P

AD/A-004 663

INERTIAL NAVIGATION THEORY (AUTONOMOUS
SYSTEMS)

V. D. Andreev

Foreigr Technology Division
Wright- Patterson Air Force Base, Ohio

17 December 1974

———
prn—————

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

\— i




THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE  LEGIBLY.



DOCUMENT CONTROL DATA-R&D

1Seewriiy closstiioation of iitle, body of odiirect and indesing annsietion mudl b eniored whon INe overell ropert io closeiliod)

I BRIGINATING ACTIVITY (Comparvete aviier) 30, AEROAT SECUAITY CLASIIFICOTION
Foreipgn Technology Division Unclassified

Air Force 5ystems Command I

U, S. Alr Force

3 RERGRT TITLE
INERTIAL NAVIGATIOH THEORY (AUTONOMOUS .SYSTEMS)

8 ORICPIPTIVE NO YL S (TYpe of raperi ond Insivetve dates)
Translation

9 4uTHO RS (Firet nome. middie taitial, lost neme)

) Ve D. Andreyev

8 AEsOMY OevR 70. TOTOL ¥O. OF PastS 1. 40 OF nEry
1966 i 100

0. CONTROCY ORN GAONY NO. 88. ORIGINOTON'S ACACAT NuUMBEAIN

» AROJEC Y No FTD=lIC=23=893=T4

€. 80, OYHER ARAOAY NOII! (ANy othor numbers thel may be sosignad
his repert)

10 HOYRIBUTION DTA YRMENT
hpproved for public release;
distribution unlimited,

1 SuPALEMENTAAY NOTED (3 AONIONING MILITOAY SCTivITY

Foreipn Technolopy Division
Wright=Patterson AFB, Ohilo

') e0tTRaCY

13

Seproduced b
NATIONAL TECHNICAL
INFORMATION  SERVICE

U e 1 PRICES SUBJECT T0 CHAN""

DD "5V.1473

\ Unclassified

Secunity Classification




EDITED TRANSLATION

FTD=-HC-23-893=74

INERTIAL NAVIGATION THEORY (AUTONOMOUS SYSTENMS)

By: V. D. Andreyev
Enslish pages: 612

Source:
pp. 1-579

Country of Oririn: USSR
Translated under:
Requester: SAMSO/IND
Approved for public release;
distribution limited.,

Teoriya Inertsial'noy Navigatsii, 1966,

F33657-72=-D=0851

1
FTD=HC -23-893-74 . ]

17 December 1974

L
a

THIS TRAMNSLATION 1S A RENDITION OF THE ORIGI.
NAL POREICN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR TNEORIES
| ADVOCATEDOR IMPLIED ARE THOSE OF TNE SOURCE
AND DO NOT NECESSARILY REFLECT THE POSITION
OR OPINION OF TME FOREIGN TECHNOLOGY Oi.
VISION,

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP.AFB, ONIO.

FTD-HC ~22-R93-74
|

Datel7 Dec 197h




Bl
A

X XXX W xEx M To

=

30 x =

*

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

ock Italic Transliteration Block Italic Transliteration

a A a A, a Pp P p R, r
6 5 6 B, b Cc Cc ¢ S, s
8 B o V, v T T m T, t
r r s G, & Yy Y y U, u
A n @ D, d v @ ¢ F, f
e E ¢ Ye, ye; E, e¥ X x X x Kh, kh
M XN x Zh, zh Uu u y Ts, ts
3 3 % Z, z Yy ¥ Ch, ch
" H u 0 N W w U w Sh, sh
o a3 Y, ¥ W ow U Shch, shch
H K «x K, k b ® -2 3 0
n N o« L, 1 bl & & w Y, ¥
™ M u M, m b b b » 0
H Ny, n 33 9 E, e
o 0 o 0, o 0w L » Yu, yu
n na P, p fl A A a2 Ya, ya

ye initially, after vowels, and after v, b; e elsewhere.
When written as & in Russian, transliterate as y&é or &.
The use of diacritical marks 1s preferred, but such marks
may be omitted when expediency dictates.

[ 200 SN 2N JEE BEE JEE IR BN 2

GRAPHICS DISCLAIMER

A1l figures, graphilcs, ﬁables, equations, etc.
merged into this translatlon were extracted
from the best quuality copy avallable.

FID-HC-23-893-74 1h




-

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

. Russian English .
sin sin
cos cos
teg tan
ctg cot
sec sec
cosec csc
sh sinh
ch cosh
th tanh
cth coth
sch sech
csch ¢sch
arc sin sin~1
arc cos cos™!
arc tg tan~!

- arc ctg cot™!
arc sec sec”!
arc cosec cse™! v
arc sh sinh~1
arc ch cosh™!
arc th tanh™t 1
arc cth coth™}
arc sch sech™!
arc csch csch™l
rot curl
1lg log

FPD=-1C-23-893-74 11 {




Inertial Navigation Theory
(Autonomous Systems)

V. D. Andreyev

Nauka Press
Moscow 1966

YPN-HC-23-893-74 1




Foreword

The impetuous development of aviation, missile technology and
the Naval fleet led to the necessity of fundamental improvement of
the means of navigation and control of moving objects. Besides
high accuracy, a number of such specific requirements as universa-
lity, reliability, short preparation time, electronic counter-
measures, and sometimes concealment of operation are now placed on
automatic navigation systems.

Along with development of other principles, special attention
has been devoted in recent years to inertial navigation systems, in
which the current position of a moving object is determined by
integration of the on-board measured accelerations. Inertial systems
have such important advantages as universality, autonomy and
electronic countermeasures over other means c¢:f navigation., However,
realization of these systems requires highly accurate and reliably
opcrating elements: accelerometers, integrators, gyroscopes, tracking
systems and computer devices. The interest displayed in inertial
navigation systems is explained both by their principal advantages
and also to a great extent by the fact that inertial systems, which
provide the required navigation accuracy, can be developed on the
basis of modern components.

The development of shipboard gyrocompasses by H. Anshutz-
Kdmpfe (1908) and Elmer A. Sperry (1911) can be considered the first
use of inertial methods in navigation. The next important advance
was the investigations of M. Schuller, who established the conditions
of the unperturbahility of the gyrocompass (1910) and of physical
and gyroscopic pendulums (1923) by horizontal accelerations. Further
stages in the development of the idea of inertial navigation are
the principle of power-assisted gyroscope stabilization, proposed by
S. A, Nozdrovskiy (1924), and also the principle of integral gyro-
scope correction, proposed in 1932 by Ye. B. Levental and in 1935
by I. M. Boykov. '
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For some time the development of inertial systems was related
to gyropendulum systems and gyroscopic systems with integral
correction, which simulate M. Schuller's physical pendulum and
which permit plotting of an acceleration-proof vertical on a moving
object. Significant results are related to the names of B. I.
Kudrevich, I. V. Gekkeler, B. V. Bulgakov, Ya. N. Roytenberg and
A. Yu, Ishlinskiy.

Another aspect of the inertial navigation method, namely, the
circumstance that not only the vertical can be plotted, but the

current coordinates of the object and its speed can be determined
by using it, developed somewhat later. The first practical achieve-

ment in this direction was apparently the development of a control ]
system for the FAU-2 rocket. Further development of this direction
can be traced from data of American publications:r The beginning
of development of inertial systems in their modern form in the
United States dates from 1946-1947 and is related to development

of control systems for ballistic (Atlas type) and winged (Navaho

and Snark type) missiles. Practical realization of inertial systems
was possible at that time because of development of flotation gyro-

scopes, proposed in 1946 by Draper (in the Soviet Union flotation
gyroscopes were proposed in 1945 by L, I. Tkachev).

During the past few years considerable attention has been
devoted in the non-Soviet literature, especially in American
literature, to problems of inertial navigation. A large number
of articles devoted to individual theoretical and engineering
problems of inertial navigation have been published in various
journals and several monographs have been issued. The most signi-
ficant of these investigations have been translated into Russian.
In 1958 the Foreign Languages Publishing House published : book
by research associates W. Rigley, R. Woodberry, and J. Govorky of
the Massachusetts Institute of Technology entitled "Inertial
Navigation", In 1964 translations of K. L. MacClure's book
"Inertial Navigation Theory" (Nauka Publishing House) and the
collection "Inertial Control Systems", edited by D. Pittman
(Voyenizdat) were also published.
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During the past few years a number of articles, including
several investigations of A. Yu. Ishlinskiy in which the fundamen-
tals of a strict theory of inertial systems2 .have been outlineqd,
have been published in the Soviet periodical literature on the
problems of inertial navigation. In 1961 the Publishing House of
Physicomathematical Literature published G. O. Fridlender's book
"Inertial Navigation Systems" and in 1962 the Sovetskoyeradio
Publishing House published I. A, Gorenshteyn, I. A. Schul'man, and
A. S. Safaryan's book "Inertial Navigation".

It should be noted that the numerous investigations on the
problems of the theory of inertial systems published in the
periodical press are usually of an unrelated nature, and in the
greater part of them there is lacking a clear statement of the
problems and the required strictness of their solution., The mono-
graphs enumerated above are limited to consideration of individual
classes of inertial systems. As a rule, various types of simpli-
fications of the structure of inertial systems and the laws of
motion of an object are introduced from the very beginning. Because
of this, the exposition falls into separate and usually unrelated
parts, the community of the basic principles of inertial navigation
is obscured, and the theorectical results obtained are sometimes un-
suitable for rough approximation. Introduction of a priori sim=- 1
plifications is usually explained by the insurmountable complexity

of precise consideration, l

At the same time the continuous increase in the demands on
accuracy of inertial navigation systems forces consideration of the |

finer and finer circumstances of their operation, such as the

asphericity of the earth's shape, the eccentricity of its gravita-

tional field etc, and leads to the necessity of detailed analvsis of {
the dynamics of their perturbed operation, The desire for univer-

sality leads, on the other hand, to rejection of the simplirications
possible during development of a navigation system for a fully

defined object.




In this book the author sets himself the task of
systematic and strict exposition of the theoretical operational

bases of inertial navigational systems from a common viewpoint
without a priori simplifications and limitations, determined by the
level of present technology. The methods of analyzing the opera-
tion of inertial navigation systems( used by the author’ are the
development of the ideas contained in the investigations of aca-
demician A, Yu. Ishlinskiy. The basis of the book were the author's
articles, published during the past few years in jburnals of the
USSR Academy of Sciences: Prikladnaya Matematika i Mekhanika and
Izvestiya AN SSSR (serii Mekhanika and Tekhnicheskaya Kibernetika).
The examples which concern schematic solutions and numerical
evaluations are constructed on the basis of data from-foreign

publications.

Main attention is devoted in the book to the equations of
ideal operations (unperturbed functioning) of inertial systems,
which determine their structure,. and, to equations of inertial
navigation system errors, an analysis of which permits evaluation of the
operating stability of the system and establishment of the rela-
tionship between the errors of the elements and the accuracy of
determining the navigational parameters of the object: the current
coordinates of position and its orientation in space. Problems
of autonomous preparation of inertial systems for operation are
also considered. The book is devoted to the theory of autonomous
inertial systems. The problems related to drawing up additional
information and correction of inertial systems, are considered in
another book of the author [Inertial Navigation Theory (Corrected
Systems)] which is directly related to the present book and which
was published immediately after it.

The book consists of seven chapters.




In the first chapter the theoretical and mechanical bases
of inertial navigation are outlined, the equations of accelero-
meter operation are derived, the precession theory of gyroscopic
devices for inertial systems is presented, the basic equation of
inertial navigation is found and the general principles of con-
structing an inertial navigational system and the problems of the
theory of these systems are discussed.

In the second chapter the necessary data on the shape, gravi-
tational field and motion of the earth are presented. The main
point in this chapter is the derivation of expressions from the solution
of the Stokes problem for projections of the earth's gravitational
field intensity onto its bodv axes.

The third chapter contains derivation of equations of the
ideal operation of an arbitrary inertial system, first for cal-
culation of Cartesian and then for calculation of curvilinear co-
ordinates. The various special cases and examples for the more
commonly used coordinates: geocentric, geographic and orthodromic,
are also presented and an example of non-orthogonal curvilinear
coordinates is also given. The theory of so-called gravimetric
systems, which do not contain gyroscopes, is also outlined in
this chapter.

The derivation and transformation of the equations of inertial
navigation systems errors are presented in the fourth chapter.
Both equations of coordinate errors and equations of orientation
errors are considered. The problem of reducing the errors of the
inertial system elements to equivalent instrumental errors of the
main sensitive elements - accelerometers and gyroscopes = is given

special consideration,

In the fifth chapter the common properties are considered,
the stability and integration of error equations are investigated
and the relationship of errors in calculating the location of an
object and its orientation to the instrumental errors of the elements
is considered. The case of Kepler motion of an object is given
special consideration,




The sixth chapter is devoted to the theory of inertial navi-
gation on the earth's surface. Both inertial systems with three
arbitrarily oriented accelerometers and those with two horizontally
positioned accelerometers are considered. The latter are compared
to Schuller's pendulum - gyroscopic systems, the strict theory of
which is also presented in this chapter,

Finally, in the last, the seventh chapter, the problems related
to autonomous preparation of an inertial system for beginning of
operation in the case of a fixed starting point with respect to the
earth, are considered.

For purposes of compactness, the exposition is performed
primarily in a vector form, and the elements of tensor calculus
are employed when considering curvilinear coordinates. The final
results are usually written in a scalar form. References to the
literature are given in footnotes and, moreover, a bibliography
is presented at the end of the book.

The author is aware that the book is not devoid of deficien-
cies. Some results could apparently be obtained by simpler means;
improvements in the portion of selecting the sequence of outlining
the individual problems are also probably possible. Critical
comments and desires of the readers will be gratefully accepted.

The author feels it his pleasant duty to express deep grati-
tude to A. Yu. Ishlinskiy for unflagging attention and assistance
in the work on the book. The author also thanks Ye. A. Devyanin,
I. V. Novozhilov and N. A. Parusnikov for participating in the
discussion of individual sections of the book.




The author did not set himself the task of presenting a
complete survey of the history of development of the ideas
of inertial navigation., This task is specific in itself and
can be the subject of a separate investigation. There is
apparently a need for such an investigation. Ths is es-
pecially indicated by publication of H. Helman's article
"Development of Inertial Navigation" in the American journal
Navigation (Vol. 9, No. 2, 1962), Problems of the history
and priority are illuminated unilaterally and inaccurately
in this article. References to a number of other well-known
investigations of Soviet authors are lacking in it. The
main references from these investigations are indicated in
the bibliography at the end of this book., Of course, the
list does not claim to be complete,

See, for example: Ishlinskiy, A, Yu., "On the Theory of the
Gyrohorizon - Compass," Prikladnaya Matematika i Mekhanika

Vol. 20, No. 4, 1956; "Equations of the Problem of Calculating

the Location of a Moving Object by means of Gyroscopes and
" ~Accelerometers," Prikladnaya Matematika i Mekhanika Vol. 21,
No. 6, 1957,




Chapter 1

Theoretical and Mechanical Bases of Inertial Navigation: Sensing
Elements, the Fundamental Equation of Inertial Navigation and the
Principle of Constructing Inertial Navigation Systems

§ 1,1. The Overall Characteristics of the Method of Inertial
Navigation

The main task of any navigation method is to determine the
location of the object, i.e., to determine the coordinates of
some point, for example, of the center of mass, in a given system
of reference. The problem of an inertial navigation system usually
includes calculation of the rates of variation of these coordinates
and also calculation of the parameters which characterize orienta- {
tion of the object in a given system of reference and calculation
of the variation of orientation parameters,

The principal characteristic of the inertial method of navi-
gation includes the fact that the coordinates of the object are
obtained essentially by integration of the equation of motion of
its center of mass in the absolute (inertial) system of coordinates.
The vector of the composite force, applied to the object,which is
required for integration of this equation, is determined by the
indications of special devices - accelerometers (specific force
sensors) - in the form of projections onto the directions of their
axes of sensitivity. The axes of sensitivity of accelerometers
are oriented into the inertial system of coordinates by using
gyroscopes or by the indications of the accelerometers themselves.

The inertial (Galilean) system of coordinates, in which
Newton's laws of dynamics are valid, is the main system of refer-
ence in inertial navigation.




The indicated circumstances are more typical for the method
of inertial navigation and it is associated with them by its name.

§ 1.2. The Operating Principle and the Equations of Operation
of the Accelerometer (Specific Force Sensor)

The idealized scheme of a spatial accelerometer can be repre-
sented (Fig. 1l.1) in the form of a mass point m, suspended in the
housing of a device in a three-stage weightless elastic suspension,

Fig. 1.1

To derive the equations of operation of the accelerometer
let us introduce a right-hand orthogonal system of coordinates
Ozs*n,c, - some inertial (Galilean) system in which, by definition,
Newton's laws are valid. Selection of the position of point O2

and orientation of the axis £,n,5, are not subject to any other
conditions,

Let the accelerometer housing move arbitrarily in this co-
ordinate system. Let us consider the motion of point 0, in which
the sensitive mass of the accelerometer is concentrated. The
sensitive mass of the accelerometer is obviously affected only
by the sum Fx of the Newtonian forces of attraction of the sensitive
mass by the entire aggregate of celestial bodies, including strictly

10
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speaking, the attraction by the masses of the object, in which
the accelerometer is installed, and force f} which is determined
by elastic deformation of the suspension. Thus, if F;z is the
radius vector of point O in the inertial system of coordinates,
then the equation of motion of point O has the form:

dry, (101)

m =t -f-l’t('m)‘f‘/-

The differentiation in equation (l.l1l) is absolute, i.e.,
d’?;z/dt’ is the absolute acceleration of point O in the coordinate

system 02€.n.c,.

To an observer, bound to the housing of the accelerometer,
the only effect on the sensitive mass m of the accelerometer is
that of the elastic forces of the suspension, while the parameters
which characterize this effect are the magnitudes of deformation
of the suspension, whose function is elastic forces. Only the
extent of deformation of the suspension can be measured and these
deformations are the indications of the accelerometer.

By assuming that deformation is small and assuming that force
tis proportional to the vector n of deformation of the suspension,
we have:

Se=hn. (1.2)

The equality (1.,2) assumes the isotropy of the elastic prop-
erties of the suspension., The three~-dimensional suspension depicted
in figure 1.1 satisfied this condition at small deformations.

Having taken for simplicity the ratio m/k equal to unity, we
find from equation (l.1) the following expression for calculating
the value measured by a three~dimensional accelerometer:

(1.3)

__ '
L -,é ==ipt = Firy).
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Here F:pz/m, where F is the attractive force acting per unit
of sensitive mass, i.e., the intensity of gravity at point O,

Thus, the specific force, i.e., the effective force of sus=
pension per unit of sensitive mass, is measured by means of an
accelerometer., It is equal to the difference of acceleration of
the sensitive mass and of the intensity of gravity at the point
of the current location of this mass.

Other names of the described device are often used in the
literature = accelerometer and specific force sensor. The first
name, and to a known degree the traditional one, does not
accurately reflect the physics of operation of the device. The
term specific force was introduced by Draper% The name specific
force sensor or the specific force meter accurately corresponds
to the value measured by the device. We will usually employ the
term newtonometer, introduced by A. Yu. Ishlinskiy. This name
correctly reflects the essence of operation of the device as a
force meter (the name Newton has been given to the unit of force
in the international system of units).

In the diagram shown in Figure 1.1, where the three-dimensional
elastic suspension is realized by three pairs of springs, the in-
dications of the newtonometer will be numerically equal to the values
of projections n, of vector ; to unit vectors ;s of the spring

S
axes

n, =n-e,
(1.4)

The actual designs of newtonometers are usually single=-com-
ponent, An idealized diagram of a one-component linear (axial)
newtonometer is shown in Figure 1.2, The sensitive mass of this
newtonometer has one degree of freedom with respect to the housing
and can move only in a straight line, called the axis of sensi=-
tivity., It ié along this axis that the reactive force of the spring
of the suspension, deformation of which is being measured, acts on
the sensitive mass. It is easy to see that in this case the reading
of the newtonometer will also be numerically equal to the projection

e




-
of vector i to the direction of the axis of sensitivity e.

Fig. 1.2

e

Along with linear newtonometers, so-called pendulum newton-
ometers are used. An idealized diagram of a pendulum newtonometer
is shown in Figure 1.3 and is a plane physical pendulum (its axis
of suspension is perpendicular to the plane of the diagram), connec-
ted to the housing by springs whose direction of axes are normal
to the axis of suspension and the axis of symmetry of the pen-
dulum. It is obvious that with small deformations of the springs,
i.e., at small deviations of the pendulum from the average position,
this diagram of the device is equivalent to a linear newtonometer.

.,

2 e JOOW\H
Piq. 1.3

Schemes of newtonometers, called integrating newtonometers
or integrator-newtonometers are possible in which the readings of
the newtonometers are proportional to the integrals or even to
double integrals of ng in time. These schemes are completely
equivalent to that 'of 8 linear newtonometer: the first (or,
accordingly, the second) time derivative of their readings is

equal to ng and is calculated by equations (1.3) and (1.4).
s




In the considered schemes of newtonometers (Figures 1.1, 1.2
and 1,3), the elastic suspension of the sensitive mass is provided
by using mechanical springs, In real designs of newtonometers
elastic (restcring) forces of a different nature, most often elec-
tromagnetic forces, are usually employed. However, this circux~
stance is unimportant to explain the principle of operation of the
newtonometer and to derive equations (l1l.1) and (l1.3). Therefore,
henceforth only a mechanical elastic (spring-loaded) suspension
will be considered. Let us note, incidentally, that the condition
of smallness of deformation of the elastic suspension of the new=-

tonometer is not the principal one and we can disregard it, Of
course the presence of a linear dependence between deformation
and the elastic force of the suspension is also not compulsory.
This function should be only single-valued., However, henceforth
for purposes of simplicity, the relationship of deformation and
force will be assumed to be linear, which does not negate the
essence of the consideration,

‘As already noted, real designs of newtonometers are one-
component. Three one-component newtonometers whose axes of sen-
sitivity are not coplanar, may be assumed equivalent to a single
three-dimensional newtonometer? Thus, in speaking of vector n,
we will henceforth have in mind equation (1.3). We will assume
that the readings of the newtonometers are the projections n,

. bd 1] k) .
of vector i to unit vectors ey of the axes of sensitivity. o

The readings of the newtonometaers are the main information
which is used in inertial navigation systems. The accuracy of
operation of inertial navigation systems is determined mainly by the

accuracy of the specific force measured by the newtonometer, There-

fore, it is very important to have a distinct concept of the principal

sources of errors of newtonometers. The first of them is related '
to the inaccuracy of measuring the extent of deformation of the

springs, which is the carrier of information about the magnitude

of the elastic force. The second source of errors is determined by

14 : - |




the fact that the actual dependence of the extent of deformation
on the magnitude of the elastic force can be distinguished from
the calculating relation used. The third source of errors may be
the presence of unaccounted for forces, acting on the sensitive
mass of the newtonometer, in addition to the force of elasticity
of the suspension, These forces may be, for example, forces of dry
and viscous friction, which occur in the device when the sensitive
mass moves with respect to the housing., We note that the indica-
ted categories of errors generally occur in any measuring device.
Therefore, we can be concerned with them not only in the case of

a mechanical spring-loaded suspension, which was discussed as an
example, but also in the case of an elastic suspension of any
nature. This in itself means that all the indicated errors can

be both deterministic and random.

The essence of the method of inertial navigation reduces to
integration of equation (1.3). Integration of this vector equation
obviously requires conversion to three scalar equations, which can
be obtained by projecting the vector equation to any three non-
coplanar directions, Equation (l.3) is valid in the inertial system
of coordinates 0 E*n*,*, while vector n, contained in this equatlon,
is known by its pro]ectlons n, to the axes of sensitivity e of
the newtonometers. Thus, the fost natural conversion to scalar equa-
tions is the projection of equation (1.3) either to the axes of
the coordznate system 0 E*n*c* or to the directions of the axes of
sensitivity es of the npwtonometers. It would be simplest if the
directions of e, were £ixed in the coordinate system Ozi*n*c*,
for example, if they coincided with the directions of the axes
of this coordinate system.

If the directions of ;s vary their orientation in the co-
ordinate system 0 E*n*c,, then one must know at each instant of time
the position of the directions of es with respect to axes £,N,l..
One must also know the rates of change of the directions of Es in
the coordinate system 0 C*n*,*, because the right side of equation
(1.3), which contains the second derivative a%r /dtz, is projected
to the movable direction of es.

15




§ 1.3. The Precession Theory of Gyroscopic Devices of Inertial
Systems

1.3.1. The Free Gyroscope

One of the possible methods of fixing the direction of the
axes of sensitivity of newtonometers in the inertial system of
coordinates or to obtain information about the position of these
directions and the rates of their change is to use gyroscopic de-
vices, The gyroscope, like the newtonometer, is the main sensing
element of the inertial navigation system.

Let us consider the operating principle and the equations of
operation of the main gyroscopic devices which can be used in
inertial systems.

When deriving the eguations of operation of gyroscopic devices,
we will not go beyond the hounds of precession theory. This theory
makes it possible to obtain the relations of interest to us simply
and clearly., At the same time restriction to laws of the precession
theory of gyroscopes only, as was indicated in A. Yu. Ishlinskiy's
investigation, does not lead to any appreciable errors or in-
accuracies in the consideration of those aspects of the phenomena
with which we must be concerned. The operating principles are
usually selected and the circuits of gyroscopic devices are con=- J
structed usually on the basis of this theory. We resort to the
complete equations of motion of the gyroscope in most cases only
to provide stability of operation of the circuit (the stability
of the operating conditions determined by precession equations)
ard the smallness of deviations of real from precession motion.

I. those cascs when the motion of the gyroscope within the en-
vi-ons of precession motion is of a pre=oscillation nature, the
conplete equations are required to investigate the stability of

the natural oscillations and to find their amplitudes, respectively.

16
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Henceforth, when outlining the theory of gyroscopic devices
of inertial navigation, we shall employ the methods of precession
theory in the form developed by A. Yu, Ishlinskiy? In this
case we shall assume that the considered precession conditions are
stable and we will not be concerned with the nature of the tran-
sient processes which provide this stability. Let us also note
that precession theory in the problems which will be subsequently
investigated yields high accuracy. This is a result of the cir-
cumstance that small and slow time-variable rates of precession
are being considered.

Let us consider an ideal free gyroscope (Figure 1l.4) that
is a heavy disc rotating at constant angular velocity and installed
without friction in a weightless gimbel suspension with three degrees of
freedom.6 The center of mass of the disc is located at the point
of intersection of the suspension axes, which are assumed to be
mutually perpendicular., The rotational axis of the disc coincides
with its axis of symmetry.

The equation of motion (rotation) of a heavy solid with respect
to a fixed point has the following form in the inertial coordinate
system (the theorem of angular momentum) :

(1.5)

LY
"Tu' ‘M, (1.5)
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where K is the vector of angular momentum and M is the vector of
the total moment of external forces with respect to the point of

the suspension,

It is assumed in precession theory that the angular momentum
of a gyroscope is determined only by its natural rotation and is
always directed along the axis of its figure. Therefore, by de-
noting the moment of inertia of the gyroscope with respect to the
rotational axis by C, the angular velocity of natural rotation
by ; and the unit vector of the gyroscope axis (the axis of natural
rotation) by €, we will have:

4 (Coe) = M. (1.6) (1,6)

Assuming that the kinetic moment Cw of the gyroscope is con=-
stant and denoting it by H, we find the equation

G2, : (1.7)

->
which relates the rate of change of direction of vector ¢ to the
external force moment. :

If M equals zero, it follows from expression (1.7) that

(1.8)

de
-‘-IT =0, ¢ == 0.

Thus, a free gyroscopé maintains a constant direction of its
rotational axis (the axis of the kinetic moment) in the inertial

coordinate system.
If three free gyroscopes arc taken and the directions of

the axes of sensitivity of the newtonometers are related to the
directions of their kinetic moments, for example by aligning them
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identically (65=Es), and if the directions of Es are combined with

the directions of the coordinate axes £,,n, and g,, then the necw-
tonometer readings of ng will be projections of equations (1l.3) to
the axes of the inertialssystem of coordinates. It is.easy to see
that two frece gyroscopes, with whose axes t » of £, and n,, for
example, can be combined are sufficient. The equalities 38=35, of
course, do not have to be fulfilled. It is sufficient to have

only two free gyroscopes with non-collinearly arranged kinetic moments
and to be given the position of the directions of the axis of sen- 1
sitivity of 85 with respect to the directions of their kinetic
moments. The position of the directions of 38 is completely de-
termined by this in inertial space.

In real designs the moment M is distinct from zero because

of friction in the suspension axes, residual unbalance of the

rotor ,etc. Therefore,

@ (1.9)

dt

K]S

where M, is the perturbing moment. Consequently, the axis of the

gyroscope rotor will be slowly precessed (the so=-called free de-
flection of the gyroscope) by varying its orientation in space
with time.

We note that, along with the effect of the above perturbing
moments, a number of cffects determined by the characteristics
of the dynamics of motion of a frece gyroscope in a gimbal suspension
and related primarily to the ecffect of equatorial moments of inertia
of the gyroscope rotor and the moments of inertia of the suspension
rings, is also added to the frece deflection?




1.3.2. A one=-component absolute angular rate meter,

Let us consider a gyroscope (Figure 1.5), mounted on a platform in
a suspension with two degrees of freedom. The center of mass of
the gyroscope coincides with the center of the suspension., The
gyroscope housing is connected to the platform by a spring, which
creates an elastic moment around the axis of the housing as it
rotates with respect to the platform,

ik ase

Fig. 1.5
For comparison of the equations of motion of the gyroscope,

let us introduce a right-hand orthogonal system of coordinates
Oxyz, bound to the platform, Let us locate its origin in the
center of the gyroscope suspension, let us align the y axis along H
the axis of its housing and the z axis normal to the plane of the

platform, Let point O be fixed in the inertial coordinate system

and let the platform rotate arbitrarily with respect to this point,

so that projecfions of its absolute angular velocity & to the '
X, y and z axes are “x'”y' and Wy

osinstsbiihane i

Let us connect the trihedron Ox‘y‘z‘ obtained from the tri-
hedron Oxyz by rotation of it by angle § around the y axis, to the
gyroscope housing. Rotation is counter clockwise if we look from
the end of the y axis (fig. 1.6), so that the vector of relative angular




velocity { is directed along this axis.

@)

Piq. 1.6
Let us apply the theorem of the kinetic moment to the gyro-
scope housing with rotor. Let us project the vector equation (1.5),
given in the inertial system of coordinates, to the mobile x, y

and z axes.,

Let ‘ :
- 4+ K W2
sl A i (1.10)

->
where K % K and Kz are projections of vector R to the x, y and z

axes, and x, y and z are the unit vectors of these axes. Then,

; " ’ - . 1.11
KR+ Ry + Kok, 5% 40, 4k, L ( )

(time differentiation is denoted by the dots). Since d;/dt, d;/dt

and d;/dt are the velocities of the ends of the unit vectors of the

mobile coordinate system, we have

1.12)
-‘;‘;—::uxx. -%—nuxy. %;—nmt‘(l. (
Consequently,
W —kxd K,yl K.z -0 X (K% + Kyy+-K.2) (1.13)
. -» « P, >
The vector Kx X + Kyy+Kzz is the derivative of vector K, if we

assume that the coordinate system xyz is fixed with respect to the
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inertial system. This derivative is usually called the local
derivative of the vector.

