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IZO -INTRODUCTIUN

Yhe design of crashworthy seats and restraint systems for
aircraft presents a complex engineering problem, the solution of

which can be greatly aided by sufficiently rigorous analytical

techniques. The crash environment can vary widely from one acci-i Ident to another such that a great number of conditions must be
evaluated to establish those critical to occupant survival. For

example, the restraint system must limit the movement of the occu-

pant sufficiently to eliminate the possibility of head strike on

rigid cockpit structure. Also, the relatively low tolerance of

the human b.ody to accelerations in a direction parallel to the

spine requires the consideration of vertical impact forces

which are usually present and often significant in aircxaft

crashes. It is obvious that a very strong seat is not a valid

solution for this problem, since it would not only incur serious

weight penalties but would transmit high vertical impact forces

directly to the occupant. Rather, the design of a crashworthy

seat for aircraft includes the capacity to absorb energy throughIcontiolled deformation in the vertical direction, thus lowering

the accompanying loads.

In the initial phases it is desirable to evaluate, in some

detail, existing seats and restraint systems in their surrounding

cockpits, thus establishing existing weaknesses. It is then

desirable to make modificatic's and to evaluate the effect of

these modifications on improving the survivability of the system.
SThese evaluations must be conducted for a great many of the pos-

sible crash environments, thus constituting a relatively large

matrix. It is apparent that testing would be extremely expen-sive and require a qreat deal of time, since design nmodificat'.ns

would have to be developed and fabricated prior to testing.

Therefore, an analytical technique, such as was developed in

this program, is required.

A number of one-, two-, and three-dimensional mathematical

models of the human body have been developed for crash surviva-

bility analysis. These sirpulation models have generally been
1



intended for use in evaluation of automobile interior design with

respect to injuries caused by secondary impacts, such as the
three-dimensional models described in references 1 through 3.

Seats have been represented in a very simple manner because in
automobiles the role of the seat design in determining occupant
survival is minimal. A eitulation model intended specifically

for this application was, therefore, required.

The development of a three-dimensional mathematical model of
a light aircraft seat, occupant, and restraint system is described

in this report. This model forms the basis for a simulation com- V

puter program that has been written specifically for use in crash-
worthy design and analysis of light aircraft seats and restraint

systems. The program has been organized so as to minimize the
volume and complexity of input data and to focus on seat and re-
straint system design parameters. The effort described herein

was performed for the Federal Aviation Administration, Systems
Research and Development Service, under Contract DOT-FA72WA-3101,

which commenced in August 1972.

2



2.0 MATHEMATICAL MODEL

The three-dimensional mathematical model includes a lumned-

parameter representation of the vehicle occupant and a finite ele-

ment seat. Interface between the seat and occupant is provided

by seat cushions and a restraint system, consisting of a lap belt

and, if desired, a single-strap or double-strap shoulder harness.

The response of the occupant and seat ca" be predicted for any

given set of aircraft impact conditions, including the initial

velocity and a&ttitude and the input acceleration.
This section provides a discussion of the development of the

occupant and seat models, including details of the approach to

formulating the equations of motion and or the technique used for

their solution. The first part of this sf.ction discusses the de-

velopment of the equations, and subsequent parts cover particular

aspects of the equations, specifically the body joint model and

the treatment of external forces.

2.1 OCCUPANT MODEL

The mathematical model of the aircraft occupant is made up

of 11 rigid segments, as shown in figure 1. This number is

thought to represent the minimum that will permit accurate, mean-

ingful simulation. A greater number might possibly improve the

accuracy of simulation but would, in turn, increase program exe-

cution cost. Arm and leg segments are included to enable predic-

tion of injuries to these extremities. Although leg and arm

injuries, in themselves, may not be as serious as head or chest

injuries, they may prevent escape from a stricken aircraft and the

Fpotential hazard of postcrash fire.

Each of the body joints, with the exception of the elbow and

knee joints, possesses three rotational degrees of freedom. Be-

cause of the hinge-type motion of a forearm or lower leg relative

to an upper arm or thigh, respectively, the Position of each of

these segmez-: is described by one additional angular coordinate.

Therefore, the occupant system possesses a total of 28 iegrees of

fr edom.

3



4I
6I

110

*JOINT

*SEGMENT MASS CENTER
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2.1.1 Equations of Motion

2.1.1.1 Coordinate Systems

Fixed at the center of mass of each of the 11 segments is

a right-handed cartesian coordinate system. For segment n (n = 1,

2, ..., 11) the local coordinate system is denoted by axes (xn,

Yn, Zn) Positive directions are defined such that when the body

is seated as shown in figure 2, with the torso and head upright,

the upper arms parallel to the torso, and the elbows and knees

bent at right angles, xn is positive forward, yn to the left, and

zn upward.

z3

z2

4"

y4 z 7

• Y 5 Y7

x. 1 z 

x9

9~ x

Figure 2. Segment-Fixed Local Coordinate Systems.
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In order to describe a general position of the body, it is

necessary to relate the orientation of each segment (xn, Yn Zn)

to the inertial system (X, Y, Z). The angular relationship be-

tween the local, segment-fixed coordinate and the inertial system

can be expressed by the transformation

X I x
ni nt

Y n = Tn Yn

Zn o zn (1)

Because three angular coordinates can be used to define the

rotation of a given segment, it is convenient to utilize a set of

coordinates that will suffice as generalized coordinates in the

formulation of the equations of motion. A system of Eulerian

angles provides a convenient set of three independent angular

coordinates. Assuming that the local (xn, Yn' Zn) system is ini-

tially coincident with the inertial (X, Y, Z) system, the Euler

angles are a series of three rotations, which, when performed in

the proper sequence, permit the system to attain any orientation

and uniquely define that position. The particular set of Euler

angles selected for use here is illustrated in figure 3 and de-

fined, as follows:

1. A positive rotation i about the Z-axis, resulting in

the primed (x', y', z', system.

2. A positive rotation 0 about the y'-axis resulting in

the double-primed (x", y", z") system.

3. A positive rotation 0 about the x"-axis resulting in

the final (x, y, z) system.

In order to determine the elements of the transformation

matrix [Tn], it is necessary to consider the matrix equations

that indicate the three individual rotations described above.

Referring again to these definitions of ', 0, and 4, the following

equations are obtained:

6
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.- x" 0 ] x

y" 0 cos €-sin CJ Y

" 0 sin cos (4)

Writing equations (2) - (4) in abbreviated form

{RI = [¢] {r')
{r'1 = [e] {r"1

i {r"} = (41 {rl

or

{R} = [ ] [0] [4] {r} (5)

where {R} represents the components of a vector in the inertial

system and {r} represents the same vector in the final (x, y, z)

system. Performing the matrix multiplications indicated in

equation (5), the elements of the transformation matrix in

equation (1) are obtained:

n
T =cosn cos n11n n

T = cos4 sin a sinn - sin p cos
nC12n ,

TI3 =cosn sin n cos + sin , sinn
13 n n n n n

T2In = sin ncos6

nT 22 = sin n sin n sin n + Cos n Cos Cn

T,3n = iin sin n cos n -COS sin (n

nT31 = _-sin in

T32 = Cos sn

8



T33n = cos en cos n

for n = 1, 2, 3, 4, 6, 8, 10 (6)

The additional constraint of hinge-type rotation, at the

elbows and knees, requires the use of one additional angular

coordinate to define the position of each of the forearm and

lower leg segments. Referring to figure 4, the angular position

of the forearm segments (t = 5, 7) is given by

x t sin at 0coscatX

Y = Tn 0 1 0 Yy

Z tL -Cos at 0 sin it- Zl

(7)

(a) ELBOW zn  (b) KNEE

zn
z nxx

n =4, 6 n =8, 10

=n + 1 m=n+ 1

Figure 4. Definition of Angular Coordinates a for Elbows
and Knees.

~9



and the lower leg segments (m = 9 )i by

sinc 0 -cos am

- T n0 1 0 YM

m Cos ( 0 sinam (8

* From equations (6) and (7) the elements of the transformation

matrix for the forearms (sements 5 and 7) are written as:

T =cosp cos 6 sin a -cosp sin 6Cos~ Cos a11n n 2.n n n 2

-sin np sin n cos aI

13 n k n n n£

+cs sine sin~ siin~ aZ

T =cs cossn a sn sin6 Csn Csna
21 n n 91 n n n 2

Csn~ sin cs a2

T 2 i nsi nsi + Co Cs nn

T 3 sin nco n cos sia k-4sin~ nsin e cos nsna

nO n sin n n 2,

T cos os6 sin 4 o 2

T sin~ sin csin +os cos~ csin223 n n n n9

2,10



From equations (6) and (8) the elements of the transformationmatrix for the legs (segments 9 and 11) are obtained:

m
=cosip cos e sin m + cos n sin On cos n cos am

+ sin n sin Cos Cm

T12 =cos n sin en sin n - sin *n cos 0n

T13mCos, CosO coa+o6 sinOC5 sin a
13 n n Cos am + Cos n On cos n m

+ sin V n sin n sin am

T m s n cos e sin am + sin 'n sin 6n cos n cos amT21 = *in nnnsn n m

n n mT~~~~ ~ ~ 2os m i sn6n sin n no + osnCo

m
T 23 sin n co ncsam+ sin n sin 6 n Cos n sin a

T3m = -c= + sin sine cos n sin a23n n co n co m n n nm

- os itn sin n sin amI
n n m

T m sin sin am + cos e cos n cos mT31 =n-msin nn m

T32 = cos en sin n3 = si n sin am

T 33 snn co mn (1In

i1



Having developed the relationships expressed in equations

(1) through (10), the position of the occupant can be described

by the following set of generalized coordinates:

ql = X qll = 03 q2 8

q 2  = 3 q22 = 8

q3 = Z1  q13 = 4 q23 = 8

q4 = pi q14 =04 q24 9

q5  =81 q25 =  i0

q6 =I q16  '5 q26 = 010

q7 =2 q17 = p6 q27 =  i0

q8 =02 q18 = 06 q28 = all

q9 =2 q19 =  6

ql0 = 3 q20 = a7 (11)

The above coordinates include the cartesian coordinates of the

mass center of segment 1 (XI, YI' ZI), selected as a reference

point on the body, seven sets of Eulerian angles, and the four

additional angular coordinates for the elbows and knees.

2.1.1.2 Lagrange's Equations

The response of the occupant system is described by

Lagrange's equations of motion, which are written for the 28

generalized coordinates. The equations are developed according

to

d (2L q Q (J =  1, 2, ... , 28)

(12)

12



where L is the Lagrangian function

L ' = T. - V (13)

t represents time, Q. are the generalized fnrces not derivabie

from a potential fi1ir'..n tl- orces-blat nze derivable from a po-

tential function are orom L and T and V are the system

kinet±c and potential enerqies, r-.-etv_ )

Because the system being trteated does not involve any

velocity-dependent potentials, eated oe n bevwritten an, e un(12 ca bewritten as

d ( 3 a T -+ v = Qd-t Q ) - +  (j = 1, 2. .. 28)

qJ (14)

The system kinetic energy contains both translational and rota-

tional parts:

2.2T M n n o ( n )

n=l

+ 1 (x , 2 + i t &. 2
n=l n n Ynr.n ' n --P

where M is the mass of ii ano T 'i"_
n- V -ri n n

moments of inertia of segment n with respect to the I-cal coordi-

nate aces (xn, Yn' z n), assumed to be principal moments of iner-

tia.

The absolute velocities of the 11 mass segments re-quired

for the translational kinetic energy must, of co-urse, bc written

as functions of the generalized coordinates an_, gle n ,raliz vloc-

ities in order to use equation The derivatiot

velocities is presented in appendix A. The angular velocity cow-

ponents (w x  ,z ) seen in equation (15) are parallel ton Y
the local (xn, ) coordinate systems. These angular .'-c-

ity components cannot be used dir-ectly in Lagrnge's equations

because they do not correspond to the time derivatives of any

13



set of coordinates that s'ecify the position of the segment.

They must be written as functions of the generalized coordinates,

using the gener;iized angular velocites ( , 6 , ), which are

allel to the axes Z, y and x", respectively.paaleltote xe n' n'

An arbitrary angular velocity of segment n, -n' can be ex-

pressed as a function of the generalized angular velocities

according to

-n= - + -n (16)

Referring to figure 3, In' tn and I-n do not, in general, form a

mutually perpendicular vector triad. ($ and i are both perpen-

dicular to 6 but are not necessarily perpendicular to each other.)
However, they can be considered as a nonorthogonal set of compo-

nents of w since their vector sum is equal to w. Summing the

orthogonal projections of in, n', and in on the (Xn, Yn' Yn)

axes yields the angular velocity components required for the

kinetic energy expression:

Wxn $n -n sin en
nn

Wy n cos n sin kn + n cos n

Wzn n cos en s n n - n n (17)

All quantities required to develop the system kinetic energy

are now available, and the entire expression is written in appen-

dix B.

The system potential energy is simply gravitational poten-

tial, which is written as

ii1

V= Mg (Z - Z n
n=l nn (18)

14



where g is the acceleration due to gravity and Zn is an arbitrary

datum. The potential energy expression is expanded in appendix C.

2.1.1.3 Matrix Equations

For purposes of computation, the equations of motion are re-

written in the following form:

[A(q)] {qj} = {B(q,q)} + {P(q)} + {R(q,q)} + {Q(q,q)) (19)

where the elements of the ine,.-ia matrix [A] and the vector {B)

are derived from tbe kinetic energy derivatives of Lagrange's

equations. In other words,

d 7 (T 2T - 2822
d () - k_ jkkd q Di qj k=l j~

B • (i l .. 28, ql, q 28)

(j = 1, 2, . 28) (20)

The elements of [A] and {BI are given in appendix D. The force

vector {P} is derived from the system potential energy according

j Ito

I Pj (ql' "''' q28) = D (j = 1, 2, ..., 2G)P ,.1 . . q 8D j (21)

The elements of {P} are presented in appendix E. Both {R} and

{Q} are vectors of generalized forces derived from the right-hand

side of Lagrange's equations. The vector {R} describes the re-

sistance of the body joints to rotation and is discussed in detail

in section 2.1.2. {Q} is the vector of generalized external

forces and is discussed in detail in section 2.1.3.

15



2.1.2 Joint Resistance

The form of the joint resistance vector {R) in equation (19)

depends on the user's selection of occupant - either dummy or

human. Although both joint models contain the same types of ele-

ments, a nonlinear torsional spring and a viscous torsional

damper, the function of each of these elements determines the

>type of occupant.

The 10 body joints, illustrated in figure 5, are defined as

follows:

Joint 1 - Back, between 12th thoracic and 1st lumbar
vertebrae

Joint 2 - Neck, between 7th cervical and 1st thoracic
vertebrae

Joint 3 - Right shoulder

Joint 4 - Right elbow

Joint 5 - Left shoulder

Joint 6 - Left elbow

Joint 7 - Right hip

Joint 8 - Right knee

Joint 9 - Left hip

Joint 10 - Left knee

The angular displacement of joint i from its reference posi-
tion (figure 2) is given by a. If (-m' m ,m) and n' 'n' kn)

are triads of unit vectors in the local coordinate systems of two

adjacent segments connected at joint i, as shown in figure 6, the

joint angle is given by

ai = cos-1 (km " kn)  (22)

where (km " kn) is the scalar product. Considering the geometry

of the occupant model in the reference position, the i or the

10 joints are given by

16
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Figure 6. Joint Angle i Between Segments m and n.

l = Cos- (k 2

= Cos-1 (k * Y

B4 =a5

65 =cos-I (2*k6

6 a 7
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07 = C1s ( 8 "

9

09 =cos -i Z 10)

8 = a 11
= 11 (23)

If at each joint i, a momen.. M i and a torsional damper with

coefficient Ji act to resist motion of the joint, then the virtual

work done on the system as each joint i undergoes a virtual dis-

placement 6ai is

10

6W (Mi i + J i
-i=l i(24)

Since the 8i are functions of the generalized coordinates qj,

the virtual displacements S8i can be expressed in terms of cor-

responding virtual displacements of the qj. In general, such an

expression would take the form

28 )0i
28 D q Sq (i=l, 2, ... , 10)jF- 3qj 6qj

3= (25)

where the partial derivatives i/qj are functions of the gen-

eralized coordinates. Substituting into equation (24) gives

.0 28
6W=- (Mi + 0i 6q-

i=l j=l q i 'q j  (26)

Changing the order of summation, equation (26) can be written in

the general form

28
6W Ej Qj 6q j

j=l (27)

19



where Q. are the generalized forces acting on the system. As seen

in equation (19), the generalized forces are being treated as two

distinct types: joint resistance forces and external forces.

Since the joint resistance terms are being treated here, the gen-

eralized joint forces referred to as R. will be considered alone.

Equation (27) becomes, more specifically

286W= F, R 6qj

j=l (28)

and, from equation (26), R. can be written

10 a
= 0 (M i + J. i ) 1i (j=l, 2, ...,28)i=l 1qj (29)

The elements of vector {R} and their derivation, using equa-

t.Lon (29), are preser:ed in appendix F.

As mentioned earlier in this section, the type of occupant

is determined by the relative contributions of Mi and Ji to the

Rj terms. For the dummy joint the resisting torque Mi is con-

stant throughout the normal range of joint motion and increases

rapidly along a third-order curve to a higher value at the limit-

ing displacement S., as shown in figure 7. The normal values

MD. are set equal t6 those resulting from the joint-tightening

procedure of SAE Recommended Practice, Anthropomorphic Test De-

vice for Dynamic Testing - SAE J963. That is, the body joints

will just support a 1G load in the reference (seated) position,

with the exception of the torso joints, which will support a 2G

load. In addition to Mi, a small viscous damping term with con-

stant Ji is included for energy dissipation.

The resistance of the human joint consists of up to three

terms. The primary resisting force during normal joint rota-

tion is a viscous damping term with constant coefficient J1 . In

a manner similar to the case of the dummy, a resisting torque is

applied at the limit of the joint range of motion, as shown in

20
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ANGULAR DISPLACEMENT -

Figure 7. Dummy Joint Resisting Torque.

figure 8(a). An additional term used to simulate muscle tone is

the moment M, which drops to zero after a small angular dis-

placement from the initial position, provided that the crash de-

celeration is sufficient to overcome it (figure 8(b)). A com-

pletely relaxed occupant, usually the worst case with regard to

injury, can be simulated by setting this last joint resistance

term to zero.

21
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(a) (b)

~Figure 8. Human Joint Resisting Torques: (a) Displacement-
~Limiting Moment; (b) Muscular Resistance.

2.1.3 External Forces

The vector of generalized external forces {Q} is developed

in a manner similar to that discussed in the previous section for
the joint resistance vector. The resultant external force r.

I--

acting on segment i is given by

i i (30)

where FX i, FY i, and F z i are components in the inertial (X, Y, Z)
system. Let the absolute position of the point Pi on segment i,

where the resultant force acts, be represented by

E = X i+ ,j + Z kP i XPi Pi ZP 1 31)

As the resultant force applied to each segment i undergoes a vir-tual displacement 6rp having components p YPai Re6Zipsa), the

virtual work on the system done by the Fi is
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6W (Fxi 6XPi +F + ()6Zp
F1 i 1 Fzi (32)

Writing the virtual displacement components in terms of the gener-

alized coordinates qj:

ax28 Pi
6Xp P. P - 6qj

j=l aq j

28 3YP.

1 j=l qj

28 3Z P
i jl aqj 

(33)

results in

28 11 aXP. aYP. Zp.
6W E ( qj I +F Y( -j FZ  ) 6 qj

j=l i1i aq. - (34)

Using equation (27)

28
6W = Q 6 O q4

j=l

yields the components of the generalized external force vector:

11ax P, 3Y Z Pi X.YPi Zp.

Qj = E (F _ + + i+F _1)i=l iq F1 q ~ q (35)

The components of {Q) derived from equation (35) are presented in

appendix G.
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The external forces acting on the 11 body segments can be

characterized as either contact forces or restraint forces.

These forces are discussed in further detail in the sections

following.

2.1.3.1 Contact Forces

The contact forces exerted on the occupant include all

those, except the restraint forces. As illustrated in figure 9,

these forces are exerted by the cushions, floor, and an optional

air bag restraint. These forces are all assumed to pass through

segment mass centers, with the exception of the floor forces and

the force of the seat cushion on segment 1. The floor forces

act on the ends of leg segments, and the force of the seat cush-

ion on segment 1 passes through a point midway between the hip

joints. This assumption effects a considerable simplification

in the model, for if the position of the point of force applica-

tion, rp. is the position of a segment mass center, it is avail-.P.

able directly from the solution of the equations of motion.

FB3

FA3

FORCE IDENTFICATION

FB2 FA2 FBi, FB2: BACK
CUSHION

FB3: HEAD REST

FS1, FS2, FS3: SEAT
CUSHION

-A FFI, FF2: FLOOR

FAI, FA2, FA3: AIR BAG
FBI-- S3 (OPTIONAL)

FS1 S

i FF2

~FFI

Figure 9. External Forces of Cushions, Floor, and Air Bag.
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All contact forces are calculated by first determining the

penetration of a contact surface on the occupant into a surface

with known force-deflection characteristics. Using the seat

cushion force as an example, the pertinent dimensions of the seat

and the parameters required to determine the penetration of the

abdomino-pelvic segment (segment 1) into the cushion are illus-

trated in figure 10. X and Z are coordinates of the center of

the contact surface of segment 1, and R1 is the radius of the con-

tact surface in the (x1 - z1) plane. (Although this contact sur-

face is an ellipsoid, cross-sections parallel to the (x1 - z1)

plane are circular. The dimensions of the contact surfaces will

be discussed in a later section.) The position of the seat pan is

defined by its height Zs above the origin of the aircraft co-

ordinate system and the angle 8s that it makes with the aircraft

(XA - YA) plane. The unloaded thickness of the seat cushion is

te, and the loaded thickness beneath segment 1 is t. Summing the

dimensions in the ZA direction gives

Zp = s + (R1 + t)/cos ex + Xp tan6 s  (36)

--XpSEGMENT 1

SEAT CUSI'ION
R,

1SEAT PAN

ZAA

!FLOOR

x A  0 x A

Figure 10. Seat Cushion Deflection.
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Solving equation (36) for the cushion thickness,

t = (ZP- Zs) cos es - R1 - Xp sin 0s  (37)

The deflection of the seat cushion is then

6c te t (38)

and the force, which is assumed to ac: normal to the plane of the

seat pan and pass through the center of curvature of the contact

surface, is calculated from an input curve of force-versus-

deflection. The other contact forces are calculated in the same

manner. A small difference exists in the calculation of the air

bag force because the air bag surface is cylindrical, but the

technique is basically the same.

2.1.3.2 Restraint System Forces

The method used in calculating the forces exerted on the body

by the restraint system differs considerably from that described

in the preceding section for the contact forces. The primary rea-

son for this difference is that the restraint forces do not act at

any fixed points on the occupant, but, rather, the points of

application vary with the restraint system geometry.

Although other configuratiuns can be selected by the user,

the basic restraint system consists of a lap belt and diagonal

shoulder strap. The restraint loads are transmitted to the occu-

pant model through ellipsoidal surfaces fixed to the upper and

lower torso segments. These surfaces are shown in figure 11.

The locations of the anchor points A1 , A2, and A3 and the buckle

connection B are determined by user input along with the webbing

properties.

The ellipsoidal surfaces are described by

x1 /a1 + yl2/b 1 + Zl2/Cl = 1 (39)
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177 iA2

Figure 11. Basic Restraint System Configuration.

for the lower torso, where

b 1  L LH + R 16

C 1
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a i

2 2 2/1 2 2, 2
x2 !a 2 +y 2 / 2  (40)

for the upper torso, where

Ia = R^.

-2 "2/'

c 2 = L2/2i and these body dimensions are defined in section 2.1.4.

The restraint forces are determined in th% sdine munner for

both the upper and !c-ai torso. First, the belt loads are calcuo

atd ftuiu the displacements of the torso segments, and the resul-

tant force on each segment is then applied at the point along the

arc of contact between the belt and the ellipsoidal surface where

the force is normal to the surface.

