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SOME TRANSVERSE RESONANT VIBRATION CHARACTERISTICS OF
WIRE ROPE WITH APPLICATION TO FLOW-

INI)UCEI) CABLE VIBRATIONS

INTRODUCTION AND RELATED INV ESTIGATIONS

'rhe increased use in marine co.istruction of light structural elements with little damping
has resulted in the more frequ(ent occurrence Of Undesiri;k•ce vibrations. Wire rope, one of
the most widely used marine structural element.; of this type, is l)particularly susceptible to
vibration since its bluff shape can experiei.,!e alternating transv.rse forces when a current
flows about the cable and produces alternate shl-dding of vor!.ices. Furthermore, at a coin-
cidence of the vortex shedding frequency and a c:I)le resonant frequency, large transverse
motions often take place. The authors have recently ex':mnined the flow about a resonantly
vibrating cable [1, 2] to relate the properties of the wake to the cable motion and to the
existing information on thie flow-induced forces. These investigations have indib Ated that a
cable strumming model can be developed as an extension of NRL's successful wake-oscilla-
tor model [3] for predicting the vortex-excited oscillations of elastically mounted, rigid
structures.

Some knowledge of the resonance characteristics of wire rope is required in order to
establish an adequate predictive model for these flow-induced cable vibrations. The purpose
of this report is to examine the resonant behavior of wire rope to determine a satisfactory
governing equation for the table motion and to ascertain the cable damping and added mass
in water. These quantitie3 are combined to form a cable strumming 9tability parameter that
is analogous to the results witi! the aforementioned wake-oscillator model.

Wire rope, considered as a structural element, presents the analyst with a complex
internal construction that varies considerably in the number, arrangement, and material of
individual strands. Becausc of this difficulty, and because wire r is generally quite
flexible, previous investigatcrs 14, 5] have concluded that the tran..¢erse vibration of a cable
is primarily controlied by the steady-state, or static, tension. The cable motion is then
governed by the linear wave equation for an equivalent homogeneous string. More recently,
Hleller and Chung [61 included the effect of cable bending stiffness by modeling the cable
as an axially loaded, Bernoulli-Euler beam. Their experim-nts for a variety of ,wire ropes
in a fundamental mode indicated that the e,:uivalent homogene. ..s string was an adequate
representation of vibrating wire rope for their experimental conditions. Both theoretical
treatments are linear, i.o., small displacements are '•sumed, and from the description of
H Iler and Chung's experimental procedures ii. can be inferred that the experimental peak-
to-peak amplitudes never exceeded 30% of a cabl? diameter and were generally smaller [7].

This raisos a question concerning the magnitude of nonlineai effects during flow-
induced cable vibrations when amplitudes bvtween 10 and 100% of a diameter are known
to occu.. It is also .it practical importance to know the resonant behavior of such properties

Manuscript submitted September 4, 1974.
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4 ~as the cable dam ping and added Ilia,", and( hlow they are related to modo shape, wave-

longth, and tensio)n as Well as, to ampl~itude'. None of this in formati' n Was avallw e ~fr
teinitiation of the p~resent study.

FPAPERIIMENTIAL SYSTIEMS ANDI ME'1' Ol)S

'I'he wire rope Specimlenls were mlounted in either Of two almnmframes (Figs. 1, 2)
that ap~plied '111 ax ial loaid to the cable while prIovidhing the desired lQUoIurohy conditions at
knowni locations. 'Ihel( major li fferences buetween fthe two) framevs were the load ranlgo's
ohtai nvd, the lengths of the specim ens, und tliv end conditions. T[he shorter franme hd a
higher load capacity and provided clampued endl cond itioils, whereas the longer l'amev h~d
a low load c-ipacity and p~rovided pinned end conditions. 'I'll( load Was meaNsured by a
transducer located ait one end of thie cable. 'The driving force I'om the cable motion was
ob~tained by placing electromagnetic tratisdchiron along the cable at locations favo.-abie to
the oleýsired mode of vibration. 'Ihk w c-!kcLtromagnets were driven by two power ampl Ii iers

"!1a common signal renerator that adjust.-d tie relutive phasing betweeci ampulifiers
avocording to the traimcit-cer location andl the desired mlode.