Thus aK __ g
w=hhexk (1.14)
(K is the local derivative) and from expressions (1.14) and (1.5),
we find:
‘ (1.15)

K, + 0K, — oK, =M,

I?,+:-»,K,—¢-»,K,:—. M,,

K-t o,Ky—w, K = M,

Limiting ourselves to within the scope of precession theory,
let us take into account during calculation of K only the kinetic

-
moment M of the gyroscope rotor.

It follows from Figures 1.5 and 1.6 that
Ky=Hsind, K, =0, K,=~Hcosd (1.16)
It is obvious that in the considered case the moments Mx’
My and M, are made up of the eélastic moment of the spring and of
the moments of the normul reacticns of the suspension pins of the
axis of the housing. By noting that normal reactions do not create
a moment with respect to the y axis of the suspension and by assum-
ing that the elastic moment is proportunal to the deformation of
the spring, i.e., to angle 3, we find from relations (1.15) and
(1.16) :
H (o, 818 — o, cosd) = -~ kD,
(1.17)

where k is the proportionality constant

Thus,
(1.18)

o, $tnd —, cosd = =y,
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then from equality (1,17), we find:
(1.19)

=

By assuming that angle 6§ is small and by assuming cos é=1 and
sin 6=6, according to equality (1.18) we can write:

N (1.20)

= Ay —

N

If now

liw (1.21)
_*_L<|.

then
b--.-.-';'...»,_ (1,22)

Thus, the value 6§ of elastic deformation of the spring is propor-
tional to the projection of Wy s of the absolute angular velocity
of the platform to the axis X and if 6 is small and if condition
(1.21) is observed, then the value of 6§ is proportional to the
projection of Wy of the absolute angular velocity of the platform
to its x axis. The value of the elastic deformation of the spring
can obviously be measured. The considered device may be called

a one-component absolute anqular rate meter.

1.3.3. A two=component single=-gyroscopic absolute angular
rate meter, We can show that two components of absolute angular

velocity of the platform can be measured with certain assumptions

using a single gyroscope, i.e., the rate of variation of some
direction in the inertial system of coordinates can be measured.
This possibility is indicated by the circumstance that a free
gyroscope maintains a direction of the vector of the kinetic moment,

fixed in absolute space,

23 |




Let us consider a diagram (Figure 1.7) which differs from
that presented in Figure 1.5 by the fact that the gyroscope is
mounted on a platform in a suspension with three degrees of freedom,
The gyroscope housing is connected to the frame of the gimbal sus-
pension by a spring whose deformation leads to generation of a
moment which acts on the housing and which is directed along its
axis (as in a one;component meter). The frame of the device (the
platform) is connected to the housing in the same fashion. Con-
sequently, the gyroscope housing is mounted in a flexible suspension
with two degrees of freedom. The total elastic moment of the sus-
pension is the only external moment which acts on the gyroscope.
The vector of the elastic moment, divided by the value of the
kinetic moment of the gyroscope H, determines the rate of variation
of the direction of the gyroscope axis in the inertial system of
coordinates according to equation (1,7). Therefore, the projections
of the absolute angular velocity to the axes of the housing and
frame can be determined by measuring the values of the deformation

of the springs.

Fig. l;i

Let us analyze in more detail the operation of the device.
Let us connect to its housing a right-hand orthogonal system of
coordinates Ox'y'z' (Figure 1.8), whose origin we locate in the
center of mass of the gyroscope, we direct the y' axis along the
axis of the frame, and we locate the x' axis in the plane in which
the frame is located, when the spring wf its suspension is not
deformed. Let us connect to the frame the coordinate system Oxyz'
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obtained as a result of rotating system Ox'y'z' by an angle & around
the y' axis. Let us also introduce the coordinate system Ox)y)z,,
rigidly bound to the gyroscope housing. The trihedron Ox,Y,z, is
obtained from the trihedron Oxyz by rotating the latter by an angle‘62
{Figure 1.8) around the x axis, which is coincident with the axis

of suspension of the housing.

Fig. 1.8

Let us now make use of the theorem of the kinetic moment
[equation (1.5)), having applied it to the two mechanical systems:
to the housing of the gyronscope and to the frame with housing. If
the values contained in equation (l1.5) are denoted for the first
system by K!' and If' and those for the second system are denoted by
K? and 12, we find:

an (1
= G (1.23)

Equations (1.23) are equivalent to two systems of scalar equations
of the type of (l1.15). The six equations obviously permit calcu-
lation of the unknown values of 6‘,52 and four moments of the normal
reactions of the axial supports of the suspension of the housing
and of the inner gimbal.

Since we are primarily interested in the relationship of the
values of 6’ and 6? to the elastic moments of the suspension, we
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can project the equations (1.23) to those axes with respect to
which the normal reactions do not yield moments. For the gyroscope
housing, this axis is the x axis of the housing suspension and for
the housing-frame system, it is the Y(y') axis of the frame sus-
pension., Then, according to equations (1.15), we will have:

Rit oK} — i) = AL, (1.24)
ﬂ+wﬂ-¢ﬁ=ml

Since only the natural kinetic moment of the gyroscope is
taken into account, .we have

K= Klem0, Kb Koz —Hsind:, K)o K} e= Heosdy. (1.25)

By noting that moments M’x, M’y are created only by the springs
of the suspension, and by assuming that they are proportional to the
deformations of the latter,

(1.26)

ML — A, A= - O

we find from equations (1.24) and relations (1.25) the dependence
of §; and §, on Oy wy and w, of ;nterest to us:
(1.27)
H (0, c058; - 0, sind;) = - k8,
" (-L -57 slnh,-—m,msh,) = — kY, i

The first equation of (1.27) is similar to equation (1.17),
ind since

Wy €08 d, -, sind; = wy, (1.28)

t can be written in the form of equation (1.19):
(1.29)
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Since

—— (1.30)

then it follows from the second equation of (1.27) that
(1.31)

Hcos 8y
== ——‘-—— Wy,

4

\

If we assume cos 62= cos 6;=1, sin 61=6‘ and sin 62=62, we have

(1.32)

4

b= = —rr ,]
i
(LR N |

If we required that the following equality be fulfilled
(1.33)

.
-2-"4»,]( 1, -:—,-Im,l« 1,

we find

(1.34)
8== — !; o, O 5!;""‘

Thus, we can find the projections of Wy ! and wy‘ of the
absolute anqular velocity of the gyroscope housing to its axes
according to equalities (1.29) and (1.31) from the results of
measuring the deformations 6‘ and 62 of the clastic suspension,
these projections coinciding with those of Wy and wy of the abso-
lute angular velocity w to the axis of the housing suspension and
to the axis of the frame at small values of 6‘ and 6z and if the

requirements of (1.33) are fulfilled.
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The considered device can be called a two-component single-
gyroscope absolute angular rate meter.

1.3.4. A three-dimensional absolute angular rate meter,
Three one=-component meters, structurally connected into a single

block so that their axes of sensitivity form an orthogonal trihedron,
are employed more often than other schemes for measuring the absolute
angular velocity of a rotating trihedron. This unit is a platform
(Figure 1.93, on which three gyroscopes Gx' Gz' 63 are installed in
suspensions with two-degrees of freedom. A right-hand orthogonal
coordinate system Oxyz, whose Oz axis is normal to the plane of the
platform, is connected to the platform. The axes of the housings

are parallel to the plane of the platform, where the x, and X, axes
of the housings of gyroscopes Gl and 63 are parallel to the x axis

of the platform, while the - axis of the housing of gyroscope G2

is parallel to the y axis of the platform, The gyroscope housings
are connected to the platform by springs (they are not shown in
Figure 1.9), which create moments around the axes of the housings
similar to that which occurred in a one-component absolute angular-
rate meter (figure 1.,5). 1In the position when the springs are not
deformed, vectors Hl and H2 of the kinetic moments of gyroscopes

Gl and G2 are normal to the plane of the platform, and vector H3

of the kinetic moment of gyroscope G3 is parallel to the y axis.
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The orientation of the gyroscope housings with respect to
the direction of the x, y and z axes is determined by the position
of the systems olxlylzl, °x2Y222' and 03x3y3z3 . The origin
of each of these systems is shifted with the center of the sus-
pension of the corresponding gyroscope, the zl,zz,and y, axes coincide
with vectors ul,Hz,and H’ of the kinetic moments, while the xl,x’,
and y, axes are directed along the axes of the housings of the corres-
ponding gyroscopes. As was already noted, when the springs of the
suspensions are not deformed, the zl, z2 and z’ axes are normal to
the plane of the platform (the xy plane). In the general case,
these axes are deflected from the normal toward the platform by
angles 61' 62 and 6’, respectively, so that the table of the direc-
tion cosines between axes xl, yl, z i X y2 and z2 and x’, y’ and

1
z, and between axes x, y and z has the form:

(1.35)
XN 5 1 N XN &
x V0 0 cosd, 0 b, 1 0O 0
y 0 cosh —sinh 0 | 0 0 cosd, —sind,

2 0 sind,  cosd —snd; 0 cusd; 0 sind,  nsd,

Let point O (the center of the platform) be fixed in the in-
ertial coordinate system. Then the motion of the platforrn. consists
only of rotation around point 0, so that the projections of the

absolute angular velocity 4 of the platform to the x, y and z will
be mx} wy and w, .

Let us composec the equations of motiuns of gyroscopes Gx' G
and 03 in projections to the x, y and z axes, having applied the
theorem of the kinetic moment to cach of the three gyroscope housings.,

Projections of the kinetic moments k!, K?, K? to the x, y and

2z axes are found by using the tables of the direction cosines (1.35),
if we take into account that the vectors ﬁl, ﬁz and ﬁ’of the kinetic

29




moments are directed along the z‘, z2 and z3 axes, respectively,
These projections are equal to:

(1.36)
' K=o, Kles - Mysind, Kie= M cosd,,
K3 w2 Mysindy, Ky=0, K = 11, c0s 8y,
' K} eao, K)e=Hycosdy,  Kpe==lisind,,

By projecting the equations of the angular momentum for gyro=-
scopes Gl and G’ to the x axis and that for gyroscope G2 to the

y axis, we find according to equations (1.,15):
(1.37)

H, (&, cosd, 4 oy sindy) = A,
(o, sin, i, €08 8)) = M:.

II,(m, sind, - W, c088)) =2 .“:. |

We note that the moments of the normal reactions of the supports
are not contained in the moments M;, M; and M;. Moreover, since
the gyroscope housings are assumed to be balanced with respect to
the axes of their own suspensions, the moments of gravitational
forces may be assumed equal to zero. However, one should bear in
mind that in the previously considered cases the origin of the ro-
tating coordinate system Oxyz coincided with the center of the
gyroscope suspension (and with its center of mass). In the case
now being considered, the centers O‘, Oz, O3 of the gyroscope sus= '
pensions do not incide with the center of rotation of the plat-
form 0, Therefore, additional forces of transient motion inertia
and Coriolis forces, which, generally speaking, may crecate moments
around the axes of the housings, act on the gyroscopec masses.
However, because of the small distances of points O‘, O2 and O3
from the center of rotation of O and because of the limitation of

values Wyt wy and Woe these moments are negligible., Also taking
into account that perturbing moments may be created by only that
portion of the forces of inertia, which determines the inhomogencity

of the inertial force field within the gyroscope housing rather than
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by all the forces of inertia because of the balance of the gyro-~
scopes, we disregard the indicated moments as is accepted.

Thus, the only moments applied to the gyroscopes along the
axes of the housings arc thosc of the flexible couplings of the
suspensions. By assuming that they are proportional to the defor-
mation of the suspensions, we have:

Mi=e—rd, My=—ad M= -

By substituting these expressions into equalities (1.37) we
find
(1.38)

o, €os Ay -f-w, 3indy =2 — .;7'_ 8.
1

@, 8108, — o, cosd,; == —~ .;l'_ 8.
3

o, $ind; — o, (088, = _.7'."..0.‘
13

In the relations (1.38), as follows from the table of direc~

tion cosines (1.35),

(1.39)
wy €038, -, 3indy = w,
6,308, - w,c088; =2 —w,,
W, $10d; — 1, 038, = = Uy,
so that

"y, = ';,:'01- oy, .;/-"-0;, o, "7',:'04‘ (1.40)

Y

The system of equations (1,38) should be solved to find the
values of w_,, w2 and w_, from the known values of 6 , § and 6§ .,
X y z 1 2 3
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The determinant of the system of algebraic equations (1,38)
with respect to w_, w

y and w_ is

z
0 cosd, sind,
A=|—cosd, 0 sind,
0

(1.41)
=2 ~cosdcos(h —0).

sind, cus b,
”

This determinant is equal to zero when the following equalities
occur separately or simultaneously

— g — (1.42)

When fulfilling the first equality of (1.42), the vector ﬁl
of the kinetic moment becomes parallel to the y axis, and when the

second equality is fulfilled, the vectors of the kinetic moments
H and ﬁz become parallel.

In our case angles 61, 62 and 63 are small, the determinant
(1.41) is different from zero and the system of equations (1.38) has
a single-valued solution: A

Ay stnd,
V= Tiy bt Bicos{d =B, X

(1.43)
. *
b (,‘}, 8,cosd — 7]';-6‘ sin n\)
| & )
0, == — — (h.'-m("li‘{b‘“" & 4 . 8§, cos u\.).
W, = - !

b - 'I.'. Y
Tos (8 — 55('/[’ d,cos ), W, 3, sin ‘,)

We note that formulas (l1l.43) are accurate.

Their derivation

did not require restrictions of the type of (1.21) and (1.33), which
were introduced in one- and two-component (simple gyroscope)
absolute angular rate meters.

If the values of angles 61, 62 and 63 are small, then, by

retaining terms of the second order of the smallness, we find, from
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formulas (1.43)

(1.44)
o= 7 bt 0,
SRS 7‘1:' 4 — 7‘]:‘ LT
U p=st= 7‘I!, %+ 7‘]:‘ a9,
Thus, the relations
(1.45)

]
(n),xn-”';-ﬁ.., w, =3 - 7!]"-1\“ W, = — ;]:61

determine the projections of the absolute angular velocity of the

platform to its axes with an accuracy up to terms linear with re- ¥

t i
spect to 61, 62 and 6,

We note that the arrangement of the gyroscopes presented in
Figure 1.9 is not the only one. Other arrangements are possible
which satisfy the condition that the vectors

: 1.46
H X s, MyXs, Hixs (1.46)

form an orthogonal set of three (here g:' §2 and §3 are the unit
vectors of the directions of the axes of the gyroscope housings).

In the gyroscopic indicators of absolute angular velocity con-
sidered above, the elastic moments around the ax»es of the gyroscope
suspension were created by using the springs. In real designs
these moments can also be created by forces of different origin,
for example, by clectromagnetic forces. The nature of the re-
storing moments has no essential significance for derivation of
the relations which determine the operation of gyroscopic velocity
meters., As in the newtonometer circuit, the elastic moment in gyro-
scopic absolute angular rate meters does not have to be proportional
the the angle of rotation (deformation of the spring). If the de-
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pendence is linear, the corresponding relations become especially
simple and principally important only in order that the dependence s
of the elastic forces onto the corresponding angles be known and
single-valued. As a measuring device the gyroscopic absolute

angular rate sensor is similar in many wa§s to the newtonometer.

The sources of errors of newtonometers and of absoclute angular

rate meters, in particular, are similar in many ways. The main

errors of the latter are related to inaccurate sampling of the

value of spring deformation, to an imprecise knowledge of the

actually existing dependence of the value of the elastic moments l
onto the corresponding deformations (or the instability of this de-

pendence from measurement to measurement) and to moments not taken
into account,

These moments are caused by two main factors: non=coincidence
of the center of mass of the gyroscope to the center of its sus=- |
pension and to the moments of dry and viscous friction in the supports
of the axes of the gyroscope housings. Besides the indicated factors,
certain affects related to the dynamics of motion of the gyroscopic
measuring device in the gimbal suspension with regard to the mo-
ments of inertia of the wheels of the latter,9 also leads to
errors of the measuring device.

All these errors can be represented in the form of certain J

perturbing moments M:x' M: and M:x, which act along the axes of

Y
the housings of gyroscopes Gx' G2 and G,' The instrument errors

Amx, Aw_, and sz of the absolute angqular rate meter will then be

y
equal to:

Ao ee A0, P Ao = M (1.47)
x w7l y = ‘A:T'

It is also necessary to bear in mind another circumstance. When
deriving all the relations for angular rate meters it was assumed
that the natural kinetic moment of the gyroscope is constant. More-
over, in real gyroscopes the constancy of the rate of

34

i i



turning of the rotor with respect to the housing can of course be
maintained only with some finite accuracy. The difference of the
value of the kinetic moment of the gyroscope from the constant
value also leads to errors in absolute angular rate meters, The
nature of these errors is casily established by resorting to the
initial equation of angular momentum (l1.5). Since only the natural
kinetic moment of the gyroscope was taken into account when deriving
the equations of motion of angular rate meters, then by introducing
the unit vector £ of the direction of the kinetic moment vector,

we find:

ey =M. 1= 13- M), (1.48)

where AH(t) 1is variation of the value of the kinetic moment., Then,

(1.49)
)\
A G=m—e L an,

It follows from expression (1,.49) that variation of the kinetic
moment H by value AH(t) lecads to the fact that only H+AH instead
of H should be substituted in all the derived equations, because
the perturbing moment -gd% AH is immaterial in view of the fact
that it is directed along the gyroscope axis.

For a free gyroscope some (small) variation of the value of H

of course has no significance whatever.

1l.3.5. Frec and controlled gyrostabilized platforms. In con-

clusion let us consider yet another type of gyroscopic device, used
to maintain fixed orientation in an absolute space bound to the
gyroscopes of a trihedron or to change this orientation by a given
law, We have in mind devices which are called gyrostabilized plat-
forms., These devices arc employed extensively in view of a number
of their inherent advantages, Without familiarization with them,
exposition of the operating principles of gyroscopic orientation
displays would be essentially incomplete.
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A three=dinensional gyrostabilized platform (Figure 1,10) is
a platform mounted in a suspension with three degrees of freedom,
Three gyroscopes Gx' Gz and G’ are secured on the platform in sus-
pensions with two degrees of freedom in the same manner as in the
previously considered three=component absolute angular rate meter
(Figure 1.9). Unlike the latter, there is no flexible coupling
of the gyroscope housings to the platform. Sensors DU:' DUz and
DU, of angles 6‘, 6z and 6, of rotation of the axes of the housings
with respect to the platform arc installed along the axes of the
housings, These attitude sensors control operation of engines En‘,
Enz and En’, which create moments with respect to the axes of the
gimbal suspension. In the case of a controlled platform, moment
sensors DM‘, Dﬁz and DMa' by means of which given (control or correc-
ting) moments are transmitted to the gyroscopes of the platform, are
installed along the axes of the housings, The attitude and moment
sensors are denoted only by gyroscope G2 in Figure 1,10,
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Let us introduce the right-hand orthogonal coordinate systems

Oxy,2., Ox'y'2', Ox"y"2” .n1 Oxyz,

bound to the base on which the gimbal suspension of the platform
is installed, to the outer ring of the gimbal suspension, to the
inner ring of the gimbal suspension (to the outer ring of the ring
mounting, Figure (1.,10) and to the platform, respectively.

The Xq axis is directed along the axis of the outcr gimbal
ring. The y, and z, axes form a right-hand orthogonal se* of three
with the x, axis.

Y
(Y A st / "

Fig. 1.11 Fig. 1.12

The coordinate system Ox'y'z' (Figure 1,11) is obtained by
rotating the coordinate system Ox,y,z, around the x, axis by
angle a. Counterclockwise rotation is assumed to be the forward
direction of rotation if we look from the end of the x, (x') axis.
Thus, the relative angular velocity vector a coincides with the direc-
tion of the x, (x') axis. The position of the y' axis determines
the direction of the axis of the inner suspension ring. 1If a=o,
the coordinate system Ox'y'z' accordingly coincides with the coordinate
system Ox,y,2,, bound to the base,

Trihedron Ox"y"z" (Figure 1.12) is obtained from trihedron
Ox'y'z' by rotating it by angle B around_ the axis Oy' (the axis of
the inner suspension ring). The vector R of the relative angular
rate of rotation is directed along axis y'(y"). Axis z" of tri=-
hedron 0x"y"2" coincides with the normal to the plane of the plat-
form,
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To convert to the coordinate system Oxyz (Figure 1,13), the
trihedron Ox"y"z" should be rotated by angle y around the z" axis,
which obviously corresponds to rotation of the platform by angle ¥y
with respect to the outer band of the ring mounting., Rotation
counterclockwise is assumed to be positive if looking from the end
of the z" axis. Vector § of the relative angular rate of rotation
is directed along the 2" (z) axis.

127

Fig. 1.13

The relative positions of the coordinate systems Ox,y,zZ,,
ox'y'z'!, Ox"y"z" and Oxyz is determined by the following tables

of direction cosines

(1.50)
2 y 2 Xy & x y 2
x 1 0 0 £ cosp 0 sinp x’cosy —siny 0
Yo 0 cosa—sinu y 0 | 0 y siny cosy 0 \
2, 0 sina  cosa 2 —sinpOcosp 2° 0 o

The vectors of the moments of the engines Enl,i.’En2 and En’
are directed along the axes x,(x'), y'(y") and z"(z) which are the
axes of the platform suspension, The engine housings are installed
on the base (object) (Enl), on the outer cardan ring (Enz) and on
the platform (En’), respectively,
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This position of the gyroscopes on the platform (relative
to the bound system of coordinates oxyz) is the same as in the case
of a three-component absolute angular rate meter (Figure 1.9).
Thercfore, to determine the position of the gyroscope housings re-
lative to the x, y and z axes, the trihedrons oxxxyxzx' 2xzyzz2
and O’xsyaza, bound to them, whose orientation in the coordinate
system Oxyz is given by the table of direction cosines (1.35), may

be retained.

Let the center of the platform suspension - point O - be fixed
in the inertial coordinate system and let the projections to the
X, vy and z axes of the absolute angular rate % of the platform in
its motion with respect to point O be Wyer wy and Wye
To construct the equations of motion of a gyrostabilized plat-
form, six mechanical systems should be considered: 1) the device as
a whole, 2) the inner gimbals that which is
distributed on it, 3) the platform together with the gyroscopes
mounted on it, 4) the housing of gyroscope Gx' 5) the housinag of
gyroscope Gz, and 6) the housing of gyroscope G’. The motion of
these systems completely determines the motion of all parts of the
device both relative to the inertial system of coordinates and

relative to each other.

The theorem of the kinetic moment [equation (1.5)) is used to
compile the equations of motion, Ilaving applied it to each of the

systems being considered, we find:
(1.51)

#gnnv U=t 2 3, 4 5 6

The system of equations (1.51) is equivalent to 18 scalar equations,
of which in the general case 18 unknowns can be determined: six
angles a,d,y,él,dz and 63 and 12 moments of the normal reactions
of the supports of six axes ( three gimbal axes of the platform
and three axes of suspension of the gyroscope housings on the platform).
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However, on the basis of equations (l1.51), we can find those six

relations into which the moments of normal reactions do

not enter. To do this, we should obviously project the i-th equation
of (1.51) to the direction u . so that the projection of the vector ﬁ of

the moment of normal reactions in this direction is equal to zero.

According to relations (1.15) and (1.51), this type of equa-
tion will have the form:

‘%’- o apeh-< m,x;)cos W)+ (1.52)
(""' 4okl — u.xi)ms' W)+
+( + 0, Ky — ,K} )cus(: W)=
= M cos(x, ||‘) + M, cos(y n)+ M} cos(:. w'). .
Since,
Mcos(f 1)+ M cos(y, 1) 4 Aljcos (W)= My, (1.53)

then we can select the directions of the suspension axes for the
directions of nt.

As before, on tha basis of precession theory, when calculating
Rl, we take into account only the natural kinetic gyroscopic moments.
By noting that all three gyroscopes are contained in the first three

systems into which we divided the considered device, we conclude
that

K'=K'=K =K',

As already noted, this position of the gyroscopes of the
investigated device with respect to the x, y and z axes is similar
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to the disposition which occurred in the previously considered three-
component absolute angular*rate meter, Therefore, when looking for the
projection of the vector K' to the X, y and z axes, we can use ex-
pressions (1.36) to project the kinetic moment of each gyroscope

to these axes. By totalling the corresponding projections and by

assuming for simplicity

Hy = ty== My 11,

we find

I'{:==Ilsln6,. K} == 11(—sind, 4-cos 8 3). (1.54)

K} = M (cosd, -} cos 8, — sindy).

Let us take the direction of axis 0x,(0x') of thg outer
gimbals of the device as the direction of il for the first
system. The cosines of the angles of this axis with the x, y and =z
axes, according to the tables (1.50), are equal to:

(1.55)

o~ i~
cos(x’, x)=zcosfcosy, cos(x’, y)e==— cospsiny,

o~
cos(x’, z)=sinf.

By substituting expressions (1.53), (1.54) and (1.55) into
equality (1.52), we find the equation of motion of the first system:

(1.56)
H { [':T sind, + o, (cosd; + cosd, 4 sind;) —
—w, (— sind, 4 cosb,)] cosp cosy— [-‘7", (—sind, 4-cosd))
4- o, 8ind; — o, (cos 8, - cos &, -|- sin b,)] cosfisiny 4
-4 [% (cosd, +cosd, - sind,) -+ ©, (— sind, + cos 8;) —
-—m,slnb,] sin [\} = M}-.
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Let us take the direction of the y' axis of the inner ring
o
as the direction of i for the second system. Taking into account |

that
(1.57)

~ o~ '
cos(y', x)=siny, cos(y’, y)r=cosy, ms(y/',\:)=o,

we !find the equation of motion of the second system:
(1.58)
" { [T'l'i stnd, -t o, (cosd, cosd, - sindy) —
—w,(—sind, -}-cosb,)]siu Y -,}-[-‘-"17( -sind; 4-c0sd) 4-
'+‘m, sind, — w, (cosd 4 cosd,-}-sin t\,)]ms y:- =AM

For the third system ( the platform ), the direction of ui is
the direction of the z axis; therefore, its equation of motion is

simpler than the two preceeding ones. It has the form:

‘. (1.59)
II[-JT (cosd, -} cosd;+4-sind) 4 w, (— sind; 4 cosdy) —

—u,sin t\.-] = M).

It remains for us to draw up the equation of motion of the p
gyroscones Gx'Gz and Ga. The directions of ﬁi for them will be the
directions of the axes of the housings. Since disposition of the
gyroscopes with respect to the platform is taken the same as in an
angular rate meter with three degrees of freedom, then the equations
of systems 4, 5 and 6 will coincide with equations (1.37), if we set:

(1.60)

My My My 1 My MY M1 ), A= MY |

By combining equations (1.37), (1.56), (1.58) and (1.59) we
find 2 complete system of six first-order differential:equations
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which describe the motion of the gyrostabilized platform:

1.61
”.{Jﬁ{llnb,-{;«o,(cosb._-{; cosd; + sipd,) — l, ( )

= w4 (= 5108, 4 cos] cospcos y — !
A [7‘, (= 5Ind 46038 + w, sindy —
= 0x Cosdy + costy+ siny] cospsiny; 4,
+ [‘;r (€038 + cos &y 4 5in ) 4, (—sir 8+cosdy~ |
—w,sin o’ll""“ }I= M.
H {[7‘:- SInd 4oy (cos. 0584 sindy —
= (indy 4 cost)iny 4 [ £ (—sindy 4 costy)
0081080, 018y + condy + sinby]cosy} = .
W[ 3 €or by 4 costy 51ty 4 |
+ 0 (= sind, 4 cos by —a, sin o,]i= A

H (@, cosd, + , sind)) = Aft,
H (w,51n8, — ©, cos 8)= A1},
H (518 — 0, cos8,) == A,

|

Let us consider the right sides of equations (1,61),

The moments M;(, M; and M; «which act along the axes
of the gimbals of the platform, can be represented in the follow-
ing form:

M'-:,u',. M,

St W 2 (1.62)
IRES TR T

M= 4 ),




where Mix" M:y, and M:z are the moments created by the relief en-
gines Enx' En2 and En, and which are dependent on the angles 61, 62

and 6, of the rotation of the gyroscope housings relative to the
platform, and M;x" M:y' and M:z are the destabilizing moments. The
destabilizing moments are formed by the friction forces in the supports
of the platform suspension axes and by attractive forces (within
accurate balancing). The moments caused by errors of forming the un-
loading moments are also related to this.

The moments M;, M; and H;, which act along the axes of the
gyroscope housings, may be represented in the form:

(1.63)
M e A 4 ML
My e Ay, AL,
A = Ath, M8

Here M:* M:yand M:x are the controlling moments which orient the
platform in the given manner. Moments M:x' M:y and M:x occur be-
cause of friction in the supports of the axes of the gyroscope
housings, unbalancing of the housings relative to their axes
and because of errors of forming the controlling moments. The per-
turbing moments M:x' M:y and M:x are the main cause of errors in
orientation of the gyrostabilized platform,

We note that equations (1.61) are sufficient to describe the
motion of the system (within the limits of precession theory) only
on the assumption that the friction forces in the supports of the
axes are not dependent on the magnitudes of the normal reactions.
In the opposite case, it is of course necessary to retain all 18
equations of (1.51). Let us note those, where the left sides of
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-
equations (1l.61) are dependent only on &, but are not dependent

on a. Angle a is thus a cyclic coordinate.

Together with relations (1.62) and (1.63), equations (1.61)
describe the motion of both a free and controlled gyrostabilized

platform. In the case of a free gyrostabilized platform
(1.64)

My = My e= M, =0,
-

In the case of a controlled gyrostabilized platform, these
moments are distinct from zero.

Let us first consider the case of a free gyrostabilized platform,
In this case the last three equations of (l.61) yield:
(1.65)

Wy cusd) + ), sind; = 0, w0, sind; — w, cos 8y = 0,
©,5ind; — w,cos b, ==, }

Relations (1,65) are a homogencous system of linear equations
relative to Ger @ and W, Its determinant A, according to
expression (1,4l1l), is equal to:

(1.66)
A=—-tosb,cos(6,‘-.o‘),
When
(1.67)
< <G <

the determinant is distinct from zero and system (1.65) permits

only a zero solution:
(1.68)

Oy =0y e, =,

This obviously means that the platform retains its fixed orien-
tation in the inertial coordinate system,
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If in addition to equality (1.64), we assume that
(1.69)

My = M)y == M =0,

then, by taking into account %Liie solution of (1.68), from the first
three equations of (1.61), we find:
B (1.70)
H { (7‘; slnd,) cosfcosy — l :‘- (—sind, +cuso,)] X
xcos’slny-}-[-:—‘ (cosd, + coso,-{»slnb)]slnﬂ} =0,
H {(;;- slno,) siny4- [7141 (-slnb.-{-cosﬁ,)] cow} =0, ]
H % (cosd, 4 cosd, 4 sind) ~ 0.

sy s s 1 2 3
In the case where the destabilizing moments M2x" sz., sz act

along the x', y', z axes, values 61, 62, 63 will vary with time and -
can, in particular, take those values under which determinant (1.66)
will become equal to .zero. Then the existence condition for of
solution (1.68) is broken and the orientation of the platform will

no longer remain invariant. In order for this not to occur, that is,
in order that angles 61, 62, 63 will be small and that inequalities
(1.67) be trivially fulfilled, the engines Enl, En, and En, are
introduced into the circuit of the device. These engines create unloading
moments M:x" Mfy., and M:x , which counteract the affect of the
perturbing moments. The unloading moments can be formulated in the
following manner:

(1.71)

Ml == — kP cospeosy — k8 cospsiny,
Miy = — kA siny -k cosy,
Ml== — k8,

By taking into account inequalities (1.67), we note that the
unloading of moments, calculated by relations (1.71), provides the
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existence of a trivial solution of the first three equations of
(1.61), if of course there are no destabilizing moments. Having
taken coefficients k:' kz and k’ sufficiently large, i.e., such
that the values on the right sides of relations (l.71) exceed those
corresponding to the destabilized moments at small values of 61, 6z
and 63, we can provide trivial fulfillment of inequalities (1.67).

