AD/A-002 969
COMPUTER PROGRAM DESCRIPTION - A LONG
PERIOD ARRAY PROCESSING PACKAGE FOR
ILLIAC IV

Ann Kerr, et al

Teledyne Geotech

Prepared for:
Air Force Technical Applications Center

Defense Advanced Resecarch Projccts Agency

11 October 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Unclassified

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 7 GOVT ACCESSION NG| 3 RECIPIENT'S CATALOG NUMBER
SDAC~TR-74-17 AD/A- & 7949
4 TITLE (and Subtitle) 5. TvPE of REPORT & PERIOD COVERFD |

COMPUTER PROGRAM DESCRIPTION - A LONG PERIOD
ARRAY PROC :SSING PACKAGE FOR ILLIAC IV

Technical

6 PERFORMING ORG. REPORT HUMBER

P —
7 AUTHOR(s) B. CONTRACT OR GRANT NUMBFR/y)

Kerr, Ann and Wagenbreth, Gene

F08606-74-C-0006

9 PERFORMING ORGANIZATION NAME AND ADDRESS
Teledyne Geotech
314 Montgomery Street
‘lexandria, Virginia 22314

10 PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

11 CONTROLLING OFFICE NAMT AND AODRESS 12. REPORT DATE
Defense Advanced Research Projects Agency 11 October 1974
Nuclear Monitoring Research Office 13 NUMBER OF BAGES
1400 Wiison Blvd., Arlington, Va. 22209 91

14

MONITORING AGENCY NAME & ADDRESS(!!f different from Controfling Office) 1S. SECURITY CLASSY (of this report)

VELA Seismological Center

312 Montgomery Street Ugslassiliied
Alexandria, Virginia 22314 TSa. DECLASSIFICATION DOWNGRADING |
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Ruport)

RFPRCVEDFORPUBLIC RELEASE; DISTRIBUTION UNLIMITED.

'7 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, f different from Report)

18 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side il necessary end identify by block number)

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

us Dalpanmam of Commerce
Springtield, VA, 22151

20 AESTRACT (Continue on reverse side il necassary end Identily by block numbar)

processing package designed arcund the FKCOMB algorithm for use on the
ILLIAC IV computer. FKCOMB is a general-purpose array-processing program
that uses frequency-wavenumber analysis to produce a bulletin which lists
signal detections and various statistice for each detection. Two data
editing and reformatting modules prepare the seismic data for FKCOMB and
can be modified for use with other seismic algorithms. Preliminary refor-

This document describes a preliminary version of a long period array

Soadlognmy

DD |

jg:Mn 1473 EDITION OF ! NOV 6515 OBSOLETE

Unclassified

] SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

{

L e

e A)

ke e S

et s ARG

G

Unclassified

SCCURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

matting of the seismic data 1is performed by DEMI1,

The input parameters re

quired for operating these programs and their
subroutines are described in

this document.

The data 1s edited and
fast fourier transformed by DEM2,

, Unclassified

’ . SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

et hmeimrn

SR Sl el RO SRR S,

i el ot S R e g

@ COMPUTER PROGRAM DESCRIPTION
: A LONG PERIOD ARRAY PROCESSING PACKAGE FOR ILLIAC IV
; SEISMIC DATA ANALYSIS CENTER REPORT NO.: SDAC-TR~74-17
AFTAC Project No.: VELA VT/4709
5 Project Title: Seismic Data Analysis Center
E ARPA Order No.: 1620
% ARPA Program Code No.: 3F10
Name of Contractor: TELEDYNE GEOTECH
Contract No.: F08606-74-C~0006
Date of Contract: 01 July 1974
Amount of Contract: $2,237,956

Contract Expiration Date: 30 June 1975

Project Manager: Royal A. Hartenberger
(703) 836-3882

P, 0. Box 334, Alexandria, Virginia 22314

APPROVED FORPUBLIC RELEASE; DISTRIBUTION UNLIMITED.

X}

]

L o TR s e Ve, SRR TR R T |

L, T

4

P

E,

RBRSEAE

gy

SRR e L 5 .0 P LN 34 b8 o i e S

ABSTRACT

This document describes a preliminary version of a long period array
processing package designed around the FKCOMB algorithm for use on the
ILLIAC IV computer. FKCOMB is a general-purpose array-processing program
that uses frequency-wavenu.ber analysis to produce a hulletin which lists
signal detections and various statistics for each detection. Two data
editing and reformatting modules prepare the seismic data for FKCOMB and
can be modified for use with other seismic algorithms. Preliminary refor-
matting of the seismic data is performed by DEMl., The data is edited and
fast fourier transformed by DEM2,

The input parameters required for operating these programs and their

subroutines are described in this document.

-iii-

T

- S e e s e e a8 b
teaE chdid e D A Ubiunad o i cinles e oo Sl LR o St i bt s Sl Ry -

DATA

=] SRS G L T -

TABLE OF CONTENTS

ABSTRACT
INTRODUCTION

DATA EDITING MODULE ONE (DEM1)

PURPOSE

FUNCTIONAL AND THEORETICAL DISCUSSION
PROGRAM DESCRIPTION

DATA AREAS AND SYMBOL DEFINITIONS
LINKAGE

DISK AREAS

FLOWCHART

EDITING MODULE TWO (DEM2)

PURPOSE

FUNCTIONAL AND THEORETICAL DISCUSSION
PROGRAM DESCRIPTION

DATA AREAS AND SYMBOL DEFINITIONS
LINKAGE

DISK AREAS

FLOWCHART

FKCOMB

PURPOSE

FUNCTIONAL AND THEORETICAL DISCUSSION
PROGRAM DESCRIPTIGN

DATA AREAS AND SYM3OL DEFINITIONS
LINKAGE

DISK AREAS

FLOWCHART

SAMPLE OUTPUT OF FKCOMB

SUBROUTINES

Cl6T64
C64T32
CHECKR
CNVTIM
FNGRID
GETBYT
GRID
GTDATE
IMG
MAX
OUTPUT
PUTBYT
RDPRM
REALE
ROWSUM
RUNFFT

—-fve-

Page

13

13
13
14
15
20
20
22

23

23
23
25
30
35
36
37
40

47

47
49
51

57
60
62
66
68
70
72
75
77
78
80
82

sl L5

e i e Y L gt A

i

OPERATIONAL PROCEDURES
GLOSSARY

REFERENCES

dakaul i et s oo R S ——

TABLE OF CONTENTS (Continued)

