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Semiannual Technical Report 

Mcde Locking of High-Pressure CO2 Lasers 

covering the period 

June 1,  1974 - November 30,   1974 

Introduction 

Mode-locked oscillation is a major bottleneck in the generation of 

short, high-power laser pulses, for application in laser fusion, commu- 

nications,  or radar.   Our objective has been to attain a comprehensive 

understanding of the mode locking of lasers with specific application to 

high-pressure CO2 TEA lasers.    Toward this end work has proceeded 
along both theoretical and experimental lines. 

Present techniques of mode locking are classified as either (1) active, 

in which sinusoidal intracavity modulation at  the cavity mode spacing or 

a multiple thereof provides coupling among the axial modes of the laser, 

or (2) passive,  in which a saturable absorber acts as a fast gate within 
the cavity, opening and shutting with the passage of each mode-locked 

pulse.    Since active mode locking is well understood, the main focus of 

our work is on passive mode locking.    However, hitherto  unexplored 
features of active mode locking are being in^erstigated as well as com- 
bined active and passive mode locking. 

We have developed a new theoretical approach applicable to both 

active and passive mode locking.    Experiments on high-pressure CO2 
lasers are in progress to substantiate the theoretical predictions.   Results 

are summarized in the ensuing sections.    Further details appear in the 

appendices which contain excerpts from the Quarterly Progress Reports 

of the Research Laboratory of Electronics. 

Passive Mode Locking 

Despite the extensive work which has been done on the theory of 

passive mode locking no simple analysis has been published.   We have 
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developed the first closed-form theory of steady-state saturable absorber 

mode locking, both for the case of the fast relaxation time absorber 

and the slow relaxation time absorber (see Appendix I).   The pulses are 

found to be hyperbolic secants in time.    In addition, the problem of passive 

mode locking with a nonlinear refractive index medium has been solved 
2 

in closed form. 

We have passively mode locked a pin-type C02 TEA laser over   a 

range of pressures 400-500 Torr using a 1-mm long saturable absorber 

cell containing a mixture of SF, and He.   Pulse lengths were in the vi- 

cinity of 4ns, roughly equal to those achieveable by active mode locking. 

This is in good agreement with theory, given the characteristic param- 

eters of SF/.    The pulses are not shorter than those obtainable by active 

mode locking because the power available in the pin laser (~10kW)   is not 
sufficient to saturate the absorber fully, hence its effective modulation 

depth is small. 
Experiments with higher power lasers — atmospheric and multi-atmo- 

spheric CO- TEA lasers — are under way to generate s^bnanosecond 

passively mode-locked pulses.   To verify theoretical predictions, a study 

of pulse width and amplitude variation as a function of laser and absorber 

parameters is being conducted. 

Active Mode Locking 

Our active mode locking experiments, carried out on a pin-type TEA 

CO, laser in the 200-500 Torr pressure regime,  show good agreement 

with the well established theory developed by Kiuzenga and Seigma^.   A 

discrepancy appears,  however, when the intracavity modulation is detuned 

from the cavity mode spacing.   We observe that detuning causes an insta- 

bility in the mode-locked pulse train such that several interleaved pulse 

trains appear shifted in time with respect to one another by an amount 

dependent on the degree of detuning and in a direction relative to the first 

pulse train dependent on the sign of the detuning.    We have been able to 

show, in fact, that narrow limits axe set on the allowed value of botti 

positive and i.^ative detuning because the excessive growth of precursor 

(or follow-up) perturbations leads to unstable behavior of the mode-locked 
3 

pulse train. 
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Since the shot-to-shot fluotuation of the TEA laser makes it a poor 

candidate for the study of detuning effects, we are assembling a cw high- 

pressure waveguide CO- laser to enable observation of the effects of 

detuning on steady-state mode locking. 

To our knowledge,  no analysis of the influence of noise fluctuations 

on steady-state active mode-locking has been reported.    Consequently, 

we have applied our mode locking formalism to evaluate amplitude- 

phase-     and timing-jitter of a train of actively mode-locked pulses. 

Details appear in Appendix II.    Verification of the results will be attempted 

on the cw mode-locked laser. 

Combined Active and Passive Mode Locking 

The stability of the passively mode-locked laser is poor, since the 

buildup of the pulse from noise relies on the selection of the highest noise 

spike in a cavity transit time due to the preferenti al saturation of  the 

absorber.   A delicate balance of gain and loss in the cavity is required 

to reach steady-state mode-locked operation.    This is particularly dam- 

aging in a gain-switched laser, such as the TEA CO, laser, where the 

gain fluctuates significantly from shot to shot and where, in fact,  satellite 

pulses, pulsewidth  fluctuations, and other indications of incomplete mode 

locking are commonly observed. 

