
XJT~ ^ •'

m

CD

ADjfö^A^3

REPORT NO. 1731

SLIP FOR THF RRIFSP 11 rnwiPUTFR •J ft- I I I V l\ 1111« k# I \ I- b- taS W | | Will I W I fc. I »

iviunun M. nnauiueiy

juiy 1974

Approved for public release; distribution unlimited.

iirA n*ii imp nrrrAnou I AonDATf\DICC
Uirt DMLLIOM^ rcc^Crtrc^n LttDwniur\ii.j
ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia

ine tindings in tnis report are not to De construea as
an official Department of tue Army position, unless
J\J UVJXKliak&U \J J ULUV1 aULilUHLbU UUV.UJIIV1ILJ .

UNCLASSTFTFn
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

BRL Report No. 1731

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE fand Subtitle)

SLIP FOR THE BRLESC II COMPUTER

5. TYPE OF REPORT ft PERIOD COVERED

Final
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf«)

MQTtrin A Hi rcrVihpro i.w^ww ^-~~..w~-ö

8. CONTRACT OR GRANT NUMBERf»)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

USA Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

10. PROGRAM ELEMENT, PROJECT, TASK
AREA A WORK UNIT NUMBERS

ii. CONTROLLING OFFjL-E NAML AND ADDRESS

U.S. Army Materiel Command
5001 Eisenhower Avenue
Alexandria, VA 22304

l? oronoT niTB

JULY 1974
13. NUMBER OF PAGES

32
14. MONITORING AGENCY NAME ft ADDRESSf// different from Controlling Office) 15. SECURITY CLASS, for this report)

UNCLASSIFIED
15o. D EC LASSIFI CATION/DOWN GRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for nubile release; distribution unlimited.

'7. DISTRIBUTION STATEMENT (of the abstract entered In Block 30, It different from Report)

18. SUPPLEMENTARY NOTES

19- KEY WORDS (Continue on reverse side it necessary and identity by block number)

Symmetric List Processing List Structures Lists
List Processing Ril"ig Structures Reentrant Subprogramming
String Processing Strings Rings
Symbolic Processing Linked Lists Circular Lists
Recursive Subprogramming Character Manipulation

20. ABSTRACT ("Continue on reverse side it necessary and identify by block number)

SLIP, an acronym for Symmetric List Processor, is a list processing system
which carries a forward and backward link as well as a datum. It is symmetric
in the sense that list*^ dn Tint bave a oreferred orientation: operations which
can be carried out on the top of a list can be as easily carried out on the
bottom of the list.

List processing languages are formal mathematical bnguages and have been
used in symbolic processing in calculus, circuit theory, mathematical logic,

| artificial intelligence, and numerous other applications«

DD | JANM73 1473 EDITION OF 1 NOV 6S IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEP«i«n Dmlm Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfWiM Date Entered)

lABLfc Uf LUNIfcNIÖ

Pa er**

ABSTRACT 1

LIST OF ILLUSTRATIONS 5

I. INTRODUCTION 7

TT TUn CIIMTIAMEMTA! C f»C CTTD 8

A. Slip-Cells 8

C. List of Available Space 9

D. Recursion 10

C TV>A DAO/1 ä-V» oitsJ AJirnn/«a Ci !**/*+■ ■? rtf\ e 11 l_> • llic i\cauci cuiu nuvan^^ i unu t- xv/iu •••••••••«

F. Naming Conventions ü

III. THE SUBPROGRAMS OF SLIP H

A= List Creation 12

B. Manipulating List Data

C. Manipulating Cell Data 13

D. Reader and Advance Functions 14

E. Character Manipulation 16

F. Recursion x/

G. Input and Output 18

H. List Marks and Description Lists 19

I. Miscellaneous Subprograms 20

IV. A SAMPLE SLIP PROGRAM 22

REFERENCES 27

DISTRIBUTION LIST 31

LIST OF ILLUSTRATIONS

Figure Page

1 The Format of a SLIP-Cell 28

2 A Simple List Structure Showing a Super List
Containing One Sublist 29

I. iNlKUUUlillUN

This paper describes the SLIP system for the BRLESC II computer,
SLIP is an acronym standing for Symmetric List Processor, a collection
of subprograms originally designed and written b~y Professor Joseph
Weizenbaum in 1963.

List processors are designed to process data consisting of lists
of symbols. List processing has been used for symbolic processing in
differential and integral calculus, circuit theory, mathematical logic,
translation of natural language, artificial intelligence, and numerous
other armlications»

SLIP is not an autonomous system, but a set of subroutines
embedded within the FORTRAN language. To use SLIP one need only
familiarize himself with FORTRAN and the SLIP subprograms. SLIP is
highly modular; a call to one subprogram may evoke a dozen other
subprograms. A version of SLIP resides on the BRL disc and may be
accessed via the * COMPILE card as follows:

* COMPILE DISC, SLIP, ALL

SLIP is a list processing system in which each list cell (2 FORTRAN
words) carries a forward and backward link as well as a datum. It is
symmetric in the sense that lists do not have a preferred orientation.
That is, operations which can be carried out on the top of a list can
be as easily carried out on the bottom of the list.

