453 |

AD po00

1731

REPORT NO.

N~
o

July 1

Approved for public release; distribution unlimited.

I€/1 ¥ 14

a & aL

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited,

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22151,

rt are not to oe construed as
—‘I‘ -
1TDD

n, unles

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

D ARE READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
BRL Report No. 1731
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
SLIP FOR THE BRLESC II COMPUTER Final
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Morton A, Hirschberg
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

USA Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U.S. Army Materiel Command JULY 1974
5001 Eisenhower Avenue 13. NUMBER OF PAGES
Alexandria, VA 22304 S
14, MONITORING AGENCY NAME & ADDRESS(If diiferent from Controlling Olfice) 5. SECURITY CLASS. (of ihia repori)
UNCLASSIFIED

1Se. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatrect entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceseary and identify by block number)

Symmetric List Processing List Structures Lists

List Processing Ring Structures Reentrant Subprogramming
String Processing Strings Rings

Symbolic Processing Linked Lists Circular Lists

Recursive Subprogramming Character Manipulation

20. ABSTRACT (Continue on reverse eide if necessary and identify by block number)

SLIP, an acronym for _‘ymmetrlc List Processor, is a list processmg system
which carries a forward and backward link as well as a datum. It is symmetric
in the sense that lists do not have a preferred orientation; operations which
can be carried out on the top of a list can be as easily carried out on the

bottom of the list.

List processing languages are formal mathematical hnguages and have been
ulus al lo

used in symbolic processing in calculus, circuit theory, mathematical logic,
artificial intelligence, and numerous other applications.
FORM
DD |, jan 73 1473 EDITION OF 1 NOV 68 15 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

UNCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ABSTRACT . . . « ¢ ¢« o o & « &

LIST OF ILLUSTRATIONS

-t
.

INTRODUCTION . . . v v ¢ ¢ ¢ ¢ o o &

=t
Pt
-3

o]
rn
=

=

=}

>

Z
tn
3
E
t-‘
wn
(=)
n
wn
t-‘
ot
0

p-J
wn
e
e
-
1
(@]
[¢’]
e
e
7]

Lk Ve R oot o3

Qe
JLIULLULCTD e o o o o o

oo
rﬂ
b
7]

List of Available Space . . .

o 0O

Recursion ¢ « « « &

tr
=
o
50
®
f>]
o
®
b
+2)
5
e
-
&
<
+H]
o
o
®
-n
€
2]
o
(o d
o
O
53
un

ey]

Naming Conventions

ITI. THE SUBPROGRAMS OF SLIP

A. List Creation
B. Manipulating List Data . .
C. Manipulating Cell Data .
D. Reader and Advance Functions .
E. Character Manipulation
F. Recursion « ¢ ¢ ¢« + &
G. Input and Output
H. List Marks and Description Lists .
I. Miscellaneous Subprograms
IV, A SAMPLE SLIP PROGRAM .,

REFERENCES « ¢« ¢ o ¢ o o« &

DISTRIBUTION LIST

LIST OF ILLUSTRATIONS

Figure Page
1 The Format of a SLIP-Cell + ¢« « « « « . 28
2 A Simple List Structure Showing a Super List
Containing One Sublist « +« « ¢« .+ . . 29

I. INTRODUCTION
This paper describes the SLIP system for the BRLESC II computer.
SLIP is an acronym standing for Symmetric List Processor, a collection
of subprograms originally designed and written by Professor Joseph

We1zenbaum in 1963.

List processors are designed to process data consisting of

iists

List proce551ng has been used for symbolic proce551 g
3 1

e

avar athamat+s

(7

in
3¢ +ha noi
P \.“CUJ.'V, luu\.uuulu\-a. vE 4
ial intelligence, and num rous

SLIP is not an autonomous system, but a set of subroutines

embedded within the FORTRAN language. To use SLIP one need only
familiarize himself with FORTRAN and the SLIP subprograms. SLIP is
highly modular; a call to one subprogram may evoke a dozen other
subprograms. A version of SLIP resides on the BRL disc and may be

.
.
accessed via the * COMPILE card as follows:

* COMPILE DISC, SLIP, ALL

SLIP is a list processing system in which each list cell (2 FORTRAN
words) carries a forward and backward link as we11 as a datum., It
symmetric in the sense that lists do not have a preferred orientation.
That is, operations which can be carried out on the top of a list can

be as easily carried out on the bottom of the list,

SLIP (as many other list processing languages) contains the following
features: dynamic storage allocation, recursive subprogramming, manipula-
tion of complex data structures, and pushdown stores.

