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SOME TRANSVERSE RESONANT VIBRATION CHARACTERISTICS OF
WIREZ ROPE WITH APPLICATION TO FLOW-
INDUCED CABLE VIBRATIONS

INTRODUCTION AND RELATED INVEBSTIGATIONS

The increased use in marine construction of light structural elements with liitle damping
has resulted in the more frequent oceurrence of undesiracie vibrations. Wire rope, one of
the most widely used marine structural elements of this type, is particularly susceptible to
vibration since its bluff shape can experiei.ce alternating transverse forces when a current
flows about the cable and produces alternate shodding of vortices. Furthermore, at a coin-
cidence of the vortex shedding frequency and a cable cesonant freguency, large transverse
motions often take place. The authors have recenuly exemined the flow about a resonantly
vibruting cable [1, 2] to relate the properties of the wake to ihe cable motion and to the
existing information on the flow-induced forces. These investigations have indic ated that a
:able strumming model can be developed as an extension of NRL's successful wake-oscilla-
tor model [3] for predicting the vortex-excited oscillations of elastically mounted, rigid
structures.

Some knowledge of the resonance characteristics of wire rope is required in order to
establish an adequate predictive model for these flow-induced cable vibrations. ‘The purpose
of this report is to examine the resonant behavior of wire rope to determine a satisfactory
governing equation for the cable motion and to ascertain the cable damping and added mass
in water. These quantities are combined to form a cable strumming stability parameter that
is analogous to the results wity the aforementioned wake-oscillator model.

Wire rope, considered as a structural element, presents the analyst with a complex
internal construction that varies considerably in the number, arrongement, and material of i
individual strands. Becausc of this difficulty, and because wire r is generally quite ;
flexible, previous investigatcrs |4, 5] have concluded that the tran.verse vibration of a cable y
is primarily controlied by the steady-<tate, or static, tension. The cable motion is then '
governed by the linear wave equation for an equivalent homogeneous string, More recently,

Heller and Chung [6] included the effect of cable bending stiffness by modeling the cable
as an axially louded, Bernoulli-Euler beam. Their experimants for a variety of wire ropes

e 2 e T ey

R g

in a fundamental mode indicated that the e.uivalent homogenec .s string was an adequate ]
representation of vibraling wire rope for their experimental conditions. Both theoretical 3
treatments are linear, i.¢., small Jdisplacements are wssumed, and from the description of ;

<| Heller and Chung’s experimental procedures it. can he inferred that the experimental peak-
' tu-peak amplitudes never exceeded 30% of a cable dinmeter and were generally smaller [7].

3 This raises a qguestion concerning the magnitude of nonlinear effects during flow-
¢ induced cable vibrations when amplitudes beiween 10 and 100% of a diameter are known
tc vccw.. It is also «f practical importance t¢ know the resonant behavior of such properties %

Manuscript submitted September 4, 1974,
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{> as the cable damping and added mass, and how they are related to mode shape, wave-
length, and tension as well as to amplitude. None of this information was available before
¥ the initiation of the present study,
{
EXPERIMENTAL SYSTEMS AND METHODS

The wire rope specimens were mounted in either of two aluminum frames (Figs. 1, 2)
' that apolied an axial load to the cable while providing the desired bhoundary conditions at
¥ known locations, ‘The major differences between the two frames were the load ranges

obtained, the lengths of the specimens, wnd the end conditions.  The shorter frame had a
higher load capacity and provided clamped end conditions, whereas the longer frame hed
a low load eapacity and provided pinned end conditions. ''he load was measured by a
transducer located at one end of the cable, The driving force for the cable motion was
obtained by piacing electromagnetic transducers along the cable at locations favorabie to
the desired mode of vibration. Those electromagnets were driven by two power amplifiers
ad o common signal generator that adjusted the relative phasing hetweea amplifiers
according to the tranedicer location and the desired mode,
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ELECTROMAGNETIC
TRANSDOUCER