-y -

Page
84

87

88

LIST OF FIGURES
Figure No. Title Page
1 Data path from SDAC to ILLIAC. 2

2 The frequency wavenumber representation of a 24
propagating wave,

3 Angle = 0°, 28
4 Seismograms of Honshu Event. b
5 Sample FKCOMB output. 45
6 Diagrammatic representation of fine grid. 58
7 Coarse grid spacing. 63

8 Point arrangement on coarse grid. 64

o epevit e T SR e ! IR ATy) A e

TNTRODUCTION

The preliminary version of the long period ar cay processing package is }
designed to demonstrate the feasibility of using the ILLIAC IV computer for
seismic processing. It consists of three modules. Data editing module one
(DEM1) reformats the long period data, Data editing module two (DEM2) edits
and fast Fourier transforms (FFT) the data and FKCOMB performs the FKCOMB
algorithm on the data. Each of these modules is structured to allow for

expansion to include additional data formats.

Figure 1 is an overall flow of data from SDAC to the ILLIAC site.
Currently the data is received at ILLIAC over the ARPANET via file transfer
protocol (FTP) in the SDAC low-rate tape format. A tape drive is available
at the ILLIAC site and could be used for data transfer. Output from the
program is transmitted to SDAC via the ARPANET.

The channel component data is retrieved by DEMl and stored by array
identifier in time order. Minor timing errors are corrected. DEM2 edits
the data for timing and data errors, transforms the data and stores the

output in a disk file for input to the FKCOMB algorithm.

PR

SR ———

N P

P,

L R Bl ol ko e
R T T LT T T e g LS T e e

*OVITII 03 OVdS Wo1J yied eleq

40SS3204d
AYIEY

W3LSAS
TW¥LNID

VI

*1 2an31g

bt /09¢

DATA EDITING MODULE 1 (DEM1)

PURPOSE

Seismic data as received from remote seismic arrays (LASA, NORSAR, ALPA)
is not conveniently formatted for efficient retrieval by detection and analy-
sis programs. As received, records from different arrays are randomly
intermixed. The format and length of each record is dependent upon its
site or origin., The density of data pertinent to most programs is under
20%. Over 90% of the runtime of the current version of FKCOMB is spent
getting the data in a useful form. This problem is heightened by the
parallel architecture of ILLIAC. In its raw form seismic data would be very
difficult to manipulate in a parallel fashion. DEMl is designed to read in
raw data and organize it in a convenient manner for processing by such
algorithms as FKCOMB. The structure of the data makes it difficult to
maximize the processing power available on ILLIAC during such a reorganiza-
tion, This is not important, as the process is inherently I/0 bound.
Utilization of the bandwidth between disk and core (.5%10%*9 bits/sec.) and
the large amount of core available (128K 64-bit words) makes it possible to
do this job on ILLIAC quickly and makes the data available for storage on
the UNICON laser memory for convenient access for any processing desired,

The program is flexible and could handle data from all existing arrays and

from any similar loung period or short period arrays available in the future.

FUNCTIONAL AND THREURETICAL DISCUSSION

The input and output files used by DEM1 may be thought of as a series
of 16-bit bytes. It is the function of DEM1 to retrieve the data bytes
from the input file and organize them into the appropriate location in the
output file. Other than some minor error correction, the order of the input
bytes and the bytes themselves remain unchanged. Since the format of the
input records is known, the task reduces to determining which byte of the
input file is to be used to fill each byte of each output file, and having

determined this to access the bytes in such a way o minimize time lost due

TR —

o

Ll G s o

T P

to memory and disk accesses. In practice, the method is turned around
somewhat., Since the order of the input bytes 1s unchanged, it is effective
to take bytes from the input file sequentially and insert each one into the
next location in the appropriate output file. In order to conserve disk
access time, large core buffers are used for input and output., ILLIAC core
contains approximately 8x106 bits. Using buffers of 106 bits, 500 disk
accesses are necessary to input 5x108 bits (24 hours of data) and another
500 disk accesses to output the data. Assuming the worst case of 40 milli-
second access time this means that approximately 40 seconds of I/0 time will
be raquired to process 24 hours of data using a simple single buffering
scheme for I/0, if all of core is used for buffering. Im actuality, not all
of core 1s available for I/0 buffers and the time taken may be up to 80
seconds. Experimentation with different disk mappings to reduce the average
access time may significantly reduce the time. The second major source of
time 1s memory access. ILLIAC does not allow memory to memory transfers,

so all data most go from memory to a register to memory., ILLIAC memory
access time, though variable, due to overlap, is approximately 600 nano-
seconds. If a transfer were done for each 16-bit byte, requiring two memory
accesses, 2 accesses X (6x10_7) seconds/access x 107 bytes = 12 seconds of
memory access time would be required to transfer all input bytes. As coded,
the scratch pad memory in the ILLIAC Control Unit (CU) is used to somewhat

reduce this time.

The third major source of time is overhead due to the calculation of
the address in each buffer before a transfer and the shifting necessary to
coordinate the 16-bit byte size of the data with the 64-bit ILLIAC word
size. The amount of time used in this process is estimated to be equal to

or slightly greater than the time taken in memory accesses.

The time required by DEM1 to reorganize twenty four hours of raw long
period seismic data is under two minutes of I/0 time and under one minute
of processor time., Allowing for unforeseen overhead and future code
optimization, three to five minutes of total running time is a reasonable
estimate for this system of data acquisition. More complicated and possibly
more efficient algorithms suggest themselves but are deemed unnecessary due

to the small savings in time possible.