Dynamic storage allocation (2.)*is the automatic assignment &and
release of storage uurlng execution. The user creates lists as needed
and erases them when he is through working with them.

A recursive subprogram is one which calls itself. Generally, a
routine may not call itself because the return linkages (where control
next passes) would be destroyed. SLIP however provides mechanisms for
saving return linkages in a pushdown list (or stack) so control always

»a nf
VA

passes to the proper ‘porti n 0 tneé program. ine recursive feature
SLIP is not as sophisticated as mechanisms provided in other list

processing languages.

The data structures of SLIP may contain symbolic as well as numeric
information. Information is carried by the relational structure as well
as the symbolic content of the data.

*Numbers in brackets

o

idicate references.

A pushdown store or stack may be thought of as a store with the
property that only the first element of the data may be accessed.
Elements are added to the store by "pushing down" the existing list
and placing the new element on the stack. When the first element is
removed the stack is '"'popped-up'" and the next element becomes available

by becoming the first element.

The remainder of this report contains a description of SLIP (for
further information see 1. and 3.). In addition, a brief description
of the more than 100 subprograms of SLIP is given. Finally; an
illustrative example using many but not all of the SLIP features is
shown (see 1, for 15 examples which exercise 70% of the SLIP system).

II. THE FUNDAMENTALS OF SLIP
A orT TN ﬂ-'l'l_
R, oLir-LUeC1lld

The basic unit of SLIP is the SLIP-cell. A SLIP-cell consists of
two contiguous computer words (Figure 1). The first word is d1v1ded
into three fields: a two-bit identifier field (ID), and two address
sized fields called the left link (LNKL) and right link (LNKR). The

LNKL and LNKR fields contain the addresses of nelghborlng SLIP-cells.

The LNKL field contains the address of the word to the left of it

{the word above it if thought of as a stack). The LNKR field contains
the address of the word to the right of (or below) it. The machine
addresses are called "pointers", and one usually says the LNKL field
"points" to the word to the left of (or above) it.

In general, the second word of the SLIP-cell contains a datum. The
datum assumes two forms: a datum proper or the above subdivision into
ID, LNKL, and LNKR fields.

The ID field of the SLIP-cell identifies the cell as follows
ID CELL TYPE
0 List cell with non-name as datum
1 List cell with list name as datum
2 Header cell
Header cell
3 Reader cell

If the ID is 0, the second word of the SLIP-cell contains a datum
proper; if 1, the name of a list; if 2, the name of an auxiliary list
and a count of how many times it is referred to; and if 3, the name of a
list and a count of the depth of the 1ist (how deep a sublist it is).

A cell which contains the same machine address in both its LNKL
and LNKR fields contains the name of a list. If more than one cell
contains the name of the same list, that list is said to have aliases.

o0

The Header and Reader cells are special. Every list has one cell
which is its Header. The ID and LNKL fields of the second word of the
Header allow special information to be attached to the list it heads.

If there are four or fewer classes of lists, a list mark may be used

(ID field). If more than four classes exist, one must use Description
Lists (LNKL field). The List Mark allows enhanced cross-referencing
through complex list structures. It is essentialiy an ID for a sublist.
A Description List is an associate list of a main list rather than a

sublist or subordinate list (although it may also function as a sublist).
The Reader cell will be discussed in Section II.E.

B. List Structures

A list structure is a set of lists such that all but one
lists are sublists of the set. Figure 2 shows a simple 1
A list is a sublist if its name is in the datum field o
(on a super list), and that cell contains a 1 in its ID fie

Much of the power of list processing derives from being able to
create and manipulate list structures. That is, putting the name of
one list onto another list and then working with the entire structure
as a single entity.

~

C. List of Available Space

The list of available space (LAVS) is the space in which all the
SLIP-cells are formed. This area must be declared by the user in his
program. It is best to declare LAVS to occupy all of core memory
remaining after the compilation of all FORTRAN programs needed by the
SLIP system. Currently, this system requires 11000 words of storage.

LAVS is form d by the user calling subroutine INITAS which links
1. a1 A
C d

In addition to calling INITAS, the user must define the following
blank common area:

COMMON AVSL, X(100)

AVSL is a single FORTRAN word so constructed that its LNKR field
contains the address of the first word pair of LAVS and its LNKL field
the address of the last word pair. When a SLIP-cell is taken or

returned to LAVS, AVSL is modified to reflect this change. In some
SLIP systems, AVSL is a list just like any other SLIP list. At BRL,
only one directional pointers appear in AVSL.