Improvement of stability is possible by combining active and passive 

mode locking such that the buildup of the mode-locked pulse from noise is 

governed by the intracavity modulation.   Shortening of the steady-state 

pulse also results, since both the modulator and the absorber are instru- 

mental in shaping the pulse, although the effect of the absorber will 

dominate in high-power lasers. 

We have observed both the improvement in stability and pulse short- 

ening due to combined active and passive mode locking.    The sa'.urablt 

absorber mode locking of the TEA C02 laser at 250 Torr is erratic, 

yielding pulse widths in the vicinity of 5 ns.   Active mode locking generates 

pulses of 4. 5 ns. duration.    The combined passive and active mode locking 

gives reproducible pulses of 3. 5 ns. duration.   An asymmetry of the 

pulses is also evident (lengthening of the pulse tail with respect to the 
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front) which we attribute to tha relaxation time of SF,.   The experi- 

mental investigation of combined mode locking will be extended to 

higher pressure lasers.   Further theoretical work is also required 

to predict the pulse width and shape attainable for a given system. 
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Appendix   I 

V.    QUANTUM ELECTRONICS 

C.    Nonlinear Phenomena 
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.IS 1.    SHORT  LASER   PULSES:    SLOW  SATURABLE  ABSORBER 

MOOE-LOCKING  SOLUTION 

Joint Services Electronics Program (Contract DAAB07-71-C-0300) 

U. S.   Army Research Office - Durham (Contract DAHC04-72-C-0044) 

Hermann A.  Haus,   Christopher P.   Ausschnitt,   Peter L.   Hagel stein 

[Peter L.   Hagelstein is an undergraduate student in the Department of Electrical 

Engineering.] 

We have reported previously a closed-form theory for mode locking a homogcneousK 

broadened laser by a "fast"   saturable absorber.     The  mode-locked pulse was found 

to be a hyperbolic  secant  in  ume.    In this  report we investigate mode locking by a 

"slow"   saturable absorber; that is,  one in which the  response time  T    of the absorber 

is comparable to or slower than the rate of change of intensity in the laser cavity. In the 

limit of a "very slow" absorber we find a closed-form solution for the mode-locked pulse 

which is also a hyperbolic secant in time. The power of the pulse produced by the very 

slow absorber decreases with T  , whereas initially the pulse width approaches a constant 

independent of r    and much shorter than T   . AS T   — OP the decrease in pulse power leads a a a 
to quenching of the mode locking when the negative resistance of the laser mo.Jium, which 

is required to be Lflow thrcsholu for successful mode locking,    reaches threshold. 

We can treat slow-absorber mode  locking by a modification of the differential equa- 

tion developed for the equivalent cavity current I(t)   in the case o' fast-absorber mode 

locking,    which is rewritten 

.IS 

0 

0° 

Kt) 

We define 

I(t) 1 - r   1 + 

"M   dt 

d 
or i) 
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(V.    QUANTUM   ELECTRONICS) 

A random-phase approximation was used to obtain the temporal and spectral profiles 

of the laser pulse. Rate equations were written for the energy of a sing e mode in terms 

of gain, loss, and noise at the mode frequency. By considering the total spectral energy 

in a narrow band dv,  we arrive at 

.IS 

dF(v) 

dt = cG(v) - L(v) F(v) + S(v). 

Here,   F(v) dv is the total field energy in the interval  v, v+dv and is equal to the mode 

density 2L/c multiplied by the individual mode energy at v,   G(v') is the net gain,   S(v) is 

the noise,   and L(v) is a loss that includes photoionization, and mirror and scattering 

losses. Similiarly, the induced depopulation rate may be obtained by considering the con- 

tribution from B single mode,   Blumrt'lng over modes,   and converting the sum to an inte- 

gral in terms of F(v).    Thus we obtain 

dN 
dt stimulated 

r»« G(v) 

Jr,      hv 
dv. 

The gain and noise expressions in our model contained an energy-dependent dipole 

moment.  Overlap integrals were constructed by using Morse potential functions to deter- 

mine the variation of the dipole transition moment with ground-state energy.    These cal- 

culations are used to compute the ground-state absorption,   and comparisons with recent 

experiments are in good qualitative agreement. 

The total dynamic model is used to determine both the temporal and spectral prop- 

erties of the laser radiation.    The predicted line narrowing and short temporal pulses 

agree well with experimental results. 

A paper,   entitled "Dynamic Model ot High-Pressure Ultraviolet Lasers," by C.   W. 

