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ABSTRACT

This report presents the results of a research program to
develop a procedure for calculating propulsion system
installation losses. These losses include inlet and nozzle
internal losses and external drag losses for a wide variety
of subsonic and supersonic aircraft configurations up to
Mach 4.5. The calculation procedure, which was largely
developed from existing engineering procedures and experimental
data, is suitable for preliminary studies of advanced
aircraft configurations. Engineering descriptions, equations,
and flow charts are proviaed to help in adapting the
calculation procedures to digital computer routines. Many
of the calculation procedures have already been programmed
on the CDC 6600 computer. Program listings and flow charts
are provided for the calculation procedures that have been
programmed. The work accomplished during the program is
contained in four separate volumes. Volume I contains an
engineering description of the calculation procedures.
Volume II i. a programmers manual containing flow charts,
listings, and subroutine descriptions. Volume III contains
sample calculations and sample input data. Volume IV
contains bookkeeping definitions and data correlations.
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SECTION I

TNTRODUCTION

The Propulsion Installation ard Table Assembly Program
(hereafter called PITAP) is destigned to correct uninstalled
engine data for propulsion related losses. The intended use
of this program is for advanced aircraft configuration
analyses. The degree of sophistication is consistent with
the type of data now available for preliminary studies of
advanced aircraft concepts.

PITAP consists of three main parts, related as shown in
Figure 1. Portions of the PITAP procedurec have already
been programmed for the CDC 6600 computer and are now
operational on the Air Force Computer System at WPAFB. The
calculation procedures contained in the existing computer
program are indicated in Fiqgure 1 by a dashed line. The
remaining procedures exist as documented methods suitable
for computer programming. The existing computer program
is suitable for calculating installed propulsion system
performance corrected for the most frequently encountered
installation losses. The programming of the remaining
procedures will improve the flexibility of the program and
provide greater capability for making tradeoff studies

and mere options in the types of input data required.

Several options are already available for the use of the
existing program, depending on the desires of the user and
the type and quantity of input data available. The various
options are shown in Table I.

The procedure has the capability to correct for installation
losses associated with most types of subsonic and supersonic
aircraft designed for Mach Numbers from 0 to 4.5.
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SECTION II

SUMMARY

An analytical program was conducted to develop and document
a calculation procedure that can be used to correct uninstalled
propulsion system performance data for installation effects.

The program consisted of three phases: (I) Methods Survey

and Data Collection, (II) Formulation of Correction Methods,
and (III) Sample Calculations. During Phase I, lata and
methods were collected and reviewed to determine their
usefulness in developing a general correction procedure.
During Phase II, the correction methods were formulated and
documented. Also, during Phase II, the main part calculation
procedure was transmitted to the Air Force and has been

made operational on the WPAFB CDC 6600 computer. This program
can be used to make installed propulsion system performance
calculations, using maps of inlet performance characteristics,
tabulated engine data, built-in nozzle/afterbody drag routines,
and the nozzle internal performance supplied by the engine
manufacturer. The computerization of the addition-~1l calculation
procedures documented during the study will expand the program
capability and allow greater flexibility in types of input
data. It will also permit calculations to be made of inlet
and nozzle data where no experimental data exist, using
existing engineering methods based on theoretical and semi-
empirical data correlations. Phase III consisted of samnle
calculations to demonstrate the usefulness of the calculation
procedure. Two configurations were used for these sample
cases: an F-4J and a LWF type configuration.

The calculation procedure has been developed in the form of

several modules to permit new data and methods to be ad z=d
as they become available.
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SECTION III

PROPULSION SYSTEM PERFORMANCE

3.1 GENERAL DESCRIPTION

Installed propulsion system performance data represents the
performance of an engine installed in a particular airplane
configuration. Inlet and nozzle internal performance and drag
are included, and bleed air and power are extracted £rom

the engine for aircraft systems. These represent average
values for aircraft "steady-state" performance calculations.
Performance data is calculated for the entire engine-uairframe
flight envelope and engine power settings from maximum to
idle.

