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ABSTRACT

Traditionaily computer descriptive languages have been designed primarily for
human cominunication andjor simulation. Due io this nair-ow range of applications the
existing languages have taken on a strong degree of similarity. In this paper we’
present soine applications in the realm of automatic design of both hardware and
sofiware where a computer description language could serve as the information
exchange media between the user and the design automation system. The paper
discusses an environment for research on the applications of computer descriptive
languages, emphasizing the multiplicity of of users and tasks that may coexist an any
point in time. Some properties needed in a computer descriptiv> language are
presented. A siructured programming approach to hardware design is presented by

example.
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INTRODUCTION

Traditionally computer descriptive languages have been designed primarily for
human communication andfor sirulation [Lhu, 1965; Bell, 1971). Due to this narrow
range of applications the existing languages have taken on a strong degree of similarity
[Barbacci, 1973a). There are other applications in the realm of automatic design of
both hardware and software where a computer description language could serve as the
informatior. exchange media between tne user and the design automation system, By
examining these applications the information requirements can be determined and from
these a 'anguage tha! serves for several (but still not necessarily for all) applications

can be designed.

This paper describes some preliminary resulis of a research group at
Carnegie =Melion University. We present a case for machine —relative software and
other related areas of research. A brief discussion of the domain of tasks we are
considering is followed by a more detailed descript.on of the requirements for two of
them, namely the design of machine rclative compiler —compilers and the design of
modular hardware systems. We present an overview of an environment for research in
these multiple applications. The key word here is "multiple”. We visualize a system
that will support multiple, concurrent users, investigating different aspects of the
problem domain, implementing subsystems in different programining languages which

manipulate machine descriptions given in ditferent computer description languages. One

of the key issues is the specification of adequate computer description 'anguages. We
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discuss some properties desired in such notations and, finally an example in a
structured programming approach to top=down computer design s used to present
some of our ideas in just one of the several areas of our research interests, albeit a

crutial one.

MACHINE RELATIVE SOF TWARE

There is a continual stream of new machines spurred by the advent of
minicomputers and microprocessors, Each macnine has a different Instruction Set
Processor (ISP) [Bell, 1971). The emergence of microcoded systems with the option
of user defined instructions has increased this flow of ISPs. Each new system requires
supporting software and the amount of software grows for any individual system as

user requirements grow.

There are a number of directions in which to seek a solution to ease the burde:,
of software development. Standardization of software packages written in high level
languages such as Algol, FORTRAN, and COBOL is one approach. It reduces the amount
of software needed for each new machine. A cacond direction is in terms of better
software production systems. This may be sought either in terms Jf implementation
systems (high level languages specifically designed to aid implementation) or in terms
of better software methodologies (e.g., structured programming). Another direction,
which we will consider in detail, is to relativize the production of software to the

description of the machine.
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The central ingredient of this latter approach is the description of computer

systems in a symbolic form, such that a range of problems can be solved by

manipulation of these descriptions. We stress th: need for diversity in the problem

domain if we are really to understand how to operate relative to computer descriptions.

. The next section will illustrate some points in the problem domain.

L 4

APPLICATIONS OF COMPUTER DESCRIPTIONS

To pe ciear about the multipurpose character of a computer description, let us
list several kinds of problems that one might want to solve, each of which requres an

abstract description of a computer.

1) Compiler-Compiler.-= A system that takes as input a description of a
language znd a description of a machine and outputs 1 compiler for thal
computer, Civen the state of the art, the language would probably be
resiricted to be Algol=like. [Miller, 1971] is an early attempt at a solution to
this problem.

| 2) Verification of 1/0 programs.= Given an /O program, such as a device
l hanaler, and a description of both the computer and the hardware device
| controller, verify that the program works., This problem has some special
features that set it apart from the general program verification problem,
becides its importance as an applied task: (a) its strong dependence on the
description of computer systems in classic form (i.e., at the Register Transfer
level) rather than in some abstract semantics, (b) the programs themselves
may noi be very complex in terms of their algorithmss rather the complexity of
tha task arises from the openness of the environmental states that have to cope
with (timing, concurrency, etc.)