=

R, R

PROGRAM DESCRIPTION

; Seismic data, as received over remote lines is divided into records. 8
Each record consists of a series of 16-bit bytes, While the length and
exact format of each record depends upon the array at vhich it was created,

A the general format of each is:

Record Format

Al g Kl

HEADER ID - Identifies source array.
POSSIBLE TIMING WORD - Present if one time word per record ;
rather than one time word per scan (for

definition of SCAN, see below). Format

: of time word dependent upon array.

4 VARIABLE LENGTH GAP - Length determined by array. :

§ MULTIPLE TIME SCANS - Number dependent upon array. For format ;

§ | of SCAN, see below. i
VARIABLE LENGTH GAF - Length determined by array.
Time SCAN -'
VARIABLE LENGTH GAP- Length determined by array. 3
POSSIBLE TIME WORD - Present if time word per SCAN rather

than time word per record. Format of

time word dependent upon array.
MULTTPLE DATA CHANNELS - Number and format dependent upon array.
VARIABLE LENGTH GAP - Length determined by array.

In this general structure there are 10 variables which exactly determine

the format of a record. They are:

1) HEADER ID

2) TIME WORD PER SCAN OR TIME WORD PER RECORD
3) FORMAT OF TIME WORD

4) LENGTH OF GAP BEFORE FIRST TIME SCAN

5) LENGTH OF GAP AT BEGINNING OF EACH SCAN

6) NUMBER OF DATA CHANNELS PER SCAN

o I KL i s s SRE G Mt bk S ki o

P e

L L e M N

R AT

7) FORMAT OF DATA CHANNELS

8) LENGTH OF CAP AT END OF EACH SCAN
9) LENGTH OF GAP AFTER LAST SCAN
10) NUMBER OF SCANS PER RECORD,

DEM1 determines the header ID from the first byte of a record and from
this determines the source array. All the other values are then found in a
table constructed to describe each array. New formats can be handled by
adding to or modifying this table. The table is currently constructed at
compile time via a data statement and is changed by recompiling one block

data subroutine.

A pointer is maintained indicating which byte in the input stream is to
be accessed next. Using this pointer, it is determined whether the data
byte is on disk, in core, or in the CU scratch pad memory. The format of
the input is accommodated by manipulating the pointer to space over gaps.

In a series of nested loops, each record, then each time scan, then each
data channel is handled. Output goes to one of six output buffers, then to
one of six output files. Since only three seismic arrays are currently
implemented, only three of these files are presently used. The others are

available for expansion.

Timing errors in the input are of two types, gaps and reversals. Gaps
of two or fewer are corrected by duplicating the data from the last good
time step. This data is always available in the output buffer, though the
duplication is complicated somewhat by the two levels of buffering used.
Larger gaps are indicated by a diagnostic message and no correction is
attempted. Time reversals are handled by ignoring any redundant data and

a diagnostic message.

Processing continues until an unidentifiable input record is found.
Lf the hcader is non-zero, a diagnostic is printed indicating the poss.bility
of a data error. Normal end of data is indicated by a header of all zeroes.

In either case, all output buffers are emptied to disk and processing ter-

minates.

DATA AREAS AND SYMBOL DEF INITIONS

ADB - CU 1NTEGER
ADBBUF(8) - CU INTEGER
ADBOUT(6) - CU INTEGER
ADDRS - CU INTEGER
ARRAY - CU INTEGER

BCT - CU INTEGER

BYTCNT(6) - CU INTEGER

BYTS - CU INTBGER

CNTRL (*,6) _ PE INTEGER

DEBUG - CU INTEGER
ENDADB - CU INTEGER

INBUF (*,128) - PE INTEGER
T™NBYT - CU INTEGER

INPTB - CU INTEGER

INPTW - CU INTEGER

IT - CU INTEGER

LADB - CU LOGICAL

LADBBU(8) - CU LOGICAL

LADBOU - CU LOGICAL

holds word from ADB buffer before
being written in core.

CU scratch pad memory (ADB) input
buffer.

one word ADB buffer for each array.
address in OUTBUF of IT.

Array currently being processed.
number of bytes in last partially
filled word.

byte count for each output buffer.
Number of bytes from last time step
that are in core. Used in filling
time gaps.

An array initialized at compile time
giving the format of data from each
seismic array,

Controls the output of debug print-
out. Zero for typical run.

address of byte being held at end of
ADB input buffer,

Input buffer,

holds input byte after call to GETBYT.
Pointer to current byte in input buffer.
Pointer to current word in input buffer.
first word of data to use when filling
in time gaps.

equivalenced to ADB to facilitate
shifting and masking.

equivalenced to ADBBUF to facilitate
shifting and wasking.

equivalenced to ADBOUT to facilitate

shifting and masking.

S oo i ok o e i e e 3id

e

b e

LADBWR - CU LOGICAL

LADDRS - CU LOGICAL

LARRAY - CU LOGICAL

LBCT - CU LOGICAL

Sl o e R e

LBYTCN(6) - CU LOGICAL

LBYTS = CU LOGICAL

e fa SN Ll i

LDEBUG - CU LOGICAL
; LENDAD - CU LOGICAL
i
‘]
: LINBYT - CU LOGICAL
LINPTB - CU LOGLCAL
LINPTW - CU LOGICAL

LIT - CU LOGICAL

LORGCO - CU LOGICAL

LOUBYT - CU LOGICAL

LOUPTW -~ CU LOGICAL

LPAGE - CU LOGICAL

LT1 - CU LOGICAL

" P o e L e) e ot e b e S e o e v i dct i b

equlvalenced
ghifting and
equivalenced
shifting and
ejuivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equlvalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and

to ADBWRD to facilitate

masking,
to ADDRS
masking.
to ARRAY

masking.

to facilitate

to facilitate

to BCT to facilitate

masking,

to BYTCNT to facilitate

masking,

to BYTS to facilitate

masking.,
to DEBUG

masking.