LOADING FW. 'F

1W 4

CABLE SPEIME

P41.' 1 r I' aifl fralivuc (5 11t)
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ELECTROMGNETIC ;

TRANSDUCE ; diI ( LOADING FRAME

HEAD•

S!CABLE SPECIMEN

WATER TANK
VIEWING SECTION

Fig. 1;- Loadfin~g frame (16 ft) and wtater Lank

The motion of the c.bl, was detected b)y ba(,clighting the cable and optically tracking
the displacement with a Physitech 440 autocollimator. The driving and measuring systems
were thus independent and the amplitude could be measured accurately. The motion signal
from the autecollimator was viewed on an oscilloscope, and resonant frCequencies were
determined by observing the frequency at which the maximum amplitude occurred 0t each
load condition. Onice a steady st~ate resonant condition was established, the driving forces
were disconnected and the decay of the free vil)ration was recorded Lo obtain a measure
of the damping. For frequencies greater thaii 15 lIz, the decaying signal was proce,,sed in
a log converter and plotted on a chart. recorder; the damping waý determined from the
slope of the printed record. For f.equencii s below 15 lIz, the actual transient signal was
recorded oai an oscilloscope screen and photographed. The log decrement was calculated
from measurements on the photograph according to

Iln ±1,'n + I

in which Y, and Yn+ are amplitutdes Of successive peaks of the decaying signal. These
experiments were performed both in air and in water to deduce the effect of water mass
loading. After several runs the in-air damping measurements were discontinued for reasons
discussed in the next sectio.i.

3
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The added mnass effect due to the motion of the surrounding fluid is customarily
titrated ais propol)rtional, hy the added ulass coefficient K, to the mass of the fluid dis-
placed by the body. 'lherefore, the ratio of virtual mass density in water to the( body's
mass density in air is given by

Pa, K
=1 +-- (1)

in which S is the spcific gravity Of the wire ro10e. It is assumed that the fluid loading in
air is neggligibhl,. In addition, the ratio . the in-air resonant frequency fA to the in-water
resonlant frequelncy fw at the same load ,and mode shape is given by (using the string
ap)pr) Ox imation )

'l'he, added mass coefficient is dletermiineo from experimental results by means of E(qs. (1)
and (2) which c')mn)ine to give

K f - (3)

SiAce /f.A and fW are usually close, particularly a, low frequencies, a small error (1 or 2%)
ill one 01V 01' th Can result in relatively large variations in K (about 10 to 40%). For this
reaason it, is hell)ful to also Considk r the ratio of virtual to actual mnass which, according to
Eq. (2), is the square of' the frequ .lcy ratio f.1 /fwtt. Most of the conclusi(ms in this stu dy
rgarding the added mass effect are based on the measur i-d valuies Of /fw.

EPQUA'rION OF MOTION FOR A STRETCIIEI) CABILE

Consider a uniform cable stretched between rigid supports a distance L apart with an
CqoUilib'-ium :-n-ition along the x axis and equililbrium t.insion T0 (Fig. 3). TIhe cable has a
virtual iLlass density p , cross-sectional area A, elhstic mllodulus E, and a m oment of inertia
I about the neutral axis z; it experiencs transverse oscillations only in Ile xy plane. To
account for the damping, we assume a term in thl equatiot-, linearl; I.-oportional to the
transverse velocity by a clamlping coefficient o. The coefficient, 3 is taken as the damping
of the system as meiasured in a stationary fluid of the same properties as the flowing fluid.
That is, (3 represents the sum of structural, fluid, and externally appli,'d damping as ap;pro-
priate. Long9itudinal dit;placements are neglected and the transverse displa-ement at the
position x is taken to be rj(x,t). Further, for typica:l cahlhs and the f'requelncies of flow-
induced vi i ations, shear deformations and rotary inertia are negligible. ' p;,', potential en-
ergy of the calble is then a sum of Ibending and strietching potential energies. I,:'.,! elemen-
tary be an theory the bending energy is given by

;) 2
V, El- dX. (4)

4
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Fig. 3 -- A cabhle in tOw second mode