3) Programming of Microcoded Speciai Coraputers.— The =hility to create
saecialized computers to performm particular narrow classes of algorithms
economically cpens a worid of device dependent, one —=time programming tasks
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that poses an unmense problem.  These systems attempt to optimize
performance; their organization cannot be dictated by considerations of
programming ease. Their programming will become difficult in the extreme,
especially when no opportunity will exists for the growth of programming
know —how. This suggests that what the human will do is to program relative
to a machine description that he has barely assimilated. Hence it is reasonable
to construct programming systems that operate relative to machine descriptions
of a class of machines.

4) Design of Modular Systems.= Given a desired machine described ir terms
of some specification language, and given a space of machines defined by a
class of Register Transfer [Bell, 19717 level modules, design a machine
according to various constraints and criterion tunctions. This is a classic design
situation which is worth studying, both in terms of uncerstanding the nature of
design and in terms of automating computer design. The feasibility of this
approach has been demonstrated by the EXPL system [Barbacci, 1973b].

5) Design to specification. = Gwen a functional specification for a computer
and a space of computer systems defined by a corputer description language,
design a computer that performs to the specification. This is another form of
the classical design task. It differs tromw {4) above. A typical task here is:
gi/en some general functions, create an ISP for a computer. A typical task in
(4) is: given an ISP, design it in terms of Register Transfer level modules.
Formally they may seem ideniical, but the design spaces lool quite ditterent.

6) Design Verification.— Given a specification for a computer and a description
of that computer in the language, verify that the computer satisfies the
specification. We can also include here the automatic generauon of testirg and
diagnostic programs.

7) Manual generation.= Given a computer defined in the language, create the
documentation for the cemputer. This task is quite different trom the ones
above, but also involves undarstanding and manipulating a computer description.

The applications listed above place a variety of demands on the computer

descriptive language and it is hardly clear whether a single language can COVer the

entire spectrum. The next sub ~sections give some examples of the requirements for

two rather different tasks and an outline of a possible system to meet the variety of

requirements.




Some Aspects of the Symbolic Manipulation 3
of Computer Descriptions

Machine Relative Compiler-Compilers.— By "machine relative” we imply an extension to
the traditional definition of a compiler —compiler, in which a specific target machine is
assumed. Due to this limitation, compiler —=compilers have solved only part of the
automatic programming problem and as a result they have not been very succesful. A
better approach has been to produce a compiler that generates pseudo —machine code.
For each new ISP the programmer simply provides the equivalent of the
pseudo =machine instructions in terms of macros written in the target machine language
[Feldman, 1963). While runnabie programs are produced by this technique they are
poor in terms of size and run time efficiency. There are several reasons for this lack
of efficiency: built =in preconceptions aboit existing instructions, the introduction of an
extra level of abstraction that must be hind translated, the lack of consideration for

specific machine features that can do certain things more efficiently that others, etc.

Hence we are primarily interested in generating an optimizing compiler. In order
to generate machine code that will rival that of a good programmer, a
compiler —compiler must extract the idiosyncrasies of the machine. For example, one
way to add four to a register in the POP=11 [DEC, 1973] is to use the instruction
"ADD #4,R1". This requires two 16 —bit words, one for the instruction and one for the
immediate operand 4. Fowever, the autoincrement addressing mode adds two to a
designated register after using its contents as the address of an cperand. Thus an
instruction that effectively is a No=Operation code and uses the autoincrement mode on
the register for both source and destination operands can achieve the efiect of adding
4 to the register. Thus "CMP (R1)+,(R1)+" will add 4 to Rl and requires only one

16 =bit word. Note that the compare instruztion is not a true NOOP since it will set the




e

Some Asperts of the Symbolic Manipulation 6
of Computer Descriptions

condition code registers according to the result of the compariscn. The compiler has to
insura that this side effect is not critical. One such critical case would be if the
contents of Rl is used as a loop index and a loop exiting branch was to follow the
addition, Note further that knowledge of the relative speed of instructions and

addressing modes may be necessary t0 make a choice on the basis of speed.

