
AD/A-Ü04   092 

??^|E^SPECTS   0F   THE   SYMBOLIC   MANIPULA- 
TION  OF   COMPUTER  DESCRIPTIONS       MNIKUL-A- 

M.    R.   B a r b a c c i ,   et   a I 

Cirnegie-Mellon  University 

r e p a r e ci   lor: 

Air   Force    Otfice   of   Seien ti tic   Research 
Defense    Advanced   Research    Projects   Agencv 
National    Science   Foundation 

July    197 4 

DISTRIBUTED BY: 

urn 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 

tmam 



UNCLASSIFIED 
irCURITV  C t. *'..'.IF I ; ATin«.   or   TMIJ  PAST   fl      "i t>»t» Knl-re 0 

REPOirr DOCUMENTATION PAGE 
KKAÜ INSTRUCTIONS 

REPORR COVI   .ETtNQ KORM 

t     HLt'C-iT   SUMtltK 2   OOVT   ACC t SSION KO 

4      TlTUC (»n't Submit) 

SOME  ASPECTS  OF  THE   SYMBOLIC M/iNIPULATION OF  COM- 

PUTER  DESCRIPTIONS 

3     hCCI^'KNT S CATALOG NUMSCN 

S.    TYPE  OF   REPORT   4   PFRIOO  CO'.":Rtt 

7.    AUTMORfi; 

M.R, BARRACCI AND D.P. SIEWIOREK 

9     PERFORMING (  HOANIZATION  NAME  AND ADDRESS 

Carncpic-Hcllon University 
Department  of Computer  Science 
Pittsburgh,   Pennsylvania     15?13 

s.   TYPE or REPO 

Interim 

e. PERFORMING ORG. REPORT NUMBER 

8. CONTRACT OR GRANT NUMElLRfsJ 

F44620-73-C-0074 

II.    CONTROLLING 0^ FICE  NAME   AND  ADDf<L5S 

Defense Advanced Reserr-.h Projects Apency 
1400 Wilson Blvd 
Arlin^ton, Virginia   

T*     MONITORTNG  AOENCY  NAME  «   ADDHFSbfyf dilleienl Irom Cantrolllnt Olltce) 

Air Force Office of Scientific Research (NM) 
1400 Wilson Blvd 
Arlington, Virginia  22209 

10.    PROGRAM  ELEMENT. PROJECT.   TASK 
AREA  ft   WORK  UNIT  NUi   dERS 

61101D 
AO-2466 

12.    REPORT   DATE 

July,   1974 
13.    NUMBER OF  PAGES 

26 
15.    SECURITY CLASS, (of ihn rr.-ofl; 

UNCLASSIFIED 

IS«"     DFCL ASSIFIC ATION' DOWN GRAD1 SO 
SCHEDULE 

16.    DISTRIBUTION  ST ATEMENT   (ol Ihlt Heporl) 

Approved   for  public   release;   distribution  r.nl'• .Itcd, 

»7.    DISTRIBUTION STATEMENT (ol lh» abKrad tnltttd in Blozk 20. II dlllmfnl Irom Htporl) 

18.    SUPPLEMENTARY  NOTES 

19     KEY WORDS ('Continue on MVOTM 'Id» II necaatary and Idtnllly by 6/JC* num6ar> 

NATIONS' 

WCE SDUGCT ID CHANGF 
20.     ABSTRACT  CConl/nu» on re. ana aid« /( nrrassar/ and tdendfy !>)' bfock numbar;      Trfl J 11 lona 1 1%'    COmpUter    dOS- 

criptive languages have been designed primarily for human commmication and/or sim 
ulation.  Due to this narrow range of applications the existing languages have 
taken on a stron degree of similarity.  In this paper we present some applications 
in the realm of automatic design of both hardware and software where a computer 
description language, could serve as the information exchange media between the 
user and the design automation svstem.  The paper discusses an environment fotr 
research on the applications of computer descriptive languages, emphasizing the 
multiplicity of users ani tasks that may coexist on anv point in time.  Some pro- 

DD    |  JAN"!    1473 EDITION  OF   1  NOV 6S IS OBSOLETE ITNCT.ASSTFIED 

 £. m 



20. /^STRACT (continued) 
porties needed in a computer descriptive tanguAgc are presented, 
programming approach to hardware design is presented by example, 

A structured 

1A 



Some /^pects of ihe Symbolic (vlampulation 
of Computer Descriptions   * 

W.R. Barbacci and U.P. Siewiorek 
Department of Computer Science 

Carnegie-Mellon University 
Pittsburgh, Pa. 15213 

July,  1974 

ABSTRACT 

Tradulonaily computor dcscr.puve languages hav^ been designed primarily for 
human communication and/or simulat.on. Due to this WO* range of applications the 
existing lansuases have taken on a strong degree of similarity. In ihis paper we 
preS some applications m the realm of automatic design of both hardware and 
software where a computer description language could serve as the mformat.on 
exchange media between the user and the design automation system. The paper 
discusses an environment for research on the applications of computer oescnptive 
languages, emphasizing the multiplicity of of users and tasks that may coexist an any 
point in time. Some properties needed ,n a computer descnptiv- language are 
presented. A structured programming approach to hardware design is presented by 

example. 