WATER TANK
VIEWING SECTION

Fig. & Loading frame (15 £t) and water tank

The motion of the esble was detected by backlighting the cable and optically tracking
the displacement with a Physitech 440 autocollimator, The driving and measuring systems
were thus independent and the amplitude could he measured accurately. The motion signal
from the autcecollimator was viewed on an oscilloscope, and resonant frequencies were
determined by observing the frequency at which the maximum amplitude occurred ot each
load condition, Once a steady state resonant condition was established, the driving forces
were disconnected and the decay of the free vibration was recorded to obtain a measure
of the damping. For frequencies greater than 15 Tz, the decaying signal was processed in
a log converter and plotted on o chart recorder; the damping was determined from the
slope of the printed record. For Dequencirs below 15 Hz, the actual transient signal was

recorded on an oscilloscope screen and photographed. The log decrement was caleulated
from measurements on the photograph according to

Yn
b = In—-

Yn+1

in which ¥, and y,+y are amplitudes of suceessive peaks of the decaying signal.  These
experiments were performed both in air and in water to deduce the effect of water mass

loading. After several runs the in-air damping measurements were discontinued for reasons
discussed in the next section,
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The added mass effeet due to the motion of the surrounding fluid is customarily
treated as proportional, by the added mass coefficient K, to the mass of the fluid dis-
placed by the body. Therefore, the ratio of virtual mass density in water to the hody’s

mass density in air is given by
L". »
. w _ K
P (1)
: A b
4 in which 8 is the specific gravity of the wire rope. It s assumed that the fluid toading in

air is negligible, In addition, the ratio . I the in-air resonant frequency f4 to the in-water
resonant frequency fi at the same load and mode shape is given by (using the string

approximation)
I P\ %
=\ (2)
fw “A

The added mass coefficient is determined from experimental results by means of Egs. (1)
/- ] * v
: and (2) which ¢ombine to give

! o\ 2

Y : K=3 (—l'—\) -1} (3)
g hy

3

h Siace £y and fiy are usually close, particularly at low frequencies, a small error (1 or 2%)
; in one or both can result in relatively large variations in K (about 10 to 40%). For this

i reason it is helpful to also considor the ratio of virtual to actual mass which, according to

Fq. (2), is the square of the frequ ey ratio fq/fi. Most of the conclusicns in this study
regarding the added muass effeet are based on the measured values of 4 /fiy.

; EQUATION OF MOTION FOR A STRETCHED CABLE
Consider a uniform cable stretched between rigid supports a distance L apart with an
equilibrium position along the x axis and equilibrium tonsion Ty (Fig. 3). The cable has a

virtual 1ass density p, cross-sectional area A, elastic modulus K, and a moment of inertia
I about the neutral axis 2; it experiences transverse oscillations only in the xy plane. To

account for the damping, we assume a term in the equation lincarly | *oportional to the k
trunsverse velocity by a damping coefficient 8. The coefficient § is taken as the damping §
of the system as measured n a stationary fluid of the same propertios as the flowing fluid. 3
That is, § represents the sum of structural, fluid, and externally applied damping as avpro- §
priate, Longitudinal displacements are neglected and the trangverse displaement at the :

position x is taken to be n(x,t). Further, for tyvpical cables and the frequencies of flow-
induced vibrations, shear deformations and rotary inertia are negligible, 1.0 potential cn-
orgy of the cable is then a sum of bending and stretehing potential energies. r':.m elemen-
tary beam theory the beading energy is given by

L v k] ;)27] 1
ﬁ Bl dx. (4)
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Fig. 3 —- A cable in the second mode

We will use the approach developed by Murthy and Ramakrishna [8] to determine the
stretching contribution for the nonlinear vibrations of strings. The development is
ideniical to the original except that the cable is limited to planar motion. 'This is a good
approximation for cubles that undergo flow-induced “‘strumming” motions in water. As

an element of cable dx is deformed into the planar element ds, the stretzhed length of
the element is