We can easily ascertain that the equilibrium position of
the circuit

(1.72)
h|::67 'st\.‘ =

is stable (within the limits of precession theory).

At small values of 61, 62 and 63, from relations (1.61), (1.68)
and (1.71) we find:

(1.73)

H @ cospeosy - b cospsiny48,sinp) =

= — kb cospsiny - kM cospcosy,
H (5, siny — 5. 08 ¥) = kb, cosy — AN;siny,
M8y =~ kA, ]

It follows from the last equation of (1.73) that at k3>0 the
value of 63 approaches zero in time. Therefore, the stability of
the equilibrium position of (1.72) is obviourly determined by
the properties of the solutions of the system o:1 the two first
equations of (1.73) at 63=0, which in this case assume the form:

(1.74)
(Itbs!\(ﬁ,cos}:—}i.slny}:

= —cosp (ko sin v Ak cosy),
II (.A,sln.y — 8, cos Y) == k\, cosy— kpysin Y-
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Having multiplied the first equation of (1.74) by cos Yy and
the second by cos B sin y and having added the results obtained,
we find

gm§u$r+kp9=sq 0 (L.7%)

Having multiplied the first equation of (1.74) by sin y and
the second by cos B cos Yy, and having added the results, we find:

(1.76)
cosp (1, + kb)) =0,

The stability at B #"/2,kl>0 and k >0 also follows from the
form of equations (1.75) and (1.76).

The comment with respect to disposition [see (1.46)] of the
gyroscopes on the platform, made during analysis of operation of the
absolute angular» rate meter, remains in force for the gyrostabilizer
circuit,

It should be noted that consideration of the stability of the
gyrostabilized platform within the limits of precession theory is
usually insufficient. Final solution of the problem of the sta-
bility of the equilibrium position of (1.68) and (1.72) requires
consideration of more complete equations than (1.61), in which the
equatorial moments of inertia of the gyroscopes, the moments of
inertia of the gyroscope housings and the gimbal |,
as well as the dynamic processes occurring in the formation circuits
of the unloading moments, should be taken into account., Complete
investigation of the stability of precession motion of gyroscopic
devices is a special problem which is not considered here. A
number of well-known investigations, 0 to which one should turn
if necessary, is devoted to the solution of this problem,
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Let us now consider the case of a controlled gyrostabilized
platform. In this case orientation of the platform does not re-
main fixed in inertial space, as in the case of a free gyrostabil-
ized platform, but varies by a given law, Moment sensors Dul, DI,
and DM’ mounted on axes X 0 yz and X, of the gyroscope housings
(Figure 1,10), are used to control rotasion of the platform, The

corresponding moments were denoted by M M: and M:x.
’

Yy

It follows from the three last equations of (1.,61), provided
that the conditions of (1.67) are fulfilled, that

(1.77)

sind,

M
- _7;’- teiems K, cos (A —8y) ~
L] M‘
% (_ .A_;;'_ cosd, +7','- llnh,) .
At M,
S iRy .l__ .)(—’;'_ sind, ¢ '7;""’6.\) .

i M, M, .
"= (k'.'-"r.)("l;‘ cosh, — -7"— slnh,) 2

Expressions (1,77) are obtained in similar fashion to formulas
(1.43), derived during analysis of operation of a three-component
absolute angular rate meter. If 61, 62 and 6’ are small, then,
similar to (1.45), we obtain from expressions (1.77)

M:v ‘.", Mf, (10 78)

"'l="‘"7l'-. = -”'.._ ‘,.'.__.7’_”

Thus, if moments M:x' M:y and M:x arc formed as the given time
functions and if the value of H is assumed to be constant, then,
according to the equalities of (1.78), the projections w_, w_ and

w, are also given time functions. The values of ":x’ M:

o

y and M:x
or any other values which uniquely determine these moments, may be
uscd as the information source of the projections of Wer © and
w, of the absolute angular rate of the platform onto the axis of
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the ~oordinate system xyz, bound to it.

Equalities (1.68) for an uncontrolled gyrostabilized plat=-
form and relations (1.78) for a controlled gyrostabilized platform
are valid if (l.69) is assumed., If this assumption is not ful-
filled, i.e., if perturbing moments M;x’ M:y and M;x act along the
ax¢s of the gyroscope housings, then in both cases instrument errors
wa, Awy and sz, determined by the following equalities, occur:
(1.78a)

M} M}
l\bl‘:n-——ﬁ. A‘l‘,ﬂj;i. Aw'“_‘_;ii_

The values of wa, Aw_ and sz are called "free deflections"
of the gyrostabilized platform. ‘

1.3.6. Free and controlled gyro frames . The gyroscopic platform may not
béfthé load-bearing element buc the friction in its suspension may

be insignificant. Fdf’éi&mble, the platform may be surrounded by

a spherical shell and suspended in a liquid with a low viscosity

factor.

In this case, the angle of rotation sensors of the gyroscope
housings with respect to the platform, the unloading engines and
circuits of formation of the unloading moments may be eliminated
from the circuit considered in section 1.3.5.

The corresponding gyroscopic devices are usually called gyro ' I
frames (in the given case this will be a three-dimensional three-

gyroscopic gimbal). Like gyrostabilized platforms, gyro frames
may be free or controlled, depending on whether the controlling
momants are applied along the axes of the gyroscope housings or
whe cher they are absent., In the first case the platform of the ]
gy:» frames rectains its own fixed orientation and in the second
cas» it rotates at an angular rate w, whose projections onto the
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x, vy and z axes of the gyroframe are bound to the controlling
moments of relations (1.78). The perturbing moments along the

axes of the gyroscope housings lead to deflections of the gyro-
frame according to the equalities of (1.78a).

1,3.7. Additional comments. In concluding consideration of

gyroscopic devices of inertial navigation systems, it is useful to
make several comments of a general nature.

We have considered several methods of constructing gyroscopic
devices, by means of which information can be obtained about the
orientation of some trihedron connected to the gyroscopes in an
inertial coordinate system. All these devices can be combined by
a single common name of absolute angular rate meters, This ex-
pansion of the concept "absolute angular rate meter" is useful be-
cause it permits consideration of almost all gyroscopic devices of
inertial navigation systems from a single viewpoint. However, it
should be noted immediately that there is a considerable difference
between a free gyroscope and free gyrostabilized platform, on the
one hand, and a controlled stabilized platform and essentially
angular rate meters. Free gyroscopes and gyrostabilized platforms
retain a given fixed orientation of the trihedron bound to them.
Thus, the orientation of this trihedron in an inertial coordinate
system is immediately known.

A strictly angular rate meter and a controlled platform permit
only measurement of the value of projections of the absolute angular
ratc of a mobile trihedron to its axis. The orientation of the
mobile trihedron in the inertial coordinate system can be determined
by these values. This additional problem requires solution of a
system of differential equations, which, as we shall see below, re-

duces to the well=-known Poisson equations.12
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One of the consequences of the noted difference is the circum-
stance that the inconstancy of the quantities of the natural kinetic
moments of the gyroscopes in the circuit of the controlled gyro=-
stabilized platform (or of the absolute angular rate meter) leads,
as was already noted, to orientation errors (or to errors in deter-
mining the projections of the absolute angular velocity), and in
the case of a free gyroscope and free gyrostabilized platform the
inconstancy of the kinetic moments of the gyroscopes do not induce
any of the indicated errors.

This is obvious from relations (1.65), (l1.68) and (1.75)=(1.78).
Relations (1,65) were obtained from the three last equations of
(1.61) under the condition.(l1.64) and are not dependent on the value
of H, The existence of solutions of (1.68) is also not dependent
on H, The stability of this solution is retained according to (1.75)
and (1.76) at any values of H distinct from zero., The value of H is
essential in relations (1.77) and (1.78). When calculating Wer W
and v, from the known values of M:x' M:y and M:x [according to
formulas (1.,77) and (1.78)), the difference of the real value of H
from the calculated value by the quantity AH leads to errors:

b 4

Ao, =0, %-;! o doy=—0, -%l o Aoy=m—u, A’;i ;

In the circuits of a three-component absolute angular rate meter,
free gyrostabilized platform and controlled platform considered
above, the gyroscopes are installed so that their axes of sensi-
tivity form an orthogonal set of three., The axis of sensitivity
of a gyroscope is here understood as the direction perpendicular to
the plane, containing the direction of the natural kinetic moment
and axis of the gyroscope housing, and determined by egualities
(1.46). The mutual orthogonality of the directions of the axes
of sensitivity of the gyroscopic moments is of course not compulsory.
The condition of orthogonality is usually observed in most real

designs of devices, because this condition leads to simpler relations




when calculating the values of the components of the absolute
angular velocity, controlling and unloading moments etc.. As is
well known, it is also suitable for a number of design and tech-
nological concepts. Construction of circuits in which the direc~-
tions of the axes of sensitivity are not orthogonal is essentially
possible, It is important only that the three directions of the
axes of sensitivity not be coplanar.

The following comments, which it is necessary to make, concern the
assumption-made during derivation of the equations of the pre-
cession motion of the gyroscopic devices considered. The fact is
that the angular momentum theorem [expression (l1l.5)]) is generally
valid only if the point, relative to which the angular momen=-
tum of the system and the external force moments are determined,
is fixed in the inertial coordinate system. 1In all cases when
equation (1,5) was used, the stipulation was made that the origin O
of the trihedron Oxyz is fixed in the coordinate system O;g*n*c*.
Actually, the platform of the gyroscopic device is mounted on a
moving object and, therefore, the origin of the coordinate system
Oxyz moves in inertial space. However, the derived equations remain
valid in this case as well. 1In order to prove this, let us con=
sider the coordinate system Of,n,t,, whose origin is combined with
the vertex of trihedron Oxyz, while the directions of the axes
coincide with the directions of the corresponding axes of the in-
ertial coordinate system 02€*n*c*. The coordinate system O£,N,Z,
moves in a forward direction with respect to the system Ozg*n*c*;
therefore, the left sides of the equations of angular momentum,
written in these coordinate systems, are coincident. The right sides
differ by the value of the force moments of inertia of transient
motion. Since the motion of the trihedron 0O{,n,r, is forward, the
inertial forces are parallel (there are no Coriolis forces) and they
are determined by the acceleration of the translational motion of
trihedron O/, N,%,, i.e., by the acceleration of its origin. If
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the gyroscopic elements of the circuits are balanced, the forces
of inertia of translational motion, like the attractive forces, do
not create additional moments, hence follows the validity of the
equations of motion derived for a fixed point 0, and also

for a moving point. When considering unbalanced systems, the mo-
ments of inertial forces should be taken into account along with
the moments of attractive forces. In particular, the inertial
forces will create perturbing moments if balancing is incomplete.
The given argument, strictly speaking, is exhaustive only if the
origin O of the moving trihedron coincides with the center of mass
(and simultaneously with the center of suspension) of the gyro-
scopes. If several gyroscopes are placed on the platform, this
condition is not fulfilled and moments of centrifugal and Coriolis
forces, which occur as the result of rotation of the coordinate
system Oxyz (of the platform) with respect to the system Of,n,%..
act on the gyroscopes. However, these moments are negligible in
view of the limitation of the values of Wer wy and w, and the small
dimensions of the platform, as a result of which these

additional moments are usually disregarded.

Finally, it is also useful to note the following. In con-
sidering gyroscopic devices of inertial navigational systems, we
assumed that the gyroscopes are mounted in an ordinary mechanical
gimbal suspension. In modern gyroscopic devices, other principles
of suspensions - floating, gas-dynamic, magnetohydrodynamic, mag-
netic, electrostatic etc. - are coming into use more and more.

However, the main relations which determinc the operation of
gyroscopic devices and those obtained above under the example of
a mechanical gimbal suspension, retain their validity for any other
type of suspension as well, Therefore (as in newtonometer circuits),
there is no need to go into the details of the operating principle
of this or that type of suspension. We will also not find this

necessary during further consideration.




1.4. The Fundamental Equation of Inertial Navigation. General
Principles of Constructing Inertial Systems.

l.4.1. Conversion of the fundamental equation of inertial navigation

an¢ inteqration of it with respect to fixed orientation axes. The

fundamental equation of inertial navigation is equation (1l.1) of
motion of the sensitive mass of a three-dimensional newtonometer
or relation (1.3), which relates the reading of the newtonometer
as a measuring device to the acceleration of motion dz?OZ/dt2 of
its sensitive mass and to the total attractive force of the unit
sensitive mass by the aggregate of celestial bodies:

(1.79)

3
n= S0 Firg).

The essence of the inertial navigation method consists, as
already noted, in integration of equation (1.79), which differs
from equation (1.1) only in its notations.

Equation (1.79) can be integrated, for example, in the follow-
ing manner. Let three one-component newtonometers be mounted on
a gyrostabilized platform, considered in the preceding section,
such that the directions of their axes of sensitivity form an
orthogonal trihedron whose axes are directed parallel to the axes
of the inertial coordinate system Ozé,n*c,. Let us assume that
the system of three one-component newtonometers is equivalent to
a single three-dimensional newtonometer. The readings of the newton-
omcters will then be projections of the vector n onto the directions of
their axes of sensitivity: nE*, nn' and nc*. Let us denote the
projections of vector r,, onto the axes of the inertial coordinate
system by £,, n, and ¢,. In inertial space these projections are
obviously Cartesian coordinates of point O of the location of the
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sensitive masses of the newtonometers.13 From relation (1,79),

we have
(1.80)

mo=Th = A 0.
Ry = ‘“,-—-F“(i n. &)

= 7,r —Fu G, ).

By integrating equality (1.80) twice, we find:
(1.81)
h=!ﬁm+ﬁﬁ“m;mmﬂ+$#h+um

‘ ¢
'1.-=f J‘ln..,'}- Fu (B 0y TNttt 22 an, ‘”’., § w0,

zrffu"4nJhm;nmm+“Wm:hun

Integration of equations (1.80) requires that the correspon-
ding computer and also the clocks, from which the absolute (world
or Newtonian) time signals enter the computer, are contained in
the apparatus of the inertial navigation system. It is ob-
£’ Fn* and Fc*should be known and
that the initial values of coordinates £,(0), n,(0) and z,(0) and
their time derivatives be d¢,(0)/dt, dn,(0)/dt and dz,(0)/dt should
also be known,

vious that the form of functions F

The Cartesian coordinates £,, n, and ¢, of the point at which
are located the sensitive masses of the newtonometers are obtained
as a result of double integration. The position of this point on
the object on which the inertial system is mounted is generally
arbitrary. In particular, it may not coincide with the center of
mass of the moving object. It is not essential to determine the
coordinates of the object, because the resulting error obviously
does not exceed the linear dimensions of the object. However,
determination of the velocity and acceleration of the object along
with the coordinates may also be contained in the task of the inertial
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system: The velocity and acceleration of the center of mass of
the object may differ considerably from those of the sensitive
mass of the newtonometer if the latter is not located in the
center of mass of the object. The resulting problems will be dis-
cussed in the following section of this section.

Relations (1.80) and (l.8l1) and the concepts expressed in
regard to them fully determine the essence of the operating prin-
ciple of inertial navigation systems. However, they do not yet
provide a practical method of realizing this type of system. In
fact, the inertial coordinate system O E.n.c*, to which are re-
lated all the arguments, have not yet been determined in practice.
The form of functions FC 0 Fn* and PC* is also still unknown. The
fundamental relations of inertial navigation in the coordinate
system specifically bound to those celestial bodies (or body)
in whose neighborhood and relative to which the navigation
problem should be solved, must first be obtained for practical
realization of the considered principle. A system whose origin is
combined with the center of mass of some celestial body may be
taken as this coordinate system. Henceforth, we shall consider
this celestial body to be the earth.

Let us introduce a right-hand orthogonal coordinate system

Olé,n*c*, the origin 01 of which coincides with the earth's

center of mass, Let the orientation of trihedron Ols*n*c* be un-
changed in the inertial coordinate system., Without loss of dgen-
erality, we can obviously assume that the directions of the co-

ordinate axes Ozﬁ*n*c* and Olc.n*c* coincide  and retain their

fixed position relative to the directions from the earth's

center of mass 01 to moving stars.
/

Let us denote radius vector of point O of the location of
the sensitive mass of the newtonometer relative to the earth's
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center of mass,ol by T and the radius vector of point 0, rel-
ative to the origin 02 of the inertial coordinate system by

T o4 (Figure 1.14). It is obvious that

fo=Fo 1. ot

Fig. 1.14

By substituting equality (1.82) into relation (1.79), we find: *

=+ G = Flre). (1.83)

Force f(;oz), which acts on the sensitive mass of the newton-
ometer, is the total attractive force of this mass by the earth and
by the remaining celestial bodies. According to the law of Newton's
gravitational force, the value of the attractive force by the earth
of the unit sensitive mass of the newtonometer is dependent only on
T. Let us denote this force by 5(;). Let us denote the attractive
force of the unit sensitive mass of the newtonometer by the remaining

celestial bodies by %l(;). Expression (1,83) may then be rewritten
in the form

(1.84)

d’rq

dr |
et b — &)= Fue).
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It is easy to see that

(1.85) i
2 —
Lo - R 0)=0. 1

In fact, ?l(O) is the attractive force of the unit mass placed
at point 0l by the celestial bodies, with the exception of the earth.

Therefore, equation (1.85) is nothing more than the equation of
motion of the earth's center of mass within the gravitational field
of the remaining celestial bodies.

14

Taking into account equation (1.85), equality (1.84) assumes
the form:

5 r g (1.86)
n= T — g(r) 4 P, (0 — P, (n).

If the motion of the object (and consequently, of point O)
occurs at a small distance from the earth's center, commensurate,
for example, to its radius, then the difference

TP R IR

(1.87)

AF,(r)=F,(0) — Fy(r)

of the attractive forces at points O and 01 become negligible

-+ -+
compared to the force g(r) even for nearby celestial bodies, in-
cluding that for the moon and sun.

Thus, deflection of the vertical, induced by the difference
of the sun’s attractive forces at the center of the earth and at
some point on its surface, does not exceed a value of 0,008",
Accordingly, this deviation does not exceed a value of 0.017" for the
moon. At the same time, deflection of the vertical, induced by the non-
uniformity of the earth's distribution of mass, has, as was noted
in 5 2,1 an order of several angular seconds. Therefore, we may
assume with a sufficient degree of accuracy that

(1.88)

?,
n=-—:—,f——l(r).
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The coordinate system Olﬁ.n,c, moves in a forward direction
relative to the inertial coordinate system OIE,n*;*; therefore,
we can obviously assume that differentiation in equation (1.88) is
carried out in the coordinate system Oli,n,c,.

This equation (1.88) is valid in the coordinate system OIE,n,C,
and has the same form as equation (1.79), obtained for the inertial
coordinate system, Consequently, with respect to Newton's laws, the
coordinate system Olg,n,c, near its origin is practically indis-
tinguishable from the inertial system. At the origin itself they
are completely indistinguishable. The principle of the equivalence
of the general theory of relativity, which,as is well known, is of

ER The coor-

a local nature, is essentially included in this.
dinate system OIE,n,c* is distinguished near its origin from the
inertial system only to the extent to which the gravitational field
in which the earth moves is inhomogeneous. The difference (1.87)

also characterizes this inhomogeneity.

From equation (1.88), similar to equations (1.81), we find:
(1.89)
L=JJ@-H”am+¢mt+um

m=JJU-Hdam+“ﬁh4mm

L= U(u o )atdt+ 5 4 p )

If we assume that the earth's gravitational field is central (or
rather spherical), we have
(1.90)

g(n=-"5,

where 1 is the product of the earth's mass by the gravitational
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constant. The equations (1.89) assume the form:
(1.91)

-]

0=

(o — ) arar + B2 1 42,0,

[}
[}
J (mn— 2)arar 4 2521 40,00
. '
b=

Sy .

(nea = o) arar + £t 0.

If the sphericity of the earth's gravitational field is taken
into account, then the projections of ge ' g and gr in equations
(1.89) may also be assumed unknown functlons of coordlnates Egr Ny
and ¢, and time functions. 1In fact, if the earth's body axis sys-
tem 0 £ n ¢, (rotating together with it), is introduced, then the
progectlonq of gg, g and gc of vector g to the axes of this system
will be known functlons of coordinates §, n and § of point 0. The
time motion of the coordinate systems Olﬁ.n.c* and olgnc rel-
ative to each other is known, It is defined by the law of the
earth's rotation with respect to its center. Therefore, the pro-
jections of 9gr = and g, may be calculated as functions of coor-
dinates £,, n, and f, and as time functions.

The problem of determining the coordinates of the object
during its motion near the earth's surface is essentially solved
by equations (1.89) or (1.91)., In fact, 'since the earth's motion
in the coordinate system plg*n*c* is known, we can transform from
Cartesian coordinates £,, n, and r, by appropriate calculation to
any other coordinates, including the earth's body axis system. The
orientation parameters of the object in any coordinate system may
also be found by using the required calculations. In order to
ascertain this, it is sufficient to recall that the angles of ro-
tation of the gimbal rings of the gyrostabilized plat-
form, which can be measured, determine the orientation of the ob-
ject with respect to the coordinate system Olg,n,c,, because
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in the considered case the orientation of the gyrostabilized platform
relative to the coordinate system ols*n*c* is fixed. By knowing
the orientation of the object in the coordinate system 0;5*"*C*' we
can convert to the parameters which characterize its orientation

in any other coordinate system, whose motion.relative to the sys-

tem olﬁ*n*c* is defined, of course including that in thé earth's

body axis system. A similar case holds for the rates of variation

of the orientation parameters.

Let us consider in more detail the problem as to what extent.
disregarding the inhomogeneity of the gravitational field, i.e.,
the difference of the attractive forces determined by equality
(1.87), is essential. In other words, is this disregard essen-
tially required or can we get along without it.

We can show that the latter case is valid, i.e., that diff-
erence (1.87) may be taken into account, and that the exact equality
(1.86) rather than the simplified relation (1.88) may be taken as
the equation of inertial navigation.

Let there be k celestial bodies whose gravitational difference
at point 0l and at point O of the position of the sensitive mass
of the newtonometer should be taken into account. Let us denote
the radius vector of the center of mass of the i-th of the ce-
lestial hodies relative to point Oxby ;i' The radius vector ;i of
the point O relative to the center of mass of the i-th body is
then equal to:

(1.92)

r=r—r,

Let us assume that the masses of the celestial bodies taken
into account and their motion in the coordinate system dli*n.c*
are known, so that

ry=rl).
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If we assume that the gravitational field of each of the
celestial bodies is spherical, then on the basis of Newton's law
of universal gravitation, we can write:
(1.93)

[ ]
nm—nmngmﬁ_J:%y

i= lr—ai

The right sides of the projections of the vector equality
(1.93) onto the axes of the coordinate systeﬁ Olc.n.c. depend
only on E.i(t), "*i(t) and c.i(t) and on £,, n, and §,. Introduc-
tion of them into the integrands (1.89) or (1.91), although it
complicates these expressions, . essentially does not change the
methods of solving equations (1.89), (1.91) and, consequently,
equation (1.86),

Essentially, nothing changes if we reject the assumption of
the sphericity of the gravitational fields of the celestial bodies
taken into account. In this case it would be nec~<sary *o intro-
duce k additional coordinates systems, rigid'y linking them to
the considered celestial bodies, We may aszirme that the gravita-
tional fields in the body axis systems arc defi.ed, while the mo-
tions (rotations) of the latter relative to the coordinate
system Oli.n.c. are known in time. Projections of tlie difference
(1.87) to axes £,, n, and r, will then be dependent on the time
and parameters which characterize the disposition of the considered
celestial body axis systems with respect to trihedron O}&.n.c. at
the initial instant of time. Taking into account the non-sphericity
of the gravitational fields of each of the % bodies is therefore quite
similar to taking into account non-sphericity of the earth's gravi-
tational field,

It follows from the foreqgoing that a knowledge of the required
parameters of the gravitational fields in the coordinate function
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is a necessary condition for realization of the principle of
inertial navigation. It is true that we shall subsequently see
that the schemes which operate under specific conditions and with
incomplete information about the gravitational field can be con-
structed for solution of some special problems of navigation.

l1.4.2. Determining the velocity and acceleration of the center

of mass of an object. The radius vector of point 0 of the position

of 1ts sensitive mass in the coordinate system 0 E,n,c, i’ denoted
by T in equation (1.88), which determines the readlngs of a three-
dimensional newtonometer,

If we assume that point 0O always coincides with the center
of mass of the object, then equation (1.88) will determine the
acceleration of the object, and as the result of integration of
this equation, the velocity and coordinates of the location of
the center of mass of the object will be obtained.

Actually, the position of the sensitive mass of the newton-
ometer does not coincide with the center of mass of the object.
This is explained by the followin-~ factors. First, even if the
center of mass of the object occupies a fixed position in its body
and if the center of suspension of the sensitive mass of the new-
tonometer (the position in which the suspension is not deformed)
coincides with the center of mass of the object, the sensitive
mass completes some motion relative to the center of the sus-
pension as the result of deformation. The velocities and accel=-
erations of this motion may be significant.

Second, the center of mass of an object usually does not
occupy a fixed position within the body of the object, 1Its posi-
tion varies because of motion of the mass on the object, combus-
tion of fuel etc.. Therefore, even if the canter of suspension of
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the sensitive mass of the newtonometer and the center of mass of
‘the object initially coincided, they would subsequently diverge.

Furthermore, a newtonometer can be established at some dis-~
tance from the center of mass at the very beginning. Finally,
additional variation of their mutual disposition is possible be-~
cause of deformations (or elastic oscillations) of the object.

Because of the non-coincidence of the center of mass of the
object and of the sensitive mass of the newtonometer, the accel-
eration, velocity and coordinates of the center of mass of the
object, strictly speakinyg, may not be obtained directly from
equation (1,88)., Moreover, equation (1.88) is the equation of a
three~dimensional (three-component) newtonometer, whereas three
one~-component newtonometers with three sensitive masses are ac-
tually used.

Let us consider the posed problems in more detail. This is
even more necessary Since exposition of the operating principle
of the newtonometer and interpretation of the objective content
of its readings are not always accurate and rigorous in the litera-
ture on inertial navigation.

Let us link trihedron O'xyz to the housing of a three-dimen-
sional newtonometer. Its origin will coincide with the center
of suspension of the sensitive mass, i.e., with the position which
it occupies when the suspension is not deformed and the readings
of the newtonometer are equal to zero. For the diagram presented
in Figure 1.1, the x, y and z axes may be directed along the axes
of fhe springs.
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The position of point 0' relative to the earth's center
0l is determined by the radius vector ;', and the position of
point O relative to O' is determined by radius vector p. Vector p
characterizes the motion of the sensitive mass relative to the
housing of the device and, consequently, the deformation of the
suspension. Obviously,

(1.94)
r=r'4p. ,

Let us find the equation for B. It follows from that out-
lined in § 1.2 and section 1.4,1 that the equation of motion of
the sensitive mass of the newtonometer in the coordinate system
OlE.n,;, may be represented in the form
(1.95)

Lild
mar =ng(r)+f,

where f is the total force acting on the sensitive mass on the

side of the suspension., By substituting the value of T from (1.94)
and noting that the inhomogeneity of the gravitational field in the
mass of the device may be disregarded, we find

(1.96) |
If the force f is only the result of elastic déformation of the \
suspension, then ¥=kp and equation (1.96) is represented in the

following form:
(1,97)

'’ ’ ] [
%’7‘}+v’o=—[—',,—,'.-—l(r)]. Ve~
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Differentiation is carried out in the coordinate system olE,n*c*.
By integrating in this same coordinate system, we find the expression

for b:
(1.98)

T ,
p= __.'; [9 [,%’.,:--— g(r')]‘slm’l(l —dr+

4-pcos vt +«%'- -':-:';-sln v,

wherce B° and dB°/dt are the corresponding initial values.

In order to maintain the analogy with relation (1.88), let us
take as the readings of the three-dimensional newtonometer the

vector

(1.99)
.s—V’[\.

It follows from relations (1.98) and (1.99) that the instan=-
taneous values of the velocity and acceleration of the point of
the object in which the center of suspension of the newtonometer
is located, may not be found from the readings of the newtonometer.
However, there is the following possibility here. Let the natural
oscillation frequency v of the sensitive mass be taken so large that

the 'variation of function '
(1.100)

0= = et

over a period of T=27m/v oscillations may be disregarded. This meanr
that the range of essential frequencies of the function a are consid-
e:ably below the frequency of v. Solution of the problem then
p:ovides calculation of the average value of % of vector n within

tl e period of natural oscillations.
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According to equalities (1,98), (1.99) and (1.100) we have:
| (1.101)

14— I

-;-'; " dr* J q(vsinv(f— 1)4:.'

The range of integration in variables t*, t is depicted in
Figure 1.15. By changing the order of integration in equation
(1.101), we find:

g 1]
' IO—'—
‘n%[‘[n) g sinv(® — ) de* + (1.102)
T om
+I dtj’ g()sinv(®*—v)de* |,
L]

‘.

Fig., 1.15

The first integral in the square brackets is obviously equal
to zero. From the second integral, we find

(1.103)

21
IO—'-

md J' (011 —cosv (¢ — D dx.

Since the square bracket in the integrand (1,103) does not
change sign, then, according to the well-known mean value theorem,
we will have

22 (1,104)
;‘37‘:1'4(7)! 1V ~cosv(t — ) dt,
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Hence,

 Rmglh, T=t4+ 20, 0g04). (1.105)

v

-
Thus, we found that the mean value R of vector T during the
period of natural oscillations of the sensitive mass is equal to

ﬁ-!:—,';-—((r’). (1.106)

where the right side corresponds to some instant within the averag-
ing interval. Expression (1.106) coincides with equality (1.88)

with the only difference that the right side of expression (1.106)
does not depend on the radius vector T of the current position of the
sensitive mass of the newtonometer, but depends on the radius

vector r' of the current position of the center of its suspension.
Consequently, one can determine the value of the velocity and
accelcration of the point of the object corresponding to the center
of suspension of the newtonometer with a lag not exceeding T=271/v
from the newtonometer readings. This lag is insignificant at large

values of v,

In practice the n~wtonometer readings are averaged due to
damping of the natural oscillations of the sensitive mass, which
is introduced to provide stability of the newtonometer operation.
Damping is accomplished by forces proportional to the rate of dis-
placement of the sensitive mass with respect to the newtonometer

housing, Tf the newtonometer is mounted on a gyrostabilized plat-
form, then obviously the damping forces will be proportional to the
ab:olute derivative dp/dt. Then in equation (1,96), one should
setl

(1.107)

S=—tp—n oL

69




and, instead of equation (1.97), we find
(1.108)

-:-:—','- L [I-‘-",-,'r = :_(r.')]'

Ao, Vet VSN

By integrating equation (1.108) in the coordinate system
O,Ca”-Ear we find the forced solution in the following form (the
solution of the homogeneous equation vanishes rapidly and it can be
discarded immediately):

(1.109)

'
""""’Pﬁ%‘},‘n’![‘g‘" —I(f')]X

X e-At-Ngin V/VTTRT (# — )dr.

