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ABSTRACT 

The basic statistical properties of the wall pressure 

field associated with turbulent spots In a transition boundary 

layer have been meisured on a large flat plate teit fixture 

In the Anecholc Plow Facility at the Naval Ship Research and 

Development Center. The measured statistical properties and 

the distribution of the turbulent spots on the plate surface 

are compared with a quantitative formulation of the transition 

1 2 process which was developed by Emmons * . An Important 

unknown parameter in Emmons' model of the transition process 

is the burst source-rate density function. This paper con- 

siders the consistency between the predicted and measured 

statistical burst properties when two simple forms of the 

source-rate density function are assumed. Experimental 

values of the burst rate and average burst length are presented 

as a function of the intermittency factor. The statistical 

results are normalized in term of spatial and temporal 

individual burst properties and compared with the predicted 

results. 
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INTRODUCTION 

When a streamlined body moves at high speed through a viscous 

fluid the laminar boundary layer flow along the surface of the 

body usually undergoes transition to turublent flow at some location 

on the forward nose section of tne body. Between the laminar and 

fully-developed turbulent-flow regions of the boundary layer, a 

transition region exists over a finite length of the nose i which 

the flow is observed to be Intermittent, that is, patches of 

turbulent flow occur randomly within the laminar boundary layer 
3 

region on the surface. Detailed measurements have shown that these 

turbulent bursts grow as they are swept downstream until they merge 

together forming the fully-developed turbulent boundary layer. 

An understanding cf the parameters that govern the width of 

this transition region along with detailed data on the convection 

and growth properties of the turbulent bursts is essential to the 

formulation of an appropriate wall pressure field forcing function 

required for the prediction of the flow induced noise which is 

transmitted through the structures of the moving body. 

The basic properties of the wall pressure field associated 

with turbulent spots have been measured in detail on a large flat 

plate in the Anechoic Flow Facility * * (AFF) at the Naval Ship 

Research and Development Center (NSRDC). 



This paper concentrates on describing the statistical properties 

and distribution of turbulent spots during natural transition on a flat 

plate and presents a statistical model of a source rate density functi 

initially developed by Emmons 

on 

1 

EMMONS' MODEL 

In 1951, Emmons first advanced the concept of turbulent burst 

generation in a laminar boundary layer from his observations in a 

water-table flow experiment. From visual observations, he concluded 

that the randomly generated turbulent bursts act independently of each 

other and uniformly grow as they are swept downstream by the flow. 

In order to develop a quantitative formulation of the transition pro- 

cess, Emmons assumed the existence of a source-rate density function. 

This function, 9i*Q*yo*t0)*  specifies the rate of production of 

turbulent point-source bursts per unit area on the surface and is 

dependent on the position on the surface {x0,y ) and time of occur- 

rence (t ). 

Emmons developed a probabilistic model which related the 

statistical properties of turbulent bursts for any prescribed form 

of S^o'^o'^* T*18 (:,evel0P,nent 0f Enmions' model was based on prob- 

ability theory and his limited data on the growth characteristics of 

turbulent bursts. New data, obtained 1n Reference (3), have sub- 

sequently clarified the growth properties since Emmons' observations 

with the simple water-table experiment. A brief outline of the con- 

cepts involved with the formulation of this model, as presented by 

Emmons, will now be given. 



Consider a point-source p0U0.yoft0) for the creation of a burst 

on the body surface. In ehe x,y,t space, this burst sweeps out a cone- 

like volume whose shape depends upon the convective and growth pro- 

perties of individual bursts. This volume which originates upstream at 

a point source P is called the Propagation Cone and is the domain of 

influence of a source at P0(x0»y0»t;0). 

Now consider a point P(x,y,t) at which a Flush-mounted pressure 

transducer is positioned to monitor the intermittent wall-pressure field. 

The time record of this pressure field signature will indicate intermit- 

tent patches of boundary layer turbulence. The fraction of the total 

sample time that the boundary layer at a given point P is turbulent 

is defined as the intermittency factor, y. In the computation of the 

intermittency factor, one must add up the burst periods {TB) from all 

bursts originating upstream that pass the point P in the sample time 

T. . ,. However, one must exclude those portions of overlapping bursts 

that originate at different upstream locations but coincide within the 

sampling time. 

