T TR -

AD/A-004 474

THE PROGRAMMABLE STRATEGY THEOREM
PROVER: AN IMPLEMENTATION OF THE
LINEAR MESON PROCEDURE

Mark E. Stickel

Canegie-Mellon University

Prepared for:

Defense Advanced Research Projects Agency
Air Force Office of Scientific Research

June 1974

TN

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

Al

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE L1 it Sl

1. REPORT NUMTER 2. GOVT ACCES3ION NO| 3. RECIPIENT'S CATAL NG NUMBER

AFOSR - TR- 75 -0133"" —00‘;“/79‘

S. TYPE.OF REPORT & PERIOD COVEREO

4. TITLE /and Htitle)

THE PROGRAMMABLE STRATEGY THEOREM PROVER: AN Interim
IMPLEMENTATION OF THE LINEAR MESON PROCEDURE

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(s)

Mark E. Stickel F44620-73-C-0074

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

Carnegic-Mellon University

Department of Computer Science 61101D

Pittsburgh, PA 15213 AQ-2466

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency June 1974

1400 Wilson Blvd 13. NUMBER OF PAGES

Arlington, VA 22209 é—G’

4. MONITORING AGENCY NAME & ADDRESS(/! dilferent from Controlling Oiliice) 15, SECURITY CL ASS. (of thie report)

Air Force Office of Scientific Research (NM)

1400 Wilson Blvd . UNCLASSIFIED
Arlington, Virginia 22209 15a. ch'sé.DASilEFICATlON DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distributici unlimited.

17. DISTRIBUTION STATEMENT (of the abstinct entered in Block 20, {f different Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree eide il neceeeery and identifiy by block number)

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportnient of Commerce
pringfield VA 22151

20. ABSTRACT (Continue on reveree aide ii neceseery and Identiiy by block number)

The Programmable Strategy Theorem Prover (PST?) is a theorem proving program
for the first order predicate calculus using the linear MESON procedure as the
inference system. The lincar MESON procedure is 2 new variant of the model
elimination theorem proving procedure for theories with or without equality which
is an affirmation rather than a rcfutation procedure. It is profitably viewed a}
an extension of the problem - reduction method . The furdamental clement of a
linear MESON procedure deduction, the chain, is a representation of a set of
yoals to be solved and their supergoals. PSTP is designed to be used inter-

D0 ,"70Y%, 1473 E0iTiON OF 1 NOV 6815 OBSOLETE / , ,PNCES S“BlE(T 10

e kLo Lo bl sl date o

3
3

a - - 3 . ’ -_ -

T AR— e e

«— 1INCIASSIFIED , e

STCURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)
- Tl

t

20. Abstract (Continued) -

-

actively or in a fully automatic mode. Some features of PSTP are general
mechanism for specifying which chains are to be retained and manipulated,
an automatic procedure for storing and retrieving information about

chains when this information is requested, the capability of specifying an
ordering function which can be used for specifying search strategies, and
a powerful set of commands. Results of an experiment testing some simple

search strategies and comparisons with resuits from other theorem proving
studies are presented. i

(9

b
«

-

S // UNCLASSIFIED

SECURITY CL ASSIE == ° " s~ Dets Entered)

The Programmable Strategy Thzorem Prover:

An Implementation of the Linear iESON Procedures

by

Mark E. Stickel

Abstract

The Programmable Strategy Theorem Prover (PSTP) is a theorem proving
program for the first order predicate calculus using the linear MESON
procedure as the inference system. The Iinear MESON procedure is a newW
variant of the model elimination theorem proving procedure for theories
Wwith or without equality which is an affirmation rather than a refutation
procedure. It is profitably viewed as an extension of the probliem-
reduction method. The fundamental element of a linear MESON procedure
deduction, the chain, is a representation of a set of goals to be solved
and their supergoals. PSTP is designed to be used interactively or in a
fully automatic mode. Some features of PSTP are a general mechanism for
specifying Which chains are to be retained and manipulated, an automatic
procedure for storing and retrieving information about chains when this
information is requested, the capability of specifying an ordering function
which can be used for specifying search strategies, and a powerful set of
commands. Results of an experiment testing some =imple search strategies
and comparisons With results fron other theorenm proving studies are
presented.

i itd FTTE e eaman o r\ ™y —~
v ; PN
! : i ' ru\l ,_.__) ! *\“_
-
N - —_—
. { 17
toomid e ‘,
' i Fy) r q
: - ! ¢ 1915
- f:
VARATE T L
) PN B e tJ |98 § S0 N S O S N
b o (NS hator L)

wResearch supported by NSF Grant GJ-28457X2 and by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (F44628-73-C-
8874) .

il

. S el e e S i, SR . - 1 e PN PETTE d e - —
il o I L R, - S | - T T T, ~—‘-a_# e T e e AR e -

e.

Introduction

The first section of this report descrilbes a new theorem proving
procedu~e for the first order predicate calcu'us, the |linear MESON

procedure, a variant of model elimination. Although the |inear MESON

procedure is not substantially mcre powerful than related rescluticn
procedures except in the capab.lity for restriction or differential
treatment of inferences by particular implicative forms cf the axioms, it
represents a significant increase in the "naturalness" of proofs by

complete inference systems because it can ve vieued as an extension of the

problem-reduction method (3],
In addition to the standard "subgoaling" mechanism of the problem- n
reduction methed (by which a goal is replaced by a set of subgoals whose
soiution constitutes a sciution to the goal) represented in the |inear
MESOUN procedure by tne extension operation, the |inear MESON pirocedure
provides a mechanism for solving a goal one ot whose subgoals is its
logical negation requiring reasoning by contradiction (the reduction
operation), an operation for eliminating duplicate goals (factorization),
and operations for solving problems involving the equality relation (p-
extension, p-reduction) uithout requiring full axiomatization of its
properties. Tnese added inference operations result in a complete
inference system for the first order predicate calculus with equality.
The scecond section describes the underlying concepts and overall
design of the Programmable Stirategy Theorem Prover (PSTP), a theorem
proving program employing the linear MESON procedure as its inference

system and designed to be used interactively or fully automatically.

T T ——

Although restricted to using the |inear MESON procedure as iis inference
system, PSTP provides substantial flexibility in specification of search
strategies, both in terms of deletion criteria (such as use of length,
level, and depth bounds) and of the order in which inference operations are
to be performea (such as depth first, breadth first, or diagonal search
strategies).

The third section presents the resul‘'s of a per formance study on & set
of problems previously tested in two other theorem proving performance
studies. Some conclusions are drawun concerning relative merits of tested
search strategies on empirical and philosophical grounds and the power of

the linear MESON procedure relative to other prucedures as exemplified by

results from the other studies.

1. The Linear MESON Procedure

The linear MESON procedure is a variant of the model elimination
theoreém proving procedure (6,7,8] in which (1) each literal of the top
chain and the derived chains of a deduction is replaced by its complement
and (2) implications as well as disjunctions are permitted as axioms. 1t
is also the linear form of the MESON procedure (3) specified for goal-
subgoal trees (MESON stands for "model eliimination subgoal oriented").
Advantages of the linear MESON procedure are (1) the |inear MESON
pro.edure, though logicaliy equivaient to model elimination, has the form
of an affirmation rather than a refutation procedure and its proofs have a
very natural interpretation in terms of goal-subgoal trees and (2) the
linear MESON prccedure has greater expressive power than a'ternative
procedures in the potential use of implications rather than disjunctions to
restrict applicztion of inference operatinns to certain literals of axioms
or (by replacing a disjunction by more than ore implication) to facilitate
differential treatment of the various implicative forms of axioms during
the search for a sofution (this capability is shared by model elimination
in which each length n input clause generates n auxiliary chains orly the
last literal of which can be matche! in inference operations).

In a theorem proving program permitiing interaction betueen human user
and mechanical proof procedure, it 1s desirable that as human-oriented a
procedure as pcssible be employed. MWhile it is correctly argued that all
resolution type theorem proving procedures are machine-orjented and

notoriously unsuited to extensive human computation, it is our contention

that the linear MESON procedure ‘s more human-oriented

than other

A
resolution related procedures.
3

This is a direct consequence of the relationship of the |inear MESON
procedure with the problem-reduction method. The |inear MESON procedure is
an extension of the problem-reduction method which is complete for the
first order predicate calculus with equality., It augments the problem-
reduction rnethod by inference operations which perform reasoning by
contradiction (reduction}, which eliminate duplicate subgoals
(factorization), and which deal with the equality relation (p-extension, p-
reduction)..

The linear MESON procedure represents the state of a search for
solution as a set of chainz, Each chain represents a subtree of the search
space. The solution of all the subgoals represented in a chain constitutes
@ solution of the top goal. Different ctains represent different
alternative partial soiutions of the top goal.

More specific claims of the linear MESON procedure being human-
oriented are (1) it is an affirmation rather than a refutation procedure,
(2} in keeping literals ordered in a chain, it automatically prevents (in
goal-subgoal tree terms) the start of an attempt to solve another subgoal
in the chain until the current one is solved, and (3) it is a procedure
which remains complete if only input deductions are used. An input
deduction is a deduction in which each element of the deduction (a |inear
MESON procedure chain) is derived by an inference operation applied to its
predecessor or its predecessor and an (input) axiom.

In combination, the last two items permit the user to focus his
attention on a much smaller subset of the available data than is possible
for many resolution based procedures.

In preparing a problem far .nput to the |inear MECON procedure, the

|

e 2 [T

input formula is first converted to prenex form with its matrix in the form
of a conjunction of assertions implying a conclusion. An assertion is a
(possibly empty) conjunction of Iiterals (antecedents) implying a
disjunction of literals (consequents). Note that if there are no
antecedents in the assertion, the assertion is just a disjunction of
literals (disjuncts), i.e., a clause, A conclusion is a conjunction of
literals. Schematically, the transformed formula is in the form'
Q((A‘,A...AA:?C:v...vC‘n.) Aeoe n R A AN SCTVL VD) (G, AvvonG,))

where A, C and G denote literals, Q denotes a list of quantifiers, and p21,
g2l, each m‘za. each n 21.

The transformed formula is then Skolemized by (1) replacing for each
universal quantifier in the prefix all occurrences of the quantified
variable in the matrix by a unique Skolem function with all the
existentially quantified variables whose quantifiers precede the universal
guantifier in the prefix as arguments and (2) deleting the quantifier
prefix.,

An alternate input form for the |inear MESON procedure is a
conjunction of quantified assertions implying a conclusion. Schematical ly,

0 (A, A oMLV VCa) A e A Qp A A ALICIVe L VEL) 5 BufBy Ae 1S)
where A, C and G denote literals, Q denotes a list of guantifiers, and p21,
g2l, each m;z@. each n 21,

This input form is Skolemized by (1} replacing in each assertion ali
occurrences of each existentially quantified variable by a unique Skolem
function whose arguments are the variables of universal quantifiers

preceding the existential quantifier, (2) replacing in the conclusion all

occurrences of each universally quantified variable by a unique Skolem

function whose arguments are the variables of existential quantifiers
preceding the universal quantifier, and (3) removing all quantifiers from
the formula,

Example. The problem is: if a is a prime number and a times the
square of some number u is b then a divides b. The initia! formula is:

VxVyV¥z2¥u (prime(x) A ywz=u A divides(x,u)
=+ divides(x,y) v divides(x,z))
A Vx xsex=square (x)
A YxVyVz (xsey=z = yiex=z)
n YxVyVz (xwy=z + divides(x,z))
n Ju awsquare (u) =square (b)
n prime(a)
=+ divides(a,b)

The Skolemized form ready for input to the |inear MESON procedure is:

(prime(x) A yrz=w A divides(x,u) = divides(x,y) v div.des(x,z))
xfex=square (x)

(¥yey=2z - yiwex=2)

(x%y=2z » divides(x,z))

awsquare (c) =square (b)

prime (a)

- divides(a,b)

> > > > >

Probliems with equality (as above) can be introduced without the need
for specifying the symmetry, transitivity, and substitutivity axioms if the
special equality inference operations (p-extension, p-reduction) are used.
The equality reflexive (x=x) and functionaily reflexive axioms (e.g.,
square (x) =square(x), xwy=xwy) theoretically are required. The latiter are
not present in the above example since no special equality rules are
required for the problem’s solution. (This is the same as the NUMl exanple
studied in Section 3.)