* TMl P^per de-scribes a current research effort at Carnegie-tviellon Umversity. The 
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Some Aspects of the Symbolic Manipulation 
of Computer  Descriptions 

INTRODUCTION 

Traditionally computer descriptive languages have been designed primarily for 

human communication and/or simulation [Chu, 1965; B»il, 1971]. Due to this narrow 

range of applications the existing languages have taken on a strong degree of similarity 

[Barbacci, 1973a]. There are other applications in the realm of automatic design of 

both Hardware and software where a computer description language could serve as the 

Informatier exchange media between tne user and the design automation system. By 

examining these applications the information requirements can be determined and from 

these a 'anguage tha» serves for several (but still not necessarily for all) applications 

can be designed. 

This paper descnoes some preliminary resul.s of a research group at 

Carnegie-Mellon University. We present a case for machine-relative software and 

other related areas of research. A brief discussion of the domain of tasks we are 

considering is followed by a more detailed descnpt on of the requirements for two of 

them, namely the design of machine relative compiler-compilers and the design of 

modular hardware systems. We present an overview of an environment for research in 

these multiple applications. The key word here is "multiple". We visualize a system 

that will support multiple, concurrent users, investigating different aspects of the 

problem domain, implementing subsystems in different prog ramming languages which 

manipulate machine descriptions given in different computer description languages. One 

of the key issues is the specification of adequate computer description 'anguages.   We 
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discuss some properties desired in such notations and, finally an example in a 

structured programming approach to top-down computer design is used to present 

some of our ideas in just one of the several areas of our research interests, albeit a 

crutial one. 

MACHINE RELATIVE SOFTWARE 

There is a continual stream of new nacnmes spurred Dy the advent of 

minicomputers and microprocessors. Earh macnine has a different Instruction Set 

Processor (ISP) [Bell, 1971]. The emergence of microcoded systems with the option 

of user defined instructions has increased this flow of ISPs. Each new system requres 

supporting software and the amount of software grows for any individual system as 

user requirements grow. 

There are a number of directions in which to seek a solution to ease the bürde,, 

of software development. Standardization of software packages written in high level 

languages such as Algol, FÜRTRAN, and COBOL is one approach. It reduces the amount 

of software needed for each new machine. A racond direction is in terms of better 

software production systems. This may be sought either in terms jf implementation 

systems (high level languages specifically designed to aid implementation) or in terms 

of better software methodologies (e.g., structured programming). Another direction, 

which we will consider in detail, is to relativize the production of software to the 

description of the machine. 
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The central ingredient of this latter approach is the description of (Omputer 

systems in a symbolic form, ";ucn that a ran^e of problems can be solved by 

manipulation of these descriptions. We stress tha need for diversity in the problem 

domain if we are really to understand how to operate relative to computer descriptions. 

The next section will illustrate some points in the problem domain. 

APPLICATIONS OF COMPUTER DESCRIPTIONS 

To oe ciear about the multipurpose character of a computer description, let us 

list several Kinds of problems that one might want to solve, each of which requ ■■es an 

abstrac'; description of a computer. 

1) Compiler-Compiler.- A system that takes as input a description of a 
language r.nd a description of a machine ond outputs ) compiler for thai 

cot iputer. Given the state of the art, the language would prooably be 
res'.rcted to be Algol-like. [Miller, 1971] is an early attempt at a solution to 

this problem. 

2) Verification uf I/O programs.- Given an 1/0 program, such qs a device 
handler, and a description of both the computer and the hardware device 

controller, verify that the program works. This problem has some special 
features that set it apart from the general program verification problem, 
brides its importance as an applied task: (a) its strong dependence on the 
deicripticn of computer systems in classic for.n (i.e., at the Register Transfer 
level) rather than in some abstract semantics, (b) the programs themselves 
may not be very complex in terms of their algorithms; rather the complexity of 
the task arises from the openness of the environmental states that have to cope 
with Jiimmg, concurrency, etc.) 

3) t'rofrrammir.g o) Microcodcd Special Cwnpulcrs.- The »bility to create 
S3eclalized computers to perform particular narrow classes of algorithms 
economically cpens a world of device dependent, one-time programming tasks 

- -      * — —      ——mm Mrf 
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tnat poses an immense problem. These systems attempt to opt.mize 
performance; tneir organ.zation cannot be dictated Oy considerations of 
programmmg ease. Tneir programming will become o.fncuit in the extrtme 
especial when no opportunity will ex.sts for the growth of programmmg 
Know-now. Tms suggests that what the human will do is .0 program relative 
to a machine description that he has barely assimilated. Hence it is reasonab.e 
to construct programm.ng systems that operate relative ^o machine aescnpt.ons 

of a class of machines. 

4) f*dtn»fllM*SyU*m*.- Given a desired macnme described .r terms 
of some specification language, and g^ven a space of machines def.ned by a 
class of Register Transfer [Bell. 1971] level modules, design a machine 
according to various constraints and cntenon tunctions. Th,s is a ^assic design 

situation which ,s wortn studying, both m terms of ^e;sta^nS t
h

hft
nat

n
U

f
re

t " 
design and in terms of automating computer design The feas^ of this 
approach has been demonstrated by the EXPL sy.tem [Barbacci. i973b]. 

