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NOTATION
Discrete azimuth position
Amount of nozzle covered by the cams, in inches
Nondimencional loss coefficient as defined in text
Total length of pipe, in inches
Occurring one time per revolution

Gage pressure, in pounds per square inch

Average gage pressure, in pounds per square inch

Occurring two times per revolution

Relative distance from entrance of pipe, in inches
Nondimensional position along pipe

Peak-to-peak vaiue (maximum minus minimum vaiue)

End position (x/f = 0.804)
Entrance position (x/{ = 0.245)
Middle position (x/f = 0.524)
Pipe

Plenum

Static

Tota! or stagnation
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ABSTRACT

A cam-type pneumatic valvirng system has been developed to provide helicopter
rotor control/trim forces. This valving system provides both first and second harmonic
rotor control by means of modulating both blade pressures and mass flow rates. Data
are presented for (1) constant, one-per-rev, and two-per-rev air modulation, (2) constant
and tapered slot distributions, (3) two pipe volumes, and (4) three cam-nozzle gap
distances.

The present study demonstrated that air pressure and mass flow rate can be
modulated by means of a simple cam valve system. As the gap between the periphery
of the cams and the nozzle was increased for a given cam geometry, the mean pres-
sure and mass flow rate increased and the peak-to-peak pressure and mass flow rate
decreased. It was also demonstrated that a smooth transfer of the total pressure
and mass flow rate occurred in going from a one- to a two-per-rev component (or

vice versa).

ADMINISTRATIVE INFORMATION

The work reported herein was sponsored by the Naval Air Systems Command (NAVAIR 320). Funding
was provided under Project F41.421.210, Work Unit 1-1690-100.

INTRODUCTION

The objective was to evaluate the feasibility of modulating and controlling the flow of air to a ventilated

! The actual air valve describzd herein is a work-

helicopter blade by means of a simple cam valving system.
ing mockup of one installed in a 7-ft-diameie: model rotor. When applied to a helicopter rotor, this valving
mechanism will allow for control of quantities of first harmonic, second harmonic, and steady-state air flow.
It will also provide a means of controiling the phase angle between the first and the second harmonic air
flow and some fixed reference system to allow for azimuthally locating the maximum rotor air flow.

A system of cams and nozzles are provided to accomplish these regulating functions. The nozzles are
designed into the rotor hub to facilitate passage of air from the hub plenum into each rotor blade. The
cams are located in the hub opposite the nozzles; they are fixed with respect to the airframe, but their ori-
entation is adjustable. Thus, the air valve is considerea as a system of nozzles that rotate around stationary
cams.

The valving mockup was evaluated in various geometric configurations to determine gap height effects,

mean blade pressures, and associated loss coefficients. The valving system was run with varying degrees of

lNcmmn. G. and K. R. Reader, “Cam Type Air Control Valve,” Palen) application, Navy Case 53,968 (3 Aug 1971},
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one-per-rev and two-per-rev inputs, Two receiver volumes (simulating intemnal rotor blade volume) were

evaluated, and the influence of variation in blade slot height was determined.

BACKGROUND

As part of an ongoing effort to provide a better, more efficient helicopter, the Aviation ang Surface
Effects Department of the Naval Ship Research and Development Centar (NSRDC) has been investigating 2
tangentially blown airfoul design which can readily be incorporated into a helicopter rotor blade. This shaft-
driven rotor system developes control forces by modulating air mass flow and pressure to each rotor blade.
Therefore, a simple, reliable valving system was required to provide the necessary air regulation. Two exist-

ing valving systems were considered:

1. A British system, developed by Cheeseman,? wherein ihe cyclic and collective control valves are
positioned in the nonrotating part of the rotor hub. The air mass is fed through a shaft to an annulus divid-
ed into 24 segmental passages each of which contains s slide valve. Each blade samples part of the segmental
passages. The valve opening is controlied by push rods. These are connected to the periphery of a control
disk (swashplate) which can be raised, loweied, or inclined about any axis. This system is uiable to include
higher harmoric control unless a sophisticated electromechanical servo sy.iem is added 10 drive the swash-

plate mechanism,

2. The Lockk2ed system® wherein two separate air supplies are used to control the air on the advancing
and retreating sectors of the rotor disk. In addition, each blade has two separate plenum chambers which
supply air to ihe leading edge and trailing edge slots. respectively. When 2 blade is in the advancing half of
the rotor aick, air from the advancing supply is directed through its trailing edge plenum to the trailing edge
jet slot. (A manifold blocks the flow of air to the I+ fing edge jet.) When a blade is in the retreating sector
of the disk, air is ducted from the retreating air supply through both leading and trziling edge blage plenums
to their respective slots. Roll trim is accomplished by adiusting the advancing and ret1 ating air flows. The
advancing blade pressure is analogous to conventional mechanical collective pitch, and the differential pres-
sure between advancing and retreating sectors behaves like inechanical cyclic pitch. inclusion of higher har-
monic control capability for this mechsnical system would be nearly impossible unless some differential

higher order air modulation system could be created.

