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A HEURISTIC ADJACENT EXTREME POINT 

ALGORITHM FOR THE FIXED CHARGE PROBLEM 

Warren E. Walker 

The New York City-Rand Institute 
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ABSTRACT 

An algorithm with three variations is presented for the approximate 

solution of fixed charge problems. Computational experience shows it 

to be extremely fast and to yield very good solutions. 

The basic approach in all three variants of the algorithm is (1) 

to obtain a local optimum by using the simplex method with a modifica- 

tion of the rule for selection of the variable to enter the basic, so- 

lution, and (2) once at a local optimum to search for a better extreme 

point by jumping over adjacent extreme points to resume iterating two 

or three extreme points away. 

Problems in which economies of scale give rise to separable piece- 

wise-linear concave objective functions are shown to be easily formu- 

lated as fixed charge problems. 

The algorithm is currently being used by the U. S. Environmental 

Protection Agency's Office of Solid Waste Management Programs to solve 

a problem of regional solid waste planning: the selection of disposal sites 

to be developed and tha determination of how the wastes of each municipality 

in a region should be distributed among the sites. 

Any views expressed in t'lis paper are those of the author. They 
should not be interpreted as Teflecting the views of The New York 
City-Rand Institute or the official opinion or policy of the City of 
New York. Papers are reproduced by The Rand Corporation as a courtesy 
to members of its staff. 

This work was supported, in part, by a graat from the U.S. Public 
Health Service (ES-00098). 



The fixed charge problem can be stated as 

min   z = y f.(x.) 

j-l 

S.u. 

where 

Ax - b 

x > 0 

W c.x. + k.,6. 
, J j   j j 
JO if x =0 
\l  if x >0 

(1) 

f 
i 

This type of problem arises in many practical settings. Two of the 

nest common of these are in warehouse or plant location, where there is 

a charge associated with opening the facility, and transportation prob- 

lems, where there are fixed charges for transporting any goods between 

supply points and demand points. 

If all the fixed charges k were zero, then problem (1) would be a 

linear programming problem. If some or all of the fixed charges are 

positive, the objective function z is concave [11] and it is well known 

that a concave function, defined over a convex polyhedron, takes on its 

minimum at an extreme point. The methods we present for the solution 

of (1), therefore, will examine only extreme poiat solutions. 

The fixed charge problem can be written as a mixad-integei linear 

program [10, p. 253]. However, most mixed integer programming algorithms 

are not computationally efficient for large problems. This is true also 

for exact algorithms developed specifically to solve the fixed charge 

prellen. For example, Steinberg's branch and bound algorithm [15] 

requires as much as 47 minutes on an IBM 360/50 to solve a 15x30 prob- 

lem.  Gray's decomposition approach [8] requir 33 an average of 16 

minutes to solve a 5x7 fixed charge transportation problem and as much 

aa 22 minutes to solve a 30-site warehouse loca1 ion problem on the Bur- 

roughs i>-">r>00 [9]. Murty [13] has developed an exact algorithm which 

solve-;  ! witli all k.=0 to bcmn.l :ht: tot il cc>  ant! then searches r.y-i- 
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tematically among the extreme points adjacent to the LP optimum for the 

minimum total cost. Murty presents only one sample problem, solved by 

hand. But Gray [8] tried to solve one 6x8 and six 5x7 test problems. 

He was able to solve only two of the problems, running cut of computer 

storage capacity before solving each of the other five. 

Since the currently available exact algorithms generally require 

long computation times and large amounts of storage, a good deal of ef- 

fort has been devoted to finding approximate solutions to fixed charge 

problems. The fixed charge transportation problem (where the A-matrix 

is in the form of a transportation matrix) has been investigated by 

Kuhn and Baumöl [12] and Balinski [2]. Kuhn and Baumöl suggest that 

an approximate solution V,  the problem may be obtained by forcing a 

highly degenerate solution. This is accomplished by making small ad- 

justments to the right hand side (demands and supplies). The approxi- 

mation is a rough one, but the computation is quite simple. 