Werner,   E.   V.   George,   P.   W.   Hoff and C.   K.    Rhodes,   was  presented at the IEEE 

Quantum Electronics Conference,   San Francisco,  California,  June 10-13,   1974, and has 

been accepted for publication in Applied Physics Letters. 
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(V.    QUANTUM  ELECTRONICS) 

Q   = cavity quality factor 

Q   = absorber quality factor in the absence of powci 

= saturation power of the absorber 

= laser mediura bandwidth JM 

r   = laser medium saturated negative resistance 

5   = detuning parameter 

u     = frequency spacing of mode-locked cavity modes. 

TI.e left-hand side of (1) is the injection voltage generated by the flow of current through 

the nonlinear current-dependent impedance of the absorber.    The right-hand side repre- 

sents the voltage across the cavity and laser medium impedance,  where the  laser line 

has been expanded to second-order about line center.    The detuning parameter  6 allows 

for a difference between cavity-mode and laser-medium reactances.    Specifically, 

.IS 

6 = 
m       mo 

(2) 

where Aco    is the cavity mode bandwidth and u       is the "tuned"  mode separation fre- 

quency defined as the empty-cavity mode spacing Ato modified by the  laser medium dis- 

persion 

ACJ 

mo (3) 

1 + 
JM 

o 
2Q 

One of the conditions of the fast-absorber solution is that CJ     = co      .In other words, m       mo 
the reactive components of the cavity and laser medium cancel in fast-absorber mnde 

locking.     As we shall see,  this is not the case for the slow absorber. 

Equation 1   can   be   adapted   to   the   case   of   the   slow   absorber   by   making   f.he 

substitution 

I(t) -t/r      M        t/ pl 1/ T I{t) dt 
T 

(4) 

for the response of the absorber impedr.nce to the current,  where  T     is the relaxation 
El 

time   of the  absorber.     The   right-hand   side  of   (4)  follows  from  our   rate  equation 

model of the absorber as a slow two-level system in which the fractional change in the 

lower level  population  is  small.     In the  limit of large T    we can approximate the 

right-hand side of(4) by ,1? 

N 

QPR  No.   114 f.35 
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(V.    QUANTUM   ELECTRONICS) 

JS r Kt) dt (5) 

so that the mode-locking equation (1)   becomes 

Q ,'t 

— I(t) 

I(t) 
2 

dt 
la T a 

, l-r)I + —   ^T- + -=-   —^ 
CJ      dt        2      ,.2 

m uM   dt 
(6) 

If we now assume a pulse width T ) such that T,  » T    » l/^iwr.   then the pulse spectrum 

is sufficiently narrow that the laser line can be assumed flat.    Thus the last term in (6), 

which originates from the parabolic frequency dependence of the laser medium negative 

resistance near line center,   can be neglected. 

Deletion of the second-derivative term from (6) permits a solution of the form 

I(t) A 

coshf— 

(71 

.2 . 
If we assume a repetition rate  T of the pulses,   A    is related to the power by 

2 2T
- 

i        \.\    dt - H P      2 
— A^. (8) 

00 u2        i 
cosh    l — 

In order to   trace   the   evolution of I with increasing   T    we   normalize  (7)   such 

that 

w - w (9) 
cosh 

where N  is specified by 

IV 
^   AZ 

Q0 I2   (1-r) a    a 

(10) 

Introducing (9)   in (6) and balancing the coefficients of the hyperbolic secant and its first 

derivative gives the relations 

QPR  No.   114 r-36 
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(V.    QUANTUM ELECTRONICS) 

N p 
ID 

.IS 

">    (l-r) m 

12) 

which are supplemented by the negative resistance power dependence 

r = 
1 + 

(13) 

l 
I- 

Equation 11 shows that an increase in T    must be accompanied by either an increase 

in T    or a decrease in N,  or both. The decrease in N is equivalent to a decrease in pulse 

amplitude,  since  N determines the amplitude scale.    If   we   assume   for   the   sake   of 

argument  that T    remains constant,   then the power P must vary  inversely with T 

From Eq.   12  we note  that the  detuning parameter 6 will always be negative  (recall 

from the fast-absorber analysis that the laser medium must be below threshold,  hence 

1-r  is positive if mode  locking  is successful   ).    A negative  6  implies CJ     < CJ      ,   so r ■ b ^ m        mo 
that the round-trip transit time of the pulse in the laser cavity mode locked  by the slow 

abscrber is longer than in the case of the fast absorber.   Furthermore,   Eq.   12 tells us 

that as the   laser meüium approaches threshold (r— 1)  the pulse  width T      increases 

rapi 'ly.    The mode-locking solution will  be  quenched when threshold is reached and 

the laser will revert to free-running oicillation. 
2 

Equation 6 can be viewed differently if we assume that as T    increases IT    remains a a  a 
constant;   i. e. ,  the slower the absorber the more easily it saturates.   The mode-locking 

strength of the absorber becomes independent of T    for large T  .    AT    invariant  solu- 
ti ry 'Ü. il 

tion to (6) is obtained for each value of the parameter I T  .    Because the mode-locking 
a 3. 

strength approaches a constant,   rather than ?,ero,   as T,  — ^ the mode-locking solution 

is never quenched. 

