , Am 

An to the projections w ,, w ., Am ,, Am ,, An ,, and An , are y x    y    x    y     x        y 
analogous to formulas (6.121) for the conversion from 6x and 6y to 

6x'   and ßy'.  The conversion from IL and Am  to u , 

respectively, is fuv^n by the relations 

ii»,' =iiii, f 6. Ni», - Am,'. 

and Am ,, 

(6.122) 

This property of equations (6.119) and (6.120) permits selection 

of the orientation of the xyz trihedron relative to the points of 

the compass in such ■ way as to facilitate the analysis as much as 
possible. 

The most interesting of the possible orientations of this 

trihedron is the azimuth-free trihedron,  for which 

i „ — 1,1,  II.1H  (>!,' (6.123) 

For example,   conversion  to this  trihedron causes equation   (6.120) 
to  reduce  to  the  following  equations: 

«= A/i,- — Am,' r — i»v \mtr. 

(6.124) 

These equations are obtained, clearly, from equations (6.120), 

if in the latter M = 0.  Equations (6.124) are distinguished by 

the absence in them of the projection w . which can be large even 

for small velocities of the object over the surface of the earth. 

The quantities a . nnd w , are related to the horizontal projectioi.s 

v , and v , of thr velocity of the object by the equalities x      > 

(6.125) 

and as a result are always bounded.  This permits the use of approxi- 

mation methods in solving equation:; (6.124). 

561 



In  the gcnoral  case  of  arbitrary motion on  the  surface of  the 
earth,   equations   (6.119),    (6.120)   and   (6.124)   are equations with 
variable coefficients  and  their analysis entails   insuperable  diffi- 
culties.     Let us consider,   for example,  motion  alonq  the equator. 
If  the  x axis  is directed  along  the equator,   then   "^ = u

z 
=  0 and 

the  homogeneous equations   (6.120)   take the  form: 

Ay f  £ Ay    l 0. (6.126) 

For special selection of the range of u (t), the first equation 
y 14 

(6.126)   can be  reduced,   for  example,   to the Mathieu-Hill equation     . 
In the case of more general motion the equations can,  of course,  be 
even more complex. 

It  is possible  to  fully analyze equations   (6.119)   and   (6.120) 
only   for the  case of motion at a constant velocity v.  along a parallel 
of   latitude,   for which  the  coefficients of  these  equations may be con- 
sidered as constant.     Indeed,   if the xyz trihedron  is oriented to 
the points of the compass,   with  the y axis,   for  example,   directed 
toward  the north, 

c.i,   J«Mli'(   f -J li;i|    •coml,       ",     ttAmttOMt,   1 
1 (6.127) 

and the coefficients of equations (6.119) and (6.120) in fact become 

constant. 

Let us analyze the stability of a two-newtonometer inertial 

system.  To do thi:-. wo will begin by using the first-approximation 

equation:: (6.120).  These equations are linear.  For motion at 

constant velocity alonq a parallel, they take the form: 

Av   I   ("'„'   - '";      »p*»       -'•'.Ay 

A/(r      \iit,r     Am,«-»,'. 

'.'  H'"'     '",)A>'  i  -''■',At 

- A«, i \m,r     i'tv \III,r      \'iK'->r. 
(6.128) 
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Here the coefficients are constant. 

The characteristic equation of the homoqeneous system (6.128) 

is the biquadratic equation 

p' t /.'(^ -*■; h*g • o-.!—;)(»•-...;-^-.o.       (6.129) 

For  the motion  to  be  stable   (of course,  only non-asymptotic 

stability is being considered here) ,   it  is necessary  that  the  roots 

of  the characteristic equation   (6.129)   be  zero or  purely imaginary. 

For this  it  is necessary  that the  roots of  the quadratic equation 

,' f ,(2^- -o; + ■;,„;) IH  ■#H-'<-*>-» (6  130) 

be real and non-positive.  This, in turn, will be the case if the 

discriminant A of equütion (6.130) is non-positive: 

A = Kc.i-i,.' - -/ - 4,.>W < 0. 
'     4 (6.131) 

at the same time  that it's coefficients are non-negative: 

H~"DH -■;- -;)->o. 
(6.132) 

Let us consider the plane of the parameters u2 and ui   (Figure y     z 
6.3).  It follows from equalities (6.132) that the first coefficient 

of equations (6.130) is positive above the line 

^--•-Jff (6.133) 

and equal to zero on this line. 

The second coefficient is positive above the line 

(6.134) 

beneath the lino 

Mi^w'-wi «■■.^'■'i-'V (6.135) 
and equal to zero on these lines. 
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The equality   (6.131)   divides  the plane of parameters u'  and u' 
into  throe  regions.     The  curve  forming the boundaries of  these 
regions  is  the hyperbola 

The asymptotes of the  hyperbola are  the  lines 

(6.136) 

a...:. ■'- f 1. (6.137) 

One of the branches of the hyperbola passes through the point 

0, c. 2    _ 0) and lies in the lower half-olane.  The second branch 

-twl 

lies entirely in the upper half-plane and is tangent to the line 
2  = ,.,2 at the point where 

...; H (6.138) 

The discriminant   (6.131)   of equations   (6.130)   is  non-positive 
in the  region between the branches of the hyperbola.     Considering 
that,   in  view of the  fact  that  w,'   and B*  arc positive,   we are  interested y     z 
only in the first quadrant of the w2 

y 
plane, we arrive at the 

conclusion that the motion defined by equation (6.128) can be stable 

only in two regions.  Region 1 (Figure 6.3) is bounded by the lines 

•<-* ••';- "• 4-  <-<-• (6.139) 

and is defined by the inequality: 
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-t     U.J ,„] > 0. 
(6.140) 

Region 2 is bounded by the lines 

•.■?--o. c« ^w' , — -,—.v (6.141) 

and by part of the upper branch of the hyperbola between the points 

{2i.rQ,   ") and (4WQ, u^) , 

Within these regions the roots of the characteristic equation 

(6.129) are purely imaginary. 

At the boundaries of the regions of stability at the point 

i.e., two double imaginary roots appear. 

On the section of line w^ = 0 between the points 

we obtain: 

i.e.,   distinct  imaginary  roots. 

At   the point 

■■','    <>   •■•]   "I 

wc  obtain: 

i.e., a double zero root appears. 

On the line segment 

/"l.M.«-^ 4-•/("*) ':">,). 
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(6.142) 

(6.143) 

(6.144) 

(6.145) 

(6.146) 

...Jo. o..;.,,^^. (6.147) 

IM have: 

(6.148) 



i.e., here, ns on segment (6.143), the roots are imaginary and 

distinct. 

At the point 

•V". <-H (6.149) 

the roots are the following: 

p,.,^o.   /',.,->-AW (6.150) 

i.e., another double zero root. 

Further, on the line 

liij- l.l» — U); =•=■= 0 
'  ' (6.151) 

between the points (0, wi) and (w«, 0), we obtain: 

/-,.,=<). ^-*/I^F^ (6152) 

i.e., a double zero root and two imaginary conjugate roots. 

Let us now consider the half line 

'■';-"■ <>4 (6.153) 

Here 
Pl.1.3.i—   t JO*,  T li),). 

(6.1S4) 

i.e., all of the roots are distinct. 

On the segment 

we have: 

(6.155) 

/',,J = 0. r,." ' yi'-K-"-;- (6.156) 

At the point 

4 -•■':■   "J-** (6.157) 
clonrly. 

i.e., a quadruple zero root. 
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Finally, on the section of the hyperbola where 

K<«{<H (6.159) 
the discriminant  (6.131) of equation (6.130) is. equal to zero, 

and therefore 

KtmJ ^ T"«^-^. p .= - y /STit-'ü'ß. 
* (6.160) 

i.e., two double imaginary roots appear here. 

In all cases in which multiple roots appear it is necessary to 

chock whether the elementary divisors of the characteristic matrix 

of system (6.128) remain linear. 

Using the normal procedure for finding the elementary divisors 
15 

of a characteristic matrix,  we arrive at the following results. 

The portion of the boundaries of the region of stability formed 

by the lines ou* = 0 and w' = 0 with the exception of the point 

(w' = UQ, W' = 0), is included in the region of stability, since 

linear elementary divisors correspond to the multiple roots. 

The boundaries by the hyperbola, the straight line w| = wi 

with the exception of point (0, u)£) and the straight line 

UJ» - f-w ~ ^i = 0» with the exception of the same point, do not fall 
within the region of stability.  On the hyperbola the multiple roots 

(6.160) correspond to second-degree elementary divisors of the char- 

acteristic matrix; on the line n* = u^, the null root (6.156) 

corresponds to second-degree elementary divisors; on the line 

ID' - Wy - w' = 0 there is also a double zero root with second-degree 

elementary divisors.  At the point Hoii, wij) the quadruple zero root 

corresponds to second-dogroc elementary divisors. 

In analyzing the stability of the system according to equations 

(6.128), it is possible to avoid analysis of the characteristic 

equation and the characteristic matrix by making use of the fact 

that equationrj (6.128) may be regarded as equations describing two- 

dimensional motion in thn vicinity of the equilibrium position 
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Äx = 0 and Äy = 0 of a mochanical system under the influence of 

potential and gyroscopic forces. 

