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1. FOREWORD
Work conducted under this grant pursued two long range objectives,
namely:
1. To investigatc aerodynamic phenomena affecting the launch
phase of in-tube launched rockets, and

2. To achieve direct compatability between in-house computer
oriented (MICOM) efforts and the research conducted at the
University of Illinois. This was to be achieved by acquisition
of an HP 9830 system to be located in the Gas Dynamics Laboratory
of the University of Illinois.

An immediate goal consisted of generating a comprehensive, yet well
manageable analysis (including computer program development and typical
performance documentation) of the launch and flight performance of a
rocket with specified motor design and grain configuration.

Dr. H. H. Korst, Professor of Mechanical Engineering, acted as
Project Director; Dr. R. A. White, Professor of Mechanical Engineering,
supported by Mr. Dean H. Keal, was in charge of the facility development

in the Mechanical Engineering Laboratory in preparation of the experimental

effort which is to continue.
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& 3 3.3 TABLES

Table 1 Parameters Affecting Internal Ballistic Performance ]
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Figure 1b Control Volume for Evaluation of Thrust
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Table 1 Paramcters Affecting Tuternal Ballistic Performance

Specific heat ratio, (-)
Molecular weight, lbm/mole

Flame temperature, °R

Co-volume, ft3/lbm

Specific volume, ft3/lbm

Burning coefficient, Eq. (17)
Burning exponent, (-), Eq. (17)
Ri, R, Eb, Z¢, L, grain dimensions, ft,
see Fig. 2

Initial weight of round

Loading ratio, lbm/ft3

Chamber volume, ft3

Nozzle throat area, ft2

Nozzle exit area, ft2

Reference (atm) pressure, lbf/ft2
Burst pressure ratio, (-)

Effective linear opening coefficient, (-)

11
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4. PLREORMANCE ANALYSIS O A DOGLEG-GRAIN, TURE
LAUNCHED ROCKELT AND AUXILIARY ET'FORTS

During the launch phase, as grain burning is initiated, the pro-
pulsive nozzle renains initially closed to promote faster pressure
buildup. Subsequently, the closure fails, stariing at a prescribed burst
pressure and allowing (critical) outflow through a (linearly) tipe variable
effective throat. Neglecting fast transients, quasi-steady outflow con-
ditions (together with the burning law and time varying grain surface) will
determine the pressure and temperature history in the combustion chamber in
which the gaseous phase of the propellant is assumed to be of uniform (stag-
nation) state. For fully established nozzle flow conditions (the initial
shock system being expelled quicly), it is then possible to determine pro-
pulsive thrust, rocket acceleration velocity, and position as functions of
time. Parameters considered for the present analysis are li-~ted in Table 1.
To investigate rocket-launcher interaction, it is then also of iImportance
to investigate the effects of plume-wall interactions and the flow of pro-
pellant gases in the launch tube.

While analytical work on the propulsive rocket motion has been com-
pleted, certain experimental phases of rocket-gas interactions within the
launch tube are still in progress and will be reported on at the conclusion

of a follow-up effort under ARO-sponsorship.

4,1 CONTROL VOLUME ANALYSIS OF ROCKET MOTOR PERFORMANCE

Boundaries of the control volume are selected to include the entire
missile including the propulsive nozzle (Fig. la); however, analysis of
the chamber sressure as based on the conservation of mass utilizes the
somewhat smal.ier volume terminated by the nozzle threat (Fig. 1b). These,

together with the assumption of a uniform state in the combustion chamber,

12




appecar to be allowable simplifications [1].%

4.1.1 Conservation of liass
With m and e denoting the mass of solid and gaseous phases
of propellant in the chamber having the v-lume Vc’ one introduces the
specific volumes to cxpress

- 7
mg vg + iR Vg = \C (1)

and, by differentiation with respect ic time, as dvs/dt = 0,

dms dv ETK
Voud T By Rt tE = 0 @)
where mg = (VC S ve ms)/vg and
R To
v. = v + (3)
g c 5
(Clausius-type gas).
With T =F _ and v. = constant
o ofF c
dv RT . dp
&-__ 0o o
dt VIR Gl (%)
[&]

The original mass of solid propellant at t = 0, Meos is used to

form the dimensionless ratio
Ms
T — 5
e (5)

and accounting for the outflow of gas from the control volume through
the nozzle throat under choking conditions

R e T
T A (6)

For convenience, we now introduce an "ideal" acoustic reference velocity

“Numbers in brackets refer to entries in REFERENCLS.