By virtue of its derivation from mode! elimination, the !inear MESON
procedure is complete (given that a compatible set of inference and

postprocessing operations are used) provided (1) the set of assertions is

consistent (this requirement is equivalent to the requirement that the too
chain of a model elimination deduction be in the minimally unsatisfiable
set of input clauses) and (2) either the disjunctive axiom form is used or
all implicative forms of each assertiion are includec among the assertions.
The first condition can be eliminated by the addition of a special
contradiction mechanisn defined for the MESON procedure but not included in
this formulation of the |inear MESON procedure which permits the proof of
any conclusion from an inconsistent set of assertions. The second
condition can sometimes be eliminated in practice since it is often clear
from the problem structure (as in the case oi Horn formulas} that use of a
subset of the implicative forms results in the possible deduction of all
the chains that the disjunctive form would. Also, although the resulting
procedure is, in general, incompletz it is sometimes desirable to restrict
the search for a proof by not presenting the procedure with ail the
mplicative forms of the assertions.

The fundamental element of a iinear MESON procedure deduction is the

chain. A chain is an ordered sequence of |iterals. Two types of literals

are distinguished: A-literals and B-literals

B-literals correspond to the
literals present in clauses in resolution theorem proving. A-literals
record ancestry information and represent (in goal-subgoal trce terms)
higher goals. All the literals in the theorem and axioms are B-literals,
An A-literal is created in a neuly derived chain from a B-literal in the
parent chain uhen a cet of |iterals whose conjunction implies the A-literal
(a set of subgoals whose solution constitutes a solution to the geal
represented by the A-literal) is added.

A linear MESON procedure deduction of chairn K from problem P is a

s

P —

o

§ sequence Ko,...,K_ of acceptable ci1ains where K. is the conclusion of P, K
. 0 " () h

is K, each K; (lgisn) is derived from K,-» by extension (by an assertion
f C.J). factorization, reduction, p-extension (by an assertion G, or p-

reduction, and each C,.,is an assertion of P or a lemma (see lemma formation

]
operation below). A solution of P (a progf of the conclusion of P) is a
linear MESON procedure deduction of the enpty chain from P, In general,

for the inference system to be complete, the negation of the conclusion

T

must be included among the assertions. The definitions of acceptable
chains and the inference operations are given below. Example proofs
illustrating most forms of the inference operations appear starting on page
] 17.

Matching. If the two arguments to the matching procedure are terms,
the matching procedure returns the most general unifier of the terms. I[f
the two terms are not unifiable, the matching procedure fails.

If the two arcuments to the matching procedure are literals and are
both itiv (unnegated) or both pegative (negated) literals with

unifiable atomic formulae, the matching procedure returns the most general

unifier of the atomic formulae. [f the two argunents are not both positive

or both negative or the atomic formulae are not unifiable, the matching
procedure fails, ' '
xtensjon. The extension operation takes an acceptable chain K and an
implication (alt., disjunction) C as its arguments. Let K' and C' be
variable disjoint variants of K and C. [f the last literal of K' matches a
consequent (alt., disjunct) of C', the chain consisting of K' followed by

the antecedents and the complements of the remaining consequents (alt., the

complements of the remaining disjuncts) of C' with matching substitution

applied can be inferred. Each literal of the derived chain descended from
a literal of K’ is designated to he the same type cof literal as its
ancestor except the last which is designated to be an A-literal; each
literal of the derived chain descended from a literal of C' is designated
to be a B-literal.

Factorization. The factorization operation takes an acceptable chain
K as its argument. [f the last literal of K matches a precediné B-literal
of K, the chain consisting of K with the last literal removed and with
matching substitution applied can be inferred. Each literal of the derived
chain is designated to be the same type as its ancestor.

Recduction. The reduction cperation takes an acceptable chain K as its
argument. [f the last literal of K matches the complement of a preceding
A-literal of K, the chain consisting of K with the last literal removed and
Witk matching substitution applied can be inferred. Each literal of the
derived chain is designated to be the same type as its ancestor.

P-extension. The p-extension ("p-" for paramodulation) operation
takes an acceptable chain K and an implication {alt., disjunction) C as its
arguments., Let K’ and C' be variabie disjoint variants of K and C. (a) If
a consequent (alt., disjunct) of C' is of the form a=b or b=a uWhere a
matches a term in the last literal of K’, the chain consisting of K’
followed by the antecedents and the complements of the remaining
consequents (alt., the complements of the remaining disjuncts) of C'
followed by a copy of thc last literal of K’ with a single instance of the
term matching a replaced by b With matching substitution applied can be
inferred. Each literal of the derived chain descended from a literal of K'

is designated to be the same type of literal as its ancestor except the

last which is designated to be an A-literal; each literal of the derived
chain descended from a litera! of C' is designated to be a B-literal; the
last literal of the derived chain (in which an instance of a term matching
@ uWas replaced by b) is designated to be a B-literal. This form of p-

extension is called p-extension from an assertion. (b) If the last literal

of K' is of the form axb or bwxa where a matches a term in a consequent
(alt., disjunct) of C', the chain consisting of K' followed by the
antecedents and the compiements of the remaining consequents (alt., the
complements of the remaining disjuncts) of C' followed by a copy of the
complement of the corisequent (alt., disjunct) containing the term matching
a uwith a single instance of that term replaced by b with matching
substitution applied can be inferred. Each |iteral of the derived chain
descended from a literal of K' is designated to be the same type of |iteral
as its ancestor except the last which is designateu to be an A-literal;
each literal of the deriver chain descended from a literal of C' is
designated to be a B-literal; the last |iteral of the derived chain (in
which an instance of a term matching a was replaced by b) is designated to
be a B-literal. This form of p-extensior. is called p-extension to an
assertion.

P-reduction. The p-reduction ("p-" for paramodulation) oparation
takes an acceptable chain K as its argument. (a) 1f the last literel of K
contains a term matching the term a where a preceding A-literal of ¥ i5 of
the form a=b or bxa, the chain consisting of K followed by a copy of the
last literal with a single instance of the term matching a replaced by b
Wwith matching substitution applied can be inferred. Each literal of the

derived chain descended from a literal of K is designated to be the same

18

type of literal as its ancestor except the last which is designated to be

an A-literal: the Iast literal of the derived chain (in which an instance
of a term matching a was replaced by bl is designated to be a B-iiteral.

This form of p-reduction is called p-reduction from an A-literal. (b) If

the iast iiteral of K is of the form a=b or b=a where a matches a term in a
preceding A-iiteral of K or the last literal of K itself, the chain
consisting of K foliowed by a copy of the preceding A-literal or last
iiteral with a cingle instance of the term matching a replaced by b with
matching suostitution appiied can be inferred. Each literal of tne derived
chain descended from a literal of K is designated to be the sanme type of
literal as its ancestor except the last which is designated to be an A-
literal; the last litera! of the derived chain (in which an instance of a
term matching a was replaced by b) is designated to be a B-literal. This
form of p-reduction is called p-reduction to an A-literal or self.

If the parent chain K i1 the p-extension or p-reduction operation is
itself derived by p-extension or p-reduction, the created A-literal in the
derived chain may optionally be omitted with completeness unaffected (see
[8]). There is a tradeoff here. If the A-literal is omitted, the derived
chain is shorter and easier to read, and some future possible reductions
and p-reductions may be eliminated. On the other hand, especially if the
postprocessing operation specifies rejection of chazins containing an A-
literal followed by an identical A-literal or B-litera!, retention of the
A-literal mey result in rejection of more chains as being unacceptable,
For example, this could prevent iepeated p-exiension by a=b from creating
an endless sequence of chains ending alternately in Pa or Pb.

iprocessing. A postprocessing operation takes a chain K {output

11

T oy ey e

from the extension, factorization, reduction, p-extension or p-reduction

oper-tion) as its argument and either rejects K as being non-acceptable and
thus unusable as input to any inference operation or transforms the chain
into an acceptable chain. Many different postprocessing opel ations can be
Written with different effects regarding efficiency and completeness. Four
postprocessing cperations are described in the follouwing table. The table
expresses possible relationships betueen each pair of literals in the
chain. All the actions Correspondiny to true conditions are to be
performed on the chain, except, of course, that if the action is to reject
the chain then no other conditions need be checked or actions need be

per formed.

Postprocessing operations

STRONG- STRONG- WEAK - WEAK -
SAVE OELETE SAVE DELETE
Conditicn Action Action Action _A-tion
A-literal folloued by reject reject reject reject
identical A-literal chain chain chain chain
A-literal followed by reject reject reject reject
complementary A-literal chain chain chain chain
A-literal followed by reject reject reject reject
identical B-1literal chain chain chain chain
A-literal followed by de'ete delete
complementary B-1iteral following following
B-literal B-1iteral
B-literal followed by reject reject
identical A-literal chain chain
B-literal followed by reject reject
complementary A-literal chain chain
B-literal followed by delete delete
identical B-literal fol lowing followin~
B-literal B-literal
B-literal followed by reject reject
complementary B-literal chain chain

12

If ail the actior: of the postprocessing operation specified in the

table have been performed and the chain is not rejectzd, all terminal A-

literals of the chain are deleted. This terminal A-literal deletior is

called contraction.

The deletion action associated with the "B-iiteral followed by

identical B-literal" condition is called ground factorization since it

represents an instantiation-free usage of a generalized factorization

operation which can delete non-terminal B-literals. Similarly, the

deletion action associated with the "A-literal folloved by compiementary B-

literal" condition is called ground reduction since it represents an

instantiation-free usage of a generalized reduction operation which can

delete non-terminal B-literals.

Several additional conditions and actions can be used in

postprocessing operations such as the following which are available in PSTP

but were not used in the present study: (1) rejecting chains containing a

non-terminal A-literal that is an instance of a unit axiom (single literal
input assertion), (2) rejecting chains containing a non-terminal A-literal
that is an instance of a unit lemma (single Iiteral derived assertion, see
lemma formation operation below) by which the ancr.ior chain could have
been extended wien the A-literal was created, (3) deletion of B-literals
Which are instances of unit axioms, (4) deletion of B-literals which are
instances of unit lemmas, (5) removal of all literals including and
following the A-iiteral in the case of a B-literal fol lowed by an identical

A-literai (this is called factorization truncation), (B) removal of all

literals including and following the second A-literal in the case of an A-

literal fcllowed by a complementary A-literal (this is called reduction
r ion). All of these actions can be shown to preserve completeness.

13

e il g e

For problems not involving the equality relation, the WEAK-SAVE and
WEAK-DELETE postprocessing operations yield a complete inference system
when the extension and reduction operations are used. The WEAK
postprocessing operations correspond closely to the chain adnissability
Criteria for model elimination of (6). Also for problems not involving the
equality relation, the STRONG-SAVE ancd STRONG-DELETE postprocessing
operations yield a complete inference system provided the factorization
operition is used in addition to extension and reduction. The STRON
postprocessing operations corirespond closely to the chain acceptability
criteria for strong model elimination of (7], Note that wuith these
Postprocessing operations, if the conclusion is variable free, its negation
need not be included among the assertions since extension by the negation
of the conclusion in any deduction from the conclusion would result in a
non-acceptable chain with an A-iiteral followed by an identical B-literal
or an A-literal followed by a complementary A-literal.

For problems invalving the equality relation, a postprocessing
oreration which rejects a chain only if it has an A-literal followed by a
complementary A-literal yields a complete interence system when the
extension, reduction, p-extension and p-reduction operations are used.
Also for problems involving the equality relation, a postprocessing
operation which rejects a chain only if it has a A-literal *ollowed by a
ccomplementary A-literal or a B-literal followed by an identical A-ijteral
yields a complete inference system provided the factorization operation is
also used. This corresponds clioseiy to the chain permissability criteria
for model elimination with paramodulation of [8]. We believe (but have no

proof) that for problems involving the equality relation, the WEAK-SAVE and

14

o e b T s ok ha e

WEAK-DELETE Postprocessing operations yield a complete inference system
Hhen the extension, reduction, p-extension and p-reduction operations are
used and the STRONG-SAVE and STRONG-DELETE postprocessing operations yield
a8 complete inference system when the factorization operation is also used.
The equaiity reflexive {(x=x) and functionally reflexive axioms (e.g.,
fix,yl=Ffix,y)) theoretical!y are required in any case.

emmy formation. An additionai inference operation is used to Create

NoW assertions during contraction. A new assertion (called a Jemma)

consisting of the disjunction of the terminal A-literal being removed and
all pnreceding A-literals whose scope (see below) exceeds the number of A-
literais between them and the terminal A-literal and the complements of all
preceding B-literais whose fcope exceeds the number of A-literals between
them and the terminal A-iiteral can be inferred.