Y : 14
ds = (dx2 + dy2) "= dy |1 +($l) 2] (5)
ax

and the local strain is given by

]

sorf 1 ; 9
o dsdx 1+(_’,’.L) 1. (6)

dx ox

If the emplitudes are small enough for Hooke’s law to be valid, then the local tension is
T="Ty+ EAc

and the jocal potential energy is equal to the product of the average local tension and the
local suretching,  Expunding the local strain in a power series of dn/82 and neglecting terms
higher than Tourth order results in

()2 AT (an\ 1]
/'Io(ax> g ax x, €)

the local potential energy due Lo stretching., For all practical cases £A > 79 and the con-
tribution to potential energy from stretching is

L A\ . oo\ g
I ’I‘O (.9_71. 2 +M .f.).y_ ! dx. (9)
0 x 8 \dx
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¢ The Kinetie energy of the cable is given by
b’x
: [/ ’ )
) dny\ <
f '.'/)\ ——'— dy (10)
0 ' ot

i and the generalized work due to damping per unit length is
: L.
] ‘ |3
Z f i '.“i Sy dy. 1)
4 0 ot
. After Hamilton’s principle is applied, the final equation of planar cable motion hecomes
: . O sy coBEA fay\ 2] 0
Bl == 4 pd === |1 + 222 [T S 2 (12)
! RS e 2 \w e at
] It is convenient to transform this equation by
: . Nax ) : ,
b,; X ey l,( sl (13)
L a
z
\; where Nois the mode number, ¢ is the antinode amplitude, and o is the frequency of
i: vibration. The resulting equation is

b, BINVal g [ ToNEE -'Hf-mm("!i)'"’ LTI

o TR . : . . ()
e PRIBIH o RYEGE RATSEIE oy AR 27t
! in which & is the log decrement of the vibration, !
Consider the ratio of the fli tuating tension to the vquilibrium tension, i
:_z !'__/.1 ﬁ Ninp2
2 Ty L2
4
[t is reasonable to assume that FA/Ty = F/o >~ 6 X 103 and a ~ 1D/2 for actua) cables ;
that undergo flow-induced vibration.

Furthermore L/ = 103 {s u conservative estimate,
particularly for N > 2, and the ratio thus becomes preporticnal to N2 X 16-1, With these
estimates and the additional fact that 1 = (D/2)1, one finds that the ratio of bending
stiffness to equilibrium tension is on the order of N2 x 10-2. The justification for treating
the cable as an equivalent homogeneous string is thus apparent, as well as an ordering of
the assumptions inherent in this approximation. Since the nonlinearity is smatl, a first
approximation to the nonlinear tension fluctuation Tr can be obtained by substituting the
lincar string equation solution into that term, which yields the result

IR T S

In2a2N2E R
Ty = Jn2a2NZEA 082 Nrx sin? . (15)
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The motion of a particular cable can now be adeqaately predicted if the required properties
are known. ‘The virtual mass and damping are not readily available, so that the experimental
y determination of these parameters is required.

SCOPE OF EXPERIMENTAL PROGRAM

E The enormous variety of commerceially available wire ropes precludes a generalization
¢ of resonant properties from tests of a few specimens, and also renders a test. of all or most
v types a tedious task. Nevertheless, for the variety of 3/8 in. diameter cables tested by

! Heller and Chung |6], the added mass exhibited a general behavior, whereas the variation
f in damping (within one medium) was less than an order of magnitude. Some trends did

E appear according to material and type . © construction. During the formulation of th'.
investigation the authors decided not to test a wide variety of construction types brd rather
4 to study exteasively several samples of similar construction under more varied conditions.

- In this way more parameters of practical importance were examined and the results gen-

3 eralized for other constructions within the limits cited above,  Of additional practical

\

importance are low frequency measurements (less than 20 Hz) and low tension measure-
ments (loads less than 10% ot the rupture strength) up to and including “slack’ cables,
Table 1 lists the ranges and types of experimental conditions employed in this study.