5) Dosi.nio^rificution.-   Given   a   funct.onal   specification   for   a  computer 
and a s^'ace o   computer systems defined by a computer description language 
design a computer that performs to the specification.    This is -otner form o 

he'classical design tas.. It differs .rum <4) above. ***** ^'^ 
guen some general functions, create an ISP for a computer. A ypi al UjMn 
(AH. g-en an ISP, design it in terms of Foster Transfer level modules. 
Formally they may seem iden^cal. but the design spaces looi. quite d.nerent. 

6) Mf« Vorifiranon.- Given a specification for a computer and a ^"f™ 
of that computer In tne language, verify that the computer sa isf es he 
specification. We can also include here the automatic genero.on of testir Z and 

diagnostic programs. 

7) Manual «rneration.- Given a computer defmed in the language, ^eate the 
documentation for the computer. This tas. is quite different from tne ones 
above, but also mvolves undarstandrng and manipulating a computer description. 

The applications listed above place a variety of demands on the computer 

descriptive Imguage and it ,s hardly clear whether a single language can cover the 

entire spectrum. The next sub-sections g,ve some examples of the requirements for 

two rather different If* and an outline of a possible system to meet the variety of 

requirements. 

*mmm 
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ilmehbtt tidmive Cemptttr-CamfUm,- By "machine relative" we imply an extension to 

the traditional definition of a compiler-compiler, in which a specific target machine is 

assumed. Due to this limitation, compiler-compilers have solved only part of the 

automatic programming problem and as a result they have not been very succesful. A 

better approach has been to produce a compiler that generates pseudo-machine code. 

For each new ISP the programmer simply provides trie equivalent of the 

pseudo-machine instructions in terms of macros written in the target machine language 

[Feldman, 196C]. Whue runnöbie programs are produced by tnis tecnmque they are 

poor in terms of size and run time efficiency. There are several reasons for this lack 

of efficiency: built-in preconceptions about existing instructionr, the introduction of an 

extra level of abstraction that must be hind translated, the lack of consideration for 

specific machine features that can do certain things more efficiently that others, etc. 

Hence we are primarily interested m generating an optimizing compiler. In order 

to generate machine code that will rival that of a good programmer, a 

compiler-compiler must extract the idiosyncrasies of the machine. For example, one 

way to add four to a register m the PDP-li [DEC, 1973] is to use the instruction 

"ADD ttA.Rl". This requires two 15-bit words, one for the instruction and one for the 

immediate operand 4. Kowever, the automcrement addressing mode adds two to a 

designated register after using its contents as the address of an operand. Thus an 

instruction that effectively is a No-Operation code and uses the automcrement mode on 

the register for both source and destination operands cat achieve the effect of adding 

4 to the regster. Thus "CMP (R1) + ,(R1)+" will add 4 to Rl and requires only one 

16-bit word.   Note that the compare mstrcrtion is not a true NOOP since it will set the 
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conaition code registers according to the result of the comparison. The compiler has to 

insure that this side effect is not critical. One such critical case would be if the 

contents of Rl is used as a loop maex and a loop exiting branch was to follow the 

ada'tion. Note further tnat knowledge of the relative '-.peed of instructions and 

addressing modes may be necessary to make a cnoice on the basis of speed. 

Some of tne information that needs to be extracted from the machine description 

is: the data types, (address, integers, floating point, etc), operations on the data types 

(add, subtract, multiply, etc), location of data types (memory, register, etc), and 

instruction side effects (condition codes, use of hidden operands, etc), instruction side 

effects are particularly important« The following PDP-11 code sequence is a good 

example: 

SUB    A,B 
TST     B 
BLE    LABEL 

where the TST instruction serves only to clear the overflow condition code. If the 

Branch on Less or Equal instruction (which is condit.oned by the overflow condition 

code) is replaced by a Branch on Equal instruction (not dependant on the overflow 

condition) then the test instruction is superfluous and can be deleted. 

One of the desired goals of a compiler is to produce the minimum cost code 

sequence which evaluates a given program. It is therefore necessary to explore all 

possible sequences that represent the evaluation and are semantically equivalent and 

eliminate   those   that   exceed  the   least-cost  criteria.    This  semantic  equivalence   is 

ABH 
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related to the effect on the global program state in the context in which the sequence is 

to oe executed, it is therefore necessary to express the global progrjm state 

conditions under which a code sequence can be applied, as wen as the resulting 

tranofo.mations on the state. This synergistic effect of machine language instructions 

has not been considered part of the realm of traditional computer description languages. 

The cost of compile time generation of cases must be weighted against the 

advantages of finding the best code sequences. An intermediate solution is the 

exhaustive generation of templates to guide the code generation, as in traditional 

compilers. This once-only exhaustive generation process is more likely to find all the 

obscure cases and discover unspected semantic equivalences tnan hand-designed 

templates [Newcomer, 1974]. 