Balinski replaces thp non-linear fixed charge objective function 

by an aoproximate linear objective function, and solves the resulting 

problem using the standard transportation algorithm. He also finds 

bounds on the optimal exact solution. This approach yields a rather 

rough approximation, and does not work well in many cases. 

Cooper and Drebes [5], Steinberg [15], and Denzler [7] have developed 

approximate heuristic adjacent extreme point algorithms for the general 

fixed charge problem.  Steinberg and Denzler modify the linear program- 

ming criterion for a vector to enter the basis, a technique also used 

in this paper. Their algorithms will be discussed more fully below. 

Cooper and Drebes modify the objective function at certain stages in 

their algorithms, and also change the criteria for vectors to enter and 

leave the basis. At certain times in their calculations a vector is cho- 

sen to enter the basis with the least fixed charge of the non-basic 

valuables. At other times a vector is chosen to liave with the highest 

fixed charge in the basic set. 

The computational experience reported for these methods indicates 

that they will yield the optimal solution a high percentage of the time 

and, when not optimal, they provide a good approximation. 

This paper will describe another adjacent extreme point algorithm 

(with variations) which appears to be faster than those of [5], [7] and 
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[15], and which yields the optimal solution a higher percentage of the time. 

The algorithm currently is being used on a production basis to solve large 

fixed charge problems [1], [4]. The algorithm will be referred to by the 

name SWIFT, for Simplex With Forcing Trials» 

THE SWIFT ALGORITHM 

Before proceeding with cne algorithm, we make the following notational 

definitions: 

x- = vector of basis variables 

c„ = vector of prices for x„ 
a a 

kR = vector of fixed charges for xR 

a. = jth column of A 

B = basi3 matrix 

y. = B a. (the representation of a. in terms of B) 

The algorithm consists of two sequential phases. 

Phase 1 

The first phase is identical to the standard simplex procedure except 

that the rule for selecting the column to enter the basis is modified. 

In a linear program, the objective function will decrease if the entering 

vector, x , is selected so that z - c, > 0. Because of the fixed charges, 

this criterion will not insure a local improvement in the fixed charge 

objective function. However, the non-negativity of a similar quantity 

involving z. - c, and the fixed charges will produce an improvement. 

Suppose that x. is to enter the basis on the next iteration 

the leaving vector is x , where x B. B. 

Then, 

is deterained,  as  in the ordinary 

simplex algorithm, by 

min 
k rkj 

*kj  >0 

*B 

rj 
(2) 

and 6 is the value which x assumes upon entering the basis. 
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If 8, > 0, as a result of such a basis change the objective function 

i3 increased by k., decreased by k_ , and increased or decreased by 
J o- 

8(z. - c.) depending upon the sign of z. c,.  (If 0. = 0, the objective y   --- j 
function remains the same.) In addition, if the choice of x_ was not 

Br 
unique, one or more of the basic variables vbich were positive will 

become zero.  In this case, even though they remain in the basis, the 

objective function is reduced by their fixed costs. Conversely, it is 

possible that, in the course of bringing x. into the basis, some basic 

variables which were at a zero level will become positive.  If this 

occurs, their fixed costs must be added in to determine the new value 

of the objective function. This requirement was neglected by Denzler 

and glossed over by Steinberg. 

Let 

T = i|xD = 0, f 
ij 

< 0 

Then, the entering vector, x., should be chosen such that 

ie£ ieT 

It is possible to continue iterating using criterion (3) to choose a 

vector to enter the basis until A j> 0 for all non-basic columns j. 

However, because the objective function is concave, it is not true 

that when all A > 0 a global minimum has been reached. Even though 

no adjacent extreme point will yield a smaller value of z, it is si: ill 

possible that some other extreme point of the convex set will be better 

(see [12], p. 13). 