to ENDADB to facilitate

masking.
to INBYT
masking,
to INPTB
masking.
to INPTW
masking,
to IT to

masking,

to ORGCOR to facilitate

masking.
to OUBYT
masking,
to OUPTW

masking.,

to facilitate

to facilitate

to facilitate

to facilitate

facilitate

cto facilitate

to facilitate

to PAGE to facilitate

masking.,

to TI to facilitate

masking,

R R ITERITN LN o T

I TN YDA DL R s ST s

DATA AREAS AND SYMBOL DEFINITIONS

ADB - CU INTEGER
ADBBUI' ') - CU INTHGER
ADBOUT(6) - CU INTEGER
ADDRS - CU INTEGER
ARRAY - CU INTEGER

BCT - CU INTEGER

BYTCNT(6) - CU INTEGFR

BYTS ~ CU INTEGER

CNTRL (*,6) _ PE INTEGER

DEBUG - CU INTEGER

ENDADB - CU INTEGER

INBUF (*#,128) - PE INTEGER
INBYT - CU INTEGER

INPTB ~ CU INTEGER

INPTW -~ CU INTEGER

IT - CU INTEGER

LADB - CU LOGICAL

LADBBU(8) - CU LOGICAL

LADBOU - CU LOGICAL

holds word from ADB buffer before
being written in core.

CU scratch pad memory (ADB) input
buffer,

one word ADB buffer for each array.
address in OUTBUF of IT.

Array currently being processed.
number of bytes in last partially
filled word.

byte count for each output buffer,
Number of bytes from last time step
that are in core. Used in filling
time gaps.

An array initialized at compile time
giving the format of data from each
seismic array.

Controls the output of debug print-

out. Zero four typical run.

- address of byte being held at end of

ADB input buffer.

Input buffer,

Folds input byte after call to GETBYT.
Pointer to current byte in input buffer.
Pointer to current word in input buffer.
first word of data to use when filling
in time gaps.

equivalenced to ADB to facilitate
shifting and masking.

equivalenced to ADBBUF to facilitate
shif ting and masking.

equivalenced to ADBOUT to facilitate
shifting and masking.

sEf
]
3

LADBWR - CU LOGICAL

LADDRS - CU LOGICAL

LARRAY - CU LOGICAL

LBCT -- CU LOGICAL

LBYTCN(6) - CU LOGICAL

LLBYTS - CU LOGICAL

LDEBUG

CU LOGICAL

LENDAD - CU LOGICAL

LINBYT - CU LOGICAL

LINPTB - CU LOGICAL

LINPTW - CU LOGICAL

LIT - CU LOGICAL

T.ORGCO - CU LOGICAL

LOUBYT - CU LOGICAL

LOUPTW - CU LOGICAL

LPAGE - CU LOGICAL

LT1 - CU LOGICAL

equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and
equivalenced
shifting and

to ADBWRD to facliitate

masking.
to ADDRS
masking.
to ARRAY

masking.

to facilitate

to facilitate

to BCT to facilitate

masking.

to BYTCNT to facilitate

masking.

to BYTS to facilitate

masking.
to DEBUG

masking.

to facilitate

to ENDADB to facilitate

masking.
to INBYT
masking.,
to INPTB
masking,
to INPTW
masking.
to IT to

masking.

to facilitate

to facilitate

to facilitate

facilitate

to ORGCOR to facilitate

masking.
to OUBYT
masking.
to OUPTW

masking.

to facilitate

to facilitate

to PAGE to facilitate

masking,
to TI to

masking.

facilitate

M o ol i

LT2 - CU LOGICAL

LT3 - CU LOGICAL

LT4 - CU LOGICAL

LT5 - CU LOGICAL

LT6 - CU LOGICAL

LWORD - CU LOGICAL

LWORDS - CU LOGICAL

LPRTIA - CU LOGICAL

LSAVAD - CU LOGICAL

OLDTIM(*) - PE INTEGER

ORGCOR - CU INTEGER

OTIMEA(6) - PE INTEGER

OUBYT - CU INTEGER

OUPAGE(6) - PE INTEGER

OUPTWA(6, - PE INTEGER

OUT(*,64,6) - PE INTEGER

OUTPTW - CU INTEGER

PAGE - CU INTEGER

- equivalenced
shifting and
~ equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifti.,g and
- equivalenced
shifting and

- equivalenced

i b e e

to T2 to facilitate
masking.

to T3 to facilitate
masking.

to T4 to facilitate
masking.

to T5 to facilitate
masking.

to T6 to facilitate
masking.

to WORD to facilitate
masking.

to WORDS to facilitate
masking.

to PARTIAL to facilitate
masking.

to SAVADB to facilitate

shifting and masking.

- Time in deciseconds from the beginning
of the year for current time step.

- identifies address within file of the
first word in the core input buffer.

- Saves OLDTIM when switching from one
array to another.

- passes output byte tu subroutine PUTBYT.

- page of current output file

- Pointer to curvent word in output buffer
for each array.

- Output buffer. Includes room for 6
seismic arrays.

- pointer to current word in output
buffer.

- pdge to read from next.

B e gk Rl T ol i R - S, e R

3

PINTI(*) - PE INTEGER

PRTIAL - CU INTEGER
SaVABD - CU INTEGER
SAVBCT - PE INTEGER
SAVPTW - PE INTEGER

SCANS - PE INTEGER

TIME(*) - PE INTEGER

TSTEPS(6) - PE INTEGER

Tl - CU INTEGER

T2 - CU INTEGER

T3 - CU INTEGER

T4 - CU INTEGER

T5 - CU INTEGER

T6 - CU INTEGER

WORD - CU INTEGER

WORDS - CU INTEGER

Holds intermediate results throughout
the program.

Number of bits of IT to use when
filling in time gaps.

Saves ADBOUT(ARRAY) while filling in
time gaps.

Saves BYTCNT (ARRAY) while filling in
time gaps.

Saves OUPTW while filling in time gaps.
Number of time scans that have been
read from the current record.

Time in deciseconds from the beginning
of the year for current time step.
Number of time steps that have been
retrieved for each array.

holds intermediate results throughout
program,

holds intermediate results throughout
program,

holds intermediate results throughout
program.

holds irtermediate results throughout
program,

holds intermediate results throughout
program,

holds intermediate results throughout
program.

used to build output word while filling
time gaps.

number of complete words that are in
core from last time window. Used in

filling time gaps.