SLIP (as many other list processing languages) contains the following
features: dynamic storage allocation, recursive subprogramming, manipula-
tion of complex data structures, and pushdown stores.

Dynamic storage allocation (2.)*is the automatic assignment and
ise of storage during execution. The user create

and erases them when he is through working with them.

A recursive subprogram is one which calls itself. Generally, a
routine may not call itself because the return linkages (where control
next passes) would be destroyed. SLIP however provides mechanisms for
saving return linkages in a pushdown list (or stack) so control always
passes to the proper portion of the program. The recursive feature of
SLIP is not as sophisticated as mechanisms provided in other list
processing languages.

The data structures of SLIP may contain symbolic as well as numeric
information. Information is carried by the relational structure as well
as the symbolic content of the data.

*Nwnbe-VR i-n hytnnka+.R n.nAi.nrrha wefpyeYifep:. — _- „ ___ .wj .

A pushdown store or stack may be thought of as a store with the
DroDerty that only the first element of the data may be accessed.
Elements are added to the store by "pushing down" the existing list
and placing the new element on the stack. When the first element is
removed the stack is "popped-up" and the next element becomes available
by becoming the first element.

I lie leiliainuei" Ul kills icpui I (.uinaiua a ucskiipiiun ui OLir iJLux
■Ptt*»+V»«»» 4 n^n wna +• 1 n« CAA 1 OTyA T ^ Tn Q/I^l + Trt« a lirl'of ^OCPTIT^tlrtn 1U1 kllCl UllUllliaLlUit 0t*W J. . uuu *J % j * *.u ft****».* w .4.W«» , i* i/iXvi Uv5w*pl-*vu

of the more than 100 subprograms of SLIP is given. Finally, an
illustrative example using many but not all of the SLIP features is
shown (see 1. for 15 examples which exercise 70% of the SLIP system).

II. THE FUNDAMENTALS ÜF SLIP

n.

The basic unit of SLIP is the SLIP-cell* A SLIP-cell consists of
two contiguous computer words (Figure 1). The first word is divided
into three fields: a two-bit identifier field (ID), and two address
sized fields called the left link (LNKL) and right link (LNKR). The
LNKL and LNKR fields contain the addresses of neighboring SLIP-cells.
The LNKL field contains the address of the word to the left of it
(the word above it if thought of as a stack). The LNKR field contains
UI1C ÜUUIC55 Ul CI1C IIU1U I.U UI1C llglll. \J±. _Ui l/CLWi»,/ J.L . ill" iiiaUiiJ.il"

nAA-raccoc a-ro rolled "nflintprc" anH flTIf» iKimllv MVC the LNIKT, field

"nnints" to the word to the left of (or above) it.

In general, the second word of the SLIP-cell contains a datum. The
datum assumes two forms: a datum proper or the above subdivision into
ID, LNKL, and LNKR fields.

ine iu neia oi me oLir-ten iaeni.ij.ici mc ten a.» IUHU»J.

in fF.I.L TYPE

l
-7

List ceil wren non-name as aatum

Reader cell

If the ID is 0, the second word of the SLIP-cell contains a datum
proper; if 1, the name of a list; if 2, the name of an auxiliary list
and a count of how many times it is referred to; and if 3, the name of a
list and a count of the depth of the list (how deep a subiist it is).

A cell which contains the same machine address in both its LNKL
and LNKR fields contains the name of a list. If more than one cell
contains the name of the same list, that list is said to have aliases.

The Header and Reader cells are special. Every list has one cell
which is its Header. The ID and LNKL fields of the second word of the
Header allow special information to be attached to the list it heads.
If there are four or fewer classes of lists, a list mark may be used
(ID field). If more than four classes exist, one must use Description
Lists (LNKL field). The List Mark allows enhanced cross-referencing
through complex list structures. It is essentially an ID for a subiist.
A Description List is an associate list of a main list rather than a
subiist or subordinate list (although it may also function as a subiist).

The Reader cell will be discussed in Section U.E.

B. List Structures

A list structure is a set of lists such that all but one of the
lists are sublists of the set. Figure 2 shows a simple list structure.
A list is a subiist if its name is in the datum field of a SLIP-cell
(on a super list), and that cell contains a 1 in its ID field.

Much of the power of list processing derives from being able to
create and manipulate list structures. That is, putting the name of
one list onto another list and then working with the entire structure
as a single entity.

L.

The list of available space (LAVS) is the space in which all the
SLIP-cells are formed. This area must be declared by the user in his
program. It is best to declare LAVS to occupy all of core memory
remaining after the compilation of all FORTRAN programs needed by the
SLIP system. Currently, this system requires 11000 words of storage.
LAVS is formed by the user calling subroutine INITAS which links
together the available space.

In addition to calling INITAS, the user must define the following
blank common area:

COMMON AVSL, X(100)

AVSL is a single FORTRAN word so constructed that its LNKR field
contains the address of the first word pair of LAVS and its LNKL field
the address of the last word pair. When a SLIP-cell is taken or
returned to LAVS, AVSL is modified to reflect this change. In some
SLIP systems, AVSL is a list just like any other SLIP list. At BRL,
only one directional pointers appear in AVSL.