Explaining this procedure in further detail for the restraint

system configuration shown in figure 11, for any position of the

occupant, the coordinates of the left shoulder, the hips, and the

buckle connection B are calculated in the aircraft reference

frame. The length of each of the three belt segments (right lap

belt, left lap belt, and shoulder strap) is equal to the sum of

the free length, or the distance between the appropriate anchor

point and a reference point on the hip or shoulder, and the dis-

tance along the are r that hip or shoulder to the buckle. If

that length should exceed the equilibrium (zero load) length

calculated initialy then there is some tensile force in the

belt. The resultant force on each seqgment is the vector sum of

the belt forces. Frictinn the snoulder belt and chest

along the length of the belt i3 taken into account by reducing

the load in the belt between the chest ard buckle by a ccnscant
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--fraction of the load in the free length between the belt and the

11 body surface. The resultant force on the lower or upper torso

I! segment may be written generally as

=FX F +Fy ] Fz (41)

where F F and F are components in the local, segment-fixed

coordinate system.

To find the point on the segment where F is normal to the

* surface, consider first the equation of an ellipsoid:

2 2 2 2 2.2
x2/a + y2/b + z /C = 1 (42)

.d±ch rnvy also be expressed in functional form as

f (x, y, z) = x2/a 2 + y2/b2 + z2/c - 1 (43)

where the -!lipsoid can be regarded as the level surface f=O of

the function. At any point (x, y, z) on the surface, the gradient

I of f is norm 1  t e ourface. The gradient is given by

grad f = (2x/a2) i + (2y/b 2  j + (2z/c 2  k (44)

and at Lie point of application of the resultant force, grad f is

collinear with F. Making use of the proportionality between the

components of the two vectors,

F, = Cx/a 2

W FV = Cy/b 2

F = Cz/c
2

z (45)

where C is an arbitrary constant. Solving equation (45) for the

coordinates (x, y, z) and substituting into equation (42)
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2 2(x( 2)2 (x( 2) (1 F1(c2 6

a by + c(46)

(F a) + (F )2 + (F)2 1

which leads to

C 2  F Fx2 a2 + F y 2b2+F z2 C2

S F 2 a 2 + F b2 + F 2c2

C = -+JF x  
7  y z (48)

the point of application of F is then

2x = Fxa2/C

y = F b 2 /C
y

z = F c 2 /C

with

C ~~ ~ Fa+Fbc
C=~l/F~ 2 a 2 + 2 b2 + 2

x y z (49)

The negative sign on C can be explained by the fact that each

coordinate in the local system is opposite in sign to the cor-

responding component of the resultant force, or

x > 0 if F < 0x

y > 0 ifF < 0

z >0 if F <0 (50)
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The capability of the belts to slide relative to the torso sur-

faces allows simulation of "submarining" under the lap belt, as

illustrated in the sequence of figure 12.

Figure 12. Occupant Submarining.

2.1.4 Occupant Physical Properties

2.1.4.1 Body Segment Dimensions

The basic dimensions of the occupant segments that are re-

quired in writing the equations of motion are illustrated in

figure 13. The lengths of the segments are, in most cases, effec-

tive "link lengths" between join: centers, rather than standard

anthropometric dimensions based on external measurements. These

lengths are calculated as fixed fractions of total body stature,

obtained from references 4 and 5. These factions, along with

the actual segment lengths for a 50th percentile male (69.1-inch

stature), are presented in table 1.

The distance of the mass center of segment n from the end

nearest the body reference point (C1) is Pn" The distance be-

tween the mass center and the far end is given by

Pn = Ln - Pn (51)
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ijure 13. Body Segments Lengths and
Mass Center Locations.
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TABLE 1. BODY SEGMENT LENGTHS

Length for
50th

Fraction Percentile
of Male

Segment Symbol Stature (in.)

Lower Torso L 10.1714 11.84

Upper Torso L2  0.1571 10.86

Head and Neck L3  0.1546 10.68

Upper Arm L4, L6  0.1735 11.99

Forearm and Hand L5, L7  0.114 13.23

Thigh L8, Tl0 0.2399 16.58

Leg and Foot L9, LII 0.2505 17.31

1/2 Hip Breadth LH  0.0491 3.39

Shoulder Link Ls  0.0917 6.34

Head Mass Center Link L 0.0108 0.75

The center of mass locations, also obtained from data of refer-

ences 4 and 5, are calculated as fixed fractions of segment

lengths. These fractions and the actual dimensions for a 50th

percentile male are presented in table 2.

TABLE 2. SEGMENT CENTER OF MASS LOCATIONS

Dimension
for 50th

Fraction "ercentile
of Segment Male

Segment Symbol Length (in.)

Lower Torso p1  0.4515 5.35

Upper Torso p2  0.4654 5.05

llead and Neck 03 0.5670 6.06

Upper Arm "4' '6 0.4374 5.24

Forearm and Hand 05' 07 0.6770 8.95

Thigh 0 13' V0 0.4278 7.09

Leg and Foot 09, Oil 0.4264 7.38
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2.1.4.2 Body Segment Mass

The masses of body segments are calculated in the same man-

ner -s the lengths, using fractions of total body mass, based on

data of references 4 and 5. These fractions and segment weights

for a 50th percentile male (161.5-pound weight) are presented in

table 3.

TABLE 3. OCCUPANT SEGMENT INERTIAL PROPERTIES

Weight of Moments of Inertia

Fraction Segment for 50th Percentilefor 50th Male
of Total Percentile (lb-sec2-in.)
Body Mass Male*

Segment (Mn/M) (Ib) Ix y z

SLot'er Torso 0.2778 44.86 8.703 4.331 8.703

Upper Torso 0.2264 36.56 3.357 2.623 2.623

Head and Neck 0.0792 12.79 0.311 0.311 0.201

Upper Arm 0.0264 4.26 0.164 0.164 0.0241

Forearm and Hand 0.0214 3.46 0.0241 0.218 0.218

z Thigh 0.1001 16.17 0.307 1.270 1.270

Leg and Foot 0.0604 9.75 1.192 1.192 0.120

Weight, rather than mass is tabulated here, as basic units are
generally more meaningful to the reader.

2.1.4.3 Segment Moments of Inertia

Mass moments of inertia, computed from measurements made on

eight human cadavers, were reported by Dempster in reference 6.

These moments of inertia were all measured with respect to trans-

verse body axes at a convenient point of suspension for each seg-

ment and, subsequently, transferred to the segment mass centers.

Therefore, from these results the values of I can be extracted,

with the exception of the upper torso segment, which will be dis-

cussed further below.
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The cadavers used in Dempster's experiments were generally

of slight build possessing an average weight and stature consider-

ably lower than the 50th percentile. Using the anthropometric

data on the United States civilian population contained in refer-

ence 7, the weight and stature for the 50th percentile male are

161.5 pounds and 69.1 inches, respectively. For use in the mathe-

matical model, all of Dempster's values were adjusted to account

for total body size by multiplication by a factor that is related

to the units of mass moment of inertia. In other words, the ad-

justed values for the 50th percentile male are calculated accord-

ing to

I50 = (161.5) (69.1) 2/WDSD (52)

for1 50 of avrg wegh WDan2satr

where !D is the segment moment of inertia calculated by Dempster
for a population of average weight WD and stature S D '

Turning to the upper torso, Dempster subdivided this segment

into the thorax and two shoulder segments and reported the three

moments of inertia separately. For use in the model a composite

value of moment of inertia was calculated as described below.

Figure 14(a) shows the location of the center of mass for

the thorax anterior to the vertebral body T-9. Figure 14(b) shows

the location of the centers of mass of the shoulder segments below

rib 3. The lateral location of the shoulder center of mass is un-

important as, for the two shoulder segments together, it will be

in the midsagittal plane. Using the superior face of vertebral

body T-1 as a reference, the distances to the centers of mass for

the thorax and shoulders indicated in figure 14 were obtained by

scaling the dimensions on Dempster's sketches. The length given

for the thorax link between the superior face of the centrum of

vertebra T-1 and the inferior face of the centrum of vertebra T-12

is 15.71 percent of the body stature, or, for the 50th percentile

male, 10.86 inches. The vertical distance to the center of mass

of the thorax is given as 66.1 percent of the link length or 7.18
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9 (a) THORAX

)(b) SHOULDERS

Figure 14. Location of Centers of Mass for Upper Torso
Segments (Reference 6).

inches for the 50th percentile male. Using the spinous process

of T-1, which is visible in figure 14(b) as a reference, the

distance from the superior face of T-1 to the mass center of a

shoulder segment can be determined to be approximately 28 percent

of the link length, or 3.04 inches for the 50th percentile male.

The center of mass for the combined segment is then located 5.15

inches or 47.4 percent of the link length below T-1. The moments

of inertia can be combined, using the parallel axis theorem, as

illustrated in appendix H.

The moments of inertia with respect to the segment x- and z-

axes were determined, using approximations to segment geometry

similar to the technique described in reference 8. The torso and

head segments were approximated by ellipsoids. Assigning appro--

priate anthropometric dimensions to the ellipsoid axes, the ratios

Ixn / Iyn and Izn/IyD were calculated for unit mass. These ratios,

36



multiplied by the Iyn extracted from Dempster's data, gave values

of Ix and Iz for the torso and head segments. The identical
n n

procedure was used for the extremities, except that these seg-

ments were approximated by solid circular cylinders. The de-

tails of the calculations are presented in appendix H, and the

moments of inertia for a 50th percentile male are listed in table

* 3.

2.1.4.4 Body Contact Surfaces

Twenty-three surfaces are defined on the body for calcula-

tion of external forces exerted on the occupant by the seat cush-

ions or restraint system and for prediction of impact between

the occupant and the cockpit interior. These surfaces are ellip-

soids, cylinders and spheres, as shown in figure 15. The dimen-

sions of these surfaces were obtained from anthropomorphic data

on the United States civilian population (reference 7).

SURFACE IDENTIFILATION
1. PELVIS

2. CHEST

3. HEAD

18 4. RIGI'T UPPER ARM

5. RIGHT FORFAPM

4 6. LEFT UPPER ARM

7. LEFT FOReARM

20218. RIGHT THIGH

9. RIGH1T LOWER LEG
23 10. LEMT THIGHL

11. LEFT LO1*R LEG

22 12. RIGHT KNEE

17 iJ. LEFT KNEE

16 114. RIGHT FOOT

15. LEFT FOOT

10 -1 ."! T HIP

17. LEFT PIP8 13
18. RI T SHOULDER

2 
"

19. LEFT SHOULDER

20. RIGHT FLBOW

1 21. LFFM ELBOW
22. RIGHT HAND

23. LEFT HANI.
15

14

Figure 15. Occupant Contact Surfaces.
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The surfaces and the dimensions required for their descrip-
tion are illustrated in detail in figure 16. The values of R.

1

for a 50th percentile male are listed in table 4, along with

their fractions of body stature. The segment lengths Ln and

center-of-mass location p n were defined earlier and are presented

in tables 1 and 2.

HEAD Z 3

X 
3

2+

z z 22
2LL2 CHEST

X2  CHEST

BREADTH

-- SHOULDER WiDTH

R 2 (1S + R18 )

R112

E~V L ELI

HlIP

BREADTH

R
14 ' R1\ = CL1 + R1 6)

R22\ UPPER

EXTREMITY

R5R 20 
5

Figure 16. Body Contact Surface Dimensions.
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TABLE 4. CONTACT SURFACE DIMENSIONS

Actual Dimension
Fraction of fr5t

Staturefor 50th
Stature Percentile Male

Surface Symbol (Ri/S) (in.)

Pelvis R1  0.0579 4.00

Chest R2  0.0651 4.50

Head R3  0.0579 4.00

Arm R4, P6  0.0282 1.95

Forearm R5, R7  0.0268 1.85

Thigh R8, R10  0.0514 3.55

Leg R9 , Rll 0.0333 2.30

Knee R12, R13  0.0333 2.30

Foot R14, R15  0.0250 1.73

Hip R16, R17  0.0515 3.56

Shoulder R18, R19  0.0378 2.61

I Elbow R20, R21  0.0268 1.85

Hand R22, R23  0.0297 2.05

2.1.4.5 Joint Rotation

The results of several studies on the limits of human joint

ml:t*on have been published. Two of these studies in particular
A weze examined for applicability to the occupant model. First of

:Ii, Dempster's (reference 6) data on link lengths and inertial

? properties were used, as discussed in preceding sections, so it

was considered appropriate to include his joint data here. Glan-

ville and Kreezer (reference 9) presented limits of joint motion

for both voluntary and forced rotation; their results appear,

along with Dempster's, in table 5. Definitions of the various

joint motions are illustrated in figure 17. Also included in

table 5 are the rotations recommended for anthropomorphic dummy

joints by SAE Recommended Practice J963.
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TABLE 5. RANGE OF JOINT ROTATION

Measured Rotation - Deg
Human

Body Glanville(9) I

Component and Kreezer Dummy

Motion Symbol Motion Description Voluntary Forced Dempster 6 ) (SAE J963)

Head - With A Dorsiflextion 61 77 - 60

Respect to B Ventriflexion 60 7C - 60
Torso

C Lateral Flexion 41 63 - 40

D Rotation 78 63 - 70

Upper Arm - E Abduction (Coronal Plane) 130 137 134 135
At Shoulder F Flexion 180 185 188 180

G Hyperextension 58 69 61 60

Forearm - At H Flexion 141 146 142 135
Elbow

Thigh - At I Flexion 102 112 113 120
Hip J Hyperextension 45 54 - 45

K Medial Rotation - - 39 50

L Lateial Rotation - - 34 50

M Adduction - - 31* 10

N Abduction 71 79 53* 50

Lower Leg - P Flexion 125 138 125 135
At Knee

Long Axis of Q Flexion - - - 40

Torso R Hyperextension - - 30

S Lateral Flexion - - 35

T Rotation - - - 35

*Transverse plane.

A7.1 of the rotations possible in the mathematical model are

included in table 5 and figure 17, but some are, naturally, more

important than others in determining permissible ranges of motion

for the model. For the head, ventriflexion (B) is certainly the

most important component of motion for frontal impact. Dorsi-

flexion (A) may also be important for frontal impact, but the

angles reported are sufficiently close to those for ventriflexion

to be considered the same. Laterai flexion (C) is certainly less

important since a pure lateral impact of an aircraft would be

rare indeed, and rotation (D) will have an insignificant effect

on model response. Therefore, the limiting rotation asi (see

section 2.1.1.2) for the neck joint (i = 2) has been taken as the
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limit for voluntary ventriflexion, or 60 degrees. The "ngle can

be found in table 6, along with the limiting angles for the

other body joints. For all of the other angles, flexion is the

most significant component for the type of motion that can

usually be expected to take place in a crash environment. There-

fore, the limiting angles were all taken as the limits for volun-

tary flexion. Note that, for the hip joint, the reference posi-

tion of the body used in the mathematical model includes 90-degree

flexion. Therefore, this amount has been subtracted from the

angle reported in table 5, which is defined relative to the stan-

dard anatomical reference position. Since the seated position

appears to aid in flexion of the hip joint, the largest angle in

the table, the one given by SAE J963, was used in determining

as7 which is thus given by S7 = 120* - 90* = 300.

TABLE 6. JOINT LIMITING ANGLES

Angle - aS

Joint Location (deg)

1 Back 40

2 Neck 60

3, 5 Shoulder 180

4, 6 Elbow 142

7, 9 Hip 30

8, 10 Knee 125

2.2 SEAT MODEL

In order to make maximum use of commonality and to minimize

input complexity, the seat model is divided ito two major com-

ponents. The first, composed of the seat pan and back, retains

the same configuration regardless of the particular type of seat

being analyze~d. The supporting structure, on the other hand, can
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vary widely in its overall geomet- and number of elements. The

characteristics of each of the components of the seat model are

discussed below with attention being focused first on the common

part of the structure, which is actually made up of three types

of elements, as shown in figure 18.

SEAT BACK

1 6 SEAT PAN

7 SEAT PAN FRAME

FRAME NODES 1, 2, ... , 10

8

~ JFigure 18. Seat Model Components.

, The seat pan is composed of triangular membr~ne elements.

~The seat cushion load is distributed parabolically over the inner

2 10

nine nodes. The sample input data include fictitious mechanical

~properties for these elements that have been determined to best

~simulate a fabric or spring-supported seat pan. A sheet-metal

%seat pan would be represented by using actual material properties

~as input data.
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A seat pan frame formed of 16 beam elements transmits the I
seat pan loads to the supporting structure. Also applied to this

frame are loads from the seat back, the occupant's thighM, and

the lap belt, should the user wish the belt attached to the seat.

The seat back is mdcda up of three simple beams of :::iform

cross secion. The back cushion loads are ass-zed to be distri-

buted along the sidc- -f Lne seat back and are thus trnsmitted

to the seat pan frame. Should the shoulder harness be attached

to the seat, its load is applied at the midpoint of the transverse

beam that forms the top of the seat back. Bending of these beamrs

can alter the seat geometry during the crash event, and bending

failure at the connection to the seat pan frame can be predicted,

based on an input value of ultimate stress for the frame material.

2.2.1 Seat Analysis

The behavior of a typical occupied seat in an impact situa-

tion is characterized by three distinct, though overlapping

phases. Initially the seat pan is only slightly deformed and

comparatively flexible. The res.1tance of such a "flat" mem-

brane to normal displacement arises primarily from its current

state of stress and current geometry. Once the seat pan is suf-

ficiently deformed to be of comparable stiffness to the frame,

the second phase of behavior is pursued. Herein the framework

and the pan continue to deform elastically with neither contribu-

tion necessarily dominant. The flexure of the supporting frame

acts to soften the pan stiffness while continued stretching of

the pan counterbalances this influence. In the final phase,

frame components may become plasticized, thereby becoming in-

capable of carrying greater load. Plastic hinges are introduced,

causing redistribution of the loads. Redistribution continues

until sufficient hinges are formed to allow the structure to de-

forra as a kinematic mechanism, at which point collapse occurs.

The present analysis accounts for the above described be-

havior although no attempt is made to discretize the separate

phases. All phenomena are considered throughout the analysis,
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thus providing gradual transition from initiation of deformation

to termination, possibly by total collapse.

Th! data handling for the seat analysis is designed to ef-

ficiently utilize limited computer storage capacity by not allow-
ing large matrices, generated for various components, to reside

in core simultaneously. The general flow, described in more de-

tail subsequently, involves first forming the structural matrix

describing the particular supporting structure. This matrix is

mod ified during formulation to account for any plastic hinges Co

floor connection failure. Once formed. the matrix is copied to

auxiliary storage and numerically collapsed to the seat Pan frame

intersection nodes. The seat pan stiffness matrix is then cre-

ated, added to the leg frame residue, and the resulting combined

matrix saved on auxiliary storage until further collapsed to the

seat pan intersection.

Similarly, the seat pan matrix is formed and solved for the

increments of displacement. Frame, leg, and bar matrices are re-

trieved and used to calculate bar forces and floor reactions.

Updated displacement data are stored to define current position

in the subsequent call to seat routine.

Discussions of analysis techniques performed in the program,

which are applicable to one or more of the seat types, are pre-

sented below.

2.2.1.1 Bar Stiffness

A straight bar of constant cross section, as shown in figure

19, is taken as the first element. For small elastic deformation

the customary approximations used in finite-element developments

are unnecessary becaus- the force-displacement relationships are

well known. The six components of displacement at each end are

related to the corresponding generalized forces by the matrix

expression

{P} WR {p} (53)
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Figure 19. Space Frame Element in Elemental

Coordinate System.

where {P} = the 12 x 1 column vector of nodal forces

{p} = the 12 x 1 column vector of nodal displacements

{K} = the 12 x 12 stiffness matrix

In expanded notation the equivalent expression is given by equa-

tion (54)

where A = area of cross section

E = modulus of elasticity

I = moment of inertia

G = modulus of rigidity

J = torsion constant

L = length of member

Mx.i (Myi), (M z) = moment about X, (Y), (Z) at node i

'ixi (Fyi) (Fz) = forceiin X, (Y), (Z) direction at
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exi (yi ), (Oz) =rotation about X, (Y), (Z) axis at

Xj Z node iI
ui, (vi), (wi) = X, (Y), (Z) component of idsplace-

ment at node i

F. . _E- .

L L
12EIZ 6E, T - 12EIZ 6EI

T I LI --N=

<2L 6L 2-11 E-j G ,
Y, t Y J/ , , I

I2 [AE I U

'2 r 2

r 1215 1-6El)
J - - - I - V2

6E

2.2.1.2 Rigid Body Transformation

~In general, actual seat supporting structure attachments
~might only rarely coincide with natural integral division points

of the seat pan frame. A rigid body transformation technique is

employed to accommodate this "mismatch", without increasing the

problem size, by the obvious technique of adding nodes. By this

method nodal displacements and bar end displacements are related

through kinematics, resulting in a local approximation of

stresses, but providing full equilibrium and continuity.
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I
Figure 20 illustrates the geometry and nomenclature. The

bar end B is eccentric from the node N by the distances

(e x , ey, e Z )

B

e
z
N e x

A

Figure 20. Geometry of Rigid-body Transformation.

The bar end displacements are related, in a purely kine-

matic sense, to the nodal displacements by the matrix equation

{eB} = [A] {eN} (55)

and {eB(N)} represents the 6xl vector of displacement at B(N)

and [A] is the rigid body relation defined by

o e eZ y

e z o e

e ye x o

[A] = +

0

(56)
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The transpose of LA] represents the same rigid body trans-

formation applied to the corresponding force components.

F B =ATFN (57)

Th" transformed stiffness matrix is then given by the con-

gruent transformation

K' = TT K T (58)

where [T] is formed from [A]

! TI2x12

I I
0 1 (59)

2.2.1.3 Matrix Reduction

In order to use available computer storage economically it

f is necessary to reduce larger order matrixes for components to

; j their influence on freedoms common to other components. The gen-

eral technique explained subsequently performs this operation.

The subscript i refers to the variables to be eliminated while j

refers to those retained. The combined (i and j) matrix is par-

titioned into the indicated submatrixes.

K.. I K.j

K= ---------
Kj

K.. I K.
I - .(60)

The corresponding equilibrium equations are

K.. r. + K. r. = R.

14 9 1 (61)
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Kij ri + Kjj )j R (62)

Solution of equation (61) gives

-1
ri = Kii [Ri - Kij rj] (63)

Substitution of equation (63) into equation (62) gives

[K.. - K.i Kii K..] r, = Rj Ki K.. R.p. .'i j1) ii 3 (64)

The bracketed guantity on the left side of the equation is

the modified or reduced stiffness matrix; a modified load vector

is represented on the right side.

2.2.1.4 Plastic Modification

A plastic hinge is introduced at any point in the analysis

when the bending moment at a bar end reaches a predetermined

limiting value. This requires a modification of the bar stiffness

matrix to remove the capability to resist iurther moment. The

modification is performed as follows.

The etiffness matrix presented previously represents the

self-equilibrating set of forces at the bar ends induced by the

end displacements. The physical condition that one of these com-

ponents be zero is accomplished by the matrix reduction of the

previous section, where in this application K refers to the

12x12 bar stiffness matrix, i is the component of zero moment,

and j the remaining nonplasticized degrees of freedom.

The ii term is replaced by a small number for convenience

in computation to prevent an apparent mechanism from developing.

2.2.1.5 Triangular (Membrane) Element Stiffness

Elastic Stiffness - The triangular panel of figure 21 is

considered, The bending stiffness is ignored and the state of

membrane stress is assumed constant throughout the element.
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Figure 21. Triangular Panel Element.

Nodal points are the three cornerq. The zelationship between

representative nodal force and in-plane nodal displacements (or

stiffness matrix) is
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Geometric Stiffness - The geometric stiffness of a triangu-

lar panel is presented subsequently. Physically, it represents

the forces required to displace (rotate) a stretched membrane

normal to its plane.

The stiffness is expressed in matrix form as

a xy W

S ik = t {W , w} dA

L xy  Y j (66)

where =(a the direct stress in the x(y) direction

Txy = the membrane shearing stress

t = plate thickness

A = area

w = displacement normal to the plane of the plate

and x, y are the in-plane position ordinates; wx , wy are slopes

in the subscripted directions. With the assumption that the

average slopes are sufficiently representative of the detailed

deformation, the derivatives wx , w are expressed directly in
x y

terms of the corner displacements normal to the plate surface.

2.2.1.6 Coordinate Transformations

The elemental stiffness matrix formulations are most con-

veniently carried out in the natural local coordinates of the

element.

The congruent rigid body transformation, in reality, is only

a rather special case of generalized coordinate transformation.