The scope of each literal in the conclusion is B and the scope of each
titeral added to a chain in the extension and p-extension operations is 8.
In the factorization and reduction operaiions (and also in ground
factorization and reduction performed by the posiprocessing operation), the
scope of the leftmost involved literal is set to the maximum of its
previous scope and the number of A-literals between it and the rightmost
involved literal. In the p-reduction operation, the scope of a literal
descended from an involved A-literal is set to the number of following A-
literals in the derived chain. Each other literal has the same scope as
its parent literal in the parent chain. After each contraction operation,
the scope of each |iteral is set to the minimum of its previous scope and
the number of A-litrrals following it in the chain, i.e., no literal will

be allowed to have a scope which exceeds the number of following A-

literals.

15

Lo

Lemma formation creates assertions from solved goals. Removal of an

A-literal by contraction does not mean that the goal it represents has been
soivec glebally, but only that it has been solved in the environment of the
chain of which it was a part. Joined in disjunction with the A-literal is
the negation of each of the assumptions from the chain used in the solution
of the A-iiteral. Thus, the resulting lemma states either the "solved" A-
literal is true or one or more of the assumptions was false. The
assumptions which could be used in the solution of the A-literal are the
negation of an A-literal (reduction, b-reduction) or a B-literal
(factorization). The scope mechanism keeps track of the assumptions made
with respect to the solution of each goal.

Lemma formation, while it may generate useful assertions during the
search for a proof, is not required for completeness.

Several heuristics are available to eliminate the generation of
redundant lemmas such as: (1) the first lemma to be generated after an
extension operation followed by zero or more factorization or reduction
operations is always redundant and (2) if the chain has two or more
terminal A-literals and the lemma associated with one subsumes the lemma
associated with another, the second need not be generated (specific cases
of this condition can readily be checked by examining the scopes of the
literals involved).

mption. Redundant chains and assertions can be eliminated from
future use by subsumption. One chain is subsumed by another and can thus
be eliminated if an instance of the latter chain is an initial subsequence
of the former (sequences of B-literals between A-literals may be freely

reordered during the subsumpticr test). One asse~tion subsumes another if

16

the chain corresponcding to the former assertion subsumes the chain
corresponding ‘o the latter (the corresponding chain is formed by making a
list of B-literals keing the consequents and complemented antecedents of
implications or disjuncts of disjunctions) and, in the case where the
subsuming assertion is an implication, no disjunct or consequent of the
subsumed assertion is matched to an antecedent of the subsuming assertion.
The latter provision prevents the subsumption of an assertion by another
implicative form of tne same assertion both of which may be required for
completeness. Stronger subsunption rules are possible (see (8]).

With relation to a search strategy, tuwo additional classes of

subsumption are recognized: (1) forward subsumption is the subsumption of a

nenwly created chain or assertion by a previoucly available chain or

assertion and (2) backward subsumption is the subsumption of a previously

available chain or assertion by a newly generated chain or assertion. In

general, completeness is assured only if, when backward subsumption is

used, it is first checked whether the subsuming chain is eliminable by

forward subsumption,

Exanples. This and the following proofs illustrate the usage of most

forms of the inference operations. Chains are represented as |inear
strings of literals with A-literals bracketed. A-literals represent
"opened" goals, i.e., goals for uhich a solution is currently being 1
attempted in the chezin., B-literals represent "unopened" goals, i.e.,

subgoals for uwhich an attempt for solution has not yet started. Each A-
literal is a logical consequence of all the literals to its right; thus,
the solution of each B-literal to the right of an A-literal solves the A-

literal while also solving all the other A-literals to the right of the

17

e e o e

solved A-literal. Deductions are represented as a vertical sequences of
chains, the ancestor of each derived chain being the chain above it. Each
derived chain is annotated to describe its derivation from its ancestor.
I'f @ chain is the result of extension or p-extension by an asseriion wWith
more than one consequent or disjunct, an alphabetic index is used to
designate which consequent or disjunct was used. Indices are "a", "b",
"c", etc., reading from right to left. The unannotated chains at the top
of each sequence of chains are the axioms. Here and elsewhere in this
paper, the conclusion and assertions of a problem will frequentiy be
referred to as theorem and axioms respectively.
This is a proof that =(Pa o Pb) =+ a=b.
l. Pa v Pb first axiom from -~(Pa & Pb)
2. -Pa v -Pb second axiom from -~(Pa o Pb)
a=b theorem to be established
(a=b) -Pb -Fb p-extend to lb
This operation initiates a proof by contradiction. Assuming a=b
(the complenent of the literal a=b), the truth of -Pb A -Pb
contradicts Pa v Po.

la=b] -Pb factor

It is only necessary to prove -Pb once.

la=b] [-Pb] Pa extend by 2a

By axiom 2, if Pa is true then -Po is true.
la=b] [-Pb] [Pa) Pt p-reduce from A-|iteral

Again assuming a=b to derive a proof by contradiction, if Pb is
true then Pa is true.

enpty redure
In chain 7, subject to the assumption that the conclusion axb is

faise and that a=b, there are the implications Pb -» Pa and Pa -
-Pb. This leads to Pb - -Pb, a contradiction if Pb is true.

18

P OWOoNOU & WN -

_—

WO NOYUT & WN)

NOOTSWN -

1.
2:
3.
4
S
6
7
8

Therefore, -Pt must be assumed to be true.
a=b, so the theorem is proved.

The following four examples are adapted with some modification from

A =D

A (-0 A =C
(Cl B] A (D] A

A

b<a A a<b -+ a=b

asb

b<a

a>B

(a28] w<a asb b20
(a28] b<a ac<h
(a28) bc<a

empty

a>f -+ ax@
-b28

a>d

a=b

{a=bl a>8 -b28
(a=b] a>@
empty

a+b=2%c - a=b v a=c
bxc

3+b=2wc

axzb

{axb] a+b=2w%c axc

(a=b] a+b=2vwc [axc] bsxc
(a=b] a+b=2%c

empty

theorem
extend by 1
extend by 2
extend by 3a
reduce
factor
extend by 4

theoren
p-extencd from 1
extend by 2
extend by 3
extend by 4

theorem
p-extend to 1
extend by 2
extend by 3

theoren

extend by lb

p-reduce from A-literal
extend by 2

extend by 3

From chain 5,

2. The Programmable Strategy Theorem Prcver

The Programmable Strategy Theorem Prover (PSTP) is a program written
in UCI LISP (3] for the DECsystem-18 ccmputer implementing the |inear MESON
procedure as described in Section 1.

Tne linear ™MESON procedure is a good inference sysiem for an
interactive, programmable strategy theorem prover since, it being an
extension of the problem-reduction method, it is more human-oriented than
alternative systems, and its input procedure nature and the rzlatively
small number of operations that can be performed on any chain facilitates
the design and use of the programmable search strategy capability.

In addition, the I|‘near MESON procedure is a suitable choice in terms
of perfnrmance since it appears to perform competitively with other
inference procedures when used as the inference system in a fully automatic
system. An implementation of the parent model elimination procedure at New
York University (4] using a depth first search strategy performed
competetively with a theorem prover employing the set ot support refinement
and wunit preference search strategy. Further evidence of the
competitiveness of iinear MESON procedure based systems will be presented
in Section 3.

Chain properties. Ir the design of a theorem proving program, it is
necessary to allow fur the computation and retention of certain information
about each chain (clause) generated during the search for a proof. An
exanple is the necessity of retaining information on parentage of each
chain so a proof can be traced when discovered. Another example is the

computation of the length of a chain or the maximum level of function

20

pa— o T A e R e R ¢ e e e o R e L

A T—

R R B . R T T N TR e e Sl TR e, S0

nesting in the chain if length or depth bounds are being employed. [t

Hould be nasteful to always compule and store such information since it may
not always be needed. Also, the retention of computed information about
chains should be contingent on such variables as the computational effort
required to compute the information, frequency of use of the information,
and cost in memory of storing the information. (A more fundamenta!
objection to aluays storing computed information about a chain is that the
information might change with time. For example, the fact that a
particular chain is the shortest chain in memory will probably be falsified
in the future.) Another important consideration in the design uf an
information storage and retrieval mechanism for chains is the ability to
define nrew data which can be optionally computed for any chain.

This iast consideration is especially important in an interactive
theorem proving program so that the user can cause to be computed whatever
information about a chain will be useful to him. It is also an impor tant
consideration in the design of a theorem proving program which allows user
specification of search strategies.

The property storage and retrieval mechanism for chains in PSTP was
designed to possess the following characteristics. MWith the obvious
exceptions of the number of a chain and its ancestry information, no
information about a chain is computed unless and until this information is
requested. Retaining the information is a user option. A new computable
datum about a chain can be defined be merely defining the LISP function
Wwhich computes the information.

The mechanism used is based on the concept of a chain property list.

This is a list of dotted pairs; the first component of each dotted pair is

21

a property name (the access name of a datum about the chain); the second
componert is the value of the properiu. The information storage and
retrieval mechanism functions in the following way. If the value of the
kroperty named, for example, NLIT (this represents in PSTP the number of
literals in the chain) is interrogated for a chain, that chain's property
list is examined for a dotted pair with st component MNLIT. If such a
dotted pair is found, its second component is the desired information. |f
property NLIT does not appear in the chain property list, the LISP function
NLIT is evaluated with the chain (including chain property list) as its
single argument. The value the function NLIT returns is then the desired
information. Further, if ine LISP atom NLIT has non-NIL value, the
property name NLIT and newly computed value will be added to the chain
property list.

New properties are defined by the DP ("define property") function.
The DP function takes as arguments a function name, lambda variable list,
and expression (just like the UCI LISP DE, DF, and DM functions). |t
creates a LISP function which performs all the chain property list lookup
and modification operations, and evaluates expression for the argument if
the property value is not found on the chain prcperty list, For example,
NLIT is defined in PSTP by evaluating (OP NLIT (CHAIN) (LENGTH (COOR
CHAIN))) where LENGTH is the LISP function whichk computes the length of a
list and (CDOR CHAIN) is the location of the list of literals of chain
CHAIN, (SETAQ NLIT T) is then evaluated to order retention of values
computed by the NLIT function.

Some of the property functions already defined in PSTF compute the

number of A-literals in a chain (NALIT), the number of B-literals in a

22

S— N TN ra—— - e

chain (NBLIT), the total number of literals in a chain (NLIT), the maximum
function depth in a chain (DEPTH), the number of variables in a ciain
(NVAR), the number of LISP CONS operations required to construet a chain
(SIZE) (this is a good size or complexity function), and the level (number

of inference operations in the derivation) of a chain (NEXPAND).

Chain filters. This property storage and retrieval mechanism supports
a higher level chain storage and retrieval mec.anism. Filters provide a
way of flexibly specifying which chains are to be operated upon and which
der ived chains are to be stored. Two types of filters are distinguished by
usage: input filters and output filters. Input filters a-e employed by the
user to specify which chains are to be operated upon. Only chains
"selected by" an input chain filter will be processed. Output filters are
used to specify which derived chains are to be retained. A chain must be
"accepted by" an output filter to be stored. The general form for a filter
is a unary LISP function name or |ambda expression which returns a non-NIL
value if the chain argument is selected or accepted, NIL otheruise.
Several abbreviated forms are also available: (1) an integer selects or
accepts a chain with that chain number, (2) a3 list of integers selects or
accepts chains with chain numbers in the list, (3) a three element list
(called a triple) consisting of a binary function name and 2 integers or
property names selects or accepts chains for which the value of the
function applied to the integers and property values is non-NIL, and (4) a
list of triples which selects or accepts chains for which each triple has
non-NIL value.

This chain storage ard retrieval mechanism is very flexible. The user

can designate chains for processing directly by number or by the propertic:

23

they possess and can arbitrarily specify the necessary conditions for a
newly derived chain to be stored. This user specification of output
filters is a far more general form of the usual specification of bounds in
theorem proving programs.
Search strateay specification. One of the most important features of
PSTP is its capability for specifying the search strategy to be used in
searching for a proof. Several theorem proving programs (e.g., QA3.8 [11])
permit the user to specify a particular combination of refinements of
resolution (restrictions on pairs of clauses to be used as input to the
resolution operation (e.g., linear, merging, set of support, model
refinements)), but the capability for ordering inference operations given a
particular refinement Jf resolution is uncommon. PSTP is, of course,
restricted to using the linear MESON prrcedure with variations restricted
to different postprocessing operations, but it does have a general
capability for specifying search strategies. ' |
Before describing the search strategy specification capability of
PSTP, it is instructive to consider the proof strategy employed in many ﬁ
other theorem proving systems in uWhich search strategy is fixed with
possibly a few parameters uwhich the user can specify to tailor the proof
search, to a particular problen. Thus, the search strategy may be .]
fundamentally depth first or perhaps breadth first with a parame ter

specifying the permitted amount of look-ahead using unit preference. Much

of the control the user has over such systems is the specification of which
chains to discard. However, even this decision is severely constrained. i
Usualiy, the user is only permitted to specify the values of a few
parameters such as the maximum length or function depth of clauses to be

retained. ’

24

We have seen that output filters generalize the capability of
specifying retention of chains. Chain order functions provide the
capability of specifying the order of expansion of the search space.