X is an array containing 100 public lists with aliases X(1),X(2),..
X(100). By public, the aliases are known to all subprograms through the
common statement. An important use of public lists is in recursions
where thev serve in the communication of parameters. The user must not

include a blank common of his own while using th© SLIP systems

With SLIP, it is the users responsibility to erase lists when they
are no longer needed. This space would then be returned to LAVS. There
is no automatic erasure or garbage collection in SLIP.

D. Recursions

One of the most powerful techniques of list processing is recursion.
This is the feature which allows a subprogram to call itself. The
SLIP subroutines which make recursion possible are VISIT and TERM.

A symbolic label defined by means of the FORTRAN ASSIGN statement
is one of the arguments in VISIT'S calling sequence. After stacking
the proper return address on an internally kept local list, VISIT
transfers control to the address provided by the symbolic label.

TERM passes control back to VISIT with a value which will become
the value of VISIT. The normal FORTRAN control sequence is executed after
normal exit from VISIT.

The statements:

Y ^ VISIT (GOTO, MOUSE)

RETURN

GOTO

CALL TERM (C, NOUSE, TEMP)

transfers control to GOTO, executes some code, and returns to VISIT from
TERM where Y obtains the value C. Upon exiting from VISIT, normal flow
continues (i.e. the RETURN statement is ultimately executed).

One might notice that TERM, a FORTRAN function, has 2 arguments
shown in SECTION IIISF. and 3 arguments above. The third argument
arises at the BRL on BRLESC II when a function is called as a subroutine.
In this instance a word must be provided to accommodate the value of
the function. TEMP is such a word.

It is possible to go through loops within loops. That is, code
may exist containing many calls to VISIT in a given block. The user
may look upon the VISIT function as a GO TO operation under control of
a DO loop and follow the FORTRAN rules for such operations in using
VISIT.

10

VISIT and TERM have been written independently of the SLIP system
and stand alone, U« to 400 recursions have been Drovided for,

E. The Reader and Advance Functions

The Reader is an indexing apparatus. It allows the user to traverse
list structures comprehensively. The Reader is a one-dimensional stack
whose elements refer to branch points at which descents were made into
sublists. In other words, the Reader keeps a historical record of its
traversal through lists.

The advance functions modify the state of the Reader. Advancement
may be linear or structural. Linear advancement is an advance through
a list element by element and is halted when a Header is reached.
Structural advancement is an advance through a list allowing descents
into suDiists (lr advancement is to tne lextj. ine next unit ui an
advance may be a datum, a sublist name (Header), or either of these.
Advancement may occur to the left or to the right. This means that we
may search through a list from bottom to top (left), or top to bottom
(right).

F. Naming Conventions

In general, SLIP disregards the mode of subprogram arguments. The
returned value of a function does however follow the standard FORTRAN
naming conventions. Names beginning with I, J, K, L, M, or N are
considered integers. Names beginning with any other letter of the
alphabet are treated as floating point. In order to avoid unwanted
conversions, SLIP has two functions, REEL and INTGER, to adjust the
value of ill-named functions.

This section gives a brief description of each SLIP subprogram.
Wherever possible, the subprograms are grouped along functional lines.
Most of the SLIP subprograms are function subprograms and are written in
FORTRAN. An indication (in parenthesis) will be given when there is a
deviation from this. The codes, Weizenbaum or Hirschberg, will be
indicated by a W or H in parenthesis preceding the subprogram name.

It is often desirable to CALL a function. If this is done, the
user must append on extra argument to the FORTRAN calling sequence when
using the BRLESC II computer. This extra argument contains the
value of the function upon leaving the function.

In referring to the argument lists of subprograms, the following
naming conventions adopted by Findler (1.) is employed here:

11

X is a FORTRAN variable
LST is the alias name of a list
MADR is a FORTRAN variable containing a machine address
KADR is a FORTRAN variable containing the machine address or
another word

NRD is the aliac name of a Reade1**

A. List Creation

(SUBROUTINE, W) INITAS(X,N) where

X is a linear array of N words. INITAS creates and links together
^ 1 "I • _-L _/? 1 * _1_ 1 __ T^. _ 1 __ _ —_ *. 4. A _ "I rt/\ _..1.li _ 1 .1 _*. « rill rne list or avanaDie space. it aisu ti«aiei iuu puuiik HM.I, UIC
user must call INITAS before any SLIP subprograms can be used.

(W) LIST (LST)

LIST creates an empty list with alias LST. If the value of LST
is the literal 9, a local list is created. Local lists are for
temporary use.

R Moninnlatinft I ict na-fa

(W) NXTLFT(X.MADR)
(Vj NXTRGT(X.MADR)

These functions insert a new cell to the left or right, respectively,
of the cell with machine address MADR. The contents of X are placed into
tne second woru Oi tue cell.

(W) NEWTOP(X,LST)
(W) NEWBOT(X.LST)

These functions add a new cell to the top and bottom, respectively,
of the list with alias LST. The contents of X are placed into the second
word of the cell.

(W) SUBSTP(X,LST)
TW! SUBSBTfX.LSTI

These functions replace the contents of the top and bottom cell,
respectively, of the list with alias LST with the contents of X.

(.wj auuai (A,i»imjKj

Function SUBST replaces the contents of the second word of the
SLIP-cell with machine address MADR with the contents of X.

