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A HEURISTIC ADJACENT EXTREME POINT
ALGORITHM FOR THE FIXED CHARGE PROBLEM

*
Warren E. Walker

The New York City-Rand Imnstitute
545 Madison Avenue
New York, N. Y. 10022

ABSTRACT

An algorithm with three variations is presented for the approximate
solution of fixed charge problems. Computational experience shows it
to be extremely fast and to yield very good solutions.

The basic approach in all three variants of the algorithm is (1)
to obtain a local optimum by using the simplex method with a modifica-
tion of the rule for selection of the variable to enter the basic so-
lution, and (2) once at a local optimum to search for a better extreme
point by jumping over adjacent extreme points to resume iterating two

or three extreme points away.
Problems in which economies of scale give rise to separable piece

wise-linear concave objective functions are shown to be easily formu-

lated as fixed charge problems.

The algorithm is currently being used by the U. S. Environmental
Protection Agency's Office of Solid Waste Management Programs to solve
a problem of regicral solid waste planning: the selection of disposal sites
to be developed and thz determination of how the wastes of each municipality

in a region should be distributed among the sites.

*Any views expressed in this paper are those of the author. They
should not be interpreted as *eflecting the views of The New York
City-Rand Institute or the official opinion or policy of the City of
New York. Papers are reproduced by The Rand Corporation as a courtesy
to members of its staff.

This work was supported, in part, by a graat from the U.S. Public

Health Service (ES-00098).
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The fixed charge problem can be stated as

n
i =
min z gslfj(xj)
s.t. Ax=b (1)
% »

where fj(xj) = cjxj + kjaj
o 1E x,=0

3ohif x,>0

This type of problem arises in many practical settings. Two of the
mcst common of these are in warehouse or plant location, where there is
a charge associated with opening the facility, and transportation prob-
lems, where there are fixed charges for transporting any goods between
supply points and demand points.

If all the fixed charges k1

linear programming problem, If some or all of the fixed charges are

were zero, then problem (1) would be a

posicive, the objective function z is concave [11] and it is well known
that a concave function, defined over a convex polyhedron, takes on its
minimum at an extremsz point. The methods we present for the solution
of (1), therefore, will examine only extreme point solutions.

The fixed charge problem can be written as a mixed-integer linear
prog.am [10, p. 253]. However, most mixed integcr programming algorithms
are not computationally efficient for large probiems. This is true also
tor exact algorithms developed specifically to scolve the fixed charge
prehlen. For example, Steinber3's branch and btound algorithm [15]
requires as much as 47 minutes on an IBM 360/5C to solve a 15x30 prci-
lem. Gray's decomposition approach [8] requir>s an average of 16
minutes to solve a 5x7 fixed charge transportation problem and as much
as 22 minutes to solve a 30-site warehouse locn"ion problem on the Bur-

roughs B-3500 [9]. Murty [13] has developed an exact algorithm which

solves .1+ with all Li=0 to boun! the total co - and then searches ny .-
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tematically among the extreme points adjacent to the LP optimum for the
minimum total cost. Murty presents only one sample problem, solved by
hand. But Gray [8] tried to solve one 6x8 and gix 5x7 test problems.
He was able to solve only two of the problems, running cut of computer
storage capacity before solving each of the other five.

Since the currently available exact algorithms generally vequlire
long computation times and large amounts of storage, a good deal of ef-
fort has been devoted to finding approximate solutions to fixed charge
problems. The fixed charge transportation problem (where the A-matrix
is in the form of a transportation matrix) has been investigated by
Kubn and Baumol [12] and Balinski [2]. Kuhn and Baumol suggest that
an approximate solution ts, the problem may be obtained by forcing a
highly degenerate solution. This is accomplished by making small ad-
justments to the right hand side (demands and supplies). The approxi-
mation is a rough one, but the computation is quite simple.