Some of the information that needs to be extracted from the machine description
is: the data types {address, integers, floating point, etc), operations on the data types
(add, subtract, multiply, etc), location of data types (memory, register, etc), and
instruction side effects (condition codes, use of hidden operands, etc). Instruction side
effects are particularly important. The following PDP=11 code sequence is a good

example :

SUB AB
ST B
BLE LABEL

where the TST instruction serves only to clear the overflow condition code. If the
Branch on Less or Equal instruction (which is conditioned by the overflow condition
code) is replaced by a Branch on Equal instruction (not dependant on the overfiow

condition) then the test instruction is superfluous and can be deleted.

One of the desired goals of a compiler is to produce the minimum cost code
sequence which evaluates a given program. It is therefore necessary to explore all
possible sequences that represent the evaluation and are semantically equivalent and

eliminate those that exceed the least—cost criteria. This semantic equivalence is
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related to the effect on the global program state in the context in which the sequence is
to be executed. It is therefore necessary to express the global program state
conditions under which a code sequence can be applied, as wen as the resulting
transfo: mations on the state. This synergistic effect of machine language instructions

has not been considered part of the reaim of traditional computer description languages.

The cost of compile time generation of cases must be weighted against the
advantages of finding the best code sequences. An intermediate solution is the
exhaustive generation of templates to guide the code generation, as in traditional
compilers. This once =only exhaustive genaration process is more likely to find all the
obscure cases and discover unspected semantic equivalences than hand—-designed

templates [Newcomer, 1974].

Modular Design.= Now consider a modular design program that produces a finished
machine design in terms of a precescribed module sc*. A modular implementation of a
system can usually be divided into a data part and a control part that directs the actions
of the data part [Bell, 1972). The data types and their operations can be implemented
via templates of modules. Again, as in the case of the compiler —compiler, synergistic
effects must be discovered in order to produce the most efficient network of modules
for a given machine description. This implies certain commonalit;, of information
required by this two applications. However, there are many details of a module set
that the compiler ~compiler does not need to know. Assume that the modules are
commercially available semiconductor chips and that the output from the design program

is a printed circuit board layout. Knowledge of chip orientation, power requirements,
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and chip spacing is needed by the design automation system to produce a wiring list.

Hence there is intormation contained in the computer description that is required
by two or more applications while some other information is particular to a single

app.cation,

Al research environment for the symbolic manipulation of machine descriptions.~  The
sim 'ar requirements among the several applications of computer description languages
suggest a researcn environment centered around a data base in which machine

descriptions and manipulation programs are maintained, as depicted in Figure 1,

simulation compiler =compiler design ~automation . . .
I I |
| | |

l I I l
[ I | |
Ll L2 )53 0
I I | |
| | | |

|

I

data base

Figure 1. The environment

The user inputs information into the data base via one or more computer
description lenguages. The application programs manipulate the global data base to

extract information in the format decired by the application.

The data base and it¢ manigulation programs must be able to support many
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different notations and areas of application. This can be expressed by the following

set of required features:

1) Must hold all comp.ter descriptions for the different applications.

2) Must be reasonably independent of any pariicular pregramimin, language.
This is necessary to aliow researchers the flexibility to implement anplication
programs (i.e. computer description manipulators) in a programmin, language
of their choice (e.g., FORTRAN, Algol, APL, LISP, BLISS, etc.)

3) Must be independent of any particular computer description language. The
reason is that the compute descriptive ianguage used to create elements of the
date base is a moving target. It is also the case that sone notations may be
more suitable tnan otners for speciiic parts of a machine description. This
implies an evolutionary process, during which many different notations can be in
use simultaneously.

4) Must be interactive to allow casual and non-casual use. This requires a
set of faciities tor interaction in at least one language.

5) Must allow incremental use by many simultaneous users. By incremental
use ‘e mean the ability to carry a design through stazes of comple.:ness

during which differert users add application dependant details to a computer
description. This is neeced for experimentation.

The features outlined above present a set of requirements that may be
conflicting, One of the reasons for this generality, not addressed in previous
applications, is that the objects we want tc manipulate, namely computer descriptions
represent a fremendously large domain. We are talking not only ahout hardware
(Logic, Register Transfer, and PMS levels [Bell, 1971]) but aiso about algorithms
(Instruction Set Processors and programs). It is also the case that we are irying to
apply a coherent methodology to hardware desiin, a domain characterized by rather

abrupt transitions between its descriptive levels {more so than among software levels).