PITAP can be used in several ways(Table I)to produce installed
performance data, depending upon the form in which engine

data is available. An engine computer vrogram can be used
directly with PITAP, or it can be used with maps generated

by PITAP. PITAP can also be used with tabular data obtained
from the engine computer program; i.e., each computer program
is run separately. Figures 2, 3 and 4 show the various
options that are possible with PITAP and an engine computer
deck.

If a computer deck is available for an engine, the simplest
procedure for obtaining installed performance is to use maps
generated by PITAP (Figure 2). The engine main program can
be altered to accept map inputs, and the output of the engine
program is modified to include inlet and nozzle drag in the
net thrust calculation. The engine deck main program can

be altered to include a table assembly capability.

Figure 3 shows the relationship between PITAP and the engine
program where either program can be used as a subroutine to
produce installed data. Figure 4 shows PITAP being used as
an independent program with a specified input format for
engine data.

Several possibilities for use of PITAP have been described;
however, there are really only two basic methods of using
PITAP that affect the PITAP structure: (1) Using PITAP with
tabulated engine performance data as input, and (2) Using
PITAP with an engine cycle match deck providing engine
performance data.
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The engine data required for the tabulated version of the
installation program are thrust, fuel flow, airflow, nozzle
pressure ratio, throat and exit area and thrust coefficient.
The installation program is designed for engine inputs with
MIL 5008B inlet recovery and corrected mass flow. PITAP
calculates inlet recovery and dcag, and corrects the engine
data for the desired recovery. The exhaust pressures and
areas are required for nozzle drag calculation. The nozzle
thrust coefficient is required if the nozzle performance

is to be changed.

The tabulated version of the PITAP installation program

can also be used if only thrust, fuel flow and air flow are
available. Methods are included in the PITAP procedure to
calculate nozzle pressure ratio, throat and exit areas.

These methods are described in Section “.4. The calculated
exit areas and pressure ratio will be in error because the
value of the exhaust nozzle coefficient is not known; however,
the resultant error in nozzle drag calculation is still within
the accuracy required for preliminary design performance
calculations.,

If PITAP is used with an engine computer program, the
subroutines of PITAP which are used to make inlet reccvery
change calculations, nozzle calculations, and thermodynamic
calculations are not required. This results in a smaller
program with different logic.

Either version of the present programs can be used for installed
performance calculation on turbojets, mixed flow and separate
flow turbofans. Scrubbing drag calculation procedures are
available as a separate program.

A more detailed discussion of the options available using the
PITAP program is contained in Sections 3.2 and 3.4.

3.2 CALCULATIONS USING TABULATED ENGINE DATA

This is essentially the existing version of the PITAP

program that is operational on the WPAFB computer, Tabular
inlet input data are used to represent a series of inlet
performance plots. The complete version of PITAP will
eventually include procedures for calculating inlet performance
plots. Generalized methods are included in the program to
calculate C-D nozzle afterbody drag. The nozzle internal
performance is the same as provided by the engine manufacturer.
The required engine data is in the format of tables of thrust,
fuel flow, corrected airflow nozzle total or static

pressure ratio, throat area, exit area or velocity coefficient
for each altitude, Mach number and pewer setting.

Mo M et ST, AR R L
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The engine section of the PITAP program calculates only the
changes in internali performance due to changes in inlet
recovery. Changes in inlet recovery produce a directly
proportional change in nozzle pressure ratio, airflow, and ¥
fuel flow because the nozzle throat area does not change.
Furthermoxe; it is assumed that engine data is calculated
with MIL STD 5008B recovery and all inlet recovery changes
are made relative to that value. Thermodynamic data from
Keenan and Kaye tables has been "curve-fitted," and
subroutines are provided to calculate the thermodynamic
properties of the exhaust gases.

The calculation procedure is as follows: for each altitude,
Mach number and power setting, the net thrust (FN), fuel

flow (wF), corrected airflow (W 62/6 ), nozzle throat area
2

e T e - SR AR A TEERS

(AB)' nozzle exit area (Ag) and nozzle thrust coefficient (CV)

are given,

Standard atmosphere and MIL Standard 5008B inlet recovery
are used to calculate the airflow at the engine face and
gross thrust is calculated for the given engine data before
any changes in inlet recovery.