= 2 T
CoR ,/Yr Ec¢ “or (73

and a characteristic time

t = (8)

to define additional dimensionlesc variables,

=il
T=3 (9)
o
P
T = 2 (10)
po,o
v
oy = EN_ (11)
oR
and parameters
RT
¢ = =Sk (12)
l p v
0,0 S
v
= (¢ 1
¢, = m._v_Lv (13)
S0 S s

Thus, the conservation of mass expressed by Ey. (2) attains the form

gﬂ _Yﬁ_ﬁ_c v_c+f:l ¢.EA§(T) = C2-uc _1-91
dt v T 2| v T N| vt As v C, 1 _2drt
s s N N _c+_}_ m
v m
s
(an)

For nozzle flow under choked conditions, by combining Eq. (3) with

Bernoulli and energy equation, we obtain Aﬁ('r)

1y




p——

2 T
v (1) 1}('[)\ Y - L< -"‘)
Wam = (15)
N \N A“ A” :r_(- . _ 2 -
v_ pe\ 1/0=1)
* ale—
10}‘)
where
3 1/(y-1)- -1
[t _lm-wnl, @3 (T*) + 1 (16)
Li4 - T e
Tor 2 Y S\

Attention is now given to the opening (failure) characteristics of the
closure. The nozzle is originally closcd by a diaphragm which leads to

a delay in the outflow through the nozzle, also promoting the initial
pressvre buildup in the combustion chamber. The effect of burst pressure
and opening coefficients on recoilless gun operation has been discussed
in greater detail [1] where also experimental evidence is presented. Ve
are »etaining here this analytical concept by introducing a burst pressure

ratio 7_ &t which the closure begins to fail at the time T

i in such a way

B

that it opens the throat area lineariy with time at a rate determined by
the opening cocfficient, A3.
ﬁ(T) 0 for 1 <1

> =
12> 4%

B

N A (1t - TB) for 1 > Ty
Full opening is attained at time T where
oo
o
A% =
N

after which time A;’}(T)/A;'q’ Z 1. It is of interest to note that the failurc
characteristics of the closure exert some influence on the initial phases
of the rocket launch especially on the peak chamber pressure, but seem to

attenuate rather quickly after full nozzle aperturc has been attained.

i PP S
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h.1.2 Frop ol
.
Expressing t H ) ‘ n tional fora Ly
n,.
r=Bp( ) (17)
accounting for the temperaturc dependency in B and the pressure de-

pendency by thec exponent n, we can deterinine the rate of propellant gas

generation frcm

dm
s _r 5(t)
"G T RTe 4)

where S(t) is the time dependent burning surface of the grain, so that in

dimensionless form

aw Psa g SrY e
dt ~dt d T~ v.m__ 12
S 5 SO

For the initial grain configuration given in Fig. 2, a solely time
dependent burning rate (note that thc pressure p is assuned to be uniform

over the ertire surfacc S), will produce changes in the grain geometry so

that
to M
R(T) = Ro + N7l r 41
[o]
1:0
E(T) = Eo o E r dt (20)
(o]
T
tO
2(T) = Zo + 7] r dt
[o]

The burning surface S(1) can now be cxpressed as follows:

16
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(i) Yo + £ < R17, one obt
S = uL{R( 8) 0+ L+ 2 - I (o1,

vhere 0 = “.in-l (Z/R).

(ii) 2 /j’ —
S = yLIR(90 - 0) /180 + (‘3le1 - (E/R1)° + F.lv - ( l) -

where 6 = 1 for E < Rl (21.2)

0 for E > Rl (21.3)

Also, fcr the grain configurations, Fig. 2,

2 Ro 2 [ eo_l Ro ’
H - - - — - sin 2 - 4 in @
mey Ve LRl Tl (Rl) l__ 50 +(R1) cin Leo uFo Eo sin 6
(22)
where 8 = sin’! (Z /R)
o o o
4.1.3 Chamber Pressure-Time History
Noting that
r to B P, on i Vc
E S (23)
12 12 AN CoR