Chain order functions. Associated with each Ijst of chains is the

name of an order function. (The order function is actually a chain
property function as described above.) Whenever a chain is stored jn a
chain 1list, it s inserted according to the numerical va'ue of the
correspondinc order function appiied to the chain. The chains with the
smaliest values of the order function are stored at the top of the chain
list (in case of ties, the more recently stored chains will be on top of
‘he chain list). This maintenance of chain lists in sorted order in
cowbination with the SEARCH and SEARCH? commands provides a quite generai
capability for specifying search strategies.

Search commands. The SEARCH command is ~ne of the fundamental
functions for automaticalliy expanding the search space. The normal mode of
operation is for the SEARCH command (o remove the top chain from a chain
list, derive all possible immediate successor chains from this chain (this
is known as expanding the chain), and store those successor chains seiected
by an output filter in the original chain |ist accerding to its order
function. Thus by specifying an order function and using the SEARCH
command, the user can specity in what order chains are to be expanded and
thus partiaily controi the search strategy. For example, if the default
order function (which merely returns 8) is used, the search strategy is a
depth first strategy. If the deduction levei of a chain is used as order
function, tne search strategy is a pure brecdth first strategy (ievel

saturation). The SEARCH command can be viewed as an impiementation of

25

Nilsson's Ax algorithm (18] for graph searching as applied to theorem
proving. Each derived chain is a node in the graph and the generation of
all immediate successors to a chain by extension, factorization, etc.,
represents the expansion of a node in the A% algorithm.

Although the SEARCH command is very effective in ordering the
expansion of chains, the full expansion of a chain at each step often
results in generating a large number of chains that wWwill not be used
because the value of the order function for these chains exceeds the
maximum order function value of any chain appearing in some proof. This
presents two difficulties: (1) unused high order function valued chains
fill up memory too quickly and (2) their generation requires extra,
unnecessary uWork, The first of these problems could be solved by
specifying an output filter that rejects chains With order function value
exceeding a certain amount. However, this solution generates a bounded
search strategy, i.e., a parameterized incomplete strategy wh:ch may fail
to find a proof because the order function maximum is set too lou.
Moreover, the specification of a bounded search strategy fails to solve the
problem of extra work required in the generation ot rejected chains.

The solution adopted for PSTP includes a means for specificatior of
ordering of individual inference operations rather than just chains., The
form of the value of the order function was generalized to include sorted
lists of operations with numerical values. For example, the order function
value ((281 REDUCE) (382 EXTEND 6)) could represents the order function

value for a chain With previously unperformed operations of reduction and

extension by chain nunber 6. Chains with order function values of this

form are inserted into chain lists according to the numerical value of the
first specified operation (781 in the example).

26

e e i i et

T ——

The SEARCH2 command is designed to operate on chain !ists with order
functions of the new form. The SEARCH2 command, rather than deleting and
expanding the top chain on the chain list, deletes and performs oniy the
first inference operation of the order function va'ue of the top chain on
the chain list, |[f any inference operations remain in the order functicn.
the top chain is reinserted in the chain list according to the vaiue of the
next specified inference operatior. Thus, the chain list is aluays a list
of chains ordered according to the minimum vaiue of the unperfo-ned
inference operations for that chain. Tne SEARCHZ commanc will gererate
successors of a single chain uninterruptedly only so long as none of iha
Successors of the chain or any other chain on the chain liet has an
inference operation with lower numerical value than the next inference
operation to be performed on the current chain.

The SEARCH2 command can also be vieswed as an imgiementation of
Nilsson's As algorithm for graph searching w.th each node being 2 chain and
a single inference operation. Expansion of a node nou mereiy concists of
appiying that inference operation to that chain,

Using the SEARCH2 command, for exarple, it is possible to use an order
function which specifies a depth first search strategy that performs only
one inference operation on each level (until a l!eve! bound is reached
forcing a backup). A more realistic order function for use with toe
SEARCH2 command was used in the experiment described Section 3. Note the!
the performance of the single specified inference operation may actually
result in the generation of more than one successcr chain as, for example,

When there are two ways of extending a chain by a particular axiom.

Eormat functions. An additional mechanism for aitering the strategy

27

used by PSTP is accomplished by the use of format functions. Format

functions can be used to reformat (edit) chains prior to their storage.

For example, a format function can be used to reorder the last B-|iterals

; of a chz2in to accomplish the effect of Kowalski and Kuehner's |iteral

selection function mechanism [5]. A format function is associated with

each chain list. Each chain is refornatted acco~ding ‘o the order function

of the chain list into which it is being stored uniess it je already in

that format. A chain may be stored in two different formats in tu-o

different chain lists {formats are permitted to alter the séquence of

literals which constitutes the chain itself, but not the chain property

list), Default format functions are those which convert chains to x-

standardized or y-standardized form by renaming variables,

Comnand summary. Following is a brier description of each of most of

the PSTP commands. These PSTP commands can be divided into four classes:

declarati ¢ commands (CHAINLIST, PARAMETERS, POSTPROCESSING, PROMLEM),

informative commanas (ANCESTRY, COUNT, DISPLAY), manipulative commands

(COPY, DELETE, FOR, TRANSFER), and inference commands (EXPAND, SEARCH,

SEARCH2). An abbreviated syntax for each command is also presented:

linguistic variaoles are enclosed in angle brackets (e.g., "<sources>") and

optional command phrases are enclosed in square brackets (e.g..."[DELETEl"

and "[T0 <destinations>]"). |f any phrase of a command .s absent, a

default value will be used,

In the descriptions of the commands, the most important linguistic

variables are <sources> and <«destinations>. A source or destination

tepresents, in general, a chain list and a cnain filter. For a chain to be

used by a command specifying <sources>, it must be a member of one of the

P AR T

s ot miniits e . oo s cvin

specified chain lists and be selected by the corresponding chain filter.
For a chain to be stored in the chain |ist of a destination by a command
specifying <destinations>, it must be accepted by the corresponding chain
filter. Note that in the syntax, <sources> and <destinations> are never
optional (except as part of an optional phrase). This is because the emp*y
specification for <scurces> and <destinations> s legal and has a default
value.,

Any of the non-declarative commands can be interrupted at any time by
typing any character, The command completes processing of the current
chain and then enters a "break". !n this state, the user can execute any
PSTP command or LISP function and continue or abort the processing of the
interrupted command,

ANCESTRY command. The (ANCESTRY [DELETE] <sourcess) command prints
the derivation of each chain designated by <sourcess, If DELETE is
specified, each designated chain is also deleted from its chain .ist,.

CHAINLIST command. The (CHAINLIST [<declarations>]) command is used

to deciare chain lists that will be used and their format and order
functions. [f <declarations> is absent, the CHAINLIST command prints the
list of previously declared chain lists and their format and order
functions.

COPY command. The (COPY [DELETE) <sources> [TO <destinations>])
command copies each chain designated by <sources> to each of
<destinations>., If DELETE is specified, each designated chain is also
deleted from its chain |ist.

COUNT command. The (COUNT [DELETE) <sources>) command counts the
number of chains designated by <sources>. [f DELETE is specified, each
designated chain is also deleted from its chain list.

29

DELETE command. The (OELETE «<sources>) is the same as the (COUNT
ODELETE <sources>) command, i.e., the COUNT command with chain deletion
specified.

QISPLAY command. The (DISPLAY [DELETE) <sources>) command prints each
chain designated by <sources>. |f DELETE is specified, each designated
chain is also deleted from its chain |ist.

EXPAND comwmand. The (EXPAND [EXTEND) [FACTOR) (RECUCE] [PEXTEND]
(PREDUCE] [DELETE] <sourcesl> [BY <sources2>] [GIVING <destinationsl>] [AND
<destinations2>)) is the principal inference command for interactive use.
It will perform the designated inference operations on each of the chains
designated by <sourcesls using each chain designated by <sources2> as
second argument to binary inference operations (extension and p-extensionl.
Derived chains will be stored in <destinationsl> and lemmas will be stored
in <destinations2> (chain filters permitting). If DF.ETE is specified,
each designated chain in <sourcesl> is also deleted from its chain list.
The EXPAND command is restricted to performing inference operations on
chains existing at the time of its invocation. ive., it will not perform
any inference operations on chains it has just derived, The command
terminates when (1) the empty chain is generated, i.e., a proof has been
found, (2) all the specified operations have been performed, or (3) the
user suspends processing of the command by typing any character. If no
inference operations are designated, all inference operations will be used.
If at least one inference operation is designated, the word EXPAND may be
omi tted.

FOR command. The (FOR (DELETE] <sources> [0 <function>) command

applies the unary LISP function <function> to each chain designated by

<sources>. If DELETE is specified, each designated chain is also deieted
from its chain list.

PARAMETERS command. The (PARAMETERS ([<index>]) conmand is used to

declare the values of several global parameters. I[f an <index> (an
arbitrary LISP atom) is specified, it designates fcr use the predefined set
of parameter values associated wWith <index>. I[f an <index> is not
specified or <index> has no previously defined meaning, the PARAMETERS
Command asks a series of questions requiring the user to define the value
for each parameter. Paraneters set by the PARAMETERS command include:
whether newly generated chains are {o be printed, the format in which
chains are to be printed, whether lemmas are to be gcnerated, and whether
subsumption is to be performed.

POSTPROCESSING comuand. The {(POSTPROCESSING (<index>)) command is

used tc declare wnat postprocessing operation is to be emp |l oyed. [f an
<index> (an arbitrary LISP atom) is specified, this <index> designates the
postprocessing operation that will be used. Allowed <index>s include WEAK-
SAVE, WEAK-DELETE, STRONG-SAVE, and STRONG-DELETE, designating the
postprocessing operations described in Section 1. 'f an <index> is not
specified or <index> has no previously defined meaning, the FOSTPROCESSING
command asks a series of questions requiring the user to designate which
action among a list of alternative actions is to be taken for a given
condition. For example, the POSTPROCESSING command may ask whether, in the
case of an A-literal followed by an identical B-literal, the B-literal
should be saved, deletrd, or deleted with the reduction operation recorded
in the ancestry of the chain.

PROBLEM command. The (PROBLEM [<declarations>]) command sets up a

problem Yor the theorem prover,

It first makes the chainlist declarations

specified by <declarations> (jf fewer than two chain

list declarations are

speci fied,

up to two default declarations will be made) and then asks the

user to type in the theorem and each axjonm.

The theorem is stored in the

tfirst declared chain

list; its negation and the axioms are sto-2d in the

second declared chain list. The input format for the theoren and axioms is

! the same as was used in the description of the linear MESON procedure

except that prefix form for predicate and function symbols is required, and

(due to character set limitations) A and v are omitted and --> s

substituted for 5. Thus, Pab n Pba » a=b v Qabx is typed in as Pab Pba --»>

=ab Uabx. The theoren and axioms are then encoded into internal

The PROBLEM command

list form.

permits the user to save the encoded axioms so that

they will not need to be retyped in future proofs of the same problem.

SEARCH conmmand. The (SEARCH (EXTEND] [FACTOR] [REDUCE] [PEXTEND)

(PREDUCE] <sourcesl» (BY <sources2>] (GIVING <destinationsl>] {AND

<destinations2>]) repeatediy deletes the first chain from <sourcesl> (a

chain with lowest order function value) and performs on it each designated

inference operation with the Chains designated by <sources2> as second

argument to binary inference operations (extension and p-extension),

Derived chains will be stored in <destinationsl> and lemmas will be stored

in <destinations2> (chain filters permitting). So that neuly generated

chains can be used as input to inference operations by the SEARCH command,

<sourcesl> and <destinationsl> will ordinarily specify the same chain

lists. The command terminates when (1) the empty chain is generated, i.e.,

@ proof has been found, (2) <sourcesls is enpty meaning no more operations

can be performed and no proof could be found wWithin the constraints of the

pp—

e e ——— o e sno. M SRk Al

specified operations, initial chains, and chain filters, or (3) the uc=r
suspends processing of the command by typing any character. If no
inference operations are designated, all inference operations will be used.