This difficulty leads to phase 2 of the algorithm—a search for a 

better extreme point non-adjacent to the current point. Three closely 

related methods have been developed for phase 2. Taken together with 

■■llMUIBTW —------Tin--- ■• ■-■■ MM 
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phase 1, which i.i the ssTce for each of these methods, they constitute 

three heuristic algorithms for the fixed charge problem, which will be 

called SWIFT-1, SWIFT-2 and SWIFT-3. Aside from the treatment of degen- 

eracy in phase 1 noted above, the phase 2 procedures distinguish the 

SWIFT algorithms from Steinberg's and Denzler's. The SWIFT algorithms 

constitute a more deliberate search for improvement and have produced 

better results. 

Phase 2 

At the end of phase 1, A > 0 for all non-basic columns j. The 

phase 1 solution may or may not be the optimum.  la phase 2 one or more 

vectors will be forced into the basis, increasing the objective function, 

because of the possibility that, by continuing iterations from a new 

poiit, the algorithm might move away from the old local optimum to an 

improved new one. That is, from a local optimum an investigation is 

made of nearby extreme points with larger objective values which might 

be adjacent to points with smaller objective values. 

The three different methods for phase 2 presented below differ in 

(1) the number of vectors forced into the basis at a time and (2) the 

action taken if a forcing attempt fails to produce a better solution. 

THREE SWIFT ALGORITHMS 

SWIFT-1 (single forcing, non-return) 

0. Find an initial feasible solution to (1). 

1. Iterate with the simplex method, using criterion (3) to choose 

a vector to enter the basis, until A > 0 for all non-basic 

columns j. 

a. Let x. be this phase 1  solution. 

b. Let zQ be the corresponding value of the objective function. 

2. Force a currently non-basic variable, not yet tried, into the 

basis, yielding a n'»w solution x.. with objective value z^  >^ z~. 

If all non-basic variables in solution x_ have been tried without 

an improvement, STOP and call x0 the (approximate) solution, 

otherwise go to step 3. 
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Iterate as in step 1 until A    > 0 for all non-basic columns j 

and a local optimum x    is found. 

a. If x   H   x..   (i.e., no iterating was possible), return to 
S    J. 

solution x.. Go to step 2. 

b. If z  < z~ a better solution has been found. Rename this 
s   0 

solution x_.  Go to step 2. 

c. If z > z«, go to step 2. 

SWIFT-2 (single forcing, return) 

Same as SWIFT-1 except change step 3(c) to read: 

If z    > zn rel 
8—0 

Go to step 2. 

c.    If z    > zn return to solution x.   (the best solution so far), s        u u 

SWIFT-3 (double forcing, return) 

Same as SWIFT-2 except change step 2 to read: 

2.    Force an untried pair of non-basic variables from solution xn 

into the basis, yielding a new solution x- with objective value 

z-> z_.    If all pairs of non-basic variables in solution x. 

have been tried without an improvement, STOP and call xfl the 

solution. 

STEEPEST DESCENT 

The criterion used to determine the vector to enter the basis in 

phase 1 could be changed to a steepest descent criterion. That is, 

choose vector x. to enter if A < 0 and 

A. - min    A. 
j  l|x±*B  * 

where A. is given by (3). 

The s'.eepest descent criterion is rarely used in solving a normal 

linear programming problem because it involves finding 6 for each non- 

basic column x for which z - c, > 0. However, the algorithm described 
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above for the fixed charge problem requires the calculation of 9 for at 

least a subset of the non-basic columns. As a result, this criterion 

is easy to implement and adds little time to the calculations per itera- 

tion, but reduces the number of iterations per problem by between 15 and 

30 percent. 

TEST RESULTS AND COMPARISONS WITH OTHER ALGORITHMS 

In order to test their heuristic fixed charge algorithms, Cooper 

and Drebes [5] randomly generated 290-(5x10) problems with the following 

properties: 

I a±J I 120 

1 < c < 20 

1 1 \ 1 9" 
The average density of A is 50 percent. 

The optimal solutions to these problems were obtained by complete enumera- 

tion. These problems and their solutions are included in Steinberg's 

thesis [16].  They have beer used by Cooper and Drebes, Steinberg and 

Denzler to test their respective algorithms. 

