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Semiannual Technical Report
Mcde Locking of High-Pressure CO, Lasers

covering the period
June 1, 1974 - November 30, 1974

Introduction

Mode«~locked oscillation is a major bottleneck in the generation of
short, high-power laser pulses, for application in laser fusion, commu-
nications, or radar. Our objective has been to attain a comprehensive
understanding of the mode locking of lasers with specific application to
high-pressure CO, TEA lasers. Toward this end work has proceeded
along both theoretical and experimental lines.

Present techniques of mode locking are classified as either (1) active,
in which sinusoidal intracavity modulation at the cavity mode spacing or
a multiple thereof provides coupling among the axial modes of the laser,
or (2) passive, in which a saturable absorber acts as a fast gate within
the cavity, opening and shutting with the passag: of each mode-locked
pulse. Since active mode locking is well understood, the main focus of
our work is on passive mode locking. However, hitherto unexplored
features of active mode locking are being inverstigated as well as com-
bined active and passive mode locking. )

We have developed = new theoretical approach applicable to both
active and passive mode locking. Experiments on high-pressure CO,
lasers are in progress to substantiate the theoretical predictions. Results
are summarized in the ensuing sections. Further details appear in the
appendices which contain excerpts from the Quarterly Progress Reports
of the Research Laboratory of Electronics.

Passive Mode Locking

Despite the extensive work which has been done on the theory of

passive mode locking no simple analysis has been published. We have




developed the first closed-form theory of steady-state saturable absorber
mode locking, both for the case of the fast relaxation time absorber ]
and the slow relaxation time absorber (see Appendix I). The pulses are
found to be hyperbolic secants in time. In addition, the problem of passive
mode locking with a nonlinear refractive index medium has been solved
in closed form. € '

We have passively mode locked a pin-type COz TEA laser over a
range of pressures 400-500 Torr using a 1-mm long saturable absorber
cell containing a mixture of SF6 and He. Pulse lengths were in the vi-
cinity of 4ns, roughly equal to those achieveable by active mode locking.
This is in good agreement with theory, given the characteristic param-
eters of SF¢. The pulses are not shorter than those obtainable by active
mode locking because the power available in the pin laser (~10kW) is not
sufficient to saturate the absorber fully, hence its effective modulation
depth is small.

Experiments with higher power lasers — atmospheric and multi-atmo-
spheric COz TEA lasers -- are under way to generate s.bnanosecond
passively mode-locked pulses. To verify theoretical predictions, a study

of pulse width and amplitude variation as a function of laser and absorber
parameters is being conducted.

Active Mode Locking

Our active mode locking experiments, carried out on a pin-type TEA
COZ laser in the 200-500 Torr pressure regime, show good agreement
with the well established theory developed by Kiuzenga and Seigmar.. A
discrepancy appears, however, when the intracavity modulation is detuned
from the cavity mode spacing. We observe that detuning causes an insta-
bility in the mode-locked pulse train such that several interleaved pulse
trains appear shifted in time with respect to one another by an amount
dependent on the degree of detuning and in a direction relative to the first
pulse train dependent on the sign of the detuning. Ve have been able to
show, in fact, that narrow limits are set on the allowed value of both
positive and r.cgative detuning because the excessive growth of precursor
(or follow-up) perturbations leads to unstable behavior of the motie -locked

pulse train. #

]
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Since the shot-to-shot fluctuation of the TEA laser makes it a poor

candidate for the study of detuning effects, we are assembling a cw high-
pressure waveguide CO2 laser to enable cbservation of the effects of
detuning on steady-state mode locking. )

To our knowledge, no analysis of the influence of noise fluctuations
on steady-state active mode-locking has been reported. Consequently,
we have applied our mode locking formalism to evaluate amplitude-
phase- and timing-jitter of a train of actively mode-locked nulses. E
Details appear in Appendix II. Verification of the results will be attempted
on the cw mode-locked laser.

Combined Active and Passive Mode Locking

The stability of the passively mode-locked laser is poor, since the
buildup of the pulse from noise relies on the selection of the highest noise
spike in a cavity transit time due to the preferential saturation of the
absorber. A delicate balance of gain and loss in the cavity is required
to reach steady-state mode-locked operation. This is particularly dam-
aging in a gain-switched laser, such as the TEA CO2 laser, where the
gain fluctuates significantly from shot to shot and where, in fact, satellite
pulses, pulsewidth fluctuations, and other indications of incomplete mode
locking are commonly observed.