The computer solution of the complete slow-absorber mode-locking equation obtained 

by substituting (4) in (1) substantiates the features contained in the closed-form expres- 

sions (K-13).    Figure V-l is a plot of the  computed pulse amplitude,   pulse width,   and 

the parameter 

1 1 

po    m   (1-r) 
(14) 

against the absorber relaxation time T  . Pulse amplitude and width have been normalized 

to the peak current A    and width T      of the fast absorber pulse. In the region of small T r o pn r • a JS 

QPR No.   114 /'37 
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JS 

o 
z 

i.i 100 
r./r, 

Fig. V-l. Mode-locked pulse amplitude, width, and 
detuning as a function of saturable absorber 
relaxation time. 

JS 

the magnitude of the detuning parameter \i\ increases more rapidly with T    than the pulse 

width T  , while the pulse amplitude decreases slightly. As T    increases, a and T    approach 

each other asymptotically as predicted by (12).  In keeping with Eq. 11 the slowing of the 

increase in r    is accompanied by a sharper decrease   in   A2.    In the region defined by 

10 < Ta/Tpo < 50,   Eqs.   11 and 12 are further verified because a  and T    approach a con- 

stant,  whilu A    is roughly inversely proportional to T  .    The onset of quenching pre- 
dicted by (11-13)  is apparent   when T /T      = 100. 

cl pO 

The computed pulse shapes show only a slight asymmetry for large T    (a lengthening 
of the front of the pulse relative to the back).    In fact,   for   1  < T /T      <  50  the   pulse 

a    po ~ 
shape is virtually invariant.    These results are in agreement with the symmetric closed- 

form solution (7).    The slight asymmetry is a consequence of the second-derivative term 
in (6) which was neglected in deriving (7). 

The results of the slow-absorber mode-locking  analysis have  a simple ph sical 

origin.    The slow response of the absorber retards the  propagation of the mode-locked 

pulse,  hence "pulling"   it off the round-trip transit time imposed by the laser cavity. This 

results in a negative detuning of the cavity modes.    The  effects produced by the  slow 

absorber,  therefore,   are analogous to the effects of detuning the intiacavity modulator 

in forced mode locking.      Forcing the modes off resonance  introduces additional   loss 

QPR  No.   114 1-38 
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into th? cavity.    Consequently,   the pulse power dec   ^ases,  the pulse spectrum narrows, 

and the pulse width increases.    The pulse width,  however,   is not directly related to the 

absoi her relaxation time.    The pulse  "terminates"  not because  the   absorption  has 

recovered,   but because the modes covering a finite mode-locked spectral width begin 

to interfere destructively. 
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SHORT  LASER  PULSES: 

PULSES 

FLUCTUATION  OF  MODE-LOCKED 

Joint Services Electronics Program (Contract DAAB07-7 1-C-0300) 
U. S.   Army Research Office - Durham (Contract DAHC04-72-C-0044) 

Christopher P.   Ausschnitt,   Hermann A.  Haus 

Introduction 

We have developed a theory of forced mode locking in the frequency domain.     In this 

report we  apply our formalism to evaluate amplitude,  phase,   frequency,  and timing 

jitter of a train of forced mode-locked pulses.    AM and FM mode locking are treated 

simultaneously.    The analysis is then  specialized to consider the  response of an  AM 

mode-locked laser to spontaneous emission noise. 

Steady-State Mode-Locking Equation 

We consider a cavity with a set of axial modes,   evenly spaced by AOJ in frequency, 

ormalized impe 

malized impedance 

of normalized impedance   1 + jx  .    A homogeneously broadened laser medium of noi 

-r 
' 2 ' 

1 +]   -^+^V (1) 

fills the cavity,  where w is measured from the line center frequency co   of the medium, 

co.. is a measure of the medium  linewidth,    and the   Lorentzian denominator has been 

expanded to second order.    The saturated nogative resistance  r has the  power depen- 

dence of the homogeneous line, JS 
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(V.    QUANTUM  ELECTRONICS) 

r = (2) 
1 + 

To achieve mode locking,  we introduce a normalized modulated impedance into the 

cavity 

Zm(t) = (l-cos.mt)^(Rm+jXm) 
c 

(3) 