In this case the force function will have the form: 

If- -] K'.'ü-uJ-oty.Vt)' -|-(...3-o.;)(6y)'|. (6. 161) 

The  gyroscopic  forces may be   represented by  the  expressions 

— 2<.i,Ay. 2c,i, At. (6.162) 

If we discard the gyroscopic forces in the homogeneous system 

(6.128), only potential forces will remain.  For equilibrium 

stability under the influence of only potential forces, the force 

function (6.161) should have a maximum at the equilibrium point. 

In this case a maximum will occur, clearly, if 

^ ...;-o.>o. f«5-1"' 

If this condition is satisfied, the system is stable even with 

tho addition of gyroscopic forces, as follows from the well-known 

Kelvin theorem. 

Comparison of inequality (6.163) with the results obtained 

previously from direct analysis of tho characteristic equation (6.129) 

shows that condition (6.163) is only one of tho two regions of 

stability found from analysis of the characteristic equation. 

The second region appears as a result of the gyroscopic forces 

(G.162). 

The following statement is valid: if the degree of instability 

of i system under the influence only of potential forces is even, 

then the introduction of appropriate gyroscopic forces may render the 

System stable. 
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If the system in question is unstable under the influence of 

potential forces, the inverse inequality 

is valid in place of inequality (6.163). 

(6.164) 

The degree of instability must be even if, in addition to 

condition (6.164), the equality 

(..»-uJ-or-eCO. (6.165) 

obtains. 

But the second region of stability obtained as a result of 

analysis of the characteristic equation, satisfies, in addition to 

the other conditions, inequality (6.165).  This shows tlvit it appears 

as a result of the gyroscopic forces. 

The above stability analysis was carried out on the basis of 

equations (6.120).  These, however, are linearized first approxi- 

mations.  The characteristic equation has zero or purely imaginary 

roots in the regions of stability obtained as a result of this 

analysis.  Therefore, we cannot draw any final conclusions with 

regard to stability on the basis of this first approximation. The 

conditions of stability obtained from these equations are only 

necessary conditions.  To obtain the sufficient conditions, we must 

analyze the exact equations (6.119). 

Here we can use the analogy with Schuler's compound pendulum, 

i.e., we can analyze, instead of the homogeneous equation (6.119), 

equations (6.76), which for the case of motion of an object along a 

parallel, take the form: 

a cos |1 -   2<ip slup i 

-(■ ^(o^slnmosp - M^tmn cosp) + 
^M— M' (1—lOSUllJSfl)—l.lj CUV II i us ('.I MM«-f 

-f otj/'^fslfi'u cosp    - tosJ« tOSfi   j-COlO) ._-0. 

fl-(  o'Mil (Uos (1 — Jll (ii',, sin u cos'(1   - 

— Olsens a cos'(Ij ( (i.ij — ioj cosn cos H -I.IJ)X 

X sin p cos u     w'sin'a sin p cos p f- 

4 «(/"^(Zcosncosp — l)5lniislnp = 0 

'.- 
(6.166) 
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Equations (6.166) have a first integral -- the energy integral. 

To obtain it it is sufficient to multiple the first equation (6.166) 

by ft, the second by cicosti, and then to add them. Integration of the 

sum yields: 

V«=(dcüs(l)M p' —SMJCCSHCOSP I 

w] cos'acos'p fw' (sln'acos'p ^-2^ 

+ 2w>,>'i/t(5liiacosp -  sluncosdcos1 p)£=cniiil. 

4 w] cos'acos'p fw' (sln'acos'p i-2co5ucosp)4 

(6.167) 

The  function 

r = v-v'(0) 
(6.168) 

ay be taken as a Lyapunov function for purposes of analysis of the 

lability of the position of relative equilibrium. 

Expanding the function W in a series of powers of a, ß, a and ß, 

wo find that the expansion begins with the quadratic terms: 

r-^u'»p' t «'K -WÜ + P'K-,,,*_,"i)+• (6.169) 

The quadratic  form on  the  right  side of  this equality,   and also, 
thererore,   the  function W,  will  be  positively defined  if  the  condition ie 

'■','    '••;    <"J>n. (6.170) 

is   fulfilled. 

At  the  same   time  the  total  time-derivative of the  function W  is 
equal   to  zero by  virtue of equations   (6.166).     Ther  fore,   conditions 
'6.170)   will  bo,   according  to  the well-known  Lyapunov theorem,   a 
sufficient condition  of stability. 

Condition   (6.170)   coincides with  condition   (6.140)   and   (6.163). 
In  the  plane of  the parameters  Uu and   u>',   the area defined by 
condition   (6.170)   coincides with  the   first  region of  stability 
obtained   from analysis of  the characteristic equation   (6.129).     The 
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second  region cannot be obtained  from stability analysis on  the 
basis of  the Lyapunov  function and the energy  integral.     The 
appearance of  this  region  is  associated,   as was  noted above,   with 
gyroscopic  forces which do not enter into  the energy integral,   since, 
according  to the definition of gyroscopic   forces,   they do not perform 
work over     real    displacements. 

Let us  compare   the  results of  the  stability analysis of  the  two- 
newtonomoter system with the results of  the analysis of the  three- 
newtonomoter system performed  in  S5.3. 

Stability of a  three-newtonometer system  for motion along a 
parallel   requires  that the  following conditions be  satisfied: 

l.t* --   dl'    - (.)' < I).    | 

H •■•■;i•%'" I (6.i7i) 

The   first  of  these conditions excludes  a  region of  the w.2   —   wi y z 
plane which is important for certain applications (region 1 in 

Figure 6.3).  The fulfillment of condition (6.171) renders stability 

attainable only by means of gyroscopic forces. 

The two-newtonometer system is stable in the region 

^ '"'    "'^ (6.172) 

and slability is guaranteed ;icre by potential forces. " This system 

also has a second region of stability, in which stabilization is 

guaranteed by gyroscopic forces. 

It is necessary in this regard to note the following.  It is 
20 

well known that if a system under the influence of potential forces 

i r, unstable, and its stability (for an even degree of instability) 

it. quarantoed by gyroscopic forces, then the resulting stability is 

disturbed by forces of overall internal dissipation.  This stability 

i;?.'., therefore, an intermittent character, as distinct from stabili- 

zation by potential force?;, for which stabilization has a permanent 
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character.  In the latter case the presence of forces of overall 

internal dissipation results in increased stability. 

The introduction of forces of overall internal dissipation into 

the error ecjuations (5.121) of a three-nowtonometer system therefore 

estroys the region of stability characterized by (6.171), and the 

ntroduction of dissipation into equations (6.120) results in the 

cstruction of the second region of stability of the two-newtonometer 
21 

ystem.  To demonstrate this we may use the Hurwitz criterion  or 

he direct Lyapunov methods, taking as the Lyapunov function the 

nergy integral and introducing a dissipation function into the 

■malysis. 

On the basis of the fact that energy-dissipating forces act on 
a particle system over any real displacement, regions of stability, 
in which stabilization is guaranteed by gyroscopic forces, are some- 
times ignored. It is necessary here to keep in mind, however, that 
for small dissipative forces and limited system operating time, the 
process of the disruption of gyroscopic stability may not be able 
to develop. 

6.5.2.     Solution of the  second group of error equations  for  the 
case of notion of  an  object along a parallel.     Let us  solve the error 
equations of  the  first group for motion along a parallel,   i.e.,   equa- 
tions   (6.128),   in  which the coefficients  are given by relations   (6.127). 

If  the  condition 

is  satisfied,   the characteristic equation   (6.129)   of system   (6.128) 
hcv;   two  pairs  of   purely  imaginary  conjugate   roots; 

/>,.,- ' /i'.   /•J..-±yv. (6.173) 

whera 
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+ l/{'J-«-^-,:/-K-«j)("'o-^-"'J) F' 

(6.174) 

The   following   functions,   therefore,   constitute the general 

solution  to  the homogeneous equations   (6.128): 

4jf = !—• ('i)i cos vl     «vms (i') -t- 6)i — av 

4--ji—^T (II Mn \/- v sin |i0+ 

+ ^r^7(*sinv/-aiin|i/) + 
4«C. (crs |i/ — co! \t). 

fty = . ft     ftl sin \t — v sin |i/) 4- 

+ tt-'fln (M',:OS '" _ ',,l C0S V') + 

(6.175) 

Here C^, C2, C, and C. are arbitrary constants corresponding 

to ,c,x0, 6y0, 6x0, ■Sy0.  The quantities a and b are expressed in terms 
of the moduli (6.174) of the roots of the characteristic equation 

and the coefficients of the initial system (6.128): 

m. Mt (6.176) 

The solution to the non-homogeneous system (6.128) may be 

obtained from formulas (6.175) by varying the arbitrary constants 

'1' C2, C3 and C.. It has the following form: 

( 
**" J| j{-';'-|-«5tll|l«-l)f''slnv(/-T)l+ 

I 

4 gta |, os II (/ t) - c.v v ii -1)1 j rft+ 

4 ---—(»sins/      nsinji/) f 
tv  - ll|l 

-»-•y^—Olslnvr-vslnMO )■ 

*   -ST 
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it 

"+ »ir^l''s"'",'_ •"-••'»•f—^il<»4 

+ »"v"^;-(co,i,,-cos»'). J 

(6.177) 

whore f^ and f- denote the right sides of equations (6.128), such 

that 

f.mt&M,      \ni9r     .\m,t'j. 