Ideally we would like to converge on a single computer descriptive language so
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that people in the envircnment can interact more e>sily ainong themselves. On the
other hand, we recognize the fact that rotat'ans go through evolutions and tre research
environment must be open along this dimension. An: kind of tight association between

a computer descripticn language and the data base will reduce the latter's usefulness.

The next section describes some thoughts about ti:e requirements of a computer
descriptive language. At this paint in time, however, we hold no commitments to any
particular existing language or combination of languapes. This allows us the freedom to
speculate and experiment with several, perhaps conflicting 1deas. Therefore, our use

of a particular syntex in the example given as a structured Drogramming approach

should not be construed as a language definition,

REQUIREMENTS OF A COMPUTER DESCRIPTIVE LANGUAGE

One of the problems with existing hardware descriptive languages is that they
tend to bind the user to a view of the world that is rigid and difficu!t to modify. We
feel that the semantics of the lenguage should be under control of the designer. The

folle wing are a desireable, but by no means erhaustive, set of properties for the

language:

1) Neutrality.— The language should not make any assumptions about the
physical implementation. The control primitives available in the language
determine the control structures that are easy to describe. |If the language
control primitives ~re too rigid they will limit the implementation alternatives.
For instance, CASSA’ DRE [Anceau, 1969] uses state registers as primitives.
Systems which do not decode values from centralized state registers are
therefore difficult to describe.
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2) Fidelity.-= The description should make the intentions of the designers
transpare;it to the users. This is somewhat in conflict with the neutrality
property.

2.1) Timing Fidelity.~ Existing languages such as ISP [Bell, 1971)
describe algorithms with no reference to timing. Thus it becomes difficult
to express the behavior of low level components. Another exarple is the
description of cooperating parallel processes, such as interrupt systems,
where timing is critical.

2.2) Structural Fidelity.~ Data paths can be inrerred from the description
but these may be a maximal set and may not reflect the actual structure of
the machine. At some level of description the transfer operation, usually
denoted by "«", means "by whatever path available"”. For a more detailed
description the "« correspond one-to-one with physical data paths.
The same remarks can be applied to the specification of the functional units
in the syslem. The presence of a "+" operator in a register transfer
expression does not indicate which of possibly many functional units is to
carry out the operation.

3) lierarchy,- Frequently systems design is conducted in a top do ~n manner,
The various portions of the system are first described at a higi level. Then the
designer specities one subsystem in more detail, \'.>a another, and so iorth,
At any given time a systems desian might consist of some subsystems designed
down 7 the gate level, some less detailed designed at the register transfer
I level, and some merely described as algorithms. The coexistance of multiple
. levels of description ic difficult to attain in existing design languages where top
down refinements, if possible at all, are performed on a global basis by ad=hoc
| manual procedures. The addition of a clock at some levei of detail, for
instance, requires the rewriting of the entire description, Any validation that
has been performed on part oi the description would have to be redone.

The final sectioi introduces, via examples, some thoughis on new mechanisms
for a computer descriptive language that attempt to satisfy some of the above

requirements.,
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A STRUCTURED PROGRAMMING APPROAC! TO A
/

<OMPUTER DESCRIPTION PROBLEM

This section presents, via examples, some aspects of th¢ use of new computer
description concepts. We will present our ideas as an exercise in top down design.
The objective is lo design a PDP=8 like minicomputer, starting from a high level
description and carrying the design down to a level in which the specific implementation
of the machine 1s described. We will make use of sorie structured programming
concepts that allow us to defire entities of the machine/ (e.g., memories, registers,
functional units) independently from the use of the entitif.;,s in the description, These
concepts will be added to the descriptive language 'SP [Eell, 1971]. The choice of ISP
as a framework is based on the authors tamiliarity with the notation and not, on a
comrmitment to addopt an ISP derived notation as the only vehicle for our research. Qur

concern for allowing evolutionary notations is also reflected in certain liberties we have

taken with respect to the syntax of the language as published in [Bell, 1971].