Cooper and Drebes applied their algorithms to a set of 253 of these 

problems.  Of these, 2'*0 were solved optimally by their algorithm MI, and 

245 by their algorithm Mil. Der.zler obtained optimal solutions to 169 out 

of 200 problems using his M-l algorithm and all 200 using his M-3 algorithm. 

Steinberg obtained optimal solutions to 235 out of 250 problems using his 

Heuristic One algorithm, and 255 out of 268 problems using his Heuristic Two. 

The SWIFT algorithms were tested on the 22 problems for which Steinberg got 

suboptimal solutions using his algorithms. All three of the algorithms ob- 

tained optimal solutions to the 22 problems.  In 16 of the 22 cases, opti- 

mality was attained by the end of phase 1. 

- i' rf-iiTWttrni 
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Subsequently, the algorithms were tried on a random sample of 30 

problems solved successfully by Steinberg. Again, the optimal solution 

was obtained for all the problems. The optimum was reached by the end 

of phase 1 in 26 out of the 30 problems. 

The problems were solved with and without steepest descent. As an 

example of the effect of steepest descent, method 2 averaged a total of 

18 simplex iterations/problem without and 15 iterations/problem with 

steepest descent.  Steepest descent also reduced the average number of 

iterations needed to reach the optimal solution by about 3 iterations 

(in method 2, from 10.5 iterations to 7 iterations). 

Table 1 gives the results of the SWIFT algorithms compared with 

those of Cooper and Drebes, Denzler and Steinberg for the 5x10 test 

problems. 

Cooper and Drebes constructed 15x30 test problems by aggregating 

sets of three 5x10 problems.  In these the A-matrix was formed as fol- 

lows: 

0 

A. 

0 

0 

where A-, A-, A~ are 5x10 matrices. The optimal objective value for any 

of the 15x30 problems is the sum of the optimal objective values from the 

5x10 problems associated with A., A„ and A,. 

Six such 15x30 problems were constructed for SWIFT testing. SWIFT 

obtained optimal solutions for all six problems. Optimal phase 1 solu- 

tions were obtained in two cases.  These two had A-matrices which were 

comprised of submatrices which had led to optimal phase 1 solutions 

to the constituent 5x10 problems. The other four A-matrices contained 

at least one submatrix from a 5x10 problem which did not produce an 

optimal phase 1 solution. 

mm WffHHHW 
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Table 1 

COMPARISON OF ALGORITHMS 
5x10 PROBLEMS 

Author   Algorithm 

Average no. 
iterations   Average tine 

No.      No.          %        per                 per problem 
tried optimal opt,  problem (sec.)  Computer 

Walker SWIPT-1 

SWIFT- l-s.d.a 

SWIFT-2 

SWIFT-2-s.d.a 

SWIFT-3 

Cooper &  MI 
Drebes   m 

Both 

Steinberg Heuristic 1 

Heuristic 2 

Denzier M-l 

M~2 

M-3 

52 52 100 23 5 CDC 1604 

49 49 100 17 0.5 IBM 360/65 

52 52 100 18 4 CDC 1604 

49 49 100 15 .47 IBM 360/65 

52 52 100 36 6 CDC 1604 

253 240 95 75 20 IBM 7072 

253 245 97 100 20 IBM 7072 

253 250 99 175 20 IBM 7072 

250 235 94 6.8 .7 IBM 360/50 

268 255 95 15.2 1.5 IBM 360/50 

200 169 85 n.a. 1.6 IBM 7072 

200 196 98 n.a. 7.0 IBM 7072 

200 200 100 n.a. 14.0 IBM 7072 

3 
s.d. ^ steepest descent. 

The add times (in micro-seconds) for each of the computers used are: 
IBM 7072     12.0 
CDC 1604     7.2 
IBM 360/50    4.0 
IBM 360/65    1.3 

n.a. = not available. 

•ramem 
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The 15x30 problems were substantially harder to solve than the 5x10 

problems.  SWIFT-2 went from an average of 15 iterations/problem to an 

average of 86 iterations/problem.  SWIFT-3 required as many as 392 itera- 

tions to solve one 15x30 problem. However, it had reached the optimal 

solution by iteration 35. The other iterations were spent searching for 

a better solution. A comparison of the results of using different algo- 

rithms for solving the 15x30 problems is given in Table 2. 