Improvement of stability is possible by comb.ning active and passive
mode locking such that the buildup of the mode-locked pulse from noise is
governed by the intracavity modulation. Shortening of the steady-state
pulse also results, since both the modulator and the absorber are instru-
mental in shaping the pulse, although the effect of the absorber will
dominate in high~-power lasers.

We have observed both the improvement in stability and pulse short-
ening due to combined active and passive mode locking. The sa’urable
absorber mode locking of the TEA CO, laser at 250 Torr is erratic,
yielding pulse widths in the vicinity of 5 ns. Active mode locking generates
pulses of 4.5 ns. duration. The combined passive and active mode locking
gives reproducible pulses of 3.5 ns. duration. An asymmetry of the
pulses is also evident (lengthening of the pulse tail with respect to the




front) which we attribute to th2 relaxation time of SF ¢+ The experi-
mental investigation of combined mode locking will be extended to
higher pressure lasers. Further theoretical work is also required
to predict the pulse width and shape atta.nable for a given system.
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1. SHORT LASER PULSES: SLOW SATURABLE ABSORBER
MODE-ILOCKING SOLUTION

Joint Services Electronics Program (Contract DAAB07-71-C-0300)
U.S. Army Research Office — Durham (Contract DAHC04-72-C-0044)

Hermann A, Haus, Christophcr P. Ausschnitt, Peter L. Hagelstein
[Pcter L. Hagelstein is an undergraduate student in the Department of Electrical

Enginecring. |

We have reported previously a closcd-form thecory for mode locking a homogcneously
broadened laser by a "fast" saturable absor‘ber'.l The modc-locked pulse was found
to be a hypcrbolic sccant in ume. In this rcport we investigate mode locking by a
"slow" saturable absorber; that is, one in which the rcsponsc timc Ta of the absorber
is comparable to or slower than the rate of change of intensity in thc laser cavity. In the
limit of a "very slow'" absorber we find a closed-form solution for the mode-locked pulse
which is also a hyperbolic secant in time. The power of the pulse produced by the very
slow absorber dccreases with Ty whereas initially the pulsc width approaches a constant
independent of Ta and much shorter than T As g™ the decrease in pulse power lcads
to quenching of the mode lonkiing when the negative resistance of the laser mcdium, which
is rcquired to be L=low threshold for successful mode locking,1 reaches threshold.

We can trcat slow-absorber mode locking by a modification of the differcntial equa-
tion developed for the equivalent cavity currcnt I(t) in the casc o" fast-absorber mode

locking,1 which is rewritten

2 )

Q | I(t)
—rnip, g'lhi = i 6 d
a “m o
We define

QPR No. 114 s P
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A random-phase approximation was used to obtain the temporzl ard spectral profiles
of the laser pulse. Rate equations were written for the energy of a sing e mode in terms
of gain, loss, and noise at the mode frequency. By considering the total spectral energy
in a narrow band dv, we arrive at

dF(v)

a = cG(v) = L{v) F(v) + S{(v).

Here, F(v) dv is the total field energy in the interval v, v+dv and is equal to the mode

density 2L/c multiplied by the individual mode energy at v, G(v) is the net gain, S(v) is

the noise, and L(v) is a loss that includes photoionization, and mirror and scattering
losses. Similiarly, the induced depopulation rate may be obtained by considering the con-
tribution from a single mode, suu~ing over modes, and converting the sum to an inte-

gral in terms of F(v). Thus we obtain

=] w G{)
(:TN ="c S o V) dv.
stimulated 0

The gain and noise expressions in our model contained an energy-dependent dipole
moment. Overlap integrals were constructed by using Morse potential functions to dster-
mine the variation of the dipole transition moment with ground-state energy. These cal-
culations are used to compute the ground-state absorption, and comparisons with recent
experiments are in good qualitative agreement.

The total dynamic model is used to determine both the temporal and spectral prop-
erties of the laser radiation. The predicted line narrowing and short temporal pulses
agree well with experimental results.