SEARCHZ command. The (SEARCH2 (EXTEND] (FACTOR] (REDUCE) [PEXTEND])
(PREDUCE] <sourcesl> [BY «<sources2>] [(GIVING <destinationsl>) [AND
<destinations2>)) repeatedly deletes the first chain from <sourcesl> (a
chain with lowest order function value) and performs on it the first
designated inference operation in the order function value. This inference
operation is then deleted from the order function value and, if any
inference operations remain in the order function valuve, the chain is
reinserted in <sourcesl> (now with the numerical value associated with the
next inference operation as the numerical value of the chain for insertion
into the sorted chain |list). Derived chains wWill be stored in
<destinationel> and lemmas will be stored in <destinations2> (chain filters
permitting), So thit newly generated chains can be used as input to
inference operations by the SEARCH2 command, <sourcesl> and <destinationsl>
Wwill ordinarily specify the same chain lists. The order function, using
variables of the SEARCH2 function, will construct a list of inference
operations with (in the case of binary inference operations) second
arguments as specified in <sources2> for derived chains as they are stored.
The command terminates when (1) the empty chain is generated, i.e., a proof
has been found, (2) <sourcesl> is empty meaning no more operations can be
per formed and no proof could be found within the constraints of the
specified operations, initial chains, and chain filters, or (3) the user
suspends processing of the command by typing any character. If no

inference operations are designated, all inference operations will be used.

33

JRANSFER command. The (TRANSFER «<sources> [T0 «<destinations>]))

commanu is the same as the (COPY DELETE <sources> [(TO <destinations>))

command, i.e., the COPY command with chain deietion specified.

—T—

g — Y T

i . e o Al hal o

3. Performance Study

In order to give some idea of the performance of PSTP with some simple
search strategies and to make some points about relative merits of some of
these strategies, the results of PSTP runs ca 9 examples using 4 strategies
are presented here. Results are compared to results for two other theorem
proving programs tested on the same exanples.

Ihe exampies. The examples are taken from a comparative study of
theorem proving strategies used by QA3.6 by Reboh et al [11] (additional
information on sources, theory, and previous uses of these examples are in
{111); the same examples were also run for an SlL-resolution theorem prover
(here called SLRTP) by Aubin [1,2]. The examples are axiomatized just as

for QA3.6 with an occasional suosstitution of a disjunction for an

itplication and, in the cases of unsatisfiable sets of axioms, the use of

the negation of one of the axioms as the theorem.

Inference ogperations used, All the examples uere run with extension
as the only rule of inference except the NUill example for uhich reduction
Wwas also necessary., The WEAK-DELETE postprocessing operation ués used for
all the examples. Its use, of course, permits ground factorization and
reduction. In some examples (BURSTALL, SHORTBURST, GROUP1, GROUP2), it is
readily apparent from the structure of the problem that no reduction is
possible (since every chain derived from the theorem has only positive
literals eliminating any possibility of matching an A-literal with a
complementary B-literal)., The ANCESI example is propositional and thus the
ground reduction in the WEAK-JELETS postprocessing operation is sufficient.

In the remaining three nroblems (HAS-PARTS1, HAS-PARTS2, PRIM) for which

35

reduction was not employed (although ground reduction was used in each),
the uce of the reduction operation resulted in the generation of no
additional chains. Lenmas were not generated for any of the examples.

Search strategies used. The strategies used are characterized by &
parameters: length multiplier, level multiplier, length maximum, and level
maximum, The length of a chain is defined to be its number of B-literals.
This is consistent with the notion of the length of a clause in resolution
theorem proving being its number of literals since in a chain A-literals
record 2ncestry information and would not be present in the corresponding
clause form. The level of a chain is defined to be the number of inference
operatic .s employed in deriving it from the alleged theorenm excluding those
operations (ground factorization and reduction) automatically performed by
the postprocessing operation.

The SEARCH2 search command was employed With projected inference
operations ordered according to the minimum values of a weighted sum of the
expected length and level of the result. The expected length of a chain
derived by extension is the length of its parent chain being extended plus
the length of the axiom minus 2, The expected length of a chain derived by
factorization or reduction is the length of its parent chain minus 1. The
actual length may be less (but never more) due to removal of B-literals by
the accepting transformation. The expected and actual level of a chain is
the level of its parent plus 1. Only inference operations whose results
have expected lengths and levels not exceeding the length or level maxima
Wwill be attempted (this way of implementing length and level maxima was
also used by QA3.6 and SLRTP),

Two sets of length and level multipliers were tried. The first has a

36

length multiplier of 18l and a level multiplier of 188 and is called the

181/188 strategy. In the 181/102 strategy, the projected inference
operation with highest merit is one with the smallest value of (188 times)
the sum of expected length and level of the result. Ties are resolved in
favor of lesser expected length (a 1887181 strategy would resolve ties in
favor of lesser expected level). (]t is assumed here that the expected
length of a chain will never exceed 188.) The most important thing to note
about the 181/188 strategy is that it is essentially the same as Kowalski
and Kuehner's upper disjonal search strategy (S]. It is an admissable
strategy (18] except for cases whzre the postprocessing operation removes
B-literals by ground factorization or reduction. First proofs d scovurec
by admissable strategies are guaranteed to be minimum level proofs.

The second strategy has a length multiplier of S8l and a level
multiplier of 188 and is called the 581/188 strategy. In the 581/1¢3
strategy, the projected inference operation wWwith highest merit is one with
the smallest value of (182 times) the sum of the expesied level and 5 times
the expected length of the result. Ties are again resolved in favor of
lesser expected length. By multiplying length by 5 times as much as level,
a strong length preference strategy is produced. The 5817188 strategy is,
of course, inadmissable since it js clearly not always the case that it
requires at least 5 inference operations to remove a single literal. (For
a strategy to be admissable, the estimated additional cost to solution must
always be less than or equal to the actual additional cost to solution.)

The 181/188 and 5817108 strategies were each tried with (bounded) and
Without (unbounded) length and level maxima. The length and level maxima

used Were those used by QA3.6 uherever bossible.

37

Statistics. The performance of strategies will be primarily
characterized by the "chains generated" statistic. Here, this information
is represented by a b-tuple: the first component is the number of chains
retained; the second component is the number of acceptable chains
generated; the third component is the total number of chains generated; the
fourth component is the number of attempted inference operations. The
number of retained chains is the number of acceptable chains minus the
number of chains eliminated by subsumption, function depth tests, etc. No
such processes i'ere used to eliminate chains in this experiment, so the
aumber of retained chains is always equal to the number of acceptable
chains. The total number of chains generated is the number of acceptable
chains plus the number of non-acceptable chains generated. These
statistics and the time figures referred to below are automatically
accumulated by PSTP and printed out uhen a proof is found,

Nearly comparable statistics are presented where available for QA3.B
and SLRTP (except QA3.6 statistics refer to clauses rather than chains).

Best and mean performance figures are presented for 0A3.6 on each
example. For QA3.6, the number of retained clauses is the number of
retained clauses after subsumption and function depth tests; the number of
acceptable clauses is computed as the number of successful resolutions and
factorings; the number of attempted inference operations is computed as the
number of attempted resolutions and factorings. The proportion of tested
QA3.6 strategies whiL~ discovered a proof is given on the same line as the
mean performance of QA3.6 strategies; unsuccessful strategies were excluded

in computing the means.

Performance figures are presented for SLRTP where the set of suppor t

38

R R S Y Im——

WP E— . —

for the refutation was the negation of the theorem in the PSTP proof on
each example. Due to the similarity of operations and terminology between
the linear MESON procedure and the inference system for SLRTP, SL-
resolution [5), we will here present a brief description of SL-resolution.

Sl-resolution, a refutation procedure, can be viewed as a variant of
model elimination without equality with the following features. (1) The
capability for reordering B-literals at the end of a chain is formalized in
the form of a literal selection function which designates the literal to be
extended on in succeeding extension operations. (2) Factorization is a
required operation for completeness in SL-resolution since the equivalent
of the STRONG-SAVE postproces:ing operation is emp loyed. The model
elimination factorization and reduction operations are combined into the
SL-resolution reduction operation. (3) Sl-resolution requires a fully
factored input set of clauses, i.e., every non-tautologous factor of an
input axiom must also be input (or, as in SLRTP, derived). A benefit o
this is that SL-resolution reduction operations need naver be performed
Wwith the leftmost involved Iliteral being or following the last A-literal of
the chain. (4) Any B-literal following the last A-literal of the chain is
a candidate for removal by the reduction operation, not just the rightmost
as in model elimination. (5) Upper diagonal search is the prescribed
search strategy for SL-resolution.

For SLRTP, the number of retained chains is the number of retained
chains after function depth tzsts and subsumption (subsumption is only used
in eliminating redundant axiom chains or their factors during the process
of generating a fully factored input set of axioms); the number of

acceptable chains is computed as the number of successful extensions,

33

ha oSl b ool R T | W — e

reductions, and factorings (used only for generating a fully factored input
set of axioms); the umber of attempted inference operations is computed as
the number of attempted extensions, reductions, and factorings. The GROUP1
and GROUPZ example statisti.s are taken from [2].

Iime statistics. The "search time" statistic represents the time
spent in searching for a proof by a compiled version of PSTP; it excluues
time spent in inputting the problem, outputting of final statistics and
proof, and garbage collection, although it does inc'ude time required for
some trace output during the search. Search time is the only wWidely
variable component of total time to solution with problem input and
statistics and proof output time relatively constant and small. Al though
PSTP is conservative of storage (performing LISP CONS operations only when
necessary uhen instantiating chains) and tnerefore ordinarily requires few
garbage collections, garbage col.ection time is excluded because (1) time
consuming garbage collections occurring at random times in the search for a
proof tend to rendomize the time statistics especially for short searches
{this problem could be overcome by always starting a search for a proof
immediately after a garbage collection) and (2) frequency of garbage
collection is dependent on the amount of storage available (With infinite
storage, there need not be any garbage collections). Nearly all the proofs
presented here uere found with about 25808 words available for storing
chains and most were found with no garbage collections.

Time statistics should not be used for comparison among strategies
used by different theorem provers without considerable caution and more
information than is usually available. Such statistics are of course

influenced by the machine and operating system used, language and coding of

48

the theorem prover, whether compiled (SLRTP, PSTP) or interpreted (QA3.8),
special conditions applying to the operation of the theorem prover (e.g.,
3 tracing), and some randomness in the times themselves (such randomness,

attributable to variable load on the time sharing system, is visible in

some anomalies in the statistics presented here).

Results. Four primary observations can be made from the results of
the experiment presented here: (1) PSTP performs competitively with QA3.6
and SLRTP, (2) the ©SB1/133 strategy performs better than the 181/188
strategy (for these examples), (3) the 581/198 strategy is relatively
insensitive to length and level bounds, the 181/108 strategy is much nore
sensitive, and (4) elimination of some inplicative forms of the axioms can
result in improved per fornance.

The basis ftor comparison of the results of PSTP and QA3.§ is the
nunber of acceptable chains generated {equals the number of chains
retained) for PSTP versus tne number of acceptable clauses generated
(equals the number of successful reso'utions and factorings) for QA3.6.
This is a fairer comparison than one using the number of retained clauses
for UA3.6 since UA3.6 eliminated clauses by function depth maxima and
subsumption. Even this comparison is still somewhat unfair to PSTP since
if function depth tests and subsunption had not been used in UA3.6, the
number of generoted clauses wuwould presumably have beer larger since
elimirated clauses could now act as parent clauses n additional
inferences.

Using this basis for comparison, the unbounded 581/188 strategy (the
stratery we prefer for reasons given below) per formed better than the

average of (UA3.6 strategies which found a proof in all the examples except

PRIM, GROUP1, and GROUP2.

W'" -

In the PRIM example, the unbounded 501/10@ strategy performed only
siightly worse than the average of QA3.6 strategies.

In the GROUPl example, the absolute difference in performance is small
even if the number of chains generated by PSTP is double the number of
cleuses generated by 0A3.6. In view of the fact, for example, that by
reversing the order of presentation of the axioms to PSTP can cause the
per formance of PSTP to exceed that of QA3.6, we tend to regard this
difference as being relatively insignificant.