(6.178) 

If  »_  ■  0,   a.^,   for example,   in  the case of motion   along  the 

equator,   then,   according  to  relations   (6.173)   and   (6.174), 

ii.-...,,.   v^v'.vrT?". 

Noting   that,according   to equalities   (6.176) 

Inn ti      0,     I'l'i /'  ^ T»-). 

(6.179) 

(6.180) 

by passage to the limit in formulas (6.177) we obtain in this case 

the following expressions for fx  and 6y; 

Ax islC*(M I ' ,"i "','  I 

-f-T-...1^- f .VidiMMi'.TvT .M^ - i)./t 

Ay — Ay'1 cos i".' 

J AmtM)i.-l^  Sf(/. T>,/t. 
P 

Ay" - r A/n', 
i MM.'.,,/ ( 

V 

(6.181) 
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For constant An , An , Am . Am and Am , formulas (6.181) 

reduce after intergration to the following expressions for ix  and 6y: 

'•-A+ P* " Ä)C0J v^r^'+ 
*i« 

"5 
4. Lfi _. ^»-y^U^ 4 Ä slnv. (6.182) 

Finally,   if the  object   is   fixed in the O.F,^^^^^  coordinate 
ystom,   then w    =  0.     It then   follows   from expressions   (6.I'll)   '.hat 

+ S / ^'»''""'VC-')«'»- 

— rj 4m,(i)coji^(/—ijrft. 

+ ^ J A», (t) sin cv, (' - T) rft -f 

+r j Am^C^cos^jr —T)rfT. 

(6.183) 

and for constant instrument errors we correspondingly obtain: 

a      ^nt    i   /. ft    '^"r \     .    .     ft'" 

4    \        <i I MI 

An,  / .  .\nv\ 
CHS <■»,/ *     vilH^,/. 

"1, 
(6.184) 

If » ■ 0, but »•_ ^ 0, equations (6.182) reduce by the change 
y M 

variables   (G.121)   to   the   form  which   they  have  when H     =0, 

Although   thf--  exact   solution   (6.177)   to  equations   (6.128)   for 
the case of motion along  an arbitrary paralli.'!   can be   inspected,   it 
is  extremely  unwieldy.      If wo  assume  that 

"',.•--,■ (6.185) 
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v/o can obtain a simpler approximate solution to equations (6.128) 

which is analogous to the solution to equations (5.121) obtained 

in §5.3. 

Performing in equations (G.128) the change of variables (6.121), 

g obtain the system (6.1«>2).  Since it follows from conditions (6.185) 

li», ^»W .,  !■»'  - • ' i' ']''. '\\' (6.186) 

o may  consider the   following equations  as a   first approximation: 

Ay' | ii,'Ay'- \i  I N'i, f -M Am^r (6,187) 

We note that the use of equations (6.187) as a first approxi- 

mation is also possible for arbitrary motion, for which w , w  and x  y 
u are not constant, but rather functions of time.  This requires 

only that conditions (6.186), which apnly also to variable ui , u , y 
and   .i   ,   be  satisfied.     This   is  an especially  useful possibil it:", 
because,   for motion on the  surface of  the earth or  in  the  immediate 
vicinity of  its surface,   velocities are generally   low. 

If   f|     and  fl   designate  the   right   sides  of  equation   (6.187), 
the solution   to those equations  may be obtained  in   the  form 

6x' i//s (l)5iCU.'u(/ t)rft-+- 

fte^MMM  h-*£-'■ slnV. 

*/- J; J   /;(t)slrHV(/    -t)./l  I- 

+ 6y'\m,„l |   *l-''Mn.V. 

Accordinq to equal i tier, (6.121), here 

(6.188) 

ft.."' i 

ft.lc'" -ftji" I Ayl 

Ay"'  Ay-, 

Ay'"  Ay"  Ai'L (6.189) 

Nov; converting back from fix" and Sy*   to 6X and (Sy, wo obtain 

the followinq approximate solutions to equations (6.128) for the 
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case of motion cf an object at constant velocity along a parallel: 

tx. i/w (t)[01 «,(/      -1)-)- 

+/,{t)slni.<tU  - t)|Miii,v,(/  - T)rft + 
4 (At'cosw,/ > A/Mniii/)iojii^/ -f- 

-f l|(*.i«-f-A/«,)c»'<».' ♦ 

I 

-f-/,(i)ro»M,(^      I)|MI11^(/ — T)rft f 

-f J. | _ (ft|» 4- A/c.,) »In u,l f 

-fCA/ — A^iiP,)cci«/|slriü^. 

(6.190) 

We will  show that  formulas   (6.190)  may be obtained by direct 
simolification of the exact solution   (6.177)   to eauations   (6.128). 
Without   loss  of generality we may here  limit ourselves  to  the case of 
an object which  is  motionless   relative  to  the earth,   for which 

«, ^rULOSii.     w,    -«>ini|. (6.191) 

For 9=0)   i.e.,   on   the equator,   equations   (6.128)   split: 
M  • /JQ,   v =   /t,jg - u^     The  corresponding solution   is obtaincvl  from 
relations   (6.177)   by passage to the  limit,   since 

(6.192) 

For *   =   TI/2,   i.e.,   at a pole. 

|4--l^   (   II.      V   -l.\,        II. 

A|i — av = A\-     an  m '2i*\„ I.    A ...I (6.193) 

Expansion of expressions (6.174) for ii and v in powers of 

u/ )n gives: 

...v-,..(l  -S, 

* ST l,/"'l',s',f '>II'^II-H tSPf i- ic.^ui'if. 
(6.194) 
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The socond term under the radical is small relative to the 

sum of the first and third, since 

j.'...-•,(■ ii.•>"•••( )    M 

(6.195) 

hi?  maximum  is   reached  at 

•♦-i»^?' (6.196) 

The first term of the expression under the radical influences 

he magnitude of the root only when the object is in the immediate 

• icinity of the equator, where equations (6.128) split. It is 

therefore possible to retain only the last term under the radical, 

. ftcr which, and also having disregarded the second term in paren- 

theses before the radical, we obtain: 

|1. V--«^, ±«Slillf. (£_ 197) 

If wo now substitute these expressions for u  and v into 

equalities (6.176) and then into solution (6.177) and retain only 

the first terms of the expannions of the coefficients of solution 

(6.177) in powers of uA'«, wo obtain expressions for iSx and 6y which 

differ from solutions (6.190) only in that, u sin ; will replace 

, as required. 

To conclude our analysis of motion along a parallel, we will 

rit' out the approximate solution (6.190) for constant instrument 

■ 'rors, for which, according to equalities (6.178), 

/,  A«,  A-w.       1 

/, ^A«, - ,\mt.-.,r      \mt<.,,r.  I (6.198) 

To  simplify   the   formulas  wc  will   assume   that,   in  addition   to 
i loquality   (fi.lRO),   the  condition  ul->ij>'   is   satisfied.     Then 
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- ^3 

6! =, —■' ~ ifiGi (I - cos i,v/ cos («,() - 
4 
A«. —Am,M/     Am.i.ir ,   .       .   . 
 J Z-L -!^c^lSlVsln",»'   h 

»1, v • w. 

An.   - A'fl.w.r .   .        .   , 
Ay ^ —' —j  -'-'-ccmV'1'1"'»'   I 

4 
A«,     t0Uf      Smff 

4 —! CE C£.(i .-tosiVc"Si.>,') f 
4 

> Ay"to»üi^ tos 1,1/     At'insd./Miu'.f ( 

4  '',-sin i.i,,/ids 11./ -  -*—siniv'sl"1'-/ 

(6.199) 

6.5.3.  The rolation betwocn inertinl syr.tom errors and Instrument 

errors and errors in initial conditions.  The only difference between 

the error equations of two-ncwtor.ometer inortial systems for the case 

of motion on the surface of the earth and the error equations of 

thrco-newtonometer systems for arbitrary motion lies in the error 

equations of the first qroup.  Specifically, in place of equations 

(5.1), equationr. (6,27) or (6.31) were obtained.  The remaining error 

equation:; are the same.  Therefore, the difference in the dependency 

of the total errors in the deternlnation of coordinates and errors 

in the orientation parameters on instrument errors and errors in the 

initial conditions occurs in these two cases only as a result of 

different solutions to the first qrouo of error equations.  We may 

therefore confine ourselves here to comoarison of the solutions to 

the first group of the error equations. 

Equations (5,1) indicate the instability of the three-newtonomcter 

system, at least in the practically innortant region 

Among the roots of the characteristic equation of system (5.1) for 

motion ulona a parallel, there Is I positive root which is, at low 

velocities, close to the value (IIQ/S.  AS a result the errors Sx, 

(Sy and 81 grow exponentially, rapidly moving away from the initial 

values.  Thi- numerical evaluations carried out in §5.6 indicate that 

maintenance of a level of accuracy comparable with that of the initial 

conditions is possible hero only for a peric1 of 10 —15 min from the 

time ai which the system begins operatinq. 
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In the case  of the   two-newtonomoter system the  problem of 
stability  is  solved much more  easily.     The  region 

cmoryos here as  the region  of  stability.     Within  this  region  the 
roots of  the characteristic equation of system   (6.27)   are  purely 
imaginary.     At  low velocities  they are close  to ±i^0.     The errors 
6x  and  8y  therefore have an oscillatory character.     There  are no 
exponentially increasing  terms  in them. 