Modular Design.- Now cons der a modular dc-sign program that produces a finished 

machine design in terms of a preaesenbed module set. A modular implementation of a 

system can usually be divided into a data part and a control part that directs the actions 

of the data part [Bell, I972J. The data types and their operations can be implemented 

via templates of modules. Again, as in the case of the compiler-compiler, synergistic 

effects must be discovered in order to produce the most efficient network or modules 

for a given machine description. This implies certain commonality of information 

required by this two applications. However, there are many details of a module sft 

that the compiler-compiler does not need to know. Assume that the modules are 

commercially available semiconductor chips and that the output from the design program 

is a printed circuit board layout.    Knowledge of chip orientation, power requirements, 

A _l «M mtmm 
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and chip spacing is needed by the design automation system to produce a wiring list. 

Hence there is information contained in the computer description that is required 

by two or more applications while some other information is particular to a single 

app.cation. 

/J roscafch environment for ihr symholic inani/julatio» of machine descriptions.--      The 

sin-, 'ar requirements among tne several appiicat.ons of computer description languages 

suggest a research environment centered around a data base in which macnine 

descriptions and manipulation programs are maintained, as depicted in Figure 1. 

simulation compiler-compiler 

I 

I 
I 
LI 

1 

design-automation 

I 
I 

L2 

I I 
I I 
L3 . .. 

I I 
I I 

•   •   •   • 

data base 

Figure   I. The environment 

The user inputs informstion into the data base via one or more computer 

description languages. The application programs manipulate ihe global data base to 

extract information in the format dec.red by the application. 

The  data  base  and  it;   manipulftion programs must  be able to support  many 
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different notations and areas of application.   This can oe expressed by tne following 

set of required features: 

1) Must hold all computer descriptions for the different applications. 

2> Must be reasonably independent of any particular pregrmmmbtt languöge. 
rhil is necessary to aiiow researchers the flexibility to implement aophcation 
programs (i.e. computer description manipulators) in a programmm', language 
of tneir cnoice (e.g., FORTRAN, Algol, APL, LISP, BLISS, etc.) 

3) Must be mdependeni of any particular comimior descripiion language. The 
reason is tnat the computei descriptive language used to create elements of the 
date base is a moving target. It is also the case tnat so ne notations may be 
more suitable tnan otners for specific paris of a machine description. This 
implies an evolutionary process, during which many üifferent notations can be in 
use simultaneously. 

^) Must be interactive to allow casual and non-casual use. This requires a 
set of facilities for interaction in at least one language. 

5) Must allow incremental uie by many limulttntOut users. By incremental 
use >'e mean the ability to carry a design through stages of complt-, jness 
during wmch different users add application dependant details to a computer 
Description.    This is needed for experimentation. 

The features outlined above present a set of requirements that may be 

conflicting. One of the reasons for this generality, not addressed in previous 

applications, is that the objects we want to manipulate, namely computer descriptions 

represent a tremendously large domain. We a:e taikmg not only ihout hacaware 

(Logic, Register Transfer, and PMS levels [Bell, 1971]) but d^so aoout algorithms 

(Instruction Set Processors and programs). It is also the case that we are trying to 

apply a coherent methodology to nardware desi in, a domain cha'-acterized oy rather 

abrupt transitions between its descriptive levels (more so than among software levels). 

Ideally we would like to converge on a nngle computer descriptive language so 
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that people in the environment can interact more easily a„iong themselves. On the 

other hand, we recognize tne fact tnat r ota» -ms go through evolutions and the research 

environment must be open along tms dimension. An; kind of tight associat.on between 

a computer der-cnpticn language and the data base will reduce tne latter's usefulness. 

The next section describes some thoughts about tl.e requirements of a computer 

descriptive language At this point in time, however, we hold no commitments to any 

particular existing language or coiviomation of languages. This allows us the freedom to 

speculate and experiment with several, perhaps conflicting ideas. Therefore, our use 

of a particular synkx m the example given as a structured orogramming approach 

should not be construed as a language definition. 

REQUIREMENTS OF A COMPUTER DESCRIPTIVE LANGUAGE 

One of the problems with existing hardware descriptive languages is that they 

tend to bind the user to a v,ew of the world that is ngid and difficc't to modify. We 

feel that the semantics of the l?iguage should be under control of the designer. The 

folk wing are a desireable, but by no means e>haustive, set ot properties for the 

language: 

1) Neutrality.- The language should not make any assumptions about the 
pnysical implementation. The control primitives available in the language 
determine the control structures that are easy to describe, if the language 
control primitives w too rigid they w,ll limit the miplementation alternatives. 
For instance, CASSA::DRE [Anceau, 1969] uses state registers as primitives. 
Systems which do not decode values from centralized state registers are 
therefore difficult to describe. 

g — —        ^—^^^^^———»—^^—^>—^ 
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2) h'iddity.- The description should make the intentions of the designers 

transparct to the users. This is somewhat in conflict witn the neutrality 
property. 

2.1) Timiiia fidelity.- Existing languages such as ISP [Bell, 1971] 

describe algorithms with no reference to timing. Thus it becomes difficult 
♦o express the behavior of low level components. Another example is the 
description o: cooperating parallel processes, such as interrupt systems, 
where timing is critical. 

2.2) Structural lidolity.- Data paths can be imerred from the description 
but these may be a maximal set and may not reflect the actual structure of 
the machine. At some level of description tne transfer operation, usually 
denoted by "♦-", means "by whatever path available". For a more detailed 
description the "♦-" correspond one-to-one with physical data paths. 