A paper, entitled "Dynamic Model of High-Pressure Ultraviolet Lasers," by C. W,
Werner, E. V. George, P. W. Hoff and C. K. Rhodes, was presented at the IELE
Quantum Electronics Conference, San Francisco, California, June 10-13, 1974, and has

been accepted for publication in Applied Physics Letters.
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Q = cavity quality faetor JS
Qg = absorber quality factor in the absenee of power
2

—

= saturation power of the absorber

W = laser mediuri bandwidth

r laser medium saturated negative resistanee
& = detuning parameter
()

o ™ frequeney spaeing of mode-locked eavity modes.

Tie left-hand side of (1) is the injeetion voltage generated by the flow of eurrent through
the nonlinear current-dependent impedanee of the absorber. The right-hand side repre-
sents the voltage aeross the eavity and laser medium impedanee, where the laser line

has been expanded to seeond-order about line eenter. The detuning parameter ¢ allows

for a differenee between eavity-mode and laser-medium reaetanees. “peeifically,
= AR, (2)
e

where Awe is the cavity mode bandwidth and woo is the "tuned" mode separation fre-

queney defined as the empty-eavity mode spacing Aw modified by the laser medium dis-

persion
“mo T . w_ (3)
7 by Ok
@ 2Q

One of the eonditions of the fast-absorber solution is that W T In other words,
the reaetive components of the cavity and laser medium eancel in fast-absorber mecde
loeking.l As we shall see, this is not the case for the slow absorber.

Equation 1 ean be adapted to the case of the slow absorber by making the
substitution ‘

|I(t) 2
| fa

2
dt
£ (4)
a

I(t)
T

a

- e

--t/“ra S‘t t/Ta
e
-0

for the response of the absorber impedance to the current, where e is the relaxation
time of the absorber. The right-hand side of (4) follows from our rate equation
model of the absorber as a slow two-level system in which the fraetional ehange in the
lower level population is small. In the limit of large T, We ean approximate the
right-hand side of (4) by

|
mr
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)
-0

so that the mode-locking equation (1) becomes

I(t)

I
a

2
dt

« (5)
a

Q b f (L) . 2

— I(t) i ) Sy (1-1)1 + b od g A5 d_ 1. (6)
(o] 1 T w__ dt 2 2

Q) =0 | “a a m wyp dt

If we now assume a pulse width Tp such that TP T P l/wM, then the pulse spectrum
is sufficiently narrow that the laser line can be assumed flat, Thus the last term in (6),
which originates from the parabolic frequency dependence of the laser medium negative

resistance near line center, can be neglected.

Deletion of the second-derivative term from (6) permits a solution of the form

(S — (7)
cosh 13 1
T
p
If we assume a repetition rate T of the pulses, A2 is related to the power by

2T :
o0 2 p )

=L A =—— A° i

P—TS‘_w_—dt—T A", (8) |

In order to trace the evolution of I with increasing T, We normalize (7) such
that

Fam_ M 1
! I(t) = 'lv —t" ] (9)
cosh (-—-) ¥
=
p ;

where N is specified by

Q
Qo_é_ =1, (10)

Introducing (9) in (6) and baiancing the coefficients of the hyperbolic secant and its first

[ |
wal

derivative gives the relations
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(11)

5
_— (12)
w_ (1-r) p

whieh are supplemented by the negative resistance power dependenee

P EE=—=chpr, (13)

Equation 11 shows that an inerease in T must be aceompanied by either an inerease
in Tp or a deerease in N, or both. The deerease in N is equivalent to a deerease in pulse
amplitude, sinee N determines the amplitude scale., If we assume for the sake of
argument that v remains eonstant, then the power P must vary inversely with e
From Eq. 12 we note that the detuning parameter & will always be negative (reeall
from the fast-absorber analysis that the laser medium must be below threshold, henee
1-r is positive if mode loeking is sueeessfull). A negative & implies w < @ o SO
that the round-trip transit time of the pulse in the laser eavity mode locked by the slow
abscrber is longer than in the ease of the fast absorber. Furthermore, Eq. 12 tells us
that as the laser medium approaches threshold (r— 1) the pulse width v inerecases
rapilly. The mode-locking solution will be quenehed when threshold is reached and
the laser will revert to free-runring oseillation,

Equation 6 ean be viewed differently if we assume that as T inereases Izzl-ra remains
constant; i.e., the slower the absorber the more easily it saturates., The mode-loeking
strength of the absorber beeomes independent of Ta for large T A Ta invariant solu-
tion to (6) is obtained for each value of the parameter Ii-ra. Beeause the mode-loeking
strength approaehes a eonstant, rather than s.ero, as To= the mode-loeking solution
is never quenched.