In the general case, wherein T represents the relation between

coordinate systems, the congruent transform becomes

K= T K T (67)
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For the particular case of axis rotation

t 0

T-

0 t (68)

and

t A

x y -z

m mz

nx  ny n (69)

where ZI yky' Z are the direction cosine of global X in the
the local xyz system

mx, My, mz are the direction cosines of global Y

n ny, n, are the direction cosines of global 2

2.2.1.7 Master Matrix Formulation

Elemental matrices are combined by the direct stiffness

method into a "master" matrix for the seat structl re. This pro-

cedure can be represented by the matrix equation

K = [B] [Kel t ] [B] (70)

where Kelt contains the element stiffness matrices as submatrices

on the main diagonal and zeros elsewhere.
k 11

k 2

K =
elt

(71)
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and B is a Boolean transformation matrix relating the local and

master degrees of freedom.

Computationally, this operation never actually materializes
because it would physically amount to adding the local stiffness
matrices into the global system in proper order. This is best

accomplished one element at a time by direct addition.

2.2.2 Seat Types

The configuration of the supporting structur@ can be varied
in order to describe a particular seat. The only information

required for input involves seat dimensions and material proper-
ties. The simplicity of the input data is possible because the
geometry of four different types of seat configurations is in-
cluded in the program. These four seat configurations, which are
capable of simulating nearly every seat fcund in light aircraft,

are defined below and illustrated in figure 22.

/
(a) TYPE I (b) TYPE 2

7

c) TYPE 3 (d) TYPE 4

Figure 22. Seat Types.
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Type 1. The first seat type is the most general and is re-

presentative of the greatest number of seat configurations.

An example is shown in figure 22(a). The supporting struc-

turs which need not be symmetric, consists of an arbitrary

number of beam elements that connect up to six nodes on the
aircraft floor with any of the iO nodes on the outer edges

of the seat pan frame, as well as with each otner. As an
example, the type 1 seat shown in figure 18 has a support-

ing structure consiL.ing of six bars that c.onnect four floor

nodes with four frame nodes and with each other.

The primary restriction on the response of the type 1 seat

is that all frame nodes are fixed to resist rotation, as in

the case of welded joints. However, at any point in the
analysis, should the bending moment at a bar end reach a

predetermined limiting value, a plastic hinge is introduced.
The limiting moments are based on input values of yield

stress and provide a means for simulating bar failure.

Type 2. The second seat type has up to 14 beam elements in

the supporting structure. Bars may connect several pinned-

type joints on the seat legs, but the number of floor nodes

is restricted to four. An example is shown in figure 22(b).

Type 3. This sea configuration has a substantially more

complex structure than the previous two. As shown in figure

22(c), the seat is vertically adjustable with adjustment

provided by motion of the seat-supporting frame along rela-

tively rigid guide tubes.

Type 4. This seat is another vertically adjustable config-

uration with adjustment provided by rotation of crank mecha-

nisms, as shown in figure 22(d).
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3.0 SIMULATION COMPUTER PROGRAM

The digital computer program based on the occupant and seat

models described in section 2.0 is called Seat Occupant Model-

Light Aircraft (SOM-LA). It has been written entirely in

FORTRAN IV to ensure a high degree of compatibility with various

digital computer systems. During development the program has

been run on both UNIVAC 1108 and CDC 6600 computer systems.

The elements of the program can be considered in terms of

three general operations:

" Input and Initialization

" Solution

" Output

which are summarized below and discussed in detail in the sections

following. The general flow of the program is illustrated in

figure 23. Input data describing the occupant and crash condi-

tions are read first. If the user requests output of the pre-

diction of impact between the occupant and the aircraft interior,

the coordinates defining the cockpit surfaces are read. Finally,

the seat data, either simple dimensions describing a rigid seat

model or detailed design data on a flexible seat, are provided.

Based on the input data, the values of constants, such as occu-

pant dimensions and properties are calculated, and the initial
position of the occupant is determined.

The solution loop is entered for the first time with the air-

craft initial velocity and the occupant initial position. At

each subsequent entrance to the loop the curr-nL. aircraft dis-

placement, velocity, and acceleration components are calculated.

The equations of motion for the occupant are set up and solved.

If a flexible seat is being used, the forces applied to the seat,

such as the cushion forces, are provided to the seat routines for

computation of seat displacements. At time increments equal to a

predetermined print interval, the output variables requested by

the user are stored for printing after completion of the solution.
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i atar re b Program ds tignfilf

blocks:

1. Simulation control information
2. Occupant description

3. Restraint system description

4. Cushion properties

5. Cockpit description

•6. Crash conditions

7. Seat design information

3.1.1 Simulation Control Information

The first block of data contains the information required

for controlling execution of the program. The initial time step

for integration of the equations of motion, the total length of

the s±mulation, the number of cases to be run, the system of

units (SI or English), and identification of the desired output

are provided here.
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3.1.2 Occupant Descrip-tion

Because it has been assumed that the principal user of this

program is interested primarily in the seat or restraint system,

a minimum of information is required to describe the occupant.

Data include a parameter that defines the occupant type - human

or dummy - and the size of that occupant. For a human occupant

the stature and total weight are required; for a dummy, the per-

centile (95th male, 50th male, or 5th female).

3.1.2.1 Occupant Properties

The dimensions and inertial properties of the 11 body seg-

ments are determined within the program, as discussed in section

2.1.4.

3.1.2.2 Occupant Initial Position

The initial position of the aircraft occupant is computed

from the input parameters shown in figure 24. It is assumed

that the occupant is seated symmetrically with respect to the

aircraft XA - ZA plane or, equivalently, that the segment fixed

Yn-axes are all parallel to the Y A-axis. The angular coordinates

Yi (i = 1, 2, 3, 4) define the rotation of segments 1-4 relative

to the ZA axis and, because of the symmetry condition, segment 6

is parallel to segment 4. The angle a describes the position of

the forearms relative to the upper arms, and is the initial value

of a5 and a7" The distance XH is the initial X-coordinate of the

heels (the inferior ends of segments 9 and 11). The procedure

described below consists of seating the occupant in such a posi-

tion that static equilibrium is achieved among the forces exerted

by the seat cushion, floor, and either the restraint system or

the back cushion.

The first step in determining the initial position involves

calculating the Euler angles for the torso, head, and arm segments,

since this procedure does not require consideration of the forces

due to the cushions and floor. Because the input parameters

illustrated in figure 24 define the position of the occupant in
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Figure 24. Initial Position Input Parameters.

the aircraft coordinate system, the orientation of the aircraft

must be described in the inertidl system. For an aircraft in

level flight with zero pitch, roll, and yaw it is assumed that

the aircraft coordinate axes (XA' YA' ZA) are parallel to the

fixed coordinate axes (X, Y, Z) at the initial time (t = 0). A
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general orientation of the aircraft reference frame is obtained

by the same sequence of rotations defined in section 2.1.1.1 for

the body segments. Defining the rotations

Yaw

eA: Pitch

A : Roll

the orientation of the aircraft relative to the inertial system

is described by the coordinate transformation

X A

Y = A Y A

Z ZA (72)

where the elements of [A] are

A,, = cos A cos 6A

A si=co iA12 =Cos VA Oi A si A - i A Cos OA

12 s sisin in sin Acsn
13 Cos *A 6A cos A + s A s A

A sin
21 nA cos 6A

A22 sin A sin sin A + cos A cos A

A23 sin A sin eA cos A -cos A sin A

A31 =-sin O A

A32 cos 8A sin A

A33 =cos 8A COS A (73)
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The rotation of body segment n relative to the aircraft, re-

membering that the symmetry condition requires that yn is parallel

to YA' is described by

XA cos Yn 0 siny lXn
n n

n 0 1 0 yZAnn

Z --sin y 0 Cosy zA n n n n (74)

Combining equations (72) and (74) results in the angular relation-

ship between the local coordinate system of segment n and the
inertial system expressed by the following transformation, which

is a function of the input yn and the aircraft pitch, roll, and

yaw:

Xn X n

Y n B Bn Yn

z Zn Z n (75)

where [Bn ] is given by
Co y n

j -sin y n 0 Cos Y n 1 76)

so that its elements are
n

B we = A gCos y n - A13 sin n

B [2 12
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B13 All n 13

B n =A 2 1 cos Y A2 3 sin y

B22 n = A22B21 =21 n A23 A

n
B n= A sin y + A Cos Y23 21 n 23 n

nB31 =A31 COS Y - A3 sin y

B32 = A32

En = siny7 + cs7
B33 = A31 s A33 COS (77)

Comparison of equation (75) with equation (1) points out that the

transformation matrices [Tn] and [Bn] are equivalent. Because

[Tn ] is a function of the Euler angles for segment n, equating

the elements of [Tn] and [B] through

[Tn ]  [Bn ]  n = 1, 2, 3, 4, 6, 8, 10 (78)

permits calculation of the initial values of the generalized co-

ordinates from input parameters yA and IPA' 6A' and A" The pro-

cedure as used in Program SOM-LA is outlined below.

First e is determined as follows:
n

n n n
T31 = B31 or -sion B31

gives

en =sin-1 (-B3n)

The cosine is then found by

cos en cos [sin - 1 (-B3n)]
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so that n can be determined:

T1 nn rcs o
11 n n

gives

"n = COs-1 (Bln/C°S 8n) (80)

and, for determination of no

n nn
T n B nor cos e Cos* B n
33 33 n n 33

gives

n = cos (B33/cos en) (81)

Equations (79) through (81) are used for segments 1, 2, 3,

and 4; the symmetry requirement provides the Euler angles for

segment 6, which are equal to those for segment 4. At this

point the generalized coordinates q4 through q20 have been de-

termined. The next step involves seating the occupant and calcu-

lating Xl, Y1, and Z1 (ql, q2, and q3) from static equilibrium.

Because the problem of seating the occupant is statically

indeterminate, certain simplifying assumptions are made. The

first assumption, which is approximately correct for typical

4seating positions, is that 15 percent of the occupant's weight is

supported by the floor. In other words, 85 percent is supported

by the seat cuahion and, depending on the aircraft attitude, the

restraint system or the back cushion.

A first approximation to the initial position is made for the

assumpti'n of level flight (0A =A = = 0). The cushion forces

act on the body as shown in figure 25, where it is assumed that

fifteen percent of the occupant weight is supported by the floor,

as discussed in the preceding paragraph. Summing forces gives
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Figure 25. Forces Acting on Occupant Torso
(Level Flight).

F X : FB  cos OB  - FS  sine S  = 0

FZA: FB sin eB + FS cos O S = W' (82)

which can be solved for the cushion forces:

Fs = W' cos 0s/cos (8B - OS)

FS = WI sin 0/cos (OB - e) (83)

Dimensional considerations permit the coordinates of point P to be

written as functions of the thicknesses ts and tB of the compressed

seat and back cushions, respectively.
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=Z
ZpZ+ (R + ts)/Cos 0S + Xp tan S

Xp =x S + (R1 + tB)/cos 0B - Zp tan eB (84)

which can be solved for X and Z to givep p

Xp = (f1 cos es - f sin eB)/cos (0B - eS)

Zp = (f+f 2 cos eB)/Cos (8B - OS)

where f1 =R1 + tB + XS cos eB

2 1+t + S S  (85)

Since the force-deformation characteristics of the cushions are

known from input data, the compressed thicknesses tS and tB can

be calculated from equation (83). These values, when used in

equation (85), give the coordinates of point P for the first
approximation of level flight. The equilibrium (zero-load) lengths

of the lap belt and shoulder belt(s) are calculated for the body

in this position.

Next, the aircraft is rotated to the attitude specified by

the input conditions of pitch, roll, and yaw. Nose-up pitch will

tend to load the back cushion, and the analysis will be the same

as that described abolTe for level flight, except that the W'

vector in figure 25 will have a component in the XA direction.

Nose-down pitch, on the other hand, will tend to load the

restraint system. An iterative procedure is used to determine

the correct position for this case. Referring to f~gure 26, sum-

ming forces gives a set of transcendental equations

FXA: W' sin OA - FS sin S - FL cos O = 0

FZA." -W' cos OA + FS cose - FL sin eL  0 (86)
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Figure 26. Forces Acting on Occupant Torso
(Nose-Down Attitude).

where 6L is the angle between the floor and the projection of the

lap belt on the XA - ZA plane. An initial estimate to eL is made

using the body position calculated by equation (85) for the level

flight assumption. The angle is defined according to

0 = sin [(Zp - ZL)/ -L ) 2 + (Z - ZL) 2  (87)
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The forces in the seat cushion FS and the lap belt FL are deter-

mined using this valua of eL in equation (86). From the input

force-deformation characteristics for the seat cushion and lap

belt, the deformations 6S and 6L are calculated. ThesL deiorma-

tions are used to determine new values of X and Zp; this proce-

dure amounts to permitting the body to further compress the seat

cushion and slide forward into the lap belt. Following through

the procedure, the new length for one side of the lap belt i-

L1 =LLe + L (88)

where LLe is the equilibrium length. The new value of X is given

by

Xp XL + [(LL  LH) 2 2(Y yL) 2 1 1/2
L+- -L H - cos 0L (89)

where LH is one-half the hip breadth and Y is the Y-coordinate of

the right hip in the aircraft system. The new value of Z is com-

puted for the new cushion thickness tS using equation (84), which

is repeated here for continuity:

Zp = ZS + (R1 + ts)/Cos 0S + X tan 8S

The new occupant position, determined by equations (89) and

(84) is used in equation (87) to recalculate the lap belt angle
0L, and the procedure is repeated until two consecutive values of

Xp agree by less than 5 percent. The coordinates of the mass

center of segment 1 (Xl, YI' ZI) are then calculated from Xp, Yp,

and Zp.

At this point the generalized coordinates ql through q20

have been determined. The final task will be to determine the

coordinates for the legs. Referring to figure 27, the angles

Y8 and ek can be found from simple geometric relationships among
the dimensions shown. The Euler angles 8 F O8 and *8 are ob-

tained from y8 by using equations (79) through (81), and the
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Figure 27. Leg Position.

corresponding coordinates for segment 10, by symmetry. The knee

angles are given by

am = 7r - 0k m = 9, 11 (90)

to complete the initialization of the 28 generalized coordinates.

An alternative procedure, which is included in program SOM-LA

to permit re-start from the final conditions of a previous run,

bypasses the entire initialization procedure described here and

uses input values of ql - q28 "

3.1.3 Restraint System Description

The restraint system used in the simulation may consist of

a lap belt alone or combined with a single- or double-strap shoul-

der harness. The webbing force-elongation curve is approximated

by three linear segments, which are described by input of four
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points on the curve. The force is computed by linear interpola-

tion in this table, as described in section 3.2.1. The slack in

the webbing is also provided by input in units of length.

The anchor points for the lap belt and shoulder harness are
located by input of rectangular coordinates in the aircraft ref-

erence system. For a double-strap shoulder harness the buckle,

or point of connection to the Idp belt, is assumed located on the

mid-point of the lap belt. ror a single shoulder belt, which

may pass over either the left or the right shoulder, an input

parameter locates the buckle by the length of webbing between

the buckle and the lar belt anchor point. This length may be

zero if the buckle attaches directly to a rigid anchor point.

3.1.4 Cushion Description

Input of a table of four forces and deflections describes

the cushion characteristics. The equilibrium (zero load) thick-

ness for both the seat and back cushions are also given.

3.1.5 Cockpit Description

For prediction of impact between the occupant and the cock-

pit interior, ten plane surfaces are used to describe the cockpit.

As shown in figure 28, six of these surfaces are normal to the

XA - ZA plane and four are normal to the VA - ZA plane. The

first five planes can be used to describe the environment of a

crew seat, in which case they represent the firewall, instrument

panel, and windscreen, or, for analysis of a passenger seat, they
~can be rearranged to describe a seat back. Input data include X

and Z coordinates to define planes 1-6 and Y and Z coordinates

for planes 7-10.

3.1.6 Crash Conditions

The aircraft crash conditions are defined by the initial

velocity and attitude and the acceleration as a function of time.

Six components of velocity are required: three translational in

the aircraft coordinate system (VX ,V Y, VZA) and the yaw, pitch,

69



6 6 6

/ 7
41

22

17

AXA

PASSENGER SEAT
ENVIRONMENTNT

SIDE VIEW FRONT VIEW

Figure 28. Planar Surface Approximation
to Aircraft Interior.

and roll rates (A' A' $A) " Each of the six acceleration com-

ponents, which define the acceleration of the aircraft coordinate

system, is described by sixteen points in time and acceleration.

An example of an approximation to an actual acceleration pulse

is illustrated in figure 29. Although many of the higher fre-

quency oscillations observed in the actual pulse probably contri-

bute little to the overall response of the occupant, the use of

a large number of points reduces the effect of the investigator's

subjectivity in the approximation.

3.1.7 Seat Design Information

The input data required to describe the seat consist of

dimensions, material properties, and floor attachment strengths,

as described earlier. For possible use in restraint system or

cabin configuration analyses where seat response may be unimpor-

tant or seat design unknown, a rigid seat model can be selected.

Input data for the rigid seat option consist only of locations

of the seat pan and seat back.
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Figure 29. Approximation to Acceleration Pulse.

3.2 PROGRAM SOLUTION PROCEDURE

The first operation in each solution step includes the calcu-

lation of new values for the aircraft acceleration components and

their subsequent integration to obtain aircraft velocity and

displacement components. Then the matrix form of the equations

of motion, using equation (19)

[A(q)] { } = {B(j,q)} + {P(q)} + {R(q,q)} + {Q(q,q)}

are set up for solution and solved, as discussed below.
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3.2.1 Setup of Equations of Motion

The elements of [A], {B}, {P}, and {R) are calculated from
the expressions presented in appendixes D through F, using the

current values of the generalized coordinates and velocities.

The elements of {Q, which is the vector of generalized external

forces, are calculated, as discussed in section 2.1.3. The ex-

ternal forces depend on displacements of the aircraft, which

determine the motion of the seat, floor, and restraint system

anchor points relative to the body. From these displacements

new deflections of the cushions, floor, and restraint system are

calculated. The forces are then calculated by linear interpola-

tion in a table of forces and deformations are provided as input

data.

The model used for calculating all forces is illustrated in

figure 30, which shows the force-elongation charactaristics for

a typical restraint system webbing. The experimental curve is

approximated by three linear segments. Deformati.on between
points 1 and 2 is considered elastic, so that u .loading would

proceed down the loading curve. However, beyond point 2 a de-

crease in deformation will cause the member to unload along a

fourth-order curve between the point where the unloading starts

and the origin. If the deformation should return to zero, re-

loading takes place along the original loading curve, i.e., from

1 to 2, etc. However, if the deformation increases again prior

to reaching zero the member will reload along a straight line

from the point where reloading starts to the point from which

unlo, ding had started.

3.2.2 Solution of Equations of Motion

The system of 28 equations is solved for the generalized

accelerations by first combining the vectors on the 2ight-hand

side:

[A] {q) = {B') (91)

where {B' = {B} + {P} + {R} + {Q}
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APPROXIMATE CURVE
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0
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20101252

ELONGATION -PCT

Figure 30. Example of Webbing Force-Elongation Curve.

and using Gaussian elimination with positioning for size:

-1{}=[A] {B} (92)

*The resulting set of 28 second-order differential equations have

the general form

qj(t0) =qjo i i (t=0) = qj 1 1, 2, .. ,28
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II
These equations can be rewritten as 56 first-order equations

having the general form

j = fj (t, yI' Y2 ' .4., Y2 8 ' ql' q 2 ' ... , q 2 8)

j= yj

Yj (t=O) = q 0  qj (t0) = qjO (94)

Numerical integration of this set of equations is accomplished,

using the Adams-Mculton predictor-corrector method with a vari-

able step size. This method uses the difference equations

Y(P) y + h (55fj - 59f, + 37f -f
j,n+l = Y 2n j,n jn-I j,n-2 9fj,n-3)(95)

as the predictor and

Y C) L- 9f(!P)
(c) -jn+ (f~ jnl+ 19fj - 5fj, + fj (96

j,n+1 = Yj,n ,n+l j,n fn-l j,n-2 (96)

as the corrector. Starting values are provided by the classical

fourth-order Runge-Kutta method. Input data includes upper and

lower error bounds for the solution. Error bounds for each vari-

able are calculated and compared at each step with the difference

between the predicted value j and the corrected value c) If

this difference exceeds the upper bound for any j, the step size

is halved. If this difference is less than the minimum error

bound for all j and for three successive steps, the step size is

doubled. Halving the step size is accomplished by interpolation

of past data, whereas, doubling is effected by alternate selection

of past data. The solution can be run with a fixed step size by

making the upper and lower error bounds prohibitively large and

small, respectively, or by using equal values for the maximum

and minimum step size, which are also included among input data.
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3.3 PROGRAM OUTPUT

Output data consist of eight blocks of information that are

selected for printing by user input. The data include time his-

tories of the variables, which are simply stored during the solu-

tion at pre-determined print intervals as follows:

1. Occupant segment positions

2. Occupant segment velocities

3. Occupant segment accelerations

4. Restraint system loads (tensile loads in webbing and

resultant normal loads on pelvis and chest)

5. Seat deflections at critical points

6. Floor re ctions

and additional information as follows:

7. Details of contact between the occupant and the air-

craft interior

8. Injury criteria

The last two blocks of output data will be discussed in

further detail.

3.3.1 Impact Prediction

For prediction of impact between the occupant and the cock-

pit interior, 23 surfaces are defined on the body. These sur-

faces were illustrated in figure 15, and their dimensions dis-

cussed in section 2.1.4.4.

The distance between each of these occupant contact surfaces

and the aircraft cockpit surfaces is calculated, during execution

of the program. When contact occurs between an occupant surface

and a contact surface, the time and relative velocity of impact

are computed and stored for printing. The impact conditions

determined in this way can be used in evaluation of injury poten-

tial for a given cockpit configuration.
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3.3.2 injury Criteria
The injury criteria used in the program were selected as the

most suitable for aircraft crash analysis. The dynamic response

index (DRI) is used to determine the probability of spinal injury

due to a vertical acceleration parallel to the spine (reference

10).

In this model, the response of the body to acceleration

parallel to the spine is modeled by a single lumped-mass, damped-

spring system as shown in figure 31, or, in other words, the total

body mass that acts on the vertebral column to cause deformation
is represented by the single mass. In general, the motion of the

system shown in figure 31 obeys the relationship

d26 + 2Cn d6 +w2 =Z

dt- ndt +d n (97)

The solution, the deflection 6, is representative of the deforma-

tion of the spine, and the last term on the left-hand side of

equation (97), divided by the gravitational acceleration, is the

DRI. The properties used in the model were derived from tests in-

volving human subjects and cadavers. For example, the spring

stiffness k was determined from tests of human cadaver vertebral

segments; damping ratios were determined from measurements of

mechanical impedance of human subjects during vibration and impact.

In the occupant model used in program SOM-LA, it is assumed

that the spring in figure 31 represents the lumbar spine. This

is a reasonable assumption, since compression fractures that occur

in vertical impact often involve this part of the spinal column.

Therefore, the mass m in figure 31 is the sum of segments 2, 3,

4, 5, 6, and 7. The input acceleration is the component of the

acceleration of segment 1 in the z1-direction:

S1X 1 + Y T +Z T1
1 1 13 2 23 1 33 (98)
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m = mass (lb-sec2/in.)
6 = deflection (in.)

m C = damping ratio
k= stiffness (lb/in.)
z = acceleration inp~t

t (in./sec

2
*DRI = n max

z g

*Dynamic Response Index W n = natural frequency of

the analog
(rad/sec) k /

= 386 in./sec
2

Figure 31. Model Used for Prediction of Spinal
Injury (From Reference 10).

so that the equation to be solved is

n n (99)

where C = 0.224

Wn = 52.9 rad/sec.

The DRI is calculated at each step by

DRI- 2 /
I=wn 26g (100)

and the maximum value is stored for output.

Another injury criterion is the Severity Index (S) (refer-

ence 11), which is calculated for the head and chest

according to

t*

SI= dt
to (101)
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where a = acceleration as a function of time

n = weighting factor (n>l)

t = time

The severity index has been validated for frontal impacts of the
head-face with n=2.5. Although such a validation has not been

performed for other parts of the body, the SI is calculated for

the chest as it may serve a useful function in determining
relative levels of injury potential due to an acceleration!

environment.