Thus-,   in  the  two-newtonometer system the most  unacceptable  errors 
for   extended  operation are  those deriving  from the   solutions  to  the 
second group of equations,   i.e.,   those associated with the  gyroscope 
errors ^m  ,   An  .and Am   .     These errors   lead to the  appearance of 
components of the  total  errors  in  the determination  of coordinates 
which  grow  linearly with  time.     Errors  in the  initial   conditions   lead 
only   to harmonic oscillations.     The  instrument  errevs  in  the nowtono- 
metor.s  are   intrqrablo with  the weights  sin M*ft -  T),   cos  w_ (t -   T),  and 
for  constant  values of  the  newtonometer  instrument  errors   lead to 
harmonic oscillations in  the  errors  An  the determination of  the 
coordinates   about  certain  constant average values of these  errors. 

We will   limit ourselves  here  to  the above  remarks.     A  detailed 
analysis of   the difference  between   two-  and  throe-newtonomctcr  systems 
may  bo performed by direct  term-wise comparison of   the  solutions   to 
equations   (5.1)   obtained   in  S5.3,   and  the solutions   to equations 
(r,,27)   obtained  in   §6.5.2. 

S6.6.     Analysis of  the Error  Equations  of Throe-Newtonometer Systems 

6.6.1.      General  properties.   Stability.     Let  us   consider   the   first 
group  of error equations   for  a  system with  three arbitrarily oriented 
nowtonomoters,  using in  the  ideal equations,   for the case of motion 
on  the   surface of   tho earth,   relation   (6.4)   between   r  and   the  latitude 
I   for   the   formation of   the quantity  y/r1. 

It was  shown   in §6.2  that  the error equations   (6.14)   are in   this 
cast;   equivalent   to   the vector  equation   (6.13) 
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M-xf-MX^. 
(6.200) 

in which the differentiation is performed in the O.C«n*r« coordinate 

system, and 10' may be considered constant for notion on the surface 

of the earth. 

The simplest form of the sealer equations corresponding to the 

vector equations (6.200) is obtained by orojectinq it on the C*» n#. 

f.» axes: 

«l. f +n, « A-»,. - 2 (A"%t. - Am.,,.) t 
+ n.A'i>t,-t.A'"v 

H + v^X =• Ad,. — 2 (Amv j. - A«,.:,) + 
+ CAmu-i.Am{/ 

«£. + „.»flC. = A^ - 2 (Amu^ - AmJ.) + 

(6.201) 

The   left  sides of equations   (6.201)   represent harmonic oscilla- 

tion.;.   Non-asyiptotic stability  is,   therefore,  obvious  here.     The 

sUibility of equations   (6.14)   for arbitrary w   ,  M    and  w   ,   i.e.,   for 

the  case  of  arbitrary motion on  the  surface of the earth,   also  follows 

from equations   (6.201). 

If u    and in equations   (6.14)   are constant,   stability 

appears  even without reference  to equations   (6.201).     Let us  consider. 

for example,   the case of motion  along a oarallel,   for which  w 0, 
iii    = const,   and H     = 

(6.14)   take  the  form: 
const.     In  this case the homogeneous equations 

>\v t (<••,;    mfrtf • ",•■',A- t ■-•'■',■'><   ■<>. 

li t (■■.;   »QU ■ «vv4»   •'"Vs l  "" (6.202) 

These ecjuations may be  treated  as   the  equations  of  motion of a 

mcnhanical   system near  the  equilibrium oosition 

A.- m 0 
(6.203) 

under the influence of potential forces with a force function 
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W^W—M *I^IWWH 

lfm   - yK«..,;-^-   .•.;)(.V0' t K -u;)(A.v)'-l- 
+- ffi — w^CÄ.')' + 2MF„if Ay A/)| (6.204) 

and the  gyroscopic  forces 

--?w4Ay4 khtei    l^tei     —'Jiii, Ar. (6.205) 

For  the  system to be stable,   the  force   functions  should have a 

maximum at  the equilibrium point.     Applicntion of  the Sylvester 

criteria of positive definitcness  to the quadratic  form on the  right 

side of  expression   (6.204)   shows   that  the condition  for  a maximum 

of  the   force  function  reduces  here  to  the single  inequality 

„,7_„,j_,„; > u. (6.206) 

Outside of the region defined by inequality (6.206), the degree 

of instability is even and equilibrium is stabilized by the gyro- 

scopic forces.  This is easily demonstrated by examining the charact- 

orintic equation, which, if written in termc of the square of the 

unknown p' = q, has the form: 

,' f (3..iJ + 2.,,')»» 4-(3,..;-!- .„«jv (-">; ti-*f - 0- 
(6.207) 

where   for  brevity  the   rotation 

'•'•'^'■•; ' "V (6.208) 
is   introduced. 

Polynomial   (6.207)   satisfies  the Hurwitz conditions,   since   it is 
always  the  case   that 

(H t f^lM * •-')   "IH - *f > "■ (6.209) 

The discriminant A of the cubic equation 

yM Mf I '.v n. 

deriving from equations (6.207) by the substitution 

(6.210) 

fm1+ nj      . (6.211) 

is non-positive; 

A . _ *. ,.,y^,.,l- •..■)' •' i'. (6.212) 
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If 

(6.213) 

then equation  (C.207) has throe distinct real negative roots. 

".  isctjuontly, the characteristic equation of pyntem (6.202) has 

rco pairs of distinct purely imaginary roots. 

For 

it)'   lit' 

(6.214) 

x uation (6.207) has, in addition to two real negative roots, a 

^ ro root, and the characteristic equation of system (6.202), 

consequently,  has a multiple zero root. 

If 

■ — o, 
(6.215) 

then  equation   (6.207)   has  the  triple  root 

''■,JCS "^       '   ' (6.216) 
and   the  characteristic equation,   correspondingly,   has  a pair of 
conjuyate   imaginary roots  of the  same multiplicitv. 

Finally,   for 

(6.217) 

equation (6.207) has the multiple root 

'" ^ '■■ (6.218) 

the characteristic equation has a pair of imaginary multiple 

tr>. 

It in easily demonstrated that, in all of the cases cited above 

vhich the roots of the characteristic equation of system (6.202) 

• multiple, the elementary divisors of the characteristic matrix 

of .his system remain linear. 

6.6.2.  Integration of the second group of the error equations. 

The soiutior of equations (6.201) i "5 obvious: 
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+ i/l'i,U-2(Am^-A"':.,l) + 
4-1 A«, — C Am. Isini.i,(/ —0</t. 

I 

♦i/IK- 2(A'»i,i.-A'\0 + 
+ C# ABI^ — {_ Aw.J sin w,,^ — »}rft. 

+ i/(A',t.-
:;(A'"l.n-A«„.J.) t- 

(6.219) 

We may proceed as follows in order to pass on to the solution 

of equations (6.14).  Using the table of direction cosines between 

the f,#, n*» r,* and x, y, z axes 

*    y    ' 

\,    "n "n "n 
11. «;, an    «J, 

wo can express 

in terms of An., 

(6.220) 

and their derivatives \r\.   ,   ftn,, ,   An, , Amr , Am  , Am 
^*   ri*   ^*   ^*   ri*   ''• 

'x' ^nv' *«* ^mx' '^"'v an^ Amz' entering into the right 
sides of equations (6.14).  For the given case of motion of the object, 

its coordinates r,* (t) , n*(t) and f,# (t) are known as functions of time. 

Specifically, when the xyz trihedron is, as in the case of equations 

(6.14), a moving trihedron on a sphere, 

t.     '"n-    '1.     '"n-    ^.  - '""■ 
(6.221) 

The  integrands appearing  in  formula   (6.219)   are  now known.      Integrat- 

ing thorn,   we obtain  A'»,   ''n*,   <5r,#,   from which according to   the 

formulas: 

••    "n'';. K%H "* "JI^.   1 

if     "t.t^». \ tti^iU * ,^l4,,-.■ 

(6.222) 

wo pas.s  over to  f\x,   Sy and   iSz,   i.e.,   to  the desired .solutions of 

eciiMtions   (6.]4).     The  initial  conditions  fif.£,   .Sni,   8C*«   "Ki.   An" 
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fi'r.l  are cxprosned here in terms ol the initial conditions of equations 

(6.14) using the inverse of equalities (6.222). 

This operation gives the solution of equations (6.14), at least in 

quadratic forms,for arbitrary motion at a constant distance from the 

center of the earth and arbitrary time-variation in the intrument 

•rrors. 

In order to bo able to compare these solutions with other 

Iternatives, it is expedient to obtain explicit expressions for the 

olutions (5x, 6y and || of equations (6.14) for those cases of motion 

or which solutions of equations (5.1) and (6.27) were obtained. 