The eomputer solution of the eomplete slow-absorber mode-loeking equation obtained
by substituting (4) in (1) substantiates the features contained in the elosed-form expres-
sions (14-13). Figure V-1 is a plot of the eomputed pulse amplitude, pulse width, and

q 4 the parameter

(14)

against the absorber relaxation time T4 Pulse amplitude and width have been normalized
<

to the peak eurrent Ao and width TpO of the fast absorber pulse, In the region of small o

QPR No. 114 I 37
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r J -
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Fig. V-1. Mode-locked pulse amplitude, width, and
detuning as a funetion of saturable absorber
relaxation time.

the magnitude of the detuning parameter |6| increases more rapidly with T than thc pulsc
width Tp' while the pulse amplitude deereases slightly. As Ta increases, ¢ and T_ approach
eaeh othcr asymptotically as predieted by (12). In keeping with Eq. 11 the slowing of the
inerease in Tp is accompanied by a sharper deercase in AZ. In the region defined by
10 < Ta/Tpo < 520, Eqgs. 11 and 12 are further verified because ¢ and Tp approach a ¢on-
stant, while A" is roughly inversely proportional to Ty The onset of quenching pre-
dicted by (11-13) is apparent when Ta/Tpo = 100,

The computed pulse shapes show only a slight asymmetry for large Ty (a lengthening
of the front of the pulsc relative to the baek). In fact, for 1 < Ta/Tpo < 50 the pulse
shape is virtually invariant. These results are in agrecment with the symmectric elosed-
form solution (7). The slight asymmetry is a eonsequence of the seeond-derivative term
in (6) whieh was neglected in deriving (7).

The results of the slow-absorber mode-locking analysis have a simple pl sieal
origin, The slow response of the absorber retards the propagation of the mode-locked
pulse, henec "pulling" it off the round-trip transit time imposed by the laser eavity. This
results in a negative detuning of the eavity modes. The effeets produecd by the slow
absorber, therefore, are analogous to the effeets of detuning the intiraeavity modvlator

in foreed mode loeking.2 Forcing the modes off resonance introduees additional loss

QPR No. 114 I-38
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into th2 cavity, Consequently, the pulse power dec :ases, the pulse spectrum narrows, Js
and the pulse width increases. The pulse width, however, is not directly related to the

absoi ber relaxation time. The pulse "terminates" not because the absorption has

recovered, but because the modes covering a finite mode-locked spectral width begin

to interfere destructively.
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Appendix 1I
SHORT LASER PULSES: FLUCTUATION OF MODE-LOCKED

PULSES

Joint Services Electronics Program (Contract DAAB07-71-C-0300)
U.S. Army Research Office — Durham (Contract DAHC04-72-C-0044)

Christopher P. Ausschnitt, Hermann A. Haus

Introduction

We have developed a theory of forced mode locking in the frequency domain.l In this
report we apply our formalism to evaluate amplitude, phase, frequency, and timing
jitter of a train of forced mode-locked pulses. AM and FM mode locking are treated
simultaneously. The analysis is then specialized to consider the response of an AM

mode -locked laser to spontaneous emission noise.

Steady-State Mode-Locking Equation

We consider a cavity with a set of axial modes, evenly spaced by Aw in frequency,
of normalized impedance 1 + jxc. A homogeneously broadened laser medium of nor-

malized impedance

M

2
-r 1+jw"’—+“’7> (1)

“Mm

fills the cavity, where w is measured from the line center frequency @, of the medium,

“M is a measure of the medium linewidth, and the Lorentzian denominator has been

expanded to second order. The saturated ncgative resistance r has the power depen-

dence of the homogeneous line,

QPR No. 114
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j it [N SR (2)

To achieve mode locking, we introduce a normalized modulated impedance into the

cavity
& ] il -
Z _(t)=(l-cosw_t) Rc (R__+iX ), (3)