X is an array containing 100 public lists with aliases X{1),X(2},..
X{100). By public, the aliases are known to all sub pTograms through the

I'd

L
common statement. An important use of public lists is in recursions
here they serve in the communication of parameters. The user must not

9

With SLIP, it is the users responsibility to erase lists when they
are no longer needed. This space would then be returned to LAVS., There
is no automatic erasure or garbage collection in SLIP,

D. Recursions.

One of the most powerful techniques of list processing is recursion.
This is the feature which allows a subprogram to call itself. The
SLIP subroutines which make recursion possible are VISIT and TERM.

A symbolic label defined by means of the FORTRAN ASSIGN statement
is one of the arguments in VISIT's calling sequence. After stacking
the proper return address on an internaliy kept iocal list,

Vi
transfers control to the address provided by the symbolic labe

VISIT
oll
1
i

TERM passes control back to VISIT with a value which will become
the value of VISIT. The normal FORTRAN control sequence is executed after
normal exit from VISIT.

The statements:

[

CALL TERM (C, NOUSE, TEMP)

transfers control to GOTO, executes some code, and returns to VISIT from

TERM where Y obtains the value C. Upon exiting from VISIT, normal flow
continues (i.e. the RETURN statement is ultimately executed).

i notice that TERM, a FORTRAN function, has 2 arguments
shown in SECTION III.F. and 3 arguments above. The third argument
arises at the BRL on BRLESC II when a function is called as a subroutine.
In this instance a word must be provided to accommodate the value of

the function. TEMP is such a word.

]
4 -

It is possible to go through ioops within loops. That is, code
may exist containing many calls to VISIT in a given block. The user
may look upon the VISIT function as a GO TO nperatlon under COﬂtI‘Ol of

A AW LAUMNL Ml

VISIT.

10

VISIT and TERM have been written independently of the SLIP system
and stand alone. Up to 400 recursions have been provided for.

E. The Reader and Advance Functions

The Reader is an indexing apparatus. It allows the user to traverse
list structures comprehensively. The Reader is a one-dimensional stack

whose elements refer to branch points at which descents were made into
sublists. In other words, the Reader keeps a historical record of its

The advance functions modify the state of the Reader. Advancement
may be linear or structural. Linear advancement is an advance through
a list element by element and is halted when a Header is reached.
Structural advancement is an advance through a list allowing descents

into sublists (if advancement is to the left). The next unit of am
advance may be a datum, a sublist name (Header), or either of these.

Advancement may occur to the left or to the right. This means that we
may search through a list from bottom to top (left), or top to bottom
(right).

F. Naming Conventions

In general, SLIP disregards the mode of subprogram arguments. The
returned value of a function does however follow the standard FORTRAN
naming conventions. Names beginning with I, J, K, L, M, or N are

considered integers. Names beginning with any other letter of the
alphabet are treated as floating point. In order to avoid unwanted
conversions, SLIP has two functions, REEL and INTGER, to adjust the
value of ill-named functions,

THE SUBPROGRAMS OF S

This section gives a brief description of each SLIP subprogram.
Wherever possible, the subprograms are grouped along functional lines.
Most of the SLIP subprograms are function subprograms and are written in
FORTRAN. An indication (in parenthesis) will be given when there is a
deviation from this. The codes, Weizenbaum or Hirschberg, will be
indicated by a W or H in parenthesis preceding the subprogram name.

user must append on extra argument to the FORTRAN calling sequence when
using the BRLESC II computer. This extra argument contains the
value of the function upon leaving the function.

It is often desirable to CALL a function. If this is done, the

In referr

O s conver

ams,

ng to t gr t
n mployed he

in
tio

11

X is a FORTRAN variable
LST is the alias name of a list

MADR is a FORTRAN variable containing a machine address

KADR is a FORTRAN variable containing the machine address of

another word
NRD is the alias name of a Reader

A. List Creation

(SUBROUTINE, W) INITAS(X,N) where
linear array of N words. INITAS creates and links together

available space. It also creates 100 public lists. The
user must call INITAS before any SLIP subprograms can be used

(W) LIST(LST)

LIST creates an empty list with alias LST. If the value of LST
is the literal 9, a local list is created. Local lists are for
temporary use.

(W) NXTLFT (X,MADR)
(W) NXTRGT (X,MADR)

These functions insert a new cell to the left or right, respectively,
of the cell with machine address MADR. The contents of X are placed into
L
n

PR . | PPRp | .-.c Lm ~ad
¢ second word of the cell.

-t

(W) NEWTOP(X,LST)
(W) NEWBOT(X,LST)

These functions add a new cell to the top and bottom, respectively,
of the list with alias LST. The contents of X are placed into the second
word of the cell.