The locus of all points P which can influence the state of 

turbulence at point P is a volume upstream called the Retrograde Cone 

(R). This cone-like volume has propagation rays drawn upstream from 

P reflecting the domain of dependence of point P. All bursts which 

pass over the point P must have originated within tha dependence 

volume R. Figure 1 shows the projection of the Propagation and 

Retrograde Cones on the plate surface. 

From the basic concepts of the growth and convective properties 

of turbulent bursts it is possible to use probability theory to 



analytically derive certain statistical relationships between the 

transition region and the properties of the turbulent bursts. Three 

such statistical relationships analytically derived by Enmons are the 

Intermlttency factor, y. the average burst periodt T«, and the burst 

rate frequency, fg, which Is tSe frequency at which bursts pass a 

given point. The derivation of these statistical relationships will 

now be given. 

INTERMITTENCY FACTOR 

The probability that a burst originating at P will be detected 

by a downstream transducer located at P Is defined by Emmons as 

■Po'- 

P for x>x. {1 if P is located in Region R of P for 

0 If P. Is not in Region R of P for x>x. 

If we let 

o   o •'o 

dVn = dxndyAdtn 0    0 'O 0 

and    dA = dxdy 

dV = dxdydt. 

then we would be tempted to say that the fraction of time that P Is 

turbulent is given as 

Y(P) #{P,P0)8 (P0) dVo (1) 

where the region of integration of <t>(P.P0)g(P0)dV is over the 

dependence volume R. However, note as previously mentioned that more 

than one burst can be generated within the Region R such that they 

will coincide in time t at the transducer position P. For example, 



bursts originating at PiU^.t^) and P0(x0.y0.t0) when x^ < x0 and 

t* < t0 can be detected colncidentlally (see Figure 1). For this case, 

two such bursts coinciding at a point P and time t would be counted 

separately giving twice the actual value of Intermlttency. To avoid 

these burst overlaps. It Is assumed that the burst originating nearest the 

leading edge of the plate will be counted as causing the turbulent 

burst of length TB at the transducer position P since It will be of 

longer duration and have larger burst length. This is true provided 

that the burst growth rate. U , and burst convection velocity, U , are 

identical for both bursts alono their downstream paths. 

Now, let ^(P.F ) dV be the probability that a turbulent burst is 

detected at point P due to sources ir dV at a point P but not 

because of any sources at ^1(^*^1*^1) with x* < x , since the source 

at P is to be counted only if it is the point-source nearest the lead- 

ing edge. From this probability function, Emmons concludes that 

^(P.P0) = [#(P.P0) g(P0)dV0][l - | ^{P.P^dV^]     (2) 

R1 

where g(P0) is again the source-rate density function and R
1 is the 

region shown in Figure 1. The first term in Equation (2), 

I>(P.P0)g{P0)dV0], represents the traction of time that bursts will be 

detected at P due to sources at Pn.    The second term [1 o tKP.P^d^]. 

is the fraction of time that no bursts are observed at P due to sources 

upstream of xn. Thus the intermittency, or fraction of the total 

sample time that bursts are being detected at P is given by 



Y(P) - J *(P. 
R 

P ) dV 
o   o (3) 

Emmons solved the integnl equation obtained by substituting 

Equation (2) into (3) and found 

Y(P) - 1 - expM g(Po) dVoJ (4) 

Equation (4) gives the relationship between the Intermlttency factor 

and the form of the source-rate density function g(P0). This relation- 

ship Is solely dependent on the form of g(P ) and the shape of the 

dependence volume R. 

BURST RATE FRc'QUENCY 

During a sample time Tt ^,, point P will be turbulent 

Ttotal ^p,'V(*Vo seconds because of sources In dV . The number of 

bursts passing P from sources at P In dV is 

Ttotal ^'V dVo Ttotal^
P'Po> dVc 

(5) 
B max 

where T« Is taken as the burst length measured at P(x,y,t) due to a 

burst originating upstream at P0(x0.y0»t) and TR  is the maximum 
max 

burst length along the centerline of the burst. When y = yA, the 

burst erupts along an upstream streamline and the sampled burst 

length TB equals T«  . However, for the general situation, one can- 
max 

not distinguish between Tß, the burst period along an arbitrary 

section of the wedge-shaped burst and T«  . Since T„  is the only 
max      max 

quantity amenable to an analytical formulation, the equations are 

expressed as inequalities. Reference (4) includes data on the 



distribution of burst periods obtained from observations at a fixed 

position. The total number of bursts per second passing P that 

originate In the domain of dependence region R ts then 

f iKP.P) dv (  MP,? ) dv 

Thus the frequency at which bursts pass point P Is the burst rate 

frequency given by 

( .        ( IKP,PO) dv   f iKP.PJ dv 

total  -'     lB      ■'R    TB sax 

In terms of the source-rate density function Equation (7) Is express- 

ed In the form 

f g(P0)exp[-f   8(P^ dV^] g(Po)exp[-f   gCP^dvM 
W*'       J   i-  dV    >   I  dV      {8) 