The modulated impedance operates on the current of the oscillating modes to generate
injection voltages in the set of modes at frequencies spaced kwm from the mode at line
center, where k ($ 0) is an integer that counts the modes from the mode nearest line
center denoted by k = 0. Inthe steady state the equivalent voliage of each cavity mode
is balanced by the injection locking voltage produced by the interaction of the equiva-
lent cavity current with the modulator., Because of the assumed sinusoidal form of the
modulation, the injection voltage in any given axial mode is caused by the currents in
the adjacent modes. A difference equation in k results for the current in the axial
modes that oscillate at frequencies w, * kwm if the mode locking is successful,

To simplify the solution, the difference equation is approximated by a differential
equation; that is, we approximate k and hence the cavity mode spectrum by a con-

tinuum

2
2 w, w
MEZ =S gx o -1 - () kP |+ gr Rk, (4)
dk “M “M
where I(k) is the distribution of current over the cavity modes. The left-hand side is
the set of injection voltages produced by the current I flowing through Zm(t), where

we have defined

R +jX
m m

- i¢ =
M= |M|e TR, (5)

The cavity reactance jxc in (4) is a function of k because modes at a different "distance"
from line center, in gencral, wiil oscillate at different detunings from cavity resonance.
In the free-running laser the axial modes prefer to oscillate where the net reactance

of the cavity and the medium is minimum:

w 2Q
x (k) + r—==k = — 6o, (6)
(& wM w (o)
(o)

QPR No. 114 I- 40
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where Q is the cavity quality factor, and the constant term on the right arises becausc
the mode at line center may oscillate at a frequency displaced from line center by 6w0.
Equation 6 determines a "tuned" modulation frcquency “oo equal to the cavity mode
spacing Aw as modified by the dielectric cons.ant of the laser medium. For the pres-
ent, we assume that the applied modulation frequency W is equal to woor Later we
shall show tha' detuning W from @oo has no influence on the noise response of the
mode-locked laser,

With the nse of (6), Eq. 4 can be recast in the form of the harmonic oscillatoy vqua-
tion of quantum mechanics, Thus the eigenfunctions of (4) are the well-known Hermite-

Gaussian functions:

1/2

(k ——l—(—Y— / H (vk -Lhw? 7

un )" ‘4/—\n!2n n(Y )CXP Z(Y) ] ()
m™

where we have defined

exp ~j (8)

4 M|
wp= : - VwmwM. (9)

Because they describe the collective oscillation of many cavity modes, the eigenfunc-
tions (7) are called "supermodes" of the cavity. As defined in (7) the supermodcs are

orthonormal, that is,
% £
g‘ un(k) un,(k) dk = 6nn" (10)
Ve

The eigenvalues of (4) are given by

2Q vor ]
En= (r—l—Jz—ﬁwo)n=2——2— (n+?), (11)
(o] Q)M

where the real part of En determines the excess gain of the mode-locked laser and the
imaginary part dctermincs the spectrum shift off linc center 6w0.
Haus1 has shown that only the lov 'st order n= 0 supermode is stable. Thus, in

the steady state, the current distribution over the cavity medes is given by

QPR No. 114 T-41
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Js Ik) = v1 u_(k), (12)
wher« we have used a normalization such that
12 ]1)% dk = P, (13)

Here P is the total power in the spectrum.

Perturbations of the Steady State

The steady-state supermode is a discrete set of equally spaced spectral lines under

a Gaussian envelope given by (7). The perturbed supermode becomes

I(k) + 8I(k) = NP + 6D uo<k +:—‘°> (14)
m

The perturbation current can be expressed as a superposition of the envelope and indi-
vidual mode perturbations

1 5P sw 49U

8I(k) = 5 NP 35~ u_(k) + VP = -2, (15)
m

To account for both amplitude and phase fluctuations, the perturbations must be taken

to be complex. The physical significance of the perturbations in the frequency domain

can be described as follows:

6P
(a) —=% = Fractional fluctuation of total power in the spectrum.

P

61,
(b) 606 = Tl= Phase fluctuation of the total spectrum,

(c) 6(.)1_ = Uniform fluctuation of the frequency of the individual modes.