‘ Although the parameter ranges are not independent, ie. low tension plus long wave-

f lengths results in 'ow frequencies, the overlap of experimental conditions and the insen-
sitivity of the cable behavior to changes in some paraneters allowed the data to be reduced
‘; easily.

RESONANT FREQUENCIES AND ADDED MASS

The measured resonant frequency as a function of tension is plotted tor each con-
figuration in Figs. 4 and 5. Figure 4 presents the resonant frequency measurements for a
" 1/4 in. diameter specimen in a fundamental mode at three nominal lengths of 5, 9, and
: 18 ft. Also shown are measurements of the second mode frequency for a length of 5 ft.
The predicted homogeneous steing resonant frequency is presented in each case for

3 comparison. Fig. b contains the measared and predicted resonant frequencies of a 3/32 in. {
{ diameter specimen for a 15-ft length in the first three modes. The chahgoes in specimen :
iength or mode shape result in effective wavelength ranges for the two figures of 5 to 26

ft and 9.6 to 29 fi, respectively. Aside from the generai agreement with the predicted )

frequency, two other ohservations can be made. First, changes in resonant frequency in
both air and water due to various specimen lengths and modes are —~ to a good approxi-
mation - linearly related to ratios of specimen lengths or mode numbers. This implies
that the added mass is independent, or nearly s0, of mode shape and wavelength., Second,
the essentially equivalent added mass effect at various modes requires the fluid loading to }
be also independent, or nearly so, of frequency.
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Fig. 5 - Measured and predicted resonant fiequencies of
3/32 in. diameter 7 X 19 wire rope specimens

These observations are verified in Fig. 6. Here the ratio f4 /‘w iz plotted as a function
of fiy for all of the data in Figs. 4 and 5 This ratio, which is related to the virtual mass,
is a weak function of frequency over much of the range tested with a slight upward trend
for decreasing frequency. The frequency ratio shows no dependence on mode shape or
wavelength. Morcover, for the two different sizes of cables, the ratios at all amplitudes
up to 100% of a diameter are indistinguishable within the accuracy of the experiments.
Several points for a 3/8 in. diameter cable from the report by Heller and Chung [6] are
included for comparison. A slight increase appears in f4 /fw with increasing cable size
(2-4% for a 4:1 increase in cable diameter), but this variation is within the bounds of
experimental accuracy.
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Fig. 6 -- Ratio of in-air resonant frequency 4 to the in-water
resonant frequency fy as a function of fiy. The square of this

ratio is equal to the ratio the virtual mass in v.ater tu the mass in
air

The rather singple conclusion that the added mass is independent of amplitude, mode
shape, and wavelength is not without precedent. King [10], in an experimental study of
Jhe added mass of flexible cylinders, has made the following conclusion:

“It was shown that this ‘added mass’ effect was independent of frequency,
amplitude, mode shape and streaming flow.”

King’s conclusion not only tends to confirm the results of this report but also serves to
justify the application of added mass values obtained in still water to the situation where
water is flowing about the cable causing it to oscillate.

The added mass cocfficient K was calculated with Eq. (3) after passing a mean curve
through the data in Fig. 6. The resulting curves arc shown in Fig. 7 togethoer with the
‘probable mean line’ of Heller and Chung [6]. The differences in the shape of 3/32 in,
and 1/4 in. cable curves compared to the 3/8 in. cable could be a result of the error
magnification inherent in Bq. (3), whereas the relative displacements in the curves are the
result of a varying specific gravity. The measured values of specific gravities S are listed
in the figure legend. Despite similarities in construction and materials of construction,
the specific gravity increases with decreasing cable size. To see if air trapped between the
larger strands of the larger cables vsas responsible, several cable specimens were immersed
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in water and the container was evacucted. There was a slight increase in specific gravity,
but it was not sufficient to account for the changes in 8 hetween cable sizes. To avoid
this ambiguity and the introduction of yet another empirical quantity it is recommended
that the virtual mass be computed directly from Eq. (2) in the form