These functions replace the contents of the top and bottom cell,
respectively, of the list with alias LST with the contents of X.

unc aces the contents of the second word of the
SLIP-cell 1th machlne address MADR with the contents of X.

——
[N

(W)
(W)

INLSTL (LST ,MADR)
INLSTR (LST ,MADR)

These functions leave the Header of list LST as an empty list and
insert the remainder of the list to the left or right, respectively, of

the cell with machine address MADR.

(W) TOP(LST)

(W) BOT({LST)

These functions deliver the contents of the top and bottom cell,
respectively, of the list with alias LST.

(W) POPTOP (LST)

(W) POPBOT (LST)

These functions deliver the contents of the top and bottom cell,
respectively, of the list with alias LST. That cell is then deleted
(taken off of the list).

C. Manipulating Cell Data

(ASSEMBLY SUBROUTINE H) SETDIR(I,NL,NR,X)

(ASSEMBLY SUBROUTINE H) SETIND (I,NL,NR,KADR)

These routines store the contents of I, NL, and NR in the ID, LNKL,
and LNKR fields of word X or the word whose address is given by KADR.
If any of I, NL, or NR has the value -1, the corresponding ID, LNKL, or
LNKR field is left unchanged.

(ASSEMBLY H) STRDIR(X1,X2)

(ASSEMBLY H) STRIND (X1,KADR)

These functions store the contents of X1 in X2 or the word whose
address is given by KADR,

(ASSEMBLY H) ID(X)

(ASSEMBLY H) LNKL(X)

(ASSEMBLY H) LNKR(X)

These functions deliver the ID, LNKL, or LNKR field of X.

(ASSEMBLY H) CONT (KADR)

(ASSEMBLY H) INHALT (KADR)

in KADR.

These functions return the contents of the word whose address is

m
\14

MADOV (X)

—
(9]

The different names avoid the FORTRAN naming convention.

Function MADOV returns the machine address of variable X. It is
just a call to the BRLESC II function LOC.

n -...1-.. Treas 2
D. eader and Advance Functio

(W) LRDROV (LST)

LRDROV appoints a Reader for the list with alias LST.

(W) IRARDR (NRD)

o
>

[¢/]
[
71
=
[

IRARDR erases the Reader stack whose nam
(W) LPNTR{NRD)

This function returns the location pointer field of Reader NRD.
(W) LOFRDR(NRD)

This function returns the list name field of Reader NRD.

function returns the level counter field of Reader NRD.

(W) REED (NRD)

REED returns the contents of the cell to which the Reader NRD
currently points.

(w) LVLRVT {\mD)

This function ascends into a superlist from any position in a list.
The Reader NRD points to the cell from which the descent originated.

(W) LVLRV1(NRD)

T n

1
L

5
o
[=

(as
[V
)
(¢]
4]
=
ou
[72]
]
=

[
L

[
fowy
[44]
<

(o]
ped
(]
=
ct
o

a sup

(ti v—l

This function is similar to L
rlist.

(W) INITRD(NRD)

This function makes the Reader NRD point to the Header cell of
the current list.

14

(W) LSTPRO(L
LS e S

T NRD

)
J

This function retrieves the Reader NRD reXerring to the list with
alias LST.

(H) DLSRDR(LST)
This function appoints a Reader to the Description List of list LST.

(.v {(EY (.
oy aov {0 NS ML b, FLAG)
>y (w) 7

These 12 functions advance the Reader NRD. Advancement is linear

or structural; the next unit being a datum E, a sublist name N, or
either of these W; advancement is to the left L or to the right R.
With linear advancement, FLAG is a test flag which remains 0 as long as

an error does not occur, or if a Header is not reached. It is set to
-1 otherwise. For structural advancement, FLAG remains 0 until the
Header of the main list is reached. At this time, FLAG is set to -1.

(W) ADVSL(NRD,J,K)
(W) ADVSR (NRD,J,K)

These functions do the basic bookkeeping and Reader updating for
the Reader NRD. The values of J and K delimit advancement options.
The user should rarely have direct need of these routines.

This function advances the Reader NRD N steps linearly to the right.
FLAG remains 0 if an error does not occur, or if a Header is not
reached. FLAG is set to -1 otherwise.

(W) SEQRDR (LST)

This function appoints a Sequence Reader for the list with alias
1CT

(W) SEQLL(KADR, IFLAG)

(W) SEQLR(KADR, IFLAG)

These functions advance the Sequence header KADR linearly to the
left and right, respectlvely IFLAG is set to -1, 0, or 1 depending
upon whether or not the SLIP-cell contains a datum, subllst name, or a

andar rall

15

(H) SREED (KADR)

This function delivers the contents of the second word of the
SLIP-cell to which the Sequence Reader KADR is currently pointed.