W
{d) T 6wl. = Uniform fluctuation of the relative phase of the discrete modes.,
w

p

Here the subscripts r,i denote the real and imaginary parts of the perturba-
tions. Frequency-domain fluctuations (a), (b), and (c) correspond to fluctuations
in the time domain of pulse power, carrier phase, and carrier frequency, respec-

tively,  From the Fouricr transform of (14) we find that (c) and (d) cause a pulse

timing fluctuation, which when normalized to a measure of the pulse width -rp= l/wp,

IS is given by

QPR No., .14 I 42
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— = — cos 3 - —= sin—. (16) F
w

It is convenient to recast Eq. 14 in the form of an expansion in terms of the

complete set of cavity supermodes,

&I = ﬁ Anun(k). (17)

We make use of the fact that the derivative of the zero-order supermode is proportional
to the first-order supermode to match the coefficients of (14) with those of (17). The
zero- and first-order supermodes of (17) contain the information on 6P and &w:

6Pr 2 Re Ao

= (18a)
P NP
2Im A
6= ———20 (18b)
JP
6“’r 2 I ¢ . ¢—
o ="/ F|ReAjcosg -Im A sing (18¢)
p L. -
éwi /? [~ ) ¢ ¢—
:)—p—_- = RcAlst+Im A ecos|. (138d)

The coefficients of the higher order (n>1) supermodes of (17) describe highe: order
effects such as pulse distortion and the fine structure of the phase fluctvations. We shall
concentrate, therefore, on the response of AO and Al to a noise source.

The modification of the mode-loeking equation (4) to include a noise source proceeds
as follows:

(a) A noise source voltage v, which we shall describe in detail, is introduced on

the left-hand side with the mode-locking injeetion signal term.

(b) The steady-state Gaussian supermode is replaced by the perturbed supermode
I(k) + 6I(k), where &I(k) is described by Eq. 15,

(e) The saturated gain (negative resistance) r is replaced by r+ér, where 6r is the

change in gain caused by the power fluetuations 6Pr. Using (15), (10), and(18a), we obtain

- =er B . .
6:‘-1.*-_Ii P‘RLAO. {19)
2
s
s
(d) The cavity mode reactanee seen by the perturbation current &1 is ineluded by IS
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expanding tc first order about the steady-state reactance:

E’\

X (k) +Q == = xc(k) + Qxé

X, (k) ES)

.\'C(k) +Q<A%c>, (20)

where Auc is the cavx;y mode bandwidth. We have introduced the frequency € to denote
the deviation of the k mode from its steady-state oscillating frequency kw . The vari-
ation ol all other parameters of (4) with Q is ncglected, an approximation that disregards
the energy storage associated with the medium in comparison with the energy storage
of the cavity modes.

Thus, to first order in the perturbation, the equation governing the response of the

steady-state supermode perturbed by a noise source becomes

k2]
d2 b : 2 “m r 2 “m “
MEs el+ve|-E +r(-2) k*|6I-6r 1-<___> kS - j 2k | 14 jxt 6l
dk “n “M “M _|

21 '
(21) |

This is the fundamental equation which we shall now analyze. First, we characterize

the noise source v.

Noise Source

We restrict our attention to noise within the fractionally narrow bandwidth of the
mode-locked spectrum. Furthermore, the narrow linewidth of each cavity mode Auc
relative to the mode spacing Aw cnables us to treat the total noise source as a super-
position of independent sources in cach of the cavity modes. Thus the noise source is
described by a set of fluctuating voltages v(k, ), where k specifies the axial mode, and
2 is the frequency deviation of the noise source in the kth mode from the steady-state
oscillating frequency kwm of the mode. The narrow linewidth of the cavity modes also
tells us that both the amplitude and phase of the noise source in the kth mode fluctuate
slowly compared with W In other words, fluctuations occur on a time scale which is
long compared with the pulse separation TR = Zn/wm. Each pulse in the mode-locked
train has a spectrum given by the superposition of the stcady-state spectrum and
the total noise spectruin which does not vary during the pulse.

Since we are interested in the fluctuations of the steady-state supermode oscillation,
we expand the noise source in the supermodes of the cavity,

vk, Q) = = vn(Q) un(k). (22)
n
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The voltages vn(Q) now rcpresent a slow modulation of the nth-order supcrmoce. In
general, they are complex. The rcal ccmponents represent in-phase fluctuations with
rcspect to the steady-state supermode and the imaginary components reprcsent
quadrature-phase fluctuations.