Balinski replaces the non-linear fixed charge objective function
by an approximate linear objective function, and solves the resulting
problem using the standard transportation algorithm. He also finds
bounds on the optimal exact solution. This approach yields a rather
rough approximation, and does not work well in many cases.

Cooper and Drebes [5], Steinberg [15], and Denzler [7] have developed
approximate heuristic adjacent extreme point algorithms for the general
fixed charge problem. Steinberg and Denzler modify the linear program-
ming criterion for a vector to enter the basis, a technique also used
in this paper. Their algorithms will be discussed more fully below.
Cooper and Drebes modify the objective function at certain stages in
their algorithms, and also change the criteria for vectors to enter and
leave the basis. At certain times in their calculations a vector is cho-
sen to enter the basis with the least fixed charge of the non-basic
valuables. At other times a vector is chosen to l:zave with the highest
fixed charge in the basic set.

The computational experience reported for theése methods indicates
that they will yield the optimal solution a high percentage of the time
and, when not optimal, they provide a good approximation.

This paper will describe another adjacent axtreme point algorithm

(with variations) which appears to be faster than those of [5), [7] and
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[15], and which yields the optimal solution a higher percentage of the time.
The algorithm currently is being used on & production basis to solve large
fixed charge problems [1], [4]. The algorithm will be referred to by the
name SWIFT, for Simplex WIth Forcing Trials.

THE SWIFT ALGORITHM
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Before proceeding with cne algorithm, we make the following notational

definitions:

xB = vector of basis variables

g = vector of prices for Xg
kB = vector of fixed charges for Xg
aj Z jth column of A
B = basis matrix
yj = B-laj (the representation of 3 in terms of B)
zj = cByj.

The algorithm consists of two sequential phases.

Phase 1

The first phase is identical to the standard simplex procedure except
that the rule for selecting the column to enter the basis is modified.
In a linear program, the objective function will decrease if the entering
vector, xj, is selected so that zj - cj > ), Because of the fixed charges,
this criterion will not insure a local improvement in the fixed charge
objective function. However, the non-negativity of a similar quantity
3179
Suppose that x, is to enter the basis on the next iteration. Then,

3

the leaving vector 1is Xp where x

involving z and the fixed charges will produce an improvement.

is deteruined, as in the ordinary

By

simplex algorithm, by

ka xBr
=, Yo, > 0f =—", (2)

and 6, is the value which x, assumes upon enteriung the basis.

J 3
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if Gj > 0, as a result of such a basis change the objective function
i3 increased by kj’ decreased by kB » and increaced or decreased by

G(zj - cj) depending upon the sign of zj -c (If 8, = 0, the objective

¥ ]
function remains the same.) In addition, if the choice of Xg was not

unique, one or more of the basic variables which were positivg will
become zero. In this case, even though they remain in the basis, the
objective function is reduced by their fixed costs. Conversely, it is
possible that, in the course of bringing xj into the basis, some basic
variables which were at a zero level will become positive. If this
occurs, their fixed costs must be added in to determine the new value
of the ohjective function. This requirement was neglected by Denzler
and glossed over by Steinberg.
| IxBi xBr\

Let Sz [i|—=—

{ yij yrj

T = [tix; =0, <0).

y
1 13

Then, the entering vector, x,, should be chosen such that

3

A, =k, -k, - 08.(z, - ¢

3 3 B 3

. j)-z k,+] k<00 (D)

3 ieS ieT

It is possible to continue iterating using criterion (3) to choose a
vector to eunter the basis until Aj > 0 for all non-basic columns j.
However, because the objective function is concave, it is not true
that when all A, > 0 a global minimum has been reached. Even though

3

no adjacent extreme point will yield a smaller value of z, it is suill

possible that some other extreme point of the convex set will be better
(see [12], p. 13).