R TB 0-JR TB 0 
max 

AVERAGE BURST PERIOD 

The average burst period (length) 1s given by 

7 y(?) Ttotal    Y(P) /0» 
V   N(P)    ' fB(P) W' 

and can be determined once the values of y and f„ are known. 

As can be seen from these equations, the statistical relationships 

expressed In Equations (4), (8), and (9) are functions of only the 

source rate density function, g(P0). and the growth and convectlve 

properties of turbulent bursts. If the source-rate density function 



Mtfywgwt' »TB 

Is known and the growth and convective burst properties are measured. 

It Is possible to find at least a numerical solution to Equations (4), 

(8). and (9). 

In the solution to Equations (4), (8), and (9) we may assume, for 

our simple case of a steady mean flow over a flat plate, that the flew 

properties are functions of only the streamwlse coordinate x. This 

Assumption gives 

g(P0) - 8(«0.y0.t0) - s(x0) (10) 

The Integrations In Equations (4) and (8) ^»re performed over 

the domain of dependence R, thus the incremental volume element dV 
o 

can be expressed in terms of the growth and convective properties of 

the individual bursts. This transformation of the incremental volume 

element Is shown in Appendix A and is given as 

(x-x )2 

dV - —r-2— CT* dx 
o    U        o (ID 

and Tn  is given as lB max 

U 
r    m .- a. 
B     U U 

max       c t 
(x-xo). (lib) 

where 

U - freestream velocity at the edge of the boundary layer 

U TJ 
CT* " u8ue tan(a) 

1  t 
(lie) 



Ug 8 uruf Uc s 1/2 ^^t) <11d) 

Ut • trailing edge velocity of burst 

tan («) « half angle of burst (see Figure 2) 

and U, s leading edge velocity of bursts 

Equations (4) and (8) then become, respectively 

Y(x) - 1 - exp FgM g(xo)(x-xo)
2 dx ] (12) 

e 'O 

and 

fB(x) > tan(a) [x (x-xo)g(xo) expt^ [ 0g(x^) (x-x^)2 dx^] dxo   (13) 

To apply Equations (12) and (13) to the transition on a flat 

plate the form of the source-rate density function o must be assumed 

or deduced. 

There are two different approaches by which g(x ) In Emmons' 

model may be deduced from experimental iata. Th.» first approach Is 

to successively differentiate Equation (12) to obtain the rölationship 

given by Naraslmha , 

*(x) - it* t0 1 (14) 

where 6 = -ln(l-Y). From this relationship measured values of the 

Intermlttency distribution can be used to determine the form of g(x). 

The second approach Is to assume various forms of g(x) and solve 

Equations (12) and (13). These analytical results can then be compared 

10 



to experimentally measured values of Y(X). fB(x), and TB(X). This 

process allows the determination of that form of g(x) which most 

closely predicts the turbulent bursts properties. 

It wist be realized that in the first approach, the third 

derivative of an experimentally uetermined distribution must be taken. 

The merits of such an operation, in view of the accuracy of the data, 

is highly questionable. Thus the more realistic approach is to use the 

assumed forms of g(x) to solve the analytical expressions and then 

compare these results to the experimental results. 

r-OLUTIONS FOR PARTICULAR SOURCE FUNCTIONS 

Enmons1 inodel will now be solved for two assumed forms of g(x). 

CASE 1 - g(x) DELTA FUNCTION 

The first assumed form of g(x) is that of a Dirac's Delta 

function, 

g(x) - no (x-xt) (15) 

where n is defined as the number of sources per unit length per unit 

time along a line located at x = xt from the flat plate's leading 

edge and is dependent on the freestream velocity U . The physical 

meaning of this form of g(x) is that all sources of turbulent bursts 

are located along a line perpendicular to the flow stream. Sub- 

stitution of Equation (15) into (12), (13) and (9) results in the 

relations 

Y . X - ex,, Nfa Et! (K-) 
e 

11 



fB > fB - ntan(o:^t exp^ Cjl (17) 
e 

TB  fB(x) - 
TBi fB U) (18) 

i 

where ^t is defined as x-x^. 