Table 2 

COMPARISON OF ALGORITHMS 
15x30 PROBLEMS 

Author Algorithm 

Average no. 
iterations    Average time 

No.      No.           %        per                  per problem 
tried optimal opt,  problem (sec.)  Computer 

Walker 

Cooper & 
Drebes 

SWIFT-2 

SWIFT-3 

SWIFT-3-s.d.J 

Both MI & 
Mil 

Steinberg Heuristic 1 

Heuristic 2 

Denzler M-l 

M-3 

5 

2 

1 

70 

5 

2 

1 

63 

100 86 

100 370 

100    376 

90 1200 

90 75 83 12 

84 74 88 43 

22 14 64 n.a. 

22 17 77 n.a. 

s.d. = steepest descent, 

n.a. 3 not available. 

18 CDC 1604 

60 CDC 1604 

25 IBM 360/65 

900 IBM 7072 

2.16 IBM 360/50 

7.74 IBM 360/50 

n.a. 

75 IBM 7072 
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Gray [9]  lists 12 fixed-charge transportation problems which he solved 

using his exact algorithm.    SWIFT-2 was applied to these same problems. 

Table 3 contains a comparison of Gray's computation times with those 

achieved by SWIFT-2.    The IBM 360/65 has an add-time which is three times 

faster than that of the Burroughs B-5500.    Even correcting for this, the 

SWIFT algorithm is from 2 to 835 times faster than the Gray algorithm. 

It failed to get the optimal solution to two problems, but in these two 

cases its solution was greater than the minimum cost solution by only 

.8 percent and 1.8 percent. 

Table 3 

FIXED-CHARGE TRANSPORTATION PROBLEM SOLUTIONS: 
A COMPARISON OF THE GRAY AND WALKER ALGORITHMS 

Walker 
Problem Size of Gray Time (sec.) solution Time (sec.) 
no. A-matrix solution B-5500 (SWIFT-2) IBM 360/65 

1 7x12 329 7.7 329 1.12 

laa 7x12 429 7.6 429 .42 

lbb 7x12 579 7.8 579 .43 

2 10x24 202 32.6 202 1.36 

3 10x24 1999 26.3 1999 1.70 

4 12x32 273 171.4 "73 3.69 

5 12x35 245 263.8 247 3.68 

6 12x35 317 146.9 317 6.11 

7 12x35 1638 97.0 1668 3.01 

8 12x35 2289 3262.8 2289 3.89 

9 14x48 314 1510.1 314 7.61 

9ac 14x48 2357 71.4 2357 5.89 

identical to problem 1 with 20 added to each fixed charge. 

Identical to problem 1 with 50 added to each fixed charge. 
cIdentical to problem 9 with 250 added to each fixed charge. 



|5jJi^5¥^^^T<aS;'":'?f*-'r,':K^B^^-s:5p'S^^?i^>i=-^'-'^T"K.f" ' : ■'" - '<:'>-5^:'W^-^^ »•Kp!^BP»^»gBW?« 

-12- 

THE SWIFT ALGORITHM APPLIED TO REGIONAL 
SOLID WASTE DISPOSAL PLANNING 

In 1968 Skelly [14] developed a model for use in planning for 

regional solid waste disposal. The problem, viewed as a network mo4el, 

was to determine the disposal facilities (sinks and trans-shipment 

points) which should be developed to handle the refuse generated by 

several communities (sources) such that the total costs of transporta- 

tion, treatment and disposal are minimized. The formulation is 

basically a capacitated warehouse location problem. The cost func- 

tion includes linear transportation costs, fixed costs for using a 

site and piece-wise linear concava site operating costs (which can 

be replaced by fixed-charge equivalents as is shown in the Appendix). 