This difficulty leads to phase 2 of the algorithm—-a search for a
better extreme point non-adjacent to the current point. Three closely

related methods have been developed for phase 2. Taken together with

St iy s e ) St o e <Ko Sl AT R T i
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phase 1, which i3 the ssme for each of these methods, they constitute
three heuristic algorithms for the fixed charge problem, which will be
called SWIFI-1, SWIFI-2 and SWIFT-3. Aside from the ireatment of degen-
eracy in phase 1 noted above, the phase 2 procedures distinguish the
SWIFT algorithms from Steinberg's and Denzler's. The SWIFT algorithms

constitute a more deliberate search for improvement and have produced

better resulte.

Phase 2

At the end of phase 1, A, > 0 for all non-basic columns j. The

phase 1 solution may or may nit be the optimum. Ia phase 2 one or more
vectors will be forced into the basis, increasing the objective function,
because of the possibility that, by continuing iterations from a new
poiat, the algorithm might move away from the old local optimum to an
improved new one. That is, from a local optimum an investigation is
£ made of nearby extreme points with larger objective values which might
be adjacent to points with smaller objective values.

The three different methods for phase 2 presented below differ in
(1) the number of vectors forced into the basis at a time and (2) the

action taken if a forcing attempt fails to produce a better solution.

THREE SWIFT ALGOPRITHMS

SWIFT-1 (single forcing, non-return)

Find an initial feasible solution to (1).

£ 1. Iterate with the simplex methoa, using criterion (3) to choose

a vector to enter the basis, until A, > 0 for all non-basic

3

B T Ll

columns j.

a. Let X, be this phase 1 solution.

0
2. Force a currently non-basic variable, not yet tried, into the

b. Let z  be the corresponding value of the objective function.

basis, yielding a new sclution Xy with objective value z, 3_z0.
If all non-basic variables in solution x. have been tried without

0
an improvement, STOP and call X, the (approximate) solution,

otherwise go to step 3.
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3. 1lterate as in step 1 until AJ > 0 for all non-basic columns j
and a local optimum Xg is found.
a. If x 3 ox) (i.e., no iterating was possible), return to
solution Xge Go to step 2.
b. If 2, <z 8 better solution has been found. Rename this
solution x.,. Go to step 2.

0
c. If zg 2 2y, 8O to step 2.

SWIFT-2 (single forcing, return)

Same as SWIFT-1 except chaage step 3(c) to read:

c. If z_ > z, return to solution Xy (the best solution so far).

0
Go to step 2.

SWIFT-3 (double forcing, return)

Same as SWIFT-2 except change step 2 to read:

2. Force an untried pair of non-basic variables from solution X,
into the basis, yielding a new solution Xy with objective value
z

>z If all pairs of non-basic variables in solution X,

1 0
have been tried without an improvement, STOP and call %y the

solution.

STEEPEST DESCENT

The criterion used to determine the vector to enter the btasis in
phase 1 could be changed to a steepest descent criterion. That is,
choose vector x, to enter 1if A, < 0 and

b 3

8y = min A
1]x, 4B

i
wnere Ai is given by (3).
The st.eepest descent c.iterion is rarely used in solving a normal

linear programming problem because it involves finding ei for each non-

basic column Xy for which 2, -c > 0. However, the algorithm described

i
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above for the fixed charge problem requires the calculation of 61 for at
least a subset of the non-basic columns. As a result, this criterion
I is easy to implement ‘and adds little time to the calculations per itera-
tion, but reduces the number of iterations per problem by between 15 and

30 percent.

TEST RESULTS AND COMPARISONS WITH OTHER ALGORITHMS

In order to test their heuristic fixed charge algorithms, Cooper
and Drebes [5] randomly generated 290-(5x10) problems with the following

properties:

lag,l < 20

1 ey < 20

1<k, <999

The average density of A is 50 percent.

The optimal solutions to these problems were obtained by complete enumera-
tion. These problems and their solutions are included in Steinberg's
thesis [16]. They have beer used by fCooper and Drebes, Steinberg and
Denzler to test their respective algorithms.