(H) LSPNTR(KADR)
This function returns the machine address of the cell to which
the Sequence Reader KADR is currently pointed.

(W) SEQSL (KADR, IFLAG)
(W) SEQSR(KADR, IFLAG)

These functions resemble ADVSEL and ADVSER respectively They
descend into sublists for which KADR is the Sequence Reader. When they
reach a terminal sublist (one for which no other sublist exists), they
behave as two linear sequence functions at that level., IFLAG is
returned as -1 for datum cells, and +1 for Header cells.

(H) ADVDL (KADR,VAL)

(H) ADVDR(KADR,VAL)

These functions advance the Description List Reader KADR left and
right, respectively, to the next attribute. VAL is given the attribute
value unless no attributes remain, in which case, VAL is set to 0.

E. Character Manipulation

The routines described in this section are general purpose character
manipulation routines. They stand alone and may be used to advantage
outside of the SLIP system.

(H) CP(M)

This function delivers a mask covering the Mth character position.
1<M<10. M=1 represents the leftmost character position; M=10 the right-
most character position.

This function extracts that portion of X specified by MASK and
delivers it right justified and zero filled. X remains unchanged.

(ASSEMBLY H) SQIN(MASK,DATUM,DEST)

This function replaces the portion of DEST that is covered by MASK
with the corresponding number of low-crder bits of DATUM.

Thie fivantlan Tafes chifeeae NECT LW N hid+ macdttlance amd wmanlansns Lo
LIllD A4AUlILULAVIL A1TLAL Dllli Lo VLVL U] N UAdL PU:L LAVIID allu 1 cp;a&.c: LIIC
vacated bits with N low-order bits of DATUM.

(ASSEMBLY H) LANORM(X)

LANORM performs left circular shifts in six bit bytes until the
leftmost character of X is non-blank. This function operates on
10 characters or 60 bits.

(SUBROUTINE W) PRESRV(N)

This subroutine preserves the top cell of the first N (< 100)
public lists.

lists.
(H) PARMT(X,N)

This function places X(I), I=1,N on the top of the first N (< 100)
public lists.

This function places A and B on top of public lists 1 and 2
respectively.

{H

LITOTM AT

)

This function transfers control to the statements with symbolic
label GOTO. NOUSE is either an unused argument or PARMT or PARMT2
depending upon the subprogram usage. The value of VISIT is determined

by function TERM.

This function transfers control back to VISIT, X is the returned
value., NOUSE is either an unused argument or RESTOR(N) depending upon

the subprogram usage.

17

VISIT and TERM work in tandem. They can stand alone outside of
the SLIP system (with functions INHALT and S8TRIND). Provision has been
made to accommodate up to 400 recursions.

G. Input and Output
In addition to the powerful FORTRAN input and o
t

SLIP provides several special purpose input-outpu

put capab111t1es,
programs of its own.

ut
subnr

P s . T]

(WgH) RDLSTA(Z)

Function RDLSTA reads in and displays a list structure. Lists and
sublists are delimited by parentheses; elements may be separated by
commas. All 80 columns of the card are read. A list structure may be
punched on several consecutive cards. In general, blanks are squeezed
out but Lney may be used to mexove readability. cCi€éments 10nger than
10 characters are truncated on the right, and an error warning given;
elements shorter than 10 characters are left justified and blank filled,

Characters are converted to their BCD (blnary coded decimal) equivalent.
A list structure is started with an open parenthesis and terminated after
the last closed parenthesis by an asterisk. The dummy argument Z in the

calling sequence is not used by the function.

A structure given by

(A(B(C)))* would produce the following output

BEGIN INPUT LIST

(A(B(C)))*

WORD = A

WORD = B

WORD C

END INPUT LIST - LIST NAME = machine address in repeated format
(SUBROUTINE W) PRLSTS(LST,M)

(SUBROUTINE W) S(LST,M)

L s PP

This routine prints the second word of every non-name SLIP-cell of
1st with alias LST. M, an integer, defines the output mode as

INTEGER

1
2 ALPHANUMERIC
3 REAL - F FORMAT
4 OCTAL

-

(H) RITEIT

(LST,M,N)
This function prints the second word of every non-name SLIP-cell of
the list with alias LST. In addition, the machine address of every element

P
nouc

of the list is output in octal. M, an integer, defines the output
as follows:

INTEGER

REAL - F FORMAT

BN

18

N is a flag controlling the output of repeated sublists. If N is
0, repeated sublists are noted put not printed after the first time. If
N is non-zero, repeated sublists are printed every time they are

encountered.