Finally, the Head Injury Criterion (HIC) contained in rederal

Motor Vehicle Safety Standard 20d is calculated according to

2.5HIC =max t2t (l 1102t- tl t2  1
21 1 t (102)

where a is the resultant head acceleration and tI and t2 are any

two points in time during the crash event.
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4.0 SUFINARY

A three-dimensional mathematical model of an aircraft seat,
occupant, and restraint system has been developed as an aid to

the development of crashworthy seats and restraint systems for

general aviation aircraft. The occupant model consists of eleven

rigid mass segments whose dimensions and inertial properties

have been determined from studies of human body anthropometry

and kinematics. The seat model is made up of beam and membrane

elements with provision for simulating plastic behavior by the

introduction of plastic hinges in the beams.

A user-oriented computer program called Seat Occupant Model-

Light Aircraft (SOM-LA) based on the three-dimensional model has

been developed for use by engineers concerned with design and

analysis of general aviation seats and restraint systems. De-

tailed descriptions of both are used as input data. The response

of the seat and occupant, restraint system loads, and various in-

jury criteria are predicted for any given set of crash conditions.

Results of the computer program validation will be covered

in a report entitled "Validation of the SOM-LA Computer Program."
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APPENDIX A

OCCUPANT SEGMENT POSITION AND

4VELOCITY COMPONENTS
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A. 1 SEGMENT POSITION COMPONENTS

Referring to figure 13, which has been repeated here as

figure A-1 for convenience, and using P = Ln - p the absolute

position of the mass center of each body segment is given below.

The elements of the transformation matrices [Tn] are functions

of the generalized coordinates, as given- by equations (6), (9),

and (10).

Segment 1:

(X1 ' Y1 , Z1), the coordinates of the reference point on tne

body are the generalized coordinates (ql, q2 ' q3) "

Segment 2:

x 2 x) ri [0]

2 +2 = + TI + Tz 2 Zl 1 T . P2

Segment 3:

Y 3 [T 1021 0
Y3  - 1 + T 0 + T 0

Z3 Z1 PI1 L2

+ T3 0

03

Segment 4:

Y4 = 1 + 0 + T2 -Ls

Z4 Z1I L2

+ [T]
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Lc

23

LL

I

Figure A-i Body Segment LntsadMs etrLctos
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Segment 5:

x x5 xI  0o

Y5 =Y + T 0 + T2 -Ls

+ T 4 + 5 0
-L 4  0

* Segment 6:

ox6 Xl0 0I i=
y 6 T + T + T2 s
lZ6  lZ1  L L 2

+ [T6] 0

Segment 7:

lx7 x1 [T2] 0

Y7 = 1+ [TI + T Ls
ZL7  Z 1 L2

+ [T6] 1 + T] 7

Segment 8:

Y8 = 1 + Ti -LH  + T] 0

Z8 Z 1-Pl-
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Segment 9:

y + [Ti )L H + [TB 0~

+ T 
9  0

1 1 P9

Segment 10:

x10 x 1 0p1
Y10 = 1 + Ti LH + TI]

Segment 11:

xx11 0 1 L 1YI = Y1 + TI L H + TI0
Z z1 -Po 0

~0

i-p1 1
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A.2 SEGMENT VELOCITIES

The velocity components for the mass center of each segment

are given below. Here, the symmetry of the body has been used

for convenience in combining similar terms at a later point. By

symmetry,

L6 = L4  P6 ='P4

L7 L 5 P7 P 5

L =L10 8 10 P8

L 1 1 L 9 P 1 P

31

2 +  JT13 + P2 13

3 =  +  + 2
2  1 1 2 3  2 2

* 1~ 2

2 Z1 + 1 3 3  + * 2 3 3

3 + pzT 3  + + 3 T 3
33 + L cTi 1

y = + 1 + T 2 3
3 1 l2 *3+ 3+LC2

1 2 3 3
Z 3  Z1 + P1 T3 3 + L2 + P3 3 3  + L T 31

X 2 1 + - -

X4 ~1 + 13+L21 s12 43

Y4= Y1+ P1 T23 +L2T23 - L s T22 1+ 24 2 223

1 2 4

5 1 + 1 13 +  2 T13 L s 12 L 4 i13 +  5 115
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S"i +4 13 * 2 - 2 - 4 5 5
1 1 2 2 + p5T2 1

2 .2 *4 .5

5 1 1 33 2T33 sT23 433 + p 5T31

' 6 ' l + ~Ij 31 + ' 2 + s1 2 - P 3
Y + T 1 + L2T22 + LsT22 - 6

= - 2 7

'6 7"i+ 0 1 1+ L 2 3+LsT32 - p 3

= +  113 L2 13  s + p5

Y + P1T23  + L 2 + 2 -T + L6 T T

6 1 23 2 T2 3  s 22 4 T2 3 +
2 26

6' 1' + PIT331 + L2T233 + L sT32 -4 LT336 + 5T1

* 1 * 2 2 * 6 * 7

+ = i- + LT +L L p

7 11313 2313 s312 413 51

_ 1 2 21

Y 8 = Y1 p1T23  + LHT 2  + LT2

7 32 4
.>8 1 11 281

S 8  z1 - i 2T3' L- 2 + p82

8 1 1 1 8

p - LT + L 9
9 1 113 H 12 8 11 - 9 1 3

_ 1 1 L 8 9

9 -1 1 23 HT22 8"21 9 23
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1 109

'~9 1 p1T- I 331 - LHT32  + L8 31 - 3

lio p 1 " i131 + L H 121 + p 8 11I

k1 *1 *10

lio 1 1i °I23 + LH 221 8 21 °
1~ 10i:1

10 X - T + LH'32 + p8 31

1z i Tz - 1~3z + Lill 12- + L 8 z 11 P9 13I

10I = 23 + L1H 2 + 81 1023
1 *1 *10

1 1 - P 1T 33  + + 32 8 31 P9 331 1

A-8
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Occupant Kinetic Energy

The system kinetic energy T is written below as a function

of the generalized cocrdinates. Prior to the kinetic energy a

set of 50 constants, functions of body properties, are defined.

11
C1  M.

2 7 2 11
C2 : I Mj 3 1 M Mj

j=2 j=8

2 2 7

c 3  P 2 M2 + L 2 M.

= 2 M
• !C 4  L M

4 c 3

2 7C C5 L Ls2  Me
j 4

C LH M.6 I

C 7 = M 4P42 + M5 L4 2

C 8 = M 5P5 2

C9 = M8 P8
2 + M9L82

C =Mp 2
C10 = M9P9

7 11C = M.-P M.
C11 P, . L M. -, E 82 j 8
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7
C12  P2M2 + L2  M M.

C1 3  P3M3

14 c3

C 1  = M4 P4 + M5L4

C1 6 = M5 P5

c17 M8 P8 + M9L8

C1 8 = M9 P9

7
C1 9 = (P2M2 + L 2  3 M) P

C = M3 IpP3

C2 1 = M3pILc

C22  M3L2 p3

C =ML L =C L23 3L2 c 14L2

C 2 4 = M3 P3Lc = C1 4 P3

C2 5 = (M4P4 + M5L4 ) P3 = C1 5 1

26 (M4 P4 + MsL 4) L2 = C 5
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C2 = (M4 4p + M5 L4 ) L CL

C2 8 = M5p1p5 = c1 6 1

C =M Lp C L
29 5 L2 P5 = 16 2

c30 m5LSP5 c16 LsC0= M5s 5 = C6Ls

C31  M5 L 4 P5 = 16L 4

C32 = (M8P8 + MgL 8) p1 = P

C3 3 = (M8 p 8 + M9 L 8 ) LH =17 LH

C 3 4 = M9 plP9 = C8P1

C M L = C L
35 9 LHP 9  18 H

C3 6 = M9 L8 p 9  18 8

37 xl 1 z1

C3 8 = Y

C3 = I
x2

40 = 2  z2
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c41 x3 13

C 4 2  1 3

C4 3  x4 Y4  X 6

c44 1 4 6

c45 I

C 4 6 =1 1 = I=1

(47 x o

C 8 =10=

C 48 =y8 1 = 1 =) I1 0

49 9 9 x1 l

C 0 z9 111

B-5



Kinetic Energy:

T -1/2 C1 [(1)2 + 2 + (z.)2]

2 2 2

+ 1/2 C 2 Tl3 ) + 1T2 3 2 + 3 3 )

1/2 C1 3 P3 [2T33)2 ()22 ) + (T 3 3 )2 ]

1/2 C4 [IT11
3 )2 (2 (2 3 13)]

+1/2 C5 [(3 1 2 2 + 2 2 + 3 2]

3 ( 2 2 ) + ( 2 ]3

+1/2 C6 1(T12 ) 2  3

1/2 C7 [ 34) + (T 2 3 ) + (4

62 * 6 2  
* 621

(T2 3 ) + (T2 3 ) + (T 3 3 )

[(1452 452 452

+ 1/2 C8 )j1  + (T2 1 ) + (T3 1 )

•67)2 6)2 6731 )2]
+ (TII + (T 2 1  + (T67

2 2 2+ 1/2 C9 [ + (T2 1
8 ) + (

13 20 3  1 )
+ (Tl2) + (T 2 1 45 2 + 2

1/2 C 0 92 89+ 1/2 C1  8 + ( 2  + (T389)1)2+ 1 ) 2 + 10) 2 ] lll

( 1 3  2 + (T 2 3  2 + (33 1011 ]
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t c n (z I + y T2 + Z T

+ C11 ( 3 + 1 23 1 331

+c ( 2 + 2 + 2
12 1 13 1 23 1 33~

2 ~ 3 3
C1 3  1)3123 13

123 , 3

+ C14 (X 1 113 + y121 + z 1 T 31 )

c5 11~34 + 1 23 + 1 33

+ X 1 13 + j T23 6 + z1T33 )

4545 45

c 16  ( 1 1145  + 1T2. + ZIT31

+ 67 + 67 67)

1711 1 21 1 31
+C 17 111 + y 1 T + ). T31

+ k 1110 + 1 211 + 1 31 10

+ 10 0 11 + 1011)

1 23 1 33

C 119 (T13 T13 + T2 3 1T 2 3 + T 3 3 1T 3 3

+c 2 0 (T13 4 1 3 + 23 423 + 331T33

21 131+ 11 + 23 121 + 33 T3 1

B-7



*2 3 2' 3 + 2' 3

+C 2 2 ( 12 2 1 3 + 2 3  232T 3 33

2' 3 + 2 3 2'3

+ C 2 3 (T 1 3 T1 1  + T 2 3 21 + 33331

-3.3 + 3 3 + 3.3
c24 (T 1 3 T T1 1  + T 2 3 T21  +T 3 3 T 31

1+ 4 4313 4 4 1 43 3

-C 25 (T1 32T1 3 + T 2 3 T2 3 + 3 3 T 33

1' 6 *1' 6 4 1 6

+ T13 T 13 + T 2 3 T 2 3 + 33  )

c 2' 4 + 2 4 + 2' 4
C2 6 (T13 1 3 + T2 222 +3 T2333 H33

+ , 6+ 2~ 6 2' 6
+13' 13 +T23 T23+33 3

c2 7 IT1 2 T 1 3 + 2 2 
2 T2 3 + T3 2  33

122T13 T22 2T2 3 - 22T3

* 2 45 +~ 4 45 + 1* 45
+ C2 8 (T1 3 i 4 5 

-+ 2 3 T2 1  +T 3 3 T3 1

+ 13 1'1 67 + T23421 67+ 331' 67

+C 2 9 (T1 3 T2 1 1 4 5 +  232 214 + T 33 4T3 145

* '67 . .67 2'6

+ 132' 16 + ' 23 2+I21 + 33 2 3167

+ C 30 122T 167 + 222 2167 + H3' 3167

2' 45 2' 45 2' 45

12 11 22 T,21 32 31

B-8



c +3 1 '13 11 + 3 3
4 31

6+ 67 *6. 67 *6+ 67
13 1 + 23 21 T33 T31 6)

1. 1. 8 1.l 8
C32 (T13 T 1 1

8 + T23 T21 + T33 T31

+ T1 3 T11
0 + T 2 31T2 11

0 + T 3 31T31 1)

C3 3 (T12 1T1
8 + T221421 + T 32 T 31

12 1i10 - 1T2 2 1 2 1 1
0 - 32 4 3 1 10)

1* 8 * 8 * 8 9I 011

C3 4  T13 T1 3 89 + T 2 3 123 + T33 43389 + 1313

+ 1 23123011 + 133 1433011 )

C 35 (T12 T1 3  + 22 42389 +  32 3. 33 89 12 4131011

i . 011 ii* 01)

22 423 - 32 4331°

* 8* 89 8* 89 8* 89 * 10*10~/11

C3 6 (T1 1 83 8 9 +  2182389 + 31 833 + 11 13

+ T21 T23 1011 3110 331011

+ 1/2 C3 7 [2l 2 (sin2 01 + cos 2 01 cos 2  i)

1/2 C2 sin2

+ i + 6 s i

- 2p 1 1 cos sin i cos

B-9



- 2i sin Oil

+1/2 C38 [Li 2 cos2 e! sin0 
2  i +  *2 C s2

+ 2 101 cos 01 sin cos

*2 2 *2

+ 1/2 C39 ( 22 sin 02 + 22 - 2ip242 sin 02)

+ 1/2 C40 ( 2 cos 2 + 2)

+ 1/2 C [32 (sin2 e + cos 2  sin
41 3 3

+ 32+ 32Cos 2 b

3 33

+ 24 3 33T3 2
3 COS 3

+ 2 3 T 31 ]

+ 1/2 C42 [2 Cos 2  3 Co2 +  2 s i n 2

+ / 42 L43 CO 3 3 3 4)3

- 2 3 03T3 3  sin 31

+ 1/2 C4 3 [ 42 (sin2 04 + Cos 2 04 s i n 2

+ $42 + 2 c2
+4 04 4

+ 24)4 4T324 cos 4

- 2 444 sin 04]

41/2C 2 2 2 sin2

/ 44 N cos o4 cos 44 + 04 4

- 2 4O4 cos 04 sin 4)4 cos 4)
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+ 1/2 C45 [2 (sin 04 sin 2 a5 + cos2  4 cos2  4 COS2 a5

+ 2 sin 04 Cos 04 Cos *4 sin a5 cos a 5)

+ 042 sin2 04 Cos2 a5

+ $42 sin 2 a 5
- 2$404 sin O4 sin 04 sin a. cos a5

- 2ip4a4 cos e4 Cos 4 sin 0 4 Cos2 a 5

- 2 4q 4 sin e4 sii 2 a 5

- 2Y454 Cos 04 Cos 4 sin c5 Cos a5

+ 264$4 sin 04 sin a. cos a5]

+ 1/2 C46 [ 42 (cos 2 e4 sin 2  4

+ sin 2 04 Cs2 5 + c s2 04 C s2 q4 sin2 a 5

-2 sin cos a cos *4 sin a5 cos a5)I+4 2 2 ~ i 2 a~~ o 2  2
+ 4 (Cos2 4 + sin 2 sin 2 5) + $42 Cos 2 5 + 2

+ 2*404 Cos 04 sin os4 cos cOs2 a5

+ 2 4 4 sin e4 sin q4 sin a5 cos 5

- 2$4*4 sin 4 cos 2 a5

+ 2p4$4 cos 04 cos 5a5 Cosca

* 2 4 5 C3 )4 sin 4
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- 20404 sin 04 sin 5 Cos ot5

+2 4 5 Cos 4
+1/2 C 2 (sin 2 2 + 2 + 62 Cos2

+ 2 S 6 sin cos 2 sin 6
6 6 6 6 6 6 6+6 +61CS 0

1/2 C44 [62 6 C 06 6 2 sin 06

- 20606 Cos %6 sin 06 COS 06]

+ 1/2 C45 [ 62 (sin2 06 sin2 a7 + cos 2  6 cos 2 0 6 cos2 a 7

+ 2 sin 6 cos 6 Cos sin Cos a
6 6 5 6 5 7 s 7)

+ 2 sin2  2 *2 s2 a
6 s 6 cos a7 + 6  sin 7

- 2 606 sin 86 sin 06 sin a7 cos 7

- 2460 Cos 86 sin c6 Cos o6 Cos2 a 7

- 2 66 sin 06 sin2 a,

-2606 cos 06 Cos 06 sin a7 Cos a7

+ 26606 sin 06 sin a7 cos a71

+1/2 C46 K (cos 2 06 sin 2 06 + s in  6 cos2 a7

+ cos2 6 cos2 06 sin2  7

- 2 .An 06 coo s 6 sin a7 cos a7)

' 2 2 2 .2 *2 2 +*2
+06 (cos 06 + s i n  6 i n  U7) +  6 cos a7 +% 7
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+ 2 $ 6 06 Cos a 6 Cos 06 cos 2 a7

+ 2 66 sin 6 sin 06 s a7 cos

- 2 66 sin 06 cs a7

+ 2 6 $6 cos e6 cos 6sin a7 cos a

+ 2 6a 7 cos 06 sin

+ 2 6
7 COS 6]

+ 1/2 C47  82 sin2 8 + 8 -P 8$8 sin a8)

+1/2 C4 8 ('82 Cos2 '28 + 8

I!+ 1/2 C4 [ 82 (sin 2 e8 sin 2 a,9+ cos 2 e8 Cos 2  Cos c 2 a9

]+ cos2 08 sin2 08

-,sin 0 8 Cos e 8 cos 8 sin a9 cos a9)

+ °8 2( sin 2  8 Cos 2 9 a+Cos2 a) + $ 82 sin 2 ot9
892 + 24 808 in sin 8in 8 sin 89 Cos a9

+ ~ .2

+ 2 Cos 0 sin C8 os a sin2

-288 sin 08 sin: 9

+ 20 81Cos 8 Cos 8 sin a 9 Cos 9
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+ 2w8 9 Cos 0 8 sin 8 208 sin *8 sin a9 Cos a 9

+ 26 8&9 Cos ¢8]

'L/2 c 50 [ cos o 8  Co 8 sinf a9 
+ s in 08 Cos  U9

+ 2 sin '3 cos 6 Cos sin a Cos a8 CO si co c9)

+ ;82 sin2 .sin2 a + $82 Cos 2 a

.2
- 2

8  Cos 8 sin Cos Sin a9

- 288 sin e sin sin Cos a9

- 228 i 8 cOs a9+ 288 sin 8 sin ag cos a9

;8$8CO 8Cos sa9 O 260

2 2 $8 Cos 8 sin a9 Cos a9]

+ 102 2 n2 2
+60in 010 sin aii + c10 Cos ci

- 21 Cos 610 sin Cos sin 2 all

- 2110510 sin 010 sin B10 sin a 1 1 Cos a1 1

- 2)10$10 Cos al0 Cos 10 sin a11 cos a11

2- 2 )1010 sin 610 Cos a11 1

+ 2i0$10 sin 10 sin a Cos al
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.2 2 +*2
+1/2 C 4 ( jh0 slf in 61 1 0 i 1

+1/2 C4 8  0i02 cos 2 010 + 0102)

+ 1/2 C49 [ 102 (sin 2  .sn' a1  + 2 Cos2  10 osa- ~4 (n 10 s 1n ii ,o 10 i I

+ cos 2 810 sin2 i0

- 2 sin 010 Cos 0 ccs i0 sin all Cos a1 1 )

2 (sin2 cos2 2 $102
+10 ( i a1 l c + sin i1

112+ sin sin sin a1l cosall11i 2'1i 0 10 010 i i I

+ 2P10010 cos 010 sin c10 cos 10 sin 2 a1

- '10 10 si 10 111

+ 2410510 cos 010 cos $10 sin *ii Cos all

+ 2 1 0 c 1 1 cos 0 sin 10

- 10 10 sin 10 sin all Cos a11

26 0& Cos 0
+21 0 1 1  10S

+ 1/2 C5 0 [ 2( C s 2  10 Cos 2 $i0 sin2

.2 Cos 2a 11
+ sin 1co el

+ 2 sin 010 cos 810 cos $i0 sin all Cos all )
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APPENDIX C

OCCUPANT POTENTIAL ENERGY
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Potential Energy:

SV= MZ + M2Z ++ MI+M Z

p 1 22 3311

where

z =z

2,2

2 = Z1 + DPT33 + 02T33

Z3  Z1 + T 3 3
1 + L 2 T 3 3  + p3 T 3 3 + LcT3 1

I331 2T32 Ls32 43

z 4  z 1 + p T + 3 T 2

Z5 =Z 1  + P1 T33  + LT 2  T 2 L4T33 + 5T31

- I31 L232 Ls32 6

Z =Z + + + T 4T3

6 1 1T3 3  L2T3 3  2 3 23

1 8

Z Z T 1  LT 2 +LT 2 6
7 1 1 3 3  2 33 s 32 L4T3 3

Z -
1T3311 T

i 8 = 1 -- 3 LHT32+ 83

Z9 1 ZI -pIT 33  - 8H3 31 p9T33

1 1 10
z 10 = Z1 - PIT 3 3 +LHT 3 2  +p 8 T3 1

Z1 1 +T 11
-11 = Z1 - P1T33 + LHT32 + L8 T31 - T33
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APPENDIX D

[A,{B}
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Below are listed the non-zero elements of the matrix [A)

and the vector BI, derived from the kinetic energy derivatives.
Because [A] is symmetric, only the upper triangular part is

given to save space, i.e.