Cooper and Drebes applied their algorithms to a set of 253 of these
problems. Of these, 240 were solved optimally by their algorithm MI, and

245 by their algorithm MII. Derzler obtained optimal solutions to 169 out

S AP O PGP A

of 200 problems using his M-1 algorithm and all 200 using his M-3 algorithm.
Steinberg obtained optimal solutions to 235 out of 250 problems using his
Heuristic One algorithm, and 255 out of 268 problems using his Heuristic Two.
The SWIFT algorithms were tested on the 22 problems for which Steinberg got
suboptimal solutions using his algorithms. All three of the algorithms ob-
tained optimal solutions to the 22 problems. In 16 of the 22 cases, opti-

mality was attained by the end of phase 1.




WA AN

Subsequently, the algorithms were tried on a random sample of 30
problems solved successfully by Steinberg. Again, the optimal solution
was obtained for all the problems. The optimum was reached by the end
of phase 1 in 26 out of the 30 problems.

The problems were solved with and without steepest descent. As an
example of the effect of steepest descent, method 2 averaged a total of
18 simplex iterations/problem without and 15 iterations/problem with
steepest descent. Steepest descent also'reduced the average number of
iterations needed to reach the optimal solution by about 3 iterations
(in method 2, from 10.5 iterations to 7 iterations).

Table 1 gives the results of the SWIFT algorithms compared with
those of Cooper and Drebes, Denzler and Steinberg for the 5x10 test
problems.

Cocper and Drebes constructed 15x30 test problems by aggregating
sets of three 5x10 problems. In these the A-matrix was formed as fol-

lows:

Al 0 0
A = 0 A2 0
0 0 A3

where Al, Az, A3 are 5x10 matrices. The optimal objective value for any
of the 15x30 problems is the sum of the optimal objective values from the
1’ A2 and A3.

Six such 15x30 problems were constructed for SWIFT testing. SWIFT

5x10 problems associated with A

obtained optimal solutions for all six problems. Optimal phase 1 solu-
tions were obtained in two cases. These two had A-matrices which were

comprised of submatrices which had led to optimal phase 1 solutions

to the constituent 5x10 problems. The other four A-matrices contained

at least one submatrix from a 5x10 problem which did not produce an

optimal phase 1 solution.



Table 1

COMPARISON OF ALGORITHMS
5x10 PROBLEMS

Average no.
iterations Average time

£
kﬁ.
g:
#
&
¥
i
;
L

n.a. = not available.

No. No. Z per per problem
Author Algorithm tried optimal opt. problem (sec.) Computetb
Walker SWIFT--1 52 52 100 23 5 CDC 1604
SWIFT-1-s.d.2 49 43 100 17 0.5 IBM 360/65
SWIFT-2 52 52 100 18 4 CDC 1604
SWIFT-2-s.d.2 49 49 100 15 .47 IBM 360/65
SWIF1-3 52 52 100 36 6 CDC 1604
Cocper & MI 253 240 95 75 20 IBM 7072
Drebes ¢ 253 245 97 100 20 IBM 7072
Both 253 250 99 175 20 IRM 7072
Steinberg Heuristic 1 250 235 94 6.8 ¥/ IBM 360/50
Heuristic 2 268 255 95 15.2 1.5 IBM 360/50
Denzler M-1 200 169 85 n.a. 1.6 IBM 7072
M-2 200 196 98 n.a. 7.0 IBM 7072
M-3 200 200 100 n.a. 14.0 IBM 7072
8s.d. = steepest descent.
bThe add times (in micro-seconds) for each of the computers used are:
IBM 7072 12.0
CDC 1604 7.2
IBM 360/50 4.0
IBM 360/65 1.3
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The 15x30 problems were substantially harder to solve than the 5x10
problems. SWIFI-2 went from an average of 15 iterations/problem to an
average of 86 iterations/prcblem. SWIFT-3 required as many as 392 itera-
tions to solve one 15x30 problem. However, it had reached the optimal
solution by iteration 35. The other iterations were spent searching for
a better solution. A comparison of the results of using different algo-

richms for solving the 15x30 problems is given in Table 2.