The SWIFT-2 algorithm with steepest descent was used to solve 

the problem using fifteen different sets of actual data. The largest 

problem, a 25-city, 9-site problem with 42 constraints and 282 columns 

(including slacks and artificials) was solved in 8.9 minutes on an 

IBM 360/65. Of the fifteen problems, five found improved solutions 

in the forcing phase, the rest reached their final solutions in 

phase 1. 

This model has been further developed by Roy F. Westiri, Inc. 

as part of a comprehensive state-wide solid waste management study 

for the New York State Department of Environmental Conservation [1] 

and, more recently, by the Federal Environmental Protection Agency's 

Office of Solid Waste Management P-ograms (OSWMP) for use by regional 

planning authorities throughout the United States. The computer 

program being used has a matrix generator to simplify data input, 

and a report generator for presenting the results in a clear and 

meaningful manner. But it uses the SWIFT algorithm to solve the 

fixed-charge problem. OSWMP is currently using the model to develop 

regional disposal plans for the Seattle area and for an 11-county 

area of Texas which includes the city of Dallas. The Texas problem 

has 200 refuse sources, 70 potential disposal sites and 800 source- 

site transportation pairs. This results in a constraint matrix 

having 400 rows and 870 columns (not including slack and artificial 

variables). 

U^Mmmmmamimitmmamm^^mmmmmmmmmmmMmmmmmm.s..x.i .L.J..     ———a 
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Appendix 

TRANSFORMING A CONCAVE-COST LINEAR PROGRAMMING 

PROBLEM INTO A FIXED-CHARGE PROBLEM 

Economies of scale lead to cost curves whose slope decreases as 

the Independent variable increases. Because of the frequency of its 

occurrence in applications, the minimization of concave objective 

functions subject to linear constraints has received considerable 

attention in the literature [6, p. 543], [10, Chapter 3], and 

[3, Chapter X'j. The proposed algorithms for this class of problems 

usually involve integer programming or lengthy search procedures. 

However, it will be shown that, if the function is piece-wise 

linear and separable, or can be approximated by a piece-wise linear 

separable concave functional, the problem can be formulated as a 

fixed-charge problem. For this development, we first assume that 

any strictly concave objective function has already been approximated 

by a piece-wise linear separable concave functional. Then, the con- 

cave-cost linear programming problem can be stated as: 

n 
min    z - I     <|>    (x ) 

j-1    J      J 

s.t. 
n 
I 
1-1 

aiJXJ 
i = 1, 2,   ..., m (4) 

i, 

XA -° J - 1» 2 n 

where each of the (j) (x.) is piece-wise linear 

and concave. 

We will construct a fixed-charge problem which is equivalent to (4). 

The resulting problem can then be solved by any fixed-charge algorithm. 
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Suppose that <|). (x.) is composed of r. linear segments. Let 

hlj« 

c . = slope of ith segment of (j). (x.): 

CU " C2J " ••' >Crjj 

f.. = y-intercept of ith segment of §.   (x.) 

when extended to the y-axis: 

o<flj<f2j< ... <frjj 

i  . = break-points of (j). (x.) on the x. axis; 
"••J J  J        J 

hQj H 0. 

Using this notation <J>, (x.) can be represented graphically by the solid 

curve in Fig. 1 below. 

w* 

•0j       "lj "2j 

Fig. 1—Piecewise linear, concave objective function 

rjj 
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For each activity x., (j - 1, 2 n), define r. new variables 

A,,, A„ , L    ..    Associate with A., the variable cost c.. and the 

fixed cost f...  Each variable A  , therefore, has a fixed cost objec- 

tive function of the form: 

Figure 1 can be viewed as the superposition of these r. fixed cost objec- 

tive functions onto a single set of axes. The function (j). (x.) is the 

lower envelope of these cost functions. That is, for a given value of x., 

the value of the function (J>. (x.) is 

Bin  (c.45^ + fi46V 
l<ij;r    J J    J J 

.   \0  if x - 0 
where <5 - { j 

J   1 if x > 0 

Let Xj -Ay + ... +Atjj. 