(W) INLSTL(LST,MADR)
(m TNLSTR fI.ST MAHR 1

These functions leave the Header of list LST as an enrotv list and
insert the remainder of the list to the left or right, respectively, of
the cell with machine address MADR.

(,HJ lUp(LblJ
rw\ nriT ft cv\
\n) DUl ^LiO 1 J

These functions deliver the contents of the to^> and bottom cell
respectively, of the list with alias LST.

(W) POPTOP(LST)
(W) POPBOT(LST)

These functions deliver the contents of the top and bottom ceil,
respectively, of the list with alias LST. That cell is then deleted
(taken off of the list).

C. Manipulating Cell Data

(ASSEMBLY SUBROUTINE H) SETDIR(I,NL,NR,X)
(ASSEMBLY SUBROUTINE H) SETIND(I,NL,NR,KADR)

inese routings store Lne corn.cm.5 ui ±, HL, emu iii\ J.H LUC ±U, LIINNLI,

and LNKR fields of word X or the word whose address is given by KADR.
If any of I, NL, or NR has the value -1, the corresponding ID, LNKL, or
LNKR field is left unchanged.

(ASSEMBLY H) STRDIR(X1,X2)
(ASSEMBLY H) STRIND(X1,KADR)

These functions store the contents of XI in X2 or the word whose
address is given by KADR.

(ASSEMBLY H) ID(X)
(ASSEMBLY H) LNKL(X)
(ASSEMBLY H) LNKR(X)

These functions deliver the ID, LNKL, or LNKR field of X.

(ASSEMBLY H) CONT(KADR)
(ASSEMBLY H) INHALT(KADR)

These functions return the contents of the word whose address is
in KADR. The different names avoid the FORTRAN naming convention.

rw\ MAnnv rv\

13

Function MADOV returns the machine address of variable X. It is
just a call to the BRLESC II function LOG.

u. RcaoSi aim nuvam-c ruiiLiiuiia

fvn T.RDROV fl.ST"!

LRDROV appoints a Reader for the list with alias LST.

(W) IRARDR(NRD)

IRARDR erases ti

run iDVTD rwDni
^ TI J Ul 11 X IV I 111\U J

This function returns the location pointer field of Reader NRD.

(W) LOFRDR(NRD)

This function returns the list name field of Reader NRD.

rw\ T rMTD />TDn"\

This function returns the level counter field of Reader NRD.

(W) REED (NRD)

REED returns the contents of the cell to which the Reader NRD
currently points.

^n J uv LII\V x _ni\uj

This function ascends into a superlist from any position in a list,
The Reader NRD points to the cell from which the descent originated.

(W) LVLRV1(NRD)

This function is similar to LVLRVT but ascends only 1 level into
a superlist.

fWI INITRDrNRDl

This function makes the Reader NRD point to the Header cell of
the current list.

(W) LRDRCPINRDJ

TV.4 *> -Ptt-n r~ +• A s\r\ m o V £> c- o /* nrwr r» £ *Vi*» Rp9r.AT MRFi 111X3 J-Ulli\-L.JLvVll ina-iw^j a- vwp; v *. w«»w »xCdUwJ. i"S\Lf «

14

fwi i.RTPnnfi.sT.NRm
v,. j __...._ v—., — ,,

This function retrieves the Reader NRD referring to the list with
alias LST.

(H) DLSRDR(LST)

TUi «. A««««»* 4 ^« o«**ss\-i «♦- r- o D A4^4 A-V» + /\ *-V»A H A c/•>>*•; nfi An T 4 e+ /%-P 1 i e+ T CT uiXd mill, nun a^puiu uo a ivcauci tv un^ L/towj. xp tiuit uut vx x x o i. L*UI ,

(W) ADV II:J M n (NRD, FLAG)
n (w) r)

These 12 functions advance the Reader NRD. Advancement is linear
or structural; the next unit being a datum E, a subiist name N, or
.:^i ~r .ii IIT. _J.._ A. j« *.« A.1.* T„£A. T ~« A» 4-V.« M4*VA n ei LIICI ui mese >VJ ciuva.iii;cmciiL is IU LIIC ICH LI UI LU cue ngiiL i\.
U/T+>i l-i-nAg-v Q^uflnromflflt CT A/^ TC Q taet -PIQCT iArh-1 r*V» romainc H a c lmiff nc

an error does not occur, or if a Header is not reached. It is set to
-1 otherwise. For structural advancement, FLAG remains 0 until the
Header of the main list is reached. At this time, FLAG is set to -1.

(W) ADVSL(NRD,J,K)
(W) ADVSR(NRD,J,K)
{n) t\v\ Lit, ^imu, J , Kj
fW\ AnVT D r\TDH T V\

These functions do the basic bookkeeping and Reader updating for
the Reader NRD. The values of J and K delimit advancement options.
The user should rarely have direct need of these routines.

(HJ ALINLrVK(.NKU,N,hLAbJ

TVi-i c ■Piirx^'f- i rtr\ a/lvonpoc t-Vio Poa/lnT NRT1 M c+Anc linparlv t n the* T"i aht

FLAG remains 0 if an error does not occur, or if a Header is not
reached. FLAG is set to -1 otherwise.