For an object which is stationary in the 0. C^n^r.* coordinate 

system, superposing the r
i,,   n* and c# and x, y, z axes and directing 

the z axis along the radius vector r, wo find from solutions (6.219): 

«■• 

_f -L I (An,  r Amr)iiiic.v,(/—Orft, 

i 

I 

0 
(6.223) 

For constant instrument errors wo have: 

4 \        41 
.Mi, /     An.N        A)'' 

*)■  - - 4 I'V - -/ cos...,,/ | — Mn.V. 
H \   .       ■••,•, /      »■., 

(6.224) 

The  first   two  formulas   (6.223)   coincide with   formulas   (6.183), 
anl   the  first   two  formulas   (6,224)   with   the   first  two  formulas   (6.184), 
rrspcctivcly. 
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Let us now consider motion in a fixed plane containing the point 

o,.  We will take the C*nt plane as the plane of motion and will 

superpose on it the zx plane of the xyz trihedron. Table (6.220) then 

takes the form: 

«  >  / 
I, — tin a,t 0 co««,/ 

I, coioy/ 0 tin«,/ 

C     0   10 

(6.225) 

Here u = v/r, where v is the velocity of the object.  Table 

(6.225) assumes that at the initial moment of time the object is 

situated at a point or .he f,^ axis. 

From table (6,225) and equality (6.221) the coordinates CA, 

'!». r* are obtained as; 

I,--rcutii),!,    n^rsinu,/,    {,=»0. (6.226) 

Further, 

A»t> = — Ad^sltidy-f a^coiuj, 

A/i^ t^ An, cos (i>y/ -f- Ani »in u /, 

4/it —An 
(6.227) 

Analojous formulas relate Am  , Am  , An- with Am , Am and Am . 

Finally, for the initial conditions we obtain: 

bil-di"- ■■i,*»'1. lifMtal i w,8'"' ^J ^^y"  I (g 228) 

Substituting relations (6.226) — (6.228) and the formulas for 

:he projections of the vector fim  on the C^, n4, c* axes into solutions 

(6.219) and then par.sing over, in accordance witli formulas (6.222) 

jnd table (6.225) to the errors 6x, Ay and 67,, we obtain the following 

expressions: 
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< 

»/-/••Vi.'1 

«> = *y»cos^ j ^'-»in 1.^4- 

f 

I 
i 

I 

+ ^ J K4«. -/•A)iir)s(n^(r_t) < 
v 

+ (AB4 ( 2(>,fAra()cosM,(/—t)Isti|.^(/-,)</!. (6.229) 

The second formula (6.229) coincides with the second formula 

(6.181).  This result was easily predictable, since for the case in 

question the second equation (6.14) takes the same form as the 

second equation (6.27).  We note that the remaining system formed 

by the first and third equations (6.14) has the characteristic 

eauation 

tho roots of which are 

Pi.! 3 4— iyK^"',) 

(6.230) 

(6.231) 

Therefore, for the case under consideration formulas (6.229) 

may be obtained fairly simply by direct solution cf the differential 

equation (6.14), in which it is necessary to set u = 0. 

If the instrument errors ^n . An . An , Am , Am and Amz are 

constant, the second formula  (6.229) reduces to tho second formula 

(6.182), and from the first and last formulas (6.229) we find: 
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-J-1 Kix'-f...^/"jiosw,/-  (*z°-M,*r',)slnw,/|.siri(.\)/-( 

-f -, •.-  An. (I — cosutjcoiui I iitnu\/t,lni>),l] + 

4 (An,-) 2n>, Am^UosiUjl ilniti,! — -' slnny tusMf/l , 

-J--1|(A.V" J fc^b/'jSllll.P^ + lÄ^-cüjÄjt^CU^J./lsIlK-^   f 

-f--} j-   [ A«,-t  2n.i, Amr Yl —lusiiy/iujgj,/— 

— ^slna\/tln(ii,r  — 

— A«, uos (n,/sin in,/ ^slruVcosoi,/) . 

(6.232) 

For the case of motion at constant velocity along a parallel, 

the table of direction cosines (6.220) takes the form: 

t -itnu/ -tin,cos(,i/ cos^cos.^ 

n. cosw/ - sin «f sin u/ cos<fMntrf 

* 0 COS<p . slnrf. 

where 
(6.233) 

u=u + 
^COS9 

(6.234) 

From formulas (6.219) and tables (6.233) and (6.220) we obtain; 

Ax ^= (AA^OM.!/ i Ay^siii^--liiM/   - Ar'tusif sini"Oius«-W-f- 

-) |A.v"i"(^(.t/ -t-A^sinif «-in'.»/ — iWosi,-sinof-f 

-( M(Av',^iiiM/ —Av"*/!!'! id'I.I/ ) A.-'imi, coM./ilslnn/ -f- 
t 

-f   —  f |A«.CM«|I      I) i A'/MI,I( Mn<i(/ - T)   - 

- ■ AfljCosij ■■ific»(/   - \) -f fH\    Am, klff^cOiMfl«-1) — 

-  A«i,(l   | KH^JVIIICH/ --i)-- 

<lii((iio<;i( M (/      t)| i f IVii.slnij Mrn.i(/—t) — -  Am. 

— Am, CM (i>(/      1>1I ^IIIM (I -■- T)rfi, 

(6.235) 
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i A.^'NUMI ctiMji(l   - cus(■)/)!iu$    /-f" 

+ —I    At'sinij SIIM.I/ ( Ay"(ii>s'fl -f 8lii'ifcu»iV)-t 

^ fti"slni( cos<f(l     cu«(j/) f iDjlni,-(AA',tu»<.i/4 

I 

4 ^ J ( -A^ilnifMi,,^/ - i) f 

-f Ai^ltm'n -f nii;if COM.I(/ ~t)| f 

-f A/ijSimi cosii |l - COSM(/—T)1 + 

+ ro>|Am1 !.in'(f >iijiii(/— ») f- 

4 Am,, sin<r(ids'if— (I -) fos'if)€<>«••>(/ — ti) — 

-   AnijCUSii (COs'lf + MII?l(C<lSM(/-   Tl,| + 

4 r {Sin, (s/irif tnsi.if/ - t) 4CI.S?I, ) 4- 

4 Ar^sinij Miini/ — i^J Mntvtf ~ 1"'t' 

6/= lAA'cosq-sliim/ f i/siD'f tosif (I — co5<o/)4 

4 *i0(5ln'<i4 cus'if cosuOlcosi.v,/-! lAjt'cosifslncn/ + 

4 Ay" il» T cos f I' —to» '■'') -f- */0(sln,9 4 '<>»' I"0« <,,04 

4 wos if ( — ijt'coscirf —fty'ilnif sln(irf4 
i 

4*i0co$(fsinw/^sliiiV J —J |A(i,coi9sln(ii((/ —<)4 
o 

4-A«, »)n if cos if 11 — cosing — t)| 4 

4A»iJ|sfn'if fcos'ifios«(I —«14 

4"»C0Sf |— iV/ri^slnif slrii.i(/-«-1) f- 

4Am,(sln'if-i (1 4-cos»(f)cosM(/— t))4 

4Am,sliii(Co'iif(cos(ii(/ -T)— l)| |- 

4 Acosif |Am,5ini( (I — cosii(/+-1)) — 

— Am,«lnu(< —t)|| slrrav,^ — x)dx. 

(6.235) 

For  <;  =  0,   as can  easily be demonstrated,   formulas   (6.235) 
reduce  to  formulas   (6.229). 

For constant instrument errors  and  zero intial conditions,   it 
follows  from formulas   (6.235)   that 

■        An, —'w A«!, »in ii /, / ,ii) .  t     .\ i 
4jr — —•—; r- •   11—tnsouiosin/ Mniiv/slnoi»   )- 

i^ — IT I v» ' 

An, slnq- An, cm'i  -/-».lAmyfl f cus'q)—r'-'Ain,*lnif cosip 

■ — w 

X (—cosii\/fos(ii/ 4 — siniVcos u>t\, 

. ^An^ IjgJ  |- ,iit Awij sin1 y 

X (—cosiV ilnco/4 —SIHü^/COJM/] I (6.236) 
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+ -j jIAn, slii'ip- Ad. slriircosif— l( — u' ' ' •        ' ' 

- rw Am, 5IIIIII(I -( (m'.f)     rA*(«MMf«|^f|y 

X(l - (-(iscViusW     ^ sinVMni.i<)-f 

4-7 {AH,IOS?I)  ) AII, vir.if cosij. (- 

I n.iAmr>lriifKis'cf — fi.iAm/cos1if)(l      coson,/), 
b/i,ru*<f     rtii Am, sint; f.t$«. / 

'=' -3 j '     -fosi^/bindi/ f 
*\, — w \ 

+ —sin i.\/mild./) I- .,—,1-An, slniffosoi )- 
"• /     »(; - u' Fiii 

-+A/ijCos'ip f fuAm, .osipCI f cus7^)^ 

4 foiAm,slii<fco$<rl(l_vosciii/io$u/-" iiiK^/sin,,/)-f- 

4 -T (A«, sin if i us i(f-An, sin'if ) 

4 riiiAm^insvslir if  - MlA«(tte9«M*f|||       timV). 

(6.236) 

Formulas   (6.235)   and   formulas   (6.236)   deriving  from them were 
obtained  from the general  solution   (6.219)   of equation   (6.201),  which 
arc equivalent  to equations   (6.14).     For motion along a parallel, 
the coefficients of equations   (6.14)   become constant.     The characteris- 
tic equation of system   (6.14)   has the roots 

Pi.i—i-M,'   Px.,.' +-;(>■',. :•••<"). (6.237) 

Formulas (6.235) and (6.236) may therefore also be obtained 

directly as a solution of the system of differential equations (6.14) 

with constant coefficients. 