The same remarks can be applied to the specification of the functional units 
in the system. The presence of a " + " operator in a register transfer 

expression does not indicate which of possibly many functional units is to 
carry out the operation. 

3) Hierarchy,- Frequently systems design is conducted in a top do vn manner. 

The various portions of the system are first described at a hign level. Then the 

designer specifies one subsystem in more detail, lhan another, and so forth« 
At any given time a systems design might consist o' some subsystems designed 
down to the gate level, some less detailed designed at the register transfer 
level, and some merely described as algorithms. The coexistance of multiple 
levels of description is difficult to attain in existing design languages where top 

down refinements, if possible at all, are performed on a global basis by ad-hoc 
manual procedures. The addition of a clock at some level 0' detail, for 
instance, requires the rewriting of the entire description. Any validation that 

has been performed on part or the description would have to be redone. 

The final section introduces, via examples, some tnougtüs on new mecnamsms 

for a computer desci iptive language tnat attempt to satisfy some of the above 

requirements. 
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A STRUCTURED PROGRAMMING APPROACil TO A/ 
/ 

COMPUTER DESCRIPTION PROBLEM / 

This section presents, via examples, some aspects of tfw use of new computer 

description concepts.    We will present our ideas as an exerc se in top down design. 

The  objective  i|  to design  a  PDP-8 like minicomputer, starting  from  a high  level 
/ 

description and carrying the design down to a level in which Ihe specific implementation 

of tne machine is described. We will make use of sor/ie structured programming 

concepts that allow us to defirp entities of the machine' (e.g., memories, registers, 

functional units) independently from the USP of the entities in the description. These 

concepts will be added to the descriptive language !SP [Eell, 1971]. The choice of ISP 

as a framework is based on the authors familiarity with the notation and not, on a 

commitment to addopt an ISP derived notation as the only « ehicle for our research. Our 

concern for allowing evolutionary notations is a^o reflected in certain liberties we have 

taken with respect to the syntax of the language as published in [Bell, 1971]. 

The concept of form [Wulf, 1974] allows us to define the data types available in 

the language by specifying not only the representation of the typed objects but also 

the operations 'hat can be performed or these objects. A typical form declaration 

consists of a header and a body. The form header specifies the form name and the 

formal parameters used inside the form body. The form oody consists of a rJeclaration 

part, m which variables to be used in the form functions can be defined, and a set of 

functions and operations describing the operations that can be performed on variables 

declared as instances of tht form. 

-C Mt. ^*m 
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For instance, we can def.ne a hum "memory" that describes a particular 

hardware component. At some early point m the design process a memory can be 

concidered as a vector of integers, thus avoiding the specification of things like word 

length, number representat.on, addressing, etc. The following example is an instance 

of such high level memory definition*. Two functions (operations), "read" and "write" 

are defined a? accesses to a vector of integers: 

tcna memory (integer size)  = 
(dftfitaCftffl = integer vector (size); 
ÜHKiiOü read (integer ^ddr)  = return rn[^rirlf" ; 
iuüliian write (integer addr.val) = m[addr] <-val; 
expor; read, write ) 

The tiXPQrt statement is used to indicate the Uma entities (variables and 

operations) that are accassible to the rest of the program. Thus we can restri:t the 

access to certain elements of the iflim by not exporting them. The read and write 

functions are evoked automatically, üepending on the conlext m wich the memories 

appear, i.e., as a source (read) or a destination (write) in a statement. 

Similarly, we can define a turn "register" that behaves liKe an integer: 

* In order to keep the examples within a reasonable size, we are appealing to the 
intuition of the readers to supply some of the missing details concerning i,,e semantics 
of the ifiims. In order to make the process easier, we have taken some liberties with 
the syntax of ALPHARD and its forms [Wulf, 1974]. 

rtM J 
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form register = 

{dOfiiaU r=integer; 
infix  +(re3ister a,b)  = r^t^rn a-fp; 

Liüx - (register a,b) = [glmfl a-o- 
in,'ix  * (register a,b)  = rgturr. a»b; 

infix ((register a,u)  = return a4b; 

tUQCiiaaread = talucfl r; 
L'^mLaa write('nteger vai) = r«-val; 

export +,-,«,T, read, write) 

The infix declaration it useo to def.ne binary infix operations on instances of the 

form. Notice tnat there is nothing m this def.n.tion that reveals the nature of the 

register and its structure.   A more realistic definition would be the following: 

form   registerimteger sii:e) = 

{declare r=oit vector(size); 

tuition vaiue    = 
be^in c ^clLire integer sum; 

Sum <—r[ i ]; 
incr i   from 2   lü r.size   dfi. sum <-surr.*2+r[i]; 

Liilum sum; 

iiifix T (register a.u)  = rM^ni a.value + b.value; 
infix -(register a,b) = LCium a.value-b.value; 
ir.'ix * (register a,b)  = Lil^m a.value#b.value; 
infix f (register a,b)  = cüiuiü «rvaluerb.value; 

furrl.on read = xiiiOl rvalue; 
fLnctiQn wntedrtcper \fti]  = 

f'^cr i from r.t.m tu 1 ilfl. üejin r[i] «-val moo 2; val <-val  T 2, end; 

IKBfid +,  -,  *,  T, reed, write }; 

in the example above, the register is defined as a vector of bits and the value of 

the register is encoded using the two's complement representation. The function 

"value" is not exported, thus the real nature of the regicter as a bit vector is hidden. 