Solving Equation (16) for fL in terms of y^  one obtains 

nr ~^—J 
x
-xt ■v^^ln(l=7")• 

^ 
(19) 

Equation (19) gives a relationship that defines the distance down- 

stream from the transition point at which a given value of intermit- 

tency occurs. This relationship can be used to find the width of the 

transition bursting region, AXt, where AX. is defined as 

Ax^ =  (x-x )    - (x-x ) (20) 
1 Y-0.99      Y-0.01 

By substituting Equation CQ) into (20) we get 

(AxJ -2.046 J-f-, (21) 

where it is assumed that U is essentially constant over the transition 

region. 

CASE 2 - g(x) UNIFORM SOURCE DISTRIBUTION 

As a second simple assumed form of g, g is taken as independent 

of position on the plate. This condition is expressed by 

12 



g(x) - g - constant, (22) 

where g is defined as the number of sources per-unit surface area per 

unit time. Although g is independent of y it is dependent on the free- 

stream velocity U . The physical meaning of this form of g(x) is that 

turbulent burst sources are uniformly distributed within the transition 

region. Substituting Equation (22) into (12) one obtains the relations 

Y - 1 - exp[3j£. qi (23) 

r-za*  ^3- fB > fB - gtan (o) exp[-jjj— SJ] 
2 e 

e 

1 4exp[^ ?)  dC        (24) 
o        e 

T . IM <T -Xisl (25) TB  f_(x) - TB  f_ (x) l"; 

O 2        o 
2 

Solving Equation (23) for E,.  we find that 

3 r.v , 
^t- V^ ln (^-) w go* '" Xl-Y 

and substituting for values of \ at which y   -  .99 and {   = .01 wo 3 2 2 

find that 

3/3U^ 
(Axt)2- 1.448 N/i5|. (27) 

where U is again assumed to be constant over the streamwise transition 

width. 

13 
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In order to predict the width of transition using either Equation 

(21) or (27), the relationship between the source rate density g and 

the freestream velocity U must be known. 

EXPERIMENTAL RESULTS 

Measurements were made of the spatial and temporal properties of 

turbulent pressure bursts In the boundary layer transition region on 

a flat plate (Appendix B discusses the method by which the spatial 

and temporal properties of the turbulent pressure bursts were measured). 

The empiric?! results presented iri this section will be compared with 

those predicted by Emmons' model In the following section. 

Figure 2 shows the three-dimensional shape of individual 
3 

turbulent bursts determined by Schubauer and Klebanoff using hot wire 

anemometers. T;;e values of the burst parameters shown in the figure 

were those determined in the present study using flush mounted pressure 

transducers. 

Figure 3 shows the experimental intermittency distributions 

through the transition region in terms of a normalized Reynolds number. 

Figure 4 presents the measured values of burst frequency, f«, 

plotted versus y.    Faired lines are drawn through those data points 

which represent measurements made at the same downstream coordinate. 

Figure 5 gives the measured mean burst length as a function of 

the intermittency factor. 

14 
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COMPARISON OF EXPERIMENTAL RESULTS WITH EMMONS' MODEL 

In order to directly compare tho experimental results with thor.e 

predicted using the different forms of the source rate density 

function, g(x), in Emmons' model, the measured data are normalized 

relative to the maximum burst frequency (the normalization details 

are given in Appendix C). Figures 6 and 7 show the comparison between 

the experimental data and the theoretical results obtained using, 

respectively, a Duac Delta function and a constant for the source 

rate density function in Emmons' model. 

As shown in Appendix C, a functional relationship between the 

freestream velocity, U , and the magnitude of the source rate density 

function can be determined  Figures 3 and 9 show these relationships 

for the two cases considered. Also shown in the figures are values 

of the width of the transition region, Axt, calculated using the n 

versus Ue (Equation (Ci3))and g versus Ue (Equation (C23)) relationships 

and Equations (21) and (27), respectively. The five values of Ax. 

shown on each figure were calculated from the corresponding data 

points relating g and U which were calculated using Equations (C13) 

and (C23) of Appendix C. 