H. LIST Marks and Description Lists
(W) MRKLST(N,LST)
MRKLST places N (=0, 1, 2, 3) as the List Mark for the list with

(W) MRKLSS(N,LST)
MRLKSS places N

= (0, 1, 2, 3) as the List Mark for the entire list
n1vnn P\\r 1QT

[4
0!
<
i
N

(W) LSTMRK(LST)

This function delivers the value of the List Mark for the list with

(H) IRADLS(LST)
IRADLS erases the Description List of the list with alias LST.

(W) NAMEDL (LST)

Ths <
1114 D

- Feormndtd 3 A ~
P LuUuliv o 1 <
associated with the 1i

the Header of ¢t
ose alias is LST.

~
LUl

n
+
:3“01

(W) LISTAV(LST)

This function creates an empty Description List for the list with
alias LST.

(W) MAKEDL (LST1,LST2)

This function causes LST1 to become the Description List of the
list with alias LST2.

(W) LDATVL (AT,VAL,LST)

This function adds to or creates the Description List LST. 1If
LST exists AT and VAL, an attribute pair are placed on the list. If LST
does not exist, it is created and then AT and VAL are placed on it.

(W) NEWVAL (AT,VAL,LST)
This function searches the Description List of the list with alias

LST for the attribute AT. If found, VAL is assigned the value of AT,
otherwise, both AT and VAL are added to the list.

19

(W) NOATVL (AT,LST)

This function removes the attribute AT from the Description List
of the list with alias LST.

(W) ITSVAL(AT,LST)

This function delivers the value associated with the attribute AT
from the Description List of the list with alias LST.

(W) MTDLST (LST)

This function empties the Description List of the list with alias

~

W) MADATR(AT,LST)

This function returns the machine address of the cell on the
Description List of the list whose alias is LST and contains the
attribute AT.

This routine prints the Header of list LST if a Description List of
the list with alias LST cannot be found. It is an error routine which
terminates the job.

(H) SCHATL(AT,LST)
(H) SCHATR (AT,LST)

hese functions search the Description Lists of the list with alias
LST for the attribute AT to the left and right, respectively

I. Miscellaneous Subprograms

(W) DELETE (MADR)

(H) EQUAL(A,B)

This functions test A and B for equality. If they are equal, 0 is
returned; otherwise, -1 is returned.

seeas T alalc

20

(W) IRALST(LST)

This function returns the list with alias LST to available space.
It erases the list.

This function tests to see if the list with alias LST is empty.
If so, 0 is delivered, otherwise, -1 is returned.

(W) LOCT (LST)

This function tests to see whether or not its argument LST is a
list alias. 1If so, the returned value is the alias, otherwise, a
message is printed and the program is terminated. The user will rarely
ever need to use LOCT directly.

(W) LPURGE (LST)

This function deletes all references to lists from the list
structure LST.

(W) LSSCPY(LST)

()
ot
b4
o)
ot
-2
I~
Jpd
[
w
tn
-
¥7]
—]

(W) LSTEQL(LST1,LST2)

This function compares list LST1 with list LST2 for equality. If
they are indentical in structure and content, the returned value is 0,
otherwise, -1 is returned.

(W) MADLFT (MADR)
(W) MADRGT (MADR)

These functions return the machine address of the cell to the left
and right, respectively, as specified by the machine address MADR.

(W) MADNTP (LST,N)
(W) MADNBT(LST,N)

These functions return the machine address of the Nth cell from
the top and bottom, respectively, of the list with alias LST.

(W) MTLIST(LST)

. PRI oo A1 La ~ e ~L < . 3

This function returns all the cells of the list with alias LST to
available storage except for the Header cell and the Description List
(i€ Ana avi ef-e)
L4d VI CVAlOLO .

21

(W) NAMTST (LST)

This function tests the alias of the list LST. If an alias truly
exists, 0 is returned, otherwise, -1 is returned.

rd oY ATIP/IVETY P Seeh
(W) UCELL(Z)
This function obtains a new SLIP-cell from the list of available

N o
[

7]

b=

(=}

ct

o

%]

o

o o
]

space., The dummy argument

(W) NULSTL (MADR, LST)
(W) NULSTR (MADR, LST)

These functions split the list with alias LST in two from the left
and right, respectively, starting at machine address MADR.

This routine returns the cell with machine address MADR to the list
of available space.