A.. where j < i

A (1,1) = C1

1
A (1,4) = 11lT23

A (1,5) = C1 T CosA111

A (1,6) = -C T2
12 12

A (1,7) =- C1 2 T23

2

A (1,8) = C 12 TI c 34T

A (1,9) = - C2T12

A (1,10) = - C1T23 - 1T213 

1;3 3
A (1,14) = (C1 3T 3 3  + C 1 4 T1 3 )cos i 3

A (1,12) = -C13T12

A (1,13) = 15 - C1 6 T2 1  2

(C635 4A(1,14) =-C15T3 ) cos 'P4

A (1,15) = (C5 + C6 cos e5) TI2

A (1,16) = C 16T13
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A (1,17) = T7

A (1,18) =(C 1 6 T 3 1 - C1 5 T3 3 ) Cos6

6
A (1,19) = (C1 5 + C1 6 cos 7 ) T1 2

7
A (1,20) = C1 6 T1 3

A (1,21) - CT21 + C 18 T23

A (1,22) = - (C17 sin 08 + C18T33 9 Cos 8

A (1,23) = C1 8 T1 2
8 sin 9

A (1,24) =- C T18 11

A (1,25) = - CT10 CT231 1

A (1,26) = - (C1 7 sin 010 + C1 8 T3 3
1 1 Cos 10

A (1,27) = C1 8 T1 2
1 0 sin al1

A (1,28) = - C1T111

A (2,2) = C1

A (2,4) = C11T131

A (2,5) = C1 1 T2 1 1 cos 1

A (2,6) = - C 11T 22

A (2,7) = C1 2 T1 3
2
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2
A (2,8) = C12T21 cos 2

A (2,9) = -C12T22

3 m3
A (2,10) = C1 T13  + C14 T1

A~~ 1 (,1: (133 + 14T1)sn

3 3
A (2,I1) (C1 6T3 5 C1 5T3 3 ) sin 3

A (212) C T3
At,, ~ 13 22

45

A (2,13) = - C113 + 16Tl17

5 4
A (2,14) = (C16 T3 1  - C15T33 )sin4

A (2,15) = (C1 5 + C16 cos a7) T2 2 6

A (2,16) = C16 T2 3
5

A (2,17) = - C T 16 T1

A (2,18) = (C16
7  c 15 CT3 3  sin

A (2,19) = (C15 + C 16 Cos OL7) T

7
A (2,20) = C1 6 T 2 13

A (2,21) = C17T11
8 - 1 9

A (2,22) = - (C1 sill 0 + C 1 39sn

A(2,23) = C18 22 8sin ot9

A(2,24) = - C 1 T 2
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A (2,25) = C 7T 1
0  - 11

(C sin + C T11si
A (2,26) = - (C1 7 sin 0 + C1 8T3 3

I ) sin i0

A (2,27) = C1 8T 221
0 sin al1

A (2,28) = - .8 21

A (3,3) = C1
1

A (3,5) = C T31 cos
11 31 OS3

A (3,6) = -CIIT321

A (3,8) = C 12T 2 2

A (3,9) = - C12T322

3A(3,11) = C 13 T31 Cos 0 3 -c14 Cos 6 3

A (3,12) = -C T3
13 32

A (3,14) = C16 (sin 04 cos 4 cos 5- cos 04 sin a5)

644
" - 15T31 cos 4

A (3,15) = (C15 + C16 cos a5  T3 2

1 5

A (3,16) = C 16T33

A (3,18) = C16 (sin 06 cos 6 cos c7 - cos 06 sin a7
)

6
-C 15T 31 Cos 6
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4, 1

A (3,19) = (C1 5 + C1 6 cos a7) T326

A (3,20) = C T33
16 33

A (3,22) = - C17 cos 08

- C 1 8 (cos 08 cos a 9 - sin 08 cos 8 sin a9 )

A (3,23) = C T 8. a
1832 s9

9A (3,24) = - C T
18 31

A (3,26) = - C cos 0
17 10

- C 8 (Cos 01 Cos a 1 - sin 01 Cos si

A (3,27) = C1 8T3 2
1 0 sin a11

A (3,28) = - C T311
18 31

A (4,4) = (C2 + C6 ) sin
2  i + C37 sin2 01

+ (C2 sin2 81 + C6 + C37 Cos2 O1) cos2 i

A (4,) = (C2 - C6 - C37 + C38 ) T32 cos 1

A (4,6)= (C2 + C6 + C3 7) T31

,x A (4,7) = C19 (T1 3 2 + T2 3 1 T2 32

A (4,8) = C19 Cos 2 (T13 T21  - T23 T11

A (4,9) = CI9(T 231T1 2 31T222
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1 3 T 1 3
(4,10) = C20 T 3  23 23

1 3 1 3
+ C 2 1 (T 1 3 T 1 1  + T 2 3 T 2:'

A (4, 11) =(C 20T3
3 + C T 3 ) T 1 sinl

(C2T33 C21T31 3)T 23
1 co 3

203 1 31 13 3

A (4,12) = C20 (T2 31 T1 2  - T13 1T2 2 3

1 4 1 4A (4,13) = -25 (T231T23 + TI3 TI3

1 5 1 5

C28 ( T2 31T2 1  + T131T11

4C 5 1
(4,14) = (C25 T33 - 28T31  (T23  Cos - T1 3  sin 1 4)

A (4,15) = (C25 + C28 Cos a 5  (T131T22  - T23 T12 )

A (4,16) = C (T13T35 - T23 T 5
C28  T1 3 T23  23 13

A (4,17) = - C2 5 (T1 31 T1 3 6 + T23 1T236

C2 8 (T2 3 1T2 1  + T1 3 T1 1
7 )

67 1 1

A (4,18) = (C25T6 - C28 T31 ) (T23  Cos - T1 3  sin '6)

1 6 1 6
A (4,19) = (C25 + C28 cos a7 ) (T13 T22  T3 T12

A (4,20) = C28 (T 13 1 T237 - T 23 1 T13 7

A (4,21) = C ( 1 + T 1 T 9

A 421 3 4 1M3 T1 3  + 2 3 T2 3

+ C35 (T 1 2
1 3 + T2 2

1 T2 3
9 )
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1 8 1 8
3 2 (TI 3 TII + T2 3 T2 1 8)

13T131
c T1 T8 + T 1 T,8

- 3 3  T1 2 T1 1  22 .~1 )

9 8 1 T
A (4,22) = (C3 4T 3 3  -c 32T31 ) (T1 3  sin8 23 cos * 8

8 1 - 1+(C 3 T 3 3
9 - C 3 3 T3 1 8) (T1 2 1 sin 8 - T22 Cos 8

A (4,23) [C34 (T23 T12  13 T2 2 8

+ C3 5 (T 2 2
1 T1 2

8  T1 2 
1 T 228)] sin a9

(424 =1 
9 -T 9

A (4,24) C3 4 (T1 3 T2 1  23 T1 1

1 9 1 9,
+C 3 5  T - T22 T1 1 /

A (4,25) = C3 4 (T1 3 T1 3  + T23 T2 3

2 1  1 T 11

-C 3 5  1 2 T 1 3  22 23

C3 2 (T1 3 1TI
I 0 + T2 31 T2 1 1)

1 1 0 + T 1 10)

C3 3 (T 1 2  1 1  222

A (4,26) = (C 3 4 T 3 3  - C3 2T3 1  ) (T1 3  sin - T2 3  Cos

3 3(C - 33T31 1(T2  si 10 - T2 2  cos i0

(4,27) = C35 T 22  - T2 2 T1 2

1 i0 _ 1T 1 0)si

C34 (T 1 3
1 T2 2  T2 3  12 sin s ll

1T 11_ 1II

A (4,28) = C34 (T1 3  21  2 3  11
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-C 3 5 (T12 
1 T21 1 - 22 T 1)

(55)= C2 3 *2
A (5, 5) = (C 2 + C 38) cos I + (C6 + C3 7 ) sin qi

A (5,7) = U kT21 T2 - T ) cos I

19 2 13 11 231

A (:,8) = C1 9 cos 1 cos C 2 (T11 T1 1  T2 1 T2 1

+ T 3 1 T3 1

A (5,9)=- C19 cos i (TII2 12 + T 211T22 + T 3 1 1T 3 2 2)

£ 3 3 1i A (5 ,10) 20 13 21 11 21

-(C 2 0 T2 3 + C2 1 T2 1 3) cos

2023 2 21 31 13 1 3

A (5,11) = C co T + + 211 21TL20 3 11 11 T1 +1 31 T31

- C2 1 {(TII1 cos 3 + T21
1 sin P3) sin 03

+ T3 1 cos 031]

(5,12) = - C Cos (T 2 T 21 22 31 T32
20 1 T1 +T 21 +T T13

A (5,13) - C2 5  (TI 1 T2 3
4  - T211T 34

C2 8 (I1T 2 1 - T2 1 1-i 1 5)] 1

A (5,14) - 1(T IT4 + T 11T24 + 1 T 1 4 ) cos 4
C2 5 ( 11 T1 1  21 21 31 314

cos +T1 5
+ C 28  ( 11Cos 44 + T21 sin 44) T31

+ T 311 (sin 04 cos c4 Cos a 5 - cos 04 sin c5 )] cos 1
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I

A (5,15) = (C25 + 028 cos ct5 ) (T1 1 T1 2
4 +2122

~4

+ T 3 1T32) Cos

21 5 1 35

A (5,16) C 1 5 + T T28 ~~ 3 _T T13 22T 1 T3

(5,17) = [25 (T1 1 T2 3  21
1

3
6)

C 28 (T 1 1 IT 2 1  T2 1 T11 7)] ccz i

A (5.18) = + C28 (T Cos 6 + T2 sin 6  T31 7

1 o sin 7
+ T3 1  (sin 06 cos 6 cos ,7 -Cos (6 7

C 5(TIIITI 1 6 +T 2 1
1 T2 6 T 1 T3 6 ) co O

1 6 1 Cos 6 os
(TIIT2 T 6

A (5,19) = (C25 + 028 cos 117) 1 2  T2, -2

+T 1 6+ T31 T 3 2 6) cos

1 71 7
A (5,20) = C28 Cos (T 1 1 ITI3 + T 21 T23 + T31 T3 3 )

(5,21) = cos i + C sin i (TI 1 T218 21 I 8

1 9 21 9

(c34 Cos i +35 sin ) (TIIIT2 3  lIT1 3 )

A (5,22) = (C32 cos 1 + C33 sin 1) (T1  Cos 8

+ T21 sin P8 ) sin 08 + 1Cos 8

+ (C3 Cos @i + C3 sin ri)  (TI 1Cos 08
+ sinsin T 9 + T 1 cos a

21 8 33 T31 8 9

- sin 08 cos 98 sin a9)]
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A (5,23) = - (C3 4 cos + C3 5 sin *i ) (TII TI 2

4+T 1 8 1 8+ T21T22 + T31T2) sir a9
21 22 31 32 )i 9

A (5,24) = (C34 cos I + C3 5 sin i (T1 1 T1 1

1 9 1 9
+ T21 T21 + T 3 1 T 3 1 9)

A (5,25) =(C32 Cos i 1 C3 3 sin 0 1) (T1 1 T2 1 10 - T21 11 0

- (C3 4 cos i - C3 5 sin i ) (T1 1 T2 3  - T2 1 1 T1 3
I )

A (5,26) = (C32 cos I - C33 sin 0I ) [(TI 1 ' cos 010

+ T211 sin 1 0 ) gin 010 + T31 Cos 101

+ (C3 4 cos i- C 3 5 sin 0 1) [(Tlll.cos 10

+ 1 sin ) T + T31 (cos 0 cos a
T21 10 310

-sin 6 10 Cos 1i0 sin a ll ) ]

A (5,27) = (C sin - cos T
35 ~1 C 3 4 Co (T 1 1 T12

1 10 1 10snc
T 2 1 T2 2  +T 3 1 T 3 2  ) 11

A 15,28) = (C3 4 cos 1 - C3 5 sin i (TI IT 1 I I I

+ 1 11 1n 11
T21 T21 + T31 -31
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A (6,6) = C2 + C6 + C3 7

1 3 1 2
(6,7) = C1 9 (T 1 2 T2 3  - 221T1 3 2)

1 2 13

A (6,8) = - C Cos (T T + T2T + 1 2
19 CS'2 (T 2  11 22 21 32 T31 )

(6,9) = C1 9 (T12 T1 2  + T22 1 T2 2  + T321 T3 2 2

1 3 1 3
A (6,10) = C2 0 (T 1 2 T2 3  - T2 2 T1 3 3)

1 3 1 3'+ C21 (T12 T21 - T22 T11 )
11 32 1 32 13

A (6, 11) =- C2 0 Cos 3 (T 1 2 1Tl1 3 + T 22 T21 + '£321T31

+ C2 1 [(T 1 2
1 cos '3 + T2 2

1 sin '3) sin 0

21 1o2 312
+ T3 Cos 8

1 3

(6,12) =C 2 0 (T12 T12  + T2 2 T2 2  + T32 T32

A (6,13) = C2 5 (T1 34 T 2 2  - T2 3 4 T 1 2 1

- C2 8 (T11 T2 2  - 21 T212

T1 A 1 4 4
(6,14) cos (T T + T + T 3T

C25  'P4 ( 12 T1 1  T22 T21  32 31

-c2  [T3 5 (T12
1 Cos 'P + T22

1 sin 'P4)1128 T315 (121 co 4 + 22 i 4 )

+ T321 (sin 04 Cos 'P4 cos a5 - cos 04 sin a5 )]

1 4
A (6,15) = - 25 + C2 8 cos a5) (T1 2 T1 2

+4 T A . 1 T 4
22424 +32 32
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A (6,16) = - C2 8 (T1.T35 + T 2 2 1 T2 3 5 + T321T335

A (6,17) = C2 5 (T 1 3
6 T2 2

1 - T236T121 )

- C2 8 (T11
7 T2 2

1 - T2 1
7 T1 2

1)

A (6,18) =C 25 cos 6 (T1 2 1T116 + T 221T216 + T2321T31

- C2 8 [T3 1 7 (T12 1 cos 6 + T2 2 1 sin 6)

+ T 321 (sin c6 C Co s a7 - Cos O6 sin )

A (6,19) = - (C25 + C2 8 cos a7 ) (T12 T12 6

+ T22 T22 + T32 T326)

1 7 1 7 1 7(6,20) = - C28 (TI21TI3' + T221T +T T 3233)

A (6,21) = - C32 (T12 1T 2 1 8 - T2 2 1 T11
8

+ C34 (T121 T23 221 T13

+ c 33(T 13T 21 T 23T 11
1 8 1 8

+c (T T -T T

C33 T131T21 - 23 11l

-C 3 5 (T1 3 T2 3  -T 2 3 T1 3 9)

A (6,22) = - (C32 sin 08 + C3 4 T3 3 9) (T12 1 Cos 8

1.

T22 1sin 8)
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- [c 32 cos 8 + C34 (cos 08 Cos a9

- sin 0 8 Cos ]fsin 9)] T3 2  + (C3 3 sin 68

9 1 1.
+ C35T339) (T13  Cos + T23  sin8

+ C. 3 Cos 98 + C35 (cos 08 Cos a9

-sin 68 Cos '8 sin a9)] T3 3
1

8 8 1 8313

A (6,23) = [C 34 (T 1 2 1T 1 2
8 + T2 2 1 T2 2 8 + T3 2 1 T3 2

8

-C 35 (T131T12
8 + T 231T 228 + T 331T 328)] sin a9

1 9 1 9 1 9(6,24) 1 34 (T 121T 11+ T221T21 + T321T31

+ c 35 (T1 31T
9

11  + T231T21 + T3 3 1T3 1 )

1 101 10
(6,25) C3 2 (T 2 T2 1  T22 1 0

32 12 21 12 11

+ C3 4 (T21 T2 3  T 22 T13

C133 (TI1 T21 0 T231TII I0

+ C3 5 (T 1 3 T2 3  T 231T 13

A (6,26) = - C3 2  (T12
1 Cos 10 + T22 1 sin 10 sin 010

+T32 Cos 0]
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-c 3 4 [(TI21 cos 0 T 221 sin i0) T33II

II

+ (cos Cos - sin 010 cos 1sin a 11 )]

C33  (T1 Cos + T231sin ) sin 010

30 0]- 10 co

33 T Cos - [(T13

1 T 311 1 co5Q

+ T23 sin 10) T33  T ( cos 010 Cos a11

-sin 010 cos 0 10 sin a11)]

r1 10 1 10 1 10
A(6,27) = C3 4 (T12 1  +T 2 2 T2 2  +T 3 2 T 32

1 T10 +T1 10 1 101
+ C 35 (T1 3 1 2  + T2 3 T2 2  + T3 3 T 321)J sin a1 1

1 11 1 11 1iii
A (6,28) = - C3 4 (T12 1 +T 22  2 1  T 32 T31

1 1 1 11 1 11

-C3 5 (T 1 3 T1 1  +T23 T21 +T33 T31

2 2 2
5C (i 2  2 2

+ C39 sin 02 + C40 os 22

A (7,8) = ( 3 -C 5  T322 Cos $2
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A (7,9) = (C 3 + C5 + C3 9 ) T 3 1
2

A (7,10) C2 2 (T1 3 2T 1 3 + T 2 3 T2 3 3

3 3 2 3c 23 (T132 T11 + T 232T 21

A (7,11) = (C2 2 T3 3 + C2 3 T3 1 3) (T1 32 sin 3 - 233 Cos 3)

A (7,12) = C22 (TI23T232 - T 223T13)

A (7,13)=- C (T 2 T14 + T2T24

26 13 13 23 23

+ C2 7 (T 1 2 T1 3 + T222T23

+ C2 9 (T1 3 T1 I + T2 3 T2 1 5)

- C3 0 (T 1 2
2 T1 1

5 + T 2 2 
2 T2 1

5 )

A (7,14) = (C2 6 T3 3
4 - C2 9 T 3 1

5 ) (T 2 3
2 Cos 4 - T 1 3

2 sin *4)

S(C27T33 9 - C 3 0 T 3 1 5) (T2 2
2 Cos *4 - T 1 2

2 sin 4)

A (7,15) = (C26 + c29 cos 25 (TI32T224 - T 23 TI4)

2 os4 2 4)

(C27 +C30 Cos 5) (T 1 2 T2 2  - T2 2 T1 2

27I30T3 3T
A (7,16) = 29 (T 1 3 T T 2  3

C3 0 (T1 2 T9 3  T 222T 13
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A (7,17) = - C (T2 6 + T T626 13 T13  + 2 3 T23

- C2 7 (T 12
2 T1 3

6 + T 2 2 T2 3
6 )

+ C 29 (T 1 3 T11  +T 2 3 T2 1

2 7 2 7+ C3 0 (TI 2 T1 I + T2 2 T2 1 7)

36 _C937) (32 2
A (7,18) = (C T 6 7 2 2T -T sin26 33 - 2 9T3 1 )( 23  CO 6 13 S 6)

62

+ (C T -_CT(T 2 cosT2si27 33 30 317) (T2 2  cos '6 - T1 2  i 6 )

A (7,19) = 26 + C29 Cos 7 ) (T 32T22 6 T 232T12 6

2 6 2 6+ ( + cCos (T TT T27 30 7 12 T2 2  - 22 126

A (7,20) = C 29 (T 132 T23 7 T 23 2 T13 7
2 7 2 7

C30 (T1 22T 2 3  22 13

2  7 2
A (8,8) = C 3 Cos 2 5 sin *2 + C40

A (8,10) = C22 [(TI3 T2 - - T 2 T,1
2 )

+ c 2 3 (T1 1
3T2 1

2 - T2 1 
3T1 1

2)] Cos 2

A (8,11) = C2 cos (TIT + T2T + T3T
22 3 ( 11  11 21 21 313.

-C23 [(T11 cos 3 + T 21 sin *3) sin 03

+ T31 Cos 03 Cos *2

D-17



A (8,12) = - C 2os (T 1 1
2  3 + T 2T3 + T T32

A (8,13) = (C2 6 cos 2-C sin 2) (TI 2 T2 3
4 -

26 ~2 27 2 11221 3

(c (Cos -c sn ( 2 T5 -T 2T29 2 30 sin 2) (T11 T 21  21 T115)

A (8,14) =- (C26 Cos (2 - C27 sin 2) (T11 2T114 + T23 T2 1 4

2 4

+ 3 1  3 1 ) cos4

+ (C29 cos 2 " 30 sin 2) [(T112 cos 4

+ T2 2 sin i4 T35 + T3 2 (sin e4 cos 44 cos c 5

- cos 04 sin a5 ) ]

A (8,15) = [(C2 6 + C29 cos 5 ) Cos 02 - (C2 7

+ C 30 Cos 5) sin 02] (T112T12  + T212T22

+ T312T32

A (8,16) = (C2 9 Cos 02 - C3U sin 2 (T11 T1 35

T21 T23  + T31 T33

D-18



> (I22 36 T22I6

- A (8,17) = (C2 6 Cos 2 + C27 sin 2 (T11 T23  T21 T13

2 7 2 7
(C29 coso 2 + C3 0 sin *2) (T11 T21  T 21 T11 )

C2 6 2 6
A (8,18) = -(C26 cos 2 + C27 sin 02) (T11 T11  + T2 1 T21

+ T312 T3 1 6) Cos 6 + (C2 9 Cos 2

+ C30 sin 2) I(TII 2 cos *6 + T21 sin '6
) T317

+ T31 ( sin 06 cos 6 Cos 7 - cos 6 sin 7

A (8,19) = 6+ C7 co cos 2 +(C 2 7

+ C30 Cos a7 sin 2] (TII2T1 26 + T 2 1 2 T2 2 6

+T2 T6+ 312T326

2 7 2 7
A (8,20) = (C2 9 Cos 2 + C3 0 sin 2 (T11 T13  + T21  2 3

+2 7
31233

A (9,9) = C3 + C5 + C3 9

A (,10 =C 2 2 (TI 2
2 T23 - T2 2

2 TI33)
(9,10) = C T2T3 T2T 13

2 12 23 2 3

C23 (T12 T2 1  - T2 2 TII1
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)2 3 2 ? 2
A (9,1i) = -C22 Cos 03 (T 1 2 T1 1  + T 2 2 T2 T31

+ C23 I(T12 Cos *3 + T22 sin *3) sin 03

+ T3 2 Cos 03
3 3 2 3

A (9,12) = C2 2 (T122 T1 2  + T2 2 T2 2
3  T3 2 2T 3 2

(9,13) = 22 4
A (9,13) C26 (T1 2 T 2 3  T T22 T 1 3

"44-2 4 -T 2 4

c ( T  3 T T

C2 7 (T1 3  2 3  23 T1 3 4)

2 5 2 5
+ c 2 9 (T1 2 T2 1  - T22 T1 1

2 5 2 5
+ C30 (T1 3 T2 1  - T2 3 T1 1 5)

Ar91) c ( 2 T4 2 4 2 4
A (9,14) = LC2 6 (T1 2 2T 1 1  + T2 2 T2 1  + T3 2 T3 1 4)

2 4 2 4 2 41
+ C2 7 (T1 3 T1 1 + T2 3 T 2 1  + T3 3 T3 1 )] cos

- C2Ssin 24T

C29 r(T122 cos 4 + T22 Tsin '4) 315

+ T32 (sin 04 cos 04 cos a - aos 04 sir 5 )]

C30 [(TI32 Cos O4 + T 232 sin 4) T315

+ T332 (sin 04 cos '4 cos a5 - cos 04 sin a5 )]
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2 4 2 4
A (9,15) (C26 + C29 cos 5) (T1 2 T1 2  +T 2 2 T2 2

2 4
32 T32 )

- (C2 7 + C30 cos (X) (T1 3
2 T1 2

4 + T2 3
2 T2 2

4

2 4

33 32)

(9,16) = - C2 9 (T1 2 2T13 + T 2 2 T2 3  
+ T32 T3 3

2 5 + 2  5 +T 5-C30(TI3T13 + T23T23 + T33T35

- 30 T1 3 T.3  23 23 33 33

(9,17) = - C2 6 (T12
2T 2 3 - T2 2 2T 1 3

6 )

+ C2- (T 13
2 T2 3

6 - T2 3
3 T1 3

6 )

+ c T 2T 7 T 2 T7
+C2 9 (T1 2 T2 1  22 11

-C 3 0 (T 1 3
2 T2 1

7 -T 2 3
2 T

r 2 6 + 2 6
A (9,18) = LC26 (T 12

2 TII 6 + T2 2 2T 2 1 6 +  322T 3 1 6)

- 27 (T 2 TII + T22 T 21+ T32T31)] Cos 6

29 (TI22 cos 6 + T 22 31

2 Los2 6 2Cos sin a7 ]

+ T3 2  (sin 06 C Cos O S 0 s

+C 3 0  cT 2 Cos 6 + T22
2 sin 6) T31

+T 33 (sin 06 cos r6 coscx 7 -cos6 7sin 7 )
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A (9,19) = - (C26 + C2 9 cos a7) (T 2 2 T126 + T2 2 T226

2 6 2 6
+ T ) + (C + C cos a) (T T

32 32 27 30 7 13 12

2 6 2 6
+ T 2 3 T 2 2  + T332T 3 3

2(2 ) C T 7 2 7 +T 2
'(9,20) C29 (T22T13 + T1223T23 + T322T33

+ C30 (TI 3
2 TI7 + T22T2 7 + T 2T37

30 1313 23 23 T3 3 T3 3

(10,10) = C1 3p 3 (sin2  3 cos2 03 + sin 23 )

+ C1 (sin2  + cos 2 0 sin 2

41 3 33

+ cCos 2 03 s 2 + c Co
42 3 3 4 3

+ 2C T sin
24 33 si 3

[ C 2) T3 3  C2 4 T 31 ] s(10,11) = P + C4 T + c T

A (10,12) = - (C1 3P3 + C4 1 ) sin 83 - C24 T333

m (C + 
3 -C T3

-(C 1 3 0 4 1 ) T 3 1  24T33

A (11,11) = (C1 3p3 + C4 1) cos 2 3 + C42 sin
2 43 + C4

A (11,12) = C2 4 sin 3

A (12,12) = C1 3 P 3 + C41
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2 2 2A (13,13) =.(C7 + 2 C31 cos 5) (sin2 4 Cs 4 + s i n 2  4

+ C8 j(cos 04 sin a5 - sin 04 cos 4 s o 5 )

cos 03 42 (T 3 2
4 )2 ,

+ (sin 4 Cos ]5)2]+ C43 [(T 3 1
4 ) +

+ C44 (T33 + C46 (T 3 3
5  + C45 (T 3 1

5

+ 2 C31 T31 4T334 sin 5 + C46 (T 3 2 4

A (13,14) = [C7 + C43 - C4 4 + 2 C3 1 cos a5

+ (C8 - 045 + C4 6 ) COS a5] Cos 04 sin 44 Cos 4

+ [(C8 - C45 + C46) cos O5

+ C31 sin 04 sin 44 sin

c insi sin .2 2
8 sin )4 Cos )4 s 4 cos 04 sin 2  4 COs a5

A (13,15) = (C7 + C31 cos a5 + C4 3 ) T3 1 4

+ (c 8 + C4 6 ) T 3 3 5 cos a5 + C31T335

5.