Table 2

COMPARISON OF ALGORITHMS
15x30 PROBLEMS

Average no.
iterations Average time

No. No. % per per problem
Author Algorithm tried optimal opt. problem (sec.) Computer
Walker SWIFT-2 5 5 100 86 18 CDC 1604
SWIFT-3 2 2 100 370 60 CDC 1604
SWIFT-3-s.d.2 1 1 100 376 25 IBM 360/65
Cooper & Both MI &
Drebes MII 70 63 90 1200 900 IBM 7072
Steinberg Heuristic 1 90 75 83 12 2.16 IBM 360/50
Heuristic 2 84 74 98 43 7.74 IBM 360/50
Denzler M-1 22 14 64 n.a. n.a.
M-3 22 17 77 n.a. 75 IBM 7072

s.d. = steepest descent.

n.a. > not available.
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Gray [9] lists 12 fixed-charge transportation problems which he solved
using his exact algorithm. SWIFI-2 was applied to these same problems.

Table 3 contains a comparison of Gray's computation times with those
achieved by SWIFT-2. The IBM 360/65 has an add-time which is three times
I faster than that of the Burroughs B-5500. Even correcting for this, the
SWIFT algorithm is from 2 to 835 times faster than the Gray algorithm.

I It failed to get the optimal solution to two problems, but in these two
cases its solution was greater than the minimum cost solution by only

.8 percent and 1.8 percent.

|
| Table 3
i FIXED~CHARGE TRANSPORTATION PROBLEM SOLUTIONS:

A COMPARISON OF THE GRAY AND WALKER ALGORITHMS

T T T T P S o T S T3 T e T M W

Walker

Problem Size of Gray Time (sec.) solution Time (sec.)

no. A-matrix solution B-~5500 (SWIFT-2) 1BM 360/65
1 7x12 329 7.7 329 1.12
1a® 7x12 429 7.6 429 42
1P 7x12 579 7.8 579 43
; 2 10x24 202 32.6 202 1.36
: 3 10x24 1999 26.3 1999 1.70
: A 12x32 273 171.4 “13 3.69
r 5 12x35 245 263.8 247 3.68
| 6 12x35 317 146.9 317 6.11
? ; 7 12x35 1638 97.0 1668 3.01
i 8 12x35 2289 3262.8 2289 3.89
! 9 14x48 314 1510.1 314 7.61
9a° 14x48 2357 71.4 2357 5.89

%ldentical to problem 1 with 20 added to each fixed charge.
bIdentical to problem 1 with 50 added to each fixed charge.
®Identical to problem 9 with 250 added to each fixed charge.

[ %
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THE SWiFi ALGORIT!M APPLIED TO REGIGNAL
SOLID WASTE DISPOSAL PLANNING

In 1968 Skelly [14] developed a model for use¢ in planning for

regional solid waste disposal. The problem, viewed as a network model,

was to determine the disposal facilities (sinks and trans-shipment
points) which should be devzloped to handle the refuse generated by

T TR RIS TGN I IR, e

several communities (sources) such that the total costs of transporta-

tion, treatment and disposal are minimized. The formulatiom is

basically a capacitated warehouse location problem. The cost func-

tion ircludes linear transportation costs, fixed costs for using a

site and pilece-wise linear concavs site operating costs (which can

be replaced by fixed-charge equivalents as is shown in the Appendix).
The SWIFT-2 algorithm with steepest descent was used to solve

the problem using fifteen different sets of actual data. The largest

problem, a 25-city, 9-site problem with 42 constraints and 282 columns

T T Y A e T T W R e R R ¥ R vy P S e

(including slacks and artificials) was solved in 8.9 minutes on an
s IBM 360/65. Of the fifteen problems, five found improved solutions
in the forcing phase, the rest reached their final solutions in
phase 1.
This model has been further developed by Roy F. Westin, Inc.
as part of a comprehensive state-wide solid waste management study
]

for the New York State Department of Environmental Conservation [1]