DISCUSSION AND CONCLUSIONS 
2 

Emmons developed a probabilistic model of the statistical 

burst properties for the general case of a source-rate density g(x) 

being dependent on the downstream spatial location. However, lack 

of available experimental data did not permit him to examine carefully 

the explicit nature of this g(x) function except for the case of g 

15 
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equal to a constant. Emmons attempted to evaluate the constant g by 

using a few 1/5-second strips of hot-wire records published by 
o 

Schubauer and Skramstad . Similar calculations were made by the 

authors using the new data included in this report. The results are 

shown in Figure 9. 

Narasimka assumed the form of g(xÄ,y„,tJ to be a Dirac Delta 0 O 0 

function and evaluated Emmons' equations for the resulting Y(X) 

distribution. From the comparison between experimental data and the 

theoretically obtained Y(X) distribution, Narasimha concluded that the 

turbulent burst generation process does indeed occur like a delta 

function source along a line transverse to the flow. It has been 

found by the authors that the Y(X) distribution for tha constant source 

model is very similar to the Y(X) distribution for the delta source 

model. The data shown in Figure 3 was also fitted to a Gaussian 

Integral Curve. The lack of sensitivity in the Y{X) distribution to 

the various forms chosen for g(x) leads one to conclude that the Y(X) 

distribution should not be used as a criterion for determining the g(x) 

function. 

It should be noted that in the present experiment the streamwise 

extent of the transition region couiJ not je accurately measured at 

a given flow velocity due to the use of a limited number of fixed, 

wall-mounted pressure transducers for detecting the wall i^essure 

bursts in the intermittent transition region. Rather, at a given 

streamwise position the ntermittency was varied from burst onset 

through fully turbulent flow by varying the flow velocity. As shown 

in Figure 3, the use of the normalized Reynolds number results in 

1 ' i'"—"^IBgBHWBg—BBHW 



good collapse of the experimental intermlttency distributions determined 

through the transition region by varying flow velocity at different 

transducer locations on the plate surface. 

An important characteristic of the transition process is the 

point at which the burst frequency maximizes. In Figures 6 and 7 this 

point can be seen to be at Intermittency values of approximately 0.4 

and 0.8 for the Dlrac Delta source and the constant source, respectively. 

The maximization point In the experimental burst frequency curves 

occurs at an intermittency value of approxinately 0.6. This experi- 

mentally determined maximum point falls between the two analytical1> 

determined values for the uniform and line burst source distributions. 

As seen in Figures 6 and 7 the normalized experimental data for 

the case wh3n the burst generation occurs at a line source is in better 

general agreement with Emmons' theory than for the case of a uniform 

source distribution. 

Inherent in any analytical model for the burst source distribution 

is a method for predicting the streamwise width of the transition 

region. The predicted width of the transition region given by Equations 

(21) and (27)  is seen to depend on the freestream flow velocity U 

(U. is assumed to be constant over the translttjn region for the mildly 

accelerating flow over the plate) and the source-rate densities which 

are also dependent on U . Once the form of the source-rate density, 
6 

g, Is accurately determined from controlled laboratory experiments, the 

use of the technique utilizing fixed transducers for determining the 

width of the transition region will be possible for more complicated 

situations. For example, in transition experiments on moiels or full- 

scale vehicles where the streamwise traverse of sensors or maintenance 

17 
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of constant flow velocity is difficult and the number of fixed sensors 

is limited, the technique adopted in the iresent expe.iiaent wil1 be 

useful in determining the transition width. 

It is concluded that .the source distribution of turbulent burst: 

is still not firmly established. The present results tend to sub- 

stantiate Emmons' model for predicting burst statistics in the 

transition boundary layer, and support the line source model for burst 

generation. The study indicates that more detailed wind tunnel flat 

plate measurements are still needed in the form of streamwise surveys 

of burst statistics at constant flow velocities. New experimental 

data obtained throughout the entire streamwise extent of the 

transition region at a fixed flow velocity would overcome the uncer- 

tainties of interpretation Inherent in the present data, which was 

obtained by varying flow velocity at a fixed streamwise position. 
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Figure 1 Relationship Between the Domain of Dependence 
of a Point P and the Domain of Influence of 
a Point P (Burst Origin) 

o 
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Table   1   Erunons'   Probabilistic Model 

ASSUME g(x0, 20, IQ) = g(x0), 

> IP)   = 1 - EXP 

BURSTS 

SEC    UNIT AREA 

X 

xn) (x - xn)2 dxf 

e 0 

fB(P)   = TAN a    j     (x - x0) g (x0) EXP    | - ~     J       g(x0') (x - x0')2 dx0' dxr 

rR IP) = > (P)/fR (P) , a» = TAN a 

g = n6 (x - xt) 

y{x) = 1 - EXP (-4.1850 iT2) 

f B(x ) = 2,0457 x  EXP [-4.1850 x2] 

U. 
n TAN a 

x — x. 

o*n 

Ax. 