Supermodc Fluctuations Caused by Noisc

We are now cquipped to analyzc the responsc of the mode-locked spectrum to noise
perturbations. Wc express both the noise source and the perturbation current as cxpan-

sions in supcrmodes of the cavity and, by making use of (19), Eq. 21 becomes

W
-j k| NP Re ALY,
“M

+ iRy z A, (23)
n

To obtain the responsc function of AO(Q), we multiply (23) by uo(k) and integrate
over k. We makc use of the orthogonality condition (10) and the fact that un(k) obeys the
eigenvalue cquation (4) to obtain

¢
iR xéAo(Q) + - “’M) exp j 5 Re A0 = VO(Q),

Likewise, we can obtain the cquation governing the response of :\l through multi-
plication of (23) by ul(k) and integration over k:

2
[+

w w
. P s _or 1 _P e
JQxéAl(Q) +2r expjz Al—_| P ” c.\'p_]?l{c :\o= vl(Q),

“M

M
(25)

where we have used (11).  As we have noted, Egs. 24 and 25 specify the response to

noise of the first-order perturbations of the steady-state supermode. In order to
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transform the coefficients Ao and Al back to observable effects via (18), we must separ-
ate (24) and (25) into real and imaginary parts. Thus far, we have carried out the anal-
ysis for combined AM and FM modrlation within the laser cavity. For the sake of
brevity, we limit further analysis to the case of the AM mode-locked laser where the
equations are simplified because ¢ = 0. The extension to FM or combined AM and
FM mode incking is obvious.

At this juncture we also note that we need not alter our analysis to consider cetuning,
A cons :queace of detuningl is to trarsform the index k to:

deZVI
k' =k +j > (26)
re
where we define the detuning parameter as
. =
d=_m 100 (27)

The detuned supermodes generated by (26) are still ortnonorm:al. Thus the derivations
of (24) and (25) are not affected by detuning. The change in the steady-state saturated

gain r caused by detuning,l however, will affect the noise response.

Noise Response of the AM Mode - Locked Laser

Fo' the AM mcde-locked laser M is pure real, ¢ =0, and the separation of (24)
and (25) into real and imaginary parts yields

v
Re A =-2 (28)
(o} x! 1
c N+—
=
(o]
v ()
]
ImA_ =-2%— (29)
o Xe hiY
"T‘m 1
Re A) = — o (30)
o oo+
-
1
i@ 1
Im A, =l-——+=— Re A — (31)
)\C TZ 0 JQ +T—

QPR No. 114 I- 46




(V. QUANTUM ELECTRONICS)

where we have defined

2
“p
1 1 2r P 1
T By S NSl S S . (32)
i xZ:1+P—lps 2\ oM
S
2
“p
}z% 2r|— (33)
1 “c M
w
1.1 _2r P11 P (34)
=L :
T2 x<:1+P£Ps 2 “M
S

The interpretation of these equations is straightforward. Equation 28, which
governs the response of the power fluctuations of the mode-locked pulse to noise, is a
simple relaxation response to an applied source. The "restoring force" is provided
by the satiration of the laser menium negative resistance. Equation 29, which governs
the carricr phase fluctuations, experiences no such restoring force; that is, it has an
infinite relaxation time. Thus we find that the phase fluctuations of the AM mode-
locked laser behave similarly to those of a conventional van der Pol oscillator, which
obey an equation similar to (29).

Equations 30 and 31 are both in the form of a relaxation response to an applied source.
In both cases the restoring force is provided by the fact that the zero-order supermode
is stable with respect to the first-order supermode perturbation.l The stability is dic-
tated by the requirement of the first-order supermode that the excess gain r-1 of
the laser be higher than that of the zero-order supermode by an amount K- EO. The
quadrature-phase noise source in (31) that is responsible for the timing jitter is aug-
mented by a term dependent on the power fluctuation of the pulse. This is a con-
sequence of the fact that fluctuations of the pulse power modulate the dicleerrie
susceptibility of the laser medium, and hence the cavity mode spacing,

The power spectral densities of the pulse energy, carrier phase, carrier frequency,

and pulse timing fluctuations can be obtained by inspection from (18) and (28-31):