These extremely complicated valving systems have provided the stimulus to develop a more practical
approach. The technology described herein mee!s tire hasic requirements of simplicity and higher harmonic
control.

2(‘hcescman. I. €., “Circulation Control and 113 Application 1o Stopped Rotor Aircrafl,” Lecture 1o Tenth Anglo-
American Aeronautical Conference, Los Angeles (18- 20 Oct 1967).

Jﬂuuymli. W. A and R, B Lewis ! “Jet Flap Cyclic Twist Feaudbility Research Program,”™ Preparcd for the Naval
Air Systems Command under Contract NOGUI9-S8.C02RS (31 Mar i970).




MODEL AND EQUIPMENT

MODEL DESIGN

The air valve described herein is 2 mockup of a system intended to regulate ‘he supply < air to a set of
ventilated helicopter rotor blades through various air nozzles and cams. The air nozzles are mounted inside
the rotor hub (vne nozzle per blade) and rotate with it. The nozzle entrance openings are all equidistant
from the center of rotatior: of the hub, Two cams, designated as first and second harmonic cams, are
located in the hub in opposition to the nuzzles. They remain stationary with respect to the rotating hub but
are adjustable 'o provide maneuvering forces.

The first harmonic cam is proportioned so that the distance between its periphery and the nozzle face
is a sine function of the angular position uf hub, and the second harmonic cam is proportioned so that the
distance between its periphery and the nozzle face is a sine function of twice the angular position of the hub.
Thus, the first harmonic cara has a singlc 'ob» and the second harmonic cam has two lobes.

Since the two cams are jointly in opposition to the nozzles, the amount of air flow control:zd by each
cam is a function of the amount of nozzle opening that each covers. The axial adjustment of their positions
provides selection of the relative amounts of air controlled by each. The quantity of steady flow air is regu-
lated by adjusting the amount of separation (in the axial direction) between the two cams. This separation
is accomplished by axial adjustment of either or both cams. The azimuth of maximum air flow is accom-
plished by the angulir adjustment of both caras, as a unit or individually, through a 0- to 360-deg 2djustment
range. As a consequence, the phase éngle between the first and second harmonic cams is also adjustable.

Changes in air mass flow rate are accomplished by regulating the pressure of the air supply to the hub

through a controllable air pressuve regulating valve inserted in the air supply line.

MODEL CONSTRUCTION

The mockup of the rotor valving system was constructed of wood. metal, and plexiglass. The main
components consisted of a plenum, a one-per-rev cam, a two-per-rev cam, a single nozzle leading into a
plugged pipe with an adjustatle slot, and a variable-speed drive motor. Since this was to be an inexpensive
model to demonstrate that the air flow can be proportionally raodulated in a one- and a two-per-rev manner,
it was decided to simplify the model by using rotating cams and a stationary plenum. Compromises were
also made both in the material and in the accuracy within which the model was constructed. The plenum
was constricted from plywood with a removable plexiglass top. One side was constructed so that a movable
nozzle could be mounted to the plenum.

The wooden nozzle fitted into a plugged brass plpe which had an adjustable slot. The slot sides were
paralle]l and the slot height was adjusted to 0.042 in. by means of external clamps. The plpe was designed to
have a resonance frequency of 136 Hz and had three total pressure and two static pressure taps. The cams

were constructed by gluing paper templets to pleces of hard wood and then sanding to shape on a large disk

sander. The cams could translate along the driveshaft, making them positionable with respect to the nozzle;
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provisions were made for locking them to the shaft. The shaft was belt driven by a 0.5-hp direct-current
motor with adequate controls to regulate the rpm accurately.

Tl internal volume of the pipe will affect the buildup and decay of the pipe pressure, and thereby it
can affect the losscs through the cam-nozzle valve system. The total and static pressure distribution within
the pipe will also be affected by the internal pipe volume. To estimate the influence of the internal pipe
volume on the losses and the pressure distribution within the pipe, a filler rod was manufactured and used
to arbitrarily reduce the pipe volume by 33 percent. The rod cross section was crescent shaped and equal to
the pipe length. It was designed to have minimal effect on the pressure taps in the pipe.

The nominal gap clearance between the cam and the nozzle can serve to introduce a collective amount
of air flow into the pipe. Two arbitrary gap clearances were selected to determine the attenuation of the
peak-to-peak pipe pressure'as the nominal gap was increased. To enable adjustment of the gap between the
periphery of the cams and the nozzle, two wooden spacers, 0.25- and 0.50-in. thick, were successively in-
stalled between the side of the plenum which held the nozzle and the four adjoining sides. In addition,

these spacers increased the volume of the plenum.