U 
Axt   = 2.0457 

no' 

e WIDTH OF 
TRANSITION 

-L 

g = CONSTANT 

yix)   = 1 - EXP (-3.0354 x3] 

rB(x) 
3   73, 

4.3607 
-  = f • EXP (3.0354 (^-x3)] df 
f       J0 

gTANa 

2/3 

Ax,      = 1.4479 
V go* 
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APPENDIX A 

DERIVATION OF THE INCREMENTAL VOLUME ELEMENT 
3 

Schubauer and Klebanoff found the shape of turbulent bursts to 

be wedge-like pointing downstream. The shape of the Retrograde Cone 

shown in Figure Al also forms a wedge like area when projected on the 

xy plane. The locus of all points P which can influence the state 

of turbulence at point P forms the volume represented by the Retro- 

grade Cone in Figure Al. If the x = constant cross section of the cone 

is approximated by the shape of a triangle the volume element dV in 

the integral relations (4) and (8) can easily be found. 

The volume of the Retrograde Cone for bursts originating at x 

is given as 

where ^ is the downstream distance from the measurement point, P, to 

the point of burst origin, P . The area Ab is the projection of the 

Retrograde Cone on the yt plane at point P . From Figure Al it is 

seen that 

l 
A, - | T.   d 

B 
max 

where d = 2C tan (=) , thus A. becomes 

^ - 5TB   tan(a) 
max 

The relationship for TB  can be shown to be 
max 

u 
T_  - —S 

u u 
max    c t 
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thus /L Is then given as 

u 
\mtz  Ü7ü7~  tan(a) 

and the expression for the volume Is 

1    £3  Ug 
v 3 V 3 ru;tan(a) 

Now defining a propagation parameter, a*, as 

u u 
a* - 7^—. tan (a) 

U U^ 
c t 

we can then express V as 

3 Ue 

From this relationship the Incremental element, dV, of the 

Retrograde Cone, can be expressed as 

dV - £• ^ 
e 

In this relationship the £ variable represents the distance 

downstream from the transition point, thus In keeping with the nomencla- 

ture used in the text the variable j; is expressed as x-x , thus ws 

get that 

dV - 21 (x-x )2 dx 
o  U     o    o 

e 
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APPENDIX B 

MEASUREMENT OF INTERMITTENT PRESSURE FIELD PROPERTIES 

The fluctuating pressures on the plate surface were measured with 

Bruel and Kjaer 1/4-inch and 1/8-inch Condenser Microphones. To 

facilitate the measurement of the pressure on the plate surface over as 

small an area as possible, the microphones wete used with solid pro- 

tective caps mounted flush with the plete surface and in each of which 

was drilled a single 1/32-inch diameter hole. 

The intermittency factor of the wall pressure field was varied by 

changing the flow velocity, since the position of the pressure trans- 

ducers were fixed and could not be varied without stopping the wind 

tunnel. It is assumed that properties of the intermittent pressure 

field which are dependent on y» a^e independent of whether the intermit- 

tency was varied through change of flow velocity U^ or change in the 

streamwise position x in the intermittent region. Inherent in this 

assumption Is the basic assumption that secondary effects on the 

transition process, such as turbulence intensity, plate vlbraf ->, etc., 

are not altered by the small fractional change In velocity necessary 

to vary the intermittency factor over Its range from 0 to 1, at a fixed 

point on the surface. The fact that the distributions of the inter- 

mittency factor through the Intermittent streamwise transition region 

collapsed well when represented in terms of a normalized Reynolds 

number (as shown in Figure 3) further substantiates the interchange- 

ability of velocity or streamwise position for this study of the 

intermittent pressure field. 
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The Intermittent signals from the pressure transducer located In 

the Intermittent transition region of the flat plate boundary layer 

were displayed on oscillographs. By noting the fraction of the sample 

time that the oscillograph trace was turbulent the Intermlttency factor 

was determined as a function of flow velocity and streamwlse distance x 

from the plate's leading edge. The average burst length and burst 

frequency were also calculated from the oscillographs. Simultaneous 

oscillograph traces of the signals from two transducers located on the 

plate surface with streamwlse spatial separations were used to deter- 

mine the velocities of the leading (downstream) and trailing (upstream) 

edges of the pressure bursts. Simultaneous oscillographs of signals 

from transducers separated In the transverse direction to the mean 

flow were used to determine the width of the bursts and the Interior 

wedge angle 6 as shown in Figure 2. These properties of the pressure 

bursts determined from simultaneous signals of two spatially separated 

microphones were accomplished by measuring the time differences 

between the detections of the bursts at the two transducers. 
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APPENDIX C 