_(fa)\?
Pw = Pa

fw)

where the frequency ratio is obtained from Fig. 6. In this way the virtual mass, which is
the desired result, can be determined to within a reasenable variation of about + 5%.
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Since the added mass appears to be independent of wavelength, the theoretical added

mass coefficient for a rigid cylinder serves as a useful comparison, The expression for this
coefficient is [11]

————— 2
K=1+2 J2IR, R=—‘f£— (16)

where R is the vibration Reynolds number based on the cable diameter D, w is the vibration
frequency, and v is the fluid kinematic viscosity. As can be seen from the values of R
given in Table 1, the predicted values of K fall beiow the measured values for all cases
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including the 3/8 in. cable data of Heller and Chang [6]. This is in conflict with Fig. 6

of their report, which shows good agreement hetween a predicted curve and the measured
“probable mean® curve beyond 100 Hz,

To facilitate a comparison between measured and predicted resonant frequencies, a
best fit according to

[x =gy +a, JT, (17)

was obtained for the in-air resonant frequencies. A listing is given in Table 2 of the curve
fit and predicted coefficients ag and ay, as well as the standard deviation ¢ and the ratio
of f4/fs for all configurations. The results in this table are intended to serve as a valida-
tion for the equivalenit homogeneous string model and to give a quantitative measure of the
accuracy of that model. During the experiments the tension was often sufficiently low to
have a small amount of “sag” in the cable, However, the weight of the cable specimens
never exceeded 59 of the applied tension, and so it is likely that nonlinear effects due to
very slack or catenary cables were absent,

CA3LE DAMPING

The overall damping at resonance will in general be a result of energy dissipation
through the combhined effects of internal and interstrand friction, radiation, transmission
to the supports, and viscous losses in the surrounding fluid. Moreover the overall damping
could likely be a function of frequency, amplitude, mode shape or wavelength within each
medium. The functional dependence of the overall damping was determined from the
experiments, but no attermpt was made to partition the dissipated energy and, further, neg-
ligible losses were assumed a4 the supports, If the damping is dependent on amplitude but
is small in magnitude then difficulty is introduced only into the damping term itself. The
damping was in fact a function of amplitude during the initial experiments in air. Yu [12]
has suggested that the damping mechanism of a stranded cable in air with no axial load is
primarily interstrand friction, The interstrand friction depends on the contact forces,
which are a function of the amplitude (local tension) and the equilibrium tension itself.
The damping measurements in water did not exhibit amplitude or tension dependence
since external losses greatly overshadowed the internal losses, and so the investigation of
the in-air damping of cables wes diserntinued. The in-water log decrements for all con-
figurations are presented as a composite in Fig, 8. It is evident from the results in the
figure that the decrement is independent of wavelength and mode number, and that the
decrease in decrement at higher modes is therefore principally a result of the higher
frequency. This implies that the produet §f must be constant or nearly so. Generally,
the computed values of §f increased slightly with increasing frequency. ror the 3/32 in.
cable 8f increased about 20% for an order of magnitude change in frequency, while for
the 1/4 in. cable 6f increased approximately 10%. It is worth noting that &f ~ §, the
damping coefficient, so that the damnping coefficient in water is independent of amplitude,
wavelength and mode shape for the range of parameters tested. Furthermore, the damping
woefficient is only slightly dependent on frequency.
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Fig. 8 - The log decrement of the free vibrations of a flexible cable in water
A similar result for a length of piano wire in air was published by Leehey and

Hanson [13] in a paper that considered the sound radiation from a resonantily vibrating
wire. From that paper, the damping quality factor, @ = 2n/, of the first four modes
of a piano wire yields essentially the same value when divided by the corresponding
resonant frequency, Both the quality factor @ and the quotient @/f = 2n/8f are listed
in Table 3 for comparison purposes,