The difference in the case of GROUP2 is much more serious and has a
rather different explanation. Where the formuiation of the GROJPZ example
has several unit axioms and two 4-|iteral associative axioms, the use of a
length maximum value of 3 can be seen to be extremely restrictive. In
resolution terms, this length maximum requires that only units be resolved
against the associative axioms, and in the case of GROUPZ2 if the negation
of the theorem is used as the set of support, the length maximum
automatically restricts any tested strategy to a further refinement of unit
resolution in utich only the negation of the theorem can be directly
resolved against the associative axioms. PSTP was tested with a variant of
the GROUP2 example in which axiom 3 was reordered so that a proof meeting
the length maximum vaiue ofi 3 restriction existed. On this example, the
unbounded 181/108 strategy generated 435 chains; all the other strategies
generated 23. UWe therefore feel that the better per formance of (QA3.6 on
this prcbiem was more attributable to the restrictive iength maximum than
to an intrinsic inferiority of PSTP,

The comments about the restrictive rength bound used by QA3.6 in the

GROUPZ example can be extended to scveral other examples. The BURSTALL,

SHORTBURST, HAS-PARTS1, HAS-PARTS2, PRIM, ANCES1, GROUP1, and GROUP2
examples all had very restrictive length maxima, in every case set at or
below the minimum value required for PSTP to discover a proof. Level
maxima were often similarly restrictive although we perceive this to be
much less important in reducing the size of the search in the non-depth
first search strategies tested. MWe feel that use of such restrictive
length and level (especially length) bounds invalidates the results of [11]
to @ degree, since their use imposes severe |imitations on the structure of
the search space. In this restricted search space, tests of different
strategies may fail to discriminate between stra‘egies, or unfairly
discriminate betueen them,

Given the similarity of SL-resolution and the |inear MESON procedure,
one would anticipate substantial similarity in the results for PSTP using
the bounded 181/188 strategy (upper diagonal search) and SLRTP. For 6 of
the examples (BURSTALL, SHORTBURST, HAS-PARTS1, PRIM, ANCESl, and NUM1),
the results agree closely. Oifferences emerge for the remaining 3
exanples. We don't know why PSTP did so much worse than SLRTP on the HAS-
PARTS2 example. In the GROUP1 example, use of a fully factored input set
of clauses was clearly beneficial to SLRTP since the very s“ort proof could
be shortened further by using a factoreu form of one of the associative
axioms. PSTP with factorization could not match the SLRTP results, since
extension by the associative axiom followed by factorization counted as 2
inference operations in computing the level of the resulting chain (uhose
value is used to compute the order function value) whereas extension by the

factored associative axiom by SLRTP counts as only 1 inference operation,

(PSTP could be made to equal SLRTP's performance on this example by

inputting a fully factored set of axioms, a perfectly legal operaticn,
although unnecessary for completeness.) In the case of the GROUP2 example,
for which SLRTP failed to find a solution, both the bounded and unbounded
1817188 strategies in PSTP showed relative difficulty in discovering a
solution. In SLRTP, this difficulty was exacerbated by the very feature
Which aided the quick solution of the GROUP1 example: mandatory
factorization, PSTP with factorization and the STRONG-DELETE
postprocessing operation (resulting in an inference systen very similar to
SL-resoiuticn) failed to find a proof with the unbounded 181/188 strategy
after 1587 chains were generated, discovered a proof while generating 410
chains with the unbounded 581/128 strategy, and discovered a proof while
generating 458 chains with each of the bounded strategies. The proofs
discovered uwere the same as those discovered without factorization.

We believe the detrimental effects of factorization as demonstrated in
the GAOUP2 exanmple resuits are more typical than the beneficial e’fects
illustrated in the GROUP. example. In our experience, even in cases Wwhere
factorization does shorten a proof (as it did not in the GROUP2 example),
the proliferation of highly instantiated chains caused by the use of
factorization still often outheighs the benefits. (These negative comments
clearly refer only to general factorization where literals must be uni fied;
factorization in the ground case is clearly beneficial and is included in
the postprocessing operations we used here.) Should future experience
prove this judgment about factorization wrong, the linear MESON procedure
still permits factorization as a legal though optional operation.

Another point can be made here concerning SLRTP's efforts to discover

a solution to the GROUP2 exanple. SLRTP uses a literal selection function

44

D T — — adshs s o e o Ly

to designate uhich literal of each derived chain is to be used in future
extension operations. The only literal selection function tested was tre
function which always selects a literal which has the fewest matching
literals among the axioms. This has the obviously desirable characteristic
of reducing the branching rate of the search tree since the selected
literal has the fewest matches among the axioms and, further, removal of
the selected literal after some inerence operations will wusually
instantiate the remaining literals and reduce the number of literals among
the axioms matching them. However, this literal selection function is, in
the case of problems with structure similar to the GROLP2 example,
inconsistent with the use of length maxima, In GROUP2, for example, the
literal selection function will show a preference for |iterals capable of
beiny extended upon only by the associative axioms (since any positive
literal matches the conseguent of the associative axioms, any |iteral
matching a unit axiom also matches the associative axioms)., Thus, the
effect of the use of this literal selection function is to increase the
length of chains appearing in a deduction possibly requiring the increase
of the length maximum used.

One final point remains about the comparison of results between PSTP
and SLRTP. This concerns the very small number of attempted inference
operations by SLRTP. This is due to the use of a literal classificativn
tree which automatically selects out likely matches for literals to be
extended upon from among the literals in the axioms. The extension
operation is only attempted for axioms containing literals selected by the
literal classification tree. This probably represents a fairly small

(though real) saving in computational effort since one must count the cost

45

of creating and accessing the literal classification tree and the cost

saved is that of attempting unifications destined to fail, usually a fairly
quick operation. The real benefit of use of the literal classification
tree is the elimination of the nultiple attempts at unifying literals that
Hould ordinarily result from use of the Iliteral selection function
requiring discovery of the number of matches for a literal among |iterals
in the axioms.

in comparing the four strategies tested by PSP anong themselves, one
first discovers that the S81/1088 strategy invariably perforned as well as
or better than the 101/100 strategy for the same choice of length and level
maxima. This is especially true of e results for the BURSTALL, GROUPZ,
and PRIM examples in the absence of length and level maxima. A further
demonstration of the superiority of the 581/108 strategy is its relative
insensitivity to lengtn and level bounds. Only in the BURSTALL example did
the bounded 581/183 strategy perform significantly better ‘ian the
unbounded strategy. Also, in the PRIM and GROUPZ examples, the addition of
length and level bounds actually degraded the performance of the 5817100
strategy since the bounds excluded proofs discovered by the unbounded
strategy. In contrast, performance of the 101/100 strategy was often
improved by the addition of length and level bounds, but (as stated above)
never improving upon the performance of the 5081/1089 strategy. The
demonstrated insensitivity of the 501/180 strategy to the addition of
length and level bounds seems especially significant in view of the often
extreme restrictiveness of the bounds tested.

Due to its generally good berformance and lack of improvement with the
addition of bounds, we regard the unbounded 581/190 strategy as the best

among those tested,

We feel generally that, provided it performs adequately, 1 complete

(e.g., length preference) strategy |ike the unbounded 581/188 strategy is
to be preferred to an incomplete (e.g., length bounded) strategy |ike the
bounded 181/188 strategy, ev2n if the latter, with appropriate choice of

bounds, can often match the performance of the former.
Finally, we merely note that judicious elimination of various
implicative forms of the axioms can result in significantly improvec
| per formance as demonstrated in the results for the HAS-PARTSI, HAS-PARTS2,
and PRIM examples. Of course, this elimination of implicative forms of thc
axioms destroys the completeness property of the |inear MESON procedure.
Houwever, this controlled inconpleteness may be desirable in cases where
significant improvement in performance results. Completeness could be
preserved and nearly the same effect gained by presenting PSTP with all the

implicative forms of the axioms, but (via the order function definition)

giving PSTP a strong preference for using one instead of another.
One feature of the Iinear MESON procedure not previously discussed is
the length of its proofs. It is characteristic of |inear theorem proving

strategies that they require longer proofs than some other strategies.

This and past studies [(1,4) indicate that |inear strategies can overcome

this increased proof length and perform compet tively with other

procedures. The linear resolution strategy tested in QA3.6 was less

successful since the special chain rejection criteria of variants of the

model elimination procedure were not used.

While the length of a proof is one measure of its complexity, we feel

that the increased length of |inear MESON procedure proofs is not a great

disadvantage in terms of readability. The problem-reduction method

P T R R R R R R AR e

oriented form of such proofs often makes them more comprehensible than

ordinary resolution proofs relying on converging lines of deduction

resulting in a refutation.

48

4. Summary

We have presented the |inear MESON procedure, a procedure we feel to
be one of the most natural avajlable systems of complete inference in the
first order predicate calculus due to its linear format and relationship to
goal-subgoal trees. It also has advantages in the capability for inputting
multiple implicative varjants of individual axioms so -‘hat individual
variants can be differentially treated (or ignored). Another advantage of
the linear MESON procedure as Compared with, for example, SL-resolution is
the optional nature of the factorization operation. Although the point is
not elaborated upon here, it is our observation (also made by Fleisig et al
(4)) that factorization (except ground factorization) is usually harmful
and results in instantiating chains too greatly.

The Programmable Strategy Theorem Prover (PSTP) is a theorem proving
program wusing the linear MESON procedure as its inference systenm.
Especially significant features of PSTP are the general capabilities for
specifying information to be computed or retained about chains, for
specifying which chains are to be retained or manipulated by a given
command, and for specifying the order in which inference operations are to
be perforned in fully automatic searches for a proof.

We have presented t.e results for PSTP solutions of 9 examp ..s
previously tested in two other theorem proving studies, From these results
We concluded that PSTP performed competitively as compared with the other
tested theorem provers. We feel that the potential significance of PSTP is
not that it perform spectacularly using simple search strategies such as

those tested (it doesn't), but that it provides an inference system and

49

system features which facilitate the user specification of more complex and
effective search strategies and chain elimination criteria,

We also demonstrated empirically the inferiority of the diagonal
search strategy to similar strategies which have a stronger length
preference component and that such length preference oriented strategies
all but eliminate the need for length maxima for problems of this level of
complexity. We prefer search strategies that have, for example, length
preference built in to the added imposition of length bounds: the use of
preference strategies in the absence of bounds results in comnplete
strategies guaranteed to find a solution if one exists.

We have also criticized soms of the methodology used in previous
theorem proving studies. Results in such studies are often heavily
dependent on the length and level (especially length) bounds used in
restricting the search for a solution. In consequence, success in finding
a8 solution in reasonable time and space is often more attributable to the
bounds wused than the tested stre egy. Thus, such results fail to
adequately discriminate between different thecrem proving procedures. We
urge future studies test theorem proving procedures in the absence of

artificially imposed bounds.

50

Acknouledgments

| uwish to thank Prof. Donald W. Loveland (Department of Computer
Science, Duke University) for his guidance during the development of PSTP
and for his continuing development of the model elimination and MESON
procedures. | also wish to thank Profe. Jack Buchanan, Allen Newell (both
at Department of Computer Science, CMU) and Peter B. Andreus (Department of
Mathematics, CMu), and Ren® Reboh (Datalogilaboratoriet, Uppsala

University) uwho, in addition to Prof. Loveland, all reviewed an earlier

version of this paper.

o

Bibliography

Aubin, R. Some experimental results on SL-resolution. Memo No 66,
Oepartment of Computational Logic, Schooi of Artificial Intelligence,
University of Edinburgh, Edinburgh, July 1973,

Aubin, R, Personal communication. Dec. 1973.

Bobrouw, R. J., Burton, R. R., Jacobs, J. M. and Leuwis, D, UCI LISP
Manuel. 'Iniversity of California, Irvine, Calif., 1973.

Fleisig, S., Loveland, D., Smiley, A. K. IIl and Yarmush, D. L. An
implementation of the mode' elimination proof procedure. J. ACM 21, 1
(Jan. 1374), 124-139,

Kowalski, R. and Kuehner, 0. Linear resolution with selection
function. Artificial Intelligence 2 (1971), 227-268.

Loveland, D. W. A simplified format for the model elimination theorem-
proving procedure. J. ACM 16, 3 (July 1969), 349-363.

Loveland, D. W. A unifying view of some |inear Herbrand procedures. /J.
ACM 19, 2 (Apr. 1972), 366-384.

Loveland, D. W. Forthcoming book. North-Hol land, Amsterdam.

Loveland, 0. W, and Stickel, M. E. The hole in goal trees: some
guidarre from resolution theory. Advance Papers 3rd Int. Joint Conf. on
Artificial Intelligence, Stanford, Calif., 1973, pp. 153-161.

Nilsson, N. J. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,
New York, 1971,

Reboh, R., Raphael, B., Yates, R. A., Kling, R. E. and Velarde, C.
Study of automatic theorem-proving programs. Technical Note 75,
Artificial Intelligence Center, Stanford Research Institute, Menlo
Park, Calif., Nov, 1972,

52

Examples

l. BURSTALL Example

RAxioms:

W oo NS WN —

18.
11.
12.
13.
14,
15,
16,
17.
18.