N A O W ey

and, more recently, by the Federal Environmental Protection Agency's
Office of Solid Waste Management P-ograms (OSWMP) for use by regional
planning authorities throughout thke United States. The computer

i el b

program being used has a matrix generator to simplify data input,
and a report generator for presenting the results in a clear and
meaningful manner. But it uses the SWIFT algorithm to solve the
fixed-charge problem. OSWMP is currently using the model to develop

P

regional disposal plans for the Seattle area and for an ll-county

area of Texas which includes the city of Dallas. The Texas problem

M RS

has 200 refuse sources, 70 potential disposal sites and 800 source-

£ site transportation pairs. This results in a constraint matrix

having 400 rows and 870 columns (not including slack and artificial
variables).
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Appendix

TRANSFORMING A CONCAVE-COST LINEAR PROGRAMMING
PROBLEM INTO A FIXED-CHARGE PROBLEM

Economies of scale lead to cost curves whose slope decreases as
the independent variable increases. Because of the frequency of its
occurrence in applications, the minimization of concave objective
functions subject to linear constraints has received considerable
attention in the literature [6, p. 543], [10, Chapter 3], and
[3, Chapter Xj. The proposed algcrithms for this class of problems
usually involve integer programming or lengthy search procedures.

However, it will be shown that, if the function is piece-wise
linear and separable, or can be approximated by a piece-wise linear
separable concave functional, the problem can be formulated as a
fixed-charge problem. For this development, we first assume that
any strictly concave objective function has already been approximated
by a piece-wise linear separable concave functional. Theu, the con-

cave-cost linear programming problem can be stated as:

n
min z = z ¢ (x,)
a1 3
n
s.t. ] a,x,=b 1=1,2, ..., m (4)

x, >0 j=1,2, ..., n

where each of the ¢j (x,) is piece-wise linear

3

and concave.

We will construct a fixed-charge problem which is equivalent to (4).

The resulting problem can then be solved by any fixed-charge algorithm.

o Reeluith

a2}

BT 7 b

7 S R
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Suppose that ¢j (xj) is composed of r, linear segments. Let

b

c slope of ith segment of ¢j (xj):

1]
€:n > Bz ¥ suw D 1€

3 2 ryd

Fh
m

1 y-intercept of ith segment of ¢j (xj)

when extended to the y-axis:

0<f,,<f 4 soe < E

13 ° *23 ]

J
J =
hOJ = 0.

) on the xj axis;

1) 3

Using this notation ¢j (xj) can be represented graphically by the solid
curve in Fig. 1 below.

¢J (x)A

._ ! 1 1 >
hoJ hlj th hrJJ Ij

1 Fig. 1--Piecewise linear, concave objective function

pdinedk ol e b ad

L———————-—
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For each activity xj, (=1, 2, ..., n), define rj new variables

4 ; Aséociate with Aij the variable cost cij and the

HJ’Aﬁ""’ ﬁj
fixed cost fij' Each variable Aij’ therefore, has a fixed cost objec-

tive function of the form:

‘\slope = cij

1)

B
>

ﬁij

se r, fixed cost objec-

Figure 1 can be viewed as the superposition of the
) 1s the

tive functions onto a single set of axes. The function ¢j (xj
lower envelope of these cost furctions. That is, for a given value of xj,

the value of the function ¢j (xj) is

min (c,,x, + £ ,6,}
lﬁiﬁ?i 1373 1373

0 if = 0
*

where dj =
1 1if xj >0

Let xj = Aij + ... + Atjj'

Mt o b o ;

% Then (4) can be rewritten as:

min 2z, = Z min (c,,A,, + £,.6,4)
27 ¢, Leter, 13°13 7 t13°13

=1

z Aij-bk (k-]-’ 2, vony -) (5)

8.t. Z akj

hy1,5815 5 2ay £ Pyyla

P e

S ‘0 if Byg = 0
3 11if Aij > 0.
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The fixed-charge objective function }-1 §=1 (cijAij + fijéij) could

be substituted for the objective function in (5) if at mos: one Aij would
be positive for each j in any optimal solution.