Table 3
The Damping Characteristics Of A Piano Wire*

Mode §
Number Frequency (Hz) Q= 2n/8 Q/f = 2n/6f 1
1 470 515 0.91

2 923 920 1.00
: 1387 1287 1.00 ;
4 1683 1950 0.96 i
i
*From Lechey and Hanson [13]. §
]
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Once again a comparison, can be made with the results of Heller and Chung 61,
Several representative data poinls from Chung's dissertation [9], for a 6 X 19, 3/8 in.
diameter wive rope, are plotted in Fig. 8. There is good agreement on the cffects of
frequency and the suggestion of a diameter effect fov the three cable sizes, Attempts to
collapse the damping data onto a single curve using the vibration Reynolds number were
not successful because of the several loss mechanisms that contribute to the overall damping
of a cable during transverse vibrations in water.

APPLICATION OF 'THE RESULTS TO FLOW-INDUCED CABLE VIBRATIONS

In the absence of Reynolds number and Froude number effects, the amplitude x of
a cylindrical structure undergoing vortex-excited oscillations can be expressed as a function
of certain parameters,

Xo= ,‘([I!v"'l’ I)va V) /))v (18)
where

fn = natural frequency

M = body mass plus added mass (virtual mass) per unit length

& = logarithmic decrement of damping

D = body diameter

V = free stream fluid velocity

p = fluid density. Dimensional analysis leads to the following nondimensional param-
cter groupings:

X 14 M
== fle——, —= 4}, 19
D f(an pD2 ) (19

Vickery and Watkins {14] have shown that two of these groups can be combined into
a single paramoter (called a combined stability parameter),

r, <[22\ 5 (20)
n2

when the energy dissipated by damping ai resonance is equated to the energy input from
fluid forces. Gritfin, Skop, and Koopmann [3] have shown that the equations of NRL’
wake-oscillator mathematical model lead to another form of ihe combined stability
parameter, N

-i= 2182k, , (21)
u
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where S is the Strouhal number, ¢ is the damping coefficient §/2n, and ¢ is a mass
parameter,

e —pD2 29
H7 gn2szm (22)
Since the Strouhal number S = f,D/V (f, is the vortex-shedding frequency from a stationary
body) is constant over the practical range of vortex shedding, the two forms of the com-
Ianed stability parameter are linearly related.

It has further been shown that the peak amplitude of resonant vortex-excited oscil-
lation of an elastically-mounted, rigid cylinder of flexible cylinder is only a weak function
of V/f,D, with the peak value of amplitude in the transverse, or crossflow, direrdon to the
incident current generally occurring in the range

Y. 5.5 to 6.5 .
D

Thus the peak amplitude of vortex-excited oscillaticn is a functicn of onily lhe com-
bined stability parameter as shown in Fig. 9 where experimental da‘a froms NRL and else-

where are plotled together with a predicied curve generated with the wake-oscillator
model [3].

o O -
2 o ©

o
[N

MAXMUM VYBRATION AMPLITUDE

/

1 1 | 4 1 I SR | i i N i
05 1.0 1.5 2.0 2.5 3.0 a5
STABILITY PARAMETER, -ﬁ— =2mwS%k,
Fig. 9 — The maximum amplitude of vortex-excited oscillation for a rigid,
elastically mounted cylinder, Experimental Jata (air): NRL, +; University
of British Columbia, O ©; University of Maryland, 1. Experimental data

(water): University of Padua, ¢. The prediction of the NRL wake-oscillator
model [3] is denoted by the solid line.

o
Ol

17

il e eatim R 1

" . . N T LA S h S Akkbaculi
o rane i et Drpciidian




Eps<a

RAMBERG AND GRIFFIN

AR e PSR B

T

FFor values of ¢/u greater than abhout 3.4 L 4.0, the amplitude of oscillation fails
below 2xy/D = 0.10, which is the threshold usuaally ase~oiated with the onsct of resonani,
vortex-escited oscillations. The interesting and practical result indicated by the figure is
that beyond a eritical, or cutoff, value for the stability parameter, vortex-excited resonant
oscillations do not oceur A combination of structural and flow properties which combine
to yield a value of ¢/u such that

T

¢ . i‘)

" -_ -

: R H eritieal

4 characterize a system that will not resonantly vibrate under vortex excitations. Such be-
: havior has been observed for both flexible cylinders | 15) and elastically mounted rigid

pendulum structures in both air and water {14], which suggests that an equivalent com-
bined stability parameter ¢/u or kg can be specified for a strumming underwater cable
once the damping and added mass have been determined.

e o =

F

"‘ I3 13 .