+ C4 5 T 3 1  sin %5

A (13,16) = (C46 - C8 - C31 cos a5 ) T 3 2
4
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2
A (14,14) = (C7 + C4 3 + C4 6 + C8 Cos 25

+ 2 C31 os L5 ) cos 4

+ (C4 4 + c 4 5 cos 2 .5 + C46 s i n 2 25 s i n 2  4

+ c 8 sin 2 Ot5

A (14,15) = - (C8 - C4 5 + C4 6 ) cos a7 + C3 1 1 sin b6 sin a7

* A (14,16) = (C46 - C8 - C.,1 cos a5) cos

A (15,15) = C + C + 2 C3 1 cos a 5 + c 4 5 sin 2 a5

2
(C8 + C46) cos a

8 "46
~~A (16,16) = C8 +C4

A (17,17) = I(C7 + 2 C31 cos a7 + c8 cos 2 a7 C os 2  6

+ C +43 C4 5 sin 2 a 7 + C46 cos 2 a 71 sin2  6

+ (C4 4 + C 4 6 Cos2 a7 + C 4 6 
s i n 2  

7) (T 3 3 )2

62
+ (C4 3 + C4 6 ) (T 3 2 ),

+ (C 7  cos 2  + 2 C31 Cos a 7 sin 2 6
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2 [(C8 - C4 5 + C4 6) Cos 7

+ C31 sin e6 T3 3
6 sin a7 + C8 Cos 66 sin 2

A (17,18) = [C7 + C43 - C44 + 2 C3 1 cos a7
72 43 431 6

832

+ [(C8 - C45 + C46) cos a7

+ C3 1] sin e6 sin *6 sin a7

2 2
csin6 cos sine Cos 6 sin o
O8 s *6 ~ 6 6 CO 6 Si 6 a7

A (17,19) = (C7 + C43 + C31 -os a7 ) T 3 1
6

+ [(C8 + C46) Cos a7 + C311 T33 7 + C45T31  sin a7

A (17,20) = (C46 - C8 - C31 Cos a7 ) T 3 2 6

2

A (18,18) = (C7 + C43 + 2 C31 Cos 7 + C COS a 7

2 2
+ C46) Cos 26 + (C44 + C45 cos a7

.2 2 .2
+ C46 sin a7) sin 26 

+ C8 sin a7

A (18,19) = - PC 8 - C45 + C46) cos a7 + C31] sin 6 sin

A (18,20) = (C46 - C8 - C cos a7) cos
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A (19,19) = C7  43 s3+ 2 C31 Cos a 7

2 .2

+ (C8 + C46) cos a7 + C45 sin 27

A (20,20) = C8 + C4 6

A (21,21) = [C9 + C48 + (C49 cos2  8 + C) cos2 a9

2

+ sin 8 
+ 2 C3 6 cos o9

2  2 a 2+ cCcos 8sin a9 Cos 8

+ [C47 + ( 1 0  s 8 +C 4 9 ) s  
9

2 2 .2 .2
+C cos a9c 10 s8 +  sin a 9

-2 [(C1 0 - C49 - C5 0 ) cos a9

+ C3 6 ] sin 8 T3 3
8 sin a

A (21,22) = (C1 0 + C4 9 - C5 0 ) T3 3 9

+ C3 6 sin sin 08 sin a9

A (21,23) = (CI0 + C4 9 - C5 0 ) cos C9 + C3 6  T3 3  sin a

- [(Cl0 + C4 9 ) sin
2 a9 + C50 CS2 a 9 + C4 7] sin 8

A (21,24) = (C10 + C40 + C36 cos a9) T 3 2
8
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A (22,22) = C9 +C 4 8 + 2 C3  Cos a9

2 O2 CO2

+(C + cs sin 209 C 9 8
S+ ( Cos + C4 sin sin cs 9 +C4os 

I + (C~10 cs 8 +  50 s n  8) s n  9

A (22,23) --- [(C 1 0 + C 9 -C 0 ) Cc S C 9 + c 3 6) sin sin a9

A (22,24) = (C1 0 + C4 9 + C3 6 Cos 9 ) Cos 8

2 2A (23,23) = (C10 + C49 )sin a 9 + C50 Cos 9 + C47

A (24,24) = C10 + C49

A (25,25) = [C9 + C48 + (CI0 + c49 cos2  20 Cos 2

+ 2 C36 Cos a11 + C49 sin 2  0

2 2 1+c c s sin a i cos e
50 10 11 10

+ [(C0 Cos2  + C49) sin 2 a11

50 2 49 1sin2  .2

+ C Cos 0 si sin 11

+I2 3C1+c4 9 c50 ) Cos 11

+ C 36  T31 T sina
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A (25,26) = C10 - C49 - C5 0 ) T33

+ C36 sin 10] sin 10 sin a11

A (25,27) = L(CI0 + C4 9 - C5 0 ) cos a11 + C3 6 ] T3 3 1 sin all

+ C1 0 + C4 9) sin2 a1+ 51+ C4 71 T3 1 0

A (25,28) = (C10 + C49 + c36 Cos a 11 m32

A (26,26) = C + C + 2C cos all
9 48 36 1

22

+ (C 10 Cos2  0 + C50 sin 210) sin al1

.2 2 2
+ (C1 0 + C4 9 sin 010 Cos a1 1 + C 4 9 Cos 10

A (26,27) - - I(CI 0 + C4 9 - C5 0) cos a1 1 + C3 6] sin 0 sin a11

A (26,28) = (Cl0 + C4 9 + C 36 cos U1 1 ) cos 0

A (27,27) = (C1 0 + C4 9 ) sin 2 a11 + c5 0 Cos2 + C47

A (28,28) = C,0 + C49
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B (1) =C D + + D + 3

-C 1 5 (D1 3 + D1 3 ) + C 1 6 (D1 1  + D1 1 )

+ C7 (DI 8 + DI 0  1 (D9 + D1

+ 1 7 ( 1 1L D 1 1  ) C1 8 ( 1 3 + 1 3

(2) = Cll D + C12D 2  + C13D23 + C14D21

c D4 +D6 + D5 +D7
C1 5 (D2 3 +D 2 3 6) +C 1 6 (D2 1 + 21)

r C1 (D8 + D210) c (D29 + D211
C1 7 ( 21  21 18 23 23

(3) =11 D33 + C12 D33 + C13 D33 + C14D31

4 6 5 7

C1 5 (D + D33 C+ C16 (D31  31

8 10 39 1
1 7 (D 3 ! + ) - C1 8 (D 3 3  33

B (4) = - 1  2  1 i + (C6 + C3 7

- C3 8) sin
2  i sin 01 cos 01

12 ~ T32 T 3 3  (C6 - C2 + c 3 7 - C38)
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r2
_2 (C6  C+C - C 3 8) sinO1 sin i cosO

+ [(2 C2 + C3 8 ) s *i + (2 C6 +2 C3 7

C3 7 ) Cos 1

C1 9 (T1 3
1 2 -T 1 2

3 D+C2 (T 1D 2 T 1 D 3)

C2  (T13 D23  23 13

1 3 1 3

+ C21 (T 1 3 D2 1 - T2 3 D1 311

1 (T1D T21 D4
- C2 (T1 3 1D2 8 - T2 3 D13

8)

1 6 1 6
- C 2 (T1 3 1D2 0 - T2 3 D1 3 1)

+ C2 8 (T 1 3 D2 1 - T2 3 D1 1

c (T1 D7 T1 D7
+ C 1 3 D2 1  - T2 3 1 1

-C32 (T 1 3 D 2 1  T 2 3 D-1 1

(1 10 T1 D10

32 ( 1 3 D2 1  - 2 3 D1 1 )

03 (T 1
1  D 2

8  T 1 D 8

33 12 21 2 2 D1 1

(1 10 T1 D10
+ 33 ( 1 2 D2 1  - 2 2 D1 1 )
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1 1 9(C34 T2 3 + C3 5 T2 2  D21

(C3T21 1 D11
+ (C3 4 T1 3  - 12) 23

- (C34 T2 3  - C35 T2 2 I ) D13

B (5 = [C cos 2  + (C6 
+ C37

- C3 8 ) sin 2 (I sin 61 cos 01

- i$icos a1 E(2 C2 + C3 8) cos 2  i + (2 C6 + 2 C3 7

- C3 8) sin2

+ 26151 sin cos ci (C2 - C6 - C37 + C38 )

[C19 (DI32T111 + D2 3 2 T 211 + D 332T 3 1)

+ C2 0 (D1 3 T1 1  + D23 T21 + D33 T31

C2 1 (D11 T1 1  21 21 31 31

4 1 6 1 43

DI 3+TD + D23 T21 + D 33T 31
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+ C2 8 ({D 1
5 + DI 7  Ti1

28 11

+ {D21 + D21
7 } T2 1  + 31+ D31 T31I

-8 +D 10 1
C3 2 ({D + DI T

82 10 1 811

+ {D2 1 8 + D2 1 1
0 } T2 1  + {D31  + D3 1

I} T3 1 )

9i1 9 }11 2

+C 3 4 ({D1 3  + D1 3  T1 1  + {D2 3  + D2 3  IT2 1

+ {D 339 + D33 } T311)] cos

i0} T 1 1 8 10 T2
[C 3 3 ({D11 - DII + {D 2 1  - D2 1  i2 1

+ {D318 D 0} 1 1_ D31 IT 3 1 )

- C 35 ( {D ] 39 - D I3  T1 1  + {D2 3  - 2 3  T2 1

+ {)339 - D I T31 1)] sin

B (6) a 2 sin 2  1 2  (C 2 -C 6 -C 3 7 
+ D3 8 ) sin Icos 1

+ 1 cos a1 (2 C2  C3 8 ) Cos + (2 C6 + 2 C3 7

2 11 1 2 18C 3
- C38 sin 2 i

- C19 (D1 3 T1 2  + D2 3 T2 2  + D33 T 3 2
I )

D-32



C20 (D1 3 T 1 2 1 D233 T221 D33 T32
32 1DI3 1 3 13I

21 (D1 1 T 1 2 + D21 T22 + D31

C 25 [(D1 3 ' + DI3 6 ) T 1 + (D234 + D23 6 T2 2

(D34 + D6 TI
33 33 3 2 J1

5 7 ) 71
C 2 8 [(Dl1 D, 1 ) T 1 2 1 (D2 1 5 + D ) T2

31 31 32

C 32 [(DII 5 + DII 71) T 1 2 + D2 1
8 + D2 1 10) T2 2

1

(D 8 D 31 ) T3 2

11 1 D19 211

C3 4 [(DII + ) T 2 + + )22

(D319 + D31 ) T1
9i+ 23131

33 33 3

S [(DI9 - DI3 0) T 1 +(D D2  T22

+ + D3 21) T 3 2
(DI 3 . D 3110 10 )1 31

c9 1 1 9 11

C3 5 1(D3 - 3) T1 3 +(D 2 3 - D2 3 )23

9 11 1
33 33D 33
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.2
B (7) = (C3 - C5 ) 02 sin 62 sin 02 cos 2

- 22 2 0sin 2 Cos 02 (C3 Cos 2 2 + C5 s in 2 02

+ C3 9 - C4 0 )

- 2422 T3 2
2 T3 3

2 (C3 - 5

+ 2$2 o 2 (C 3  0 '2 + 2 C5 cos 2 +C 3 9)

1 2 1 2
- C19 (D13 T2 3  - D2 3 T132)

- C2 2 (D1 3 T2 3  - D21 T1 32)
3 2 3 D 23T

c23 (D 11 T2 3  21 13

Sc26 [D13 4 + D1 3
6) T23 2 - (D23  + D2 3

6) T13 2]

-c2 7 [ 1 3
4 - D1 3

6) T2 2  - (D2 3
4 - D23 6) T 122

C2 9 [(DII 5 + D1I
7) T23 - (D2 1 5+ D21  T13 2]

C30 [(DII 5 - D 1
7) T2 2

2  (D2 1 - D2 1
7) T122]
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B 8)=2 2 .2

B (8) (C3 cos 2
+ C5 sin + C 4 0 ) 2 sin 02 cos 23 225 +2C39 4

- (2 C3 Cos + 2 C5 sin 2 + C3 9 ) '2 $ 2 Cos

+ 2 (C3 - C5 ) 02$2 2 cos 2

+ {C19 (D13
1 TI2 + D231T21 + D 33T312

3  2 3 2 + 3 2

+ C 22 (D133T11 + D2 3 T2 12 D333T31

+ c 2 3 (DI 3 TI2 + D23T21 
+ D 3 T32

23 1111 2 1 T2 1  31 T3 1 )

+ 6 2 4 6 2
C26 [(D13 3 D36) TII + (D2 3  + T2 1

+ (D3 3
4 + D 336) T 3 1 21

5 2 7 2
+ C29 [(Dl1  + D 7 ) T, 1 (D21  + D ) T

5 7 21
(D31 + D31 T3 )cos

+ D 4 D6 2 4 D 6 T2

C2 7  1(DI3  ) + (D2 3  )3T 2 1

33 )3 6 3121

5 7 2 5 D 7 T2
C3 0 [(D11  - ) TI] + (D2 1  2 T2 1

+ (D35 D 7 T31 sin
31 D 3 1  31 J 2'
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I

B (9) = (C 3 - C5 ) (2 cos 2  2 + 2) sin 2 cos 2

+ (2 C3 cos2  2 + 2 C sin + c39 )i 202 Cos 02

1 2 3 2 3 2
- C1 9 (D1 3 1 2  + D2 3 T2 2  + D3 3 T3 2 2)

3 2 3 2 3p 2
C2 2 (D1 3 T1 2 + D2 1 T 2 2  - D31 T3 2

+ C2 6 [(D1 3
4 + D1 3

6 ) T12
2 + (D2 3

4 + D2 3
6  T222

+(D34 + D3 3 ) T3 22]

+ C2 7 [(D 3 4 - DI36) T1 3 2 (D23 4 + D6) T2

+ (D334 -D 3 3
6 ) T 3 3 2]

- >5 7 2 57 2

C29 [LII5 + DII 7 ) TI2 + (D2 1  + D217) T222

5 7

31 317 322

C3 0 [(DI 5 - DI )I3 + (D2 1  - 17) T2

31 -D 31 ) 332
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B (10) = - (C1 3 P3 + C41 - C4 2 ) [32T3 3 COS 3

+2 T sin 03 Cos 03 + $3 Cos 03 sin 3)

+ [(2 C1 3 P3 + 2 C4 1 - C 4 2) sin 2  3

+C 42 cs 2 03] Cos 03 3$3 + 2 C443 3 sin 03 Cos 03

-1 3 1 3C2 0 (D1 3 T2 3  23 13

1 3 1 3C21 (D1 3 1T 2 1  23 T11

2 3 2 3
C2 2 (D1 3 T2 3  23 13

c D2 T3 D2 T3

23 (3221 -D 2 3  11

3 3 D3 3)
C2 4 (D1 3 T2 1  2 3 T1 1

C24 (D11
3T2 3  D 213T3

* 2 1 2.B (11)L (Cl13 P 3 +c 4 lc 4 2 Cos O3 C4 j' 3 sinl 0 3 Cos 0 3

2 C + 2 C - o

[2 13 3 41 2

+ 42 2 1 3 4Y3 cos 03

+ 2 (C1 3 P3 + C41 - C4 2 ) 03q 3 sin 03 Cos 03
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1 3 1 3 1 3
+ [c 2 0 (D13 TII + D23 T2 1  + D33 T3 1 3)

+ 2  (0D2 T3 +D2 T3 + D 1
22 (DI32TII+ 023 T2 1  3331

+ C2 4 (D1 1
3 TII 3 + D2 1

3 T2 1
3 + D3 1 3T3 1  Cos 3

1. 1
( 21L( cosi3 +D sin i 3) sin e 3 + D33 Cos 63

2 + C 2.

-C 2 3 [(D13 c 3 + D23 sin 3 sin 93 + D33 Cos 8 3]

- C24 [(DI3  cos l3 + D23 sin p3) sin 3 D33 Cos 031

2 2 32
B (12) (C1 3 P 3 + C41 - C4 2 ) (i'3  cos 3 -3 sin 3 co 3

+ [(2 C1 3 P 3 +2 C4 1 - C4 2 ) cos 2 43

SC42 sin 2 43] 35 3 cos 63

C2 0 (DI 3
1 T12 3+ D2 3

1 T2 2  D 331 T32

,2 3 D2 23 D3233

C22 (D13 2T12 + 3T2 +D

C2 4 (D11 T12  + D21  T2 2  + D3 1 T3 2 3)

D-38



B (13) =[C7 -- C4 3 -C 4 4 + (C8 -C 4 5

+ C4 6 ) cos 2 u5] o4 sin 04 sin ¢4cos €
2 2 2 2

+ C80 4  (sin2 04 - COS2 4) sin c4 Cos 4 s.'.n 04 Cos a5

- (C8 - C4 5 + C4 6) 42 $42) Cos 04 sin 04 sin a5 Cos a5

c +c +(04 4 ) COS t[C7 + C4 3 - C4 4 + (C8  C4 5 ) cos 2

C4 sin 2 a5 ] cOs 2  - - C s i n 2
465Cs04 (C8  C 45)Sf a5

- C46 sin2 04 + C4 6 cos 2 a5 } 2 Y4 sin 04 Cos 04

+ 2 (C 8 - C4 5 + C46 ) 404 (cos 2 0'

- sin 2 04) Cos 4 sin a5 Cos a5

- 2 [C7 + C4 3 - C4 4 + (C8 - C4 5

+ C46) Cos a5  4 4 cos 04 sin 04 Cos 04

- 2(C 8 - C45 + Cl) 4$4 sin 04 Cos 04 sin 04 sin .4 cos t5

+ 2 { [c 8 sin 2 04 + (C 45- C 46) os 2  4] Cos - C 04

+ C 8 sin2 4 - (C45 - C 46) sin 2 4 } )4 5 sin (5 Cos a5

22

+(C 8 - C45 + C 4) i4 (Cos 2Ot5

sin a5) sin 04 Cos 04 Cos 04
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+ 2C864$4 sin cos sin 04 cos 04 sin cos *4 cOsa 5

+ 4 cos 4  s 7  sin 24 +C44 Cos 5

[(2 C8 - C4 5 + 2 C4 6 ) sin2l4 + 4 cos 4 ] cos

+C 2
+ C45 sin2a51

2 C884a5 sin 4 Cos 4 sin O4 cos 04 sin 2 ¢4 sin a5 Cos a5

- e~e5sin 04 sin ¢4 [(2 C8 -c 4 5 ) cos 2 a5 + (C4 5

2 C4 6 ) sin a 5 j

+ 2 (C8 -c 4 5 + c46) 4 5 cos 04 sin ¢4 Cos 44 sin 5 Cos a5

+ $44 5 Cos 04 Cos ¢4 [(2 C8 - c 4 5 ) sin 2 a5 + (c 4 5

- 2 c 4 6) cos2a 5]

- 2 (C8 - c4 5 + c4 6 ) 44 5 sin 04 sin a5 Cos a 5

+ c (D1 T4 D1 T4+ c2 5 (D13 T2 3  - D2 3 T1 3

+ C2 6 (D13 T2 3  - D2 3 T13

2 T4 2 4C2 7 (D12 T2 3  D2 2 T1 34)

1 5 1 5
- C2 8 (D1 3 T2 1  - D2 3 T11 )
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S- C2 9 (DI3T21 -D D3TII)
c 9D13 T21 D23 T11

+ C3 0 (D12 T
5

11 - D2 2 T115 )

4 5 4 D2

+ C3 1 (D1 3 T11  D 2 3 T11
5

5 4 5 425T

+ C31 (D11 T2 3  D 21 T 3 )

B (14) =C 7 (2 sin 04 Cos 84 Cos 24

S2 sin cos4B(4)C 7 ~ 4  sin 4  4 co4

2 S2l O

44 cos 84 cos 2 4

+ c8 (-)42 sin 4co 4 si~5

2 2+4  sin e4 cose 4 s e4 csi a

2 Cos i 4 os 4 sin a Cos co
S 24 4 5 5

+~~~~~~ 42 i o i O

+42sin 04Cse 4 Cosos 24 C2

-4 2sin sin 04 Cos 04 sin 2  2

2 4 cos 4 sin a5 cos 05
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-2 4 4 sin e 4 cos 4 sin a5 cos a5

-2 $4$4 Cos 04 C Os2 
4 Cos25

+ 2 * 4 5 sin 4 sin 4 sin2 a

+ 2 $ sin cos P4 sin O4 cos 4 sin 4 cos 24 ca 5

-2 $4 5 sin 4 cos 4 sin 0 4 cos 04 sin2 4 sin 5 Cos 5

+ 2 $4 5 Cos 04 sin W.4 Cos 0 4 sin a5 Cos 5

+ 2 0444 sin 44 cos 04 Cs2

- 2 4 5 sin2 4 sin a5 Cos 5

- 2 $4 5 sin 4)4 sin2 a5)

+ C4 3 (i2 sin 8 cos 4 cos 2 4- 2 4cos 04 cos 2

+ 2 64$4 sin 4)4 Cos 4)4 + C 4 4 ( - 42 sin e 4 Cos 4 Cos 2 4

+ $)4 $4 cos e4 cos 2 4 - 4)4 Cos 04 sin 2  4

- 2 04$4 sin 4 Cos 4)

+C 45 ( 4 sin 04 cos 04 sin 2 5

4 2 sin 4 Cos 04 Cos 244 Cos 2 a5
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;+ 42 Cos 2 04 Cos 4 sin a 5 Cos U 5
.42 .2

2 sin e 4 cos 4 sin a5 cos a
4 4 5 5

.2
4 Cos 04 sin a. cos a5

+ 2 Y44 sin e4 cos 04 sin a 5 cos c5

-P 4 p4 cos O4 sin cc
9

Cos sin2 CO 244 COS 04 sin24 co. " 5

+ 4$4 Cs 04 Cos cos2 a5

-2 $4 ;5 Cos 04 sin 4 cos 4 sin a5 CO1 a5

+ 4 5 sin s4 sin 4 cos2 a5

'P 4a5 sin 04 sin 2a5 + 26 4$4 sin 4 Cos 24 Cos2 5

+ 2 45 sin24 sin a 5 Cos cs 5

25

-$45 sin 4 Cos2 a5

+ $ 4 5 sin @4 sin 2 t5)

2 sin2s

c46 (- 4 sin 64 Cos 04 4

2 2

4 sin 04 Cos 04 cos 0 5
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Ts2 2 .2sin 4 cos 4 sin a
V4  4 4 Cos 4)4 Si C5

4 24 Cos 4 Cos 4 sin a5 Cos a5

+ 42 sin24 Cos 04 sin a5 Cos a5

+ 42 cos 04 sin a5 Cos a5

-2 Y4 sin 64 cos 04 sin a5 Cos a5

2 2
- 2 44 4 cos 64 cos244 cos2 5

+ 2 4 5 cos 04 sin 04 Cos 04 sin 5 cos a5

- 2 $4 &5 sin 4 sin 04 Cos2a 5

2+ 2 04 $ 4 sin 04 Cos 04 Cos2a 5

- 2 5 4 a5 sin 2 04 sin a5 Cos a5

+ 2 $4&5 sin 04 cs 2 a5 )

1 4 1 4231T24

- C25 (D1 3 T1 1 4+ D2 3 T2 1  D3 3 1 T31 4) Cos 04
2 4' 4 2 4

- C2 6 . (D1 32T11
4 + D232T21 + D332 T31 ) Cos 04

C27 (D122T114 + D222 T2 1  + D322 T3 1  ) cos 04

* Li .