. has(pl,ass(),n@))

follows(p2,pl)

has(p2,ass(k,nl))

labels (1o0p,p3)

follows(p3,p2)

has (p3, it then(equal (),n),pé))

has (p4,goto(out))

follous (p5,ps)

follows(p6,p3)

ha (pb6,ass(k,times(n2,k)))

follous(p?,pb)

has(p?,ass(j,plus(),nl)))

follous (p8,p?)

has (p8,goto(loop))

follows(xp,yp) + succeeds(xp,yp)

succeeds (xp,zp) A succeeds(zp,yp) + succeeds (xp,yp)
has (xp,goto(zp)) A labels(zp,yp) + succeeds (yp,xp)
has (xp, i fthen(ze,yp)) + succeeds (yp,xp)

Theorem:

19.

succeeds (p3, p3)

2. SHORTBURST Example

Axioms:

DWW NOOW S WN -

—

labels (1oop,pI)

has (p3, itthenlequal (j,n), pb))

has (p4,goto(out))

follous (p5,pé)

follows(p8,p3)

has (p8,goto(loop))

follows(xp,yp) + succeeds(xp,yp)

succeeds (xp,zp) A succeeds(zp,yp) + succeeds (xp, yp)
has(xp,goto(zp)) ~ labels(zp,yp) + succeeds (yp,xp)
has (xp, i fthen(ze,yp)) -+ succeeds (yp,xp)

Theorem:

11,

succeeds (p3,p3)

3. HAS-PARTS Example 1

Axioms:
1. 1nCJohn,boy)
2. in(x,boy) =+ i1nix,human)
3. hp(x,xm,y) = in(skl{x,y,z,xm,xn),y) v hp(x,t(xm,xn),2)
4. hp(x,xm,y) + ~hp (sk1(x,y,z,xm,xn) ,xn,2) v hp(x,t(xm,xn),z)
S. inlx,hand) + hp(x,nS,fingers)
6. in(x,human) «+ hp(x,n2,arm)
7. in(x,arm) « hp(x,nl, hand)
Theorem:
8. hp(John, t(n2,nl),hand)

53

' Examples
ﬁ 4. HAS-PARTS Example 2

Axioms:

1. intJohn,boy)

2. in(x,boy) + in(x,human)

3. hplx,xm,y) + in(skl(x,y,z,xm,xn),y) v hp(x, t{xm,xn),z)

4. hplx,xm,y) + <hp(sklix,y,z,xm,xn),xn,z) v hp(x,t(xm,xn),z)
S. ini{x,hand) + hp(x,nS, {ingers)

6. inl(x,human) + hp(x,n2,arm)

7. ini(x,arm) + hp(x,nl,hand)

Theorem:
8. hp{John, t(t(n2,nl),n5), fingers)
S. PRIN Example
Axioms:

. Dxx

« Oxy A Dyz + Dxz

Px v Dgt)x

Px v Lnig(x)

Px v Lg{x)x

. Lnlx A Lxa « Pf{x)
» Lnlx A Lxa « Dfx)x
8. Lnla

NG S WN -

Theorem:

(9. -Px v ~-Dxa negation of theorem)
18. Pxl A Dxla

6. ANCESL Example
Axioms:
. ~JvAVH
2. KvHv
3. 5K vH v
4. *ﬂ V~8
5. ~A v B
6. ~H v =C
Theorem:
7. H A C
7. NUMl Example

Ax ioms:

1. Px A Hyzw A Dxu » Dxy v Dxz
2. Mixxs ()

3. Hxyz + Nyxz

4. NHxyz + Dxz

S. Has(c)s(b)

6. Pa

Theorem:

7. Dab

S4

Examples

8. GROUP1 Example

Axi1oms:

1. Pxyu A Pyzv A Pxvi + Puzw
]) 2. Pxyu A Pyzv A Puzu + Pxvu
3. Pgixylxy
4. Pxhixyly
S. Pxyt(xy)

Theorem:

(6. =P)(x)xj(x) negation of theorem)
7. Pyl xljtxl)

9. GROUP2 Example

Axi1oms:

1. Pxex]
2. Pexx

3. Pxyu A Pyzv A Puzu + Pxva

4. Pxyu A Pyzv A Pxvi =+ Puzu
S
6

. Pxxe
Pabe

Theorem:

7. Pbac

Statistics

Length Level Length Level Proof Chains

Search
ulti- Multi- Naximum Maximum Code Generated Time
-alier _pliar_ {rat/acc/1at/att) _(sec) .
1. BURSTALL Example
101 100 - - f 191/191/215/3129 46.3 -
501 189 - - 8 74/ 747 7571229 6.1
181 100 2 12 A 45/ 45/ 457741 9.8
50. 100 2 12 A 45/ 45/ 457741 9.2
QR3.6 best 2 12 38/ 42/ /1462
QR3.6 mean 16719 2 12 99/1187 /3222
SLRTP 3 13 48/ 48/ /122

2. SHORTBURST Example

101 100 - - A 18/ 18/ 19/144 3.8
5081 100 - - A 16/ 16/ 167128 2.1
181 100 2 10 A 167 16/ 167128 2.2
581 180 2 10 A 167 16/ 16/128 2.1
QR3.6 best 2 10 127 12/ /25%
QR3.6 mean 14/14 2 1@ 20/ 21/ 732%
SLRTP 3 10 167 1867 7/ 42 '
3. HRS-PARTS Example 1
Impiicative form for axioms:
181 100 - - A 77 17 &7 8.7
501 100 - - A 7 1 1 &7 8.7
101 108 3 10 A 77 1 1 &7 1.8
sel 100 3 10 A 7 1 1 & 8.8
Disjunctive form for axioms:
181 100 - - A 127 127 127124 1.8
501 100 - - A 127 127 127124 1.7
101 100 3 10 A 12/ 127 127124 1.5
501 100 3 10 A 12/ 12/ 127124 1.5 |
QR3.6 best 2 16 8/ 16/ /112
QR3.6 mean 6/6 2 10 28/ 247 /343
SLRTP 2 10 127 127 7 29
4. HAS-PARTS Example 2
Impiicative form for axioms:
101 100 - - A 117 11/ 117 83 1.3
581 180 - - A 117 117 11/ 83 1.3
101 100 3 10 A 117 11/ 117 83 1.3
501 100 3 16 A 11/ 11/ 11/ 83 1.9
Disjunctive form for axioms:
181 160 - - A 50/ 58/ 58/478 8.1
561 100 - - 8 38/ 38/ 38/438 5.7
101 100 3 10 A 38/ 38/ 38/438 5.7
501 100 3 10 8 38/ 38/ 38/430 6.4 1
QR3.6 best 2 10 12/ 16/ /285 i
Q3.6 mean 677 2 10 44/ 517 /938

SLRTP 3 13 20/ 28/ /41

56

o

Length Level Length Level Proof
Multi- Muliti- Maximum Haximum Code
Lolier _plier
5. PRIN Example
Implicative form for axioms:
16l 180 - - A
561l g0 - - A
181 180 3 18 A
501 188 3 18 A
Disjunctive form for axioms:
18! 108 - -]
581 108 - - c
181 100 3 10]
501 108 3 10]
181 180 3 18]
sel 100 3 18 c
QR3.6 best 3 10
QR3.6 mean 9/18 3 10
SLRTP 3 11
6. ANCES] Exampie
181 138 - - A
501 100 - - A
16l 180 2 18 A
501 100 Z 10 q
QR3.6 best 2 10
QR3.6 mean 19720 2 10
SLRTP 3 10
7. NUNL Example
101 100 - - A
501 100 - - A
181 100 S 10 A
501 100 5 10 A
QR3.6 best 5 10
QR3.6 mean 11/11 5 10
SLRTP 5 10
8. GROUP1 Example
181 188 - - A
S6i 100 - - A
1ol 108 3 10 A
a1 160 3 10 A
QR3.6 best 3 10
QR3.6 mean 9/9 3 10
SLRTP 3 10

Statistics

Chains Search
Generated Time
{ret/acc/101/a81) _(sec)

812/812/1852/8072 2080.7

57/ 57/ 64/648
78/ 78/ 82/816
54/ 54/ 60/603

165/165/187/1753
181/1081/113/1228
138/130/146/1532
138/1306/146/1532
136/130/146/1532
181/181/11371228

13/ 19/ 7208
36/ 977 /999

12271347 7243

23/ 23/ 237248
13/ 137 137108
137 137 137108
137 137 137188

S/ 12/ /158
6/ 137 7129

147 147 7 78

10/ 1087 117 47
187 108/ 117 47
18/ 10/ 117 47
18/ 18/ 11/ 47

8/ 18/ / 68
9/ 117 /7 83
9/ 9/ s 2

147 147 147 54
167 147 147 54
147 147 147 54
147 147 14/ S4

7 1 733
VU VA AT

9/ 127 /7 35

11.6
12.3
8.2

28.5
18.8
208.2
18.8
21.7
16.8

—_— - W
"M WwN

@ ® — -
Ww W - N

b N
o~ Ut oo

B T ——

Statistics
Length Level Length Level Proof Chains Search
fuiti- Multi- Maximum Maximum Code Generated Time
-nlisr _plisc {rat/acc/tot/aty) _(sec)

9. GROUP2 Example

18l 100 - - R $76/576/752/2408 97.2
501 100 - - B 119/119/149/500 17.0
101 100 [18 R 225/2257325/938 28.8
501 100 4 10 R 225/225/325/938 36.7
QR3.6 best 3 10 S47 767 /324
QR3.6 mean 8/8 3 10 608/ 82. /517
SLRTP ? ? no proof found

58

i A _mh . o Loabal_adie b
R L e DR W W0 L, ————

1. BURSTALL Exampie

Proo’

19.
20.
21.
22.
23.
24.

<5.
26,

27.

39.
31.
Proof
19,
20.
21.
22.

23.
24.

25,
<6,
27.

28.
29.

3e.
i1,

A

succeeds (p3,p3)
(succeeds(p3,p3)]
(succeeds (p3,p3))
(succeeds (p3,p3))
(succeeds(p3,p3)]
{surraeds (p3,pd)]}
follows(xl,p6)
(succeeds (p3,p3))
[succeeds (p3,p3))
succeeds (x1,p7)
(succeeds (p3,p3)]
(succeeds (x1,p7)]
(succeeds (p3,p3))
(succeeds (p3,p3)]

Proots

succeeds (p3,x1) succeeds(xl,p3)
succeeds (p3,x]) (succeeds(xl,p3)] follows(xl,p3)

succeeds (p3,p6)
(succeeds (p3,p6))
(succeeds (p3,p6))

(succeeds (p3,p6))
(succeeds (p3,p6)}

(succeeds (p3,p6))
tollows(xl,p?)

(succeeds(p3,pb))
(succeeds (p3,;6)]}

has(p8,goto(xl)) labels(xl,p3)

(succeeds(p3,p3))

has (p8,goto (ioop))

emp ty
8

succeeds(p3,pI)
(succeeds (p3,p3)]
(succeeds (p3,p3))
succeeds (x2,p3)
(succeeds (p3,p3)]
(succeeds (x2,p3)}
(succeeds (p3,p3)]
(succeeds (p3,p3)}
foliows(xl,p6)
(succeeds (p3,p3)}
(succeeds (p3,p3))
(succeeds (p3,p3)}
tollows(xl,p?)
(succeeds(p3,p3)}
(succeeds (p3,p3))
labels(xl,p3)
(succeeds (p3,p3)]
empty

2. SHORTBURST Example

Proot

11.
12.
13.
14.
15,
16.
17.