~10-

bl e £

I T

[

L Skl s W

LINKAGE

DEM1 calls subroutine PUTBYT, GETBYT, CNVTIM, and RDPRM which are

described in the section on subroutines.

DISK AREAS

INPUT - binary input area. Format described in DIM1 program

description,

OUPUT1, OUPUT2, OUPUT3, OUPUT4, OUPUT5, OUPUT6 - binary output areas.
Each contains output from one seismic array. Currently the input consists
of data from only three arrays, so only the first three areas contain data

other than the header. The format of each area is:

HEADER - beginning of each area.
WORD1: Array ID,
WORD2: number of time steps in this disk area.
WORD3-1024: zero
TIME STEPS - first time Step starts at word 1025, Number of time
steps given in word 2 of the HEADER,
WORD1: time in deciseconds from beginning of year for this
time step.
WORD2-N: data from each of N-1 channels.

DISPA - Print output. Consists of a header identifying the run,
bulletins indicating time gaps and reversals, and a trailer indicating

normal termination of the run.

=11~

v 2w e s e L TR et T L AT BTSSR R

i L il

BRI

=

R AT

E ol BEal S S i e e ——

T A e

N (R - g ey e -

Jaeyomolg weadoxd uren TWIA
SHIJ4NE IHOD i
s— g ¥510 0
3015 E.:__E MO i _H_:ﬁ_ ML 0L I1150NI¥10 0= 01
FEDCEL
SHIAWIH Lhd IHL A1dM3 A¥ 14510
080338 {v¥ivo HY1S SIHL H04
HLITM NHHL S, TINKYHD) IMIL IHd
AgLn
b Ll LABLID 1nd1no
é JI1LSONIVIO i
NYIS SIHL 040234 ¥1id yoyn3 mdﬁﬂqﬂqum
SIA Y
AVMY MOMHL ILVYINID 3 1ndino

0380338 SIH{

AVRY NOY¥YHL

NVIS SIH{
304
INIL INTHY3ILI0

ON

4
AVYyY
3Z IN90D 3

{S)dv9 3IMIL
ONISSIN
NI 17:4

YIAWNN AVHYY
(a1 ¥3avik)
LA8139

AZ1WILIND

-12-

R R

IR ——

P i ek Lokl Risorinal b il B d TDL T Bl [g oy TAT e T

DATA EDITING MODULE 2 (DEM2)

PURPOSE

The FKCOMB algorithm require¢s that the input data be rearranged, edited,
FFT'ed, and rearranged again before detection can begin. For ease of design

and because of core limitations, this part of the processing has been made

a separate module. DEM2 accepts the output of DEM1 and creates an output
file which is error free and ready for FKCOMB detection. It handles any
overlap requested and prints a bulletin whenever time gaps or data errors
are detected. The data is deglitched and dead or noisy channels are

removed,

FUNCTIONAL AND THEORETICAL DISCUSSION

Long period seismic data transmitted to SDAC is multiplexed by time.
This organization is unaffected by DEM1. Prior to FKCOMB analysis, the
following steps must be performed on the data:

demultiplex by channel and segment into time windows
overlap of time windows according to user specification
convert to ILLIAC floating point format

correct large time gaps by shifting of time windows
deglitch

remove dead and noisy channels

fast fourier transform

demultiplex by frequency.

Both steps involving demultiplexing are done a byte at a time. All
other steps make full use of the parallel structure of ILLIAC by moving

or computing 64 pieces of data at once.

The correction of time gaps and the overlapping of time windows
involves moving data across processing elements (PE). Due to the organi-
zation of data into time winlows whose size is a power of two equal to or

greater than 64, this is an efficient use of the ILLIAC route instruction.

~13-

s s e Bt e i

SRR A R S SR ol s R A a3 R el 7 R SRR

ol UL I TE R B T it o Bt i s o S i ot RS

IR Y. -

|

e

Spikes are smoothed via the following formula. Let An-1, An and

AN+1 be three consecutive data elements and G be the user supplied "glitch"
" - > - =

factor". If |(An An+1)| |c;(An_1 An+1)| then A = (A, +A)/2.

Dead and noisy channels are detected via the mean square, If Cn is the

mean square of the nth channel, MS is the mean square of all the channels

and V is the user supplied "variance factor", a check is made to see if

1/v < Cn/MS < V. If not, the channel is assumed to be dead or noisy.
PROGRAM DESCRIPTION

Raw seismic data and data as output by DEM1 are arranged by :ime step
in the following manner:

T(1)[CH(1) ,a(2),...,CH(N)], T(2)[CH(1),CH(2),...,CH(N)]
T(M) [CH(1),CH(2),...,CH(N)]

where "N" 1s the number of channels of the array being processed and "M"

s vy

is the number of time steps contained in the data set being processed. As
output by DEM1, the data is packed four 16-bit bytes per ILLIAC word. The

first step of DEM2 is to read in a time window of data and multiplex it by
channel so that it is arranged as follows:

CH(l)[T(l),T(Z),...,T(W)],...,CH(N)[T(l),T(Z),...T(W)]
where "N" 1s again the number of channels of the array being processed and
"W" is the time window length, a power of two between 64 and 512 specified
by the user at run time. During this process, the data is unpacked to one
16-bit byte per ILLIAC word. A double buffering scheme is used so that the
last time window craeated is always accessible so that any overlap specified

by the user can be handied and any time gaps recovered from, is possible,

The data is then deglitched and bad channels are noted. The data is

then FFT'ed. The FFT routine is one written at the University of Illinois.

It 18 necessary to convert the data to 32-bit floating point formac before

the routine 1s called, The FFT is performed in place and the output is a

complex number stored in 32-bit form the inner and outer parts of the 64-bit

word, The data is left in this form for use by FKCOMB. The last step is to

select the frequencies requested, rearrange the data so that each PE memory

contains one complete multi-channel time window multiplexed by frequency.