+ C28 [(D1 31 cos 14 + D23 sin 14) T31 5
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33 si 4 Cos 4 Cos a5 - Co 4 si 5J

+ C2 9 [(D132 Cos 4 + D23 2 sin 4 ) T3 1 5

+ D 33 2( sin 4 Cos 4 CoC5 Cos 04 sin a5)

C [(DI 2 cos 4 + D 2 sin T 5

C3. L12 Co 4 22 si 4) T31

+ D322 (sin 4 Cos Cos X5 - Cos 04 sin a 5)]

C3 1 [(D 3 4 Cos + D23 sin 4) T3 1 5

+ D33 ( sin 0 44 Cos a5 - Cos e4 sin a 5)

5 4 5 4 5 4C31 (D11 T T + D21 T21  + D31 T 3 1 ) Cos 4

B , (14 = Le7 + C4 C4 4 + (C8 -C 4 5 )'14'-s2 - 5

.2 3 2

46 5-C46 sin a 5 Cos2 4

2 2- (C8 - C4 5 ) sin a5 + C4 6 (cos a 5

- sin2 4  
4 2 sin 04 Cos 04

+ (C8 - C4 5 + C46 (sin 204

Cos20 2 Cos sin a5 cos a54co 4)4 -44
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+ C 8 (cos24 - 4 s2  2 4 cos e4 sin2 4 Cos2 5

+ (C8 - C 45 + C4 6) *4 Cos (F4 sin a5 Cos a 5

- [2 C7 + C4 3 - C4  .- (2 C8 - C 4 5

2 2 2
+ 2 C4 6 ) cos a5 ] c + C4 5 sin a 5

+ (C45 cos 2 a5 + C44) sin2 41 $4$4 cos 04

-2 (C8 -C 45 + C 46) 4 4 sin 64 Cos p4 sin a5 cos a5

+ 2C8 4 4 sin 4 Cos 4 sin 64 cos O4 Sir 4 Cos 4 cos 2 a5

2C8J 4a5 sin 4 Cos 4 sin O4 cos O4 sin24 sin a5 cos a5

+ 2 (C8 - C45 + C46) $p 4a5 cos 04 sin (F4 cos (F4 sin a5 cos a 5

+ [P2C 8 - C4 5 ) sin 2a5 + (C45 - 2C46) cos2as5 5$ 4a5 sin 04 sin 0 4

+ 2 [C 7 + C4 3 - C4 4 + (C8 - C45 + C462 5 ] 4$4 sinF 4 cosF4

0. * 2- 2 (C8 - C45 + C 46) 4a5 sin 4 sin a5 cos a5

- 1(2C 8 - C4 5) sin 2 a5 + (C4 5 - 2C4 6 ) cos2a 5 ] 4ct5 sin (4

- cos +D4 + D T314)4 [C25 ("1 3  + 23 214 33 3

+ C26 (D1 3
2 TII 4 + D 2 T21 + D 332 T 314)
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-C27 (D122T11 + D22 T21 + D32 T314)

" T315 [C28 (D131 cos *4 + D S23 1 ,4)

+ C2 9 (D1 3 
2 cos 4 + D231 sin p4 )

- C30 (D12
2 Cos *4 + D232 sin 4)]

+ (C2 8 D3 3 1 + C2 9 D3 3 2 C3 0 D322) (sin 04 cos p4 cos a5

- Cos 04 sin a5 )

- C 31 [(DI3 cos 4 + D2 3
4 sin 4) T 3 1

5

4

33 4 Cos 4 Cos a5 - 4 s i

+ (D11 T11  + D215 T2 1  + D315 T31 4) cos 4

B (15) = [C7 + C4 3 - C4 4 + (C8 - C45

2 2 2 2)C4 6) cos 5 1 ('4  cos 04 - 04 s 4 cos 4

+ (C8  C45 + C46) 42 sin 04 sin 4 sin 5 cos a 5

+ fl2 C7 + 2 C43 - C44 + (2 C8  C

+ 2 C4 6 ) cos2a 5 ] cos2 4 + (C44 + C cos2 
5 ) sin2 4
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!'I
+ c4 i sir2a e4 cos 04

+ 2 (C8 - C45 + C46 ) q4 04 sin 0 4 Co sin 5 Cos 5

-2 C8 4o 4 sin c4 Cos 4 sin 04 cos 04 sin c4 Cos 4 Cos 2z5

+ 2 (C8 -C 45 + C46) 4 - 4 sin 4) 5 sin 5 COS a5

+ [(2 C8 -c 45) co:s 2ca + (C45 - 2 C46) sin2a ]

x (d4 5 sin4 - a5 cos a Cos 0 )
(C2 4 $ 5 (D 4 4

+ (C 25 + C28 Cos a5) (D131T124 + D23 1T224 + D331T324

+ (C26 + C29 cos a 5) (D132T124 + D232T224 + D332T324

- (C27 + C30 Cos a5) (D122T12  224 + D32

C31 COs a 5 (D134T124 + D23 4T 4 D33 4T32

+ C31 (D 15T12 + D21 T12  + D215 T22  + D 315T324

B(16) 1C8+ (C46 - c4 5 )J o ~4 j Cos 204

44

( (C8 cos 2 4  C 45 + C46) sin 2e4

-C 8 sin2 4 4 2 sin5 cos u5
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I2
+ (C8 - C4 5 + C4 6 ) (sin2a

-cos 2
5 )I 4

2 sin 04 cos 04 cos 4

2 .2 - * sinct 5 cost 5

+(C8 - C45 + C46) (04 si2 04 4)

+ 2 C8I 4 4 sin 4 cos 44 sin 04 cos 04 sin 04 sin (%5 cos 5

- [(2 C8 - C4 5 ) sin2 a5 + (C4 5

-2 C4 6 ) cos 2 X5J $44 sin 04 sin 04

+ [(2 C8 - C4 5 ) a + (C45

-2 C4 6) sin2c 5 ] ($44 cos 04 cos 04 - 4sin 04) $4

28 (i13 + 231T23 33T33

1 5 2 5 2 5

+ C (D T + D T + D T
28 13 13 23 23 33 33

2 5 2 5 2 5
- D + D T + D T
C30 ( 12 T1 3  22 23 32 T33

C31 (D1 34T13 + D 23 T23 + D334T33

B (17) = [C 7 + C4 3 - C4 4 + (C8 -C

+ C4 6 ) cos2 ] 6 si2 O p
4 27 6 2 Dsin - sin cos 6
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-2~ [2 7 2
4  4  ( 8 -C 5  oc

- ~ i.~ c 7] os% -(C 8 - C 5) sin 

- C862 (sin8 - oC6) C o sin 66 c 7

cos0)Cs6 ma6 Cossa

6 62

6(c c +c )T sin a Cos a7Xo
(C8  - C 45 + C4 6) 6 6 32 06

.22
s2 c + pa a7 CO a7cc) o

cos2 - C45) s6n2a7

- C 46 (s in 2 6 - sin a 7 Cos a 7 )  Y6 6 sin 66 cos 06

- 2 (C8 - C4 5 + C4 6 )) c6 76 (sin 2 6

- Cos 2 66 ) cos 6 sin a7 cos a',

~~(2 +26

C7 + C4 3  C4 4 
+ (C8 - C45 + C4 6) cs a7 T33

(c - C + C sin 6 sin a Cos 7 6 5 32

+ 2 1 ( c 8 Co s 2 6 - c 4 5 + C 4 6 ) s i n 2 6

-C 8 -(45 - C46) co26] co 6

+ C 8 sin2 6  7 sin (x7 cos a7

+ 2 607 (C 8 - C 45 + C 46 ) (Cos2Y. 7 - sina 7) sin 06 T336

+ (2 C 7 + 2 C 43 - C 44 ) sin 2 6 + C44 cos 2 6
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+ 1(2 C - C4 5 + 2 C4 6 ) sin 2 
6 + C Cos 2 6 Cos2 a

+ C45 sin27

2 C8 sin 6 Cos 6 sin 66 sin 6 cos 6 s cs2a71 6 6  cos 6

+ 12 (C8 - C + C Cos 6 sin cos c7

- [( 2 C8 - C4 5 ) cos 2 7 + (C4 5 - 2 C4 6 ) sin 2a71 sin 06

-2 C8 sin p6 cos p6 sin 06 cos G6 sin ' 6 sin 7 cos 7

x & 7 sin 6

+ J[(2 C8 - C45 ) a + (C - 2 C) cos2 aj T3 6

~~m 6

+2 (C8 - C4 5 + C 4 6) T3 1 sin 7 cos 7  Y7

C2 5 (D13 T2 3  -D 23 T1 36) + C2 6 (D1 3 T2 3 - D2 3 T1 3

2 6 2 6 1 7 1 7C2 7 (D12 T2 3  D2 2 2TI ) - C2 8 (D13 T2 1  D2 3 T11

2 7 2 7 2 7 2 7C2 9 (D13 T2 1  - D2 3 2TII 7 ) - C3 0 (D12 T2 1  - D2 2 T11
C3  7 6

C31 (D1 3 T 2 1 - D2 3 T11 ) + C3 1 (D11 'T2 3  D 217TI3
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B (18) = C7 + c 4 3 - C4 4 + (C8 -c 4 5 ) Cos 2 7

- C4 6 sin27 ]Cos26 - (C8 - C4 5 ) sin27

- C46 (sin26 - cos2a 7 ) $26 sin e6 cos e6

+ c 8 6
2 (cos2  - sin2 sin 6 sin2 6 c227

+ (C8 - C4 5 + C4 6 ) [q6 2 (sin
2 06 - Cos2 6 )

+ 621 cos sin7 Cos a7

- 12 C 7 + 2 C 4 3 - C 44 + (2 C 8 - C4 5

+ 2 C4 6 ) os2 7 cos

( + c s2 2 2

+ (C44 + c45 s 7 ) sin 6 + C 4 5 sin 7 Y66 cos e6

-2 (C8 -C 45 + C46) sin 7

-C si cos t 1
8 sin 6 cos 6 COs e6 si. 6 cos

x 6$6 sin 06 cos 6 cos 7

+ [(2C 8 -c 4 5 ) sin 2a+ (C45 - 2C )Cos2jsine 0

+ 2 L(C8 - C 45 + C4 6 ) cos 6

-C 8 sin 6 cos i 6 sin 06 Sin J 6 cos 06 sin c7 Cos a7.
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x $ 6 7 sin 6

2 + c + (C - C Co
I+ 2 4C4 + C4 - F C7 C4 )c6

x sin 6 Cos ¢6

-2 (C: -C5+C 4 6 ) e 6 7 sin2 46 sin a7 cos c 7

8 5 46 67  (C 6 C 7)

[(2 C8  C4 5 ) sin2 a7 + (C-45 2 C46) Cos 2 7 ] $6& 7 sin 6
6 6 1 6

Cos #6 C25 (D131TII + D2 3 T2 1  + D3 1 T3 1
6 )

- (D 26 1 6~ 1 6 +C26 (DI 3
2 T6 2 6  2 6

++ D (D 332T316

C2 7 (D1 2
2 TII + D2 2 

2T1 3+ 2T316

7 rC (D 1 + 1 sin

T31  L 28 13 c 6 D 23

+ C (D12 cos 6 + D2 sin29 13 6 23 si

22
+ C30 (D~j cos + D sin

30 2 2 o22s
+ (C28D33 + C29D33 + C3 0 D3 2 ) (sin 06 Cos 6 Cos 7

- cos e6 sin o7

6~ 6.7

- C3 1 [(D3 Cos 6 + D sin 6) T3 1

6

+D33 (sin e6 Cos ¢6 Cos a7 Cos 06 sin o7 )

7 6 7 6 7 G
+ (D7T + D217 T + D3T cos 6

-21 21 31

D-53



B (19) = IC 7 + C43 - C44 + (C8 - C45

+ C 4 6 )cos2c 7 l ( 62 cos 2 66 - 662) sin C6 cos 6

+ (C8 - C45 + C4 6 ) 62 sin a6 Cos 06 sin 6 sin a7 cos a7

+ 1[2 C7 + 2 C4 3 - C4 4 + (2 C8 - C4 5

+ 2 C46) Cos2a7] cOs2 6 + (C4 4 + C45 c as27 ) sin 6

+ C4 5 sin 2 $666 Cos 66

+ 2 [(C8 - C4 5 + C4 6 ) sin 7

-C 8 sin 6 Cos '6 cos 66 sin 6 cos a7

x 666 sin 06 cos C6 Cos a7

+ 2 (C8 - C4 5 + C46 ) ($6 ;6 sin e6) 7 sin 7 Cos 7

+ [(2 C8 - C4 5 ) cos 2 
7 + C4 5

C8 -C45) x

- 2 )7 (6 6 7 sin C6 - Y7 Cos 06 os 6)

DI 1TI 6 1 6 D 1T3 6)
+ (C2 5 + C28 Cc 7) (D1 3 T1 2  23 22 + D23 T2 +D

+ (C26 + C c( 7 ) (D1 3 2TI2 6 + D 23 2T226 + D3 3 2T 3 2 6)

2T16 2m 6 D2T36
(C27 + C30 Co 7) (D1 2 T 12  + D22 122 + 32
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S31 cos a (D1 3
6 T1 2

6 + D236T226 + D336T326)

+ c (D7 T6 +D7 T6 +D7 T6+ C31 (D11 7TI2  + D21 T2 2 + D31 T32

B (20) = (c 8 - C45 + C461 62 (sin2 a7 -Cos 2 a 7  sin 66 T3 3
6

- (C8 cosp - +C4 6) sin2
- (c8CO - c 4 5 +C4)si2

6

-C8 sin2 61 62 sin COS a7

+ (C8 - C4 5 + C4 6) 62 2 6 - 2 7  7

+ 2 ) [c 8 sin ip6 cos 1P6 sin 06 sin p 6c8 - c45 + c46 Cos 6] 66 T326

+ (C8 - C + C) 6 sin a sin 7 cos8 45 46 6 6 6 L7 CO 7

- C8 - C45 sin a7 + (c45

- 2 C4 6 ) cos2a71 666 sin 06 COS 6

+ (2 C 
* O x c26L 8 -C 4 5) cos + (C4 5 - 2 C46 )sin a7] (p 6 T3 3

- 6 sin ,6)  6

D-55



i[-

1 7 1 7 im  7c 28 (D1 3 T1 3  + D2 3 T2 3  + D3 3 .3 3 )
237 237 2 7

29 (D1 3 T13  + D2 3 T23  + D33 T 3 3 7)

+ C30 (D1 2 T1 3  + D2 2  T2 37 D32  T33 7)

-c 3 1 (D136T1 37 + D236 T237 + D336 T3 7 )

B (21) =(C10 + c49 - C50) 82 sin a8 sin 8 Cos 8 sin2 9

-C C - 2 _ 82) 8i cos a9

(C10 _ 49 - C50) (08 8 T32 
8 sin cc9 9

+ 2 JC9 - C4 7 + C4 8 - [( 1 0 - c50) Cos 2 8

+ c49] sin 2a 9 + (C10 + C49 cos 2 
8

- C 50 ) Cos 2a9 + C 49 sin 2# 18 8sne o-c 5  +8 8 sin O8 COS 08

+ 2 (C10 + c 49 - C 50) (cos26 8

- sin2 8) ' 8 Cos 8 sin a9 Cos a9

- 2 (C10 + C4 9 - C5 0 ) 8 p8 (sin 68 Cos 9

+ cos 8 o 8 sin a9 ) cos 08 sin 8 sin ag9

+ 2 [Cj0 + (C49 - C5 0 ) cos 2 8] Cos 2 08
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- (C10 cos8 + C49  50 2

C10 sin2 81 'P' sin C9 Cos a9

+ 2 (Cl0 + C49 -C50) (cos 2 X9 - sin2 9) q8 sin 8 T33 8

Fl2 ~ i 28+C Co 2 1 sn2
+ C4 7 + L(2Ci0 + 2C4 9 - C5 0 )s2 + C50 cos sin2

Scos 2
CosC5 9  88 CO 2 a]8 0

+ (2 C + 2 C - C) sin2a + C cos 2  sin a
10 49 509 50 09

2 (C10 + C49 - C5 0 ) T33 8 sin 9 Cos a 9 89 sin 8

+ 2 (C 0 + C4 9 -C 5 0 ) sin 08 cos a9 sin a9

- (2 C10 + 2 C4 9 - C 5 0) cos a9 + C50 ia T 8 8 9

+ C3 2  1 - D2 )T
32 13 - D23 11

+ c (D1 8 3 1 8
C3 3 (D12 T2 1  2 2 Tl)

c D1 Tq 1 T9C3 4 (D13 T2 3  23 13

1 9 1 9C3 5 (D1 2 T23 D 22 T13
8 9 8 D2819 9 8D9

C3 6 (D1 1 T2 3  - 921 T13  + D13 T2 1  - D2 3 T11 8 )
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8~2 2 288
(22)- .. C~i26 ( COS2a

B (22) = (C 10 + C 4 9 - Ce50 - 8o

+ $ 82] cos 8 sin a9 cos a9

JC9 - C4 7 + C4 8 + (CI0 + C49 c

+ C49) sin2 a 9 C49 sin 2 8 sin 88 Cos 8

-2 (C10 + C49 -C 50 ) Y8 sin 08 Cos sin a9 Cos a9

+ 2 2

S- C4 7 + [(2 C10 + 2 C43 - c5 0 ) 
Co s  8

1.2 2
+ C sin sin2a + C cos a 8

50  .2 8J 49 50 9 Y8G~ Cos 8

(-[(2 C10 + 2 C49 - C50) cos
2 9+ C 250 sin2a9](8 sin 08

) sin

- .8 9  8

+2 (C + C - C sin - cos cos
10 49 50~ (8 Cos 08 Cos

x 9 sin 8 sin a9 Cos ag

cos .2
+ 2 (C10 + C4 9 - C50) 88 sin 98 Cos 8 sin ag

+ (c2 sin 0 + C3T9) (D-31 Cos '8 + D231 sin8

+ (C32 cos 08 + C34  Cos 08 Cs a 9

sin 08 cos8 sin X9  33
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+ (C33 sin 08 + C35T339) (D121 cos + sin )

+[C3 cos 8 + C (cos 8 Cos a
+ [C3 8 35 8 9

-sin e 8 cos 8 sin 9)] D 321

D239

+c36 [(D39 cos 8 +  9 sin Y) sin e8 + D33 Cos e 8

- (D118 cos 88 sin 8) T3 3
9

- D 31 8 (cos 08 cos a9 - sin 8 Cos 8 sin 9)]

B (23) = (C 0 + C4 9 -C 5 0 ) 82 sin 8 T3 2 8 sin a9 COs c 9

10. 49 5 2 .29

+ (C +C -C cos6 - ) sin sin a910 49 c50~ ''8 Cs68 ~8 sin e co5"8 s

+ C 4 7 + [(2CI 0 + 2C4 9 - C5 0 ) cos 8 + C5 0 sin 81 sin 9

+C 50 c8s2 9  8 cos 8

+ 2 (C1 0 + C4 9 - C5 0 ) (68 cos 8

+ a9) '!'8 sin 08 sin ag9 Cos a9
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+ [(2 C10 +2 C4 9 -C 5 0 ) sin2 a9 + C 5 0 Cos2 9 ] 833

-8 sin $)

-2 (C1 0 + C4 9  50) 89 9 a2 cosc

[- [34 (D131T 2 + D 23T22 + D 331 T328

+ C35 (D 12 T1 2  + D2 2 T22 + D32 T3 2

-C 3 6 (D1 1 TI 2
8 + D218 T 228 + D 31 8 T323 sin a9

B (24 (in 2 c +os 2 )  sin G T 8

10 4 9 -C 5 0 )i 8  (si c 9  8 33

+ (C 1 0 Cos 2 8 + C4 9 - C5 0 ) sin208 + CI0 sin2 8

(C4 cos 2  10] 2

C - C os + cos 8 8  sin a cos a9

+ (C1 0 + c 49 -c 50) ($82 8 2 sin2 q sin 9 Cos t9
! C50 ) co 2 + 5 sin 2 9 sin S a

2 2
+ j L(2 Cl0 + 2 C 9 - C5 0  osct +C 5  sin a9 J sin

+ 2 (C10 + C4 9

- C50) cos 0 8 Cos 8 sin a 9 Cos a 9  808 sin

- 2 (C10 + C4 9 - C 5 0 ) 8F8 sin 08 sin ox9 Cos ot9
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+ (2 Clo + 2 C49 c50) sina 9 + c 50 (6. sin 8

-i 8 T3 3 ) 8

+ c34 (D13 T1 1  + D2 3 T2 1  + D3 3 T 31 )

+ C35 (D 1 2 1T 9 + D 22 T21 + D32 T 31

-36 (D1 1ST1 1  + D2 1 T2 1  + D3 1 T31

B (25) = (C10 - C 49- C 50 102 sin 8010 0 Ci0 cosn 20Us i 2

- l2 2 10
(C 1 0 $ 02)49

10 49 - 50) 10 10 sin cos11

2C9 - C47 + C48 - [(C10 - C5 0 ) + C497 sin a

+ (C10 + c49 cos2 10 - 50) Cos 11

+ C4 9 sin 2# 10 100 sin 0 cos a10
490lo 10 10 10 1

+ 2 (C10 - C49 - C50) 10610 (cos 2 10

2- sine 10) cos 10 sin all cos al1

- 2 (C10 + C 4 9 - C50) i0510 T 3311T32 sin 11
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+ 2 I [cl + (C4 9 - C5 0 ) 210 cos2 10

- ( 1  0 +C 4 9  C50  10

c0 s2 1sin

- C1 0 s i 0 4 ii sin a,, Cos all

2
+ 2 (C10 + C49 C50) -10Ci (cos a

-.2i1sin 2a Ti0 sin9

11~el T33 910

+ IC4 7 + [2 C1 0 + 2 C49 - C5 0 ) sin 2 10

+ c o sin2

+ 50 co 101 all

+ C50 COS2 10 Cos 1 1

2+ C COS+ c Cos Isi C01

all C50 cos

- 2 (C1 0 + C4 9 - C50 T3 3
1 0 sin all cos all 10i sinPi 0

+ 12 (C10 + C4 9 - C5 0 ) sin e10 sin all Cos all

[(2 C1 0 + 2 C4 9 - C5 0 ) cos 2 all

+ C 5 0 sin2 al] T3 3 101 $i0ii

+ C32 (D13 1T 2 1  - D2 3 1 T1 1  ) - C3 3 (D1 2 1T21
0

-D 2 2 1 T1 1 
0 )
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1 1 1 11I
-C 3 4 (D1 3 T2 3  -D 2 3 T1 3

I )

+ C3 5 (DI2
1 T 231 D12213

_ 100 11 D T
36 (D1 1  T2 3  D2 1  1 3  13 21 23 11

B (26)= (C0 + C49 C50) [ 02 (sin2 10 - cos 2
1 0 )

= 0 - snct Co)c

227 (C0 2 COS sin - ) Cos c

10C 10 10111

- Ic9 - c 47 + c48 + (C10 + c49 Cos2 - C50 Cos2 a1

- [( 1 0 - c 5 0  Cos 2J + C4 9 ] sin2

+ C49 sin 2 i0 i02 sin 010 cos 010

- IC47 + [(2 Cl 0 + 2 C4 9 - C5 0 ) cos 2 10

+ C5 sin24101 sin 2  + cos2

C5 0  C50 1ll 10$10 cos 610

+ 2 (C1 0 + C4 9 - C5 0 ) ($10T 3110

10

a-IT 3 2 ) $10 Cos S10 Sil ii cos all

(2 CI0 + 2 C4 9  c50) cos 2 11

+ C50 sin- l 1 j 1 sin o 10 sin i0
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+ 2 (Clo + C49 - C50) ( io0 Cos i0 sin a11

+ a 1 1 sin *io cos a,,) 010 sin q0 sin all

+ (2 C1 0 + 2 C49  C 5 0 ) Cos 2

50  i2 l] 1011 sin 10

11 1+
+ (C3 2 sin 10 + C ) (D1 3  Cos '10 D 23 sin

+LC 3 2 cos 10 +C 3 4 (cos 010 cos a 1 1

1
- sin 0 10 cos q.o sin all), D 3 3

-(C 3 3 sin 010 + C35T33 ) (D1 2 Cos 10 D22 1sin 1I0

- [C3 3 cos 0+ C3 5 (cos 010 cos a1 1

- sin e10 cos q0 sin a1 1 )] D3 2 1

iicos + D sin 10) sin 010+ 36 (I o i 2

D33 Cos 010

10i0 si11 ) T ?