The modulated impedance operates on the current of the oscillating modes to generate 

injection voltages in the set of modes at frequencies spaced kw      from the mode at line 
m 

center,  where k (> 0)   is an  integer tnat counts the modes from the mode nearest line 

center denoted by k = 0.    In the steady state the equivalent vohage  of each cavity mode 

is balanced by the  injection locking voltage produced by the interaction of the equiva- 

lent cavity current with the modulator.    Because of the assumed sinusoidal form of the 

modulation,  the injection voltage in any given axial mode is caused  by the currents in 

the adjacent modes.    A  difference  equation  in  k results for the  current  in the axial 

modes that oscillate at frequencies to   + kcj     if the mode locking is successful. 

To simplify the solution,  the difference equation is approximated by a differential 

equation; that is,  we approximate  k and hence the cavity mode  spectrum by a con- 

tinuum 

MQ -     !   :  rv(k) - . 
dk^ 

1 - m 
Ji\i 

+ jr-i2Lk 
"M 

(4) 

where I(k) is the distribution of current over the cavity modes.    The left-hand side is 

the set of injection voltages produced by the current I flowing through Z    (t),  where 

we have defined 

M 'M 
R     +iX J#        m    ■'   m 

2R (5) 

The cavity reactance jxc in (4) is a function of k because modes at a different "distance" 

from line center,   in general,  will oscillate at different dctunings from cavity resonance. 

In the free-running  laser the axial modes prefer to oscillate where  the net reactance 

of the cavity and the medium is minimum: 

.IS 
x (k) + r c 

co 2Q 
IS.  W  - A     K  =     OCJ   , 

to O 
O M 

(6) 
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(V.    QUANTUM  ELECTRONICS) 

where Q is the cavity quality factor,   and the constant term on the right arises because 

the mode at line center may oscillate at a frequency displaced from line center by 6w . 

Equation 6  determines a   "tuned"  modulation frequency w        equal to the cavity mode 

spacing Ato as modified by the dielectric cons .ant of the laser medium.     For the pres- 

ent,  we assume that the applied modulation frequency u      is equal to u Later we m n mo 
shall show tha   detuning CJ     from w        has no influence on the noise response of the 
mode-locked laser. 

With the nse of (6),   Eq.  4 can be recast in the form of the harmonic oscillator equa- 

tion of quantum mechanics.    Thus the eigenfunctions of (4)  are the well-known Hermite- 
Gaussian  functions: 

1/2 
un(k) 

y. (7) 

JS 

where we have defined 

m   exp -] — «p        F   J  4 (8) 

in terms of a measure of the bandwidth of the mode-locked spectrum 

r m  M (9) 

Because they describe the collective oscillation of many cavity modes,   the eigenfunc- 

tions (7) are called "supermodes"   of the cavity.    As defined in (7)  the supermodes are 
orthonormal,   that is, 

r u  (k) u ,(k)  dk = 6 
nn' (10) 

The eigenvalues of (4) arc given by 

ZQ V  r 
n-   (r-l-,1_6%)n=2-T-   („ + !), ;ii) 

"M 

where the real part of En determines the excess gain of the mode-locked laser and the 

imaginary part determines the spectrum shift off line center 6u> 
1 0 

Haus    has shown that only the lov    st order n = 0  supermode is stable.     Thus,   in 

the steady state,   the current distribution over the cavity modes is given by JS 
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JS I(k) = vT u (k). 
o 

where we have used a normalization such that 

(12) 

C   |l|2dk=P. 

Here  P  is the total power in the spectrum. 

Perturbations of the Steady State 

(13) 

The steady-state supermode  is  a discrete set of equally spaced spectral lines under 

a Gaussian envelope given by (7).    The perturbed supermode becomes 

I{k) + 6I(k) = VP + 6P u   lk+ — (k + t) (14) 

The perturbation current can be expressed as a superposition of the envelope and indi- 
vidual mode perturbations 

du 
6I(k) =|NfP  ^ u (k) + VT-^ 

* r      O u)__    dk (15) 
in 

To account for both amplitude and phase fluctuations, the perturbations must be taken 

to be complex. The physical significance of the perturbations in the frequency domain 

can be described as follows: 

6P 
(*)    ~jT' = Fractional fluctuation of total power in the spectrum. 

6P. 
(b) 66 ■ ~p~= Phase fluctuation of the total spectrum. 

(c) 6^, = Uniform fluctuation of the frequency of the individual modes. 

^d)    "T^i = Uniform fluctuation of the relative phase of the discrete modes. 