6.6.3.  The relation between the errors of an inertia! system 

and instrument errors and errors in initial conditions.  Comparing 

tho case under consideration with preceding cases, we see that, again, 

only the equations of the second group have changed.  These changes 

effect the relation between system errors and instrument errors and 

errors in Initial conditions. 

Unlike the preceding cases, the system is now stable (non- 

asywptotically) Cor arbitrary motion on the surface of the eart'i. This 

fact determine;; the character of the relation botwoon the system 

errors and errors in the initial conditions.  In the O.r^n^r^ 
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coordinate system the errors in the initial conditions 6Cj» 6n£» ^2» 

&{■*'   &^l >   '*{ lead to harmonic oscillations at a Schüler frequency 

w0 for arbitrary motion on the surface of the earth. In the threc- 

newtonometcr systems analyzed in the preceding chapters, these errors 

increased exponentially with time for the special case of motion 

along a parallel, and in two-newtonometer systems increase in errors 

with time proved to be possible for variable u , OJ and ui. r r x  y     z 

The relation between errors in the class of three-newtonometer 

systems in question and instrument errors is fully determined by 

solution (6.219) of the error equations.  It is in general impossible 

to compare this relation with^the corresnonding relations for the 

preceding cases, since we do not have tha solutions of equations 

(5.1) and (6.27) for arbitrary motion.  We must limit ourselves here 

to those cases of motion for which there exist exact solutions of 

equations (5.1) and (6.27), i.e., the case of an object which is 

stationary in inertial space, the case of motion in a fixed plane 

passing through the center of the earth, and the case of motion along 

a para]lol. 

Let us compare the solutions to equations (5.1), (6.27) and 

(6.14) for the indicated cases of motion at constant instrument errors. 

For the case of an object which is stationary in inertial space, it 

is necessary to compare formulas (5.97), (6.184) and (6.224).  It is 

evident that the formulas for 6x and 6y coincide in all three solutions. 

Only the formulas for Si in solutions (5.97) and (6.224) differ. 

The nature of this difference is obvious. 

For the case of notion in a fixed plane (for example, motion in 

the plane of the oquritor) , it is necessary to compare formulas (5.101) 

and (5.112) with formulas (6.182) and t6.232).  In order to facilitate 

the comparison, wc will confine ourselves to small values of w . 

Wt- will retain in these formulas only terms in the first degree of 

M .  We then obtain in place of formulas (5.101) and (5.112): 
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4 Ä-_(.„su,/ - ci,H, i' i <). 

An,—M r Am / An, - w..    Am,\ «y = -. _i— , jA>o _ SL-J—.J„,s tiiu, f 

+S-«i^ 

(6.238) 

X(l/'iJsln(,.J/-lhi.n)/i/)- -Ü' /-(coxV-cliUurs/). 

In placu of   foimulas   (6.182)   we will  have: 

(6.239) 

Finally,   in  place  of   formulas   (6.232)   and  the   second   formula   (6.182) 

we  find  that 

%**,&+ for«   - S9ri cos ov/ + -"- sin o^ - 

- lii' - --MjcosiVslni.),/—-? slni,v/'>'5i.i,/] 

 sinM./slmV. 

An-—n^An.      /.   .      An-   - w-r Affi.\ 

4 v «I     / 

-f -'>,<ln.V. 

-t  *-MniV     (*«"■< A";]fcinii\/slni,i,r- 

--—■slni.V"'",')       — •In.i.f'.lriii/ (6.240) 

Comparison of expressions (6.238), (6.239) and (6.240) for 

■y in ■ direction normal to the direction of motion, shows that al] 
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of these expressions arc- identical.  Only the expressions for 6x  and 

6z differ.   For the case of motion on the surface of the earth, the 

error 5z is insignificant, and therefore the difference between the 

systems appears only from the difference in the error 6x in the deter- 

minatior of the coordinate in the direction of motion of the object. 

Let us compare the first formulas of (6.238), (6.239) and (6.240). The 

first three terms in formulas (6.238) and (6.240) coincide. The 

first forrrula (6.239) consists entirely of these terms.  The remaining 

terms of formula (6.238) and (6.240) differ basically in that, in 

place of the rapidly increasing hyperbolic functions sinh Ug/^t and 

cosh -Q'^t which appear in formulas (6.238), in formulas (6.240) the 

harmonin functions sin(J0t and cosu0t appear. 

The errors 6x, äy and 6z may be compared in an analogous fashion 

for the case of motion of an object along a parallel. 

In conclusion we note that in the three-newtonometer system in 

question, as in the two-newtonometer system, constant newtonometer 

instrument errors lead only to oscillatory and constant errors in 

the determination of coordinates.  Constant gyroscope errors lead, 

as a result of the second group of equations, to errors which increase 

with time.  The gyroscope errors in these systems are the main errors 

limiting the indupendent functioning time of the inertia system. 
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Chapter 7 

PREPARATION OF AN INERTIAL SVf.TEM FOR BEGINNING 

OPERATION AT A TAKE-OFF POINT WHICH IS STATIONARY 

RELATIVE TO THE EARTH 

S7.1.  Initial Considerations 

For an inertial system, beginning at some moment of time t0, 

to function normally, the initial conditions of its operation must 

be correctly specified at this moment of time. 

The problem consists in guaranteeing, at the initial moment of 

time, the selected orientation of the axes of sensitivity of the 

nowtonometers and gyroscopes, and also in introducing into the system 

(or obtaining from the system itself) the values of the coordinates 

and their rates of change at the moment t0, which constitute the 

initial conditions of the solution to the main differential equation 

of inertial navigation.  Of course, in the process of preparing an 

inertial system for operation, operations associated with the start 

up and testing of its equipment must also be performed.  We will not 

deal with this aspect of the process here. 

In theory, and even more so in practice, the content of the 

oporations by means of which an inertial system is preoared for 

operdtion depends to a great extent on the system in question, its 

kinematics, the orientation of its sensing elements, and also on the 

selection of the reference grid in which it operates.  Much also 

depends on the external information available during the process of 

the initial preparation of the system. 

It. should be noted that the task of putting an inertial system 

into the correct initial state is in many ways similar to that of 

correcting it.  In both cases the problem consists in moving the 

sy;;tem from some "incorrect" state to a correct state.  The task of 

putting the system into the correct initial state cannot be performed 

without external information, using the term external information in 

the broad sense.  Thus, for example, as will become clear below, it 

is possible to automatically solve the problem of preparing the system 



if at  the  initial  moment  the object on which  it   is mounted   is 
stationary  relative  to  the  earth.     However,   simple  knowledge of  this 
fact docs  not  constitute additional   information. 

The  required  precision  in  the  estabiuhmont of  the  initial 
operational  conditions of an inertial   system depends  \,o a great 
extent on  the  possibilities   for correcting its operation after  it 
has  begun.     If correction during operation  is not provided   for,   the 
accuracy of  the   specification of the  initial  state of the  inertial 
system must be extremely high,   since errors  in initial conditions,   as 
was  shown  in  the course of analysis of  the error equations,   leads  to 
errors  in  the determination of  the  navigation parameters,   and these 
errors are retained  throughout  the  further operation of  the   inertial 
sy.stem. 

Brlov;rthe  initial preparation of  an  inertial  system is  analyzed 
for  tho  case  of  an object which  is  stationary relative to the  earth. 

§7.2.     The Case of Arbitrary  Initial Orientation of the 
Inertial  System Platform 

Let  UP  assume  that  the   functional diagram of an inertial   system is 
a     qyrostablizcd  platform.     Lot  the  axes of sensitivity of  the 
newtonometers  coincide with   the x,   y,   and  z axes of  the  platform. 
Let  tho coordinates determined  by the  system be  the    earth 
body-axis coordinate system 0, {«t •   Let  the origin 

of  this  coordinate system coincide with   the center of  the earth, 
the  C  axis  be  direct-d along  its  axis  of rotation,   and the  r,  axis 
lie along  the  intersection of the planes of the equator and   tho 
Greenwich  meridian.     The  coordinates  determined by  the  system might 
(>«■,   for example,   the Cartesian coordinates  f,,   11,   and   r,,   the  geocentric 
coordinates  r,,   and  A,   the geographic coordinates h,   v  and  A   the geoaetic 

coordinates  r,   7.  and S,   etc. 

For  U10  system,  beginning at  some moment of  time  t0,   to operate 
correctly,   the   following must bo determined  for  this moment  of   time: 
tin'  relative  position of  tho  xyz  and  ^HC  coordinate  systems,   i.e., 
the  direction  cosines between tho axes of  these coordinate  systems. 



tie coordinates x0, y0 and z0, and the time derivatives of these 

coordinates x0, y0 and z0. 

Wo will show that if the longitude X0 of the take-off point of 

the object is known and introduced into the computational apparatus 

of the inertial system, the further preparation of the system for 

operation may be performed automatically and autonomously on the 

basis of the newtonometer readings of the system itself. 