(W) SEQRDR(LST)

inis iuncnon appoints a sequence neaaer lur tne list witn anas

(W) SEQLL(KADR.IFLAG)
(W) SEQLR(KADR,IFLAG)

These functions advance the Sequence header KADR linearly to the
left and right, respectively. IFLAG is set to -1, 0, or 1 depending
upon whether or nut the SLIP-cell contains a datum, suulist name, or a

15

CHI SREEDfKADRI

This function delivers the contents of the second word of the
SLIP-cell to which the Sequence Reader KADR is currently pointed.

(Hj LSPNTR(KADRj

This function returns the machine address of the cell to which
the Sequence Reader KADR is currently pointed.

(W) SEQSL(KADR,IFLAG)
(W) SEQSR(KADR.IFLAG)

These functions resemble ADVSEL and ADVSER respectively. They
descend into sublists for which KADR is the Sequence Reader. When they
reach a terminal sublist (one for which no other sublist exists), they
behave as two linear sequence functions at that level. IFLAG is
returned as -1 for datum cells, and +1 for Header cells.

(H) ADVDL(KADR,VAL)
(H) ADVDR(KADR,VAL)

These functions advance the Description List Reader KADR left and
right, respectively, to the next attribute. VAL is given the attribute
value unless no attributes remain, in which case, VAL is set to 0.

E. Character Manipulation

The routines described in this section are general purpose character
manipulation routines. Tney stand alone and may be used to advantage
outside of the SLIP system.

(H) CP(M)

This function delivers a mask covering the Mth character position.
1<M<10. M=l represents the leftmost character position; M=10 the right-
most character position.

^AaanMDLii nj OVJUUI ^iinoi^, AJ

This function extracts that portion of X specified by MASK and
delivers it right justified and zero filled. X remains unchanged.

(ASSEMBLY H) SQIN(MASK,DATUM,DEST)

This function replaces the portion of DEST that is covered by MASK
with the corresponding number of low-order bits of DATUM.

ID

(.ASSEMBLY H) SHIN(N,DATUM,DESTJ

111X3 lUHLU-lUll ICH 3111119 ULÜ1 U/ II Uli pUSlllUllS CUIU XCpj.tH.CS LUC

vacated bits with N low-order bits of DATUM.

(ASSEMBLY H) LANORM(X)

LANORM performs left circular shifts in six bit bytes until the
leftmost character of X is non-blank. This function operates on
10 characters or 60 bits.

(SUBROUTINE W) PRESRV(N)

This subroutine preserves the top cell of the first N (<_ 100)
public lists.

rriinnmiTTur Tii"\ nrpTnn rvr>
^OUDHAJU i line nj n.co i ui\ ^n)

This subroutine deletes the ton cell of the first N (< 100) riublic
lists.

(H) PARMT(X,N)

This function places X(I), 1=1,N on the top of the first N (<_ 100)
public lists.

Ofl P.ARMT2fA.B"l v— J» — s

This function places A and B on top of public lists 1 and 2
respectively.

CllN WTPTT /"jnrvmn \T*™»IH-»T"^
(n) V 1S1 1 (UUiUjINUUSEJ

This function transfers control to the statements with svrobolic
label GOTO. NOUSE is either an unused argument or PARMT or PARMT2
depending upon the subprogram usage. The value of VISIT is determined
by function TERM.

(H) TERM(X,NOUSE)

value. NOUSE is either an unused argument or RESTOR(N) depending upon
the subprogram usage.

17

VISIT and TERM work in tandem. They can stand alone outside of
the SLIP system (with functions INHALT and STRIND). Provision has been
made to accommodate up to 400 recursions.

G. Input and Output

In addition to the powerful FORTRAN input and output capabilities,
SLIP Provides several special nurnose innut-output subprograms of its own.

(W§H) RDLSTA(Zj

Function RDLSTA reads in and displays a list structure. Lists and
sublists are delimited by parentheses; elements may be separated by
commas. All 80 columns of the card are read. A list structure may be
punched on several consecutive cards. In general, blanks are squeezed
out uut tuey may be useu to improve reauauiiity. Elements longer than
10 characters are truncated on the right, and an error warning given;
elements shorter than 10 characters are left justified and blank filled.
Characters are converted to their BCD (binary coded decimal) equivalent.
A list structure is started with an open parenthesis and terminated after
the last closed parenthesis by an asterisk. The dummy argument Z in the
calling sequence is not used by the function.

A structure given by

BEGIN INPUT LIST

lilDD n — A n\ji\u — rv

WORD = B
WORD = C
END INPUT LIST - LIST NAME = machine address in repeated format

rcurRoniiTTMF w\ PRINTS CIST MI

This routine prints the second word of every non-name SLIP-cell öf
the list with alias LST. M, an integer, defines the output mode as

1 INTEGER
-^ AT m ti xn t»#T">r* T r+

3 REAL - F FORMAT
4 OCTAL

(Hj RITEIT(LST,M,N)

This function prints the second word of every non-name SLIP-cell of
the list with alias LST. In addition, the machine address of every element
of the list is output in octal. M, an integer, defines the output mode
as follows:

1 INTEGER
2 REAL - F FORMAT
3 REAL - E FORMAT

18

■*- -»-«*£ V-WJ1L1 VilXllg LJI& \J\Jk tpU V V/A. X C^CatCU 3UU119ld> 11 IN J. i

Q. repeated sublists are noted ™it not printed after the first time. If
N is non-zero, repeated sublists are printed everv time thev are * * - € - - - - — ,, — -
encountered.