The read and write functions are redetmed to ailow the transfer of values in and out of 
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the register. The "dot" notation it used here to indicate the access to an attribute of a 

register.    Thus r.size is the register size, as specified in the declaration. 

Top Level ürscription.- The following description of tne POP-8 assumes the register 

and memory forms defined previously. For the "-.ake of brevity we are not defining the 

IO_EXECüTE and OPR.EXECUTE processes evoked by the EXECUTE process. 

dec!,ire   memory   M(0:4096]; 
docljr^ register AC<0:li>, 

IR<0:11>, 
PC<0:11>, 
L<>, 
LAC<0:12>:=LDAC, 
ÜATA_SvViTCHESO:ii>l 

STOP_SW1TCHO, 
CMPA<Ü::i>, 
OP_C0üc:r|R<0:2>, 
pAGE_BIT:=lR<4>1 

I(MDIR£CT_B1T:=W<3>; 

INTERPRETER^(IF£TCM;next DFETCn;next EXECUTE;next ,NTERPRETER); 

1FETCH := (iR ♦-M[PC] ;PC «-PC + i); 

DFETCH:= (COMPUTE_ADORESS ;next DEFER_^DDRESS); 

EXECUTE 
(OP. 
(OP. 
(OP. 

(OP. 
(OP. 
(OP. 
(OP. 
(OP. 

); 

= * 
.CODE 
.CUDZ 
.CODE 

t 

.CODE 

.CODE 

.CODE 

.CODE 

.CODE 

= 'AND1 => AC «- AC A WiCPMA]); 
-•TAD'^LAC^-LAC+MLCPMAJ); 

■*ISr#MCCPMA]«>M(CPMA]4ltiMNl 
1M[CPMA]<Ü=»PC*-PCT1)   ); 
= 'DCA,^>M[CPMA]<-AC;AC<-0); 
= '.JS,=^M[CPMA]*-PC;PC<-CPMA + 1); 
= ,JMP,=^PC*-CPWA); 
= ,IO,=»iO_EXECUTE); 
= ,0PR,^0PR_EXECUTE) 

COMPUT£^DORESS:=( 
(PAGE_BIT = 1 =>CPMA«- PAGE.MUMBER D PAGE_ADDRESS); 
(PAGE_.BIT =0 =>CPMA H)OPAGEJUX3RESS) 

-■» imm 
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); 

DEFER_ADDRESS:=( 
IND1RECT_BIT = 1=» 

(10iS.<CP^A<17i8=»W[CPMA]t-M[CPMA] + l); 

next C^VAr-N/^CPMA] 

); 

Kodojinition of ilw memory form.- After tne above definition, the design can proceed 

in several directions, for instance, we can define the register operations in ierms of 

bits, we can de'me tne interpretation o. me instruction regster, or we can define the 

memory operations ir more detail. We choose the latter, at least because it will 

produce a more hOmOgtn«OU$ aescnption (i.e., tne operations will be m terms of 

registers). 

Defining tne memory as c vector of registers requires two parameters, tne 

number ot registers (words) ana the length of each register. The memory m the 

following definition requires two auxiliary registers to perform the read and wrue 

operations. Those registers are not exported out of the tflm, t-e., they are local to 

the memory module. 

torrr.   memory^ niuger siie.wien^tn)  = 
{dacl^rj m = reyister iwit-ngtn) vector (size); 

iruir  = renter (iog<;(size)); 

mbr = register (wiength); 

iiiXOli. m[register x] ■ m[x.vaiue]; 

function read(reiJisier addr) = 
be^m   mar*-addr;   mbr *-m[mar];   relum   rnbr; gM; 

function write (register addr. val) - 
be^.n mar «-addr; rnor *-val; m[rnar] WnDr; |Q^| 

export read, write } 

im 
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The access declaration .nOica'es tnat ;he value ot the register is used as the 

index in tne memory vector. The effect of the redefm.tion of the memory is illustrated 

m the following description, in wmcn the read and wnte operations on the memory have 

been replaced by tne corresponding sequences glvor in the lom. The descr.ption of 

the macnine itself has not chtngtd, only tne definition of one of its components. This 

allows us to redefine tne memory at any point In time without hav,ng to change the 

description. 

c'echre MOmOfy M[0:4095]<0:11 >; 
docure register AC<.Ü:11 >, 

1R<Ü:11>, 
PC<0:11>1 

L<>, 
LAC<0il2>t«LaAC, 
DATAjSWrrCHES<OiU>, 
STOPJSWITCHO, 
CMPA^0:il>, 
{JPJZODEi=M<.0:2>, 
PAG£_BIT:=lR<4>p 

iNDiR£CT_BlT:=W<'J>; 

INTERPRETER:=(lFETCH;next DFETCn^ext tXECuTE;noxt INTERPRETER); 

IFETCH:=(mar«-PC;noxt mbr *-M[mar];next lR*-mbr;PC<-PC +i); 

DFETCH := (COMPUTE_ADDRESS ;next DEFER_ADDRESS); 

EXECUTE :=( 
(0P_CUDE = ,ANÜ'=^mar«-CPMA;n8xt mbr ♦-M[mar];next AC <i-AC Amor); 
lüP_CüDE = ,TAD'=i>mar<-CPv,A;next mbr «-IvÜmarhnext LAC ^LA.C H-mu. ); 
(üP_CÜDE = 'ISZ'=i>mar*-CPMA;noxt mbr <-M[mar];next mbr«-mbi T^nex». 