It is possible to calculate the pressure-time history in the combustion
chamber by integrating Eq. (l4) together with Eq. (19) once the grain

geometry (Eqs. (21) and (22)) and the burning law (Eq. (23)) are specified.®

4.2 ROCKET DYNAMICS AND KINEMATICS
4.2,1 Initial Phase
Considering the rocket motion here as resulting from nozzle
thrusi and the gravitational acceleration only and usirg a Cartesian

system of coordinates aligned with the launch tube axis (sec Fig. 3) which

%A summary of parameters introduced into the present analysis is given in Table

3

T




is inclined to the horizontal by the angle u, on

av,
Et—"‘-l'—=T—‘~:£‘——sina (21)
st 8, b

and
v,
22wl cosa (25)
L e ©

In restricting ourselves to these expressions, we have, for the time being,
neglected all acrodynamic forces acting cn the rocket. We note, however,
that the lateral motion of the rocket which begins after the rocket has
already moved the distance x, at time ty in the tube, may well give rise

to unbalanced aerodynamic interference forces which can lead to pitching
during launch.

For the initial phases of the lateral motion, we may neglect changes

of the rocket mass W and, using an average thrust T, integrate Eq. (25)

twice to yield, as y = 0 and Vy = 0at x = Xps T =t

cos O x 2
o) -
* t
T 5 1
‘w—" sin Q
The time t, where the distance X has been negotiated is found from the
;

integration of Eq. (24) for which Vx = 0at t=0 and

2 T'g
x'—'g; ﬁ—sinu (27)
so that
2x
£ r ek (26)
Tg
C .
=—— - g sin &

W

18




1y is to be followed, it will be necessary «
to intred » - 2 forcas and to consider also the time
varialic ] tnr l mace. Accounting for the latter two only, |
one realls the renul ol pressure chamler and propellant mass ratio I
histories au they 11t [y Section 4.1. .
Vhile Yig, 4 illustra the influence of closure failure on the early ﬂ
’1
chamber pressvre history, Fig. 5 shows that the effwct on launch velocity
is indeed vory small. :
i
The full chamber pressure history, as calculated by the present progran |
(for instantancous closure failure), is compared to available ARROW data in ]
Fig. €. :
Accounting for the variable rocket mass by
ms_
W= Il ) ) (29)
o
and determining the thrust force on the basis of the control volume shown
in Fig. la, the time-dependent thrust force is given (in 1b_) by
i f
‘e T
o — )| 1l = ==
2y ( Tof')( T°F) "
T = AT 14y
Po,o Ay M1y T 17(1-Y)
% Ly, 1
oty T
L s 1 oF
ol 4 (30)
N oF
Again, the thrust force calculated with the present program is compared
with data provided for the ARROW rocket (see Fig. 7). The temperature
ratio Te/ToF is found after solving Eq. (16) for T‘~'=/TOF by iteration, from 1

Y S,

19 1
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4.3 COMrui PRO # DEVLLODPEENT
As already pointed out in Section 1, the broader objectives of this

grant called for cosputer program compatibility between MICOH and the

supporting effeets at the University of Illinois. Consequently, after

acquisition of the HP 9830 system, a considerable number of computer

programs have been generated whiech are now operational at both loeations.

Some represcntative erxamples are cited in the following

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

— —

Internal Ballisties Program

4.3.1.1 Bomb, CGun, and Recoilless Gun Performance Analysis

(Documented earlier [11.)

4.3.1.2 Adaptations of such Programs to Deal with Gun-Launched

Rockets [ 2]

Plume and Slipstream Boundary Analysis based on the Method
of Successive Centered Expansions [3,4]

Base Pressure Analysis for Unpowered Flight of Rockets and
Projectiles [5,6]}

Visecous Jet Mixing and Boundary Layer Programs in Support of
Drag Evaluations for Missiles [7]

Shoek Interaection Programs Applicable to Muzzle Break Blast-
vwave Propagation and Reflections [1]

Comprehensive Procsram for the DOGHBONE Grain (ARROW) Rocket
Performance (based on the analysis of this report)

20
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program for the HFP 9830 computer

is given in A £ A.