The concept of form [Wulf, 1974] allows us to define the data types available in
the language by specifying not only the representation of the typed objects but also
the operations that can be performed on these objects. A typical form declaration
concists of a header and a body. The form header specifies the form name und the
formal parameters used inside the form body. The form body consists of a ceclaration
part, in which variables to be used in the form functions can be defined, and a set of

functions and operations describing the operations that can be performed on variables

declared as instances of i.e form.
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For instance, we can define a form “memory" that describes a particular
hardware component. At some early point in the design process a memory can be
considered as a vector of integers, thus avoiding the specification of things like word
length, number representation, addressing, etc. The following example is an instance
of such high level memory definition%. Two functions (operations), “read"” and "write"
are defined as accesses to a vector of integers:
form mermory (integer size) =

{daclare m = integer vector (size);
function read(integer addr) = return m{addr};

function write (integer addr,val) = m{addr ] «val;
exporf read, write }

The gexpart statement is used to indicate the form entities (variables and
operations) that are accessible to the rest of the program. Thus we can restrict the
access to certain elements of the form by not exporting them. The read and write
functions are evoked automatically, depending on the conlext in wich the memories

appear, i.e., as a source (read) or a destination (write) in a statement.

Similarly, we can define a form “register" that behaves like an integer:

% In order to keep the examples within a reasonable size, we are appealing to the
intuition of the readers to supply some of the missing details concerning iie semantics
of the forms. In order to make the process easier, we have taken some liberties with
the syntax of ALPHARD and its forms {Wulf, 1974].
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form register =
{daclira r =integer;

infix +(register a,b) = raturn a+b;
infix ~(register a,b) = raluzn a-b:
inix * (register a,b) = raturn axb;

infix #(register a,b) = raturn asb;
function read = geturnr;

{unction write (integer vai) = r «val;
gxporf +,-,%,4, read, write}

The wfx declaration 1s used to define binary infix operations on instances of the
form. Notice that there 1s nothing in this definition that reveals the nature of the

register and its structure. A more reaiistic definition would be the following:

farm register(integer size) =
{daclara r =0t vector(size);
function value =
becin ¢aclyra integer sums
sume —=r[1];
incr from 2 {or.size do sumesum*2+r[i];
return sum;
ends
iy + (register a,b) = polurn awalue +buvalue
i = (register a,b) = roturn a.value —b.value;
nix % (register a,b) = ralurn a.wvalue kb.wvalue;
infix +(register a,b) = retura a.value tbovalues
furction read = zeturn r.vafue;
function write (irteger va') =
gocr i fromrsize to 1 do begin r{i] ¢ val mod 2; val €val ¢ 2; end;
export +, =, %, ¢, read, write };

In the example above, the register is defined as a vector of biis and the value of
the register s encoded using the two's complement representation. The function
"value" is not exported, thus the real nature of the regicter as a bit vector is hidden.

The read and write functions are redefined to allow the transfer of values in and out of
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the register. The "dot" notation i1s used here to indicate the access to an attribute of a

register. Thus r.size is the register size, as specified in the declaration.

Top Level Description. = The following description of the PDP -8 assumes the register
and memory forms defined previously. For the cake of brevity we are not defining the

IO_EXECUTE and OPR_EXECUTE processes evoked by the EXECUTE process.

gaclare memory M[0:4096];
declare register AC<0:11),
RO:11>,
PC<0:11>,
Li€d;
LACK0:12>:=LOAC,
DATA_SWITCHES . 0:11),
STOP_SWITCHC >,
CMPAKO: 11>,
OP_CODE :2IR<0:2),
PAGE_BIT:=IR<4)>,
INDIRECT _BIT:=IR<3);

-

INTERPRETER := (IFETCH;next DFETCH;next EXECUTE snext INTERPRETER) ;
IFETCH:= (IR«M[PC);PC «PC+1);
DFETCH := (COMPUTE _ADDRESS ;next DEFER_ADDRESS);

EXECUTE := ¢

(OP_CODE ="AND' =) AC « AC AM[CPMA]);

(OP_CODE ='TAD'=LAC «LAC+ M[CPMA]);

(OP_CODE ='ISZ" = M[CPMA ] € M[CPMA] +1 snext
(M[CPMA]CO=PC«PC+1) );