H. LIST Marks and Description Lists

(W) MRKLSTfN.LST)

MRKLST places N C=0, 1, 2, 3) as the List Mark for the list with

(W) MRKLSS(N.LST)

MRLKSS places N = (0, 1, 2, 3) as the List Mark for the entire list
ctni/'ti IY»O rr i \ron ht\r T QT

(W) LSTMRK fLST)

This function delivers the value of the List Mark for the list with
alias LST.

(H) IRADLS(LST)

IRADLS erases the Description List of the list with alias LST.

(W) NAMEDL(LST)

TVif A.MA+ A r^« JAIIMAWO 4-USN U^.^J^-« «-C -#-Vi^ n Ä «-/*-** -l »^ 4- -i **^ T -l *- + 1110.3 1U11LLXU11 UC11VC13 LUC UCaUCl Ul CUC UC3V.lipLiUll U13L

associated with the list whose alias is LST.

(W) LISTAV(LST)

This function creates an empty Description List for the list with
alias LST.

(W) MAKEDL(LST1,LST2)

This function causes LST1 to become the Description List of the
list with alias LST2.

(W) LDATVL(AT,VAL,LST)

This function adds to or creates the Description List LST. If
LST exists AT and VAL, an attribute pair are placed on the list. If LST
does not exist, it is created and then AT and VAL are placed on it.

[Wj NEWVALCAT.VAL.LST)

This function searches the Description List of the list with alias
LST for the attribute AT. If found, VAL is assigned the value of AT,
otherwise, both AT and VAL are added to the list.

iy

(W) NOATVL(AT,LST)

This function removes the attribute AT from the Description List
of the list with alias LST.

(W) ITSVAL(AT,LST)

This function delivers the value associated with the attribute AT
from the Description List of the list with alias LST.

(W) MTDLST(LST)

This function empties the Description List of the list with alias
LSI .

fW*\ MADATR TAT T.ST1 ^.., .—.— v..-,——-^

This function returns the machine address of the cell on the
Description List of the list whose alias is LST and contains the
attribute AT.

(.DUDRUU1 11NE rvj UCKKUR^LiOl J

This routine prints the Header of list LST if a Description List of
the list with alias LST cannot be found. It is an error routine which
terminates the job.

(H) SCHATL(AT,LST)
(H) SCHATR(AT,LST)

These functions search the Description Lists of the list with alias
LST for the attribute AT to the left and right, respectively.

I. Miscellaneous Subprograms

(W) DELETE(MADR)

This function erases any list cell with the machine address MADR
except a HPSHRT C&A 1 <uu^^ V V X Xi

(H) EQUAL(A,B)

This functions test A and B for equality. If they are equal, 0 is
returned; otherwise, -1 is returned.

^ftOOCnDLI nj ll^HjER^AJ

This function allows X to assume an integer name.

20

(m IRALST(LST)

This function returns the list with alias LST to available space.
It erases the list.

(W) LISTMT(LST)

This function tests to see if the list with alias LST is empty.
If so, 0 is delivered, otherwise, -1 is returned.

(W) LOCT (LST)

This function tests to see whether or not its argument LST is a
list alias. If so, the returned value is the alias, otherwise, a
message is printed and the program is terminated. The user will rarely
evcx" neeu i.u use IAJI^I uiret-ii/.

(W) LPURGE (LST)

This function deletes all references to lists from the list
structure LST.

(W) LSSCPY(LST)

1 lllO X. U11V> CXU11 VI ^UI-VJ" C* S^-KJ yj J \-l J- VIIV J. -I- «-" w rt J- fc, n v* J. J. v* _/ uu. i

(W) LSTEQL(LST1,LST2)

This function compares list LST1 with list LST2 for equality. If
they are indentical in structure and content, the returned value is 0,
otherwise, -1 is returned.

run MAniPTfMAnRi
(W) MADRGT fMADR)

These functions return the machine address of the cell to the left
and right, respectively, as specified by the machine address MADR.

(H) MADINIK (.bai ,I\J
rW\ UAnXlDT/TCT v^

These functions return the machine address of the Nth cell from
the top and bottom, respectively, of the list with alias LST.

(W) MTLIST(LST)

This function returns all the cells of the list with alias LST to
 .«.: i «f~i.» M4>n**n»n AV/«JS«%-#- ^nv 4-V* A UOQ /lav* f»ö11 an A f-Vio ria crrinti nn T . n ** t"

f A ■£ A»»ft flVI CTT-CTl
^11 UUC ^AJ-Ov-O^/ .

21

(W) NAMTST(LST)

This function tests the alias of the list LST. If an alias truly
exists, 0 is returned, otherwise, -1 is returned.

(.HJ INUCfcLL(.^j

TV.-I c Pi trie» + -l rtn rtK^o-ine a nau CT TD /. A1 1 .p...^.« 4-U« 1 £ _4. ~£ il—t-i^ ***-»-»* *.uin,tiuii WUV.WAJU a.- nwn uuii — ^Cll X X Will UI IC 1151 Ul cl V ei i lei D 1 C

space. The dummy argument Z is not used.