We will use the approach developed by Murthy and Ramakrishna 181 to determine tie
stretching contril)ution for the nonlinear vibrations of strings. The development is
identical to the original except that the cable is limited to planar motion. T'his is a good
approximation for cables that undergo flow-induced "strumming" motions in water. As
an element of cable dx is deformed into the planar element ds, the stretched length of
tile element is

ds= (dx2 + dy2) =dx I +(L) 2 (5)

and the local strain is given by

1= + 2Ib x 1. (6)
dx x

If the mpalitudes are small enough for Hlooke's law to he valid, then, the local tension is

S= TO + EAc (7)

and the 'ocal potential energy is equal to the product of the average local tension and the
local ,;cretching. Expandling the local strain in a power series of ;) i7 /:): and neglecting terms
higaher than fourth order results in

S+ .--g- dx,(,

the local potential energy due to stretching. For all practical cases ,EA • TO and the con-
tribution to potential energy from stretching is

fL 7,/0 (e,) 2 A ( EA cx. (9)Si 7•)x/ 8 )xa~ x 9

5
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r1'he knetic energy of the' ('alle is Owiwn1 by

: ,. - dx (10)
&t

and the generalized work du(, t1) damninug per unit. length is

Aiter lHamilton's prin'iphl, is applii(, th(, finld equation of lianar cable), motion lenomes

ElA., ,.) -1;. ( -)' /2 ;,2, ')(1

;1.\.4;) t 21 ' ;) ';1 1 i\''2 ;

It is c'(nwlv,)ilt to) t."18"ral'(r this c(,i'ati()n b~y

wvhe ~\N is the mhllodeuber, a, is lh,, wii ()W, almplitudne, and u' is l ie freq(u(key of
vil)ration, '1i r1,stilting ('(luItMin is

2- + 2. ;.), /" - =0, (2 1I)

12 1 - 1 1 1,2L.) 2 2 1L 2" 1,. 2

in which , is the log d(ere'nint of thw vibration.

Consider the ratio of thw fl, 'tuating tension to the e1quilibritlmll tension,

:3 EA 1 1-. - -N2n2.

2 To 1,2

It is reasonabh, to assuime that l'AlT- /,.'/Ij , / f × X I W.' and a 1)12 for actuial cale)s
that undergo flow-induc'd vibration, Flurthe'rmo(re, /,/I) ". 103 is a ('olSOvatiV, estimate,
particularly for N > 2, and the rat.io thus licomes lircl)porti(.ial to N2 X I0 -. \Vith these
estimates and the additional fac't that I t (1)12) , one finds that the ratio of bending
stiffness to equililbrium tension is on the order of N2 X I0-2. The justification for treating
the cable as an equivalent homogenoLus string is thus apiiarennt, as well as an ordering of
the assumptions inherent in this approximation. Since the nonlinearity is small, a first
approximation U) the nonlinear tension fluctuatio)n "If van I )(o b)tained by substituting the
linear string equatin solution into that t,,rm , which yields te, result

:3rT 2a2N21EA Nnx (15)

21,2 L
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Thle motion of a particular cablek can now be adequately prevtict4'd it' the required properties
are known. Tlhe virtual mass and] damping are not readily available, so that the cxjx-rirnentalI
determillation of these paramieters is required.

SCOPE OF' EXPERIMENT'IAL PROGRAM

'1'hiven(Iormou)ts varicty of commercially availabhle wire ropes prec'ludes a generalization
of resonant properties from tests of a few specimens, and also renders a test. of all or most
types a tediouIs task. Nevertheless, for the vari('ty of 3/8 in. diameter cab~les tested by
H eller and C~hung 161J, the addevd mass exhibited a general behavior, whereas the variation
in damping (within one miedium) was less than an order of magnitude. Some trends did
appear according to material and typ~e 'construction. D)uring tht- formulation of tW.
itivestigation the authors decided not to test a wide variety of construction types b,,t rathi-r
to study exte~isively several samples of similar construction under more varied conditio~ns,
In this way more parameters oIf p~ractical importance were examined and the results gen-
eralized for other constructions within the limits cited above. Of additional practic'al
importance are low frequency measu rements (less than 20 lIN) and low tension n'i~sure.
ments (loads less than 101/( of the rupture strength) up to and including -'slack'" cables.
Table 1 lists the ranges and] types of expe'rimental conditions employed in this Study.
Although the 1),,tr:ine'ter ranges are not independent, i.e. low tension plus long wave-
lengths results in) 'ow frequencies, the overlap of experim('ntal conditions and the insen-
sitivity of' the calm' behavior to changes in soniv partii('ewrs allowed the data to 1-m- r(educed
easily.