(OP_CODE="DCA'= M[CPMA] €AC;AC«0);

(OP_CODE =".iS' = M[CPMA] «PC;PC «CPMA +1);

(OP_CODE ="JMP' =) PC ¢ CPNMA) 0

(OP_CODE ="10" = I0__EXECUTE);

(OP_CODE ="OPR' = OPR_EXECUTE)

)s

COMPUTE_ADDRESS = (
(PAGE_BIT = | = CPMA « PAGE_NUMBER JPAGE_ADDRESS ) ;
(PAGE_BIT=0=>CPMA « 0 OPAGE_ADDRESS)
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)3
DEFER_ADDRESS :=
INDIRECT_BIT=1=
(1018 ¢CPMAC1718=>M[CPMA] ¢M[CPMA]+1);
next C2mA «M[CPMA]
)3

Redeginition of the memory [orm.~ After the above definition, the design can proceed
in several directions, for instance, we can define the register operations in terms of
bits, we can detine tne interpretation o/ e instruction register, or we can define the
memory operations i~ more detal, We choose the latter, at least because it will
produce a more homogenzous uescription (e, the operations will be in terms of

registers).

Defining tne memory as a vector of registers requires two parameters, the
number of registers (words) and the length of each register. The memory in the
following definition requires two auxiliary registers to perform the read and wriie
operations. These registers are not exported out of the form, i.e., they are local to

the memory module.

torme memory {'nieger size ,wiengtn) =
{declare m = register (wiengtn) vector (size);
mar = register (log2(size});
mbr = register (wiength);
accecs mregister x] = m{x.wvaluel]s
funciion read(register addr) =
pecin mar «addr; mbr em[mar]; relurn mbr; end;
function write {register addr, val) =
begin mar «addrj mor «valy m[{mar] €mbr; end;
export read, write }
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The accass declaration indicates tnal ihe value ot the register 1s used as the
index in the memory vector. The effect of the redefinition of the memory is illustrated
in the following description, in which the read and write operations on the memory have
been replaced by ihe corresponding sequences giver in the form. The description of
the rnachine itself has not chenged, only the definition of one of its components. This

allows us to redefine the memory at any point in time without having to change the

description,

declare merory M{0:4095)<0:11>3
declare register ACC0:11),
IRCO:11),
PCC0:11>,
L<?,
LACK0:12)>:=LUAC,
DATA_SWITCHESKO: 11>,
STOP_SWITCHK >,
CMPACO:11D,
OP_CODE :=IRC0:2D,
PAGE_BIT:=IRK4),
INDIRECT _BIT :2IR<3>;

INTERPRETER := (IFETCH;next DFETCH;next EXECUTE jnext INTERPRETER)
IFETCH := (mar € PCjnoxt mbr «M[mar];next IR embr;PCEPC+1);
DFETCH := (COMPUTE _ADDRESS ;next DEFER_ADDRESS);

EXECUTE o= (
(OP_CODE ="AND' =p riar «CPMA ;next mbr eM([mar ];next AC+AC Ambr);

(OP_CODE ="TAD' = mar «CPMA ;next mbr «M[mar]jnext LAC «=LAC +ai0r )3
(OP_CODE ='ISZ' = mar €CPMA ;noxi mbr «M[mar ] snext mbr €mbr + snext
M[mar] ¢ mbr ;next (mbr<O=PCePC+1) )
(OP_CODE ="DCA' =» mar «CPMA;next mbr «PC;next M[mar] €mbi ; AC€0);
(OP_CODL ="JMS' =>mar «CPMA;next mbr «PC;next
M[mar ] €mbr; PC+CPMA+1);
(OP_CODE ="JMP*' = PC «CPMA) ;
(OP_CODE ="10" = 10_EXECUTE) ;
(OP_CODE ="0PR' = OPR_EXECUTE)
)s
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COMPUTE_ADDRESS := (
(PAGE_BIT=1 =SCPMA ¢ PAGE_NUMBER OPAGE _ADDRESS);
(PAGE_BIT=0 =2CPMA €0 OPAGE_ADORESS)
15