IV, A SAMPLE SLIP PROGRAM

This section contains a program example using many of the system
features, but not all of its subroutines.

Read in a list structure containing part of the hierarchy of the
BRL management. Find a particular Laboratory Chief's name and insert
the name of another Laboratory Chief ahead of the first name. Print
the list structures before and after the modification.
ollowi
the

T™L -
111C

f ng pages contain the input data (list structure), a
listing of rogram

onta
g , and the program output.

Program Inputs:

The following is a list of the input cards to the sample program.

(EICHELBERGER (FRASIER , HOFFMAN (JOHNSON, KOKINAKIS , CUMMINGS (
CANDLAND , HERSCHBERG , HOLLOWAY , JOHNSON, SCHLEGEL))

3

J

22

JOHNSON

KOKINAKIS

CUMMINGS
CANDLAND
HIRSCHBERG
HOLLOWAY
JOHNSON
SCHLEGEL

MURPHY

Each indentation corresponds to a sublist and reflects a lower

level in the BRL hierarchy. Notice one can embed sublists with very

little effort. Notice also that Murphy is a part of the sublist
(FRASTFR HOFEEMAN MITRDUYY

\l I\f‘\UJ-l.al\ AW 1 l'll'\-l" LTIV NG 11 J .

Program listing.

Several items appearing on the program listing require special
attention. The user must not use any blank COMMON of his own. The
common statement

COMMON AVSL, X (100)

defines the limits of available space and the public lists. The user
must call INITAS which sets up the list of available space.

PROGRAM SLIP
C
C THIS PROGRAM IS AN ILLUSTRATION OF THE SLIP SYSTEM
C IT WILL DISPLAY A PART OF THE HIERARCHY OF BRL AND THEN MODIFY IT
C
C SET UP COMMON AND WORKING STORAGE AREAS
C
COMMON AVSL,X({100)
DIMENSION WRKSPC (500)
r
C INITIALIZE WORKING SPACE
CALL INITAS (WRKSPC,500)
C READ IN AND DISPLAY A LIST STRUCTURE

BRLSTF=RDLSTA(Z)
C PRINT LIST STRUCTURE
CALL RITEIT(BRLSTF,S5,0

INSERT A NAME OF A LAB CHIEF
CALL LABCHF (BRLSTF,4HREED , 7HHOFFMAN)

)
_,!

23

C PRINT LIST
CALL PRLSTS (BRLSTF,2)
C END PROGRAM

CALL EXIT
END
SUBROUTINE LABCHF (LST,SYMB1,SYMB2)
C
C THIS ROUTINE SEARCHES THE LIST STRUCTURE LST FOR SYMB2 AND INSERTS
C SYMB1 BEFORE IT
c
C APPOINT A READER FOR THE LIST STRUCTURE
LRD=LRDROV (LST)
C ADVANCE READER
10 TEST=ADVSER (LRD,FLAG)
C TEST FLAG

IF (FLAG.NE.0.0) GO TO20

C IF ELEMENT IS SYMB2 PUT SYMB1 BEFORE IT
IF (TEST.EQ.SYMB2) CALL NXTLFT(SYMB1,LPNTR(LRD))
GO TO 10

mAMATN NN aARTN

ERASE READER

0 CALL IRARDR(LRD,T

C END ROUTINE
RETURN
END

)

TEMD)
1oy

vl

Many of the subprograms of SLIP are function subprograms. They

may however be called as if they were subroutine subprograms. When
this occurs, an extra argument should be provided for to accommocdate
the value of the function. The call of IRARDR contains the extra

argument TEMP for this purpose. Notice the function subprogram NXTLFT
does not have an extra argument to provide for the value of the
function. When an extra argument is not provided, an error may occur.
Fortunately, in this instance no error occurred.

Program outputs consist of a listing of each input card followed
by a breakdown of every element on that card. An element can contain
only 10 characters. If more are included they are truncated on the
right and an error warning is printed The output beginning with

BEGIN INPUT LIST and ending with END INPUT LIST - LIST NAME, etc. is
produced by FUNCTION RDLSTA. The output beginning with IST STRUCTURE
WITH HEADER, etc. and ending with END OF LIST STRUCTURE is printed by
subroutine RITEIT. The numbers are the octal machine addresses of the

listed elements. The output beginning with BEGIN LIST and ending with
END LIST is printed by subroutine PRLSTS.

%)
>

We observe that the element REED has been placed before the element
HOFFMAN.

The output from subroutine RITEIT reflects the list structure as
it is originally read. The output of subroutine PRLSTS contains the
modified list structure.