(W) NULSTL(MADR,LST)
(W) NULSTR(MADR,LST)

These functions split the list with alias LST in two from the left
and right, respectively, starting at machine address MADR.

rsttRRnnTTWF m RPFI T rMinpi

This routine returns the cell with machine address MADR to the list
of available space.

(ASSEMBLY H) REEL(L)

mis j.unction ai IOWS L* to assume a reai ^ixoating point j name.

IV. A SAMPLE SLIP PROGRAM

This section contains a program example using many of the system
features, but not all of its subroutines.

Read in a list structure containing part of the hierarchy of the
BRL management. Find a particular Laboratory Chief's name and insert
the name of another Laboratory Chief ahead of the first name. Print
the list structures before and after the modification.

me lunuwiiig pages CUIILCIJ.II uiic xiipuL uatci I^IIM. btrucLUiej, a.
listing of the program, and the program output.

Program Inputs:

The following is a list of the input cards to the sample program.

(EICHELBERGER(FRASIER, HOFFMAN (JOHNSON, KOKINAKIS,Cu"MMINGS(
r<A\Tr\j A\IT\ umcpimrnr IH"W T r\tiiA v TnLArcmi crui rrrr ** *\
uniNuijrtiNU , nir^ocriDcivo , nuLLuim i , «jumiovjii , ai-nLDULu j j
M7IDDUV1 ^ * I'lUIVl kl 1 J J

22

niese inputs ueplCt tue lOiiOWiilg xiSt StidCture;

EICHELBERGER
ERASIER
HOFFMAN

JOHNSON
KOKINAKIS
CUMMINGS

CANDLAND
uTDcruDCnr'

HOLLOWAY
JOHNSON
SCHLEGEL

MURPHY

Each indentation corresponds to a sublist and reflects a lower
level in the BRL hierarchy. Notice one can embed subiists with very
little effort. Notice also that Murphy is a part of the sublist
rCDiCTPD unCCMAM MITBDWV» V^i i\nu ILIIXJ i iv/i A rjrui y IWIM in j i

Program listing.

Several items appearing on the program listing require special
attention. The user must not use any blank COMMON of his own. The
common statement

COMMON AVSL,X(100)

defines the limits of available space and the public lists. The user
must call INITAS which sets up the list of available space.

PROGRAM SLIP

C THIS PROGRAM IS AN ILLUSTRATION OF THE SLIP SYSTEM
C IT WILL DISPLAY A PART OF THE HIERARCHY OF BRL AND THEN MODIFY IT
C
C SET UP COMMON AND WORKING STORAGE AREAS
C

LUMMUIM AVbL,X(lUUJ

DIMENSION WRKSPC(500)
r

C INITIALIZE WORKING SPACE
CALL INITAS(WRKSPC.500)

C READ IN AND DISPLAY A LIST STRUCTURE
BRLSTF=RDLSTA(Z)

C PRINT LIST STRUCTURE
CALL RITEIT(BRLSTF,5,Ö)

U
CALL LABCHF(BRLSTF,4HREED,7HH0FFMAN)

23

C PRINT LIST
CALL PRLSTS(BRLSTF,2)

C END PROGRAM
CALL EXIT
END
SUBROUTINE LABCHF(LST,SYMB1,SYMB2)

C
C THIS ROUTINE SEARCHES THE LIST STRUCTURE LST FOR SYMB2 AND INSERTS
C SYMB1 BEFORE IT
C
C APPOINT A READER FOR THE LIST STRUCTURE

LRD=LRDROV(LST)
C ADVANCE READER

10 TEST^ADVSER(LRD,FLAG)
C TEST FLAG

IF (FLAG.NE.0.0) GO TO20
C IF ELEMENT IS SYMB2 PUT SYMB1 BEFORE IT

IF (TEST.EQ.SYMB2) CALL NXTLFT(SYMB1,LPNTR(LRD))
GO TO 10

L fcKAbfc KLAUEK
TO (-All TDADnDfTDn TCMD1

C END ROUTINE
RETURN
END

Many of the subprograms of SLIP are function subprograms. They
may however be called as if they were subroutine subprograms. When
this occurs, an extra argument should be provided for to accommodate
the value of the function. The call of IRARDR contains the extra
argument TEMP for this purpose. Notice the function subprogram NXTLFT
does not have an extra argument to provide for the value of the
function. When an extra argument is not provided, an error may occur.
Fortunately, in this instance no error occurred.

Program outputs consist of a listing of each input card followed
by a breakdown of every element on that card. An element can contain
only 10 characters. If more are included they are truncated on the
right and an error warning is printed. The output beginning with
BEGIN INPUT LIST and ending with END INPUT LIST - LIST NAME, etc. is
produced by FUNCTION RDLSTA. The output beginning with LIST STRUCTURE
WITH HEADER, etc. and ending with END OF LIST STRUCTURE is printed by
subroutine RITEIT. The numbers are the octal machine addresses of the
listed elements. The output beginning with BEGIN LIST and ending with
END LIST is printed by subroutine PRLSTS.