M[rriar]*-mbr;noxt (mbr<0=J>PC«-PC +i)   ); 
(OP^CODE^'DCA'^mar^-CPMA^ext mbr<-PC;noxt M[mar]*-rub> ; AC«-0); 
(OP_CGDE = 'JMS'=»mar*-CPMA;ncxt mbr*-PC;next 

tvi[mar]*-mür; PC<-CPMA+1); 
(OPJSOOE = 'JMP' => PC •■ CPMA); 
(ÜP_CÜDE = ■10' => 10_EXECüTZ); 
(OP_C03E = 'CrH' =i>üPrl_EXECüTE) 

); 

m—i^*m—^am 
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C0MPÜTE^GEE_SBiT = 1 =*CPMA -PAGE_NUMBERDPAGE J^DDRtSi); 
(PAGE_Q1T =ö =>CPMA ♦-0 DPAGE_ADDHESS) 

); 

DEFER_ADDREbS:=( 

~(ni8<CPS/A<17i8=*mar*-CPMA;nc.xt mbr «-M[mar] ;next 
mbr*-mar + l;raxt M[rriar] «-mbr) ;next 

mar t-CPMA;next mbr «-MLmarJ^ext CPMA<-mbr 

); 

^finuionofiUrr^r^.- So far we have been dealing w,tn registers as it 

they were integers. This is ..mp.y an abstraction. Harawcre reg^ers are built as 

array of bits and tneretore the operates must be ult.mately aefmed Hi terms of logic 

networKs operating on individual D,ts. Tne (tfB network is not defined. Informally, it 

represents a set ot wires (mc.oryless components) used to carry information bacK and 

forth between other components. The following definition of a register indicates now 

the operations could bo pet.ormed: 

taUL register (integer size) ■ 
(dnrlare r  = bit vector (size); 
mtcgg rvintcrcer x>= ,      r  , A 

hagifl ^wue n = network(I); n[l]*-r[x]; n;     Hftl 

hpam        f-nrlnre r, = networK(x.ub.value -x.lbA alue + i), 

for.-ll i uin uanti^rli+x.io]; n 

^c — * mm -  ^ 
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infix  + (register a(b)  = 
Sagiw        v .. . | g < = networ<(a.size + l); carry = network {a.r^ze + i); 

carryiLürfy.size] »-O; 
doer i from a.5ize LQ, 1 Cfl. 

x[i + l]<-ft[i]€»b[i]®carry[i + :;, 
carr/[,]<-a[i]Ab[i]va[,]Acarry[i + i]vb[i]Acarry[, + l]; 

K(l)«>c*rry(l]i 

tali 
infix - (register a,b) = . . . . 
■ nti/   -^(register ü; network b)  = 

in ..-. x^ ei.-.ors a; register b) = . . . . 
infix ^(register a; integer u) = 

..■:„.- ■: -r^rc K = re3ister(a.size); x^o; return a + x; udl 
function read = return r; 
tyo^iaa write (integer v»l) ■ 

fiecr i [rorri r.o.ze L2 1 ^ LtiLÜÜ r[i]*-vai rr.od 2; val<-val i 2; 1021 

infit write (register u) = | I i iab dftflO^btiJj 
,nfix wnteCnelworK ü)  = | ill i ui o in ^M^blijj 
export   ^,-,«(f ,'eed,write ] 

With tne last example the power of tne mm mechan.sm i« mor apparent. We 

can define a;.d redefme oata types ana operations without disturbing the rest of the 

description. The example also shows a possible way of implementing the adder. If the 

descnpt.cn is taking literatty, it implies that e^ery register ,s m fad a functional unit, 

cöpao.e of performing any arithmetic uperat.on. For a fir«! ipprowmetion tms rnay oe 

«n accepiao.e definition, A better definition would dedere a single functional unit and 

all register operations cou.d then oe defined using th.s unit, it is clear aiso tnat we can 

declare other types of registers, for instance, counters that would look like any other 

register but with the property that some simpe oper.it.ons (e.g., add 1, subtract 1, set 

to 0, etc) would be pertormed directly m tne register. 

X. 
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Sigtwls and Control Exprcasiom.- [Mi us assume that we are satisfied with our 

previous descnptun (it is oy no means complete, but for the sa^ cf brevity let us 

accept it). Tho sequencing of operations as expressed m the description does not 

indicate how the control passes through the machine description, i.e., the semantics of 

"nüxt" and ";" i« specified oniy to the pont of snowing that certain actions are 

performed concurrently or tnat some actions must be completed before others can 

start. 