METHOD OF NORMALIZATION OF THE DATA 

CASE 1 - DIRAC'S DELTA FUNCTION 

The statistical relationships which have been derived using a Dirac's 

Delta Function as the assumed form of the source rate density function 

are 

Y -l-expFp^l (16) 
1 e 

fB > fB - n(tan(a)) ^  «cp[~° Cj] (17) 

and 

1 

(18) 

The streamwise coordinate used in these equations can be selected such 

that transition occurs at x = 0, thus x. = 0 and £. = x. This allows 

the streamwise coordinate to be normalized over the transition region 

as 

— X (Cl) 
t i 

Equation (21) gives 

(Axt)i - 2.0A6 sj^ (21) 
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thus 

and 

2.046 (C2) 

0 < x < 1 (C3) 

Using Equation (C2) we can write 

x - (2.046) y-A- (C4) 

and Equations (16) and (17) become 

_2 
Y   - 1 - exp[-4.185 x ] (C5) 

(Axt)i 
ntan(a) 2.046 J^   x    exp[-4.185 x ] (C6) 

Equation (C5) is now in normalized form. Table C1.0 shows the values 

of Y calculated using Equation (C5) for values of 0 _< x1 £ 1.1. 

In order to normalize Equation (C6) we define a normalized burst rate 

frequency f« as 

B 
n JM**™™ 

2.046 x    exp[-A.185 x  ] 
i i 

(C7) 

Oncelhe relatioiship between n and Ua is known fD can be divided by np e      Bj ^ 
n ^—* tan(«) to normalize the experimental data for comparison with 
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the analytical results given by 

f.  - 2.046 x expt-A.185 x2] (C8) 

Table C1.0 shows the analytical results found using Equation (C8). 

A relationship between n and U Is determined by setting 

fB f          m                ___.. "...                      (rn\ 

nr                              m 

equal to the maximum burst rate frequency calculated from Equation 

(C8). Hence 

JC 

Then we can write 

fBi 

max      - .430             (CIO) 

nn 

f.   - -^30 r J-|r tan (a) (Cll) 
B     '^   V no* 

or 

a*f 
i    B 

n"ü^    ^x (C12) 
6  [0,430 tan(a)]2 

Using the experimentally determine values of tan (<*) and a*, 

tan («0 = 0.571, a* = 3.327 tan ( =) = 1.898, Equation {C12) becomes 

4 
n - 31.165   ^ax (C13) 

U 
e 
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With the experlnenUlly measured values of fB  at each flow velocity, 
max 

U , It Is then possible to determine the relationship between n and U . 

This relation between n and U Is shown graphically In Figure 8. For 

simplification a linear relationship between n and U0 Is assumed (as 

shown by the straight line In Figure 8) for normalizing the experimental 

values of fB at a given Ue. 

Using the relationship between n aM UÄ the experimental values 

of fB are normalized In the form ^ß/^»^* {tar((«)) and compared to 

the normalized analytical results found from Equation (C8). This com- 

partlson Is shown In Figure 6. 

CASE 2 - CONSTANT SOURCE 

The normalization process for the Equations where the source rate 

density function Is a constant Is the same as in Case 1. The 

statistical relationships are 

Y2 - 1 - exp[^2t ^j (23) 

fB > fB - gt«n(a) exp[^ I-Jl ft C exp[*£ C»] dc (24) 
2 e     o       e 

The normalization process of the streamwlse coordinate, x. Is similar 

to that In Case 1. In this manner the relation 

3/3^ 
(Axt)2- 1.448  ^ (27) 
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is used tq yield a relation for the normalized coordi  i x , 

3 ßT* 
* " X2 

Um       J-&~   * (C14) 

where ag?.in 

0l*2*l' (C15) 

Using the normalized coordinate in Equations (23) and (24) gi ves 

Y2 - 1 - «p[-3.035 xj (C]6) 

U      2/3  fx 
fB   - 4.361 g(tan(a))  [-^J '     [2 ; exp[3.035 tc'-x')] d; 

2 * J 2 , (C17) 

Equation (C16) is now in normalized form. Table Cl.l shows the values 

of Y calculated using Equation (C16) for values of 0 < x2 < 1.1, 

To normalize Equation (C17) we define a normalized burst rate frequency 

7B2 
as 

f 
f '■n rx -3 

B "   U 2/3 '  4-361 j   2      t exp[3.035(c3-x2)] d? 