(DIII0 cos ' 1 0 + D21  sin 1 T3 3

D 1
0 (cos a Cos 1 1 - sin 010 cos i sin all)]
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B (27)= (C + c - c 2 2 10 sin E sin a Cos a
10 49 5 10 11

+ (C10 + C49 - C50) 10 Cos 2 0
10 49 5010

- 102 ) sin 010 cos qi0 sin 2 all

+ 2 (C10 + C4 9 - C5 0 ) (10 Cos i0

+ a ,) 0 sin 610 sin a11 Cos all

+ IC 4 7 + [(2 C1 0 + 2 C49  C50) cos2+ sin2 + 10 0 49- 50o10

+ C 50 sin-2)10 sin s2 a 11 + C5 0 Cs 2 ll T 10 010 10

+ 1(2 Cl10 + 2 C 49 - C50) sin 2 a1 c OS r 11 1 ( ,T31

L - 6 10 sin 010 )  ll

- 2 (C1 0 + C 4 9 - C 5 0 ) $10 11 sin a1 1 C COS al

1 10 1 10 1 10

C4 (D + D T + D3L34 ( 13 T12  23 22 33 32

- C35 (D12
1T121

0 + D 1T 2210 + D31 T 10)

- C3 6 (D11  
+ D 2

+ D3 10T32 I 0  sin a11
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B (28) =(Cl0 + c 4 9 -C 5 0) 1 0 2 (sin a11 - cos2 a11) T3 310 sin 10

+ (C1 0 cos 2
1 0 + C49 - c 50) sin2 0

'1- l0 + (C49  C5 0 ' c o 2 0

_ C1 si2# 0 o2
+c 1 0 sin 0 i1 sin all cos all

[$102  2si
(c + C - C 1 0  sn10

10 49 0 1
+ 2 10  (0 1 0Tr3 2  COS i0 - $10 sin a10) sin cll cos all

+ [(2C 10  2C 4 9  C) co s2a10 - 49 C50 1

+ C50 sin2 a s." sin50 .li 101 l 0

+ [(2CI0 + 2C49 -C 5 0 ) sin 2 
11 + cos2ell1 ( si

- 1 0 T 3 3
1 0) $10

+C 34 (D1 3 T11  + D2 3 1T 2 1  +D T

1 11 1 11 1 1
C3 5 (D1 2 1  + D2 2 T2 1  + D3 2 T3 1

10T  11 +D 1 T D3 10T 11
C36 (D], 11 21 21 D3  31
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~n
Below are defined the constants D.. used in the B (N) on1)

the previous pages.

n = 3, 8, 10

DI1 = a n2 + 2 n - 2 n n sin n sin 6n

n (.2 n2 )  n

D21 =( +0 ) T21 + 2 n n cos n sin en

n 2D 3 2 sin O nD31 n n

n = 1,2

2  n 2 n 2 n n n n1I2 n n3 + TI 2  +0 coi snns

+ 2 inln sin 'n cos 0n sin n

+:1nn Tn n

n n 23

-2 Cos cos n Cos n

2n an2 • 2 T2 2  
n  2 sin n sin e sinn

D2 =( +n )  n n n
i- 2 non cos t n cos in

n2 nn T13
n

2 6n$n si n cos 6n Cos n

*2 .2 nD32 n +( $ T 3 2
n  6 + n2 sin0 cos n
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n 1 1, 2, 3, 4, 6

n .2 .2 nl +2snOcs
D13 n n +13 n Cosn sin n cos fn

+2 p0 sinn cos n cosn

nf
-2 $n~n T 22n

2 n n$ cos n cos 0n sin n

Dn 2 + $n2 Tn 2 sin4 sin 8 cosn
23 n n 23 n n n n

-2 ne cos p cos n cosn n n n n

+ 2 p T
n n 12

+ 2 0n n sin n cos 0n sin n

D(n 2 + $ ) T n 2 0n4 n sin 0 sin n
33 n n 33 fnn n n

. = 5,7; n £ - 1

z 2 + 2 T1
DII = ( n + a ) Tll

+ 0 cos n ( cos 0 sin a - sin 0 cos 4n cos a

~-0 nTI~ cosc ,
T 11 Cso

+2 O sin n
+ 2 nn T31 n
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+ 2 T co a

+ 2'P Tn t. 23

-2 Onn T32n cos n cos a

- 2 T33 cos 'n

2 na T12 n sin a.

(n 2

s21 n + )21

+ 2 sin (cos 6 sin a sin 6 cos cos a2 )nn n n

n2 T23  cos a£

-2 'n n T cos an

n n 31n
n2 0nn T i2 cos a

2 ln Tn 3

-2 en$ n T 32 n sin n cos a k

-2 nk T33 sin nn2

+2 $n T22 sin a k

D-G9



I

91 2 + 2 T .
D 31 n +

n2 n-$ T33 cos az

+ 2n$ sin n sin n cos a

*+ 2 n (Cos e ncos a£ + sin 0 cos n sin a

+ 2 $na9 T32n sin a9

m =9,11 ; n n m - 1

m 2 2 m
D13 = (n +  1 ) TI3

2 cos dn (cos 0 cos a - sin 0 cos q sin a
n n n m n 11 m

n2 sine
13 m

+ n T3 sin m

+2~~n sinpn n T33 m

- 2 $n~n T 22 n sin atm

+ 2 n m T2 1m

+ 2 n $ n T32n Cos tn sin am

- 2 0n m T3 1m cos n + 2 $n m T1 2n cos am
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m 2 + 2 m
23 $n m 23

2 sin n (cos O Cos am - sin 0 cos n sin am)

2 T nn+n T2 3  m

-2 n T3m cosn

nfn 33n

+ 2 nn T12n sin am

- 2 p nm T1 m

2 0n n T32 si n sin am

-2 6nam T31m sin n

n m T 2 2 cos am

m 2 + 2 m
D33 n 33

+ 2 T3 n sinn 3m

- 2 0n$ n sin 0n sin 4n sin am

+ 2 n (cos On sin am + sin 0n cos 4n cos am)

+ 2 Sn m T3 2
n cos m

D-71
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APPENDIX E

ELEMENTS OF VECTOR {PI

-~ i
4 t

14

E-1



F =0
P1

F 0P2

F -Clg
p3

F =0
P4

F = Cllg sin 0 1 cos 1

F Cl1gT32

F 0
p 7

F = C1 2 9 sin 02 cos

F = C1 2 gT3 2 3
, p9

F =0
Pl 0

F = (C13 Cos 3 + C1 4 Cos 03) g

F = C1 3 gT 3 2
3

F =0
P 1 3

P14 -g C15 sin 04 cos 4 + C16 ,sin o 4 cos 4 cos 5

- cos 04 sin 5 )

-2



F PF5= - (C15 + c16 cos a5) gT

_ PI5
F = - C1 gT3

P16 1633

F =0
P1 7

F = -g C1 5  sin 06 Cos 6 + C1 6 (sin 06 Cos 6 Cos a7
P1 8

- cos 06 sin 7)l

F = - (C15 + c16 Cos a) gT326

F =-C1gT
P20

F =0P21

F = g [C1 7 cos 08 + C1 8 (cos 08 cos a9P22 17 8 18

- sin 0 cos 8 sin a

F =-C1gT3 8 sin c

P243 gT1 99

F =C

F =0P25

Fp g [C17 cos 0 10 + C1 8 (cos 0 10 cos ali

- sin 010 Cos i0 sin a
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jCg 10F sin o
32 11

* F~ ~ = 1 8 gT3 1
1

P2

E-



APPENDIX F

ELEMENTS OF VECTOR {R}
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Joint Resistance

Joint Identification

1 : spine, between segments 1 and 2 (between T-12 and

u-I)

2 : neck (between C-7 and T-l)

3 : right shoulder

4 : right elbow

5 : left shoulder

6 : left elbow

7 : right hip

8 : right knee

9 : left hip

10 i. left knee

Elements of {R}:

10
R - (Mi + Jii )  --

i i= 1qj (j = 1, 2,..., 28)

1 1 2 1 2 1 2
where 11 cos (T 13T13 + T231T2 + T331T33

-1
Cos-1 H1

F- 2



H. for i = 1, 2, 3, 5, 7, and 9 are defined below1

H1 = T132 + T231T23 + T 332T33

H++T33T33

H1 T1 32T1 3  + T2 3 2T 2 3  + T33 T33=T 2 3 2 3 2 3

H TIT + T2T + T3T

2 13 13 23 23 33 33

H = T TII T I + T 2 1T + T31T31
3 13 13 23 23 33 33

H 7 T 11T 11+T 21T 21+T 31T3

80 1 80 1 80

H9 = 11 T 11 + T21 T21 + T31 T31

whereas, for the elbow and knee joints,

84 = 5

6 =7

88 = ce9

810 = 11

The derivatives required for coiputation of R. are
I

qj 81 - Hi 2 qj

F-3



and

l -1 H

S. = __ I  Hi 2

(i = 1, 2, 3, 5, 7, 9,; j = 1, 2,..., 28)

Defining Gi  H. for i = 1, 2, 3, 5, 7, 9

1 2 2 2
GT +T T +T T

113 13 23 23 33 33

+ T131TI3 + T 2314T23 + T 33 1T332
2 2 + 1 2 +T3 1 2

13 T 1 3  2323 332 3

2 4 + * 2 3+ .2 3

G 1 T 134 T233 T 23 T332T334

+T+ T +

G G5 132T136 + 23 T23 + 332T 6

+T T +T T +T T

13 T13 + T23 T23 33 33

+ 2 4 1 + T2 4 311 31

G9 T 11 + T 21 + T 31

1 40 1 . 10
+ T 1 1 + T21 21 T31 T 3 1

13 13i 3 T2 1 0 + T3 13 1

!+T T Ti +T T

131F2-3433



where the time derivatives of the transformation matrix

elements are given by

T In = - T21 + n T31n cos n

T211  n + 6nT31n sin n

31 n cos 0n31 n nnT l+ T s T~

T23 =- case n~l os T2
3 n n
23 n n 134 * T2 o n n 2

T -~T Co coT -T

T33 n = n n n n32

The non-zero elements of {RI dre

R4 -=T (MI i _) HI (TI31T2 32 T2 3 1TI 3 2)

i 1 I2 (

_ G

+ (M 9 ~ ~i:; ( 1 1 1T2 1 0 - 2 1 1T 1

7 ~ ~ F 5l-



R= __ _ JG, \ 1 2 1 2

- 1 1 T 1 3  + T2 1 T 2 3

22

+i 1T 2

31 33 ) cos

J T31 8

7 11

H7 7

+ T2 1
8 sin sin O + T Cos 1

211 3A1 C 1S

1 19G 910

10 10 os 1+ T 21 sin p1) sin 0 1+T31 Cs61

R = 1 ( J 1) (TI11T 2 + T2 2 1 T23 2 + T3 2 1 T3 32)

R 1 / J( /

( H_ __(M 1 HTI
613 23 23 13

3 33

+ 2 M3 1 (T1 3 2 T2 34 T 2 3 2 T 13 4)

5 2

l H 3F16



N~. 8 . -- .2 (Ti , nz

l- -H 1

T 2 1+T2T
21 23 1 31 33

1 ( J 2 G2  (T 2T 3 2  T3 1 2T3 3 3)
+ --- 2 M ---- )L ( 11 T12 + T 223 + T3T 33

4 + T32T3) CO 0

1 3 G1 2. 4 2 1 31
+ 1 2 T12T13 + T22 T23 + T32T33

2 2

3 (M J2 G2 ) (T23 + T 2 T 3  3)

J___G 2 4 2 46

1i _22 (5  i _ H3 1 2 2T1 3  3 + T3 2
2 T33
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R___ 2 2T3 T2 T 3T 2

10 21f133 2 3T 13 )

2i 2

R1 1  2 (-- 1 13T1 3  + 2 1
3  2

+ T 313T 332 Cos 3'
3 1 33 3

z - J )
H 2 - H77i+ 3

2
2  3'

1 2

14 11 (T 23G3

R3 (MT4TH2 2

+ T 31T 3)Cos4

~ 1 332 3' G+3342432)

15 2 M 2/ T 1 21T 3  2 2332 3)

(M (M T

12 5 2)(

~-8



4-,G

19 (M - ( 12 6T 132 T2 2 T 2 3T 3
2 T T3 32)~

1 5

A = - ~(M6  6 c7

1 sin 78 sine 8 + 8cos 1

R. T T21

R24 =8(M8 + J8 a9 )

1 T 11 1 21  21 1 1

1 (M 9 1 9 2  (T 1~

H 1 1

+T1 1 T cs

+ T21 sin 8 sin e10 + Cos 810

R2 8 = - (M + J10  0 i)

2F-9



APPENDIX G

ELEMENTS OF VECTOR {Q}
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Non-zero components of {Q}

Si=1 i

Q2 1 yi

F

Q3= F
1 i

+ F y[l TI + yl T I2 + (y~ Pi) T I 1 11

1+ P 1 [(F x2 +F x3 ) (-T 23 ) + (Fy2 + Fy3 ) (T 131)

11

- [(F + + F + F ) (-T 23I

+(F +F + F F (T 3 1)]

-+ 8(F Y 0 FylI

L + F -F - F ) (-T22

(Fx8 x9 l ll

+ (Fy8 +Fy 9  FY10 Fyll 2
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91

5 z x I  1 31 l

+ Lyjrxi 31 1 +y YT321+ (yz 1 iT 3 3 11 si

~F zIIyx cos 61 + yy sin 0 1 sin 1

+ (7Zl pl ) sin e1 cos 1]

+ p1  F2 + Fx3) T1 1 + + F T21

+ (Fz2 + F) T31I cos 1

p + F + F + F ) T 1

1 Lx8 X 9  1 0 l

+ (F + F + F + F ) T 2

(8 Y 9 Y10 Y 3ll !

+F8+ F9 +Fzl +F Fl) T31 cos

L LH  [(F x + Fx9 - F xl - F, I) T I1

8 9 10 Y ll

+ (Fz8 + F - F - F iT

+ (FZ T 31 1 sin 1
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6 Fx [ Yl T1 3
1 - - )i T 1 2

1 ]

" Fly[y T3 1
1 -1- Pi 1]

" F 1 [-y (Fx 1 Fx 3  TI2 - TF2 + F )
T 2

- z2 + 3F3) T32132

1

Pl [ (F8  + F, + 1 2  (FI ++x I  '

SF + F F + F T12 2

2 3Fy Y2 YI03

(F + F T

+ P1 (F8 + Y + F + T T1
LX xx 12

T31

-+ (F +F +F +F9

9 1l0 Y 1 1

+ F 8+ F 9+ F Yo+ F lT2

L(F 8 F- F -F ) T I
H L X 9 13

+ ( 8+ F y9 FYI0 Yll T2

+ (Fz8 +F -FZ - FZll) T33
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Q7 = x2  YxT 2 121 Y 2 22 T2 3
2 ]

[ TI2 + 2+ )TI2

+ Fy 2 [YX2 Y2 22 + 02 z2

+ FX3 L 2 (- T 2 3
2 ) + Fy 3 L2 (T13 2

22 21
Q8 Fx 2 [Yx 2 T31 +y T + (p 2 + ) T332 Cos8 X 2 X 2 Y.~2 T 32 z2  cs

+F [ X 2 T 3 1
2 + yy2 T 32

2 + 02 - YZ2 ) T3 3
2 ] sin 2

- F cos 2 +y sin G2 sin 2FZ2 Lx 2  Y 2

+ (P2 + Yz2) sin e2 cos 4 2]

rF  2 +F T 2 +F T312] C
[ 3 2) 3

Q9  F x 2 [Yy 2 T13 2 - (2 + yz2 TI22]

2 )T2]
+ Fy 2 [y, Y 22

[ (2 + T3 2
2 ]+ F z2' YY2 T"33 2 _(02 +  y z2 ) T322

- 2 [x 3  Iy3 522 +
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IJ
QI x -(x c 21 3 -Y3 T 2 2 4  C(z3 + P3 3 ]

(y+3 Y3
3  3123

3 3  3 ]
QI Fx 3 [(7x3 + Lc)T 1

3 + + 1 2  ('z+ P3) T1333] cs

F 3 + LC) T3 1
3 + y T3 2 + (Y + P3 ) T3 3

3 ] Cos 3

- Fzx 3  x 3  31 3 sin 3

+ (3 + P3 ) sin ] cos
Yl :F 3 [(YX3 %  3  1 + Yz 3 3 2 z 3 33

3 3

+ F3 [YY3 T 3
3 

- (Yz3 + p3 ) T 2
3 ]

+ 3 [Y T 3
3  (Y 3+ pT3 T

a F (x 8 11 TI2  z 1 3
81

8  88

+F- 8 2  
8  7 Tr21

9  7 T 2 - (Y - L9) T239]
+F x9 1- 1.,8 T 21 8- x 9 T 1 9- Y 9 T 2 2 8  Yz 9 L9T239

rrn:8 y 9 8 _L) T19]

+ Fy 9 [L 8 11 8 + y x 9 T + y"Y9 T12 + (Yz9
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-. 2
Q F 8 8] 1 o

Q22 x8 [(Yx8 + P8) T31  + Yy T32  + T3 ] 8+ 8 yT3  
8 32 8  T 3

88

+ Fz8 [YX8 + 8 T31 8 y8 T3 2 8 + yz 8 T338] sin

F8 ) cos 6. +  sin 88 sin

+y sin 08 cos 8]8

+Fx [L8 T3 1
8 + Y T 9 + y T 8

9 x39 T31 y 9 T32

+ (y - L9 ) T,3 91 Cos 8

+ 9 9 83

Fy9 [L8 T31  + +31 y 9 T32

+ (yz9- L9) T3 3 9] sin P8

F Fz9 [L 8 cos 68 + x9 (cos 08 sin a 9 + sin0 8 cos '8 cos a9)

+yY 9 sin 68 sin 8 + (yz - L9) (sin 08 Cos 'P8 sin a 9

- cos 0.8 cos a 9)]

Q23 F x 8 (y 8 T138 1 z TI28

F u8 8
(Y8 T 23 - 8 T2 2
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+F8 (Y8 T3 3
8  - 8 T3 2

8 )

8 o8- 8
Fy T8 Cos + (z T L9 T sin 9+F[-Yx 9T 1 2 CO~ 9 +Y9 13 2yz9 ~9 12 lA9J

F~LT 9 8 ~~ T 8 -8.Fy9 [-yx 9 T2 Cos a+ y 9 T23 8  T22 n 9
23 29 L9 ) T in s 92

Fz x9  32 y9 T338  z 329

r- 8  
a 

9 L iQ24= Fx - yX T138  + (Yz9 - Lg) T1 1
91

99 9

+~( F Y.. 3 L ) T. 9I

y9  x T3 3  + ( L9) T31 9

E + F z9 -Tx T 33 9 + ( z9 - L 9) T 31 91

29 Lx 9  9

LXO10 10 10

Q25 = -F [( + P8) T21  + y T22  + YZ T2 3 0]
F~ P) ±3.0 i12 

0 +YlQT 3 ]

0 710 1 I 710 L Till

- Xl T + yXll T21  + Yll1 T22  -9 23
[4 r irP 11 1 0

F [LT 10+ y~ 1  T 1 1  + y T12 (
10 11 1 0+F Ls TI + y TII TI

+ (yZ I - L9) T13
II]
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0 = F~ [€n + PB) T311  + + y T3310] o i
Q T10 10 10]

F [!x0 +PB) T31 + + T33101 sin 10Yl0 YYl0 T 3  z10

- F~ 0 [(Y~ + p8) cos 010 +Y10 sin e10 sin 01,

100 10xl + 18

+ z10 sin 10 cos 1 0J

+ F cos 10 +F sin 0 [L8 T31 0 + T
FXl 10 l 7X 10 831 T311

110 11 1
+ Yl T 32 10+ ( 11- L 9 ) T3

-F [L8 cos 010 +y (cos 010 sin a11

+ sin 010 0 Cos aii ) + Yll sin 10 sin 10

+ (y - L ) (sin 0 cos sin a - cos 0 cos al)zl 910 i0 11 10

110

Q F Y10 T 10 1 T 10)

(y T 10 10y1 0  -1 T32

10 1
+ F (y T33 _ T3210

[lO Yll I0 (X 1+Fz 10 Nio T33 10£ 0T32 1

+ FX I [ T13 1 0  cos ai].
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- L9  sin a11) T12 10]

+ Fy [Yll T23  - Cos a 11

+{ -L 9} sin ali) T2 2
I01

+ F T10 cosallZil [yYll T33 11

+ {yZ11 - L9} sin all) T3210 1

Q28 = F [-YX 1 T 1311 + ( - L9) T1 1
1 .1

+ Fy [-yXl T2 31 1 + (y L9) T2 1
11]

+F ll [-YX T33 + (yz - L9) T3
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APPENDIX H

SEGMENT MOMENT OF INERTIA CALCULATIONS

H

k J
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H.1 CALCULATION OF MOMENT OF INERTIA FOR SEGMENT 2

3Combined
~J~I Shoulder
~I~I MassI

7.18 5.15 [
Upper Torso 10.86
(Segment 2)

For Dempster's segments, idealized above (a) the combined

mass of the shoulder segments, ms = 0.1054 M where M is

total body mass. The mass of the thorax segment,

mt = 0.1097 M. For the 50th percentile male with total

body weight = 161.5 lb,
2!

ms = 0.1054 (161.5/386.4) = 0.0441 lb-sec/in

2m- 0.1097 (161.5/386.4) = 0.0459 lb-sec /inIt
Dempster's moments of inertia for transverse axes passing

through the mass centers, adjusted for weight of 161.5

lb are

i = 2(0.5613) = 1.122f lb-sec 2-in

it = 1.1149 lb-sec 2-in

Using the parallel-axis theorem,

Y2 = 1.1226 + 0.0441 (5.15 - 3.04)2
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1.14 + 0.45 (.1 515

2
+ 1.1149 + 0.0459 (7.18 - 5.15)2

= 2.623 lb-sec2-in
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H.2 CALCULATION OF I AND I

1. Approximate segments 1, 2, and 3 by ellipsoids

x I x = S (b 2 + c2)

I n (a2 + b2)

b -- z

y

Segment 1

I = 4.331 lb-sec2-in

Assume

YJ a = c = R (buttock radius)
c1

b = L R + R1 6 (1/2 hip
.b ,breadth)

xI  For 50th percentile

a = c = 4.0, b = 13.9/2

m [19 2, )2 2
Ixl1 = + (4)2] = 64.3 m/5 = Iz1

I I  = + (4) = 32.0 m/5

I = I = 2.009 Iy = 8.703 lb-sec 2-in
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Segment 2

z2

Iy 2 = 2.623 lb-sec2 -in

a = R (chest depth)c Y2

b = c = 1/2 chest breadth

For 50th percentile
a a a = 4.5, b =c =6.0

[6) + (6)] =72 m/5

=m 2 2 2

I = ! [(4.5)2 + (6)2] = 56.3 m/5

Y22.

I = 1.28 I = 3.354 lb-sec 2-inx2  Y

I = I = 2.623 lb-sec2 -in
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Segment 3

~ i 23

T = 0.311 lb-sec2-in
y3

.43 a = R 3= 4.0 in =b

3~ C p 3  5.8 in

m[(4 )2 + (5.8) 2] =49.6 rn/5

y 3  5

m[(4 )2 + (4 )2] 32 rn/5
z3 5

I =0.311 lb-sec 2-inx3

32

I -0.6446 1 0.2006 lb-sec 2-inz 3  y3
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2. Approximate limb segments (4-11) by circular cylinders

= 1/2 my2 (assumed to be
long axis)x y ly =  

z =1/4 my2 + 1/12 £

*_62 
2

Upper Arms2

IIy
4 = 0.164 lb-sec -in =

y = R = 3.9/2 ; k = L4 = 11.99

2 2I y4 = 1/4 mR + 1/12 mL4

1z4= 1/2 mR 4 = 0.0241 lb-sec 2-in

I =1I =I =1I
x 6 Y6 x 4 Y4

z '
, I = I

6 z4
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Forearm and Hand Segments

Iy 5 = 0.218 lb-sec2-in= Iy5  z5

5y = R 5 1.85 ; Z = L5 =13.23

2 2
Iy5  Iz5  1/4 mR5 + 1/12 mL5

I = 1/2 mR 2 0.0241 lb-sec 2 -inx5  5

I =1Ix x
S7 5

Y7  z7  Y5  z 5

Thighs

I = 1.270 lb-sec 2-in = I

y = R = 3.55 ; Z = L8 = 16.58

2 2
Iy= Iz 8  1/4 mR8 + 1/12 mL8

I = 1/2 mR 8 2

= 0.307 lb-sec 2-in

I =1IXl10 x 8

I =1 =I =1I

Yl0 Z1 0  Y8 z8
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- f -

Leg and Foot Segments

Iy 9 = 1.192 lb-sec2 -in

y = R9 = 2.3 ; t = L9 = 17.31

2 2
I = 1/4 mR9  + 1/12mL =

19 1/2 mR9
2

= 0.1199 lb-sec -in

I =I =I =1I
X11 Yll x9 Y9

I = I
Zl z9
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