RESONANT FREQUENCIES AND) ADDlED) MASS

Thev measu r('d resonant, freq uenc -y as a funwti )n of tension is plot ted fo r vach con-
figuration in Figs. 4 and 5. Figure 4 presenLk the resonant frequency nieasuremecnts for a
1/4 in. diameter specimen in a fundamental mode at three nominal lengths of 5, 9, and
13 ft. Also shown are 1m('aSUrenit'nts of the second mode, frequency for a length of 5 ft.
The predicted homogenvous string resonant frequency is prese'nte'd in each case for
comparison. Fig. 5 contains the mi-asiir(d and predicted resonant frequencies of a 3/32 in.-

diamieter specimen for a 15-ft length in the first three modes. T1he changes in specimen
le'ngth or mode shape result, in ('ffectiv(' wavelength ranges for the two figutres of 5 to 26I
ft and 9.6 to 29 ft, respectively. Aside from the g('nerai agreement with the predicewd
frequency, two other ob)servations can he made. First, chaniges in resonant frequency in
both? air and wate'r dlue to various specimen lengths and modes are -- to a good approxi-
mation -- line'arly related to ratios of specimen lengths or mode numbers. This implies
that the added mass is independent, or nearly so, of mode shape and wavelength. Second,
the essentially equivalent added mass effect. at variou% modes require's the fluid loading to
be also independent, or ne'arly so, of frequency.

7
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55
3/2" DIA 7 x 19 WIRE ROPE

E AIR WATER50 NUMBER •rI

454 - • P ••

AND FSTRING
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X20 STRING PREDICTION

0
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u.. 1 I I - I I I

20 40 60 80 IOU 120 1,0 IGO
TENSI1ON (LB)

Fig. 5 - Measured and predicted resonant fw:'quencies of

3/32 in. diameter 7 x 19 wire rope specimens

'Thiese observations are verified in Fig. 6. 1lere the ratio fA /,w is plotted as a function

of fW for all of the data in Figs. 4 and 5 This ratio, which is related to the virtual mass,
is a weak fur,'tion of frequency over much of the range tested witn a slight upward trend
for decreasing frequency. The frequency ratio shows no dependence on mode shape or

wavelength. Moreover, for tho two different sizes of cables, the ratios at all amplitudes
up Lo 100% of a diameter are indistinguishable within the accuracy of the experiments.

Several points for a 3/8 in. diameter cable from the report by Heller and Chung [61 are
included for comparison. A slight increase appears in fA/fw with increasing cable size

(2-4% for a 4:1 increase in cable diameter), but this variation is within the bounds of

experimental accuracy.

10
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r ~MODE•i
CABLE No, LENGTH

6 X 19-3/32" I 15' 0

1.30 6 X 19 - 3/32" 2 15' a
6X19-5 /32" 3 15'

1,25- 6X19- 1/4" I 13'
6X19- 1/4" I 913"1

1.20 6X 19- 1/4" I 5' i" l

S6X 19-1/4" 2 5111 A
11 - 95" 1 x,19- 3/8" I x 5

1.05 -'

0 I I I I I I 1 I
0 I0 20 30 40 50 60 70 80 90 100 110

fw (Hz)

Fin, 6 .... Ratio of in-air resonant frequenc'y fA to IL,l', in-water
resonant frequlency rw as a function of f[w, The, squa=re of this
ratio is equal to the ratio the virtual mass in v, ater toJ the mass in
air

S'The rather silA~pie conclusion that the added mass is independent of amplitude, mode

shape, and wavelength is not without precedent. King [101], in an experimental study of
;he added mass of flexible cylinders, has made the following conclusion:

: "It was shown that this 'added mass' effect was independent of frequency,
-• amplittude, mode shape and streaming flow."