W,V

{
i i
F = F,. +
: 9oLD N g
i
f The desired inlet recovery is obtained from the inlet u

subprogram and the engine gross thrust (F_ ) is first

calculated with MIL Standard recovery 91 and then with
the calculated recovery (F_ ), the new value of gross thrust 1
is then found by ratio 2

, LI
‘ F
92
F = F F
INew “orp 9,
[
The ratio procedure is used to minimize any inaccuracies 3

that may be caused by assuming burner efficiency (nB) varies
only with the fuel-air ratio for all engines.

[ The net thrust and fuel flow after correction for inlet
. recovery are:

F, = - Mo F

F
Ne  InEw

wv R
g

mil ﬁ

W s W RF

F
R F R

mil
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and the installed propulsion system thrust and SFC:

F. = F. -D - D +D
Ny M INLET oz * Pnoz_
W
SFC., = 'R
A7
N

Sections 3.2.1 through 3.2.5 describe the methods used to calculate
the thermodynamic properties, exhaust gas properties, nozzle

gross thrust, nozzle pressure ratio, and inlet recovery
correction. These calculation methods are required only for

the tabuluted engine data input version of PITAP.

3.2.1 Thermodynamic Properties

Thermodynamic properties required for throat calculations

are obtained using the functions shown in Table II. The
functions listed in Table II and which appear in Sections

3.3 and 3.4 are "curve-fits" of Keenan and Kaye data (Reference
1), The gas tables are primarily used to calculate cxhaust
nozzle static pressures and jet velocities.

TABLE II

THERMODYNAMIC SUBROUTINES

B e

H = HOFT (T,FOA) Enthalpy as a function of temperature
. (degreces R) and fuel-air ratio

T = TOFH (H,FOA) Temperature as a function of enthalpy and
fuel-air ratio |

PR = PROFH (H,FOA) Relative pressure, (Pr) as a function of
enthalpy and fuel/air  ratio

H = HOFPR (PR,FOA) Enthalpy as a function of relative pressure
and fuel-air ratio

C = COFH (H,FOA) Sonic velocity as a function of total enthalpy
and fuel-air ratio

C = COFHS (H,FOA) Sonic velocity as a function of static
enthalpy and fuel/air ratio

il
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3.2.2 Energy Balance for Exhaust Gas Calculations

If the temperature at the engine compressor face, airflow,

pressure ratio and fuel flow are known, the exhaust gas 3
enthalpy (h) and relative pressure (p_) can be calculated

from the energy balance: *

Wohy + WeQng = Wyghy,  + Wgh, + Wy h,

2 18 8 ) BX ‘
(for either mixed or non-mixed flow engines)
For mixed flow fans or a turbojet:
Wg = Wy - Wpx * ¥e ]
(£/a)g = Wg , (W) = Wpy)
hT8 = (W2hTz + wanB)/W8 (WBxhBX is considered negligible)
i
For a separate flow ducted fan (fan nozzle and primary nozzle)
= . = i
hT2 f (TT, f/a)z, where f/a 0
(PrT)2= f (hT, f/a)z; where f/a = 0
P\ =P (P, /P, )
( Tpi1s ( rf)z Tig" T2
h = f (p_ ,f/a),,: where f/a = 0
T18 Pr 18
and 1
Wg = Wy = Wyg = Wpyx * W
hT = (W2hT - wlShT + wanB)/WB (WBXhT s considered
8 2 18 BX 3
negligible)
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3.2.3 Nozzle Gross Thrust Calculation

The calculation procedure in this section applies to both
mixed and non-mixed flow nozzles.