The rigidity of the suspension k and the damping coefficient
kl are selected so that the values of v, h, (v’-hz)ls are consid-
erably greater than the maximum value of the frequencies taken into
account in the range of vector function d?¥'/dt?-g(r'). This
function may then be assumed constant in the subintegral expression
of the right side of solution (1.109). In this case, after inte-
gration, we find the established value

(1.110)

-~

297
A= Vo= G~ R,
i.e., we again arrive at relation (1.106).

Thus, we can find the velocity and acceleration of the sensitive
mass of the center of suspension, i.e., the velocity and accelera-
tion of the corresponding point of the object, from the readings of
a three-dimensional newtonometer.
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Let us return to the problem of calculating the velocity and
acceleration of the center of mass of an object. Let us denote the
radius of the center of mass C of the object with respect to the
center of mass 0l of the earth by ;C and the radius vector of the
center of mass C of the object with respect to the center 0' of
the newtonometer suspension by BC’ Obviously,

(1.111)

’cﬂr' -+ pe.

If vectors dr'/dt and d2§'/dt2Aare taken instead of d;c/dt and
dz;c/dtz, the resulting errors of calculating the velocity and
acceleration are vectors dEC/dt and dZBC/dtz.

If the object is assumed to be a rigid body, then the vectors
dzé/dt and d’};c/dt2 can be calculated as soon as the position of
the center of mass C and the body of the object is known. In fact,
the projections of vector %C onto the axes cf the platform can then
be found by the angles of rotation of the gvrostahilized platform
in a gimbal suspension, whose values can be mcasured, and the pro-
jection of vectors dBC/dt and dzﬁc/dt2 can be found by differen-
tiating these projections.

It is more difficult to calculate the elastic oscillations of
the object, because this requires knowledge of the time of its de-
formation at each instant.

It follows from the foregoing that if the problem of the in-
ert 1l system is calculation of only the coordinates of the object,
ther it makes no difference where the newtonometers are located on
the »sbject.

But if it is necessary to calculate rather accurately the velocity

of ¢n object (for example, during control of a ballistic nissile
on the active leg of its flight), and even more so acceleration,
the newtonometers should be located ncar the center of mass of the
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object. In any case one should keep in mind that disposition of
them far from the center of mass may lead to considerable errors
in calculating the velocity and acceleration of the center of mass
of the object,mainly because of its elastic deformations.

Let us turn to the problem of the correctness of replacing
three linear newtonometers with a single three-dimensional device. {
To do this, let us find the precise equation of operation of the
linear newtonometer.

Let trihedron 0'xyz again be rigidly bound to the newtono-
meter housing. Let its x axis be the axis of sensitivity of the
newtonometer, i.e.,, the axis along which the sensitive mass may
move and along which the elastic force of the suspension is applied
to it. Let point 0' correspond to the position of the sensitive
mass in which its suspension is not deformed. For generality, let
us assume that the newtonometer housing, i.e., trihedron 0'xyz,
rotates at an absolute angular velocity W. Let us compile the
equation of motion of the sensitive mass of the newtonometer along ;
the x axis,

Let us use equation (1.95). Instead of }, let us substitute
in it the value

{(1.112) i
r=r' 40, p=p,x

and, instead of f, the value

(1.113)
’l= = (k[’.+ kli’:)‘

[the unit vector of the O0'x axis in relations (1.112) and (1,113)
is denoted by %l . We find

(1.114)
2 \ 2
—:—‘,- (P, 5) + 24p,x 4 v, X = —[‘75- —g(r’)].
L0 A |
h=?; . V’=7 .
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Projection to the 0'x axis yields:
(1.115)

a . .
® G Ort) + 2 Vi, e~ (L5 — g0,

Let us find the value of the first term in the left side of
equality (1.115). Obviously,

(1.116)
PRCAIF ST WIS L
Since vector x is the unit vector,
(1.117)
x--‘—‘,‘-a%%(s-x)no.
. dix dx dx
W= TG
But
%=mxx. (1.118)
therefore,
(1.119)

x*%‘:—: - ((vl)(j).(m)(x).

According to the well-~known Lagrange identity, the right
side of equality of (1.119) is expanded in the following manner:
(1.120)

(0 ¥ %) {00 X X) = 0 — o} =l o,

where Wt wy and w, are the projections of the absolute angular
velocity of trihedron O'xyz on its axes.
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Taking into account equaljties (1,116), (1,119) and (1.120),
equation (1.115) assumes the form:

c " (1.121)
8, + b, + (P —w)—ui)p, = — ¥ [ — &), .

When

(1.122)
3 m'; -+ (-)3

the established value of deformation of the suspension spring is

(1.123)
h=_$x{§§—eWW
Having taken as the newtonometer readings the value
(1.124)

1p¢ ,
a‘——v’p,ux'[iﬁ’,-—l(' )]- c

we arrive at the relation similar to relation (l1.4), by which we
earlier determined the readings of a linear newtonometer. We can
find the same relation by considering the equation of motion of
the sensitive mass of a one-~-component pendulum newtonometer,

Now let three one-component newtonometers ns ny and n, be
mounted (Figure 1.16) on a gyrostabilized platform or on the plat-
form of a gyroscopic absolute angular rate meter. Let the axes
of newtonometer sensitivity coincide with the axes of the trihedron Oxyz
associated with the platform, and let the centers of the suspensions
of their sensitive masses be separated from the vertex of the in-

dicated trihedron by distance zx, zy and zz. Then the readings
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of newtonometer n, will be calculated according to relation (1,121)

by the equality

“‘_[!;{'L_'(")]‘x- (1-125)

where ;x is the radius vector of the center of suspension of newton-
ometer n, relative to the center of the earth 0:.

Fig, 1.16

If the radius vector of point O relative to the earth's
center of mass is denoted by ;, then
(1.126)
r=r+4ix

By substituting equality (1.124) into relation (1.123) and by
noting that the difference 6(;)-5(;1) at a small value of zx is
negligible, we find (at 2x= const):

(1.127)

{]
n,—[-:—‘f--—((r)]-x-}-l,-:—:f--x.

Similar expressions are also obtained for ny and n,, so that
the projections of N ny and n, determine the vector
(1.128)

A= xinyt """%'r-l('HAa.
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where

Thus, three linear newtonometers, mounted near point 0, are
equivalent to a single three=dimensional device mounted at this
point, with an accuracy up to the error determined by the vector An.

If orientation of the x, y and z axes is fixed (a gyrosta-
bilized platform), then d?x/dt?=d?y/dt?=d%z/dt’=0 and this means that
the vector An is also equal to zero. If the newtonometers are
mounted on a platform rotating at angular velocity b (for example,
on the platform of an absolute angular rate meter), then, accor-
ding to relations (1.119) and (1.120),

1.129
A, = — 1 (o + @) ( )

ey ), B, ==L +h)

At small values of lx, Zy and_zz (usually of the order of several
centimeters) and at limited values of W w_ and Wyr the modulus
of vector An is negligible. It should be noted that since zx, zy
and kz are known, while projections W wy and w, agf measured by
a gyroscopic meter, then in principle the error of An can be com=

pletely eliminated.

In the above consideration, the axes of sensitivity of the
three linear newtonometers formed a rigid orthogonal trihedron.
Obviously, this does not change if this trihedron is not orthogonal
or if it is not even rigid, but orientation of the axes of sensi-
tivity of all threce newtonometers is independent. If the axes of
sensitivity are non-coplanar, then the newtonometer readings still
determine the vector

(1.130)

d’r
Re=—n —e(r),
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where the radius vector of the suitably selected point, near which
the newtonometers are located, may be taken as f.

l.4.3. General principles of constructing inertial naviga-
tional systems. A typical block diagram. The method of integrating a..
fundamental equation of inertial navigation, considered above (sec-
tion 1.4.1), when the directions of the axes of sensitivity of three
newtonometers form an orthogonal trihedron, invariant oriented in
absolute space, as already noted, completely solves the problem of
calculating the navigation parameters. This method, is, in any
case, from the formal viewpoint, the more natural one and a direct
method of solving the problem. However, the formal simplicity
and naturalness of constructing the diagram is not always, as is
well known, related to the simplicity and even the possibility of
its technical and engineering realization.

Therefore, in real designs the directions of the axes of
sensitivity of newtonometers may vary their orientation in inertial
space during operation of the inertial system, where variation of
the orientation of the newtonometers is usually a function of the
coordinates determined by the inertial system itself. The orienta-
tion of newtonometers may be varied with respect to the inertial
coordinate system, for example, by linking them rigidly to the con-
trolled gyrostabilized platform, considered in the preceding sec-
tion, and by forming in the required manner the controlling mo-
ments M:x' M:y and M:x. A free gyrostabilized platform may be.
taken as the base of the diagram and the required orientation of
the newtonometers relative to the platform and, consequent-

lv, relative to the axes of the inertial coordinate system can be
provided by using a special kinematic diagram. Finally, orienta-
tion of the directions of the axes of sensitivity does not have to
be a previously known coordinate function. For example, newton=
ometers can be linked to the platform of a three-component absolute
angular rate meter and integration of the fundamental equation in
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the coordinate system bound to the platform17 can be accom=
plished by taking advantage of the fact that rotation of the plat-
form in inertial space is known from the readings of the angular -
rate meter.

A number of circumstances must be taken into account in each
cor...rete case in order to dwell on various sclremes for construc-
ting an inertial navigation system. One of the problems which must
be s0lved here is to select the reference grid in which it is more
convenient for some reason than in others to navigat. a
specific object (or class of objects). The coordinates which de=-
ternine the position of point O with respect to trihedron O;C*n*c.
may be in the general case some curvilinear and non=crthogonal
coordinates x', x? and x’., They may obviously be transient as well,
i.e., the coordinate surfaces xi= const may alte. its position in
time with respect to trihedron Olc*n,c*. This, for example, will
occur if coordinates x!, x? and x? determine the position of the
object in the earth body axes system,

If the readings of three newtonometeis are denoted by nl, n2
and n3, the values of nl, n2 and n’ with arbitrary orientation of
the axes of sensitivity wi}l be some time functions, functions of

1 and of their first and second time de-

the three coordinates of
rivatives:
npe= fi(x, % ow M VLRV A (1.131)
4 ({=21,2,3)

FEqualities (1.131) are nothing more than projections of equa-
tior (1.88) on the directions of the axes of sensitivity of the
new .onometers., The essence of the principle of inertial naviga=-
tio , as already noted, reduces to integration of equation (1.88).
In he concidered case this reduces to integrating the system of
thr e differential equations (1,131), which (if the directions of

78




the axes of sensitivity of newtonometers n‘, nz and n3 are not
co-planar) are equivalent to the vector equation (1.88), In order
to integrate equations (1,131), we could, for example,proceed in
the following manner: reproject equalities (1.131) to axes £,.n,
and f,, use equations (1.89) and find the values of x', x? and x?
from the obtained values of £,, n, and f,. This method presumes
computer operations on the readings of the newtonometers until in-
tegration of these readings.

However, it is well known that the signals taken from the
newtonometers arec rather rapidly variable time functions, Per-
forming the computer operations directly on these signals with
the required accuracy is related to considerable difficulties and
usually leads to significant errors, adding to the errors of the
newtonometers themselves, Therefore, the solution of equations
(1,131), in which the first operation completed on the newtono-
meter readings is the integration operation, is more feasible.
The ccndition of integrating the newtonometer readings until the
computer operations on them have been executed .is obviously a
practically required condition which must be satisfied in construc-
ting the diagram of an inertial navigation system,

At least two variants are possible, The highest derivatives
%!, %? and %? occur in the functions of £, which are on the
right sides ot equations (1.131), as the result of projection of the
acceleration dz'r’:/dtz on the directions of the axes of sensitivity
of the newtonometers. Because of this, the func-
tions £, are linear in %!, %? and %*, i.e., equalities (1,131) may
be represented in the form
5, (1.132)

n a0 @K 0, X S0, K, R, Kl K, 1),

Coefficients aij’ as we shall subsequently see, are functions of
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the coordinates x', x’ and x®, time t and of the parameters which
determine orientation of the directions of the axes of sensitivity
of the newtonometers. The latter can be either known time functions
or time functions of coordinates x!, x? and x?, Consequently,
equalities (1.132) can be written in the form

(1.133)
e S

etial
+ 100, %2, %, ®, %% X% 0).

The first variant of integrating equations (l1.131) therefore in-
volves the solution of equations (1.133) with respect to the sums

Zaik;¢k accordirg to the relations

(1.134)

Boww= [+ Sl v i s

(23] dal la}

+ Lo..(n)i‘w). (1.134)
=i

The values of ;k and xk are then found, which are then used

to form the subintegral expressions (1.134)., This variant places
no restrictions of any kind on disposition of the axes of sensi-
tivity of the newtonometers. Orientation of the axes of sensi-
tivity with respect to the axes £,n,Z, should be only a known time
function and a function of coordinates x!,x? and x°.

The second variant presumes a completely specific dependence
of the directions of the axes of sensitivity of the newtonometers
on the coordinates and time: orientation of the axes of sensitivity
should be selected such that only a ,va, and aasOf all values
of aij be distinct from zero in equalities (1.132)., Then, instead
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of relations (1.134) we find the following:
(1.135)
ayx == I[n, -t \‘1 d"" i‘d::: W)=/, ]'" +
+ 2y ()% (0)

, Of course, variants which are intermediate between relations
{(1.134) and (1.135) are also possible, when orientation of one (or
two) of the three newtonometers is subject to deriving equations of
type (1.134), while the readings of the remaining two (or one) are
integrated according to relations (1.135),

To provide the required dependence of the directions of the
axes of sensitivity of the newtonometers on coordinates x!, x? and
x and time t, it is obviously necessary to form some controlling
effects that depend- in the general case on the coordinates xi, their
tine derivatives and clearly reentrant time. The number of con-
trolling effects may vary from zero, when orientation of the new-
tonometers relative to axes §{,,n, and g, is fixed, to six, when the
directions of the axes of sensitivity of all three newtonometers
vary independently of each other.

Selection of both the reference grid’x‘, x? and x
the directions of the axes of sensitivity of the newtonometers, and,
consequently, of the kinematics of the diagram and of the form of '

} and also

the controlling effects, should of course provide the greatest sim-
plicity possible of the latter. One naturally strives in this
case toward simultancous simplification of functions fi' and not
only of their parts which occurred due to projection of the accelera-
tion dz'{'/dt2 on the directions of the newtonometer axes, but also

of those which are obtained from projecting vector a. This

usually leads to the necesrity of specifically orienting the axes

of sensitivity of the newtonometers relative to the gravita=-
tional field.
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Selection of the diagram is greatly affected by the possibility
of using one or another means of correcting the operation of the
inertial system, the requirements placed on the process of pre-
paring the system for operation and on the process of operating it,
the general characteristics of the object for which the system is
designed, its velocity, range etc.

, Finally, the given accuracy with which the navigational para-
meters must be determined and navigation must be accomplished, both
in selecting the structure and operating algorithm of the initial
system and in gelecting its elements,is of decisive importance.

Selection of the elements of the diagram and selection of its
structure and algorithm (equations of ideal operation) are of course
unrelated to each other. The typical properties of the elements and
devices selected for constructior of the diagrams usually place
quite specific requirements on the structure of the diagram and on
its operating algorithm, And, on the other hand, elements with
quite specific properties are required to realize the given struc-
ture,

Of course, the method of constructing the diagram is primarily
determined by the characteristics of the sensing elements and mainly
by the accuracy and the possible range of measurement, But the pro-
perties of the remaining elements and devices -- computers, altitude
and moment sensors, tracking systems etc. -- may also be no less deter-

mining.

Thus, i1f we assume rather large and accurate computer facili-
tics (for cxample, a digital computer with sufficiently high speed
anc sufficiently large storage capacity in combination with analog-
to- ligital converters with the required accuracy), it is ob-
viously prssible to facilitate the task performed by the sensing
elements, especially by the gyroscopic elements. In particular,
in combination with accurate tracking systems this makes it possible
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to use frece gyroscopes rather than load-bearing gyroscopic com=-
ponents (of the stabilized platform type).

It should be noted that the properties of elements which can
be used in the system naturally affect not only the structure of
the inertial navigation system, but its structural performance as
well, as far as arrangement of the system on the object.

Thus, when using accurate tracking system and high-speed
computers, the inertial sensing clements (gyroscopes and newtono-
ometers) can' be linked to each other by the tracking systems with-
out forming a common rigid unit. In the opposite case, the sen-
sing elcments should obviously comprise a monounit, in which the ar-
rangement of individual sensing elements is rigidly fixed rela-
tive to each other,

The concepts presented above about the common principles of
constructing the diagrams of inertial navigation systems have a
common nature and of course do not contain a number of important
details, whose significance can be discussed only after detailed
analysis of them, However, these common concepts permit rather
good representation of the typical block diagram of the inertial
navigation system, It may be represented as consisting of four
functional blocks (Figure 1.17): the block of sensing (inertial)
elements 1, computer block 2, time block 3, and initial data input
block 4. Of course (which follows from the foregoing), these
functional blocks do not have to be common blocks in the design
sense and in the confiquration.




The sensitive element block contains the newtonometers and
the absolute angular rate meters. The block accomplishes given
orientation of the axes of sensitivity of the newtonometers and
of the absolute angular rate meters, Data is fed from the sensing
elements into the computer block.

The initial orientation of the sensing elements and input
into the computer block of the initial conditions required to
integrate the fundamental equation of inertial navigation are
accomplished by the initial data input block. World (absolute)
time signals are cleared from the time block to the computer.

The main purpose of the computer block is to integrate the
fundamental equation of inertial navigation and to calculate the
required navigational parameters. Therefore, the operational
program of the computer block should contain double integration.
If the block provides variation of orientation of the newtonometers
and of the gyroscopes of the inertial element block, the task of
the computer includes formation of the corresponding controlling
affects. Finally, if automatic navigation is assumed, the task of
forming the programmed trajectory of motion of the object is also
placed on the computer block and the number of output parameters
will contain the instructions which control the steering gear of
the object to maintain it on the programmed trajectory with the
required accuracy.

1.4.4. The main problems of the theory of autonomous inertial

navigation. Data on the principles of operation and on the e?uatlons
of operation of inertial sensing elements were outlined in the pre-
ceding sections and the fundamental equation of inertial navigation
was also derived. An example was given for constructing the diagram
of an inertial navigation system with directions of the axes of
sensitivity of the newtonometers and of the gyroscopic absolute
angular rate meters, invariantly fixed in inertial space. Some
common concepts were also presented on the possible methods of
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constructing the structural diagrams and operating algorithms
of inertial navigation systems, and the more essential circum=-
stances were enumerated which should be taken into account when
selecting the method of constructing the diagram in various
specific cases.

We can now formulate the essence of the problems which occur
during theoretical analysis of operation of inertial systems.

The first problem which occurred here may be called the
problem of construction and analysis of the equations of ideal
operations of an inertial navigation system, i.e., the mathema-
tical algorithm of its operation with ideal elements and correctly
given initial conditions. This problem obviously includes de=-
termination of the form of projections of the fundamental equation
of inertial navigation onto the directions of the axes of sensitivity

of the newtonometers with different selection of coordinates »!,x?
3

X
and x°, which characterize the current position of the object in
space, and which characterize it as a function of the orientations
of th. directions of the axes of sensitivity of the newtonometers,
The indicated problem also contains a search for (with the given

2 and x?) of the newtonometer orientation

reference grid x!, «x
which permits rather simple integration of the fundamental equation
of inertial navigation directly in projections onto the axes of sen-
sitivity of the newtonometers and which permits rather simple con=-
struction of the algorithm of integration itself, This also in- i
cludes mathematical formulation of the problems of forming the
instructions for controlling variation of orientation of the axes

of sensitivity of the newtonomcters and gyroscopes witli considera-
tion of the kinematics of the gyroscopic devices described in §1.2,
and also calculation, if possible, of the parameters which charac-
terize the orientation of the object.




Consideration of the equations of ideal operation and of
inertial navigation systems should be preceded by the derivation of
the required functions which characterize the earth's gravitational

field, its shape and motion,

The second important problem is derivation and analysis of
the equations of perturbed functioning (motion) of the inertial
navigation system, i.e., study of its operation with regard to the
in:iirument errors of the elements, inaccuracies of the initial
arr-ongement of the directions of the axes of sensitivity of the
newtonometers and gyroscopes, and also with regard to errors of
‘ntroducing the initial conditions., It is obvious that perturbed
Zunctioning of the system is different from that which is attributed
0 it by the equations of ideal operation, and the navigational
)arameters are determined in this case inaccurately and with errors.

The equations which describe time variation of deviations
of perturbed motion of the system from unperturbed and ideal motion,
are therefore naturally called error equations. Error equations
are consequently equations in variations. The importance of study-
ing the properties of these equations is obvious, because they de-
termine the operational stability of the inertial system and they
relate the errors of the elements and of the initial conditions to
the errors of calculating the navigational parameters. The main
purpsse of analyzing the error equations is to establish a direct
relationship between the accuracy of the system and the instrument

errcrs of its elements.,

The next problem is theoretical analysis of the phenomena
and affects which occur during correction of inertial systems due
to .’lditional data sources.

The use of outside information sources to correct an inertial
system has as its purpose an increase in the accuracy of calculation
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by the system of navigational parameters, i.e., reduction of the
magnitude of errors. Accurate data on the coordinates of the ob-
ject at some known time instants or on the rate of variation of the
coordinates or, finally, the possibility of "tying in" to some
direction whose orientation relative to the inertial coordinate
system is known, for example, to the direction of some celestial
body (astrocorrection), can be used as the data for making the
correction., Correction can be accomplished by different methods.
The simplest method is obviously introduction of corrections into
the output parameters of the inertial navigation system. The second
method is to bring the system at the point of correction to a state
similar to that in which it was located at the moment of beginning
operation at the starting point, with simultaneous introduction of
corrections into the output parameters. The first method generally
has no essential effect on the inertial system. The second method
essentially differs in no way from preparation of the system for
beginning of operation. Both methods affect neither the error
sources or the dynamics of their time variation, Correction methods
are possible which alter the structure of the error equations; they
can be used to improve the stability of the inertial system, for
example, a system unstable without correction can be made stable.
These methods make it possible to avoid error accumulations. Analysis
of this type of methods of correction is closely related to study
of the properties of the error equations of autonomous inertial sys=
tems.,

We can further isolate the group of problems related to sim-
plification of the equations of ideal operation. Simplifications
are possible not only by selecting the reference ' grid and special
orientation of the axes of sensitivity of the newtonometers and
gyroscopes relative to this reference grid and gravitational
field.
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The extent and nature of time variation of various
terms of the equations of ideal operation are determined to a great
extent by the motion of the object. For a given class of the pro-
grammed trajectories of motion of an object, some terms of the
equation of ideal operation may be small and may be disregarded.
Other terms may be close to their values on the programmed trajectory,
and, therefore, it may be possible to form them as functions of
their programmed values, i.e., as time functions, rather than as
functions of the current coordinates of the object. The equations
of ideal operation may also be simplified if the time variation
of one or another navigational parameters are known from the out-
side information sources or from the specifics of motion of the
object or if the functional relations which link some of these
parameters are known,

Introduction of simplifications into the algorithm of ideal
operation of the system usually leads to the occurrence of addi-
tional errors in calculating the navigational parameters, Simpli-
fications are permissable if the value of the errors caused by them
are small compared to other errors, for example, to those which
occur as the result of instrument errors of the elements. The
possibility of simplifying the equations of ideal operation of the
system can best be determined only as the result of analyzing these
equations together with the corresponding error equations.

The given list of problems whose solu“ion is required when
investigating operation of inertial navig.tion systems is of
course not exhaustive, Only the main groups of problems and only
those in the most common form were touched on here. These prob-
lems may, of course, be more detailed only during their solution.
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Draper C. C,, Wrigley W,, Hovorka J., Inertial guidance,
Pergamon Press, New York, 1960,

Ishlinskiy, A. Yu., Equations of the problem of calculating
the location of a moving object by means of gyroscopes and

accelerometers, Prikladnaya Matematika i Mekhanika Vol. 21,
No. 6, 1957,

Strict proof of this statement will be given in the next
section of this chapter.

Ishlinskiy, A. Yu.,, On the Theory of Gyroscopic Stabilization
of Complex Systems, Prikladnaya Matematika i Mekhanika Vol.22,
No. 3, 1958, ‘

Ishlinskiy, A. Yu., On the Theory of Gyroscopic Stabilization
of Complex Systens, Prikladnaya Matematika i Mekhanika Vol. 22,
No. 3, 1958,

A suspension which provides three degrees of freedom of the
gyroscope rotor is called a suspension with three degrees of
freedom. This name is generally accepted in the Soviet
literature on gyroscopic devices, In the non-Soviet literature
(for example, in American literature) this suspension is i
often called one with two degrees of freedom, bearing in miﬁd

the number of degrees of freedom of the gyroscope housing,

o B Tare a3 oo

Magnus, K., On the stability of motion of a heacy symmetrical
gimbaled gyroscope. Prikladnaya Matematika i Mekhanika, Vol. 22
No. 3, 1958; Klimov, D.M. Appendices 1 and 2 to: Nikolai, Ye. L.,
Giroskop v vardanovom podvese (Gimbaled Gyroscopes), Fitzmatgiz,
1964,
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Such devices are sometimes called specific moment sensors

in the literature (for example, Gorenshteyn, I. A., I. A.
Schul'man and A. S. Safaryan, Inertsial'naya navigatsiya
(Inertial navigation), Sovetskaya Radio, 1962), bearing in mind
the rotational moment relative to the kinetic moment of the
gyroscope. This name may lead to-a misunderstanding, because
the specific moment is most often called the ro:ational

moment relative to the moment of inertia. Therefore, we will
use the generally accepted name absolute angular rate meter
(sensor) .

See the remark on page 19 (Footnote 3),

Bylgakov, B. V. Prikladnaya teoriya giroskcpov (Applied theory
of Gyroscopes), Gostekhizdat, 1955; Roytenberg, Ya. N. Free

oscillations of gyroscopic stabilizers, Prikladnaya Matematika
i Mekhanika, Vol. II, No. 2, 1947. '

Deflections of a gyrostabilized platform, like deflections of

a free gyroscope, may be caused not only by the perturbing
moments along the axes of the housings but also by certain dynamic
affects of the motion of the platform (see the literature

indicated in footnote 7).

Appel'P., Teoreticheskaya mekhanika (Theoretical mechanics),
Vol 2, Fizmatgiz, 1960.
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The assumption of the equivalence of a single three-
dimensional newtonometer to three linear ones, as already
indicated, assumed the fact that the sensitive masses of
all three newtonometers are located at the same point of
space.

Duboshin G. H., Teoriya prityazheniya (Theory of Attraction),
Fizmatiz, 1961.

Blazhko S. N., Kurs sfericheskoy astronomii (A Course in
Spherical Astronomy), Gostekhizdat, 1954.

Einstein A., Infeld L., The Evolution of Physics, Gostekhizdat,
1948,

Andreyev V. D., "On the General Equationé of Inertial Naviga-
tion", Prikladnaya Matematika i Mekhanika, Vol. 28, No. 2, 1964.
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Chapter 2

THE SHAPE, GRAVITATIONAL FIELD AND MOTION OF THE EARTH,

\
§ 2,1. The shape of the earth. The fundamental earth body axis
systems,

The earth's surface is usually assumed to be a fluid surface
of oceans and seas which is thought of as cuntinuing inside the continents
along thin canals which do not change the distribution of masses.

The shape of this surface is the result of the total effects
of the gravitational forces of the earth's mass and of the centri-
fugal force caused by rotation of the earth about its own axis. }

The normal to the quiet surface of the ocean thus coincides with i
the direction of the resulting gravitational forces of the earth %
and centrifugal force, i.e., to the direction of gravity. This

direction is called the perpendicular direction or the true vertical,

The level surface of the earth is very complex and may not be u
accurately represented by any true geometric figure. A special
term - geoid, proposed in 1873 by the German scientist I. Listing, |
was used to define it,

A geoid can be approximated with a sufficient degree of accdracy
by a surface formed by rotation of an ellipse around its small axis,
coinciding with the earth's rotational axis. The ellipsoid of ro-
tation obtained in this case, usually called Clairaut's ellipsoid
will obviously be determined if its semiaxes a and b are given,

The ellipsoid of rotation may also be defined by being given one
of the semiaxes, for example, the major semiaxis a andthe compression ]
(2.1)
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or eccentricity e, whose square is equal to

- (2.2)
= o

In view of the smallness of a and e? and, consequently, due
to the proximity of Clairaut's ellipsoid to the sphere, another name

of the level surface is also used - the terrestrial spheroid.

The ends of the minor semiaxis b of the terrestrial ellip-
soid are called poles: one north and the other south. The cross
sections of the ellipsoid surface, normal to the minor semiaxis,
are circles called parallels. The largest of them is called the
equator., The plane of the equator passes through the center of
the earth. The cross sections of the surface of Clairaut's ellipsoid
by the planes which pass through the minor axis are called meridians.
These are obviously ellipses with semiaxes a and b.

The parameters of the terrestrial ellipsoid (the reference
ellipsoid) are obtained by geodetic measurements carried out es-
pecially for this purpose. In different countries the parameters
of the reference ellipsoid are taken as somewhat different from
each other,

The parameters obtained in 1940 by the Soviet geodesist F. N,
Krasovskiy are used for geodetic and cartographic work in the
Soviet Union. The parameters of F. N. Krasovskiy's ellipsoid are

the following 1
(2.3)
major semiaxis a=6,378,245 n,
minor semiaxis b=6,356,863 m,

primary compression

_ a-h _ 1 —
a = a =, _—79-8_..3- - 0.00335233,
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square of first eccentricity

a2 2

e? = ——;—— = 0.0066934,

square of second eccentricity

2

12 lg =l

-b?
= = 0,0067386,
polar radius of curvature of ellipsoid i

2
c= —pr = 6,399,699 m,

radius of the sphere of an identical volume with the terres-
tricl ellipsoid

R' = 6,371,110 m,

radius of the sphere of an identical surface with the terres-
trial ellipsoid

R" = 6,371,116 m,

We note that deviation of the normal to the geoid, i.e., the
true vertical, from the direction of the normal to Clairaut's ellip- .
soid.does not exceed several angular seconds (2=3") with appro-
priate selection of its parameters, while the deviation of the geoid
surface from the ellipsoid surfacc along the normal is of the order
f tons of meters (100-150) -

For further exposition of the properties of the terrestrial
¢ 11: »soid, let us associate with it the right-hand orthogonal coordinate
tstem O £n; (Figure 2,1), Let us locate the origin of this co-
4

ordinate system at the center of the earth Ox' and let us direct
the axis °x‘ along the minor axis of the terrestrial ellipsoid in

1
!
|
¢
|




the direction of the north pole. The axes olC and Oln will then

be located in the equatorial plane. In order to finally determine
this coordinate system, let us locate the axis o'C along the line

of intersection of the equatorial plane with the plane of the Green-

wich meridian, e ¢
'Y

Fig. 2.1

The equation of Clerot's ellipsoid in the given coordinate
system has the form:

J
ﬂ%;i.’.%‘-ul.