King's conclusion not only tends to confirm the results of this report but also serves to
justify the application of added mass values obtained in still water to the situation where
water is flowing about the cable causing it to oscillate.

through the data in Fig. 6. The resulting curves ar(' shown in Fig. 7 together with the

'probable mean line' of 1-Iller and Chung [6] . The differences in the shape of 3/32 in.
and 1/4 in. cable curves compared to the 3/8 in. cable could be a result of the error •
magnmification inherent in Eq. (3), whereas the relative displacements in the curves are theJ
result of a varying specific gravity. The measured values of specific gravities S are listed
in the figure legend. Despite similarities in construction and materials of construction,
the specific gravity increases with dec~reasing cable size. To see if air trapped between the

i larger strands of the larger cables •ias responsible, several cable specimens were immersed

11
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in water and the container was evacuAted. There was a slight increase in specific gravity,
but it was not sufficient to account for the changes in S between cable sizes. To avoid
this ambiguity and the introduction of yet another empirical quant'ty it is recommended
that the virtual mass be computed directly from Eq. (2) in the form

= 2

where the fýequency ratio is obtained from Fig. 6. In this way the virtual mass, which is
the desired result, ctaI he determined to within a reasonable variation of about - 5%.

L S
2.4- 2.4 - • •/•725 o

S• /46.65 •

22-

z

LLL

0

S1.4

1.4 --

1.0-

! I 1 I I I 1 I I 1 I10 20 30 40 50 60 70 80 90 100 fl0
fw(Hz)

Fig. 7 rhe added mass coefficient K

Since the added mass appears to be independent of wavelength, the theoretical added :

mass coefficient for a rigid cylinder serves as a useful comparison. The expression for this
coefficient is [11] 1

K I + 2 2z/ R =- (16)4v

where R is the vibration Reynolds number based on the cable diameter D, w is tU1e vibration
frequency, and v is the fluid kinematic viscosity. As can be seen from the values of R

given in 'Table 1, the predicted values of K fall below the measured values for all cases

i. 12
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including the 3/8 in. cable data of eleller and ChUng 16]. This is in conflict with Fig. 6
of their report, which shows good agreement between a predicted curve and the measured
"probable mean" curve beyond 100 Hlz.

To facilitate a comparison between measured and predicted resonant frequencies, a
best fit according to

fA a. +0 a (17)

was obtained for the in-air resonant frequencies. A listing is given in Table 2 of the curve
fit and l)redicted coefficients a0 and al , as well as the standard deviation o and the ratio
of fA /fs for all configurations. The results in this table are illtended to serve as a valida-
tion for the equivalent homogeneous string model and to give a quantitative measure of the
accuracy of that model. During the experiments the tension was often sufficiently lo1 to
have a small amount of "sag" in the cable. However, the weight of the cable specimens
never exceeded 5Y" of the applied tension, and so it is likely that nonlinear effects due to
very slack or catenary cables were absent.

CA'ULE DAMPING

The overall damping at resonance will in general be a result of energy dissipation
through the combined effects of internal and inte'strand friction, radiation, 'transmission
to the Sul)l)orts, and viscous losses in the surrounding fluid. Moreovey the overall damping
could likely be a function of frequency, amplitude, mode shape or wavelength within each
medium. The functiomal del)endence of the overall damping was determined from the
experiments, but no attempt was made to partition the dissipated energy and, further, neg-
ligible losses were assume(-d a. the Supports. If the damping is dependent on amplitude but
is small in magnitude then difficulty is introduced only into the damping term itself. The
damping was in fact a function of amplitude during the initial experiments in air. Yu 1 12]
has suggested that the damping mechanism of a stranded cable in air with no axial load is
primarily interstrand friction. The interstrand friction depends on the contact forces,
which are a function of the amplitude (local tension) and the equilibrium tension itself.
The damping measurements in water did not exhibit amplitude or tension dependence
since external losses greatly overshadowed the internal losses, and so the investigation of
the in-air damping of cables wss disc-ntinued. The in-water log decrements for all con-
figurations are presented as a composite in Fig. 8. It is evident from the results in the
figure that the decrement is independent of wavelength and mode number, and that the
dccrease in decrement at higher modes is therefore principally a result of the higher
frequency. This implies th•.t the product 6f must be constant or nearly so. Generally,
the coMlputed values of bf increased slightly with increasing frequency. i.or the 3/32 in.