4.23.6.2

e ) ict lons

oL

Uscr's inctruetions are given in APPENDIX B with all

input quantities defined (also, see Table 1).
4.3.6.3 Program Qutput ("PRINT ALL" Hode)
Program output in the "PRINT ALL" mode of the com-
uter is given in APPENDIX C for selected input data as listed. It must

be noted that the DOGLEG CRAIN gecmetry (Fl, R, Ed, Z¢) and nozzle arca
ratio Ae/Aﬁ = A5 are not entered from the keyboard but are READ by the
program from th2 DATA line 120. Changes in these paramcters have thus to
ba made (if so desired) by "FETCH 120, EXLCUTE" and by altering the values
in this line (conveniently done by using the editing features of the

HP 9830).

4.4.1 Faeility Development
The blow-down wind tunnel faeility and auxiliary air supplies
of the Meehanical Engincering Laboratory, Department of Meehanical and
Industrial Engineering, University of Illinois at Urbana-Champaign, have
been modified to allow modeling of the tube launeh system under quasi-
steady operating conditions. The pressure distribution within the launch
tube due to plume~tube wall interaetions and vehicle eceentrieity is the

primary objeective.

21




b.1.1 AD 1v_ii>difications

To provid r representative modeling, it was neeos-
gary to m caloting auriliary air supply system to aceept the
higl pre n 1 for simulating the rocket jet plume. This has
been aecomplished by the installation of new high pressure storage (approxi-

mately 450 I.‘, maximum working pressure 1800 psig) and high pressure piping
in compliar vwith GSHA regulations. A two-stage compressor alloving pump-
ing of the system to either 250 psig or 500 psig levels is currently being

utilized.

4.4,1.2 Hodel Construeried
A one-half scale geometrieally similar model has been
construeted of both the afterbody and the launch tube system. The model con-
sists of an interchangeable nozzle secction installed in the end of a section
of schedule 80 high pressure pipe with nominal outside diameter of 1.90
inches. The launeh tube is simulated by two lengths of thin wall brass tub-

ing with nominal inside diameters of 2.0 and 2.25 inches.

4.4.2 Preliminary Experiments Conducted

A series of calibration checks with the nozzle configuration
selected were carried out to determine the verformance characteristics of
the modified high pressure system and its control valve. The results of
the preliminary tests indicated that maximum stagnation pressures of only
180 psig are presently rcached with tank pressures of approximately 450 psig.
This is below the level desired for proper plume simulation within the
launch tube. It appears that the flow level capability of the control

valve is too cluse to the nozzle mass flow required or that a sonic throat

22




is occurring within the pij y 1 restricting Lhe avallabl
the nozzle, Additlional tests are being plann "1
sequently improve the range of system performunce. A re tion 1in mod

scale to approximately 0.25 may be required.
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1.

10.

11.

12.

13.

14.

15.

IXX i )

User's Instructions for "X

ARROV-BALLISTIC PROGRAY

Input (asked for by program)

Camma (propellant), 1

Yoleeular weight propellant, 1
Flame temperature, propellant, °R
Co-volume, propellant gas, fta/lbw
Combustion chamber, volume, rt3

Speeifie volume, solid propellant,

3
£to/1p
Load ratio, 1bn/ﬁ3

Initial mass, missile and
propellant, lbm

(loeation 120 generates (ean be
altered) Data R, R¢, L¢, 79, AS =
A,/AN" and Lf related to the DOGBONE
geometry and nozzle eonfiguration as
shown in Figs. la, 1b, and 2)
Burning coeffieient, in./see

Burning law, exponent, 1

Burst pressure ratio, 1

Area ndzzle (throat A%), ft2
Referenee pressure P@, psia

Opening coeffieient (burst plate), 1

Time inerement (4tT), 1

28

« B

FALN ROCKLT" Tr

HP 9830 (no ROMS nceded) 690/1428 "DOGBONE GRAIN ROCKET" load

Symbel
K
M
T¢

Vi

v2

Mg

B2
Al
Py

A3
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R T s




b "

[ W | . —

]

Ll

I

= 0. for @ acy and numerical stability. ‘

1

§ 3 9% iroat has fully opened (after fast transient

\

’

Eu 1 i becn recorded) skips intermediate FPRINTOUTS 'i

!

(rotain’ iinr, ' ta for only every tenth time increment. This will f
generat 1¢ L d very 100 seconds (approximate real computer time). .

Progy: siops vl combustion chamber pressure reaches Pg.
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