3.2.3.1 Convergent Nozzle

The velocity at the throat for a convergent nozzle is a
function of the total enthalpy (assuming the throat is
choked; .

and the static pressure is a function of the static enthalpy

_ _ 2
29J
Pr8 = f (h,f/a)8
PT /P8 =(Pr )./Pr ; P is obtained from the tabulated
8 T 8 8 gengine input fdata as f (P.S., alt.,

M_) or it is calculated by the procedure

o0

¢escribed in Section 3.2.4.
P, =P/ (P, /P,)
8 T8 'I‘8 8
The area of the throat is
WRT
* = MLALN
Ag*= lpc) g
and the thrust is

= * -

g

3.2.3.2 Converygent-Divergent Nozzie (fully expanded)

If the exhaust flow is fully expanded, the static pressure
of the nozzle exit is equal to ambient, and the exit velocity
is a function of the total to static enthalpy.

P =
Pr8 (Pamb/PB)

13
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h9 = f (Pr' f/a)9
T9 = f (h, f/a)9
Since h, = h
8
? 1/2
Vg = 2gJ (hT8 = hy)

The exit area is

A, = W

9 = Wo Rg Tg/Pampy Vo

and the gross thrust is
F.=W. V

g 9
9

9 Cy

3.2.3.3 Convergent-Divergent Nozzle (not fully expanded)

If the exit area of a convergent-divergent nozzle is less
than required for full expansion, the exit static pressure
will be higher than ambient. The throat conditions are
known; therefore, a guessed exit velocity gives:

h, = hT8 - V92/2gJ

T, = £ (h, f/a)9

9
Pr9 = £ (h, f/a)9
Pr
P, = 9 (P,)
9 % =2 Vg
P PAV
9 . 9°9 9 RT °9
RzT9 )

4

An iteration on V, to make W, = w8 will result in the exit
conditions for a given area.

14
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The gross thrust is:

F
g

WV
(—E— + PA)9 CS - Pamb Ag

3.2.4 Nozzle Pressure Ratio Calculation

The exhaust nozzle pressure ratio can be calculated if thrust,
fuel flow and airflow are known. The gross thrust is calculated
as follows:

Fg = (Fnet * Fram)/cv
W,V

F = 2 ¢

ram t—
°)

and the nozzle exit conditions are calculated by assuming
that the flow is fully expanded.

w8 = w2 - wa + W,

hT = hT + (Qanf/Ws)
8 2

TTB = f (h,r.f/a)8

v9 = Fg (g)/w8
- - 2

h9 = hT8 V9 /2g9J

Prg = f (h, f/a)9

(Pr'r) 5t (e f/a)g

Since P9 = Pamb

/P P p
PTS amb rTygrg

The pressure ratio calculation will be in error, an amount
relative to the value of the thrust coefficient (C,, ), because
this is usually unknown if pressure ratios and exhaust
areas are not given.

15
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3.2.5 1Inlet Recovery Correction

?he engine corrected airflow remains constant for any change

in inlet recovery, and at any given power setting, the nozzle
exhaust areas and burner fuel/air ratio remain constant. The
engine performance for any change in inlet recovery is calculated
by the following relations:

RATIO = RF/RFMIL; where RF/RFMIL =
(By /Py )/ (Py [Py Diy
5008B
W8RF = W8 (RATIO)
WFRF = WF (RATIO)
W2RF = W2 (RATIO)
P 8PORF = P8/PO (RATIO)

After the above quantities are computed, the corrected

quantities (W8RF, WFRF, W2RF, and P8PORF) are used in the

subroutines described in Sections 3.2.1, 3.2.2, and 3.2.4

to compute a new gross thrust, FG . This new gross thrust
2

and the gross thrust, F calculated using the samc sub-

G 4
1
routines and the uncorrected (MIL 5008B) quantities (W8, WF,
W2, P8PO) are used to compute a ratio, FG /FG . This ratio

2 1
is then used as described in section 3.2 to obtain the new

value of gross thrust, FG .
NEW

3.3 CALCULATIONS USING ENGINE CYCLE MATCH JECK

This version of the PITAP program differs from the existing
PITAP program in two specific areas. The first is in the
input/output of the program and the second is that the
thermodynamic functions, performance and thrust subroutines

are not required. For this version of the PITAP program using
the engine cycle match deck, the PITAP program is the main
program and the engine cycle match deck is used as a subroutine.