cable 5f increased about 20% for an order of magnitude change in fre(quency, while for
the 1/4 in. cable bf increased approximately 10%. It is worth noting that 6f - 0, the
damp:nig coefficient, so that the damping coefficient in water is indepenident of amplitude,
wavelength and mode shape for the range of parameters tested. Furthermore, the damping
(.oefficient is only slightly dependent on frequency.

hi!
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Fig. H - The log dvhcrvlent ofI' the frev vibrations of it flexible cable in water

A similar result f )r a length of piano wire in air ww; published by Leehey and

llans)n II 31 in a paper that considered the sound radiation from a resonantly vibrating
wire. From that paper, the damping quality factor, Q = 27/T , of the first four modes
of a piano wire yields essentially the same value when divided by the corresponding
resonant frequency. Both the quality factor Q and the quotient Q/f 21/6f are listed
in Table 3 for comparison purposes.

Table 3
'l1w Damping Characteristics Of A Piano Wire*

Mode .

Number Frequency (liz) Q = 27/h Q/f = 2n/65f

1 470 515 0.91 I
2 923 920 1.00
3 1381 187 1.00
4 1683 1950 0.96

• From I,(,hey and I hnsmon (1:11.
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Once again a comparison can be made with tth, results of Hfeller and Chung ;6G.
Several representative data poin'ý from Chung's dissertation 191, for a 6 X 19, 3/8 in.
diameter wi'e rope, are plotted in Fig. 8. There is good agreement on the effects of
frequency and th( ,uggestion of a diameter effect for the three cable sizes. Attempts to
collapse the damping data onto a single curve using the vibration Reynolds number were
not successful because of the several loss mechanisms that contribute to the overall damping
of a cable during transverse viibrations in water.

APPLICATION OF THE RESULTS TO FLOW-INDUCED CABLE VIBRATIONS

In the absence of Reynolds number and Froude number effects, the amplitude x of
a cylindrical structure undergoing vortex-excited oscillations can be vxpressed as a function
of certain parameters,

x (f,, , D, 6, V, p), (18)

where

natural fr(,quency

Al body mass p)lus added mass (virtual mass) per unit length

= logarithmic decrement of damping

D = body diameter

V free stream fluid velocity

p= fluid density. Dimensional analysis leads to the following nondimensional I)raamf-
c er groupings:

D f(TVD ' pD2

Vickery and Watkins 1141 have shown that two of these groups can be combined into
a single parameter (called a combined stability parameter),

k., 2•7•2 (20)

\I1J2/

when the energy dissipated by damping at resonance is equated to the energy input from
fluid forces. Griffin, Skop, and Koopmann [31 have shown that the equations of NRL's
wake-oscillator mathematical model lead to another form of Lhe combined stability
parameter,

2,rS 2 ks , (21)
II
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where S is the Strouhal number, • is the damping coefficient 5/2n, and U is a mass
parameter,

p = J (22)

87r 2 S2M

Since the Strouhal number S fsD/V (fN is the vortex-shedding frequency from a stationary
body) is constant over the practical range of vortex shedding, the two forms of the corm-
l',ned stability parameter are linearly related.

it has further been shown that the peak amplitude of resonant vortex-excited oscil-
lation of an elastically-mounted, rigid cylinder of flexible cylinder is only a weak function
of V/f,,D, with the peak value of amplitude in the transverse, or crossflow, direction to the
incident current generally occurring in the range

_ =V 5.6 to 65.
fD D

Thus the peak amplitude of vortox-excited oscillaticn is a functic n of only Lhe com-
bined stability parameter as shown in Fig. 9 where experimental data from NRL and else-
where are plotted together with a predicd curve generated with the wvak.-oscillator
model [3]

1O.O[+

2.0-

4.0.0i2.0-

1.0 - 0 .
S0.6- " 4 9 4-

>0.4 ' •.0

0.2 0

0.I

0.0 0.5 1.0 .5 2.0 2.5 3.0 3.5

STABILITY PARAMETER, - 2- r S2 k

Fig. 9 - The maximum amplitude of vortex-excited oscillation for a rigid,
elastically mounted cylinder. Experimental data (air): NRL, +; University
of British Columbia, 0 0; University of Maryland, 4. Experimental data
(water): Univermity of Padua, s. The prediction of the NRL wake-oscillator
"model 13 1 is denoted by the solid line.
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For values .)f ý/p greater than about 3.4 k; 4.0, tWe amnplitude of os0illAtio•f fal!;
below 2.xo/D = 0.10, which is the threshold usually as8.':'ted with the onsct of resonant,
Vortex e\(ited oscilla,?.ins. The interesting and practical result indicated by the figure is
that b.eyond a critical, or ('uLoff, value f,ýr the sfal)ility parameter, vortex-excited resonant
oscilhltions do not. occur A combination of structural and flow properties which combine
to yit,ld a value of //J such that