JS 

Here   the   subscripts   r, i   denote   the   real   and   imaginary   parts   of   the   perturba- 

tions.      Frequency-domain   fluctuations   (a),   (b),   and (c)  correspond   to   fluctuations 

in   the  time   domain  of pulse  power,    carrier phase,    anil earner   frequency,   respec- 

tively.      From   the    Fourier  transform  of  (14)   we  find  that  (c)   and  (d)   cause  a  pulse 

timing   fluctuation,    which  when  normalized  to  a  measure  of the   pulse   width  T   ■ l/u 
i P P' is given bv 
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6t      6u,i          *      6ü)
r ♦ 

■=— = —— cos -5- sin — 
TP     "p 2      "p 2 (16) 

It  is  convenient to recast  Eq.    14   in  the  form of an  expansion  in  terms  of the 

complete set of cavity supermodes, 

61 =  Z  A u (k). 
n     n n (17) 

We make use of the fact that the derivative of the zero-order supermode is proportional 

to the first-order supermode  to match the coefficients of (14) with those of (17).    The 

zero-   and first-order supermodes of (17) contain the information on 6P and  6^: 

6P        2 He A  r__  c 
P VT 

2 Im A 
66 = 0 

NfP 

Re Aj cos j - Im A 1 sln 4J 

Re Aj sini-+ Im A. cos-r- 

(18a) 

(18b) 

(18c) 

(18d) 

The coefficients of the higher order (n> 1) supermodes of (17) describe hifhei  order 

effects such as pulse distortion and the fine structure of the phase fluctvations.   We shall 

concentrate,  therefore,   on the response of A    and A    to a noise source. 

The modification of the mode-locking equation (4) to include a noise source proceeds 
as follows: 

(a) A noise source voltage  v,  which we shall describe  in  detail,   is introduced on 

the left-hand side with the mode-locking injection signal term. 

(b) The steady-state Gaussian supermode is replaced by the perturbed supermode 

I(k) + 6I(k),  where fcl(k) is described by Eq.   15. 

(c) The saturated gain (negative resistance) r  is replaced by r+6r, where 6r is the 

change in gain caused by the power fluctuations 6P    Using (1 5). (10), and( 18a), we obtain 

6r 
_') r      P 
-p- F   Re Ao. 
+ p-      s (19) 

.is 

(d)   The CBVity mode reactance seen by the perturbation current 61 is included by IS 

QPR  No.   114 J-4j 

—,. wummi 



.IS 

('. .    QUANTUM  ELECTRONICS) 

expanding to first order about the steady-state reactance: 

?x 
xc(k.n) = xc(k) + Q -j^ ^ xc(k) + nx^ 

= x (k) +Q(Z1-\1 
VAwc/ 

(20) 

where A^ is the cavity mode bandwidth.    We have introduced the frequency 0 to denote 

the deviation of the k     mode from its steady-state oscillating frequency ku    .   The vari- 

ation of all other parameters of (4) with Q is neglected,  an approximation that disregards 

the energy  storage associated with the medium in comparison with the energy storage 
of the cavity modes. 

Thus,  to first order in the perturbation,   the equation governing the response of the 
i;teady-state supermode perturbed by a noise source becomes 

.2 
M ^   61 + v 

dk 
-Eo + r m 

0M 
61 - 6r 1 - -2.) k2-jJELk 

"M ' "M 
I + jiix' 61. J     c 

(21) 

This is the fundamental equation which we shall now analyze.    First,   we characterize 
the noise source v. 

Noise Source 

We restrict our attention to noise within the fractionally narrow bandwidth of the 

mnde-locked spectrum.     Furthermoie,  the narrow linewidth of each cavity mode ACJ 

relative to the mode spacing Au enables us to treat the  »otal noise source as a super- 

position of independent sources in each of the cavity mode J.    Thus the noise source is 

described by a set of fluctuating voltages v(k, S.'),  where k specifies the axial mode,   and 

" is the frequency deviation of the noise source in the kth mode from the steady-state 

oscillating frequency kum of the mode.    The narrow linewidth of the cavity modes also 

tells  us that both the amplitude and phase of the noise source in the kth mode fluctuate 

slowly compared with w^.    In other words,  fluctuations occur on a time scale which is 

long compared with the pulse  separation TR =  2ir/wm.    Each pulse  in the mode-locked 

train has  a  spectrum given  by the  superposition of the  steady-state  spectrum  and 
the total noise spectrum which does not vary during the pulse. 

Since we are  interested in the fluctuations of the steady-state supermode oscillation, 
we expand the noise source in the supermodes of the cavity. 

• IS 
v{k,i2) =  E v (QJ u (k). 

n 
(22) 
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th The voltages v (ß)  now represent a slow modulation of the n    -order supermoc.e.     In 

general,  thpy an» complex.    The real components represent in-phase fluctuations with 

respect to the  steady-i.tate   supermode   and   the   imaginary   components   represent 

quadrature-phase flue nations. 