Let point O be some arbitrarily selected point in the co-
ordinate system (nCnc. Let us draw the normal to Clairaut's ellip-
soid through this point., It will obviously be located in the meri-
dional planeO containing point O, and will intersect the ellipsoid
at point A, the equatorial plane at point B and axis [ at point C
(Figure 2.1). The location of point O in the coordinate system
OlCnc may be determined by angle ¢', formed by the normal to the
ellipsoid with the equatorial plane, angle A between the meridianal
planes of point O and the Greenwich meridian and by the segment
of the normal h from point A to point O. Angles ¢' and X are
called geographic latitudes and longitudes, and the value of h co-
incides with the greatest accuracy to the height of point O above

sea level.,
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Let us link the right=hand orthogonal trihedron Ox y 2
point O, Let us direct the zl axis along the positive normal to

the terrestrial ellipsoid, let us locate the yl axis in the meri-
dianal plane, containing point 0, and let us direct it in the di-

I rection of the north pole. The position of the X, is now clearly
determined, It is easy to see that trihedron Xy .z will be or-
iented along the cardinal points by the accompanying trihedron
(Darboux's trihedron) on to the surface h = const, surrounding the
earth. Orientation of this trihedron relative to the earth's
body axes £, n and ¢ is characterized by the table of direction
cosines:

5 Gl ,l (2.4).

t —sind: —sinqg’cosd cosq "cosh

n cosh  —sing’sind  cosq’sink
i 4 0 cos ¢’ sing’,

Having considered the meridianal cross section of the ellip-
soid (Figure 2,2), which passes through point 0 and whose equation
k obviously has the form

(2.5)
_2;+%Bln
we find the following expression for calculating o'
(2.6)

col qi'=—5__

It is easy to find from relations (2.2), (2.5) and (2.6) the
expressions to calculate x and ¢ by ¢', h and the parameters of
the ellipsoid:

(2.7)

[(l>~l' W—=etsarg)h + "]_‘0"9'-

L= [(l =) +hlsln¢'.

—etsin'g "ll




The coordinates § and n are expressed in turn by x and A:
(2.8)

te=xcosd, we=xslnd,

At h =90 formulas (2,7) and (2.8) yield the expressions for
coordinates £, n and ¢ of the point of the ellipsoid surface to ¢'
and A,

Let us determine the radii of curvature rz and r’ of two

mutually perpendicular main normal cross sections of the surface
h =const which pass through axes Okl and on' Having turned to
the first formula of (2.7), we note that it yields an expression
for the radius of the parallel of surface h=const at latitude o',
According to Menier's theorem , it follows directly from this
formula that the radius of curvature of a normal cross section tan-
gent to the parallel is

(2.9)

P Su—— ]

= (—e !lll'q']"'

i. e., it is equal to segment OC (Figure 2.2).

The' radius of curvature of the meridional cross section is
calculated by the well-known formula of differential geometry

(2.10)
("l R c’,,n

=R

(differentiated with respect to ¢ 1is denotea by prime), By using (2.7),

we find:
(2.11)

a(l —ot)
(I — et anty’y™

ry==2

+ 4.




If we now draw some arbitrary normal cross section such that it
forms an angle y with the meridianal plane, then the radius of
curvature of this cross section is calculated from Euler's formula

1 *
- m;:t } (o’s"_

It follows from formulas (2.9), (2.11) and (2.12) that the
racius of curvature of the normal cross section of the surface
h = const (and of the surface of the terrestrial ellipsoid h=0)
with the angle ¢ varying from 0 to 7/2 increases continuously
from its minimum value r’ to the maximum value rz. It is also easy to i
see from formulas (2.9), (2.11]) and (2.12) that the meridianal
cross section at the equator has the minimum radius of curvature,
when

b e~ (2.13)

while the maximum value of the radius of curvature corresponds to
latitude ¢ '=7/2, when
(2.14)

';ur,=7r=q. :' <+ A. E

In view of the smallness of eccentricity of the terrestrial |
¢llipsoid, formulas (2.7), (2.9) and (2.11) can be simplified. By E
~ecomposing the right sides of these formulas into series of
pow rs of e? and by retaining only values of the first order of small-
rns. with respect to the square of eccentricity, instead of (2,7)
¢ (2.8), we find:

. (2.15)
;=[a (l + -5;- sin? q") -+ h]cos 4’ cosd,

N [a (l 4 -7;- sin? lp') -+ h] cos ¢’ sin).,

(-=[a (l —r?4 »')-' sin"qa') + h]slnq".




Accordingly, instead of forimulas (2.9) and (2.11), we will have:

'1"'0(l+:}l’sln’q')+k_ (2.16)

h-ﬂﬁ-wh+§ﬁﬂmwj+h

Along with the geographic coordinates ¢', X and h, let us
introduce the additional geocentric coordinates of the point O, In
order to calculate them, let us combine point O with the center
of the earth Ol by the segment of a straight line (Figure 2,3).

The direction toward the center of the earth may be called the
geocentric vertical. The geocentric coordinates of point 9 will

be length r of segment clo,,angle ¢ between the meridianal plane
and direction olo, and angle )2 between the plane containing {
axis Nz and point O, and the plane olgc. |

Fig. 2.2
It is obvious that the geocentric iongitude is equal to the

geographic longitude. Let us establish the relationship of ¢ and
r to o' and h. To do this, we note that coordinates £, n and 7 of
point D are expressed by r, ¢y and X by means of the equalities

(2.17)

b=rcospeosd, y=rcosgsink, t=rsing.

hence, it follows that

(2.18)

tany: .=%sln)..




But, from formulas (2.7) and (2.8),
(2.19)
aet

OV SR '
Luimd [l ._M“_.,m,',,.;]lw

By substituting relation (2.19) into formula (2.18), we find:

art P (2.20)
] :

) e - —_— o
g 1ll b A =Tty

It now follows from formulas (2.7) and (2.17) that
(2.21)

l__m-_ N4 ,,];'_'l_!'_.

Tl 0ot antgy sine

Having substituted instead of sin ¢ its expression by h and o',
casily obtained from relation (2.,20), we find the dependence of
r on "' and h, The dependence of r on ¢* and h _may also be found
directly from formulas (2.7) and(2.8). In fact,
(2.22)

re= VW4T

By substituting the values of £, n and ¢ from formulas (2.7)
and (2,.8), we find

[ ? P
In“Tﬁ:ﬁm?F<64\mW'+

-}[ =4 - 4 Il]’sin’q"}v'.

(1= ¢t gy

(2.,23)

Figure 2.3
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Let us introduce the moving tiihedron Oxzyzz2 (F igure 2,3), associate

with the point O on the sphere of radius r concentric to the
earth, similar to the manner in which the moving trihedron Ox‘y‘zl
on the surface h=const was introduced. Let us direct the zzaxis
along the geocentric vertical from the center of the earth. Let us
locate the yz axis in the meridianal. plane of point O and let us
direct it toward the north pole. Let us select the direction of
the xz axis so that the yzand z2 axes are completed to form a right-

hand orthogonal set of three.

Orientation of the trihedron Oxzyzz2 to the coordinate
system O‘Enc is calculated by the table of direction cosines,
similar to table (2.4). The difference will be only in
that, instead of geographic latitude ¢ , the expressions for the
geocentric cosines will contain the geocentric latitude 9.

It is easy to see that the xz and x‘axes of trihedrons Ox yzz2
and Ox y 2z coincide. These trihedrons are expanded with
respect to each other by angle (¢' -9), i.e., by the value of the
difference of the geégraphic and geocentric latitudes. The mutual
disposition of these trihedrons is characterized by the table of
direction cosines:

(2.24)

%3 N 2
% 0 0

n 0 cos(y’—q) ~sin(g —gq)
5 0 sin(@'—q)  <os(y’ —q).

The difference (¢' - ¢9) is calculated from formula (2.20), hence,

(2.25)

‘"; 0 — §) = aelsing’ covy’ ,
(= sin?¢)" [a () — T snty’) s £ 4]
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In view of the smallness of the values of e? and (¢ = ¢),
formulas (2.20), (2.23) and (2.25) can be simplified. By assuming
that the value h/a is also small and by decomposing the right sides
of the indicated formulas into series in powers of e? and h/a, we
find

1.-:¢:=[l—-¢’(l —%)]unp’. - (2.26)
rn'c(l —%e’sln’v')-{»-h—a(l —r-;-c'sln’w)-{-h. (2.27)
9= (1 - 3)sin2e’m T (1 = F)on2e. (2.28)

The smallness of the values of e? and (' - ¢) also simplify
the table of directions cosines (2.24). Assuming that

cos(p’ —gqim1, ﬂn('p'—w)nq'—w_

we find
%y " ' 2 (2.29)
x5 1 0 °
n 0 i -—-%’-(l—%)sln?q
5 0 -f;- (l = %) sin 99 b

Substituting the value e?=0.0067 into formula (2.28), we
find that the maximum deviation of the true vertical from the

geocentric vertical is equal to

(2.30)
19— @lmas = 0,00335,

0
which corresponds to=11l.6' and is achieved at latitude 9:45
{(or w'=45°) on the earth's surface. As the distance from the
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carth's surface increases, the value of this difference decreases.
However, this decrease is very slow in direct proximity to the
earth's surface. Thus, at h=100 km, from formula (2.28) we obtain

19— @las, ~ 0,00355(1 — ;'-;-), =~ 0,0003,

which corresponds to =1l1',

Therefore, at small values of h, we may assume:

(2.31)

¢ —9 _% etsin2¢’ 5-'% e25in29.
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and © is the second eccentricity of Clairaut's ellipsoid, calculated
by the fifth equality of (2.3).

The values of Po and Qo are constants which do not depend
on coordinates x, y and z. They are calculated only by the value
of Du and by the second eccentricity.

For the potential 5 . V of the gravitational fiecld inside the
spheroid, the following expression holds:

Ve oo L pa_ ) . (2.35)
-—701—7&w—7%”+h

where

(2.36)
Ko= 2l.lD|I -“: tan'}

is the potential of the spheroid to its center, which is also a
constant valae,

The projections Fx' Fy and Fz can be expressed by derivatives
the potential vof coordinates x, y and z:

(2.37)
Fom— 3%, I’,—-%"i. Pl =SV,

Formulas (2,33)-(2.36) are valid for the interior points of
a homogeneous ellipsoid, also including the points on its surfaoce
which are maximum points. '

We are primarily interested in the gravitational field of a
homogeneous spheroid outside its volume, In this case expressions
(2.32) for Fx' Fy and Fz remain valid, but direct calculation of
the integrals on the right sides is cumbersome. The resulting
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difficulties can be avoided here by using Maclaurin's theorem
that two confocal homogeneous spheroids of equal mass produce an
identical effect in the entire. space external to both spheroids.
This theorem permits easy distribution of formulas (2.33)~-(2,36)
to the case of the extrinsic point by altering them somewhat.

The semiaxes of the ellipsoid, confocal to the given ellipsoid
and passing through point A(x,y,2), as is well known, are equal to:

= VTS, ¥ =V (2.38)

where v is the positive root of the equation

(2.39)
i.'&?*"n%‘"
the second eccentricity of the confocal ellipsoid is equal to
(2.40)
=0
I c= V:‘lq'_—":

and finally, the density of the confocal spheroid, having the same
mass as the given sphereoid, is found from the equality

an (2.41)

l)'=a,m-'.-h' [ = ).
On the basis of Maclavrin's theorem, projections Fx' F_. and Fz
for point A(x,y,z), extrinsic with respect to Clerot's ellipsoid,

are calculated by formulas (2,33)-(2.36), if a', b', £' and D',
icspectively, from formulas (2.38)~(2,41l) are substituted in them
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instead of a, b, E; and D, By carrying out this substitution
and denoting

& (2.42)

D'l ¢! =.Dl+l’,=[) “).uconsl y
"

we arrive at the following formulas for Fx' Fy and Fz:

F. = - Px, F.""’)’- Fl=“Q:‘ (2043)
where
(2.44)
Pn?nDp——-Tir(l " |+l
Q= 4nDp — ('~ rae't).

._._..——
"lu,

For potential V, we find the expression
(2.45)

Vu—-;~l’x’—-7;-l'y’- -;-Q:’-{-K.

where

(2.46)
K =230p 5 van¥

Unlike formulas (2,33)-(2.36), the values of P, Q and K in
formulas (2,.43)-(2.46) are variahles, because they are function
of L', and consequently, in view of relations (2.40) and (2.39),
they are functions of x, y and z. However, formulas (2.37) remain
valid for Fx, Fy and Fz, because it is easily established, for
example, that

1 ar _, |l),'1 | 9Q -
TSy Y TRt e
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Similar equalities are obtained upon differentiation of V with
respect to y and z.

Formulas (2.43) would yield accurate expressions for Fx' F_ and
Fz if the terrestrial spheroid were homogeneous and its density
D and gravitational constant u were known with some accuracy. How-
ever, in fact the distribution of masses in the terrestrial spheroid
is non-uniform, the value of u is known from direct measurements
with accuracy only up to 0.1%, while the average value of D (or,
which is the same thing, the earth's mass M) is calculated only
indirectly and also with an accuracy of the order of 0.1%. Their

‘values are equal to:

(2.47)
pnmm.m“fﬁa.n-anpmﬂ.mamuJM.

Therefore, formulas (2.43) yield only sope approximate values
for projections of the earth's gravitational field intensity on its
body axes.

2,2,2, Solution of the Stokes problem for a level surface

given in the form of a spheroid. More accurate calculation of the earth's

gravitational field can be had by solving the Stokes problem for the
terrestrial ellipsoid. However, before going into exposition of
the solution of the Stokes problem, let us show that the spheroid

can be @ figure of equilibrium of a homogeneous heavy rotating
liquid.

It is known from hydrostatics that, for the equilibrium of a
liquid, on which a force having the components fx' fy and fz and
arbitrary point (x,y,2), is acting, it is necessary that the follow-
ing equalities be fulfilled

(2.48)

L) L) 9
=D, -‘-,,E =0/, =0y,
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where p is pressurc and D is the density of the liguid at the
given point. It follows from these equalities that !
(2.49) '

4’=D(,l‘x+’,"+ll")'

Let the pressure on the external surface of the liquid be
equal to zero: dp=0. Then,

(2.50)
,:“+,,dy+,‘4¢-=0.
Further, lét the shape of the surface of the figure of
equilibrium of the liquid be calculated by the equation
S« 9 2) =0,
Differentiation of this equation yields
s (2.51)

-S-f-dx+%:;-dy+-‘a’§4z-o.

By comparing this equality -with equality (2.50), we conclude
that the partial derivatives of S should be proportional to the
force components:

(2.52)
Js ,1 /s
WEON TS
I oy O

But 3S/9x, 3S/9y and 3S/3z are proportional to the direction
cosines of the normal to the surface S, Consequently, surface S is

a level surface.

109




Let forces fx' £ and fz admit the force function W. Then,
instead of relation (2.50), we find

, (2.53)
.‘J‘_a;-*.%‘; 4y+-‘;-,‘zd:-.ﬂi"=o.

Hence, it follows that W= const and this means that the surface S
is again level,

For a spheroid, function S has the form

s'=":'!'+{;-—|.,o. (2.54)

Therefore,
(2.55)
R

S 2 oS 2y oS 2%
T ST T

The components of gravity'F by a homogeneous spheroid of unit
mass, located inside or on the surface of a spheroid, are given
by formulas (2.33). By adding centrifugal forces to them we find
(2.56)

Ji=ulx— Py, Jy==uly — Py, Foe2—Qy, (2.56)

where u is the earth rate.

By introducing expressions (2.56) and (2.55) into the con-
dition of equilibrium (2.52), we arrive at the equalities
(2.57)

al (! — ) = a? (u? — P) = — bQo.
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The first of them is satisfied identically, and from the second one
and from (2.34) follows the rela‘ion

-;:-‘-';Kﬂ"—"!;lun"l-—%.

The function on the right side of this relation initially
increases as £ increases from zero, reaching a maximum equal to

0.22467 at £=2,5293, and then decreases, asymptotically approaching
zero at when % increases without bcunds.

Thus, at

< 0.22467

there are two (one at the maximum point) solutions of equation

(2.58), one of which corresponds to a slightly compressed spheroid.
Lyapunov's and Poincare's investigations showed that stable figures of
equilibrium of a rotating liquid are obtained only upon fulfillment
of the condition

. 2.60
R ( )
gy <0112

The conditions of (2.59) and (2.60) are fulfilled for the
narth's parameters, In the first approximation equation (2.58)
‘ields for compression of the terrestrial ellipsoid a the following
alue found by Newton

(2.61)
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de

where q = + u is the earth rate and ge is the value of the

azceleration o€ qravity at the equator,

Equation (2.58) relates the second eccentricity of Clairaut's
ellipsoid to the earth rate and its density.
Therefore, if the shape of the spheroid and the angular velocity
of its rotation are assumed to be given, the completely specific
value of density D is obtained from equality (2.58). 1In this case
the mass of the spheroid will not coincide with the earth's mass.,

Let us turn to the Stokes problem. The Stokes theorem is valid:
"Let there be a fixed body uniformly rotating about a fixed axis at
a constant angular velocity u. Let there be known some level surface

of gravity, which completely envelopes the body. The potential i
function of gravity and its first derivatives (i.e., the force com-
ponents) will be clearly determined both on the level surface itself |

and in the entire external space if the total mass of the body is
known regardless of the law of distribution of this mass.”6

The principal possibility of determining the potential of
gravity and of gravity itself follows from the Stokes theorem if
the shape of the level surface and the total mass of the body are
known. The Stokes problem also comprises the search for the po-
tential function W of gravity by the given conditions. The potential
of gravity consists of the gravitational potential Vo and the po-
tential of centrifugal forces U:

(2.62)

W=V 4 U,

The potential of centrifugal forces does not depend on the
shape of the level surface and is expressed by the obvious formula

, (2.63)
U,.,."". (x? | 3.
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Thus, the Stokes problem reduces to finding the potential function
Vo of gravitation.

Function V_ should satisfy the general properties of the poten-
. . 2 7
tial function of gravitation:

1., Externally, it should satisfy the Laplace equation with
relative to the.level surface of the space

(2.64)

’ 1% Yy

2. It should be continuous and finite and it should have con=-
tinuous and finite first derivatives at any finite values of co-
ordinates x, y and z,

3. It should be subject to the limiting condition
O

lim PV == M, (2.65)

(2 ¥l

shere r = v x-+yZ+z? , and M is the eartl's mass,

Moreover, the following equality should be fulfilled on the
jiven level surface

(2.66)

Vo = const ";(x'-|- »

Let us take Clairaut's ellipsoid as the reference surface and let us
assume that the condition of Stokes thecorem is fulfilled for
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it, i.e., let us disregard the circumstance that the masses of
continents are not enveloped by the surface of Clairaut's ellipsoid
Then, solution of the Stokes problem will be the function

(2.67)
WesCK4 V4 U,

where C is some arbitrary function; K is a function calculated by
equality (2.46); V is the potential function of gravitation of a
homogeneous spheroid limited by Clairaut's ellipsoid, taken at the ret-
erence surface; and U is the potential function of the centrifugal
forces calculated by equality (2.63).

Then, for the potential function of gravitation Vo' from
equalities (2.62) and (2.,67), we find the expression
(2.68)
Ve=CK + V.

The function Vo, given by equality (2.68), satisfies the first
of the conditions formulated above, because each of the functions
of V and K is individually a solution of the Laplace equation, which
is easy to ascertain by taking the second derivatives in coordinates
from the functions of V and K, calculated by formulas (2.45) and
(2.46) and by taking into account equation (2,39) and relation (2.40).
Function (2.68) also satisfics the second of the conditions indicated
above,

The remaining two conditions, i.e., the conditions placed on
cqualities (2,65) and (2.66) can be fulfilled by selecting in the
appropriate manner constant C and density D of the homogencous
spheroid contained in expression (2,45) for potential V according
to relations (2.44).
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In fact, let us take for D the value resulting from (2.68)
The surface of Clairaut's ellipsoid will then be the reference surface
of function V + U, i.e., we will have on this surface:
(2.69)
V‘+ Usn const.

But since function K on the given cCclairaut's ellipsoid is also a
constant, then condition (2.66) is fulfilled.

Now, by forming the product tvo and passing to the limit
as r+*°, we find

(2.70)
lim rV, = C2aDpa’s + -; aDya.

By comparing the right sides of equalities (2.70) and (2.65),
we conclude that, in order to satisfy condition (2.65), we must take

N2 (2.71)
C=gpm —3"

Thus, for the components of the earth's gravitational field
intensity, we find the expressions:
e (2.72)
',‘__p,+c%"i, F,=-Py+Co.
r.=_Q:+C%§-.
where
(2.73)

alh p__r
Pm?nnll—(;r_-p-;r; (un ! —.1-7,1') f

! ’ =1y
Q=‘4ﬂDI|'(—.;“:£"ﬁl"(l — tan'l’),

1‘ h
K == 2aDp 7;:—..—‘; van'l’,
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To calculate the constants D and C, contained in expressions
(2.72) and (2.73), the following equalities are used

(2.74)

@ 4r e« 3 M 2
TR = =y, Ceppm -3,

Equation (2,39) and relation (2.40), by means of which the
value of the second eccentricity of the confocal ellipsoid at the
current point is found, and also equality (2.3), which determines
the second eccentricity I of a level ellipsoid, must also be added
to expressions (2.72), (2.73) ‘and (2.74). L ’

Thus, formulas (2,72), (2.73), (2.74), (2.39), (2.40) and
(2.3) make it possible to find the values of Fx' F_ and Ts if the
following are known: the semiaxes a and b of the level ellipsoid,

the earth rate u, the earth's mass M and the gravitational
constant u.

R 3

However, as already indicated above, the accuracy with which
the gravitational constant and earth's mass are known is estimated
by a value of the order of 0.1%. Therefore, the constants con-
tained in the formulas (2,72) and (2.73) are best calculated in
the following manner.' Find the value of Du from the first relation
of (2,74) and obtain the value of C by comparing the acceleration
of gravity, obtained from formulas (2.72), (2.73) and (2.74) to the
measured value of the acceleration of gravity at any point on the
earth's surface, for examplea, at the equator.

From the first equality of (2.72), for the component of
acceleration of gravity g, on the surface of the terrestrial ellip-
soid, we find the value

(2.75)

L,=Px—-C (%f )o —u'x,
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where (ak/ax)o is the value of the derivative of K with respect to x at ‘
the point taken on the surface of the reference ellipsoid.

It follows from equalities (2.46), (2.40) and (2.39) that

(2,76) ’
%-g-::—%b;::,%-;,
%g-u—%ou -‘-,‘:..F‘--;‘r ' |
%“""D‘H%i’- JI
where ]
(2.77) 4

- R Y et

Having taken the point with coordinates #=2=0 and x=a at the
equator and taking into account that v=0 on a level ellipsoid, we
find from (2,75)-(2.77):

(2.78)

£,=2C21Dpa -+ Poa — u?a,

where e is the measured value of acceleration of gravity at the
equator, Hence,

(2,79)

C-"—-r-g——u‘:"” Pe ..




2.2.3. Calculating the projections of the earth's reqularized

gravitational field intensity onto the axes of the geocentric and
geographic moving trihedrons. Let us find the explicit expressions
for projections sz, Fyz and Fz2 of the earth's gravitational field
intensity onto the axes of the geocentric moving trihedron Ox.y.z),
introduced in the preceding section®

From relations (2.72), (2.73), (2.76) and (2.77), having
taken into account the table of direction cosines (2.), we find®

r, =0 (2.80)
I’,,-?nD.ulnqcow[-(-‘T‘-_;-‘-:T,.T (3 ) —

e T

148 TE+ver+v)°

a%r v o1 )
F.-—?ﬂbll{m[2“ —ton )4
g L o
4 ¢cos v(a ten § rwid 2l)]+

+E (354 )

By using equalities (2.,17), (2.2) and (2.77), we find the
following expressions for the terms of the right sides of formulas
(2.80), containing T:

(2.81)

Cra' (a' - §)

IR AR TLE YT E Ay
Y K2 4 =y
-Caﬁ(’)" BTV coa g+ (7 - v) sinTy *

Cre'h [ cos’ sin?
7 (- vt b’IF‘;)'“‘ ‘
@\ UM -§-v) s’ o - (67 f- v) kint ) (? s
-Cao(').l_..__ T —‘-—'i")‘"'“ni"”' ]

BV ol - (@ F V) i
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The right sides of the second and third formulas of (2.80)
can be expanded into rather rapidly convergent series by powers
of e. Let us find this expansion with an accuracy up to the terms

containing the factor e".

From equation (2.39) of a confocal ellipsoid, calculation of
(2.40) of its second eccentricity and from the equalities for x, y and
2z, similar to equalities (2.17) for £, n and ¢, we find:

[T g PIOEL) -
- .
= (=) 4Vt (@ ~ P = 2T (@ = §7)cos oy

The expression for !' is easily represented in the form

Ve 88,

4

where C .

s==| +~‘,:(7‘)'ms’w+ %(;)‘(—g to:’w—ésln’?q-) + ...

We now find:

T‘,—.;;—.;—,);,' (3“".“l'—1__:_"7-‘f —'Jl')-
mo(e) (- b ).
2atbr - fant ') ==

T Lepe-teeyre ).
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(2.82)

(2.83)

(2.84) +

(2.85) r




By substituting expressions (2.83) and (2.84) for 1

and s, we
find:

(2.86)

-D(‘;) ¢7[_§.+,1 G__m‘,")(;)v]_*- o

(—tan ")y

=(3] [3+ ofore - H(2)+
-{-c‘(-%-} }cos’v —}’jsln'?q) (;”-{- 1

Now let us find the expansions in powers of e of expressions
(2.81), also contained in the formulas for calculatin

g I-‘yz and Fzz.
From relations (2.83), (2.84) and (2.40), we find

(2.87)

o v= l’[l—(l—t’sln’w)(;){-}-—": sin?2q (%)'—}- 3 ] 5

Taking this into account, we find:

O+ = r[l - -‘;-(057 (c(-:-)7+
-{--%‘- (l;’- sln’?-p—ms’w) (-"1)‘-{- 00 ] 5
(B v)cos? -t (a2 - V) sin? g =
= r’[l — e%cos 2 (;)’ s -":- sin? '.’«p(%)‘-{- 0a ] ,
(8- v cos?p - (@? - v sin?p =
s r‘[l —2¢%¢0n 7-;(3:—)'—{-

ol —fawm)(z) .




By substituting expressions (2.88) into formulas (2.81) and by
performing termwise multiplication and division of the series,

we find:

Caldr (a? — b?)
T a6y

AT SR

.Q;O_r(;os'o_*_ lln'v)

~afs) [+ (o 1) +

-+ ¢ (I —%cos’m-—%’; sln’?q-) (%)‘-{- 000

(2.89)

]

Let us now substitute expressions (2,89) and (2.86) into formulas

(2.80). Converting everywhere to trigonometric

and sin 2v¢, we find the following equalities:

I’n-snDubﬂsln?vy(l"-)‘{—%.—C-}-
H[=3(7 +3) 4 4 ) ( It
r, =-2nDuo(-H +C+[g+ 5~
—atafd + o+
+[’E+T+5I" 'I‘(v;g'i 5 )+

functions of sin ¢

(2.90)

soman{ - = 3]}

These equalities are also the desired expansions in powers of

e of the projections of the earth's gravitational field intensity on-

to axes X0 Y, and zZ,. The rapid convergence of

the series ob-

tained is provided by the smallness of the carth's eccentricity e.

The right sides of formulas (2.90) contain the constants Du

and C, calculated by the first equality of (2.74) and by equality (2.79),
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respectively., Let us find the explicit expressions for constants
D and C.

From the first equality of (2.74)
(2.91)

ull?

D = T mesT=ar

hence, by expanding the function on the right side by powers of 1,
we find:

(2.92)

15 (] 1
Dp =g (14 TP+ ).

By converting in relation (2.92) to the first eccentricity
and by using for this the relation

o X
Pe =g »

we find Dy in the following form:
(2.93)

. Dp--{'{—:-;-""’-(l —-;-c’+7'§¢‘+...).

It remains to find C. However, it is more convenient to find
directly the value of nDuC, because constant C is contained in
formulas (2.90) in this combination.

From formula (2,.79)

(2.94)

aDpC = -QI; (8,4 u’a — Pya).
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According to (2,34),

(2.95)
Py == 21Dp L’—’}l—- tan*V - -m'_ ) .
Expansion into a series in I and conversion afterwards to
the first eccentricity yield the following value for Po
(2.96)
Py = 2:|Du(-§-— 125" —-T’(B-f‘) o
By substituting expression (2.96) into formula (2.94) and
taking into account relation (2.93), we arrive at the equality
(2.97)

ut

aDuC = 7—+ 5o (_ g .;,_';,.1 ,F%'c) ,

|
which also yields the explicit representation of the constant
nDuC.

Substitution of expressions (2.93) and (2.97) into formulas

(2.90) leads to the following expressions for Fy2 and Fzzz

(2.98)
I _.--(q c)( )sin'.’cp[l-{ €. I‘:('I 3y ])/
X{‘ + [ 73‘* v e |2 ()
=-a( i -7-% +q(——.-ev)+
+[“‘2’ ""( 3t n ‘)”
a4 )
+[5 - ’Hs"’*""’“( et Ll
=247 0= 359)) @ (3)'}
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where the ratio of the centrifugal force occurring because of the
earth's rotation to gravity at the equator is denoted by q, i.e.,

'
- (2.99)
If we takel0
o = Tegp = 7.292116.. 10 eex, (2.100) i
8=6378245 v, ?:=0,0066934, .
£, ==978,049 cm/aec?, .
then
L

The numerical values of the coefficientss contained in formulas
(2.98) will then be equal to

(2,102) q

i
-y et —30¢ §
B@—e=—1577 '+"'!_'_‘uq 1.008, | .
3 30¢ 217 2 et —10g | .
o W.,_.=o.ons. Ty = — 0013, H
[ J i
"T +q(7__e’).= 1001837, {4
f 3¢ _.u-+q( ﬁﬂ)._o.00|,ﬁ27. {
i 7e-ge H(‘?+1"’)=°°°“"'“' | I
« ‘
,:(.3_ g q)._onuuwo. ‘
¢ %f"-v—-q) = 0000008, |
g 3'!';, -5 ,,) - 0,000000,
1
4
- '
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The numerical values of the coefficients indicate that
formulas (2.98) can be written with an accuracy of the order of
0.02 cm/sec? in the following manner:

(2.103)
ph.:.!!ﬂ}:f). (;)' 3in2q,
Fo= - h(%)’[' —"7:""*':71'7"'
+L-,-‘-'1(- | 1—35!11’1)(%)’].
where
(2.104)

!A_'?:'_'lr_. -1om, 152 0,006,

1 —-'l;+-§q=o.oow.

Formulas (2.98) or the similar formulas (2.103) yield expressiors
for Fy2 and Fz2 as a function of the geocentric coordinates ¢ and r.
At the same time it may happen that the directly known values will
be the geocentric latitude ¢ and the height above sea level. The
latter, as was noted in §2.1, coincides with great accuracy to the
distance h along the normal to Clairaut's level ellipscicd,

Formulas (2,.23), which yields the expression r in ¢', h and
the parameters of (iairaut's ellipsoid, was obtained in §2.1. The

following value is ohbtained from this formula for r?:

(2.105)

ale? (1 —e) sin? ¢’ m———
re=at4 h1— -(—l(T-’, !;':{,‘0-, v -4 2ah [’l — elsinty’
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Let us consider the case of small values of h, when the ratio
h/r has the same order of smallness as the square of the first eccen-
tricity e?. Then with an accuracy up to values of the order of e"
inclusively, we have:

(2.106)
r= a’[(l + -:—)’— c’(l 4- %) sin" ¢’ + r‘sln’w’cos’w’l.

With an accuracy up to values of the order of e?, the geo-
centric latitude ¢' is related to the geocentric relation
(2.107)

tan W'=|'|:£.¢;F-

which ensues from functions (2.20) and (2.25). From equality
(2.107), it is easy to find in turn the expression for the square
of the sin of geographic latitude: O

(2.108)
sin? ¢’ = sin? ¢ (1 2¢7 €0s? q)s

By substituting expression (2,108) into formula (2.106), we
find
(2.109)

» h? A
ﬂ=ﬂ@+§+;r—;ﬂhw—

— e?sin?p — e'sin’q ms"p)I g

Then,
(2.110)

a\? 28 Int ]
(',’) -] — = g 13 2 s e? st 4 et sln? .
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Let us substitute expression (2.110) into formulas (2.98).