The right hand side of Equation (C18) 

(C18) 

-       fx 3 
fB - 4.361  2  ? exp[3.035(?3-x )] dC (C19) 
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Is the normalized analytical result. Table C1.1 shows the analytical 

results found using Equation (C19). The left hand side of Equation 

(C18) gives a relation for normalizing the experimental results, 

fB 
?B   *  V-273 <C20) 

gtan(a)l^l 

Once the relationship between g and U is known. Equation (C20) can 

be used to normalize the experimental data thus allowing a direct 

comparison between the normalized analytical results (Equation (C19)) 

and the normalized experimental results (Equation (C20)). 

A relationship between g and U is obtained by setting Equation 

(C20) equal to the maximum burst rate frequency calculated from 

Equation (Cl9) 

fB 
T_   -       'max  - 0.618 
B
2 Ü  273~ (C21) 

«tan (a) [^1 

From Equation (C21) we can write 

fj 
8 -  2max (C22) 

U2 (0.618 tan(a)^ 
e 

then using the experimentally determined values of tan («) and o* we 

get 

g  - 82.202  Sä«  (C23) 
u2 
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With the experluenUlly measured values of f-  It is therefore pos- 
max 

sible to determine a relationship between g and U . This relationship 

between n and Ue is shown in Figure 9. 

Knowing the relationship between g and Ue, it is then possible to 

normalize the experimental data, using Equation (C20), and compare it 

to the normalized analytical results found from Equation (C19). This 

comparison is shown in Figure 7. Again, a simple linear relationship 

fehown on the figure) was used for normalizing the experimental values 

of fg at a given U . 
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TABLE C1.0 

NORMALIZED ANALYTIC RESULTS 

g - n6(x- •xt) 

*I Y. 
f8. 

\ 

.05 .01041 .10122 .10282 

.10 .04986 .19619 .20892 

.15 .08987 .27928 .32178 

-20 .15414 .34608 .44539 

.25 .23015 .39372 .58456 

.30 .31384 .42110 .74529 

.35 .40110 .42881 .93538 

.40 .48809 .41889 1.16520 

.45 .57150 .39446 1.44880 

.50 .64875 .35928 1.80570 

.55 .71803 .31725 2.26329 

.60 .77834 .27207 2.86077 

.65 .82935 .22691 3.65500 

.70 .87135 .18423 4.72975 

.75 .90502 .14573 6.21027 

.80 .93133 .11239 8.2868 

.85 .95128 .08455 11.25257 

.90 .96629 .06207 15.56734 

.95 .97711 .04449 21.96296 

1.00 .98478 .03114 31.62414 

1.05 .99009 .02129 46.50084 

1.10 .99368 
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X2 Y2 

.05 .00038 

.10 .00303 

.15 .01019 

.20 .02399 

.25 .04632 

.30 .07869 

.35 .12203 

.40 .17656 

45 .24164 

.50 .31575 

.55 .39650 

.60 .48089 

.55 .56552 

.70 .64695 

.75 .72212 

.80 .78863 

.85 .84500 

.90 .89061 

.95 .92591 

1.00 .95194 

1.05 .97022 

1.10 .98240 

TABLE Cl.l 

NORMALIZED ANALYTIC RESULTS 

g » constant 

fB. 

.00545 

.02176 

.04876 

.08596 

.13247 

.18689 

.24722 

.31101 

.37531 

.43697 

.49286 

.54020 

.57682 

.60145 

.61378 

.61450 

.60513 

.58779 

.56484 

.53859 

.51106 

.48382 

TB, 

.06961 

.13925 

.20904 

.27910 

.34967 

.42103 

.49361 

.56771 

.6438F 

.72258 

.80449 

.89022 

.98040 

1.07565 

1.17652 

1.28337 

1.39634 

1.51518 

1.63925 

1.76748 

1.89844 

2.03052 
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