INSTRUMENTATION

The plenum pressure for all but a few runs was measured on a differential pressure gage (Wallace and
Tiernan) calibrated in inches of mercury. The pipe total pressures and static pressures were measured by
means of +15-psid Statham pressure transducers. The pipe total pressures were measured at pipe x/i''s of
0.245, 0.524, and 0.804; the static pressures, were mezsared at x/[’s of 0.245 and 0.804. The stagnation
temperature was measured in the plenum and at x/f'’s of 0.245 and 0.804. The rpm was measured by a
60-tooth steel g=ar running in close proximity to a magnetic pickup.

The signals from the pressure transducers were amplified and then filterea by a 147-Hz filter before
being recorded on an 18-channel oscillograph. The rpm was also recorded on the oscillograph. The ampli-
fiers were calibrated for the phase shift and the amplitude attentuation caused by the filters. The only data
that needed to be corrected for amplitude attentuation were those for the higher frequency two-per-rev
configurations.

The general arrangement and principal di~ensions of the model are presented in Figure 1. The experi-

imental arrangement is shown in Figure 2.

PROCEDURE

In the period from 28 January to 19 February 1969, the control valving system for a circulation con-
trolled rotor was Investigated 10 prove the feasibility of modulating the internal blade pressure in a one- and
two-per-rev manner. The test consisted of systematically changing the pcrcentage of the one-per-rev com-
ponent, the two-per-rev component, and the constant flow of air for various configurations and then varying
the plenum pressure and rpm. The configurations tested with various combinations of the one- and two-per-

rev cam included 100- and 67-percent pipe volumes, 0.25- and 0.50-in. spacers between the nozzle and the
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cams, and a linearily tapered slot. The tapered slot went from zero at the inboard blade station (x/f = 0.32)
to a maximum height of 0.084 in. at the tip.

Pipe pressure measurements were obtained for a configuraticn by setting a plenum pressure and running
a range of rpm’s. This procedure was performed for plenum pressures ranging from 1 to 13.75 psi. The
range of rpm’s tested was from 0 to 3600, corresponding to frequencies from 0 to 60 Hz for the one-per-rev
cam and from O to 120 H~ for the two-per-rev cam. The test conditions are listed in Table 1,

A discrete azimuth position method was an important technique used in testing the control valve. The
cams were positioned and restrained while data were recorded. Then the cams wese repositioned in incre-
ments of 30 deg, each time recording data for the nonrotating condition. A quasi-dynamic representation of

the valve system was obtained in this manner. An evaluation of the method is presented later in this report.

RESULTS AND DISCUSSION

EFFECTS OF ROTATING FREQUENCY ON
PEAK-TO-PEAK TOTAL PRESSURE

Figure 3 indicates the effects of the rotating frequency on the peak-to-peak total pressure for plenum
pressure ranging from 1 to 13.75 psi. The one-pe:-rev cam configuration, Figure 3a, showed a reduction in
the peak-to-peak total pressure as the frequency was increased. This trend was much greater for the higher
plenum pressures of 13.75 psi. Another important observation is that for plenum pressures below 3.04 psi,
the pressure wave for a given frequency was atientuated as it propagated down the pipe: for plenum pres.
sures of about 8.84 psi, the pressure wave was attentuated or amplified depending on the frequency.

The two-per-rev cam configuration, Figure 3b, showed a general tendency for the total pressure peak-to-
peak value to increase slightly as the frequency was Increased. However, for lower plenum pressure, it ex-
hibited the same trend as the one-per-rev cam configuration in that for a plenum pressure of 2.98 psi, the
pressure wave was attentuated only whereas above that level, the pressure wave was attentuated or amplified
depending on frequency.

When the peak-to-peak pressures are plotted versus the plenum pressure for constant frequencies, the
crossing of the entrance curve with the middle and end station curves indicates the plenum pressure above
which the pressure wave was attentuated and below which the pressure wave was amplified. These values
are given in Table 2 together with a list of the relevant frequencies. These data are for both the one- and
two-per-rev cam configurations and show the attentuation and amplification for both the center and end

positions relative to the entrance position.

AVERAGE MASS FLOW RATE FOR VARIOUS CONFIGURATIONS

The average mass flow rate of the mockup control valve is presented in Figure 4 as a function of the
plenum pressure for all configurations tested.
The effect of varying the percentage of one- and two-per-rev cam-nozzle exposure can be demonstrated

by cross plotting the average mass flow rate and the percentage of the one-per-rev (two-per-rev) cam




TABLE | — TEST PROGRAM FOR A PNEUMATIC VALVING SYSTEM

Plenum ol Configuration
Speed Pressure Slot One-per- | Two-per-

Run Range Rarige Height Rev Rev Constant | Volume | Spacer Sia
Number fm g in. percent percent percent percent in,