DEFER_ADDRESS := (
INDIRECT _QiT=1=
(1718<¢CPMA L7 L8 = mar «CPMA ;next mbr €M[mar ] snext
mbr €mar + 1 3raxt M{mar] ¢mbr) shext
rar € CPMA snext mbr eM[mar ] ;next CPMA €mbr

¥4

Redefinition of the register form.- SO far we have been dealing with registers as it
they were integers. This is cimply an abstraction. Hardware registers are built as
array of bits and tneretore tha operations must be ultimately defined in terms of logic
networks operating on individual bits. The form network is not defined. Informally, it
represents a set of wires (memoryless components) used to carry information back and
forth between other components. The following definition of a register indicates how
the operations could be per.ormed:
form register (integer size) =
{daclare r = bit vector (size);
access r<integer x7 =
becin declare n = network (1) n[1]€r[x); n; end;
access rintegerpair x2 =
begin deelare n = network(x.ub.value-x.lb.\alue+l);

forzlliinnda n[1}€r{i+xdb]; n
end;
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wfix +(register a,b) =
221n (oclare x = network(asize+1); carry = network(a.size +1);
carry{carry.size]) «0;
decr i from a.size to 1 g0
w2l
x[i+1]+ali]@b[i]@carry[i+1],
carr,[J]Pa[n]Ab[a]Va[n]Acarry[a+1]vb[|]/\carry[ +1);
end;
x{1])ecarry{l];
celurn x;
end;
wfix = (register a,b) = ...,
nafix + (register ay network b) =
pon geckiga x o register(b.size); x €by relug a+x; ends
Wiy + (networs aj register b) = ...,
wilx -+ (register a; inieger b) =
bogin daclare x = register (asize); x «b; calurn a+x; end;
function read = returnr; .
funstion write (integer val) =
docr 1 from reeize 1o 1 (0 hagin r{i] € val mod 23 vai«val § 2; end;
infiv write(register b) = focslvimb gz r(i)«bli]s
nfix write{network 0) = {cral o garfijed(i]s
gxport +,-,%,%,7ead,write }

With the last example the power of the torm mechamism 1s mor apparent. We
can define and redefine data types ana operations without disturbing the rest of the
description. The example also shows a possible way of implementing the adder. |f the
description 1s taking hiteraily, it implies that every register is in fact a functional unit,
capable of performing any aritnmetic operation. For a first approximation tnis rmay be
an acceptable definition. A better definition would declare a single tunctional unit and
all register operations couid then be defined using this unit. it is clear also that we can
declare other types of registers, for instance, counters that would look like any other

register but with the property that some simp e operations (e.g., add 1, subtract 1, set

to 0, etc) would be performed directly in the register.
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Signals and Control iixpressions.= Let us assume that we are satisfied with our
previous description (it 1s by no means complete, but for the sate ¢f brevity let us
accept it). The sequencing of operations as expressed in the description does not
indicete how the control passes through the machine description, i.e., the semantics of
"noxt" and ";" is specified only to the point of wnowing that certain actions are

performed concurrently or that some actions must be completed before others can

start,

We can formalize the sequencing of the operation by using control expressions,

based on an underlying tinite state machine, of the following tyre:

pre—condition : action | post=condition

The pre=condition represents the condition that must be met before the action
can be executed. The action is initiated as soon as the pre —condition 1s satisfied. The
post —condition indicates the conditions that exist upon cnmpletion of the action. The
pre —condition is expressed as a conjunction of signals and boolean expressions. The
evaluation of the pre=-condition rmust be an indivisible, timeless action. The
post —condition is expressed in {erms of the signal operator, V. The O operator
generates a signal that can be used by the pre —conditions, The signals are assumed to
be unit pulses, therefore they exist only for a brief time, enough to evalu. 2 the
pre —=conditions. The latching operator & can be used to store a signal for later use in
a pre-condition. Latched signals will obviously exist for longer periods of time but
they will dissapear as soon as they are usec ..., as soon as the pre =condition that

contains the latched signai ic met. There is a memory device associated with each
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instance of the & operator.

Examples:
sis e o+ ¢ 0 | D(s2)

| D(s2,83)

slAaa=zlse . o
slns2: . +

R(sl)AaL(s2): .