The input/output of the engine program and PITAP are linked
through the labeled common blocks of each program. The input
for the engine program requires the following data:

PS - = power setting or code
T, degrees R = inlet total temperature
P, lb/in2 = inlet total pressure

16
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Tamb degrees R = free-stream static temperature
L2 _ .
Pamb 1b/in = free-stream static
ETAR ¥ = inlet recovery
WBFAN 1lb/sec = fan bleed airflow
WB lb/sec = bleed air flow (high pressure)
3 extraction
WB lb/sec = bleed airflow (intermediate)
2.X
HP HP = horsepower extraction

Power setting, bleed and horsepower extraction are input, but
inlet and ambient pressure conditions are calculated from the
altitude and Mach input. The existing version of the PITAP
Program obtains atmospheric properties from a subroutine which
provides ambient temperature and pressure for ISA standard

day as a function of pressure altitude. For non-standard day
conditions, a different subroutine will be required. A special
subroutine is provided with the engine program to interface
with the inlet subroutine to obtain ram recovery.

It is recommended that power setting or power code inputs
conform with ARP 68l1.B (PS = 100 is maximum augmented thrust,
50 is intermediate, 20 is idle, etc.)

Five tables are added to the current version of PITAP to
input fan bleed, LP, IP and HP compressor bleed, and horsepower
extracticn as a function of altitude and flight Mach number.

The following input variables are required for variable cycle
decks or engine description:

Input Variables

Symbol Unit Definition

BRPDS - Design bypass ratio

P3P2DS - Design overall compressor pressure ratio
T4MAX degrees F Maximum turbine inlet temperaturé

W/DES lb/sec Design total airflow

17
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¢
Input Variables (Continued)
Symbol Unit Definition
b
PCW2C - Per cent corrected airflow desired at
maximum height and Mach number
ALT MAX ft Altitude at maximum flight Mach number
MMach Maximum Mach number
DASH M Dash Mach Number
, D ALT ft Dash altitude
LENG in Overall length
LNOZ in Nozzle length |
DIA INL in Inlet flow path diameter
DMAX in Maximum engine diameter i
WTENG 1b Engine weight
WTNOZ 1b Nozzle weight
‘ 3
The engine performance data is run for a matrix of Mach numbers,
altitude and power settings.
The output format shown in Figure 5 uses 67 spaces on a v
printout page so that it can be cut to 8 1,2 x 11 size for ) Y
storage, or it can be in CRT displays and remote teletype '
systens.
The output format has classification headings at the top and 1
bottom of the page and is divided into five basic groups of
data: .
a. Engine company, engine, and run identification
|
L. Engine design description which is either input or calculated
<. Engine data . 1
d. Installed performance - inlet and nozzle drag
e. Special output: i.e., FN/S§, SFC/ VB etc. {
'L .
’
18
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Output Parameters
S ol Units Definition

Classification -

Engine Co. Name -

BPRDS
P3P2DS
T4MAX

WODES

PCW2C

ALTMAX
MMAX
DASHM
DALT
LENG
LNOZ
DIAINL
DMAX
WTENG
WTNOZ
ALT
MACH
DELT
Pu

PCODE

degrees F

1lb/sec

ft

ft
in
in
in
in
1b
1b
ft

degrees F

engine program security classification

engine co. name, engine identification
and run title

design bypass ratio
design overall compressor pressure ratio
maximum turbine inlet temperature

design total airflow - sea level, standard
day

percent of design corrected flow required
at maximum 62 condition

altitude of maximum Mach number
maximum flight Mach number

dash Mach number

dash attitude

engine length (including nozzle)
nozzle length

inlet flow path diameter
maximum engine diameter

engine weight (including nozzle)
nozzle weight

altitude

Mach number

tenperature deviation from standard day
power setting

identification of power setting i.e.,
intermediate, max augmented, etc.