1- 7 | 0-3600 | 2.94-13.75 | 0.042 0 100 0 100 0 Straight
8-17 | 0-3600 | 1.50- 8.00 0.042 50 50 0 100 0 Straight
18-22 | 0-3500 | 1.00- 9.00 | 0.042 33 33 33 100 0 Straight
23-26 | 0-3500 | 1.00— 9.00 | 0.042 67 33 0 100 0 Straight
27-29 1 0-3000 | v.C0— 9.00 [ 0.042 75 25 0 100 0 Straight
30-32 | 0-3000 | 1.00— 9.00 | 0.042 33 67 0 100 0 Straight
33-37 | 0-3000 | 1.00- 9.00 0.042 20.8 79.2 0 100 0 Straight
38-41 | 0-3000 | 1.00- 9.00 [ 0.042 100 0 0 100 0 Straight
42-46 | 0-3600 1-13.75 | 0.042 100 0 0 100 0 Straight
47-50 | 0-3000 1-13.75 | 0.042 100 0 0 67 0 Straight
51-56 | DAP* 8.84 | 0042 100 0 0 67 0 Straight
57-58 | 0-3000 2- 65 0.042 100 0 0 109 0.50 | Straight
59-62 | 0-3000 1- 6.88 0.042 100 0 0 100 0.25 | Straight

63 DAP 6.88 0.042 100 0 0 100 0.25 | Straight
64-67 | 0-3C00 1- 6.88 0.042 0 100 0 160 0.25 | Straight

68 DAP 6.88 0.042 0 100 0 100 0.25 | Straight

69 0-3500 6.88 0.042 Y 100 e 100 0 Straight

70 DAP 6.88 0.042 0 100 0 100 0 Straight
73-80 | 0~3000 1-13.75 | 0-0.084 0 100 0 100 0 Tapered

81 QAP | 8.84 | 0-0.084 0 100 0 100 0 Tapered—

*DAP is discrete azimuth position.

- ad




TABLE 2 - EFFECT OF PLENUM PRESSURE ON THE PRESSURE WAVE ATTENTUATION
AND AMPLIFICATION FOR VARIOUS FREQUENCIES

Plenum Pressure®
Frequency
Configuration Middle End
Hz Station | Station
2/Rev U N/A®® N/A
{ 50 N/A N/A
69 N/A 11
83 N/A 6
102 135 7
120 126 7
i
1/Rev 18 N/A N/A
; 34 N/A 14
51 115 9
$ *Below these values, the pressure wave is attentuated and
sbove them, the pressure wave is amplified.
i **N/A = no amplification, Liiy attentuation,
|
X
£
I
H
£
1
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exposure over the nozzle inlet for particular plenum pressures. This shows that as the cams were transferred
from all two-per-rev to all one-per-rev or vice versa, the relationship between the average mass flow rate and
the percentage of one-per-rev cam exposure increased in a neariy linear fashion for a constant plenum
pressure.

An estimation of the effect of the slot area distribution on the average mass flow rate can be obtained
from curves in Figure 4 by comparing the 100-percent two-per-rev cam-nozzle exposure for the uniform
straight slot height and the uniform tapered slot height. The slot area was redistributed by reducing the
inboard slot height to zero, doubling the outboard slot height, and linearly tapering the slot height in between.
After the slot heigh: was redistributed, there was a 2-percent reduction in total slot area. A comparison of
these curves (Figure 4) indicated that the uniformly tapered slot configuration attained a reduction in the
average mass flow of approximately 15 percent.

The effect on the average mass flow rate of varying the internal volume of the pipe can be noted from
the curves of Figure 4 by comparing the one-per-rev cam-nozzle exposure for the 100- and the 67-percer:t
volumes. Note that the addition of the wooden insert to reduce the internal pipe volume by 33-percent
caused an average mass flow decrement of 0.0002 slug/sec which, depending on the initial average mass flow,
represented a 2- to S-percent reduction in the average mass flow rate from the initial volume.

To determine the effect of an increase in the gap between the cams and the nozzle, gap widths of
0.01 (nominal clearance), 0.26, and 0.51 inches were used. As shown in Figure 4, when a gap width of
0.26 in. was used, the 100-percent curves for the one- and two-per-rev cams were much closer. This was
accompanied by a large increase in the average mass flow rate.

Increasing the gap to 0.31 in. increased the average mass flow rate by only a small amount. Since the
pressure modulation was not present for this configuration, the gap width of the 0.51-in. curve therefore
represents the maximum average mass {low rate that can be obtained for a given plenum pressure with this
nozzle and slot area combination,

The control area of the cam-nozzle combination is defined as an area equal to the periphery of the
nozzle times the gap between the cam and nozzle. A general overview of Figure 4 indicates that as the con.
trol area of the nozzle was increased, the average mass flow increased in 2 smooth predictabie way that was
characterized by an increasing slope.