640 words in each PE are reserved for the output, so the number of channels

multiplied by the number of frequencies is restricted to less than 640,

Since in normal operation fewer than 20 frequencies are requested, this

poses no serious restriction,

DEM2 VARIABLES

ABUFF2(70400) - PE INTEGER

ADBBUF(8) - CU INTEGER
ADBWRD - CU INTEGER
ALLMSQ(*) - PE REAL

ARRAY - CU INTEGER

BF3PE - CU INTEGER

BUFF2(*,500,2) - PE REAL

BUFF3(8,640) - PE REAL
BYTE - CU INTEGER

CH - CU INTEGER
CHGOOD(80) - PE INTEGER

CHMSQ(80) - PE REAL
CNTRL(*,6) - PE INTEGER

COMP(*) - PE INTEGER

- equivalenced to BUFF2.

— ADB input buffer.

- current word in ADBBUF.

- the meen square of all channels for
current time window.

- indicates seismic array being pro-

cessed. 1 = LASA
2 = ALPA
3 = NCRGAR.

- PE to be filled next with a time
window.

- intermediate data buffer in which
time windows are built.

- output buffer.

- byte within current ADB word most
recently acquired.

- channel currently being processed.

- indicates which channels passed
variance test.

- mean square for each channel.

- via assembled in data, give informa-
tion on each array such as how many
Sensors.

- component of motion to be processed.

0 - vertical

1 - horizontal.

~15-

L i e ek Sl 8 et a2

COREPT - CU INTEGER - gives the byte number of the first
byte in BUFF1.

DEBUG - CU INTEGER - controls debug print out. For
routine runs equals zero.

DIFFR - CU INTEGER - used in movement of data within time
windows, Difference in rows.

DIFFW - CU INTEGER - used in movement of data within time

windows., Difference in words.

F - CU i{iiEGER - frequency currently being processed.
FINSCN(*) -~ PE INTEGER - number of time scans in input.,
GAP - CU INTEGER - non-zero if a time gap was found

before this time window.
GLCHFT(*) - PE REAL - user supplied factor used in detecting
glitches, or spikes, in the data.

HIFREQ -~ PE INTEGER - highest frequency processed.

IBUFF1(4096) - PE INTEGER -~ input buffer. Equivalenced to NBUFF1.

IBUFF3(*,640) - PE INTEGER - output buffer. Equivalenced to
BUFF3(*,640).

INBYT - CU INTEGER - current input byte,

INDEX1 - CU INTEGER - holds intermediate results thru out

program,
INDEX2

CU INTEGER - holds intermediate results thru out

program.,
INDEX3

CU INTEGER - holds intermediate results thru out

program.,
INDEX4

CU INTEGER - holds intermediate results thru out

; program,

‘? IPAGE - CU INTEGER -~ input area page number to read from z
: next, a
: “CH - CU LOGICAL - equivalenced to CH to facilitate

shifting and masking.

LDIFFW - CU LOGICAL - equivalenced to DIFFW to facilitate
shifting and masking.

ﬁ LF - CU LOGICAL - equivalenced to F to facilitlate

o o g o e~ ¢ T s e ZE e sl e

shifting and masking.

U

-16-

Sl el Tl e

T DTV WA

LGAP - CU LOGICAL

LINBYT - CU LOGICAL

LNEW - CU LOGICAL

LNGDCH - CU LOGICAL

LNGDR - CU LOGICAL

LNGDST - CU LOGICAL

LNGT - CU LOGICAL

LOFFSE - CU LOGICAL

LOFREQ - PE INTEGER
LOLD - CU LOGICAL

LTSCAN - CU LOGICAL

LT1 - CU LOGICAL
LT2 - CU LOGICAL
LT3 - CU LOGICAL
LT4 - CU LCGICAL
LT5 - CU LOGICAL

LT6- CU LOGICAL

niidb LB Rl Y il e il

- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shif+ing and
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced

shifting and

- lowest frequency processed.

- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced
shifting aud
- equivalenced
shifting and
- equivalenced
shifting and
- equivalenced

shifting and

-17-

to GAP to facilitate
masking.

to INBYT to facilitate
masking.

to NEW to facilitate
masking.

to NGDCH to facilitate
masking.

to NGDR to facilitate
masking.

to NGDST to facilitate
masking.

to NGT to facilitate
masking.

to OFFSET to facilitate

masking.

to OLD to facilitate
masking.

to TSCAN to facilitate
masking.

to Tl to [acilitate
masking.

to T2 to facilitate

masking.
to T3 to facilitate
masking.
to T4 to facilitate
masking.

to TS5 to facilitate

masking.

to T6 to facilitate

masking.

LT7 - CU LOGICAL

LTWSZR - CU LOGICAL

NBUFF1(*,64) = PE INTEGER

NCHAN - CU INTEGER
NEW = CU INTEGER

NGDCH - CU INTEGER
NGDR - CU INTEGER
NGDST - CU INTEGER
NGT - CU INTEGER

NROWS - GU INTEGER

OFFSET - CU INTEGER
OLD - CU INTEGER

OPAGE - CU INTEGER

OTIME(*) - PE INTEGER

OVLAP - CU INTEGER
PEN(*) = PE INTEGER

PINT1(*) - PE INTEGER

PINT2(*) - PE INTEGER

PREAL)L(*) - PE REAL

equivalenced to T7 to facilitate
shifting and masking.

equivalenced to TWSZ.. to facilitate
shifting and masking.

input buffer. Also referenced by

the equivalenced variable RBUFF1 (4096).
number of channels,

which half of BUFF2 is new, Either
one or two.

number of good channels after variance
check.

number of good rows. NGDCH x TWSZR.
number of good sites.

number of good times., NGDCH x TWSZ.
number of rows occupied by data in
BUFF2. Equal to NSITE x TWSZ/64.
used in index calculation.

which half of BUFF2 is ¢ld. Either
one or two.,

page in output area to be written to
next,

time in deciseconds from the beginning
of the year of previous data word.
overlap between time windows.