After obvious transformations we f£ind

(2.111)
l,.-ﬂ,‘—"lunzo[n—-‘;‘-- ‘q
—.—:—.r + o r’i-;—':'g-)un'!q] . !
P.——g,[l --';-un'v +q(| +;un'9)+
+c‘(—"- tln"—%;ln’29)+
+o’q(— %—sln’q+~:—gsln’2w)+
;—0- %o’(sun’w-— )+ %’-(-— | —6stn?g) —

-5+

These formulas with an accuracy up to values @f the order of e"
yield expressions for Fyz and Fzz in ¢ and h,

Let us turn in formulas (2.111) to the geographic latitude o',
Since the trigonometric functions of the geocentric latitude ¢ are
contained in formulas (2.111) with factors having an order of e?
and e', then the values of sin?y, sin 2¢ and sin22¢, expressed by
the trigonometric functions of geographic latitude ¢' with an
accuracy only up to values of the order of e?, must be substituted
into these formulas., From equality (2.107), we find

(2.112)

sinfe=sin? g (1 — 2e?cos? ¢’),
$in 2 = sin 2¢' J1 - #7(2sin?q’ — 1)},
8107 2 == 8in? 29 [1 4 e?(4 sin? @' — 2)).

By substituting relations (2,112) into formulas (2.11l1l), we arrive
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at the equalities:

(2.113)
From £80200 sinzg[1 — 43— 40—
2 (o? 9,
L :; = ",’;)— slu’ot] .

Py =gt = Foinig 4 (1 + Foing) +
S '+c‘(— -}sln’q-’ - -‘% sin? 2@’) +

+l’q(— %tln’o’-{--l!g sin? 29’)+
+La@sntg — 1)+

+ M sy~ 2 2],

The right sides of these equalities are expressions in ¢' and h
of the projection of Fyz and Fzz of the earth's gravitational field :
intensity on the 5, and zz axes of the geocen®ric moving trihedron
X z .

Y, %,

It is now easy to find the expressions in ¢' and h of the pro- 1
jections of Fyl and le of the gravitational field intensity on
the yl and zl axes of the geographic moving trihedron. According
to table (2.24) of the direction cosines, we find

(2.114)

Fy = Fpcosty’ —4q)—Fa sin(’ —4).
Fo, = Fysin(g’ — q)+ Fr, cos (@' —4).

In order to write the explicit expressions for l’yl and le
only in h and ¢', we need to have with an accuracy up to values
of the order of e" of the value of sin (%' - ¢ and cos (¢ - 9,
expressed by these variables.
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From (2.25), we £find

(2,115)
tan (¢ "')-"s'w’cow'(l 4o sm’v'-—%).

Hence,

(2.116)
sin(g’ — §) = e2siny’ cos np'(l 4 et g’ _%)..

cos(p’ —q)e= | — —';— sin? p’ cos?q’,

By substituting these expressions together with equalities (2.113)
into relations (2.114), we arrive at the following formulas:

P,.-=:,sln2@'[-;-(|+'?’,|,,:¢:)+%(%'__Qq)]' (2.117) !
F, =~l.[l—-§'-sln’w'+v(l +é‘;s|..z@') +q )
+e (—--.'-sln’w' +-% sin? 2-p')+ J|
+eg(— st~ sum W) +2e@sintg' 1)+ ‘i
+-‘;1(—|—ss|nw)_.¥+°_:;]_ 1 ’ I

Formulas (2.117) yield expressions of the projection of Fyl
on the direction tangent to the ellipsoid and lying within the
meridional plane, and projection le of the gravitational field 1
intensity on the normal to the level ellipsoid.

Having set h = 0 in formulas (2.117), we find the formulas
which determine the projections F"l and ng of the gravitational
field intensity on to the ecarth's surface {(on the level ellipsoid)

Fo= 5 (1 4 oty simay’ (2.118)
R=— g,[l-—%’ sm’«;’+q(l | %sm?.p') ¥
-+ ¢ (—- -:-sln’l|'+ :}Ism’ '245')—}-

+ 'lq(.. ;;,m‘ ¢ — [%sln’ 2!0')].
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If we now add the values of the projections onto the y; and z;
axes of centrifugal acceleration, which occurs because of the
earth's rotation, to the values of projections F°l and F;l, the
first sum should be equal to zero, while the second sum should
lead to the formula of normal gravity.

Let us denote the projections of centrifugal acceleration onto
the ¥ and z  axes by F§1 and F;l. We have (Figure 2.4)

I’;I-—u’rcouulnv'. (2.119)
F, = a’rcosgiosg’,

where u is the earth rate.

¥
Ny =
| P,

‘Wl

£

Fig. 2.4

From relations (2.112) and (2.109), with an accuracy up to
terms of the order of e?, we find

(2.120)

reosg = n(l +5,}s!n’-r’)«ow\’.

By introducing the notation of (2.99), we find
(2,121)

" ]
7. oo !.;‘L(] + ',z—slu’tp')slu 2p’,

F, = g,q(l + -?:Iu"-p'):m’ ("8
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We now find:

(2.122)
F) 4 F) =0,
ot P re - goa
- ‘,!I s -m'q'(;q -;)%_%,741)4.

+sin? 2¢' (5-} - ‘% f’q)J 3

Instead of the square of first eccentricity e?, com-
pression a may be introduced into the second formula of (2.122).
According to equalities (2.1) and (2.2), we have the expansion

I (2.123)
ﬂ=T+T+ ‘e

-
By substituting the expansion (2.123) into the second equality

of (2.122), we arrive at the formula

(2.124)
£ =g, (! +psin?q’ 4y sin? 2¢), (2124)

where

(2.125)

f‘|=‘a§"_%4“-

i.e., to the well-known formula of normal gravity in Helmert-Kassinis
form,11 which was required.
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Calculations for the parameters of the Krasovskiy ellipsoid
yields:
b= 0.0053171, p, ==0.0000071,
Formulas (2.125) are called Clairaut's formulas, If the accel-
eration of gravity at the pole is denoted by gp, then it follows
from equality (2.124) that

(2.126)

We note that if coefficient B is calculated from formula
(2.124) from the results of observations of gravity at different
latitudes, then Clairaut's first formula permits calculation of the
compression of the terrestrial spheroid, because the value of q
is known with great accuracy.

.

Let us also note that the formula of normal gravity was ob-
tained only to ascertain that it resultsas a special case from the
more general formulas which we constructed. This is the well=~
known check of the correctness of the calculations made above.
Expression (2.124) for g may in itself be obtained simply from
Somil'yan's formula.!!

§2.,3. The Earth's Motion Relative To Its Center of Mass

The earth's motion relative to distant (fixed) stars, (or,
in other words, rclative to the inertial reference system Os*n*c.)
consists of translational motion, i.e., the motion of its center of
mass and of rotation about the center of mess., If the position and
velocity of the carth's center of mass are taken at some moment of
time as the initial moments, then its further motion is calculated

by the resulting attractive force of the earth's elementary masses
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by the celestial bodies. Similarly, rotation about the center of
mass is determined by the moment of this resultant relative
to the center of the earth.

When solving problems of autonomous inertial navigation near
the earth (or rather in the system of reference bound to it), it
is not necessary to know the motion of the earth's center of mass.
If fact, the motion of the earth's center of mass is not contained
in the fundamental equation of inertial navigation (1.88)., It
disappeared from this equation in view of equality (1.85).

The earth's motion about the center of mass is another matter.
This motion should be known., Actually, the fundamental equation
of inertial navigation (1.88) is written in the coordinate sys-
tem O, &unubus whose origin coincides with the center of the earth,
while orientation of the axes is identical to orientation of the
axes of the inertial system of reference Olk:ﬁ*t*. Therefore,
orientation of axes £,, n, and g, may be assumed to be fixed rel-
ative to the directions toward the remote stars. If we assume
the earth's gravitational field intensity g(?) to be given in the
system of reference 0,£,n.%,, We can find the coordinates of £,,n,
and 7, from equaticn (1.88). Conversion to coordinates £, n and g
in the trihedron 0,£nz bound to the earth obviously requires know-
Jedge of the position of trihedron 0,&n; reiative to the trihedron
Olﬁ*n*:* i.e., one must know the earth's motion about its center,
Moreover, as already noted in §1.4, the earth's gravitational field
intensity (taking into account the non-sphericity of its gravita-
tional field) is given in the earth body axis system 0,6ng. Re=
calculation of gravitational field intensity to the coordinate
trihedron 0,£,n,%Z, also requires a knowledge at every moment of time
of the mutual disposition of trihedrois 0,6nZ and O &, nuf..
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When considering problems of the theory of autonomous inertial
navigation, we may assume that the earth's center of mass coincides
with the center of Clairaut's ellipsoid, while the earth's motion
about the center of mass reduces to uniform rotation about the axis
of symmetry of Clairaut's ellipsoid, which rctains its own orienta-
tion unchanged relative to the directions toward fixed stars.

Actually, the position of the instantaneous rotational axis
of the earth does not coincide with the minor axis of the terres-
trial ellipsoid (the least major axis of the ellipsoid of inertia).
Therefore, it follows from Euler's equations of the rotation of
a solid relative to the inertial center of mass that the in-
stantaneous axis of the earth's rotation will describe a cone about
its axis in the earth's body. Euler found the period of this
motion equal to approximately 305 days. S. Chandler's processing
of experimental materials showed that the motion of the earth's
instantaneous rotational axis in its body has two pericds: the first
is equal to’approximately 420 days and the second is equal to one
year. S, Newcomb showed that a 420-day period is Euler's period
with regard to the non-rigidity of the earth. The annual period is
related to the seasonal redistribution of masses on the earth's
surface, !?

The maximum deviation of the earth's instantaneous rotational
axis from the direction of the minor axis of Clairaut's ellipsoid
does not exceed 0.67", which yields the error of determining the
latitude of the point on to the earth's surface. This error may
obviously be disregarded in navigation problems.

The value of the earth rate (its modulus) is, strictly
speaking, not fixed.!? It has been noted that the length
of days because of tidal friction increases by an
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average of 0,0016 sec per century. Moreover, secasonal variations

ot the length of the days by a value up to 0.0025 sec and irregular

intermittent variations having values up to 0.034 sec have been ob-

wrved, All these variations are small and théy can be disregarded
the consideration of problems. The time determined by the earth's

1 tation with respect to the distant stars (stellar time) may also

.. assumed uniform and adequate to Newtonian dynamic time,

Orientation of vector U of the earth rate in stellar
space does not remain fixed. The main cause
of this is the circumstance that the earth's attraction by the sun
and moor. leads not only to resultant forces, directed along lines
connecting the carth's center of mass to the centers of mass of
the sun and moon, but also to resulting moments, This is in turn
caused by the fact that compression of the earth leads to asymmetry
of the earth's distribution of mass relative to the directions
from its center to the sun and moon. bt

. ’ ’

The vectors of the resulting moments from the sun and moon
are located within the plane of the terrestrial equator and accor=-
dingly attempt to combine this plane to the plane of the ecliptic
(the orbital plane of the earth) and to the plane of the lunar
orbit.

The action of the indicated moments leads to precession of
he earth's angular velocity vector relative to the normal to
=’ > plane of the ecliptic along a cone with an angle of 2¢=23%27"

the vertex with a period approximately equal to 26,000 years,
to nutation with the main period of approximately 18.6 years,

wl th leads to periodic variation of angle ¢ by the value Ac=10",!'"

Because of the perturbing action of the planets, the carth's
or' .tal plane also does not remain fixed in stellar space. It

FiD-HC~23~-893-74
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rotates about an axis, lying within the orbital plane at a velocity
having a value of the order of 47" per century during the current
epoch. This leads to slow variation (a decrease in the current
epoch) of angle €. Moreover, because of the motion of the moon

and earth about the common center of mass, the earth's orbit de-
viates from the planc of the ecliptic, near which the motion of

the center of mass of the earth-moon system occurs by a value of
the order of 1",

All the indicated effects of variation of the position of the
earth's rotational axis in stellar space, which plays an important
role during fundamental astronomical investigations, may obviously
be disregarded in navigation problems because of smallness, and
in any case if we bear in mind determination of the position of an
object with an accuracy of the order of one km, and the operating
time of the inertial system not exceeding, for example, one month.

T .

Henceforth, we shall usually assume that vector U of the
carth rate coincides with its axis, whose orientation we shall
assume to be fixed~%p stellar space. Let us assume that the
value of the carth rate is constant (u=7,292116* 10~ 5). However,
we note that, as will become clear subsequently, the problem of
inertial navigation can be solved in principle and with regard
to the inconstancy of the earth rate. It is sufficient to know
only the projections uﬁ(t), un(t),and u((t) of vector ¥ of the
earth rate to ite body axes £,n and ¢ as time functions.

1. The parameters of the ellipsoids taken in other countries can
be found, for example in the book: Graur L. V., Matematicheskava
. v :
Kartografiya, Isd- o LGU im, A, A, Zhdanov, 1956

FTD-HC-23-893-74
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3.

9.

10.

11,

12,

13,

14.

Mikhaylov, A. A,, Kurs gravimetrii i tecorii figury 2Zemli
(Course in Gravimetry and Theory of the Shape of the Earth),
Redbyuru GUGK for SMNK of the USSR, 1939; Grushinskiy, N. P.,
Teoriya figury Zemli (Theory of the Shape of the Earth), Fiz-
matgiz, 1963,

1
Rashevskiy, P. K., Kurs differential noy geometrii (Course in
Differential Geometry), Gomtekhizdat, 1956.

Compare, for example, Mikhaylov, A, A., op. cit., or Duboshin,

G. N., Teoriya prityazhoniya (Theory of Attraction), Fizmatgiz,
1961.

The force function in i niyn from the gravitational
field strength.

The procf of this theorem can bo found in the works indicated

in Note 4 and also in Idel'non, N, 1,, Teoriya potensiala i ego
prilozheniya k voprosam geofiziki (Theory of the Potental and
its Application to Problems of Geophysics), Gostekhizdat, 1932;
Grushinskiy, N. P,, op. cit.

Compare, for example, the literaturc i;'Note 6.

Andreyev, V. D., On Solving the Stokes Problem for a Reference
Surface Given in the Form of a Spheroid, Prikladnaya matematika
i mekhanika, Vol. XXX, Issue 2, 1966,

In this case (for the trihedron Oxzyzzz) it is necessary to
replace ¢' by ¢ in Table (2.4).

Mikhaylov, A. A., op. cit.; Graur, A. V., Matematicheskaya
kartografiya (Mathematical Cartography), A. A. Zhdanov Press
of Leningrad State University, 1956.

Mikhaylov, A. A., op. cit.

Blazhko, S. N., Kurs sfericheskoy astronomii (Course in Spheri-
cal Astronomy), Gostckhizdat, 1954.

Kulikov, K. A,, Izmenyayemost' shirot i dolgot (Variability of
Latitudes and Longitudes), Fizmatgiz, 1962,

Blazhko, S. N., op. cit .; Subbotin, M. F., Kurs nebesnoy mekhaniki
(Course in Celestial Mechanics), Vol. 2, ONTI, 1937,
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Chapter 3
EQUATIONS OF THE IDEAL OPERATION OF INERTIAL NAVIGATION SYSTEMS
: 3 1
§3.1. Calculating the Cartesian Coordinates of an Object.

3.1.1. Initial relations. Let us consider an inertial
navigation system constructed in the following manner. Three
newtonometers n , n_and n, (Figure 3.1) arc mounted on the plat-
form of an absolute angular-rate meter with three degrees of free-
dom. The directions of the axes of sensitivity of the newtonometer
coincide with the directions of the x, y and z axes of the right-
hand orthogonal coordinate system Oxyz, bound to the platform,

In the general case the platform is installed on board in a moving
object in a gimbal suspension with three degrees of freedom simi=-
lar to the way in which the gyrostabilized platform (Figure 1,10),
considered in §1.3, was suspended. Let us agsume that the task
of the inertial navigation system is to calculate the Cartesian
coordinates £,, n, and g, of point O in the coordinate system
olﬁ*n,c, (or coordinates £, n and ¢ of this point in the coordi-
nate system olﬁnc), and also the parameters which determine the
orientation of the object relative to the axes of this system.

Fig. 3.1

The coordinate axes Olc,n*c,, which we introduced previously
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to derive the fundamental equation of inecrtial navigation, retain

fixed directions relative to the directions to the remote stars.

The origin Ol of this coordinate system is incident with the earth's
center of mass. We shall henceforth assume that the carth's center of mas
coincides with its geometric center, The coordinate system Olgn;,

also introduced previously, is rigidly bound to the earth, 1Its

origin is incident with the earth's center and the g axis is direc-

ted along the vector of the earth rate. I
The £ and n axes are located in the equatorial plane, Let us assume
further that the ¢ axis coincides with the linc of intersection

of the planes of the equatcr and of the Greenwich meridian.

Let us assume that the sensitive masses of the newtonometers
are located at point O, Let us denote their readings by n o
and n_,. Let us denote the readings of the absolute angular VGXOCItY (rate)‘

z
meters by m . my and m,, respectively. Let us assume that

4

»
(3.1)

m,=u,, m, 2oy, M=,

where Wy r wy and w, are projections of the absolute angular

velocity of the platform to the axes of trihedron xyz bound to

it. According to the accepted disposition of the suspension axes

of the gyroscope housings and the directions of their intrinsic moments
of momentum + the values of m e my and m, are calculated by
relations (3.1) and (1.4%) or by (3.1) and (1.45). It follows from
these relations that the values of m. my and m, are proportional

to the values of deformations of clastic suspensions of gyroscopes

Gz, Gl and Gs' respectively, with great accuracy.

Iet us usc equation (1.88) of motion of the sensitive mass
of the newtonometer to derive the equations of idecal operation., Let

FTD-HC-23-893-74
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us first introduce the coordinate system leyz, whose axes are parallel
to the coordinate axes Oxyz of the same name, and let us take as the
origin the earth's center leyz can be obviously given in Cartesian
coordinates x, y and z,

Let us turn to equation (1.88)
» ) (3.2)

[}
R S (LI i

The newtonometer readings of the considered inertial system ]
->
{ are projections of vector n to the coordinate axes Oxyz. These

projections are equal to the corresponding projections to coor=-
l dinate axes O XYZ, since axes Ox, 0y and Oz are parallel to axes
0 x, 0 y and O z, and, thus, trihedron Oxyz moves in a forward
l directlon w1th respect to trihedron O Xyz. Diffcrentiation in

equation (3.2) is carried out in the coordinate system O E,n L
i The coordinate system Oxyz has a common orlg1n with it and rotates
with respect to it at an angular velocity & to axes olx, Oly and
012 are obviously equal to W wy and W, because trihedrons Oxyz
and olxyz, as already noted, have an identic~i orientation in the

coordinate system Olﬁ,n,c,. o

! Having applied formula (l1.14) twice to r, which yields the 1
expression of the absolute derivative of the vector in a rotating
‘ ~oordinate system, we find: *
(3.3)
'-.-.-"{% '.‘ wr, %‘:‘:"_64 “e,
iere
(3.4)
r=xg4-yyt 22, o e € bey e,
b
{ 4
j
FTD-HC-23-893-74 o g
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while the dot denotes the local differentiation in the coordinate

system leyz, i.e., differentiation of vectors ; and ;, given by
relations (3.4), provided that x, y and z in these relations do not
depend on time.

By substituting the.second equality of (3.3) into equation
(3.2), we find:s
(3.5)

R==0-4 1< 0—g(r)

Taking into account equalities (3.l1) and introducing the
vector
(3.6)

m=mx-t ooy me,

we write the equality (3.5) and the first reMation of (3.3) as
follows:

(3.7)
o=A- mXv g
"uv-—ﬂlxrc
where .
R=ax4n,y+ 02, (3.8)

since vector n is given by its own projections on the coordinate
axes Oxyz, or, which is the same thing, on the axes of system leyz.
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3.1.2. Integration of the fundamental equation during arbitrary

rotation of the platform of an inertial system. The first group of"
equations of ideal operation., If we assume that vector a of the gravi-

tational field strength can be given in the form
s =tst eyt s (3.9)

where Gyt gy and g, are known functions of x, y and z and are time
functions, then equations (3.7) can obviously be integrated. As

the result of integration we find:
(3.10)

[}
= j In—m X 9+ g(nldl +o(0),
0

L]
r=jw—mxnw+um
[]

-
where ;(0) and 3(0) are the values of the vectors ; and v at t=0,
i,e., the initial values of these vectors.

Equations (3.10) permit us to calculate T and v in the co-
ordinate system olxyz, if we assume that vector é(;) is rspresented
in the form of (3.9), the initial conditions of v(0) and r(0) are
given and the projections of vectors n and m to axes x, y and z are
known. Calculation of r in the coordinate system leyz means, as
follows from the first formula of (3.4), calculation of the Car-
tesian coordinates x, y and z of point O in the coordinate system

leyz.

In the considered navigational system the newtonometers and
absolute anqular-rate meters are located along the x, y and z axes,
Vectors n and m are represented in the form of (3.6) and (3.8),
and the projections of N ny, N, M, my and L required for in-
tegration of equations (3.10), are known as time functions. This
may not be said of projections g, gy and g, of vector ; on axes

>, 3 3
X, Y and z, because vector g is known in the general case only in
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the earth body axes system Olqn;.

In the coordinate system Olgnc the earth's gravitational field
is clearly determined by the representation of the power function
V(E,n,L). Vector ; of the gravitational field strength is then
expressed in the coordinate system Olgnc by the equality

(3.11)

’

g=deg V,

ioeo,
(3.12)

e=tt St et

» >
where £, n and £ are unit vectors of the corresponding axes.

To find the projections 9yr 9 and 9, of vectors contained
in the first equation of (3,10), the relative position of axes
%, y and z and of £, n and ; must be calculated from :he known
projections of 3V/3&, 3V/3n and 9V/3r of vector ; on :he earth
body axes £, n and .

It is easy to see that the relative position of axes x, y and
z and of £, n and ¢ is required to find the projections 9yr gy and
g, only in the case of an arbitrary gravitational field, If we
assume that the earth's gravitational field is spherical, then
(3.13)

where u is the product of the earth's mass by the gravitational
cons tant,
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From the second formula of (3.13), the expressions for Iyt

g, and g, by x, y and z follow immediately:

Yy
(3.14)

"-"‘%l"'- "-—%{‘- ‘n_—';“:"'
re(xt4y 4 b,

Thus, in the case of a spherical gravitational field, formulas
(3.10) together with relations (3.14) form a closed system of equa-
tions for finding x, y and z. The indicated circumstance makes it
convenient for further representation of the power function of the
earth's gravitational field in the form of the sum

(3.15)

Vet it n b

i,
where the first term characterizes the spherical part of the earth's
gravitational field, while €(£, n, ) is a slight deflection of the 4
field from a spherical shape. ’ o1

Equations (3.10) with known values of Iyt gy and 9, permit
calculation, as was already noted, of the Cartesian coordinates

x, y and z of the object.6 Equations (3.10) are essential !
similar to equations (1.89) and they could be called equations of {
the ideal operation of the inertial system under consideration, if {

the task of the latter could be limited to finding the Cartesian
coordinates x, y and z of the object in the coordinate system leyz.

But trihedron xyz varies its spatial orientation arbitrarily
in time, because no limiting condition of any kind has yet
been applied in this relation., Therefore, a knowledge of the
object's position in the coordinate system Ozxyz is inadequate for
purposes of navigation. To solve navigational problems, one should
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either find coordinates §, n or ; of the object in the earth body
axes system or coordinates £,, n, or £, in the fundamental Cartesian
coordinate system Olﬁ*n*c*, whose motion with respect to the earth
11ay be assumed known., To find coordinates £, n and £ from known
1lues of x, y and 2z, one must know the relative position of tri-
:drons xyz and £nf (which simultaneously solves the problem of
inding Iyt gy and gz), and to find the coordinates £,, n,and .,

ne should know in turn the position of trihedrons xyz and £,n,C.
with respect to each other.

-

3.1.,3. Determining the orientation of the platform. The
second group of equations of ideal operations., Let us determine
the relative positic.: of trihedrons O XYz (o] Fn; and O C*n*c*.

We know the relative position of these trihedrons at the initial
moment of time, the angular rotational velocity w-m of trihedron

O xyz with respect to trihedron O C*n*c* and the angular rotational
vcloc1ty u of trihedron O Cnc w1th respect to” trihedron O C*n*c*.
It is easy to see that the problem reduces to determlning the para-

meters which characterize the orientation of a moving trihedron

with respect to a moving object, with fixed orientation by the known
projections of the absolute anqular velocity on its axes. This
problem leads to the well=-known Poisson equations., ol

d2rive them,

Let us introduce the direction cosines which characterize the
:lative position of coordinate systems Olﬁ*n*c*z
(3.16)

L, ooy o a
W Uy 0y ay
t, oy ay o
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Unit vectors E*, ﬁ* and E. of axes £,n, and g, are obviously
expressed by unit vectors §, ; and z Of the x, Yy, and z axes in the follow-
ing manner:

(3.17)

bo=ayx-ba,y4 @32,
=@+ any - 0,2,
fo=ayx @y +aye2.

-+ ->
Let us differentiate the unit vectors E., n, and g, in the
coordinate system Oi1xyz, According to formula (1.14), we find:

(3.18)

a3, o

i =84 dy, .

@ =htuxy, 7r=m+mxml
dg *

a =t wxg,
-

But the coordinate axes OIC*n.:* do not change their orien-

tation in absolute space; thercfore, the absolute time derivatives
of the unit vectors of these axes are equal to zero:

. n
4 it A M

By combining these equalities with those of (3.18), we come to 9
P the equations
(3.19)
f.o4 Xt =0 1+40xXy=0
£ +axt, =0

By taking into account equalities (3.1), (3.4), (3.6) and (3.17),
we conclude that equations (3.19) may be integrated in the coordi-
nate system leyz. As the result of integration, we find:
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¢ 0 o0 o ‘A (3020)
l.-f(e.xn)dr+;.(0).

n.-,f(mx'-mﬂ.(o).

-'[46. xmm+c,(o)

v here vectors E (0), n* (0) and C* (0) characterice the relative

osition of the coordinate systems O XYz and Olc*n*c* at the
nitial moment of time,

"he vector relations (3. 20) are equivalent to nine scalar
€quations which form three groups. These equations are easily ob-
tained by using equalities (3.6_) and (3,17), They have the form:

"'."."f RSB . o (3.21)
[ =‘f'(a.|?m, - u,.m,).:l‘l-f.- a.,(IO),
(.1 -.j(a.,m, - n,,n,).dll+ a;3(0);

'
o = .,I (O, — Sy, dt 4. 0y, (0) (3.22)
Op = ! @:m; = aym) dt 4 0z )
o =.f'(¢a”', = 05m,)dt + ayy (0);

©oay = I (@ym, — a,m,)dl 4- a,,(0),
’

' (3.23)
|| 0y - J(«.,m, — aym)dt -, (0),
]

@yt I(n.,ﬂl, — uy,m,)det §-a, (0).
o
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Each of the systems of equations (3.21), (3.22) and (3.23)
are also Poisson equations known in theoretical mechanics. Equa-
tions (3.21), (3.22) and (3.23) reestablish the table of direction
cosines (3.16): equations (3.21) reestablish its first line and
equations (3.,22) and (3.,23) reestablish the second and thiid lines,
1eopectively,

It is now easy to find the relations through which the Cartesian
coordinates £,, n, and g, are expressed by x, y and z:

(3.24)
!0"‘0"' 'L'-_'I."- SH‘.".

where unit vectors E*, ;* and E* are calculated by formulas (3.17),
while vector T is given by the first equality of (3.4). )

The scalar equations, corresponding to ®elations (3.24), ob=-
viously have the form:

PP arron

(3. 25) ;

L, =0yx 4 a,py-+-0,2, ujq
=, x 4 apy-i-a.2, 1
L =a,x--anyy-faus. ;

E 1
v

| The relations reciprocal to relations (3.25) and (3.17) are q
obvious. We note that equations (3.19) may easily be inverted,

i.e., instead of equations (3.19) for unit vectors E*, n* and c*
in the projections on axes x, y and z, the equation for unit vectors
X, ; and Z in the projections on axes £,, n, and f, can be found:

(3.26)

dx . dy d
qT=MAR Gr=mAy, Gr=mXxe.
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Equations (3.26) are obtained, if by using the principle of
Galilean relativity, we assume that trihedron xyz is fixed, while
trihedron £,n,%, is assumed to rotate with respect to triheéron Xyz
at an angular velocity of ~@=-m, Now using the relations inverse
to relations (3,17), we can now turn to the scalar equations from
vector equations (3,26)., The scalar will differ from the equations
in (3.,21), (3.22) and (3.23) by the fact that the first and second
indices of the direction cosines\ai will exchange places and
-mc*, -mn* and -mc* will appear jnstead of m my and m,.

Let us now turn to finding the mutual disposition of trihedrons
leyz and OIEnC. Let us introduce the table of direction cosines:

t 1 ¢ (3.27)
b ooy a, e
L
§, oy a o

According to table (3.27), we have:
(3.28)
Ch maideb il |
'|.=“.:|‘ +am4-al,
£ =a,t+andaib

-5
By differentiating unit vectors f*, ﬁ* and ¢, in the coor-

dinate system O ¢£nf;, we find similar to equations (3.19):
1

t.+u><i.=0- |i.+u)(|“=x0. (3.29)
L+axt, =0
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or

[} ]
b= ‘j @ X8+, 0). n,= [ (4 Xw)dt+n, 0. (3.30)
L

=[G mdr 48,

Unit vectors E,,, 'ﬁ,, and ?:,, in equations (3.29) and (3.30)
are given by equality (3.28), while vector U should be assumed to
be represented in the form

L A NI N PR

Local differentiation in expressions (3.29) and integration
in formulas (3.30) were carried out in the coordinate system olgnr,.
C -
Equations (3.29) can be inverted in the same manner that
equalities (3,19) were inverted by equations (3.26).

From vector equations (3,.,30), three groups of scalar equations
are obtained:

(3.31)

[
oy == [ (g, — wiyw )t 4w, (0),
L]

]
u,= I (Ul — oy )t + 0}, (),
° .

(]
a)y=s I (n;,u‘ -~ aj.)dt 4 a5 (0)
°
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[}
-y [ (g~ a0 )dt -+ o, (0), (3.32)
[ ]

i [}
e f (400~ &, m) dt - o, (0),
[ ]

A
@)= I (u3%y~ ) di a,(0);
¢

J {
ﬂ;. = I(ﬂbll‘ - il'n) dt + “;1 (0), (3 . 3 3 )
[ ]

'
upe= I (whey — uy . }dt 4 o}, (0),
]

[}
0= [ (050~ @) dr -l 0.
R

If the value of the earth rate u is assumed
to be constant and the direction of u is asswmed to coincide
with the axis Olc, then

(3.34)

Wreuyr20, u;espesconst,

It then follows from the three e

quations (3.31), (3.32) and
(3.33) that

’ ’ ’ ' ’ ‘ (3.35)
), = a; (0), uy, =, (0), ag, = a) (0). :

The remaining six cequations

fall into three systems of second-
order equations of the s

ame type:

(3.36)

!
o =u [yt | u;,0), 4= —u [ dt 4 ),
0 0




(3.37)

[] ]
.;,...J.;,a“;,(o). .n;,---‘jc;.dwc;,w).