A comparison of the actual and the theoretical area variation with azimuth position is presented in
Figure § for the one- and the two-per-rev cams. The one-per-rev cam (Figure Sa) was constructed fairly
accurately, but the two-per-rev cam (Figure Sb) was not. These inaccuracies did not hamper the main
objective of the test, namely to demonstrate the feasibility of the cams for modulating the total pressure.

The mass flow rate is presented in Figure 6 as a function of the total nozzle control area for both the
one- and the two-per-rev cams. The nozzle control area above the value of | in.2 was obtained by increasing
the nominal gsp of 0.01 to 0.26 in. As the nozzle control area increused, the mass flow rate for a censtant
plenum pressure became constant and approached a value which was maximum for the open nozzle slot
area combination. For example, in Figure 6a the mass flow rate became asymptotic to a value of 0.011

slug/sec as the nczzie controi area increased for a hub pressure of 6.88 psi. The significance is that for a

8
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given plenum pressure, the mass flow rate is a uniform predictable function of the total nozzle control area
and does not seem to depend on how the control area is varied, i.e., by varying the one- or the two-per-rev
by varying the width of the gap between the cams and the nozzle, or by a combination of the two. Compare
the data of the one- and two-per-rev configurations for a plenum pressure of 6.88 psi shown in Figures 6a
and 6b.

Figure 6a also indicates the effect of reducing the pipe volume by 33 percent for a plenum pressure of
8.84 psi. A reduction in mass flow rate was noted for the reduced volume configuration at a control area of
0.3 in.2; it became larger as the contiol area increased. This suggests that no corrections need be made for a
volume change in the receiving pipe for nozzle control areas of less than 0.3 in.2. Above this control area,
the data require correction, but information is insufficient to determine the correction qualitativel:.

The dashed extension line for a plenum pressure of 8.84 psi (Figure 6a) was obtained by usiag the ‘
shape of the curve for a plenum pressure of 6.88 psi and shifting the curve by an amount determined from
Figure 4 for the samne configuration.

When the slot area of the pipe was redistribuied, the curve coincided with that presented in Figure 6b
aithough the plenum pressure was 8.84 instead of 6.88 psi. The point symbols were omitted from the
graph for simplicity.

TOTAL PRESSURE LOSS DUE TO AREA CHANGE

The mechanical principle used to mcdulate the total pressure in the pipe was to introduce variable
losses between the plenum and the pipe In a controlled and predictable fashlon. These losses can be created
by the use of a cam system such as described in this report.

Any change in flow direction, cross section area, or cross section shape will cause a loss in total pres-

sure. In general, when dealing with these types of losses, the governing equation is:
L2
APr =K, ?pV =K, q

wheze K, is the loss coefficient and q is the reference dynamic pressure. The dynamic pressure is generally
evaluated at the reference area of the loss coefficient, For this application however, It was :nore conven-
ient and useful to use the pipe entrance as a reference point. Thus APy is the plenum total pressure minus

the pipe inlet total pressure and the dynamic pressure is at the pipe entrance. Thercfore

1t is recognized that there is a possibility that the loss factor might be dependent on pipe configuration
because of the way the values are defined in the definition of the loss factor K ,. Although slight, this de-
pendence will show up later in the data; however, the data collected were insufficient to evaluate this effect

either quantitatively or qualitatively.




It should be emphasized that the loss coefficient data presented in this report are for the nozzle com-
pletely covered by either the one- or the two-per-rev cam. Therefore, when combinations of other cam
positions are used, the loss coefficient of the system will not necessarily be the sum of the individual cam
loss coefficient; It may be either larger or smaller.

Figure 7 shcws the inverse of the loss coefficient K;l as a function of the total nozzle control area
caused by the one- and two-per-rev cams. The considerable scatter in the data is attributed to manufacturing
tolerances.

Data for the condition where the one-per-rev cam covered the entire nozzle control area (Figure 7a)
were taken for the cart in proximity to the nozzle with nominal clearances of 0.01, 0.26, and 0.51 in. at
the minimum gap and with the 100- and the 67-percent pipe volumes. The data for the configurations with
0.26- and 0.01-in. gaps can be combined to construct a fairly uniform curve for the 100-percent volume.

By combining data of two different plenusmn pressures into a single curve, we imply that Reynolds number
effects are minimal. Although this is not proven by the data presented here, additional work performed by
the author indicates that there are no Reynolds number effects below a plenum pressure of 14.0 psi.

Except where noted in Figure 7a, the 100-percent volume of the pipe was used for Figures 7a and 7b.
I Reynolds number effect is ignored, the data represented by the one- and the two-per-rev cams can be
combined to give one curve that relates the inverse of the loss coefficient to the nozzle control area.
Indications are that the loss coefficient is a predictable function of the noz:le control area for a given con-
figuration. When the pipe volume was reduced by 33 percent, the loss coefficient was reduced considerably,
as shown in Figure 7a. The total pressure measurement for the full volume configuration was taken at the
center of the pipe, and it was assumed that the internal streamlines were slmilar for each configuration.
When the pipe volume was reduced bty inserting the wooden filler block, the resulting reorienting of the
fluid streamlines may have caused a relative error in the measurement of the total pressure. No pressure
survey was made to check the pressure profile with the insert installed in the pipe.