Given the following BNF description of 5P, we can algorithmically transform tne
ISP description into a set of control expressions, according to the rules given later on:

{process) 115 Clabely = ( <s=—action? }

(s=—action? 112 ¢p-action? | {p—actiony nexl s =action?

{p=action2 337 {c=-action? 3 {p=action?

Cc —action? 3= <action? | { <exp2 = (s =action? ) |
{decode Lexp? = Caction=list) )

Caction=list> 1= Caction | Caction=list> 3 Caction?

action) 3= ¢r —transfer> | <label? | ( <s=action> )

ISP to Control Expressions Translation Rules.—

pre —condition action post ~condition

descripuion
1) label := ( g —action ) label s s—=action | D(label_done)
2)Sisee; B D(S)) Si 4 | DS
Si ey | DISI")
2 (SN AL(S") : | O(S))
3) Si ¢ o next 8 | D(S)) Si P o | O(Si")
Si' 1 f8 | O(S))
: B | D(S))

4)Si : =8| D(S)) Sine
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SiA - : | 0(S))
5) Si : decode o« =40, ..., 8n | O(S])

Sine =0 : 80 | D(S))

.S|A<x=n : An | 50(Sj)
6)Si: (e ) | D(S)) Si Y3 | D(S))
7) Si : label | D(S]] Si : | D(label)

Si Alabel_done : | 0(S))

As an example, we wil appl the above rules to part of the PDP8 description,

specifically, the {SZ instruction.

1) Applying rule O to the EXECUTE process:
EXECUTE SRR | O(EXECUTE_DONE)
2) Applying rule 5 to separate the individual instructions:

EXECUTE AOP_CODE ="ISZ" R0 o'bloiE | O(EXECUTE_DONE)

3) Applying rule 3 several times to the s —action describing the instruction:

EXECUTE AOP_CODE ="ISZ' : mar «CPMA | D(S1)
Sl ¢ mbr €M[mar] | 0(S2)
S2 : mbr €mbr +i | D(S3)
S3 : M[mar] €mbr | D(54)
sS4 t ( mbr<O=PC€PC+1 ) | D(EXECUTE_DONE)

4) Applying rule 4 to the last component:

EXECUTE AOP_CODE ="ISZ' : mar «CPMA | O(S1)
Sl : mbr €M[mar) | 0(52)
S2 : mbr €embr+1 | s0(S3)
S3 t M{mar] €mbr | D(S4)
S4 Ambr<0 :PCePC+l | D(EXECUTE_DONE)
S4A ~(MBR(O) $ | D(EXECUTE_DONE)
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The complexity of the actions in the control expressions can be arbitrary. This
allows us to expand the description in selected parts cf the machire. If we want to be
more precise about the timing of the operations we can add, to the form defining the
rnachine component, the .nformation necessary to indicate how the signais are produced.
For instance, we can add to the write operation in some register form the statement
"cional after 200" to indicate that the write operation takes 200 nanoseconds. A
synchronous machine could be specified by the statement “signal on P3" where P3 is

the nane of a clock phase.

Since we can in fact represent all the operations in terms of register transfers
with the appropriate delays, we have a convenient mechanism to ind cate the timin7 in a
machine. All we have to do i1s provide the appropriate gignal on or signal after

statements in the write function ot the forms describing each component.

At this point a reshutfling of the description may be desired to simplify the
control logic. It is advantageous to group the primitive operations by the
pre ~conditions under which they are triggered rather than by the position in an
opcode sequence. This is straightforward and easy to verity the correctness of the
transformation. A related preblem is the reduction of the number of control
expressions by renaming signals that are produced under similar circumstances and with
similar effects. The importance of this “optimization" is evident since the number of
different signals is related to the number ot possible states of the machine, part of

which must be encoded in the instruction code.
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CONCLUSIONS

We attempt to ease the task of programming by relativizing the production of
software to the machines in which it will execute. The vehicle is a symbolic description
of the hardware machine. This new area of application for computer cdescriptive
languages reauires some properties that are not found in existing notations. The use
of structured programming concepts in the deszrintion of a computer system wili allow

the solution of a range of problems, as outlined in tis paper, by manipulation of these

symbolic descriptions.
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