PE number. Initialized in block area
subroutine to be 1 in pe number one,
2 in pe number two, and 64 in pe
sixty four.

used for intermediate results thru
out program,

used for intermediate results thru
out program,

used for intermediate results thru

out program,

i

M S bR ey I Laa e Sl kds

B g e

e Ko

[T T - L G VR 0 s o R, - TR T (O . o N Ny el T

3
.
;o
5
b3,
]
p
4
..

PREAL2(*) - PE REAL

RBUFF1(4096) ~ PE REAL

RBUFF2(70400) ~ PE REAL

SITES(80) - PE INTEGER

SITEGD(80) - PE INTEGER

TIME(*) - PE INTEGER

TOTSCN(*) - PE INTEGER
TSCANS - CU INTEGER

TVARFT(*) - PE REAL

TWSZ - CU INTEGER

TWSZR - CU INTEGER

TWTIME(*) - PE INTEGER

Tl - CU INTEGER
T2 - CU INTEGER
T3 - CU INTEGER
T4 - CU INTEGER

- used for intermediate results thru
out program.

- input buffer. Equivalenced to NBUFFI
and IBUFFI,

- intermediate buffer in which time
windows are constructed. Equivalenced
to BUFF2 and ABUFF2.

- give physical site number for each
site used for output.

- indicates which sites passed variance
test.

- time in decise¢conds from the beginning
of the year of current data word.

- number of time scans procesed so far.

- number of time scans down in current
time windows.,

- holds variance factor as it is
modified to pass 507 of channels.

- time windew size. Integer power of
two between 64 and 512.

- number of rows occupied by one time
window. TSWZ/64,

- time in deciseconds from the beginning
of the year of time window currently
being prepared by each PE. 3

- holds intermediate results thru out

program.

- holds intermediate results thru out
program.
- holds intermediate results thru out

program.

: ol i oS e -

- holds intermediate results thru out

program,

-19-

G A
R o L.

e
¢

UL A

i T5 - CU INTEGER - holds intermediate results thru out
? program, {
ﬁ T6é - CU INTEGER - holds intermediate results thru out '
program, :
T7 - CU LNTEGER - holds intermediate results thru out ¥
program |
VARPT(*) - PE REAL - user supplied factor used in detection
of dead or noisy channels. i
LINKAGE
In addition to the system I/0 routines, DEM2 requires several reloca-)

table modules which make up the University of Illinois FFT routine. These

are:

s

FFT.MAINREL
- ' FFT.SCRAMBLEREL
' FFT. TRANREL
FFT. CONSTANTSREL

The interface to these modules is provided by the subroutine RUNFFT

and is described in the documentation of that subroutine.

DEM2 also calls subroutine GTDATA, Cl16T64, C64T32, and ROWSUM described

in the section on subroutines.

DISK AREAS

W L

INDM2 - binary input. Described in DEM1 DISK AREAS.
OUTDMZ2 - binary output. Format:
HEADER - beginning of area.
WORD 1: Array ID 3

! 't
WORD2-1024: zero
1 g
3 TIME WINDOW - this data is best viewed as a two dimensional matrix. !
ﬂ Each column will be wholly contained by a PE and contains }

one time window. There are 64 columns, one per PE.

This is repeated as many times as required to contain
all time windows processed. The format of each column

is:

-20-

WORD 1: time in deciseconds for this time window.
WORD 2: number of good channels.
WORD 3-27: physical number of each good channel.
WORD 28-640:

First Frequency (channels 1-N)

last Frequency (channels 1-N)

CONPRM - input parameters for this run, in binary.

WORD1: DEBUG. Controls debug printout. Normally zero.

WORD2: time window size. Integer power of two between 64 and 512.

WORD3: over lap. Integer between zero and time window size
minus one.

WORD4: glitch factor. Normally ten. Floating point.

WORD5: variance factor. Normally ten., Floating point.

WORD6: 1low frequency. Integer indicating serial number of
lowest frequency.

WORD7: high frequency. Integer indicating serial number of
highest frequency.

WORD8: indicates whether vertical or horizontal components are

to be processed. l-vertical; 2-horizontal.

DISP2 - printed output consisting of a header identifying the run, informa-
tion on each timing error located, and a trailer indicating normzl

termination.

-21-

3aeyonory weaSoig UTWN ZWId (2)

oN
3 T ER]F] ..—e__tao £44n8 o
|
B ¥30V3H 104 el L
; oN
£44n8 01
A-l.—.l t44ne AININOTWA AW fo—f E4dNE NI R 144 o1 s118-2¢
o e s X314111M30 ¥30V3H 1nd Pl
i
i
4 NI 031S3W3LNI ROGNIA 010
\ s 3uv 3 | siuamoamod c 311WANIA0 noan1m MOONIA 40 ON3
V1Va HITHA WOIlow [INEIA-0 ISY e [gy 1ie-vs PO AN o TR
100 3WN914 I1NdN0) i 311 lohaes HOu4 N1 1114 1NINNND LA IHS
&
& ~
3]

o @Il, J1150M9v10

{ AV1dSIC

S3A

moau1m g
< ” T LS¥1 WOW3 e 0¥0I34 ¥3OWIN
ML 9N11114 Ag | OM 3Z1WiLIN

NI av3y
Y T43A0 00 INTL 3L 139

e Vs ¥

.

FKCOMB ALGORITHM

PURPOSE

To accomplish rapid signal detection using frequency beamforming, i.e.,

frequency wavenumber analysis, on a large number of beams.

FUNCTIONAL AND THEORETICAL DISCUSSION

Frequency-wavenumber (f-k) spectral estimation is a powerful technique
for signal detection and waveform analysis of digitally recorded array data.
The f-k spectrum of a given segment of array output is the squared modulus
of the multidimensional Fourier transform of the data in time and space.

The f-k spatial representation of a propagating wave is shown schematically

in Figure 2. Using discrete Fourier analysis in the frequency domain, the
representation can be thought of as a series of layers normal to the frequency
axis, each layer representing the wavenumber plane at a given frequency. The
wave is thus represented as a series of power maxima in the layers, and the
locus of these maxima is determined by the phase velocity of the wave

(Smart 1971).