Figure 7b represents data for the configuration in which the two-per-rev cam covered the entire nozzle
control area. Pata were taken for the cam in proximity to the nozzle with nominal clearances of 0.01 and
0.26 in. at the minimum gap and with a tapered slot distribution in the pipe. The 0.26-in. spacing had the
same effect with the two- as with the one-per-rev, i.e., the loss coefficient was reduced as the nozzle control
area Increased. The change in slot distribution had no noticeable effect on the loss coefficient.

Data for the one-per-rev cam in proximity to the nozzle with a nominal clearance of G.51 in. at the
minimum gap showed no indication of pressure or mass flow rate modulation. These data serve as a loss
coeificient versus pressure calibratlon for the nozzle-slot combination; see Figure 8. This curve is the limit-
ing loss coefficient fer the curves in Figure 7. The loss coefficient as defined above and presented in Fig-
ure 7 was used in a computer program to design the cam valve system for the higher harmonic circulation

control (HHCC) rotor model which was successfully built, tested, and evaluated at NSRDC, Carderock.
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EFFECT OF VARIOUS CONFIGURATIONS ON TOTAL PRESSURE

A question foremost in the mind of a user of this type of flow control system concerns the uni.
formity and controllability of the output total pressure wave when the configuration changes from all one-
per-tev to all two-per-rev whil’, the plenum pressure remains constant. The visual solution presented in Fig-
ure 9 shows the uniformity and the relative strength of each component. The two cycles of total pressure data
with a plenum pressure of 8.84 psi and a frequency of 16.7 Hz indicate that there was a smooth transfer of
the total pressure wave from a two- to a one-per-rev component as the percentage of two-per-rev cam input
decreased from 100 to O percent. Conversely, the pércentage for the one-per-rev cam increased from 0 to
100 percent.

Figure 9 includes the data for a configuration where there are equal proportions of the nozzle height
covered by the one-per-rev, the two-per-rev, and a constant area. Note that the mean value of the pressure
curve increased due to the constant area but that strong one-per-rev and two-per-rev components were
maintained. The data presented in Figure 9 are typical of the data at other pressures and frequencies.

When the cam system is applied to a circulation control helicopter rotor blade, it is important to
know whether the cam configuration affects the average pressure for various radial positions. The average
total pressure of a particular pipe station was normalized by the plenum pressure and is plotted in Figure 10
versus the percent of pipe length x/f . These data are for a limited number of configurations which include
the 100- and 67-percent pipe volumes and the nozzle control area. These data are for different frequencies
provided by the one- and the two-per-rev cams.

Plenum pressures of 13.75 and 2.95 psi were used in conjunction with the one-per-rev cam configura-
tion to determine any effect of plenum pressure on total pressure losses within the pipe. Since no appreci-
able effect of plenum pressure on the pipe total pressure losses was found, the one-per-rev data for the
2.95.psi case were omitted for clarity.

The nozzle control area is the same as defined earlier in this report. However, the data presented in
Figure 10 are for rotating cams, and the areas cannot be compared directly by the gap (the nominal clear-
ance plus the cam eccentricity) times the nozzle periphery. The total integrated area around the azimuth
gives a more meaningful area representation. The various configurations are presented as percentages, with
the one-per-rev cam integrated area designated as a reference whose magnitude is 3.195 in2. A comparison
of the one- and two-per-rev cam data shows a significant reduction in the average pipe total pressure due to
a decrease in integrated nozzle control area of approximately 58 percent; see Curves A and B in Figure 10.
This reduction in the integrated nozzle area was caused by the differences in eccentricity of the one- and
two-per-rev cams.

It was stated earlier that changing the plenum pressure from 2.95 to 13.75 psi had no noticeable effect
on the pipe total pressure at a particular station. This enables Curves A and C to be compared directly. The
addition of a 0.25-in. spacer increased the reference integrated nozzle control area by approximately 320 per-
cent and thereby increased the total pressure ratio by approximately 250 percent. As the control area in-

creased, the mass flow also increased and caused higher velocities inside the pips. The higher velocities caused




larger frictional losses; these resulted in total pressure losses as x/f increased. This pressure loss is indicated in
Curve C of Figure 10 which shows a 10-percent loss in total pressure ratio. For the smallest control area
(Curve B) which had a much smaller mass flow, there was no reduction in pipe total pressure as x/¢

increased.