A

succeeds (p3,p3)
(succeeds (p3,p3)}
(succeeds (p3,p3)}
(succeeds (p3,p3)]
(succeeds (p3,p3)}
(succeeds (p3,p3)]
ompty

(succeeds (p3,p6))

succeeds (p3,x1) succeeds(xl,p6)
succeeds (p3,x1) [succeeds(xl,p6))

succeeds (p3,p7)
(succeed’. (p3,p7)} Bucceeds (p3, x1)

(succeeds (p3,p7)) succeeds (p3,x1)

(succeeds (p3,p7)] succeeds (p3,p8)
(succeeds (p3,p7)) (succeeds(p3,p8)]

(succeeds (p3,p7)) [sur:ceeds(p3,p8)]

succeeds (p3, x1) succeeds(xl,p3) -
succeeds (p3,x1) (succeeds(xl,p3)] succeeds(x1,x2)

succeeds (p3,x1) [succeeds (x1,p3)) succeeus (x1,x2)

follows (x2,p3)

succeeds (p3,x1) (succeeds(xl,p3)] sucreeds (x1,p6)
succeeds (p3,xl) [succeeds(xl,p3)) (succeeds(x]1,p6))

succeeds (p3,p7)
(succeeds (p3,p7)]
[succeeds (p3,p?)}

(succeeds (p3,p7)]
(succeeds (p3,p7))

(succeeds (p3,p7)]

succeeds (p3,x1) succeeds (x1,p7)
succeeds (p3,x1) (succeeds(xl,p7?)}

succeeds (p3,p8)
lcveceeds (p3,p8)) has (pB.goto(x1))

(succeeds (p3,p8)) has(p8,goto(loop))

succeeds (p3,x1) succeeds(x],p3)
succeeds (p3,x1) [succeeds (xl1,p3)] tollows (x1,p3)

succeeds (p3,p8)

(succeeds(p3,p8)] has (p8,goto(x1)) labeis(x},p3)
(succeeds (p3,p8)] has (p8,goto(loop))

59

theorem
extend
extend
extend
extend

extend
extend

extend

extend
extend

extend

extend
extend

by
by
by
by

by
by

by

by
by

by

by
by

theorem

extend

extend

extend
extend

extend
extend
extend

extend
extend

extend
extend
extend

theorem

extend
extend
extend
extend
axtend
extend

by
by

by
ky

by
by
by

by
by

by
by
by

by
by

16
15
9

16

15
11

16

15
13

17

16

16

15
11
16

15
13

17

14

— O N N

6

;R

Proofs
3. HRS-PARTS Example |
Proof A
8. hp(John, t(n2,nl), hand) theorem

8. [hpWJohn, t(n2,nl),hand)) hp (John,n2,x1) hp(skl(John,xl,hand,n2,nl),nl,hand) extend by 4a
18. [hpUJohn, t(n2,nl),hand)) hp (John,n2,x1)

(hp (sk1(John,x1,hand,n2,nl),nl,hand)] in{skl(John,xl,hand,n2,nl),arm) extend by 7
il. [hpUohn,t(n2,nl),hand)} hp (John,n2,arm) extend by 3b
i2. [npUohn, t(n2,nl),hand}] [hp (John,n2,arm)) in{John,human) extend by 6
13. [hplJohn, t(n2,nl) hand)] (hp(John,n2,arm)] LinGJohn,ht n]) in(John,boy) extend by 2
14, empty extend by 1

4. HRS-PARTS Example 2
Proof A

8. hp (John, t(t(n2,nl),n5), fingers) theorem
9. [hpLJohn,1(1(n2,n1),n5),l|nqers)] hp (John, t (n2,nl),x1)

hp(skl(John,xl,llngers.1(n2,nl),n5),n5,l|ngers) extend by 4a
18. [hp(John,t(t(n2,n1),n5),l|ngers)] hp (John, t (n2,n1),x])

[hp(shl(John,xl,lcngers,1(n2,nl),n5),n5,l|ngers)]

in(ski(John,xl, fingers, t(n2,nl),n5),hand) extend by 5
11. [hp(John,t(t(n2,n1),n5),0|ngers)] hp (John, t (n2,nl),hand) extend by 3b
12. [hp(John,t(t(n2,n1),n5),0angers)] {hp (John, t(n2,nl1) ,hand)] hp(John,n2,x1)

hp (sk 1 (John,x1,hand,n2,nl),nl,hand) extend by 4a
13. (hp(John,t(t(nZ,nl),nS),lingers)) {hp (John, t(n2,nl) ,hand)] hp(John,n2,x1)

{hp (sk1(John,x1,hand,n2,nl),nl,hand)) in(skl(John,xl,hand,n2,nl),arm) extend by 7

14, (hp(John,t(t(n2,n1),n5),l|ngerﬁ)] {hp (John, t{n2,n}) hand)] hp(John,n2,arm) extend by 3b
15. (hp(John,t(t(nZ,nl),nS),llng *s)] Inpfiohn, t(n2,nl),hand]]

thp (John,n2,ar 1)) 1n(John,hunan) extend by 6
18, (hp(John,1(t(n2,n1),n5),l|ngers)] (hp (John, t (n2,n1),hand)]
{hp (John,n2,arm)) [in(John,human)] 1n (John, boy) extend by 2
17. empty extend by 1
Proof B
8. hp(John, t (t(n2,nl),n5), fingers) theorem
9. [hp(John,1(t(nz,n1),n5),l|ngers)] hp (John, t{n2,n1) ,x1)
~in(sk1(J0hn,x1,llngers,t(nZ,n‘:,nS),xl) extend by 3a

18, (hp(J:hn,t(t(n2,n1),n5),l|ngers)] hp (John, t (n2,n1) , hand)
(~|n(sk1(John,hand,lingers,t(n2,n1),n5),hand)]

th(skl(John,hand,llngers,1(n2,n1),n5),n5,lingers) extend by Sb
: 11. thp (John, t (1(r2,n1),n5), fingers)] hp (John, t (n2,n1), hand) extend by 4b

12. [hp(John,t(t(n2,n1).n5),0angers)] hp (John, t{n2,n1) ,hand)) hp (John,n2,x}1)

hp (sk 1 (John,x1,hand,n2,nl),nl,hand) extend by 4a
13. (hp(John,t(t(n2,n1),n5),1|ngers)] lhp (John, t(n2,n1) ,hand)] hp(John,n2,x1)

(hp(skl(John,xl,hand,nZ,nl),nl,hand)] in(skl(John,x1,hand,n2,ni),arm) extend by 7
14, (hp(John,t(t(nZ,nl),nS),linqers)] lhp (John, t(n2,n1] ,hand)] hp (John,n2,arm) extend by 3b
15, (hp(John,t(t(nZ,nl),n'),fingers]] {hp(John, t(n2,nl), hand))

thr: (John,n2,arm)]) in{John, human) extend by 6
16. (hp(John, t(t(n2,n1),n5), fingers)) (hp (John, t (n2,n1],hand)] .

{hp(John,n2,arm] [in(John, human)] 1n{John, boy) extend by 2
17. empty extend by 1

S. PRIN

Proot

0.
11,
12.
13.
14,
15.
16.
17.
18.
18.
20,
21,
22.
23,
24,
25,
26,
27.
28.

Proot

10.
11.
12.
13.
14.
15,
16.
17.
18.

Proof

19,
11.
12.
13.
14,
15,
16.
17.
18.
18.
28.

Proots

Example
]

Pxl Dxla

Pxl (Dxlal Dxlx2 Dx2a

Pxl (Dxla) Oxlg(a) (Dg(a)a) -Pa

Px1 (Dxla) Oxlg(a) [Dg(a)al [~Pa] Daa
Pxi (Dxlal Dxlg(a)

Pi(gta)) (Dt(gla))al (Df(gla)ig(a)) Lnig(a) Lg(a)a
Pilg(a)) (Df(yla))al (Df(gla)lg(a)] Lnigla) (Lgta)a) -Pa
Pt(gla)) (Df(3(a)ral (Df(y(a)Igla)] Lnlgla) [Lg(a)a) {~Pa) Daa

Pt(g(a)) (Df(gla)lal [Df(gla)igla)] Lnigla)

Pilg(a)) (Df(gla)lal [Df(gladigla)] (Lnigla)] -Pa
Pi(gla)) (D1(g(a))a) (Df(g(adiga)] (Lrlg(a)] (-Pa) Daa

Pi(g(a))

(Pt(g(a))] Lnlgla) Lglala

[Pf(g(a))] Lnlgla) [Lglalal ~Pa
(Pt(g(a))] Lnlg(a) (Lg(alal [-Pa) Daa
(Pt(gta))] Lnlg(a)

(Pt(g(a))] (Lnig(a)] -Pa

(Pi(g(a))] (Lnig(a)) (-Pa) Daa

empty

Px1 Oxla

Pa

(Pa) -Lnig(a)

(Pal [~Lnlg(a)) Lglala -Pf(gla))

(Pa] [-Lnlg(a)] Lgla)a (~Pf(g(a))) Di(g(a))a

(Pa) [-Lnlg(a)] Lgla)a [~Pf(g(a))] (Dt(g(a))a) Of(g(a))xl Dxla
(Pa] [-Lnlg(a)] Lgla)a (~Pi(g(a))] (Dt(g(a))a) Of(gla))gla)

(Pa) (-Lnlg(a)) Lg(ala
empty

¢

Pxl Dxla

Pa

(Pa) ~Dg(ala

(Pa]l (-Dg(a)al Oxig(a) -Dxia

(Pa] [-Dg(a)a) Dxlg(a) [-Dxla) Pxl

(Pa) (~Dg(a)a) D#(xl)gla) [-Di(x1)a) [PF(x1)) Lnlx} Lxis
(Pal (~Dg(a)al Df(gla))ga) [~Df(g(a))a) (Pt(g(a))) Lnlg(a)

[Pal [-Dg(a)al DBf(gla))gia)

(Pal (~Dg(a)al (Df(g(a))g(a)]l Lnlg(a) Lgla)a
(Pal [-Og(a)a) (Df(g(a))gla)] Lnig(a)

empty

6. ANCESL Example

Proot

7.
8.
9.
ie,
11,
12.
13.

H -C

H

(H) J -A

(H) J (~A) B
(H) J

(H) (J] K
empty

extend
extend
extend
extend
extend
extend
extend
extend
extend
extend
extend
extend
extend
extend
extend
extend
extend
extend

theorem

by 2
by 3a
by Sb
by 1
by 7
by Sa
by Sb
by 1
by 4a
by Sb
by 1
by B
by Sa
by Sb
by 1
by 4a
by Sb
by §

theorem

extend
extend
extend
extend
extend
extend
extend
extend

by 1

by 4b
by bc
by Sb

by 3a

by Sa

theorem

extend
extend
oxtend
extend
extend
extend
extend
extend
extend
extend

theorem

by 3b
by 2b
by Sa

by Sa
by 4a

by Sa
by 4a

extend by 6a
extend by la
extend by 4b
extend by Sa
extend by 2a
extend by 3c

e o iR o g s B ——

Proots
7. NUNL Example
i Proof A
K 7. Dab theorem
8. (Dabl Pa Mxlbx2 Dax2 ~Daxl extsnd by la
9. (Dabl Pa Mbbxl Daxl reduce
18. (Dab) Pa Mbbx! [Daxl) Max2xl uoxtend by 4
il. (Dabl Pa MNMbbs(b) extend by 5
12. (Dar) Pa extend by 2
13. empty extend by 6
8. GROUP! Evample
Proof A
7. Ppixl)xl)(x]) theorem
r 8. [P)(xDxlj(x1)] Px2x3j(x}) Px3xixé Px2x4 j(x1} extend by 1
9. 1°)(x)x1)(x1)] Pg(x2)(x1))x3j(xl) Px3xix2 extend by 3
18. [P (h(x1x2:)h(x1x2)) (h(x1x2))] Pg(x2;(hix1x2)))x1j(h(xIx2)) extend by 4
11. empty extend by 3
9. GROUPZ Exampie
Proo! A
7. Pbac theorem
8. [Pbac] Pbx1x2 Pxlx3a Px2x3c extend by 3
9. [Pbac) Pbxle Px}ca extend by 2
18. [Pbac] Pbxle [Pxica) Px2x3x1 Px3cxé Px2xéa extend by &
11. [Fbac] Pbxie [Pxlcal Pax2xl Px2ce extend by 1
12. (Pbac] Pbxle [Pxlcal Pacxl extend by 5
13. [Pbac) Pbxle [Pxlcal ([Pacxl) Pax2x3 Px2xbc Px3xéxl extend by 3
14. iPbac) Pbxie [Pxlcal [Pacxl] Pax2e Px2xlc extend by 2
15. [Pbac) Pbbe (Pbcal [Pacb] Paae extend by 6
16. [Pbac) Pbbe extend by 5
17. empty extend by 5
Proof B
7. Pbac theorem
8. [Pbac) Pbalx2 Pxix3a Px2»3c extend by 3
9. [Pbac) Pbxla Pxlba extend by 6
18. [Pbac) Pbxla [Pxiba) Px2x3xl Px3bxé Px2xéa extend by 4
11. (Pbac) Pbxla [Pxlbal Pax2xl Px2bs extend by 1
12. [Pbac) Pbxla [Pxlba) Pabxl extend by 5
13. (Pbac] Pbca extend by 6
14. [Pbac] [Pbcal Px1x2b Px2¢x3 Pxlx3a extend by &
15, [Pbac) ([Pbca) Paxlb Pxlice extend by 1
16. [Pbac) ([Pbcal Pacb ‘ extend by 5
17. [Pbac] (Pbcal [Pacb] Paxix2 Pxlx3c Px2x3b extend by 3
18. [Pbac) (Pbcal [Pacb) Paxle Pxlbc extend by 2
19. (Pbac) [Pbca) [Pacb) Paae extend by 6
20. empty extend by 5