N The natural modes of the cable vibrations can be determined from the frequency law
4 for a stretched string

:

.

{-“ . : Il'

3 [n= ""j=123....

2LV M T

where L is the cable length, 7' is the tension, and M = pA is the mass per unit length, The
virtual mass in water can he deduced from the ratio of the natural frequencies in pir and
water at corresponding values of tension and wavelength, This ravio of natural frequencies

is plotted in Fig. 6 as a function of the natural froquency fiy. A typical virtual mass
computation at fiy = 20 Hz is given by

M a2
oA} = (1.18)2 =1.28, (23)
My W

which represents a 28% increase in the apparent mass in water from the in-air value.

These results can be used to determine the combined stability parameter &y for the
strumming vibrations of cables as shown in Table 4. The strumming response of the
cable was measured by Dale. et al, {16]. The cable lengths for the experir.ent were 3 and
6 ft and the cable diameter was 0.1 ir, (17 = 3/32 in.). 'Thus the cable daiaping and
added mass resutls for the 0.1 in. cable in Figs. 5 un:4 7 can be used to compute kg. 'The ;
four values of frequency in Table 4 correspond to resonant strumming vibrations in the
second throagh fourth modes for the 3-ft cable and the fourth through ninth modes for
the 6-ft ca'Je. It is interesting to note the decrease in &y and {/u as the frequency in- !
creases; this is a result of the decrease in the cable damping as the natural frequency is
increased from 10 to 30 H=z in Fig, 7. The values of k&, in Table 4 correspond to a range
of peak-to-peak, resot.ane strumming amplitudes between 1 and 3 diameters [3,16].
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Table 4
The Damping Characteristics of Strumming Cables

Combined Stability Parameter?
Frequency', fiy

(Hz) k, = M & L. 282k,

’ pl)2 u )
31 0.56 0.16
28 0.80 0.22
21 1.20 0.33
14 1.60 0.44

1Froquency data from Dale et al [16]. Cable dinmeter = 0.1 in., cable length = 6 ft, 3 ft.
2Cable damping and virtual mass from Figs. 6 and 7. Cable specific gravity = 7.25,

) CONCLUSIONS

< The equivalent homogeneous string is an adequate representation of the transverse
i vibration of stranded wire rope for peak-to-peak amplitude of vibration up to at least a
g full cable diameter. For tensions between 1 and 60% of the cable rupture strength the

predicted resonant frequency in air will be 1-4% below the actual natural frequency.

3 The added mass effect in water is independent of amplitude (ur. w» 100% of a
diameter), mode shape, wavelength, and is only slightly dependens on frequency. The
virtual mass is most conveniently and accurately determined from

T T R

fq\2

3 Py = Pa
" fw

< Cap -

where the ratio f4 /fw is obtained from Fig. 5 of this report.

The damping or log decrement & of free vibretions 1o water al resonance 1§ also
independent of amplitude (up to 100% of a cable diar.2t¢ ), mode shape, and wavelength.
In addition, the damping coefficient § increases very litile w.th frequency so that the log
decrement is, to a good approximation, inversely proporticn § to frequency.

il

The damping and added muss can be combined to form a “stuni'ity narumeter” that
governs the onset and magnitude of vortex-induced cable vibrations. '7.i3 stahility
parameter can be used to estimate correctly the maximum amplitude of .ransverse motion
at the antinode of a vibrating, flexible cable,
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