The effect of the pipe volume on the total pressure can be observed by comparing Curves A and D of
Figure 10. For a given plenum pressure, the reduced pipe volume (67 percent) had an average overall in-
crease in total pressure of 15 percent. This increase was partially due to the rearranging of the streamlines
within the pipe when the insert was installed, but it was miinly caused by the reduced volume within the
pipe (this resulted in high internal velocities). As discussed above, when x//' was increased for the reduced-

volume configuration the higher velocities caused a loss in total pressure of approximately 11 percent.

EFFECT OF VARIOUS CONFIGURATIONS ON PEAK-TO-PEAK PRESSURE

The application of circulation control to a helicopter rotor requires that the internal blade pressure
and mass flow be cycled in a specified manner and that they be maintained at some constant level. The
rotor trim 1s provided by the cyclic pressure and mass flow variation, and the mean lift is provided by the
constant pressure. In evaluating or determining the usability of this type of cam valve system, it is impor-
tant to know the effect of the nozzle control area and the reduced pipe volume on the peak-to-peak (cyclic)
pipe entrance total pressure. To demonstrate the effect for the various configurations tested, the peak-to-
peak entrance total pressure is plotted in Figure 11 versus the plenum pressure for different frequencies pro-
vided by the one- and two-per-rev cams. A comparison of the nominal clearance (0.01-in.) configuraticn and
the 0.25-in. spacer configuration enables a rough estimate of the sensitivity of the radial position of the cams
with respect to the nozzle. The data for these configurations are presented as Curves A and B of Figure 11.
The method used to increase the gap between the cam and the nozzle raised the mean value of the 101al pres-
sure; however, only the peak-to-peak value is discussed here. As shown in Figure 11, the peak-to-peak total
pressure at the entrance of the pipe was dependent on the relative frequency of rotation of the cam with re-
spect to the nozzle. Curve A for the configuration of the one-per-rev cam was arbitrarily designated as the
reference integrated nozzle control area as discussed previously. The one-per-rev cam with a 0.25-in. addi-
tional gap (Curve B) increased the seference integrated nozzle control area by 320 percent.

Some general trends and observalions can be noted from Figure 11. For a plenum pressure of about
7 psi, the peak-to-peak pipe entrance total pressure for the reference integrated nozzle control area (the one-
per-rev cam configuration) was approximately thiree times the comparable vilue for an integrated area increase
of 320 percent. This is a relatively large reduction in the peak-to-peak pressure for a configuration where
the gap introduced between the cam and the nozzle was approximately equal to the maximum eccentricity
of the cam. The two-per-rev configuration represe~ts a 58-percent reduction in reference integrated nozzle
control area. These data are presented as Curve C of Figure 11. A comparison of Curves A and C shows
the effect of reducing the eccentricity of the cam by 34 percent, namely, a reduction of the peak-to-peak
entrance total pressure by a factor of approximately three.
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Curves C and D of Figure 11 shiow the effect of the tapered slot on the peak-to-peak inlet pressure.
The effect of reducing the volume of the pipe by 67 percent may be seen by comparing Curves A and E.

Figure 12 presents the peak-to-peak total pressure versus the rotational frequency for the middle and
end stations of the pipe. The data have been normalized by the peak-to-peak eatrance total pressure. The
data for the one-per-rev cam (Figure 12a) include the three basic configurations and the effect of an increase
in the plenum pressure (very large difierences in peak-to-peak pressure characteristics). The data for the
two-per-rev cam (Figure 12b) include the effect of a tapered slot distribution and the effect of a smaller
plenum pressure difference. The higher frequency represented by the two-per-rev cam showed a much

larger peak-to-peak pressure at the end station than at the middle station; see Figure 12b.

DISCRETE AZIMUTH POSITION DATA

Figure 13 gives a comparison of data collected by the discrete azimuth position method and by rota-
tion of the cam at some prescribed frequency. As indicated in Figure 13a (one-per-rev cam) the agreement
between the two methods was very good at a frequency of 49 Hz. This agreement was observed for other
frequencies and was further verified by data for the two-per-rev cam configuration (Figure 13b). This veri-
fication enables the discrete azimuth position method to be used to obtain design data and to evaluate the
performance of a rotating cam valve system such as described in this report. Figure 14 presents the static
and total pressure versus azimuthal position for various additional configurations.

Figure 15 shows the air mass flow rate versus the azimuth position for the various configurations
tested. These data were obtained by the discrete azimuth positioning technique described above and are
presented to verify the fact that for various configurations and plenum pressures, the cams will give a mass
flow rate regulation in agreement with their inputs. Also included is the average mass flow rate from the

rotating cam data.