The newtonometer readings give the projections n , n and n x  y     z 
of the vector 

•I'r 

(7.1) 

on the x, y, z axes of the platform, v/hich after the starting up 

of  the gyroscopes and stabilization, occupies a fixed position 

in inertial space. 

Since the object on which the inertial system is mounted is 

stationary relative to the earth, it follows that 

lL~.uy.r.  ^=BX(iiXr)=r«(iir)-.iV. (7.2) 

Here differentiation is performed in the xyz body-axis coordi- 

nate system of  the stabilized platform.  This coordinate system may 

bo considered as inertia.1..  Substituting the second equality (7.2) 

into formula (7.1), we obtain: 

ii = «(«r)- »V ^(r). (7.3) 

Time—differentiating the vector n in the xyz coordinate system 

and noting that the vector u is constant in this system, and that 

the vector g is constant in the coordinate earth body-axis sys- 

Lz:.-.    we find: 
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A second differentiation gives: 

•^J ""<«'')-«'•• (7.5} 

The vector u may be found from equations (7.4) and (7.5). 

Indeed, performing the vector multiplication of equations (7.4) 

and n and the sealer multiplication of equations (7.5) and n, we 

obtain: 

du i 

<l'l ... -:.,    n m (u ■ it)' - HV 

(7.6) 

From  the second equation we find: 

From the  first equation   (7.6)   we have: 
(7.7) 

• 1/2..,.»-.***, »—t-S -flr Ü  (7.8) 

Since the vector u coincides with the c axis, the unit vector 

( of this axis is 

_ *K-gr—* ""'--3/ " 
'  '^"," (7.9) 

Finding the unit vector c in the xyz coordinate system implies that 

the third column of the table of direction cosines 

i <i : 

* I'M PI- P., 

V ll;i lb hi 
• P'l  P.;  P, 

(7.10) 
between  the  x,   y,   z  and   ',   n,r. axes  is  known,   and,   consequently, 
that the anglo:; between  the axes of the stabilized platform and the 
earth's axis are also known. 
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The first and second columns of table (7.10) remain to be 

found.  To do this we introduce the trihedron Oi^ili?]» the c,. 

axis of which coincides with the earth's axis, und the C, axis of 

which is situated on the intersection of the plane of the equator 

and the piano of the moridian of the point at which the object is 

located.  Since the lonqitude X0   of this point is known, the unit 
•    .» 

vectors £ and n of the E and n axes are related to the unit vectors 
► ■* 

IjIJi  of the Ci   and l|.  axes by the obvious equalities: 

t ^{.cosV -ih'in).0.    ii^smV + rhcosA». (7.11) 

We now note that the vector n is the sum of the centrifuqal 

force due to the 2arth's rotation and the gravitational force. 

It lies therefore in the plane of the meridian on which the object 

is located.  This moans that 

fc-^fr- i'  «<*■ (7.12) 

Formulas   (7.12),    (7.11)   ond   (7.9)    fully  determine  the   relative 
orientation  of   the  xy?:  and   f.nr   coordinate   systems.     We  note   that 
only  the  longitude   X0  was  used   in  the  derivation of  these   formulas, 
i.e.,   only one  of   the coordinates of  the object.     The remaining 
parameters  were   found   from  the  newtononeter  readings.     It   ir.  ansumed, 
of  coirsc,   that   the  computational   apparatus of   the   irertial   system 
is   able  to  perform  the  computations   required  by   these   formula;',,   in- 
cluding   the  differentiation  of   the  newtonomotor   readings. 

Wo  note  also   that  those   formulas  cannot bo  used   if  the   take-off 
point  of   the  object   is   lor   Led at   a  gnoqraphic  pole  of  the  earth. 
More  precisely,   formula   (7.9)   remains  valid  and,   consequently,   the 
third  column of   tr.blo   (7.10)   is   reinstated.     This   is  understandable, 
since,   as   follows   from  formula   (7.9),   in   this   case   the  direction   of 

i 
the   r,   axis  coincide;; with   the direction   of  the   vector  n.     Formulas 
(7.12)   become   invalid,   since,   because     of   the   collinearity  of   the 
vectors   C   and   n,    their  vector  product   is   equal   to   zero  and  does   not 
define  the  direction of   the   !,,   axis.     Therefore, if   the   take-off   point 
ll   located  near  a  geographic  pole,   detormination   of   the  orientation 
of   the  platform of   the  initial   system  requires   additional   information, 
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jor  example  the  bearing  to  some star or  terrestrial   landmark at 
t0. 

If  the orientation of the platform  relative  to  the earth has 
been determined  by the means   indicated above,   there  remains  the 
problem of finding  the  coordinates  x",   y0,   snd  z0  and  their deriva- 
tives.    We will   show that preliminary knowlcdqo of only the  longitude 
A0  of the   take-off point is  sufficient  for this purpose as well. 

Indeed,   since  the   table  of the direction cosines   ^.(t)   has 
been   found,   the   time derivatives (3. ,   of the elements  of this  table 
may also be  found,   and,   therefore,   to find x0,   y0,   z0,  x0,   y0,   z0, 
it  is  sufficient   to know  the   initial  values of  the coordinates 
r,",   n0.  and  c,".     To determine   f;0#   n0  and   t,",   it   is in  turn  suffi- 
cient  to know the geocentric   coordinates   r  ,  and  X0   of the   take-off i-oint 
We assuny  that   A

0
   is known.  The other coordinates q0   and r    may be 

found  from  the   solution   to the system of  equations. 

I«!   =A',(>().   f   -/■(■f). 
(7.13) 

whore   ge( .')   il   the  acceleration of   the gravitational   force  at  the   ta- 
ki—offpoint,   and   r  = r(v)   is   the equation   for thf  radius vector 
of  the   terrestial  meridian. 

This  procedure  for determining  the orientation of  the  sensing 
clf'nents of an  inertial   system  is easily extondod  to  the case  in 
which   the   basis  of   tht.'   functional   liagram  of  the   inertial  system   is  a 
three-dimensional   gyroscopic  qauyc  of   absolute  angular  velocity 
which   is  rigidly   attached   to   the obiect. 

If  the object   is stationary relative   to the  earth,   the  gyro- 
scopic  qaugo  will   measure   the   absolute oarth   rate   iJ.   This 
peraltl  immediate  determination of  the unit 
vector   (   in  the  xy?.  coordinate   system attached  to   the   platform of 
tin'  gauge: 

t<   ". 
(7.14) 
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Equalities (7.12) may be used to determine ß..(now constant), 

since the vector n lies, as before, in the plane of the meridian 

of the take-off point. 

The initial values of the coordinates x0, y0 and z0 are found 

from {•, n0, C1 and |.j.  The initial velocities x0, y0 and z0 

arc equal to zero, since the vector r is constant in the xyz coordi- 

nate system attached to the object and stationary relative to the 

earth. 

The quantities f,0, n0 and f,0 are found from the known values 

X0   and the quantities r" and .",  obtained from the solution to the 

system of equations (7.13). 

§7.3.  The Case of th" Orientation of One of the Platform Axes 

Along the Geocentric or Geographic Vertical 

Let u;; now consider the practically important case of a 

naneuvsrabl« gyroplatform as the basis of the functional diagram 

of an internal system. 

Let  us designate the right orthogonal trihedron attached to the 

gyroplatform BI xyz.  Let the coordinates to be determined be the 

goeqraphic coordinates h, '/ and X,     Then, at thr> moment at which 

the system begins operating, the ?.  axis of the platform should be 

iKiperporJcd on the direction of the gravitational force, and the 

y axi;; should bo in the plane of the earth's meridian.  Thus, the 

question here is not that of determining the orientation of trihedron 

xyz relative to the earth, as in preceding cases, but of positioning 

thi.'S trihodron in a particular relation to trihedron TnC , attached 

to the earth, and of maintaining it in this position until the 

inomont at which operation beqiiir..  As in the preceding cases, part 

of the problun of preparing the system for ope'ation is the intro- 

duction (or determination within the system itself) of the initial 

valuer, of the coordinates ,'  and Xc   (on the surface of the earth 

h = 0) , 
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We will show that, as in the two preceding variants, the 

problem of preparing the system for operation may be solved auto- 

nomously and automatically, if the longitude X0 of the take-off 

meridian is known. 

Let us begin with the problem of the orientation of the platform. 

We will use XQ #y0, z0 to designate the position into which trihedron 

xyz should bo placed.  In this position the z0 axis is directed along 

the vector g , and the y« is in the plane of the meridian and 

directed towards the north.   Let the relative positions of the xyz 

and XQy0z0 trihedra be defined by the small angles a, ß and y  in 

accordance with the table of direction cosines 

xyz 
■*„ i -v P 
y, v  i  -a ni5) 
it    —f  a   I. 

The deviation of the platform from the position which it should 

occupy may, clearly, be considered as small. This does not diminish 

tho generality of the analysis. 

To solve this problem we will use the precession equations 

of motion of the platform: 

-//a,.-= ,ii;, //,.,,-= .w|. 