]

= . - (3.38)
tﬂ.--‘j a5d1+,(0). o —u [ a),di 40y (0),
]

The systems of equations (3.36), (3.37) and (3.38) have con-
stant coefficients and are easily solved. It follows from them that

(3.39)

o), = n:.(O)cos w4 u;,(O) sinsf,

ajy =3 - ay (M)sdaut ug, (W) cosal,
a}, =aj, (0)cos ut -+ ai,(0) shnut, ]
@}, = = a3, (0)sinaf -+ a, (O)cosut,” | k
<, == 0}, (0) cos ut -+ aly (0) slnat, b

a)y= - aj, (0)sinut |-a, (0)cosal.

i 4
If we assume that axis 7 coincides with axis Lar and axis JJ
£y is directed toward the point of the vernal equinox, then

U=y =l a0, af=.

In this case the table of direction cosines (3.27) determines
the relationship between the Cartesian coordinates £,, n, and Z,
in the first equatorial coordinate system and the Cartesian coor-
dinates £, n and ¢ in the coordinate system OlinC.

152




Of course, relations (3.35) and (3.39) may also be obtained
directly from geometric concepts. However, it will be more con-
venient for us in the future to use more general equations (3.31),
(3.32) and (3.33), rather than relations (3.35) and (3.39). One of
the reasons for this lies in the fact that equations (3.31),(3.32)
and (3.33), being equivalent to relations (3.35) and (3.39) with
regard to premise (3.34), generally do not compel us to use this

premise.

By knowing aij(t) and aij(t), i.e., by knowing the relative
position of coordinate systems £,, n,Z, and £nz and xyz, we
can obviously immediately find the parameters which determine the
relative position of trihedrons xyz and &£ng. In fact, let the
direction cosines between the axes of these trihedrons form the
table:

¥ 5 (3.40)
t M M Mo -» | i
N Bn Mo Bn
C Bn fu P |
It then follows from tables (3.16) and (3.27) that {
(3.41)

4
by=Zot, (=123 j=1,2.3

Along with expressions (3.41), the direction cosines Bij may
also be calculated by means of equations similar to (3.21), (3.22),
(3.23) or (3.31), (3.32) and (3.33). According to table (3.40),
ve have:
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(3.42)
F=pus+poy+ P2,
N=By X+ Py + 2,
$==pys+4 Poy + p,,2.
Trihedron xyz rotates with respect to trihedron £nz at an
angular velocity of
(3.43)

W—gr=m—8,

By assumlng that trlhedron Ent is fixed and b
unit vectors E,

we find:

Yy differentiating the
n and c of its axes in the coordinate system Xyz,

- (3.44)
f+m—uwXE=0, n+(m—u)Xn=0
E+m—u)xg=0

By integrating equations (3.44) in

the coordinates system
Xyz, we find:

(3.45)

! .
t=[txm-ua+i0,
°
[
.,-I.,x(m—‘-)dwq(o;.
¢

[}
b [ m—wdt -+ L0,
[ )
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fence, similar to equations (3.21), (3.22) and (3.23), we have the
following scalar equations:

-

[
'u-Ilﬁu(ﬂ,—',)-f».,(m,—n,)ld!-{-p,,(n), (3.45)
(]

[
i b= f By (9, — )y (m, — 8,)1dt 4, (0),
()

R e e

4
b= f P (my —a)) — B, (m, — 0,31 00 + P (0);
e

.

-
b= [ 1 8y~ ) — B (my — )] 404 (O), (3.47)
L]

[
bae= [ 1B~ ) b (%, — 0,00 4, 0)
[]

[}
= j (B (M) — @,) — Py (m, — u,)) dt + ppy (O);
.

. ' (3.48)
b= I s (7, — w,) — By (m, — #,0de -, 0),
L] .

[}
P [, — ) — oy, — w1t 4 0,
o

[
o= f 1061, ) — s, 1t )
[ ]

According to table (3.40), in these equations

U =uihy A 0 n -t ufy,,
8y =0l { a0y ufy,,
Uo =iy b ufin up,,
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Now, when the direction cosines Bi'(t) are found which
characterize the relative position of trihedrons xyz and &ng
and which. permit calculation of the Cartesian coordinates £, n
and ¢ from the known coordinates x, y and z according to tables
(3.40), we c§? go on to calculating the projections Dy gy and
9, of vector g, contained in the first equation of (3.10).

It follows from formulas (3.14) and (3.15) that:

c (3.50)
2= -h':--}-gua,z. l,=-—2,¢'-+uud,¢.
',--—-'%,'-4-9..4,:.
The projections of grad € on axes x, y and z are equal to:
¥ (3.51)

c . . - . d . -
grad, ¢ H% fu + ':';% I 7.% Bae

grad,t ='3;‘ g+ ’g:; P+ ':,.: Ba.

orad e = Bk e bt 5 B

The factors 3¢/3%, 3¢/9n and 3ec/3;, contained in equalities
(3.51), are functions of coordinates £, n and f. The integrand of
the first equation of (3.10) should contain only time functions.,
Therefore, coordinates £, n and ¢ in the arguments of the deriva-
tives should be expressed ity x, y and 2, i.e., instead of £, n
and ¢ the following expressions should be substituted

(3.52)

C=puc By dn ;"-
N=pav e foy - Baz,
Cm=pyv 4 0y 4 Binc.

156




3.1,4. The complete system of equations of ideal operation.

By combining equalities (3.10), (3.11), (3.15), (3.20), (3.24),
(3.45) and (3.52), we find the complete system of equations of the
ideal operation of the considered diagram in vector form:

- ‘ (3.53)
'—th-fnx'+lldl+v(0).
] e
;
re [(0—mxr)at+ o)
P
. g . -
L= [ xmar+ 3,00 (3.54)
[ O™ .
[
n= [ (X mdt+ (0.
A o '
J
b= [ @ x myar+ ¢, cox
L] <.
. .~. e
‘ (3.55)
o= [ 1t X m— ot + §10),
Ui ;
[}
= [ X (m— wndt+ (o)
W e . .
[}
c-Janm ~ W)t 4 ()
(3.56)
Ros - '7',' 4 orade(E, w8
Lmrelde Noeren, W=r-b (3.57)
(3.58)

[T X% SR TRy Y N a3

All the vectors in this system of equations are calculated in
coordinate system olxyz. Integration in equations (3.53), (3.54)

A
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and (3,55) is also carried out in this coordinate system. Equa-

tions (3.53)=-(3.58) are a closed system of equations, which, accor=-
ding to the values of m and n, obtained as the result of measurements,
according to initial conditions r(0), v(0), £,(0), n,(0), Z,(0),

£(0), n(0), and 7(0) and according to given values of v, ¢ and u,
permit us to find simultaneously the Cartesian coordinates of the
object: x, y and z in moving trihedron leyz; &, nand ¢ in tri-
hedron OlEn;, bound to the earth, and £,, n, and z, in the fundamental
Cartesian coordinate system,

In completing the derivation of equations of ideal operation,
we turn from vector equations (3.53)-(3.58) to scalar equations,
Taking into account the first equality of (3.4), equalities (3,.6)
and (3.8), relations (3.21)-(3.23), (3.25) and (3.46)-(3.48) and
formulas (3.49)=-(3.52), instead of the vector equations (3.53)-(3,.58),
we find the following scalar equations:

v [0 =m0, — )+ €21t 0, O).
0, = [ 11, = (m9,~ m,0)+ g, 1 dt +9,(0),
18, - (m,0, — myv, )+ g,ldt + v,(0).

v, =

(v, — (my2— m,y)) A + x(0), (3.59)

n
[}

y==|lv, = (mx—m20dt+yO)

j
/
J
j

'
S j (¢t — (m,y—ma ) dt 4 2(0):
L)




[}
B [ Iy 00— by m, — 0t ),

[}
M,n“.I 181 (M, — ) — Py (m, — w, Nt - p (0),

'
L -‘I (@), — a,ym,) &l 4 @y (0),

e
G

. P . , c
Gy = I (yym, — g,y m,) di 40,y (0),
[ ]

.
1

‘ 3
8= I (2, m, — ayym,)df 4-a,,(0),
¢ L

‘ ]
oy -'I (apm, — c.,,u,) dt + ¢,. o).

= 'I (%"':-"n";)“‘f‘%(o)-

1

Oy ‘j (‘n"r"ﬂn"':)“"‘“n(o)-
o ol oq
hﬂj (cun. — aym)dl+ o, @.

Wit o,
. L

Oy= I (Ugym, — ayym,) df -+ a35(0).
¢ —

[

ta= 'I (UM, — aym,)di + ay(0)

¢ .
b -! (Mo (m, — u,)— B3 (m, — &) dt +p,,0),
014 |.~ ° 0 Tolljakgy ¢
by = f 1Bia(m, —u,) — By (m, — u )t +02(0).
[} (R
h=ﬂmm,wp-mmpwmw+mm,
by = I (Bza (g — 8,)— By (m, — w,){ 18 4- 1, (0).

a..-'jw..m.—u.)—m.(m.— Dt 4, (0),

'
b =! Balmy —u)— oy (m, — u,)dt 4 [ ()}

'
Px B.J' Bra(my — u,) — pyy (m, — ) ut Par (0),
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W=0nrtauy 4 a,e,
Qezayx +uagy ¢ 8,,2;

LT B I (3.62)

N=Px 4 Bpy -+ Pus2s

L=+ by + bt , (3.63)
C=pys+ Py + Pt

(3.64)

8y = by 4 u - wehye,

u, = by 4 dfiy - agfy,, l
N, = H‘ﬂn-f: lh “+ afyy

: {3,65)
c,=—-’$§+%§ﬂ..+{f—ll‘:.+f—zn,..
ly""'%'*‘a—‘:l‘n"f'g,s‘ﬂn'f":;%ﬂn. f
[ h‘““%"'%l‘u‘f‘j‘%l‘n*‘-}:—ﬂw i ‘
[ seet. b, lr-:(x'-}-y’&.,l)%'

If we use premise (3.34), then the direc
relations (3.63)=(3,65) may be substituted fo
‘ ]
by Jij and « ij
Rel

tion cosines Bi in
r their expressions
accerding to equalities (3.35), (3.39) and (3.41),
ations (3.61) are superfluous in this case,
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The equations similar to (3.62) and (3.63) may be joined

to the derived equations to calculate VC ¢ vn ' v and VC' vn
* *

Lu
and v_ from the known values of A vy and Ve

4

Equations (3.59)-(3.65), equivalent to vector equations (3,53)-
(3.58), also permit calculation of Cartesian coordinates &,, n,
and ¢, and £, n and ; along with coordinates x, y and z.

By knowing the Cartesian coordinates £,, n, and f, or £, n
and ;, we can generally find the curvilinear and moviﬁg -coordinates
of the object in coordinates systems Ole*n*;* and OICn; or in any
other coordinate system moving in a known manner with respect to
system Oic*n*c* or Olgn; by using the corresponding calculations.
To do this, it is necessary only that the relations which link the
Cartesian coordinates £,, n, and g, or £, n and ¢ to the curvilinear
coordinates being introduced be given. Obviously, time may be con-
tained in this relationship in an explicit mahner.

Let us turn to the second problem which should be solved by
the considered inertial system, i.e., let us turn to determining the
orientation of the object in the coordinate system OIC*n*g*. To
solve this problem, it is sufficient to determine the orientation of
trihedron 0XY2, rigidly bound to the object, in this coordinate sys=-

tem. The position of the axes of trihedron OXYZ with respect to
trihedron 0XYZ is completely characterized by angles a, B and Y of
the revolutions of the gimbal rings of the inertial sys-

tem platform with the object. These angles can be measured. The
following values of direction cosines between axes x, y and z and
axes X, Y, Z(x, y, 2,) are easily found from tables (1,50) by multi-
plying out the ahrée matrices included in these tables:
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(3.66)

X ' y /4
X cospcosy -~ cosfsiny sinp
¥ sinasinpcosy 4 —~sinasinpsiny4 —sinacosP
4cosysiny 4+ cosacosy
2 =corasinpcosy4 —sinasinfisiny 4 cosacosf.
+ sinasiny -4 sinasosy

These direction cosines together with the table of direction
cosines (3.16) obtained from equations (3.21), (3.22) and (3.23)
obviously give the direction cosines between axes £,, n, and g,

and X, Y and 2, which also determine the orientation of the object
with respect to the coordinate system Olg,n*c,,

By using table (3.27), we can easily find the orientation of
the object with respect to the earth body axis system Olﬁnc.

If we measured the derivatives of angles a, B and y with
respect to time, i.e., the values of d, B8 and ?, we can also find
the projections of the absolute angular velocity of the object
on the axes bound to it. Actually, by noting that the relative
angular velocities ofcf, é and ? are directed along the axes of the
gimbal mount, i.e., along axes x", y" and 2", and by turning to
tables of direction cosines (1.50) and (3.66), we find:

(3.67)

Wy M, 0spcosy— m cospsiny f-m,sinp + &
Wy = m, (sinasinfcasy+4-cosnsiny) 4
+ my(—stnasinpsiny 4 cosncosy) —
= (M, 4 Y)sinngosp -+ ficnsa,
W= m (-~ cosasinpeosy -+ sinasiny)
+ m, (cosasinfsiny -f sinocosy) 4

+(m, + Vosacosp + prina.
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The equations (3.59) of ideal operation derived above were
based on the fundamental equation of inertial navigation, taken in
the form of (1.88), Equation (1.88) differs from the exact equa=-
tion (1.86) by the fact that the difference

(3.68)
AF = F\ (0) ~ Fy(r)

of the attractive forces of celestial bodies (except the earth),
determined by expression (1.87), at point ox (the center of the
earth) and at point O (the location of the sensitive masses of the
newtonometers) is discarded.

It is also essentially not possible to introduce this simpli-
fication. Let us show how the equations of ideal operation of type
(3.59) can be constructed according to the exact eguation of mo~
tion (1.86) of the sensitive masses of the nd®wtonometers.

Having assumed for simplicity that the gravitational fields k
of the celestial bodies being taken into account are spherical,
according to equality (1.93), we find:

. (3.69)
AF, = — it

- .-.-."'H Foar)

AF, = \ _L:!L .

. 1y = : l‘a( ‘ ’ s Ii')

AF‘ & — & .

1 :“l( r_‘F’_" )

where, by analogy to equation (3.17) and (3.25),

(3.70)

== anly+apn,+a,k,,.

f=anle 4, ayb,.
e, Fan, -agt, ,
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The values of C*%(t), n.%(t) and c*i(t) in formulas (3.70)
are coordinates of the i-th celestial body in the coordinate sys-
tem Olg,n,c,. These coordinates should be known time functions,

Thus, to find the equations of ideal operation, which corres-
% AF:y and AFlz and the given
formulas (3.69), respectively, should be added to the integrands

of the first three equations of (3.59) and, moreover, relations
(3.70) should be included in the system of equations of ideal
operation. Consideration of the asphericity of the gravitational

pond to exact equation (1.86}, AFl

fields of the celestial bodies is for the time being only of strictly
theoretical interest, although it may be performed Except for com-
plicating the relations obtained in this manner, this consideration
does not cause any essential difficulties,

It is easy to discern that the constructed system of equations
of ideal operation (3.59) is not the only one possible. It turns
out that several systems of integral equation, essentially equiva-
lent but differing in form, which may be equafions of ideal opera-
tion, can be constructed without altering the functional diagram of
the device described above. Let us indicate the main variants.

By using the solution of the second group of equations of
ideal operation, i.e., equations (3.21), (3.22) and (3.23), inde~
pendent of equations (3.59), the newtonometer readings could be
projected on axes"f,n," and ;, and vector n in projections on these
axes could be obtained and double integration of the fundamental
equation could be carried out in the coordinate system Oli,n,c,.
This method is one of the most difficult to realize, because cal-
culating operations with the newtonometer readings must be performed
until integration of them.
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Double integration in equations (3.59) is carried out in the
same coordinate system as that which measured the components of
the absolute angular velocities and newtonometer readings, i.e.,
in coordinate system leyz. Some variation of equations (3.59)
is also possible, Having turned to vector equations (3.53), from
which were found the scalar equations (3.59), we note that the
two equations (3.53) can be combined into a single equation:

') - o (3- 71)
r::! j|o—m X(F -+ 5 M r)4-gldedt 4
e 0

4 1P (0) 9 (0) X P(UI! | rL0).

This variant is intercsting in that coordinates
X, Yy and z are obtained by double integration and, consequently,
double integrating devices can be used here.'VHoweQer, to find
the velocity ?, which is contained in the integrand (3.71), we
must differentiate the derived coordinates x, y and z. Moreover,
along with the coordinates the velocity of the object may be a
necessary navigational parameter and the derivatives of coordinates
i, § and z may also be necessary to calculate it,

This variant of constructing the equations of ideal operation
is also possible. First integration is carried out along the axes
X, ¥y and z, i,e., the first three equations of (3.59) rewmain un-
shanged. The projections Ver V and v, of the absolute velocity
»f the object are recalculated to other directions, for example,

'y using direction cosines (3.21), (3.22) and (3.23) to the direction

f axes ¢£,, n, and ¢,, and the second integration is accomplished
long the coordinate axes (%C,n,c,. This variant ucually does not

165




yield any advantage in the number of calculating operations, and
it is always more difficult to perform calculations with deriva=-
tives of the coordinates than with the coordinates themselves, be=
cause the former are more rapidly variable time functions than the
latter.

The second group of equations of ideal operation (3.60) may
also be represented in other forms. Instead of direction cosines,
we can obviously take any other parameters which determine the
orientation of trihedron leyz with respect to trihedron o’C,n*c*.
For example, these parameters may be Euler angles or equivalent
angles or Rodrigues-ilamilton or Cayley- Klein parameters.5 Con-
struction of the integral equations by which the wvalue of these
parameters can be found from known values of ms my and m, presents
no difficulty, and we will not dwell on this, The more so since
equations (3,.60) are more convenient than the others when working
in Cartesian coordinate systems and since thé¥y have a very useful
symmetry which facilitates their use as equations of the ideal
operation of an inertial system.

The foregoing is also applicable to equations (3.61). It was
pointed out earlier that equations (3.61) can be substituted for
equations (3.31), (3.32) and (3.33) and relations (3,.,41), and if
the assumption (3,.34) on the constancy of the value and direction
of the vector of the earth rate is taken ,
then equations (3.61) can be substituted for relations (3.35), (3.39)
and (3.41). 1In the latter case formulas (3.64) fall out of the
equations of ideal operation.

Attention should also be given to one characteristic feature
of equations (3,59)-(3.65). Equations (3,60) are a closed system
which can be solved separately from the remaining equations., Equa-
tions (3.61) and relations (3.64) taken together also form a closed
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system which can be solved independently. Equations (3.59) form

a closed system with relations (3.63) and (3.65), solution of which
at each time interval is possible only after solving equations (3.61)
and (3.64). Solution of equations (3.60) is not required for this.
Finally, coordinates £,, n, and ;, are calculated by formulas (3.62)
only after solving equations (3.,59) and (3.60).

The indicated relationships of the equations and, consequently,
the required sequence of their solution are caused by the fact that
the earth's gravitational field is given in coordinates ¢, n and z.
If we assume that the earth's gravitational field is spherical, i.e.,
if we assume that e¢=0, then equations (3.59) with formulas (3.65)

also form a group of equations separate from the remaining ones.,

Thus, three groups of equations split off from the system of equa-
tions (3.59)=(3.65): the first group comprises equations (3.59)

and (3.65); the second group comprises equations (3.60) and the

third group comprises equations (3.61) and (I764). These three

groups of equations are solved independently. After solution of

them, coordinates £,, n, and £, and £, n and ¢ are found from formulas
(3.62) and (3.63).

3.1.5. Special case: fixed orientation of the platform

in space and orientation of one of its axes along the direction S

toward the center of the earth, When deriving the first group of
integral equations of ideal operation (3.56) or (3.59) of the in-

ertial navigation system being considered, it was assumed that the
platform of a three-component absolute anqular-rate meter (coor-
dinate system Oxyz) was oricnted arbitrarily both with respect to
inertial space and with respect to the object. Various special
cases are possible herec.

If the platform is invariant relative to the inertial coor-
dinate system, for example, if the direction of axes x, y and z
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and £,, n, and f, are combined, then equations (3.59) are trans-
formed, as one can easily discern, into the previously derived
equations (1.89). Equations (3.60) and (3.62) then drop out.
The orientation of the object is obviously defined immediately by
the table of direction cosines (3.66), and m, my and m, in ex~
pressions (3.67) for projections of the absolute angular velocity
the object on its axes should be assumed equal to zero
n formulas (3.61)., The corresponding orientation of the plat-
n may be realized in this case by using a free gyrostabilized

platform or a system of free gyroscopes.

The platform of the angular-rate meter can be rigidly bound
to the body of the object, for example, by combining the coordinate
systems xyz and XYZ, In this case the gimbal mount of the
platform on to the object is not required. The equations of ideal
operations will be equations (3,59)-(3.65). Relations (3.67) drop
out, because the orientation of the object coincides with the
orientation of the platform and is given by equations (3.60) and
(3.61), while the projections of the absolute angular velocity of
the object on its axes are directly the readings Mor my and m, of
the gyroscopic angular-rate meter.

A case intermediate between the two preceding ones is possible,
where the orientation of the platform in the incrtial coordinate
system olE*n*c* will be a known time function, and also a function of
the specific navigational coordinate system and the rate of their
variation in time, This orientation of the platform can be pro-
vided only by using a controlled gyrostabilized platform considered
in § 1,3, or by using a special functional circuit, which is mounted
on a free stabilized platform and which gives the position of tri-
hedron xyz, alony whose axes the newtonometers are mounted,
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relative to the stabilized platform. The stabilized platform,
as in the preceding case, can be naturally replaced by a system of
free gyroscopes.

An example where orientation of a controlled gyrostabilized
platform is a given time function may be orientation of it in which
the axes of the platform retain their directions relative to
the earth, Without loss of generality, we may assume that these
directions are the directions of the coordinate axes olinc. Then
the controlled gyroplatform should rotate relative to the in-
ertial coordinate system such that the position of the platform
is characterized at each moment of time by the direction cosines
given in table (3.27).

Let us form the expressions of controlling moments M:x' M:

and M:x' required for this case, by using relations (1.78), which

. . ”»
in the considered case assume the form:

. (3.72)
M H ¢

Relations (1.77), which take into account the finiteness of
the values of 61, 62 and 6’, may also be used of course, by first
inverting these relations, i.e., by solving them with respect to

M",M:

o and M:x. The latter does not cause any essential diffi-

Y

culties; therefore, we shall limit ourselves to more simple equalities

(1.78).

Having taken into account that the axis olc is directed along

vector U of the earth rate about its own axis and, consequently,
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(3.73)

qua‘uo, vy =2 W,

we find:

Mly=0, M,=0, M}, =uH. (3.74)

Of course, besides fulfillin. conditions (3.73), the initial
conditions should be observed, namely, the initial position of the
coordinate systems OIEnc and xyz should correspond to table (3.27)
of direction cosines aij(O).

Having turned to equations (3.60), we note that Mo my and m,

: s : [
are now known time functions in them:

(3.75)

m,-2m, 20, m,-au,

It is easy to see that integration of equations (3.59) in the
considered case immediately yields coordinates £, n and . Equa-
tions (3.6v), (3.61), (3.63) and (3.64) drop out, because even if
calculation of coordinates §,, n, and ¢, along with £, n and ¢ is
also required, they are obtained algebralcally from the coordinates c¢, n
and ¢ by using expressions (3.35), (3.39) and %3.62).

Orientation of the object with respect to the earth is de-
termined by angles u«, B and y of the rotations of the
gimbal rings of the platform, i.e., by the table of direction
cosines (3.,66). Table (3.27) should also be used to find the
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parameters of orientation relative to the inertial coordinate
system,

If orientation of the coordinate axes Oxyz is accompliched by
a special functional diagram located on a free gyrostabilized
platform rather than by a controlled gyrostabilized platform, this
functional diagram should continuously provide disposition of the
coordinate systems Of,n,r, (stabilized platform) and Oxyz (& trihed-
ron along whose axes the newtonom .:rs are ipstalled) so that the
direction cosines between the axes of the mentioned coordinate
systems corresponded to table (3.27). In this case angles a, B
and vy of the rotations of the gimbal rings of the sta-
bilized platform determine the orientation of the object
szlative to the coordinate system olcng can be calculated by direction
to the earth body axis system Olgnc can be calculated by direction
cosines (3,27) and (3.66).

B

Let us now consider a case where the orientation of the con-
trolled gyrostabilized platform is dependent on the coordinates
calculated by the inertial system, Let us require, for example,
that the z axis of the platform is constantly directed along the
radius vector r.

If the z axis o2f the platform coincides with ;, then

- Penrg, lay-O" (3.76)

and
(3.77)

O =r2 4 (& — o,y
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From equalities (3,76) and (3.77), we find:

o, mv,, N,——(';. v‘-;_ (3. 78)

’

Turning to relations (1.78), we find the following expressions

for the controlling moments Mix and M:yz
(3.79)
Hy, e,

"
M:n L2 '“:r L

Moment M:x' like W, remains arbitrary, because condition
(3.76) permits this arbitrariness. The value of this moment may

therefore be ordered to simplif'- the equations of ideal operation.
For example, we can assume

T~ (3.80)

M:n =0,

which is obviously equivalent to the condition

(3.81)

», =0,

The diagrams obtained in this case, in which the projection
of the absolute angular rotational velocity of the platform to

. ] -> ] 2 '
direction r is equal to zero, are sometimes called "azimuth-free"
diagrams.
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From the condition of (3.76), equation (3.59) assume the

form:
(3.82)

[}
vy ‘[ 2= 2wy, + ) a4 0,00,

[} . .
v, -[.(n,-m,o,--vri»-o- [,',)dl 4 v,(0),

[}
;~J‘:(~,+ "":"" +g,)dt+i(0).

X s yum0,

[}
r-!im ¥ r(0).

Equations (3.60) can be written in the following manner:
(3.83)

[}
0, = J (om, — o5t ) dt + a0,

[}
c.,-‘{ (-—a.,-:-'--—a..m,)dl + a,,(0).
I}

e [ SR,
v

(3.84)
cn—!(nnm,-— a,,%’-)dli-n,,w), i

3
o”—;(-ﬂu ;l-u,,m,)dl 4 ayn(0).

[}
¢”J' .“_'i'.'_*;'.&'l'..;., 1 dg o
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(3.85)
Ay = ! (ﬂvﬁl, - ay '!,L)‘u +“.Il(o)- 1
[}
un!kw?—%mﬁﬂimﬂ
[
ay= ‘[ 2'—’-';—'-"3'4:4-«,,(0).
If conditions (3.80) and (3.81) also occur-as well, then
. (3.86)
ﬂ.—o_

should also be placed in equations (3.82)~(3.85).

Since x=y=0, then relations (3.25) are also simplified,

Orientation of the object relative

to the coordinate
system Oli*n*c* is obviously determined by table (3.66) and by
direction cosines (3.83)=(3,85),

Projections of the absolute angular velocity of the object
on the X, Y and 2 axes are found from formulas (3.67), if the
values of vy/r and vx/r are substituted in them according to (3.78)

instead of Mx and M_, and if Mz=0 is also placed in them under the
condition of (3.80).

If the orientation of trihedron O0xyz, to which the newtonometers
are linked, is accomplished by using a free gyrostabilized plat-
form and special functional diagram which gives the position of
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trihedron Oxyz relative to the gyrostabilized platform rather
than by means of a controlled gyrostabilized platform, the func-
tional diagram should provide relative position of trihedrons
Oxyz and ols,n,c*, which corresponds to direction cosines (3.83)-
(3.85). The position of the object in the coordinate syster
Olg.n*;.. i.e., the relative position of the coordinate system
OlC.n*c, and the system XY2, linked to the object, is deflined in
this case by angles a, B and vy of the rotations of the

gimbal rings of the stabilized platform on the object.

It should be noted that we are talking for the time being i

about determining the orientation of the object relative to

the coordinate system OIC*n.c* and Olsnc, i.e., about orient-tion

of it in the main Cartesian system or in an earth body axis syrctem,

It also makes sense to talk about determination of the orientation

of the object with respect to trihedron Oxyz, along whose axes the
newtonometers are arranged. The relations whlch we obtained ob-

viously permit solution of this problem as well,

§ 3.2. Determining the curvilinear coordinates of the object7

3.2.,1, Initial assumptions, Let the position of point O of the

object be given in the coordinate system Ols*n*c* by some curvilinear
coordinates x!, x? and x® non-orthogonal and: moving in the
general case (here and henceforth the superscripts are used to de-

note different coordinates)., The transient nature of coordinates

', *?2 and »? is understood as the circumstance that the surfaces |

of cqual value of coordinates, i.e., surfaces xi= const, may vary

their position with time with respect to trihedron olc*n*c*.

Radius vector r of point O of the object in the coordinate
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system Ols,n,c, is equal to:

3,87
rea o+ o 0B ( )

where E,, 3, and E,, as previously, are unit vectors of the corres-
ponding axes and £,, n, and g, are Cartesian coordinates of point 0
in the coordinate system 0 E,n,c, or, which is the same thing, pro-
jections of vector T to the axes of this coordinate system.

For convenience in further expozition, let us replace the
notations of axes §,, n, and ¢, of the coordinate system olﬁ,n,c,
by £}, €% and £'. Let us call the coordinate system Ols‘ £2 ¢g?

the fundamental Cartesian system. Then,

TR NE S ) (3.88)

where the subscripts are retained to notate the unit vectors of
axes £!, £% and £?.

It is obvious that £!, £2 and ¢! are functions of curvilinear

1 2 3

coordinates ', #* and «° and of time:

(3.89)
e B (xl, x2, 0, £), B2 B2(xt, ¥2, X, 0),
P=p3(x', 2, 3, 1), }

Equalities (3.89) can be taken to calculate coordinates «!, »2
and « ?,
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By solving equations (3.89) with respect to «°, x° ar
we find:

weawl (0, 12, 1Y, 4), . xisnl(}), 39, N, 4), (3.90)
W= wnd(ll B, 42, 9) }

In order that there be clear matching of coordinates C‘, g2
and £ and x?, x? and »?, relations (3.87) and (3.90)should be { 1
uniquely inveritable.

The necessary and sufficient conditions for unique invertability

consists, as is well known, in the Jacobians of the functions 51.52,

and 53 in the variables xl, uz.and o~ being different from zero:
(3.91) i
T :;
Bkt - |8 & oo |
a8 I

and of functions nl.n2, and n3 in variables 51,52. and 53 also being
ditferent from zero:
(3.92)

D (x, x!, %) %0
LI :

We shall henceforth assume that this condition is always
fulfilled.
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Let us consider an inertial nav.gation system whose task will
be to determine the curvilinear coordinates »!, »? and »® of the
object,

Of course, the diagram of this type of system could be repre-
sented as a development of the preceding one. By calculating the
coordinates £,, n, and 5, (or £, n and ;) by using the diagram
described in the preceding section, we can find the coordinates
x!, x? and »! by recalculation from formulas (3.90), and we can
also calculate the parameters of the object with respect to any
directions, which are a function of coordinates x!, x? and »°®

its known orientation in the coordinate system OIE.n.C. (or ’Enc).

in
This method is obvious,

We shall now pose a more general problem whose solution in=-

cludes the above indicated method of obtaining coordinates wd, x?

and »?,

o]

Let us represent the diagram of the system in the following
manner. A free gyrostabilized platform, whcse x, y and z axes
coincide with the directions of axes C', £? and £? of the coor-
dinate system 015’525’, is used as its basis. Three newtonometers,
the unit vectors of the directions of the axes of sensitivity of
which are denoted by 51, 32 and E’, are mounted on the gyrostabilized
platform by using a special functional diagram, Let us assume that
this diagram is such that it can provide the given dependence of
orientation of the axes of sensitivity of the newtonometers on the

1 2

coordinates »!, »? and #?!, calculated by the system, and on time:

ey =y (7, 17,03, 4),
€= €,(x), ¥, x, ¢), (3.93)

v 5w, ¥, W, 1),
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vectors rl, r,

3.2.2. The general case of constructing the equations of ideal
operation., Let us derive the equations of ideal operation of the
described diagram of the inertial navigation system,

i.e.,, relations
of the type obtained in the preceding section, which would determine

the coordinates »', »? and »* of the object by the readings of
rewtonometers - . and the parameters which provide the

orientation of the directions of the axes of sensitivity of the
newtonometers, required for this,

" and «
'’ yan e

0o

.ng the derivation and analysis of the equations of ideal
opera..un of the considered class of inertial navigation systems,

it is convenient to use the symbolism and methcds of tensor analy-
., 8
8518S.

let us introduce the fundamental coordinate basis,

formed by
the vectors

(3.94)

F or o
r,n;,%. gy NBTRT

Vectors rl, r2 and r are non-coplanar, In fact, in order that
-»

and r’ be coplanar, the value

(3.95)
Jemp (P X PN =0 (F X0 =ry (P Y. 1)
should vanish,
But it follows from expressions (3.88) and (3.94) that
D@L b (3.96)

Jﬂ-b( ; _;-‘rﬂ)




n view of condition (3.91) of the failure of the Ja-

cohian of functions £!, £2 and £® in variables x!, x2 and x?