20
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Output Parameters (Continued)
Units Definition
1b net thrust
lb/hr/1b specific fuel consumption
1b ram drag
1b/hr total fuel Flow
1b gross tl rust
lb/in2 ambient pressurc
lb/in2 inlet total pressure
P12 lb/in2 fan discharge total pressure
P22 1b/in2 LP compressor discharge total pressure
(port losses included)
P2x 1b/in2 IP compressor discharge total pressure
(port losses included)
P3 lb/in2 HP compressor discharge total pressure
(port losses included)
TAMB degrees R Ambient temperature
T2 degrees R engine inﬁet total temperature
T12 degrees R fan discharge total temperature
T22 degreas R LP compressor discharge total temperature
T2X degrees R Ip " " " "
T3 degrees R Hp " " " "
WBFAN 1b/sec fan bleed air flow
WBLP 1b/sec LP compressor bleed air flow
WBI lb/sec IP compressor bleed air flow
WBA 1b/sec HP compressor bleed air flow
HPX hp horsepower extraction
DEX in nozzle exit diameter

21
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THETA
ETAR
wac
P8PO
T8

W3

w8
WF4
WF8
FGI8
Ccvs
DRAG
AES8
A8
AE9
A9
P180PO
T18
Wl2
wl8
WF18
FGI18
Ccv1ls

AElS8

Units
degrees

lb/sec

degrees R
lb/sec
lb/sec
lb/hr
1b/hr
1b

in2

uinz

in2
in2

degrees R
lb/sec
1lb/sec
1b/hr

1b

in

B LT L+ oot tomamt s e e

Output Parameters (Continued)

Definitions

nozzle boattail angle

inlet total pressure recovery ratio

engine corrected air flow

exhaust nozzle pressure ratio

exhaust nozzle total temperature

HP compressor air flow

exhaust nozzle mass flow

burner fuel flow

total fuel flow

ideal gross thrust

nozzle thrust coefficient

nozzle external drag

nozzle throat effective area

nozzle throat area

nozzle exit effective area

nozzle exit area

fan
fan
fan
fan
fan
fan
fan

fan

nozzle pressure ratios
nozzle exhaust temperature
duct air flow

nozzle mass flow

duct reheat fuel flow
nozzle ideal dgross thrust
nozzle thrust coefficient

nozzle throat effective area

22

ot

S

W




S ols
Als
AE19
Al9
FNA
SFCA
DINLET
DNQZ
AC
AOE/AC
AOI/AC
AO/AC
CPSPL
CDBCD
CDBYP
CDINL
AMAX
LBT
DNOZR
CDBT
CDBASE
CDINT
BETA

FN/DELTA
SFC/RTHETA
Q

Units

in
in
.2
in

1b

lb/hr/1b

1b
1b

.2
in

in
in

lb

degree

lb

1b/hx/1b

1b/ft

S

2

Output Parameters (Continued)

Definitions

fan nozzle throat area

fan nozzle exit effective area

fan nozzle exit area

propulsion system net thrust
propulsion system specific fuel comsumption
inlet drag

nozzle drag

inlet capture area

engine mass flow ratio

inlet capture mass flow ratio
inlet mass flow ratio

coefficient of inlet spillage drag
coefficient of inlet bleed drag
coefficient cf inlet bypass drag
coefficient of inlet total drag
maximum area of the exhaust system
length of exhaust system

reference nozzle drag

coefficient nozzle boattail drag
coefficient nozzle base Arag
coefficient nozzle interference drag
boattairl angle

corrected net thrust
corrected specific fuel consumed

free-stream dynamic pressure
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3.4 OTHER PROGRAM OPTIONS

3.4.1 Inlet and Nozzle Performance Maps

A subroutine has been programmed that can call and control

the existing subroutines required to generate inlet performance
"maps" from tabulated inlet input data (representing inlet
performance "plots"). The program listing for this subroutine
is incluaded in Volume II. A subroutine also exists to generate
nozzle data, using the internal program procedures, but the
output needs to be revised to adequately output the map data

in the desired format.

3.4.2 Engine Manufacturers Nozzle Internal Performance

The existing PITAP program (described in Volume I1) uses
this procedure.