.IS 

Supermode Fluctuations Caused by Noise 

We are now equipped to analyze the response of the mode-locked spectrum to noise 

perturbations.     We express both the noise source and the perturbation current as expan- 

sions in supermodes of the cavity and,   by making use of (19),   Eq.   21 becomes 

M y A ^i u + y v u = -E + v(^] k2 y ^      ndk2    n     Z.     n n o        ^ £ A u n n 

1 + P    P 1 - 
W  \ o U) 
-a] k2-j^ik 
"M / "M 

NTP  He A u o o 

+ ittx1   >    A u 
c ^      n n 

ti 

(23) 

To obtain the response function of A (i2),  we multiply (23)  by u (k)  and  integrate 

over  k.   We make use of the orthogonality condition (10) and the fact that u (k) obeys the 

eigenvalue equation (4) to obtain 

fix* A (O) + J        CO 
2r        P 

i   .   p    p 

1  + pT-       s 
s 

1 -f , 
M 

t,xP ,i — Re A    = v (Q). o       o (24) 

Likewise,   we can obtain the equation governing the response of A. through multi- 

plication of (23) by u,(k) and integration over k: 

JM 

w 

p    1 JOx^AjW + 2r^—j  exp j-j A, - ., -«j- ^ 7= — exp ., -  He A„ - v.i o   vr 

(25) 

where we have used (11).     As we  have  noted,    Eqs.   24 and 25  specify the  response  to 

noise of the  first-ordei- perturbations of the  steady-stale  supermode.     In order to JS 
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.IS transform the coefficients  Ao and A, back to observable effects via (18).  we must separ- 

ate (24) and (25) into real and imaginary parts.    Thus far.  we have carried out the anal- 

ysis for combined AM and FM modrJation within the la.ser cavity.     For the  sake of 

brevity.,  we limit further analysis to the case of the AM mode-locked laser where the 

equations are simplified because « = 0.    The extension to FM or  combined  AM and 
FM mode iocking  is obvious. 

At this juncture we also note that we need not alter our analysis to consider c'etuning. 
A cons .quonce of detuning   is to trar sform the index k to: 

k' :-■ k + i 
ru 

^M 
2   ' 

d 
III 

(26) 

where we define the detuning parameter as 

d =   m       jno 
(27) 

The detuned supermodes generated by (26) are still ortnononr.al. Thus the derivations 

of (24) and (25) are not affected by detuning. The change in the steady-state saturated 

gain  r caused by detuning,    however,  will affect the noise response. 

Noise Response of the AM Mode-Locked Laser 

Fo    ^he AM mode-locked laser  M  is pure real.  4. ■ 0,   and the separation of (24) 
and (25) into real and imaginary parts yields 

Re A <<«>        1 
Xc    ^+-1 

J T 
0 

(28) 

v*(0) 
Im A    = -V J- 

(29) 

vftO) 
Re A. =-*-— 

1       x' 
P+- (30) 

.IS 

Im A. = 
vj(0) 

Re A 1 

in + — 
Ti 

(31) 
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where we have defined .IS 

c   1 + jj- 1    P '-T 
JM 

(32) 

2r 
^1 

(33) 

X   p 
p 'c !    ,; ■ ' s N/T ^M 

(34) 

The interpretation of these  equations   is   straightforward.      Equation   28,   which 

governs the response of the power fluctuations of the mode-locked pulse to noise,   is a 

simple  relaxation response to an applied source.     The  "restoring force"   is provided 

by the sai iration of the laser mciium negative resistance.    Equation 29,  which governs 

the carrier phase fluctuations,  experiences no such restoring force;  that is,   it has an 

infinite  relaxation time.     Thus we  find that the phase fluctuations of the AM mode- 

locked lasei behave similarly to those of a conventional van der Pol oscillator,   which 

obey an equation similar to (29). 

Equations 30 and 31 are both in the form of a relaxation response to an applied source 

In both cases the restoring force is provided by the fact that the zero-order supermode 

is stable with   respect to the first-order supermode perturbation.      The stability is dic- 

tated  by  the   requirement of the first-order  supermode  that  the  excess  gain   r-1   of 

the laser be higher than that of the zero-order supermode by an amount E, - E  .   The 

quadrature-phase noise source in (31) that is responsible for the timing jitter is aug- 

mented by a term  dependent on the  power  fluctuation of the  pulse.   This  is a con- 

sequence   of   the   fact   that   fluctuations   of   the   pulse   power   modulate   the   dielectric 

susceptibility of the laser medium,   and hence the cavity mode spacing. 