BEGIN INPUT LIST
(EICHELBERGER(FRASIER, HOFFMAN (

WORD=EICHELBERG

MORE THAN 10 CHARACTERS IN WORD
WORD=FRASIER
WORD=HOFFMAN

WORD=JOHNSON
WORD=KOKINAKIS
WORD=CUMMINGS
CANDLAND ,HIRSCHBERG,HOLLOWAY , JOHNSON ,SCHLEGEL))
WORD=CANDLAND
WORD=HIRSCHBERG

WNADN_TINT T ALT AV
NWURDU=MNVLLWUWAIL

WORD=JOHNSON
WORD=SCHLEGEL

MURPHY)) *
WORD=MURPHY
END INPUT LIST - LIST NAME = 1045200000021124
LIST STRUCTURE WITH HEADER AT 21124
21131 EICHELBERG
SUBLIST 21132

21141 FRASIER
21143 HOFFMAN
SUBLIST 21144
21153 JOHNSON
21155 KOKINAKIS
21157 CUMMINGS
SUBLIST 21160
21167 CANDLAND
21171 HIRSCHBERG
21173 HOLLOWAY
21175 JOHNSON
21177 SCHLEGEL
END OF SUBLIST
END OF SUBLIST
21201 MURPHY
END OF SUBLIST

END OF SUBLIST STRUCTURE

25

HIRSCHBERG
HOLLOWAY
JOHNSON
SCHLEGEL

END SUBLILSI

EANNY CIIDT TCT
CND ouUbuLliol

MURPHY
END SUBLIST
END LIST

()]

on

Findler, N.V., Pfaltz, J.L., and Bernstein, H.J., Four High-Level
Extensions of FQRTRAN IV: SLIP, AMPPL-II, TREETRAN, SYMBOLANG,

New York: Spartan Books, 1972, ppl-82.

Hirschberg, M.A. "Dynamic Storage Allocation for the BRLESC II
Computer,’ Aberdeen Proving Ground, Maryland, (to be published.)

Adms A e . Py - ol ER Syt LR S
nbaum, J. Symmetric List Processor. Communications of the
Association for Computing Machinery, 1963, 6, 524-544.

27

8¢

1D LNKL LNKR

DATUM

Figure 1. The Format of a SLIP-cell

A

\V
AN "4

Figure 2- A Simple List Structure Showing a Super

List Containing One Sublist
29

DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization
12 Commander 1 Commander
Defense Documentation Center U.S. Army Electronics Command
ATTN: DDC-TCA ATTN: AMSEL-RD
Cameron Station Fort Monmouth, New Jersey
Alexandria, Virginia 22314 07703
1 Director 1 Commander
Defense Advanced Research U.S. Army Missile Command
Projects Agency ATTN: AMSMI-R
ATTN: Tech Info Ctr Redstone Arsenal, Alabama
1400 Wilson Boulevard 35809
Arlington, Virginia 22209
1 Commander
1 Director U.S. Army Tank Automotive
Institute for Defense Analysis Command
400 Army-Navy Drive ATTN: AMSTA-RHFL
Arlington, Virginia 22202 Warren, Michigan 48090
1 Director 2 Commander
Defense Intelligence Agency U.S5. Army Mobility Equipment
Washington, DC 20301 Research § Development Center
ATTN: Tech Docu Cen, Bldg. 315
1 Commander AMSME-RZT
U.S. Army Materiel Command Fort Belvoir, Virginia 22060
ATTN: AMCDL
5001 Eisenhower Avenue 1 Commander
Alexandria, Virginia 22333 U.S. Army Armament Command
Rock Island, Illinois 61202
1 Commander
U.S. Army Materiel Command 1 Commander
ATTN: AMCRD-T U.S. Army Harry Diamond
5001 Eisenhower Avenue Laboratories
Alexandria, Virginia 22333 ATTN: AMXDO-TI
Washington, DC 20438
1 Commander
U.S. Army Aviation Systems 1 Director
Command National Bureau of Standards
ATTN: AMSAV-E Department of Commerce
12th § Spruce Streets Washington, DC 20234
St. Louis, Missouri 63166
1 Director
U.S. Army Air Mobility Research
and Develonment I_ahgratgry

and Developm
Ames Research Center
Moffett Field, California 94035

31

Dir, USAMSAA
ATTN: AMXSY-D, Dr. J. Sperrazza
Mr. L. Bain
Mr. W. Wenger
Dir, USAHEL

ATIN: Dr. J. Weiss
Dr. R. Bauer
Cmdr, USATECOM

32