EFFECT OF VARIOUS CONFIGURATIONS ON
PEAK-TO-PEAK STATIC AND TOTAL PRESSURE

Figure 16 indicates the peak-to-peak pipe static and total pressures versus rotational frequency for
various configurations and plenum pressures. Here again, only the peak-to-peak pressure value is presented.
An estimate of the mean value for the one-per-rev configuration requires only that the peak-to-peak value
be divided by two. However, this is not true for the two-per-rev cam configuration because of its nonuni-
formity of construction. The one-per-rev cam data indicate the following general trends: (1) as the plenum
pressure was increased the peak-to-peak pressures were attentuated for increasing frequencies and (2) the
peak-to-peak pressure was higher for a 33-percent reduction in pipe volume but exhibited the same general
characteristics with increasing frequencies as for the 100-percent pipe volume; compare Figures 16a and 16b.

The general trends are not as clear for the two-per-rev configurations. For the higher plenum pres-
sures, the peak-to-peak pressures were attentuated up to a pasticular frequency and were amplified above it.

For the lower plenum pressvre, the peak-to-peak pressures were amplified for all frequencies tested:
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see Figure 16¢c. Slot distribution raised the peak-to-peak pressure on the two-per-rev configuration but did
not affect the generalizations stated above; compare Figures 16c and 16d. The 0.25-in. spacer on the one-
and two-per-rev configurations raised the pipe entrance total pressure peak-to-peak value well above those
observed for the configuration without a spacer. No strong frequency effect was observed for the 0.25-in.
spacer configurations (Figure 16e).

Because it Is quite simple, this mockup did not allow the determination of several important factors.
The phase shift in the amplifiers precluded evaluating the time phase shift in the pressure between the ple-
num, pipe entrance, and pipe end. Moreover the instrumentation limitation made it impossible to get a
breakdown of the individual effect of each component, i.., the penalties involved in combining various
combinations of constant and one- and two-per-rev components. These shortcomings of the investigation
were also a result of the poorly manufactured cams which resulted in waveforms other than sinusoidual.
The thicknesses of the spacers used to increase the gap between the cam and nozzle were arbitrarily chosen
to be 0.25 and 0.50 in. These did not allow a detailed evaluation of the pressure and mass flow since the

nozzle is removed radially from the cam.

CONCLUSIONS

A preliminary investiy stion was performed to determine the effect of some basic configurations on the
modulation of the pressure and the mass flow rate within a round receiver. Several conclusions have been

drawn:
1. Air pressure and mass flow rate can be modulated by means of a simple cam valve system.

2. As the gap between the periphery of the cams and the nozzle increased for a given cam geometry, the
mean pressure and mean mass flow rate increased, whereas the peak-to-peak pressure and peak-to-peak mass
flow rate decreased. As the gap was increased from 0.26 to 0.51 in., the ability of the valve system to

modulate the pressure and mass flow rate ceased.

3. There was a smooth transfer of the total pressure and mass flow rate from a two- to a one-per-rev

component (or vice versa) as the percentage of two-per-rev cam input was decreased from 100 to O percent.

4. The change in slot height distribution had no noticeable effect on the loss coefficient but the average

mass flow was reduced by approximately 15 percent.

5. When the receiver volume was decreased by 33 percent, (a) the average mass flow decreased by
approximately 2 to S percent, (b) the loss coefflcient was considerably reduced, (c) the average overall total
pressure was increased by 15 percent, and (d) the peak-to-peak pressure was increased and the same general

characteristic was raaintained with increasing frequency.

14
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Figure 2a — Hubl: Valve Test Setup

e Figure 2b - Closeup View of Onc- and
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Figure 5 — Nozzle Control Area versus Azimuth Position




MASS FLOW RATE, SLUGS/SEC

Figure 6 — Mass Flow Rate versus Nozzle Control Area

0.014
/”—
0.012 ”~
/7 /
ook W
0.008 |~
PLENUM GAP VOLUME
PRESSURE |NcHES PERCENT
LB/IN.
0.006 I~ O 884 0.01 100
O 688 0.26 100
D 884 0.01 67
0.004 —
0.002 =
| S U N N WA DR SRR R N

NOZZLE CONTROL AREA, IN.2

Figure 63 - One-per-Rev Cam Configuration
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Figure 8 — Inverse of the Loss Coefficient versus Plenum Pressure for the Nozzle
without the Cams
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Figure 9 — Total Pressure Variation for Various Combinations of Constant,
One-per-Rev and Two-per-Rev Components
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Figure 11 — Peak-to-Peak Entrance Total Pressure versus Plenum Pressure
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Figure 13 — Comparison of Discrete Azimuth Position Data with Dynamic Data
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Figure 13a — One-per-Rev Cam Configuration
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Figure 14 — Discrete Azimuth Position Data for Additional Configurations
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MASS FLOW RATE, SLUGS/SEC

Figure 15 — Mass Flow Rate versus Azimuth Position for Various Configurations
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Figure 152 — One-per-Rev Cam Configuration
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Figure 16 — Peak-to-Peak Pressure versus Rotational Frequency for Various Cenfiguratious
and Plenum Pressures
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