Then (4)  can be rewritten as: 

„in    z    - l       min    (c    A±j + *y«y> 
j-1 l<i<rj 

rj 
8.t. )      a. .  T      A_ - b,.        (k - 1, 2 m) 

n *j 

j-1    KJ i-1     J 

Vi,j6ij * &u * V« 

(5) 

[0 if Ay - 0 

ij       11  if Ay   > 0 

——— 
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fJ 
The fixed-charge objective function    I      I      (c^A^ + fij

6
1j)  could 

be substituted for the objective function in (5) if at mosi one A     would 

be positive for each j in any optimal solution. 

Consider problem (5) without the constant h^^ .6±. ^ A^ x "ij^ij and 

with the objective changed to 

*      rj 

"**    '"jLlL/ViJ + Vi^ 

The resulting problem is: 

min z 

fj 

j-i  kJ i-i  1J     K 
(k = 1, 2, ..., m) (6) 

ij 
,0 if Ai:) = 0 

1 if A  > 0. 

We state and prove two theorems which together show that problem (6), 

which is a fixed-charge problem, is equivalent to problem (4). 

THEOREM 1 

In an optimal solution to (6), at most one A  will be positive 

for each j. 

Proof:  Suppose an optimal solution has more than one A., positive for 

some j. Consider any two of them, say A  > 0 and i^ > 0. Without 

loss of generality, let a <b. The cost of this solution is: 

*1 " K + (f.J + V.J + hi + "T.JV 

^  . Jiiiii_i_irn ■■ IMIMI.IJ_nil 



'-----■ 

Consider reducing A  to 0 and increasing A, , by A ., while leaving all 
aj DJ    aj 

other variables unchanged. This is also a solution, and its cost, in 

terms of the original variables, is: 

I 

z. - K + f, , + c, . (A . + A, ,). 
2      bj   bj  aj   bj' 

Then, z„ - z.  ■ A . (c. . - c .) - f . 
2   1   aj NT>j   aj    aj, 

But, by concavity, c . > c, ., and, by assumption, f  > 0 and A  > 0. 

Thus, z„ < z., contradicting the assumption that we had an optimal 

solution. 

THEOREM 2 

If a A . is positive in an optimal solution to (6), Its value 

will always fall between h. 1 . and h... 

Proof: Suppose that A  > 0 in some solution to (6). By Theorem 1, 
*J 

x. - A   ..    Ifh    ,,    <A.<h    ., the theorem is proved, so assume j        aj a-l,j    -   aj -   a,j' 
that  (a) Aaj > ha>j or <b) Aaj   «b^. 

Case (a):    A  . > h  .:    The objective function corresponding to this 

solution is 

i   -T      k   +f.+c.x. a      kj    s        aj        aj    j (7) 

where \ml 
Icis Ais + fis «iJ- 

Suppose A    ,   . were increased from 0 to x. and A     were decreased from 
a+i,J J aj 

*j t0 °- 
The objective function for this new solution would be 

ii IM 'iimiÜMifiiiii     
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Vi " ^k. + Vi.j + V i.j xr (8) 

Subtracting (7) from (8) produces 

Vl - Za " <fa+l,j " V + (ca+l,j " caj> xj'    (9) 

At break-point h..,  the contributions to the objective value from A^^ and 

A.  . are the same; that is 

fij + cij hij " £i+l.J + Ci+l,j hij 

or 

<£i+l.3 " 'i.j' " <CU " W V (10> 

Substituting (10) into (9) we obtain 

za+l" za" (caj " ca+l,j) (haj " *j>' 

By concavity,    caj > ca+lj -  ^ - c^^ > 0. 

By assumption,   h . < x. ■*■ h   - x. < 0. 
aj   j   *,j   j 

Thus, z ., < z , contradict:'- z  the assumption of optimality. 

Case (b): A . < h   .: This case is proved in a manner similar to that 
— «   aj   a—l,j 

used for case (a) above, with A . . being increased from 0 to x. and 
a-1, J J 

A M  decreased from x. to 0. 
«j 1 

By repeated use of cases (a) and (b) it follows that a variable A 

will be positive in an optimal solution only if its value falls between 

hi-l,J andhij- 



.... 
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