) critical

characterizv a system that will not isonantly vibrate under vortex excitations. Such be-
havior has been observed for b)oth flexible cylinders 1151 and elastically mounted rigid
i)endulum structures in both air and water 114 l, whiCh suggests that an equivalent com-
bined stability parameter .1/v or k,( can be specified for a strumminP, underwater (-able
once the damping and added mass have been determined.

The natural modes of the cable vibrations can be determined from the frequency law
for a stretched string

f" ')L•/ ' /.1, 2,3 ..

where L is the cable length, T' is the tension, and Al = pA is the mass per unit length. 'ITie
virtual mass in water can he deduced from the ratio of the natuial frequencies in iir and
water at corresponding values of tension and wavelength. This ratio of natural frequencies
is plotted in Fig. 6 as a function of the natural frquency fwv. A typical virtual mass
coml)utation at fw = 20 Nll is given by

"AJ-• (L) 2= (1.13)2 = 1.28 (23)

which represents a 28% inereas,. in the apparent, mass in water from the in-air value.

'These results can be used to determine the combined stability parameter k; for the
strumming vibrations of cables as shown in Table 4. The strumming response of the
(able was measured by Dale. et al. 1161. 'I1, cable lengths for the experirr•ent were 3 and
6 ft and the cable diameter was 0.1 i,. (D - 3/32 in.). Thus the cable dail.ping and
added mass resuits for the 0.1 in. cable in Figs. 5 unA 7 can be used to compute k5 . The
four vdlues of frequency in Table 4 correspond to resonant strumming vibrations in the
second throagh fouwth modes for the 3-ft cable and the fourth through ninth modes for
the 6-ft ca',le. It "s interesting to note the decrease in kl and ý/,q as the frequency in-
creases; this is a result of the decrease in the cable damping as the natural frequency is
increased from 10 to 30 fIN in Fig. 7. The values of k, in Table 4 correspond to a range

of peak-to-peak, resot.aiiu Atrumming amplitudes between 1 and 3 diameters 13,161.
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abhle 4
The Damping Characteristics of Strumming Cables

Combined Stability Parameter 2

Frequency 1 , fw
(1Hz) I k I

31 0.56 0.15

28 0.80 0.22

21 1.20 0.33

14 1.60 0.44

Frequency data from DWh, et al 1161. Cablh di|ameter 0.1 in., cable length - 6 ft, 3 ft.
2 Cable damping and virtual mass frm Figs. 5 and 7. Cable pwecific gravity 7.25.

CONCLUSIONS

The equivalent homogeneous string is an adequate representation of the Lransverse
vibration of stranded wire rope for peak-to-peak amplitude of vibration up to at least a
full cable diameter. For tensions between 1 and 60% of the cable rupture strength the
predicted resonant frequency in air will be 1-4% below the actual natural frequency.

The added mass effect in water is indepcndent of amplitude (ur, ý, 100% of a
diameter), mode shape, wavelength, and is only slightly dependent on frequency. The
virtual maiss is most conveniently and accurately determined from

A~ (~) 2PW t= PA

where the ratio fA /W if, obtained from Fig. 5 of this report.

The damping or log decrement 6 of free vibr-.tions 1:, water at resonance is also
independent of amplitude (up to 100% of a cable diar.,A, "-, mode shape, and wavelength.
In addition, the damping coefficient (g increases very lit•Ae v.th frequency so that the log
decrement is, to a good approximation, inversely proportin i to freqaency.

The damping and added muss can be combined to form a "staniiy 'xameter" that
governs the onset and magnitude of vortex-induced cable vibrations. 'i:,I. stability
parameter can be used to estimate correctly the maximum amplitude of •rrvsverse motion
at the antinode of a vibrating, flexible cable.
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