3.4.3 Externally-Generated C;, Input

This option to the basic progrem procedure makes it possible

to drop out the engine manufacturers nozzle internal performance

(C,,) and substitute a different Cy which can be either a
constant value or a map.

This is accomplished by changes to the existing Main Program
routine (TEM 333) and subroviine COMPUTE. The changes consist
of the following:

1. The main program is changed to accommodate reading
in and storing the new coefficient or map.

2. Subroutine COMPUTE is changed to call the stored
coefficients and insexrt them instead of the engine
nozzle coefficient.

The changes are not extensive and the logic for them is
included in Volume II.

3.4.4 Nozzle Intermal Performance Subroutine

This involves modifying the Main Program and Subroutine COMPUTE
to eliminate use of the engine nozzle loss coefficient and
building in the logic to call and use a subroutine which has
the nozzle internal loss calculation procedures built into it.
The nozzle internal loss calculation methods are described in
Section V of this document. Engineering logic Jdiagrams are
provided in the Appendix to show how this should be done.

?
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SECTION 1IV

INLET PERFORMANCE

The major installation losses that must be accounted for in
correcting uninstalled propulsion system data for inlet effects
are: (1) total pressure recovery, (2) boundary layer bleed
drag, (3) bypass drag, and (4) spillage drag. This section
describes the methods used to calculate these corrections. A
general description of the existing computerized methods 1is
presented first. The existing computer program uses input
"maps", representing inlet recovery and drag as a function

of mass flow, to calculate installation corrections.

Following a description of the engineering procedures in the
computer program engineering methods are discussed which can

be used to obtain input data when no input "maps" are available.
Several of the engineering methods have been programmcd for

the CDC 6600 computer and programming flow charts and listings
for these are included in Volume II.

Figure 6 presents a diagram showing how the inlet calculation
procedures relate to the installed propulsion system procedures.

4.1 GENERAL DESCRIPTION

Corrections to uninstalled propulsion system performance to
account for inlet recovery, bleed drag, bypass draqg, and
spillage drag can be accomplished using several different
types of input data.

The basic propulsion system calculation procedure uses "maps"
of total pressure recovery and inlet drag as a function of
engine corrected airflow divided by capture area (Item 3 in
Figure 7). These maps directly provide the recovery and
drag for use in installed propulsion system calculations.
Corrected airflow is the parameter used to match the inlet
performance to the engine.

However, most wind tunnel test data are obtained in the form
of individual inlet performance "plots" such as those shown
in Item 2 of Figure 7. A separate subprogram is used to
convert these performance plots into performance maps. This
subprogram, (INLTMAP) is described in Volume I1.

If wind tunnel test data are not available for which to obtain
inlet performance plots, these plots are buill up by theoretical
and semi-empirical calculation procedures (Itenn 1 of Figure 7),
that are described in this report.

oy &, At K. "~ N
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The inlet performance calculations are performed by the inlet
subprogram, Figure 8.

Inlet performance maps are input data to the inlet subprogram. 4
This subprogram sizes the inlet capture area (if it is not

specified) and converts the inlet performance maps into total

pressure recovery and inlet drags that are matched to the

corrected airflow demand of the engine.

The connecting link between the engine data and the inlet .
subprogram is engine-plus-secondary corrected airflow. The

sizing routine permits the inlet to be sized for operation

at a desired inlet mass flow ratio, consistent with a recovery

associated with the design engine corrected airflow demand. A

specified capture area siz¢ can also be input if desired, .
instead of requiring the program to calculate the size. J

The inlet input requires twelve tables of input data which
describe the performance characteristics of the inlet. Engi-
neering data obtained from wind tunnel tests and theoretical
calculations are used to cbtain the inlet performance charac-
teristics. The format for the inlet data is shown in Figures 9
and 10. Data taken from these engineeriny plots are punched

on cards for input into the inlet subprogram.