We observe that the element REED has been placed before the element
HOFFMAN.

The output from subroutine RITEIT reflects the list structure as
it is originally read. The output of subroutine PRLSTS contains the
modified list structure.

(EICHELBERGERfFRASIER, HOFFMAN (

WORD=EICHELBERG
MORE THAN 10 CHARACTERS IN WORD

WORD=FRASIER
W0RD=H0FFMAN

W0RD=JOHNSON
W0RD=K0KINAKIS
W0RD=CUMMINGS

W0RD=CANDLAND
WORD=HIRSCHBERG

CANDLAND,HIRSCHBERG,HOLLOWAY,JOHNSON,SCHLEGEL))

W0RD=JOHNSON
WORD=SCHLEGEL

MURPHY))*
WORD=MURPHY

END INPUT LIST - LIST NAME = 1045200000021124

LIST STRUCTURE WITH HEADER AT 2H24

SUBLIST 21132
21141 FRASIER
21143 HOFFMAN

SUBLIST 21144
21153 JOHNSON
21155 KOKINAKIS
2115 7 CUMMINGS

QHRT TQT 91 l An

21167 CANDLAND
21171 HIRSCHBERG
21173 HOLL0WAY
21175 JOHNSON
21177 SCHLEGEL

cMn nr CIIDTTCT

21201 MURPHY
END OF SUBLIST
END OF SUBLI ST STRUCTURE

25

EICHELBERG
BEGIN SUBLIST
FRASIER
REED
HOFFMAN
BEGIN SUBLIST
JOHNSON

BEGIN SUBLIST
CANDLAND
HIRSCHBERG
HOLLOWAY
JOHNSON
SCHLEGEL
END SUBLIST
TTXTr\ CTTDT T C T
C1NU OUDJjlOl

MURPHY
END SUBLIST
END LIST

1. Findler. N.V., Pfaltz, J,L,, and Bernstein, HSJ8, Four High-Level
Extensions of FORTRAN IV: SLIP, AMPPL-II, TREETRAN, SYMBOLANG,
New York: Spartan Books, 1972, ppl-82. '

2. Hirschberg, M.A. "Dynamic Storage Allocation for the BRLESC II
Computer," Aberdeen Proving Ground, Maryland,C*0 be published.)

3. Weizenbaum, J. Symmetric List Processor. Communications of the
Association for Computing Machinery, 1963, 6, 524-544.

27

00

ID LNKL LNKR

DATUM

Figure 1. The Format of a SLIP-eel

3-3

""* 1

t
-^

t

Figure 2-A Simple List Structure Showing a Super

List Containing One Sublist

29

DISTRIBUTION LIST

i^tyjLi j- w —> flroani 7.nti nn
— b

No, of
Conies Organization

g .—.—

12 Commander
Defense Documentation Center
ATTN: DDC-TCA
Cameron Station
Alexandria, Virginia 22314

1 Director
Defense Advanced Research

Projects Agency
ATTN: Tech Info Ctr
1400 Wilson Boulevard
Arlington, Virginia 22209

1 Director
Institute for Defense Analysis
400 Army-Navy Drive
Arlington, Virginia 22202

Commander
U.S. Army Electronics Command
ATTN: AMSEL-RD
Fort Monmouth, New Jersey
07703

Commander
U.S. Army Missile Command
ATTN: AMSMI-R
Redstone Arsenal, Alabama
35809

U.S. Army Tank Automotive
Command

ATTN: AMSTA-RHFL
Warren, Michigan 48090

1 Director
Defense Intelligence Agency
Unokinn»/»! Dr O f"i t f"i 1

1 Commander
U.S. Army Materiel Command
ATTN: AMCDL
5001 Eisenhower Avenue
Alexandria, Virginia 22333

2 Commander
»*_!_* 1 • _i_ _

1
U.S. Army Materiel Command
ATTN: AMCRD-T
5001 Eisenhower Avenue
Alexandria, Virginia 22333

Commanuer
II ^ Armu Ai/i a 1- i rm ^vctomc

Command
ATTN: AMSAV-E
12th § Spruce Streets
St. Louis, Missouri 63166

u.a. Army MODinty equipment
Do

ATTN
i\c ocaitn vj LJ\S v ^ x \j\u\i\s\.i u VJ^IUA-1

Tech Docu Cen, Bldg. 315
AMSME-RZT

Fort Belvoir, Virginia 22060

1 Commander
U.S. Army Armament Command
Rock Island, Illinois 61202

1 Commander
U.S. Army Harry Diamond

Laboratories
ATTN: AMXDO-TI
Washington, DC 20438

National Bureau of Standards
Department of Commerce
Washington, DC 20234

1 Director
1 I Q A -r-mw Ai r Mr» K 4 1 i tv Do ca o-v-ir-l-i yt . » J • rviiaV nil i'ivyi_r JU x J. v. V iw ovux v.n

and Development Laboratory
Ames Research Center
Moffett Field, California 94035

31

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-D, Dr. J. Sperrazza

Mr. L. Bain
Mr. W. Wenger

Dir, USAHEL
ATTN: Dr. J. Weiss

Dr. R. Bauer
fmJr. ncATPrnM _jlllVAX i uuuiouwn

32