The power spectral densities of the pulse energy,   carrier phase,   carrier frequency, 

and pulse timing fluctuations can be obtained by inspection from (18)  and (28-31): 

6P ivn) 

Px' rr + 
(35) 

.IS 
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.IS 

" 

4 
*> 

Px'2 

■1 

+ i 

2T2 

166   2 
•1 

6CJ |vj(0) 2 

2 

P 

5 
Px1'' 

2 

2       1 
s.^ + — 

Tl 

1   CT,       2 

y\((i) 2 
JÖP 

Px'" 
c 

> 
P^ 

cr 
i 

(36) 

(37) 

(38) 

The mfan-squ;u-L' fluctuations may be obtained by integrating (35),   (37),   and (38).    But 

(36) is not integrabl >.    ^ he spectrum of |6e|" suggests that 66  experiences a spread 

that is like the spread in distance covered by a one-dimensional random walk." 

Fluctuation Caused by Spontaneous Emission Noise 

In order to obtain specific results,  we shall now concentrate on the spectrum of the 

noise source caused by spontaneous emission noise.    The voltage source v(lc,i2) obeys 

the Nyquist formula generalized to the quantum case 

lv(k,a)l   = |v(n)|   = 201-11. Aß 
0    2tT (39) 

when- o = N, N,.    We have neglected the  k dependence of the  laser medium nega- 

tive resistance because the mode-locked spectrum occupies only a small portion of the 

overall laser line within which the  k dependence of the line is negligible.   This assump- 

tion implies that the noise spectrum is "white";  that is,   each mode is subject to the 

■ame mean-square noise.    The spectrum of v  (!..')  is 

v v  . n  n1 6    .Zarhu 
n n' o 

An 
(40) 

JS 

Furthermore,   gtationarity dictates that the noise power be divided equally between the 

in-phase and qu;idrature-phase components: 

r   i v  v 
n   r. 0 

=   v.. 1 I 2 
T    V 

(41) 
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Using (40) and (41) and integrating (35) over the  spectrum,   we obtain the mean- 

square power fluctuations 

6P 
= ——T  T arRu . 

px,2     o o (42) 

Recognizing that the energy in the mode-locked pulse is given by 

W = PTu = 2TT — , K u (43) 
m 

we can rewrite (42) as 

6P AOJ 

m 

fiu 
w    T  ar -7TT mo        W (44) 

The last factor is the inverse number of photons in the cavity.    The factor Au /to      is r ' cm 
generally much less than unity,  wherear w   T    measures the relaxation time in terms 

of the pulse repetition rate and  is generally much greater than unity.     On the whole 

the two factors tend to compensate.     Thus (44)  shows that the mean-square power fluc- 

tuations arising from spontaneous emission noise will be extremely small. 

In  a similar manner we can obtain expressions for the mean-square carrie." fre- 

quency and pulse timing fluctuations, 

6t Au 
IT C 

12 
JM IK 

m W 
(45) 

where we have neglected the influerce of the power fluctuations on the pulse timing.   As 

in (44),   the last factor hu /W dictates that the fluctuations will  be  small.     The carrier 

phase experiences a random walk,  which obeys the ■'spreading"  formula" 

66 I    ■•s- orhcj T, 2 o 

where T is the time between two phase measurements. 

(46) 

Conclusion 

The effects of spontaneous emission on the response of a mode-locked laser are 

small.    But the  response of the mode-locked laser to perturbation sources which can 

be much larger than   spontaneous   emission   noise,    such   as   cavity length or cavity .TS 
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IS Q fluctuations, can be treated with the present analysis. Moreover, the noise analysis 

brings into focus the similarities between the mode-locked :aser and the van der Pol 

oscillator.    In the absence of noise the mode-locked laser oscillates on a set of discrete 

modes - of  fixed   relative   amplitude,    frequency,    an^   phase - distributed   about  a 

carrier   frequency   determined   by   the   läse:    mediv.m   line   center.      The   introduc- 

tion   of   noise   causes   a   pow-r   fluctuation   restrained   by   the   saturation   charac- 

teristic of the medium and an unrestrained "random walk"  phase fluctuation  that 

is   analogous   to   the   noise   response   of   the   van   der   Pol   oscillator.      The   fact 

that   the   mode-locked   spectrum   contains   many   spectral   lines   allows   for   fluctu- 

ations   of  pulse   timing   and   carrier   frequency   that   are   not   encountered   in   the 

van der Pol oscillator.    These fluctuations are restrained by the steady-state injection 

signals generated by the modulated impedance Z    (t) whose frequency «     is assumed 
fixed. 

.IS 
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