The advantage of this process is that propagating wave components are
easily recognized and separated from one another, subject to the limitations
imposed by the array geometry, sensor weighting, and the type of spectral
smoothing employed. In essence, f-k analysis is beamforming in the fre-
quency domain, The method takes advantage of the fact that the signal-to-
noise ratio varies with frequency, so the beamforming is done frequency by
frequency. Also by staying in the frequency domain a great many beams can
be examined rapidly, the number being limited only by the resolution cell of
the array response. In practice this moans that the azimuth and velocity
of a signal need not be assumed: one merely accepts the beam with maximum
power, This fact is important for signals such as long-period seismic
surface waves, which not only are dispersive (i.e., their phase velocities
vary with frequency) but whose arrival azimuth may also vary with frequency

due to lateral inhomogeneties in their paths.

-23-

Frequency Wavenumber Representation

/ PHASE _f
At f: VELOCITY /K
I
> (K L’
fn+1
- > -
n 7
g ‘@ d
o I /
/
/
!
/

Figure 2. The frequency wavenumber

wave,

> ky

—-24=

representation of a propagating

it e arailn - i G gian ko e e

Lo e st b e e e A

__JENGEE o SR

FKCOMB is a fast f-k analysis program that was used in an automatic

processing system for microbarograph array data (Smart and Flinn, 1971).

Throughout the program description the Fourier transform of the nth
user-specified channel component for any component of motion at angular

frequency w will be written as An(w)eian(w).

PROGRAM DESCRIPTION

FKCOMB uses f-k analysis for continuous processing of time-varying data
from arrays of sensors. Its output is in the form of a bulletin listing
signal detections and giving for each the phase velocity, back azimuth,
signal power, signal-to-noise ratio, and F statistic (related t» signal-
to-noise ratio; see Smart and Flinn 1971) as a function of frequency and

arrival time.

FKCOMB examines time windows of data which have been Fourier-transformed
in time and space. Maxima of power in three-dimensional f-k space are auto-
matically picked and, if these maxima exceed a specified signal-to-noise
detection threshold and are within a specified phase velocity range, they
are listed together with their corresponding back azimuth, phase velocities,

and other data. (See above.)

There are also two-dimensional maxima, which are places that are
maximum within a given wavenumber plane but not along the frequency axis.
If such two-dimensional maxima satisfy the specified signal-to-noise ratio
and phase velocity criteria, and if their corresponding approximations to
group velocity (see below) are reasonable, these maxima are also listed by

the processor.
THE FAST f-k ANALYSIS ALGORITHM ;

The power at a given frequency and wavenumber is computed by means of

equation (1):

N
P(£,k) = lﬁ Z An(f)eian(f)eZNik rn|2 :
1

n=

~25-

_.“m T T T T T R TN T TR Tk ot v e Oy S0 18 L S 110 P el
T T e e B e o L L [T e gy T e ar V Eh Sllo__ . Sl —a
-

E

E R — = - - e ¥ AT ey
B e e M e b i e S TR L VI 1y . L Bl il N v 5 -,

B

=i
ks

where

f = frequency

k = vector wavenumber

N = number of channel components for the component of motion

n = channel component index

r = vector location of the n'th channel component with respect
to an arbitrary origin

An(f)eian(f) = Fourier transform of the n'th channel component

An(f) = amplitude part of the transform

(£)

eian(f) = phase part of the transform in which 0Ln = the phase angle.

Equation (1) is evaluated for a matrix of wavenumber values at a series
of discrete frequencies, as specified in the input parameters; it can be
considered as a three-dimrnsional space with frequency being one dimension
and the vector wavenumber k being the other two dimensions. For computa-
tion, k is resolved into a Cartesian coordinate system, with ky related

to geographic north and kx related to geographic east.

A wavenumber value, say ko, is related to the phase velocity V by
equation (2):
V= £/ kgl
Stated verbally, phase velocity is inversely proportional to the distance

from the frequency axis. The locus of constant values of V is a cone in

f-k space, with the apex at the point f = (kx’ky) = (0,0).

For f-k analysis the power is calculated in a matrix of wavenumber
values separated by a grid interval Ak. This is greatly speeded up by
using the relation shown in equation (3):

5 i
An,f)eiozn(f)EZTri(k+k) rn A

ic (£) 2wiker 2wiAker .
- An(f)e n n, n .

~26-

Thus if a set of N terms had been calculated for the first wavenumber valu:
51, the values at EZ = il + Ak are obtained by merely multiplying those
terms by a factor exp(+2niAk-rn). Therefore, if a regular grid is used,
only one set of kernels exp(+2n§l°£n) need be generated, the remaining
values being obtained with successive multiplication by the invariant ker-

nels exp(+2mnidker).
= -

THE SEARCH PROCESS

The frequency wavenumber search using triangular and rectangular grids
can be thought of as taking place within a cone (Figure 3). At each
frequency searched, the process takes place within a search disk bounded
by the intersection of the cone and a constant frequency plane. This
search disk is then extended by a border shaped like an annulus to insure
complete coverage by the grid. Initially a triangular grid is used. Once
a maximum is fourd, finer square grids are used, utilizing uphill walks from
the maximum to get a better estimate. The program searches from lower to

upper user-specified frequencies.

Beginning at the point of greatest power on the coarse grid, the
program steps out in a plane of constant frequency along each of the four
cartesian coordinate directions to determine the direction in which the
power is rising, and it continues to compute successive points in that

direction as long as the power is rising.

When the power begins to fall off in the direction being explored, a
new direction is determined and followed, and the process is repeated until
a place is reached where the four adjacent points in f-k space all show
lower power. The grid spacing is then reduced by a factor of 6 and the
same procedure is repeated to refine the location of the power maximum.

The amount of computation required is about an order of magnitude less
than would be required for computing and searching the complete two-

dimensional spectral matrix.

All two-dimensional peaks located in this manner are then checked to

see if they are also maxima in the frequency direction as well; such peaks

are defined by the equation:

-27-

G e

T B P PREE 7 oy PG s

Search Cone

—>

Frequency

East k,

0° < Angle < 360°

Figure 3. Angle = 0°

-28-

12 e e s i L A0 o Rt SARO T L A