2
P2, I

= (35)
P> px? @®+ L
c 2
T
(o]
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g i 2
43 -— 4 vy
1607 = = 5 (36)
Px!'” &
c
2 r 2
oo™ 5 vy .
B et By (37)
W Px'" QF + —
p c 1-2
1
==  {(6PI*
T, 2 14,12
2 7 @[T+ — ——
fot] Px!] T, P
B = 5.1 (38)
T Q"+ =
P nE
1
T'he mean-square tluctuations may be obtained by integrating (35), (37), and (38). But
. . s 2 .
(36) is not integrabl~, 7he spectrum ot |66| suggests that 66 expericnces a spread
R4
that is like the spcead i1 distance coverced by a one-dimensional random walk, ©
' Fluctuation Caused by Spontancous Emission Noise
i
L‘ In order to obtain specific results, we shall now concentrate on the spectrum of the
noise source caused by spontancous emission noise. The voltage source v(k, ) obeys
the Nyquist formula generalized to the quantum case
2 2 . AQ
[vik, @[ = [v(@)] = 2erhe 5=, (39)
2
where a = N, -g—“ Nl' We have neglected the k dependence of the laser medium nega-
- 1
tive resistance becausc the mode-locked spectrum occupies only a small portion of the
overall laser line within which the k dependence of the line is negligible. This assump-
tion implics that the noisc spectrum is "white": that 1s, cach mode is subject to the
same mean-square noise,  The spectrum of vn(‘.l) is
b
a1 2arhw )

LA 6nn' alho.o e (40)
Furthermore, stationarity dictates that the noise power be divided equally between the
in-phase and quadrature-phase components:

vivi = ¢

nn
_ (41)
A rv1‘|2_ i 12__1_"’ 12
JS n' ~ AU
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Using (40) and (41) and integrating (35) over the speetrum, we obtain the mean-
square power fluctuations
Bl

~'?2— =;x'—2' 'roarﬁ Wo- (42)
C

Recognizing that the energy in the mode-loeked pulse is given by

W= PTp = 2n oo, (43)
m
we ean rewrite (42) as
I 6P| & Awe : ﬁwo
=1 w_ T ar ———. (44)
PZ wn m o W

The last faetor is the inverse number of photons in the eavity. The faetor Awe/um is
gencrally much less than unity, whereas w, T, measures the relaxation time in terms
of the pulse repetition rate and is generally much greater than unity. On the whole
the two factors tend to eompensate. Thus (44) shows that the mean-square power flue-
tuations arising from spontaneous emission noise will be extremely small.

In a similar manner we ean obtain expressions for the mean-square carrie: fre-

queney and pulse timing fluetuations,

2 2 2 .
|6w| ) |6t| _ q Bw, ey hwo (45)
2 T2 "7 W ® W
wg Tp m p

where we have negleeted the influeree of the power fluetuations on the pulse timing. As
in (44), the last faetor hw /W dietates that the fluetuations will be small. The earrier

phase experieneces a random walk, whieh obeys the "spreading” formula

2 _ 1
|66] = 5 arfiw T, (46)
where 7 is the time between two phase mensurements,

Conelusion

The effecets of spontaneous emission on the response of a mode-loeked laser are
small. But the response of the mode-locked laser to perturbation sourees which can

be mueh larger than spontancous emission noise, suech as cavity length or cavity
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Q fluctuations, can be treated with the prescnt analysis. Mor:over, the noisc analysis
brings into focus the similarities bectween the mode-locked ‘aser and the van der Pol
oscillator. In the absence of noise the mode-locked laser oscillates on a set of discrete
modes — of fixcd relative amplitude, frequency, an- phasc - distributed about a
carrier frequency detcrmined by the lase: medivm linc center. The introduc-
tion of ncisc causes a power fluctuation restrained by the saturaiion charac-
teristic of thec medium and an unrestrained "random walk" phasc fluctuation that
is analogous to the noise responsc of the van der Pol oscillator. The fact
that the mode-locked spcctruin contains many spcctral lincs allows for fluctu-
ations of pulse timing and carrier frcquency that are not encountered in the
van der Pol oscillator. Thesec fluctuations are restrained by thc stcady-state injection
signals gcnerated by the modulated impedance Zm(t) whose frequency W is assumed
fixed.
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