Consider problem (5) without the constant hi—l,jsij S-Aij ‘-hijsij and
with the objective changed to

n ry
s §=1 ;,1 (cgqdyy + £14844)

The resulting problem is:

n rj
min z = §=1 §=1 (ciJAiJ + fijsij)
O
.t. ) b (k=1, 2, ..., m) (6)
& 51 s bl 1k
5 «§O1f Aij =

e
[ 3
[
e
(o]
o>

(7Y
v

We state and prove two theorems which together show that problem (6),
which 1s a fixed-charge problem, is equivalent to problem 4).

THEOREM 1
Tn an optimal solution to (6), at most one Aij will be positive

for each J.

Proof: Suppose an optimal solution has more than one Aij positive for
gsome j. Consider any two of them, say Aaj > 0 and Abj > 0. Without

loss of generality, let a <b. The cost of this solution is:

z; = K + (faj + cajAaj + fbj + cbjAbj)

+ £,.8,.).

£, 6, ) +) 1581

ip ip ifa,

p
where K=1) 1
p#) i=1

cipAip + X (ciinj




=1 T

Consider reducing Aaj by by Aaj’ while leaving all

other variables unchanged. This is also a solution, and its cost, in

to 0 and increasing A
terms of the original variables, is:

z, = K+ fbj + cbj (Aaj : Abj)'

Then, 2, -z = Aaj (cbj - caj) - faj.

But, by concavity, caj > cbj’ and, by assumption, faj > 0 and Aaj > 0.

Thus, z, <2zy, contradicting the assumption that we had an optimal

solution.
THEOREM 2
if a Aij is positive in an optimal solution to (6), its value

will always fall between hi—l,j and hij'
Proof: Suppose that Aaj > 0 in some solution to (6). By Theorem 1,
Xy = Aaj' 1f ha—l,j S-Aaj 5-ha,j’ the theorem is proved, so assume
that (a) A‘j > ha,j or (b) Aaj < ha—l,j'
Case (a): Alj > haj= The objective function corresponding to this
solution is

z =) k +f +c, K x (7

a e 8 aj aj 7j

Ig

where k8 = X [cia Aia + fia 618].

i=1

were increased from O to x, and A ., were decreased from

Suppose Aa+1,j 5 aj

x, to O.

3

The objective function for this new solution would be

oy kot o

e e
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z&l-g*jks+fﬁ1,j+ca-0-l,j X, (8)

Subtracting (7) from (8) produces
Sgpy " %a * (fa+1,j - faj) + (ca+1,j = caj) X, 9)

At break-point h
A

13° the contributions to the obj-ctive value from Ai and

1+1 are the same; that is

IR TR T

or

(£ £, ,) = (10)

141, ~ 1,3 b

(egy = C141,4) Pyye
Substituting (10) into (9) we obtain

).

-z = (c

Zatl ~ %a aj ~ Ca+l,3

) (hyy = 7y

By concavity, caj > ca+1,j > 33’j - ca+1,j > 0.
By as tion h <x, +h - < 0.
y SpempRieny D@ T F T e T
Thus, 241 < Zgs contradict! ¢ the assumption of optimality.

Case (b): AaJ <<ha‘_1 j: This case is proved in a manner similar to that
?
used for case (a) above, with Aa-l j being increased from 0 to xj and
?

A , decreased from x, to O,

aj ]
Py vepeated use of cases (a) and (b) it follows that a variable Aij
will he positive in an optimal solution only if its value falls between

hi-l,j and hij'

S i Gt i

=
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