We can formalize the sequencing of the operation by using control expressions, 

based on an unaeriymg finte state machine, of the following tyre: 

pre-condit.on ; bc'ion | post-condition 

The pre-condition represents the condition tnat must be met before the action 

can oe executed. The action is initiated as soon as tne pre-condition is satisfied. The 

post-condition indicates the condit.ons that exist upon completion of the action. The 

pre-condition is expressed as a conjunction of signals and boolean expressions. The 

evaluation of the pre-condition must be an .ndivisible, timeless sction. The 

post-condition is expressed in ierms of the signal operator, .0. The >c) operator 

generates a signal tnat can be used oy the pre-conditions, The signals are assumed to 

be unit pulses, therefore they exist only for a ünef time, enougn to evaiu ; the 

pre-conditions. The latching operator £ can be used to store a signal for later use in 

a pre-condition. Latched signals will obviously exist for longer periods of time but 

they will dissapear as soon as they are usec ..e., as soon as the pre-condition that 

contains  tne  latched signal  ii   met.    There  is  a  memory device associated with each 

- .    C »^ ^-       -^—^^^^^^^^M^—^^^_^^—^ 
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mstance of the < operator 

Examples: 

si:.   ...    I "W^J 

si AS2: .   .   •   • 

^(sl)A^(s2): .... 

.T.     - action) I <action-iist> ; <action> 
<action-l(st> ::- <aaion>     ^ ^-ac.on) 
<action> ::= <r-transfer> 1 <löbel> I \ 

Control KxprcssionsTraushiionliulcs.- 

pre-condition 

ISP to 

descnpiion 

1) label  :=  ( s-action ) 

2) Si : «* ; /-M ^^ 

3) Si I «tnext/J 1 MS\) 

4) Si : od=»/i I MS\) 

label 

Si 
SI 
tflSl'lA^Sl") 

Si 
Si' 

SiAoi 

action post-condit^n 

:s-action    I MlabeUdJne) 

'.U 

iß 

l ÄiSi') 

| A(Sj) 

| dt«*) 
I ,0(Sj) 

I ^(Sj) 

X. 
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Si A -oi 

5) Si : decode o<i=»/20, .... ^n | /)(Sj) 
SiAo<:=0 

I ^CSiJ 

6)$i t (•( ) | >ö(Sj) 

7) Si : label | i6(Sj] 

Si Ao<; = n 

Si 

Si 
Si Alabe!_done 

/JO 1 .ö(Sj) 

/Jn I MSi) 

o< I ^(Sj) 

| ^(label) 

As an example, we wil apply the above rules to part of the POPS description, 

specifically, the ISZ instruction. 

1) Applying rule 0 to the EXECUTE process: 

EXECUTE :   

2) Applying rule 5 to separate the individual instructions! 

^(EXECUTE_DONE) 

EXECUTE AOP_CODE = ,ISZ, ,O(EXECUTE_D0NE) 

3) Applying rule 3 several times to the s-action describing the instruction; 

EXECUTEA')P_C0DE = ,1SZ' : mar«-CPMA I MSI) 
SI : mbr «-M[mar] I MS2) 
S2 : n br Wnbr+ » I MS3) 
S3 : K [mar] «-mbr | ,0154) 

S4 : ( mbr<0=^PC«-PC + i ) 1 A{EXECUTE_DONE) 

4) Applying rule 4 to the last component: 

EXECUTE AOP_CODE = ,ISZ' 
SI 
S2 
S3 
S4Arnbr<0 
S4A-(MBR<0) 

: mar*-CPMA 
: mbr *-M[mar) 
: mbr «-mbr +1 
: M[mar] «-mor 
:PC«-PC + 1 

I MSI) 
I ifr($2) 
I MS3) 
I i6(S4) 
| >Ö(EXECUTE_DONE) 
I A(EXECUTE_DONE) 

«■ 
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The complexity of the actions in the control expressions can be arbitrary. This 

allows us to expand the description in selected parts Of the machine. If we want to be 

more precise about the timing of the operations we can add, to the form defining the 

machine component, the .nformation necessary to indicate how the signals are produced. 

For instance, we can odd to the write operation in some register form the statement 

■ViSnal after 200" to indicate that the write operation takes 200 nanoseconds. A 

synchronous machine could be specified by the statement "signai BB P3" where P3 is 

the nan e of a ciocK pnase. 

Since we can in fact represent all the operations m terms of register transfer^ 

with the appropriate delays, we have a convenient mechanism to indcate the timip-, in a 

machine. All we have to do is provide the appropriate signal on or Signa! IÜIC 

statements in the write function of the forms describing each component. 

At this point a reshuffling of the aescnption may be desired to simplify the 

control logic. It is advantageous to group the primitive operations by the 

pre-conditions under which they are triggered rather than by the position in an 

opcode sequence. This is straightforward and easy to verify the correctness of the 

transformation. A related prr-blem is the reduction of the number of control 

expression-, by renaming signals that are produced under similar circumstances an^i with 

similar effects. The importance of this "optimization" is evident snce the number of 

different signals is related to the number 01 possible states of the machine, part of 

which must be encoded in the instruction code. 

MM 
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COiMCLUSiONS 

We attempt to ease the task of programming by relativiüing the production of 

software to the machines in which it will execute. The vehicle is a symbolic description 

of the hardware machine. This new area of application for computer descriptive 

languages reauires some properties that are not found in existing notations. The use 

of structured programming concepts in the descnntion of a computer system will allow 

the solution of a range of problems, as Outlined in tins paper, by manipulation of these 

symbolic descriptions. 
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