(7.16) 

We form tho controlling moments in accordance with the equalities 

•^ •//.•.. (7.17) 

Hero n and n  arc the readiiigu of the newtonomctcrs oriented 

long the x and y axes, and u , iii  and H   are tho projections 
x0   y0      Z0 

the absolute angular velocity of trihedron xnynzn on its axes, 

According to table (7.15) the newtonometor readings are 

h  'K*   "*       r,". (7.18) 
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where g  is the acceleration of the gravitational force at the take 

off  point.  The projections of the absolute angular velocity of 

trihedron xyz on its axes are determined by the following equalitiesi 

Us —<■</, -I <•>./ ■■w,.a-f V (7.19) 

Substituting expressions   (7.18)   and   (7.19)   into equality   (7.17), 
we obtain the  following equations  describing  the motion of the 
platform in the process of bringing it  into  the prestart  position: 

V + "'..P     "„a = 0. 
(7.20) 

The system of equations   (7.20)   has,   clearly,   a  trivial  solution; 
i  =  ß = Y  = 0.     The  characteristic equation of this  system has  the 
form: 

"' ♦ 2*//' /'' * [(-//)'-* < * '< + <] P *■ 
tg. -* rK+<J-* (7.21) 

In the case under consideration here 

«»»».•^O, ()>„=JBCPS'f ■ tit,, tsinimf'  ■ 

and the characteristic equation takes the form: 

(7.22) 

"^ // '" I [{Mtf K"]p\-~f-u'co>'v"=o. (7.23) 

Application of the Hurwitz criterion gives the following 

conditions for the stability for the process of bringing the plat- 

form into the prestart position: 

* > o. 2 {-"f/f f «'('; -cosV) > o. 

cos'if'' > 0. (7.24) 
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Thus, the only significant stability condition is the require- 

ment 

(7.25) 

If this condition is not met a zero root appears in equations (7.23). 

The prestart orientation proves to be impossible at the geo- 

graphic poles of the earth: the closer the take-off point is to a pole 

the greater the time required for the prestart orientation. 

Indeed, at the equator, where cos v'0 = 1, the left side of 

equation (7.23) may be factored, as a result of which the charact- 

eriptic equation takes the form: 

{r + W(p> + *fP+*>)~o. (7>26) 

Its roots are: 

(7.27) 

The  "eal  parts of   the  roots are  negative.     The maximum value 
of the  smallest of  the moduli of  these parts  is  equal   to  u and 
occurs  at k  =  2uH/g   .     If we  takr»  this as  the working value of k, 
for values of   t**   sufficiently cl>.3e  to 7i/2,   two  of  the  roots of 
equation   (7.23)   will be  close   to  the values 

/•,. .'« '. ja, 

and  the   third  will  be  cli^so   to 

The magnitudes of  the real  parts of  the roots  of  the characteristic 
equation  detnrmino  the   speed at which   the  platform  is  brought  to 
the  required   (prestart'   position.     It   is  evident   from  the  expression 
for p,   that,   as   .'0   increases,   this  speed will  decrease  proportionally 
to  cos2 • '. 

We  note  that,   in addition  to  the meunod described above   for 
placing   the  y  axis   in  the   plane  of  the meridian,   leading   to 
equations   (7.20),   an equivalent method,   based on  the working prin- 
ciple  of  the  gyrocompass,   may be  used. 
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Let us considiT  the   following.     To form  the  controlling 
moments   (7.17),   the quantities   L>    ,   to      and w      are  required.     To 

x0       y0 0 
compute   these  from formulas   (7.22),  we need  to know  the  geographic 
latitude  < '"  of  the take-off    point.     The  lattitude  <p  is  also  required 

as  an  initial  condition.     If  *'0   is  unknown,   it may be determined 
from the equation 

(7.28) 
For  this,   of course,   a  third newtonometer is required. 

It  is evident that  it  is   fundamental  in  the method  under 
consideration  that the  y  axis  should be located  in  the plane of  the 
meridian of the  take-off  point.     It would also be  acceptable  to orient 

it along some direction  in the plane of the geographic horizon, 
forming a given angle ^0   with  the meridian.     This   requires only that 
other values of   u    ,   u>       and w       be  substituted,   in  place of  those 

x0      y0 0 
given by   (7.22),   into expressions   (7.17)   for  the  controlling moments, 
namely: 

0',, = HCosff' sirnf",    M,., = I(OJS<(''I"SI| . I 

<•.,, ^«sln.,'* | (7.29) 

Equations (7.20) retain their form in this case.  The coeffi- 

cients of the characteristic equation (7.23) likewise do not change, 

since, once again, 

<•«-<—«<y. <+<+<-# (7>30) 

In conclusion, lot us consider an inertial system operating in 

spl.erical, for example geocentric or geodetic    coordinates.  In 

this case the xyz trihedron of the inerital system .ihould be oriented 

an follows at the moment at which operation begins:  the z axis 

should be directed along the radius vector r, and the y axis should 

form some angle |»* with the plane of the meridian.  For the case 

of geocentric coordinates ^0 = 0.  For the case of geocentric coord- 

inates, the initial condition-, will bo r", V0 and >", and for the 

case of geodetic   coordinates, rc , z"   and S0, respective]/. 

fine, 



I 
As  before,   the  longitude  A0   should be  given.     The quantities 

ip 0   and r0  are   found  from  the equations 

l»l   f.(T).   '-■'(■f). (7.31) 

The quanties z0 and S0 may easily be found from \0 and 9° by 

using, for example, relations (3.303), regarding them as equations 

in z and S. 

The problem of the prostart orientation of the platform of the 

inertial system remains to be solved.  This problem may be solved 

in a manner which is completely analogous to that used in the pre- 

ceding case, in which the z axis of the platform was oriented along 

the normal to the reference ellipsoid.  The only difference is that the 

controlling moments of the gyroplatform should be formed not in 

accordance with equalities (7.17), but in accordance with the 

formulas 

M' J= /A.y   - k(n, — n,,), 

(7.32) 

Here  n       and  n      designate   the projections of  the  vector  n on  the 
x0 yo 

x0  and y»  axes.       Tnoso projections are equal   to the  negatives 

of  the known   (since r0,   v 0and i>0   are known)   projections of the 

acceleration of the gravitational   force on the x«  and y0  axes.   The 

M     ,   H and  '.)      of  the absolute  angular velocity entering into 
0       y0 0 

formulas (7.32)   are  also known  if   ■;'0   and ^0  are known.     These  pro- 

jections are  given  by equality   (7.29). 

As  before,   wc will  define  the   relative positions of   the xyz 

and-x0y0z0   trihedra  by means  of  the angles a,   ß  and   Y,   in  accordancc- 

with   the   table  of direction   cosines   (7.15).     Formulas   (7.19)   for 

the  projections   u t   w    and will   remain valid,   and   the  expressions 

for   n     and   n     will   take  the   forni: x y 

n,  - «,,  (  n.j      «, p. 
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Substitution of expression (7,33) into formula (7.32) yields 

the following values of the controlling moments: 

M, ■ — /Ai,, — *(» 4it — n,,y), 

,\l! - //,..,. - * (n^v - d,^). 

Substituting these values into equations (7.16) and simultan- 
eously substituting the expressions (7.19) for the projections w . 
u'    and u)    into  these equations,   we  obtain  the  system of equations: 

*«.       ft». \ 
a     -ff" f („-  t <",./V-<.',J>^0. 

an [ *n \ 

V -f- fej —''•)," ■* (7.34) 

The characteristic equation of this system is written in the 

following form: 

it«. 11 in.  |l 
^ -//  "  i(hr)  !-■•+ 

* ] £„ 

(7.35) 

But 
».. *     '4'^'":'i"'.n,.;,i, 

(7.36) 
wher-j   g   is   the   acceleration  of   the  gravitational   force,   and  e   is 
the   eccentricity  of the   terrestrial   ellipsoid. 

Taking   into  account   relations   (7.36)   and   (7.29),   we  obtain   from 
(■quations   (7.35) : 

rM2-*;„M[(-:fr-)U'W 
^    fj ir cvy n"l\ -   ^sln'i('V-0. 

(7.37) 
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Since 

•j iln'»"^!. 

equation   (7.37)   is equivalent  to equation   (7.23),   and  the  stability 
of  the process of bringing  the placform of the  inertial  system 
into  its prestart position  is  guaranteed  for all  locations  except 
the geographic poles of  the  earth. 

Note 

1.  See for oxamplo, Roytenberg, Ya.N. on accelarated actuation of 

a gyroscopic compass on a meridian, Prikladnaya matematika i mekhnika, 

vol. XXXIII, Issue 5, 1959. 
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If tit* initial condition« are null. Ihcn 

(S.U«) 

$.3.4.  The wot ion of »n ob]ect «lonij a paral IPI jt conai ant 

vlocity.   Let ua now consider the case of the motion of an ob]RC' 

•long a parallel in which the first 9roup of the coordinata «rror 

aquations alao reducas to equation« with constant coefficients. 

In this utm» 

N. «0.  -.  •  ■.  ■ S,  I   0 
(5.120) 

and the arrcr  equations   (5.191   for« the  following  systen of sixth- 

order differential equationsi 

•>■ • K   "5)*' *",".'' ^'••,*« - 

^  • •'-.*-. (5.121) 

whsr» 

^.•/r' 

The Initial conditions for these equation« will be the quantities 

given by equalitlea (5.91) and (5.92). 

equations (5.121) are projections of the onor equation» (5.1) 

onto the x, y, t axes of a geocentric acting trihedron, the 

■ axis o« which coincides with the vector r, with Its y axle dlrrcted 
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