Lo vanish . In the general case the base vectors are not or-
thogonal to each other, but their moduli are distinct from unity.

Since the three base vectors are non-coplanar, any vector,
given in the coordinate system 0 £'£2¢?, for example, vectors
T, dr/dt and d2r/dt?, can obviouély be represented by using them.
The arbitrary vector b can be represented by using the base vectors
by two different methods. It can be represented either in the form
of an expansion by the base vectors
(3.97)

3
P s .“‘ 0”..
set

or it can be given by three scalar products

‘ (3.98)
.‘-.", ‘("'=|ll ?l:‘); ~

The values of b® are called contravariant components of
vector B, and the values of bs are called covariant components,
It is easy to see that if vectors }l, }a and ?, are orthogonal,
while their moduli are equal, the difference between the contra-
variant and covariant components disappears.

Along with the fundamental coordinate basis, formed by vectors

El, ?2 and F:' let us calculate the basis, recinrocal to the main btasis,

qaving defined it by vectors r!, r? and r’, related to the vectors
>f the main basis by the equalities
(3.99)

| N
Puagnve, ”-",’."o. n v-;r,‘/r,

180




Let us assume that the value of J is positive and that it is al-
ways possible to provide proper selection of the order of numeration
of the variables of » . Let us note that if the vectors of the

main basis are orthogonal and units, the mutual coordinate basis
coincides with the reciprocal basis.

Let us now introduce metric space tensor A, determined by
the curvilinear coordinates »!, %2 and #«?. The covariant com=-

ponents a_, of the metric tensor are equal to:

’ Cpn==7,-1,. (3.100)

Tensor A determines the metrics of the space given by the
curvilinear coordinates x!, %% and »%, It follows from relations
(3.88) and (3.94) that vector dr of the distance between two in-
finitely close points of space is expressed by the base vectors
in the following manner:

(3.101)

2 3
dr - ‘\_:;;', ! s ‘\_:r, ax’,

Consequently, the square of the distance between these points
is equal to:
(3.102)

3 3
dSt = dr - dr == .\_: :: [ o idn®,
=l 8el

\

Thus, the covariant components of the metric tensor are co=-
efficients of quadratic form in the expression for the square of ds,
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2.9

which also define the metrics in the coordinate system =x
in the neighborhood of the point being considered.

- n

Henceforth, as is used in tensor calculus (Einstein's rule),
we will omit the summation signs in expressions of type (3.97)
and (3.102), in which the superscripts and subscripts are repeated
(umbral indicies and summation indicies), by writing these ex~-
pressions in the form
(3.103)

b==b'r, dN?e=a,datdnt

and by assuming that this writing assumes summation by umbral
indices from one to three. Let us also assume that the non-
repeating indices pass through values from one to three without
mentioning this each time, Thus, instead of (3.98), we will sim-

ply write o
. (3.104)
b=b-r,
Metric tensor A may also be given by its contravariant aSk
and mixed ag components:
(3.105)

a"=r‘-r'. a:=r‘.",

Matricies ||ask|| and ||a5k|| by definition are symmetrical
and reciprocal to each other. Matrix ||a:|| is a unit matrix. It
is easy to show that the determinants of these matricies are equal

to: (3.106)
ol oS3, fa™) o . ai] <o
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From equalities (3.100) and (3.104) ensuc the following relations,
which link the vectors of the main and reciprocal basis:

(3.107)

"
r'=qg',, AT

It is sufficient to multiply both sides of the first relation

by fl, and the second by ;Z to ascertain the validity of the last
statement,

Now, from equalities (3.97), (3.98) and (3.107), the following
formulas ensue, which relate the covariant and contravariant com-
ponents of vector B:

(3.108)

dy=2a, b b a"s,.

And, from relations (3.107) and (3.108):'we find:
(3,109)

b= h'r. == b'a."‘ =hp,

Equality (3.109) together with the second equality of (3,108)
means that the contravariant and covariant components of the vector
in the main base are its covariant and contravariant components,
respectively, in the reciprocal basec.

Let us indicate the geometric sense of covariant bs and con-
. s o ;
travariant b~ components of vector b, for example, in the main
base. The segments

(3.110)




»
are projections of vector b to the vectors of the main base, while

the segments

, _ (3.111)
[ INT A =z B! V;;;. » Vl-l-,;, [ Al ‘,dn

are equal to the sides of a parallelepiped, constructed on vectors
-»> > + -
rl, rz and r’ and having vector ﬁ as its diagonal.

To derive the equations of ideal operation we must find the
expressions for the values measured by the newtonometers, whose
axes of sensitivity are oriented along the directions ;s' given
by equalities (3.93).

The values measured by the newtonometers will be projections
the vactor n on the axes of sensitivity'of the newtonometers. Since
és are the unit vectors of the axes of sensitivity, then the mea-
sured values are equal to the covariant comp&?ents of vector ;
along axes ;S, i.e.,
(3.112)

Il,‘=ll » €.

The scalar product of the two vectors 3 and 3 can be given
by their components in the main or reciprocal basis in the following
manner:
b.csad'c,en b, (3.113)

By applying relation (3.113) to the scalar products of (3.112),
we find:
(3.114)

n,' = Il'f,. L& a"mt.r.
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where n, and n= are the covariant and contravariant components
"- 3 3 s
of vector n in the main basis and ey are the covariant components
-
of the vector ey

Let us turn to finding n, and nk,the components of vector
ﬁ. According to formula (1.88)

. (3.115)
,"“".%'f"""
Let us introduce the notation :
(3.116)
%;-I-I' %H%HW
It follows from (3.88), (3.89) and (3.94)that:
(3,117)

VEI,).('-Q-%:-,

Therefore, taking into account relations (3.98) and (3.,108),
we find:

(3.118)
v’::l;..{ %:_.". o'-:a.,v'.
By differentiating equality (3.117) again, we find:
o (3.119)

Uy ot 2 800y

' x .
o= o o
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To find the components Wi and wk from the vectors of the

main basis, we must obviously find the components of vectors
2,/ ", 9E /0t and 32E/0t2,

Vectors
(3.,120)

] o
Bl <l i

can be represented by vectors of the main basis in the following
manners:
(3.121)

Pog =3 l‘.'i'r--

where coefficients PER are essentially, as can be seen from com-
parison of equalities (3.121) and (3.97), coﬁ?ravariant components
of vector ;sk in the main basis and are called Christoffel symbols of

the second kind.

It follows from relation (3.120) thag the Christoffel symbols of
the second kind are symmetrical in their subscripts, i.e.

rs =l (3.122)

And multiplying both sides of equality (3.,121) scalarly by
Iy, we find:
(3.123)

o -r=anl.7.
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The scalar products on the left side of relation (3.123),
i.e,, the covariant components of vector ng in the main basis,
are called Christoffel symbols of the first kind and are denoted by

Psk 7+ It is easy to see that they are also symmetrical in their
’
first two subscripts,

Relation (3,123) yields the expression of Christoffel symbols of
the first kind in terms of symbols of the second kind:
(3.124)

l‘.a, = lnrl‘.':-

By multiplying equality (3.124) by aZt and by recalling that

(3.125)

ot =,

e d
we find a relation reciprocal to relation (3.124):
(3.126)

ro‘_ - l“!‘u. *

Christoffel symbols of the first and second kind can be expressed
simply by the derivatives of the covariant components of the metric
tensor. From formula (3.100) we find:

(3.127)
i%ﬂ*ﬂ'%f=4h5+nu-

By changing the subscripts g, k and t in a cyclic order,
we also have:

(3.128)

“ il
-;.—’.Lar“.,-{»-r,,_.. ':—:L:‘- w1+ Vo
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Now subtracting equality (3.127) from the sum of the two
equalities of (3.128), we find:
(3.129)

. 1 {08y o duyy __ 04
lah.o";(“t +;F .u"'

By analogy with Christoffel symbols rsk t and r:k, let us in-
14
troduce symbols of the first kind

l‘.,',ai-;-r,. ru.."m_i'"u (3.130)

and symbols of second kind FO% and Foz. The zeros in the subscripts
indicate that the time clearly contained in axfunction r(x?, «?, x?,t)
should be taken instead of the corresponding coordinate when calcu-
lating the derivatives, The symbols of (3.130) are naturally equal

to zero in fixed coordinates. Relations (3.124) and (3.126) remain
valid for the symbols introduced, But the symbols of (3.130) are

of course not expressed by the components of the metric tensor simi-
lar to Christoffel symbols.

Returning to equality (3.119), we find the following expressions
for the contravariant and covariant components of acceleration in
the main basiss
(3.131)

e 4 Paan™x” 4 2Fean” 4 I,

3 g 0 :
0, =2 a4 U, ™ Won "4 Pon s
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It now follows from equality (3,.,115) that
USROS R e (3.132)
"."“.n".-
Here qs are the components of vector 3 of the earth's gravi-
tational field strength in the main basis:

(3.133)
x‘m'-".

Vector g is given in the rigid earth body-axis system oln‘nzn’.
The coordinate system Oln‘nzn3 is identical to the coordinate sys=-
tem OIEnc introduced previously. Therefore, according %o ex=
pression (3.11),

(3.134)
g gndV(n), o, ).
It follows from equality (3.134) that ™
(3.135)
g, omgrad' Vi or, g =agrad Vo, o 2,
But
(3.136)

N, =, rt s wre.

where Ny and nk are the covariant and contravariant components
of unit vector 1, in the main basis, Therefore,

A'.”f’a‘!d"'!lﬂ, ﬂ'-‘:[{lid'V!l,‘. (3. 137)
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Formulas (3.17)) determine the components of vector A in the
main basis. Turning to equalities (3.114), we find on the basis of
formulas (3.132) and (3,137) the following expressions for the
values measured by the newtonometers, whose unit vectors Es

of the directions of the axes of sensitivity are given by equality
(3.93):

(3.138)
l ay, = (x4 Faln™w® 4 200" 413 — grad' vid)e,e,

. -»
where e,y are the covariant components of vector eg.

From equalities (3.,138), we find:
(3.139)
1
i%n-jh~+iﬁn-w4rr4cnﬁ‘+
1)
+Tor — grod' Vi) e dr4- %" (0) 0 (D).

e

By solving the left sides of equations (3.139) with respect
to Vk, we have:

(3.140)

T (", ) [t )

k

where E is the determinant and EF is the cofactor of the s-th

line and of the k=th column of matrix ||esk||. Now,
(3.,141)

L3

cwj#w+mm.
]
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The elements of matrix Ileskll which define the orientation
of the axes of sensitivity ES of the newtonometers,should, of
course, be known., If direction cosines of unit vectors és are

S and time with respect to the axes of

known as functions of «
the stabilized platform, i.c., with respect to the unit vectors
Ek of the main Cartesian system 01516253, then, by denoting these

direction cosines by yé, we find:
e ".. i \': ‘,. .

On the other hand, it follows from relations (3.88) and (3.89)
that

roes iy, (3,143)

Therefore, ~
(3.144)

s b
a=0"N=Y 75"

The equations which determine n? and the relationship of
nZ to # and time, must be added to equations (3.139), (3.140)
and (3.144)., We can turn to equations (3,.,30) to obtain the re-
quired relations, which, by taking into account the conformity
of the notation introduced and the notation used previously, we
write:

b= [ (b ) e 100 (3.145)
¢ |
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Here,
(3.146)
t
smiin, b=
where u: are the projections of vector o
of the earth rate on axes 0 n? and a'k are the direction cosines

between the axes £!, £%, £% and n', n? and n®. These are the

same direction cosines as a'zk' which form table (3.27), except J
that the second subscript in them has been converted for convenience of
writing into a superscript. Equations (3,.145) are equivalant to
equations (3.31), (3.32) and (3.33), from which the direction
cosines a'? are also obtained,

3

From the second group of equalities (3.146) and formulas (3.88),

(3.89) and (3.107) we have: ~

Wi
n'x:u;.t'. (3.147)

<

Relations (3.147), in which £~ are given by equalities (3.89),
together with equations (2.31), (3.32), and (3.33) fully determine |
nk and n* in the integrands of (3.139). !

The contravariant components nt of the unit vectors ﬁ} in the l
main basis and the coordinates nk may also be calculated in a somewhat

different manner. ' Inverting equations (3.145), we may write them in
differential form as follows:

%’+au>(u=0. (3.148)
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From (3.148), (3.136), (3.121) and (3.130) we will then obtain:

= J ) A (X W) e nf o). (3.149)

To expand the mixed nroducts of the vectors EQ, U and ;k it is
convenient to introduce the Levi-Civita symbols (kns and (kns’
defined as follows:

Cam=ry (ry<r). €™ =r".(r"xr). (3.150)
The Levi-Civita symbols are non-zero only when the indices n, s and k
are non-identical. If the indices are different and follow in the
order 1, 2, 3 or in the order obtained from the standard cyclic
permutation,

€=t @ =F o (3.151)
where J is the Jacobian determinant (3.96).

If the order of the indices is different from the standard order
we have:

e o e

a ‘ .
o= = €= - (3.152)
From relations (3.15) we obtain:
€n:’"=’.><f,. e"“r, =t e, (3-153)
Since the vector u may be represented in the form
M _~n,r' -‘u",' (3.154)
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it follows from equalities (3.150) and (3.136) that the mixed
products in the integrands of (3.149) may be writtea as follows:

o X ) rt = €0y, (3.155)

But

=i, = e, (3,156)

and therefore equalities (3.155) take the form:
OhXUY"=€”“VW%ﬂ¢ﬂ- (3.157)

In expressions (3.156) and (3.157) uz designate the projections
of the vector U of the earth rate on the Oln1 axes,

Introducing equalities (3.157) and (3.%49), we obtain:
' .
" = —I e (T + 1)+ € nfa,,a, ) dt 4 nl(0) (3.158)
[ )

Finally, from relations (3.136) and the obvious equality,

re=y'y, (3.159)
we find:
q‘x—.:%";%:.. (3.160)

Formulas (3.158) and (3.160) may be used instead of formulas
(3.147), (3.31), (3.32) and (3.33) introduced above.
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We note that use of the Levi-Civita symbols enables us to write
equations (3.31), (3.32) and (3.33) in a more compact form:

-;'-‘( 3 €usiulat +o' O (3.161)

Thus, the portion of the ideal equations relating to the determina-
tion of the curvilinear non-stationary coordinates xs and their rates
of change nS may be written in the form of the following system of

equations:
o= [ [, 45000 — (Fali®s® 200" +
[ ]

+ Vo =kt Vi Je, Jar 4 6 0,0 | 3.162)
o ' 4
r - 2 .
%= 1‘.."“"-’-—’— o wla J'u' dt 4w (0) .
v

(3.162)

o - IR )+

+ € wa a nil]de 4 ni0),
s b, o (3.163)
N EiyN 3T

Fquations (3.163) may be replaced by the equivalent cquations:

4
ﬂnj%g"ﬁqm4ﬂwy
(3.164)

. Aea N LY
Wouiett =uy bt

In the inertial navigation system under consideration a free

gyrostabilized platform was taken as the basis of the functional diagram
The rotation angles u, B, and X of the gimbal rings de*ermine, clearly, the
orientation of the object in the basic Cartcsian coordinate system.

The direction cosines retain the angles X, Y and 72 of the object and |
the £', £?, £? axes are qgiven by table (3.66). The only change u
required is to veplace the %, y, z axes by the £', £?, £? axes. Since
rclations (3.88), (3.89) and (3.94) give the orientation of the vectors
of the main basis, these relations, together with table (3.66), define
the orientation of the object relative to the basic coordinate system.
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3.2.3. Orientation of the newtonometers along the normals to
the coordinate surfaces. The system discussed above was one in which

the directiors of the axes of sensitivity &_ occupy an arbitrary

position. The only conditions imposed weresthat these directions
should be non-coplaner and that their direction cosines with the £'£2E°
axes should be known at each moment of time. A free gyrostabilized
platform, relative to the axes of which the directions of the és axes
are given, was taken as the basis of the system. It is not difficult,
however, to extend the results obtained for this system to the case

of a three-component gauge of absolute angular velocity (or a maneuver-
able gyrostabilized platform) as the basis, the directions of és
being given relative to the axes of the gauge platform (or the
maneuverable gyroplatform). -

For the system in question equations (3.138) were integrated
by isolating the total derivatives from the sums ?kesk. Separation
of variables was performed after the first integration.

o]

It was noted in Chapter 1 that there are two possible ways of
solving the basic inertial navigation equation in curvilinear coordinates.
Both possibilities are based on the assumption that the first operation
performed on the newtonometer readings is that of integration. The
first possibility was discussed above. The second is based on consid-
ering the directions of the axes of sensitivity of the newtonometers
as no longer arbitrary, but as given such that each newtonometer reading
should contain the second derivative of only one of the coordinates
«%, i.e., such that relations (3.138) should be solvable for the first

derivatives.

This condition may be satisfied by choosing e,y such that

ey =0, ecan ¢+ 8,
€ 0,10, comys oak (3.165)

-

g are normal to ) for k # s, and
-»> I3

therefore coincide with the vectors > of the reciprocal basis.

This choice implies that P
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The correctness of this statement follows from the definition
(3.104) of the covariant component and from formulas (3.99), giving
the vectors r° of the reciprocal basis. This result is to be exnected,
since the vectors of the reciprocal basis are, by definition, normal to the
surfaces of equal values of the coordinates, {.e., are gradient vectors.

If condition (3.165) is satisfied, i.e., if the axes of sensitivity
of the newtonometers are situated along the vectors of the reciprocal basis,
we find from relations (3.138):

o, e (x4 TR WK 4 1= gad'Vi)e,,

(3.166)

- -»
Since e, are unit vectors and are oriented along the vectors rs,
it follows from equalities (3.110) that

e’ [
‘l"'V:ﬁ'. 'u"V:?' (3.167)

S
Now from (3.165) and (3.167) we obtain:

Wem Vaith, T _sumx® —2Fx® — 12 4 gad'Vy. (3.168) e

Integrating equations (3.168), we obtain the relations

) j'“/,'-m,' S T LM L

= A+ grad' Vol | di 4 »* O
[
».. I Wt | Wi

y (3.169)

Relations (3.169) cnable us to determine the current values of the
coordinates . ° and their rates of change e using the known values of

n. and the initial conditions. These relations could alco be taken
s
as the ideal equations of the inertial system under consideration. ]

However, in equalities (3.169) the magnitudes ne of the newtonometer
— s

readings must be multiplied by /a®® before integration. The diagonal -
elements of the metric tensor may be, in the general case, variable.
Therefore, this multiplication is undesirable according to the consid- .

erations presented in §1.4 (p. 55).
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In order to avoid comp'itational operations on the newtonometer

readings before their integration, let us transform equalities (3.168).
Let us first divide the right and left sides of these equalities by
7a®% and then let us subtract from both sides the quantity

"" “u)'.c ¢
We then obtain (not summing over s!):

2 (o) = —(raiic aniie+

or
4w ) (a‘|“‘l'l7+
ﬂ(Vﬁ? ﬂq‘
(3.171)

+ !‘.:x w420, x4 Pu— grad' V\\') |

Integrating these equations, we find:
L

Tﬁ?ﬂj[ﬂ'— u-—an;"+
I Faln™s® | 9"'1' 10

—gnd Vn,)]dl (L ," L)

o e

% 2a (7%-.) V', we ._[ x'di - ' (0).

(3.172)

The systems of equatlons (3.163) and (3.164) remain valid, clearly,

for the determination of n2 and nk.

Formulas (3.162) and (3.163) or (3.172) and (3.164) are the portion
of the ideal equations of the system in question which relate to the
determination of the coordinates :° of the object and their rates of
change 2%, To determine the orientation parameters of the object
table (3.66) must be added to these formulas, and also the table of the

: . . -
direction cosines between e_ and &k:
=1

(3.173)
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Table (3.173) together with (3.66) enables us to obtain the
oricntation parameters of the object in the coordinate system along
the axes of which the newtonometers are oriented, i.e., in the reciprocal
coordinate system. Using the definition (3.94) of the vectors of the
main basis, we can find the orientation of the object in the coordinate
system defined by the vectors of the main basis.

3.2.4. Orthogonal coordinates. Let us consider the case in which

the coordinates !, «2?, »? are orthogonal.

In this case the vectors of the main basis are perpendicular.
The directions of the vectors of the reciprocal basis coincide with those
of the vectors of the main basis. Only the diagonal elements a®% and
agq of the matrices of the contravariant and covariant components of

the metric tensor are non-zero. Introducing the Lame coefficients hs'

we obtain the following expressions for agq and aS%:

(3.174)

ﬂ,.-"‘;#rak!- o~

For orthogonal coordinates only the following Christoffel symbols
of the first and second kinds (not summing over s!) are non-zero:

won e e iy

2,8 . (’T“T . ™ F) ] !

. . m, )
Vo =to o M Iy *;‘z‘&‘b !
. Iy T !
'u.""h. JJ' lu" '.)':,:"- :
(3.175)

Now, taking into account relations (3.174) and (3.175), we obtain:

T;"—lll"a" - ~:%|" h = “r.:‘;0+.-»:.

In accordance with (3.175) for orthoqonal coordinates only

] S . s
Iks = rsk of the rmi symbols are non-zero. Taking this into account,

along with the expressions obtained above for a%ln/ggg,.we may rep-
resent equalities (3.171) in the following form:
7".(;._.'.')=..,'_ N AR A A
AT x4 T grad V] 3.T8)
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where the summation is carried out over all k different from s.

According to expressions (3.130) and (3.174) we have:

#r (Y] [
R R M SR

e 2 ry Ok s,
T R (3.177)
while for orthogonal coordinates for s # k
.."'.ll .- l.ﬂ. .
. (3.178)
This follows from the fact that, for orthogonal vectors ;s' in this
case the equalities
PPy =0 npn 2R
P, oryesl opn gemh. (3.179)

obtain.

L)
Taking the partial time derivatives of these equalities, we find:

' '
wgs et gm0

(3.180)
which is equivalent to equalities (3.178).

We now obtain from relations (3.176) (not summing over s!):

, . ]
3 = J (g, = A, [Pl 4 Vot 4

PP 4 2Udh 4 T — ' vl L de
+ 4, ()% (0),

[}
#=ujm%, W oa [ W40 ()
) (3.181)
where, as in expressions (3.176), k # s.

To obtain formulas for 1? and nk, we will once again use the
systems of equations (3.163) or (3.164).
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Taking into account equalities (3.174) and (3.175), formulas
(3.163) take the form:

¥ fppena s
+9' (e Fyaxt 4T, "“')4'
; +e"' WA “|‘a+m(0).
W g :
. (3.182)
where the summation is carried out over all m different from k.

Since in the case of an orthogonal reference grid

TN (3.182a)
it follows that :
€= b G E i (3.183)
where the plus or minus sign is selected as a function of the order
of the indices, as discussed with regard to relations (3.151) and’
(3.152). Therefore formulas (3.164) take the form:

‘fﬂ €0 l'dl-{-a"(O).
¢—¢ ,.m-wu
(3.184)
and the table of direction cosines (3.173) is written in the following
form:

& hL t
1o | L3 _l_ l"._i
e, 3., 'y -h—,m‘- hy vt

(3.185)

For the case of the orthogonal curvilinecar coordinates «3, the fun-
ctional diagram of the system may be constructed, clearly, on the
basis of a maneuverable gyrostabilized platform, since in this case
¢_ form a rigid orthogonal trihedron which could be rigidly attached

s
to the platform of the inertial system,
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Let us form the moments Mi 0 Mly ix required for control of

the gyroplatform. '

To do this we first need to express the projections of the
absolute angular velocity of the basis trihedron rl 233 on the
directions of the vector:s forming this trihedron in terms of the

coordinates »° and their derivatives x°.

Let us introduce the notation
~dr,

=‘d@i (3.186)

Recalling the defxnitlon (3.94) of the vectors rs, we may

represent the vectors es as follows:
=g+ R (3.187)
According to the definition of the Crist5¥fe1 symbols and the M
symbols Tog
wrg =l g =il (3.188)
Therefore |
e 5 L (3.189)

Let us use e and ck to denote the covariant and contravariant compon-
ents of c relative to vcctors ;k of the main basis. From relations
(3.189) we have:
Qe ot ea= T losae
(3.190)
On the otlier hand,

e i verglk (3.191) “i

=
where rs//ass is a unit vector of direction rs. Consequently,
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'.-—,v-—r.'+ia.. 7). (3.192)

s
I£ the vectors ry of the main basis form a rigid trihedron, then,
using w to denote the absolute angular velocity of this trihedron,
we obtain:

i)~ x v

(3.193)

Substituting expressjions (3.193) into equalities (3.192), we
find the relation between the vectors Es and the absolute angular
velocity of the rotation of the basis trihedron:

4 Va,,
"ﬂ—m—"-. oXr, o
We now have:
0..-;7"0—,;
Oainar-anh A ddONC (3.195)

For orthogonal vectors ;g the non-diagonal components of the
metric tensor are equal to 0, and so for s ¥ k equalities (3.195)

simplify and take the form:

b wiN P Py (3.196)
or

0y = Cr, X (AL

(3.197)
Let us expand the mixed products on the rights sides of relations
{3.197), using the Levi- Civita symbols given by equalities (3.150),
{3.151) and (3.152). We have:

L= W€

(3.198)
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Multiplying the right and left sides of equalities (3.198) by .
€ ek we ohtain (not summing over s or k!):

¢..€nl = “l.

(3.199)

Turning now to formulas (3.190), we find expressions for the

components w" and wy of the vector & (not summing over s or k!) as
follows: J

ot GV (T, RUEN PR }

o =3 0“10..

(3.200) ]

For the case under consideration, in which the ?s are orthogonal,

0y == 0 € (1 s%" + T, )
(3.201)
Using the known covariant components Wy of the vector & and (3.110),
the projections 5(2) of the vector » on ?2 are easily found (not %
summing over £!):

Wy = T'?;T =V € (. X"+ Tona). (3.202)
or

AT ‘,Fl;el'.”n(r.,u;‘“ +-131).

(3.203)
In expressions (3.202) and (3.203) the indices s and k are different.

In accordance with equalities (3.175) only thoseChristoffel symbols
?qﬁ are non-zero in which either s = m or k = m. Since according to
formulas (3.174) and (3.182a)

b= Vg I,

(3.204)

we obtain from relations (3.202):
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Oy = ;T'),T (Maq %™ 4 T'gy 1)
= = oy (T 5 4 T .

iy == e (i + Ty )
= = iy (im, 57 - Vg, ) (3.205)

In relations (3.205) the first expressions on the right sides
correspond to the following orders of the indices ¢, s, k: 1, 2, 3;

2, 3, 1; 3, 1, 2. The second expressions correspond to the orders
1, 3, 2; 2,1, 3; 3, 2, 1.

The two expressions given by formulas (3.205) for each projection
Wy are identical. This is easily demonstrated by noting that, in
accordance with equalities (3.175) and (3.187),

Faom =T Taay=—Fos (3.206)

Specifically, if the symbolsl‘os k are equal to 0, i.e., if the

reference grid k5 does not change its position in the main Cartesian
coordinate system, then

Oy = 34 ru o ',,' Py %",
Y =T rau " — lh, Fya. ™
1 .
"m'-m"u..z*"-°mru.u*"- (3.207)

In this case, taking into account the expressions (3.175) of the
Christoffel system in terms of the Lame coefficients, we arrive at
the following expressions for Wigy?

' .m, h,
By v "7,- it XA ,, ol ®
.y 1 04y ¢y
m"';;;:l" i M
1 ahy . M

0y = =y o Moy Gt . o
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Formulas (3.205) for the projections Wgy of the vector u on the
i‘ﬁ directions enable us to form the controlling moments Mix' Miy and
Mix of the gyrostabilized platform. Assuming, for example, that the
Ox, Oy, Oz axes of the platform coincide with ;2, ;3, and ;1,

respectively, and using relations (1.78), we find:

M=y, MYy o= — Mg, M, == Hayg, (3.209)

Let us summarize the results obtained for orthogonal curvilinear
coordinates and collect together the formulas defining the operational
algorithm of the inertial system.

For the case of a free gyrostabilized platform as the basis of
the system, the ideal equations have the form:

[
h,;(': I ln,‘—- h,(l‘.,fi'+l‘.;i'i'+
L]

+ I G + x4 T -
— grad V)| de 4- b, (0) % (0),
[4

&'—n-(/.,i')w'-. x'=j-}.'dl+x'(0); (3.210)
v [
] -
tom — [ [nf (P, %" - For+-Fyix*) -+
o= = f i o (3.211)
1 (Fygx® -+ % Ty ) 4 € WA ] de 4 wj (O
, (3.212)
e ,i-q; ":“ .
)
by (3.213)

Formulas (3.211) and (3.212) may be replaced by the equivalent
formulas (3.184). 1In formulas (3,210) and (3.211) the summation over
s is not performed; the summation over k, however, is performed for all
values of this index different from s.

For the case of a maneuverable qyrostabilized platform as the

basis of the system, relations (3.213) drop out, relations (3.205) and
(3.209) taking their place.
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3.2.5. Comparison with the results obtained in 3.2.1. It is

interesting to compare the first group of formulas (3.210) with the
first three formulas (3.59). Formulas (3.210) define the operational 1
algorithm of an inertial system operating in orthogonal curvilinear
coordinates, while formulas (3.59) define the operational algorithm
for Cartesian cocrdinates. - Since in the latter case the position of ﬁ
the xyz trihedron is arbitrary, it is possible to superpose the unit
vectors 2, ;, ; with the vectors ;2, ;3, ;1 of the main basis. Then,

clearly, it is possible to move directly from the first three equations
(3.59) to the first group of equations (3.210). Let us demonstrate
this.,

Using the Lavi-Civita symbols and the indexation which we have
been using in this section, the first three formulas (3.59) may be
represented in the following form:

[}
Y= |' ["u)-“m"meu. ,',-‘,,‘l.T"F k’m] dt+ v, (0), 3.2149)
i (3.214)

where Vis)’ ©(s) and 9(s) are the projections of the vector of the
absolute velocity of the point O, the vector of the absolute

rate of the rotation of the basis trihedron and the vector of the
strength of the gravitational field on the direction of the vector
;s' respectively.

The nrnjections V(s) and 9(s) may be expressed in terms of the
covariant components of the vectors v and g in the main basis,
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