The inlet subroutine recognizes three modes of inlet
operation: low-speed, external compression, and mixed
compression. The low-speed mode is used only at very low Mach
numbers, e.g., take-off conditioRls, when only high enqdine
power settings are likely to be of interest and inlet drag

is negligible. The external-compression mode is used over

the remaining Mach number regime for external-compression
inlets. It is also used for the remaining subsonic regime

and supersonic Mach aumbers up to the starting Mach numuer

for mixed-compression inlets. The mixed-compression node is

used at or above the starting Mach number for mixed-compression
inlets.

a) External-Compression Inlets. The calculation of
recovery and drag for an external-compression )
inlet is illustrated in Figure 9. The required
performance maps are input as tables, as indicated.
Table 1 is used to represent the effect of the
airplane flow field on the local Mach number
seen by the inlet. Table 2A gives the basic
recovery/mass~flow-ratio characteristics of the
inlet. The minimum Mach number for which data
is input in Table 2A is taken by the program to
be Mo , below which only the low-speed mode is

min
used.
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In the low-speed mode, recovery is read directly

out of Table 2B as a function of local Mach number
only, and inlet drag is neglected. If the Local
Mach number exceeds M , the recovery and mass

flow ratio are determined using Table 2A, Table 7
(which gives the scheduled bypass flow, if any, as a
function of engine mass flow ratio), and engine
corrected airflow demand. An iteration is performed
to solve simultaneously for the match-point recovery
and inlet mass flow ratio, as well as the engiie mass
flow ratio and scheduled bypass flow. If the indicated
buzz (Table 2D) or distortion (Table 2E) limits are
exceeded, an appropriate warning message will appear,
but no fatal error will result. The bleed mass flow
associated with the calculated inlet mass flow ratio
is determined from Table 6A.

After the required mass flow ratios are determined,
spillage, bleed, and bypass drags are found from
Tables 3, 4, and 5, respectively. Spillage drag

is the incremental change in additive drag and
pressure drag on the airplane due to inlet operations
at mass flow ratios less than a reference mass flow
ratio. The bleed and bypass drags include door

drags as well as momentum losses of the airflow.

Mixed-Compression Inlets. The performance calculation
for a mixed-compression inlet is illustrated in
Figure 10. Below the starting Mach number M., the
low speed mode and external-compression mode~are
used in the same way as in the case of an external-
compression inlet. The mixed-compression mode, used
at or above M., 1is based on the assumption that a
closed~-loop bypass system is available to remove
all excess air, Thus, except for the case ot
excessive engine airflow demand, the inlet mass flow
ratio, bleed flow, and recovery may all be scheduled
as a function of local Mach number only; the bypass
system compensates for changes in e¢ngine airflow
demand.

If the corrected airflow delivered by the inlet is
inadequate to meet the engine demand at the scheduled
recovery, the program will permit the inlet to
operate at an excessive supercritical margin. The
recovery will be lowered sufficiently to match the
engine corrected airflow demand, and an appropriate
megsage will warn the user of an undersized inlet.
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Inlet spillage, bleed, and bypass drag are found
using Tables 3, 4 and 5 as in the e:; ternal-
compression mode. The data in the:¢ tables for
Mach number equal to or greater tr.n ws apply only
for started inlet operation.

4.2 TOTAL PRESSURE RECOVERY /

/
Three separate procedures are used to calcvrrate inlet total
pressure recovery, depending on the flight speed of the
airplane.

4,2.1 Low Speed

At takeoff and low speeds (0 = M £ ,40), the primary total
pressure loss generating mechanisms are sharp lip losses

and subsonic diffuser losses. The methods used to calculate
sharp lip losses accounts for lip bluntness, effect of takeoff
door area, and inlet flow velocity. The subsonic diffuser
losses are calculated by using an input variation of duct

loss coefficient, € = APT/ql, as a function of inlet throat Mach

number. The duct loss variation is obtained from a catalog of
data provided (in Volume IV) for a range of configuration
variables.

The sharp lip losses are combined with the subsonic diffuser
losses as shown in the flow chart of Figure 60 to obtain the
overall inlet total pressure recovery.

The nomenclature used to calculate the lip losses for low
speed inlet operation is shown in Figure 11,

The required input quantities for the 'ow speed calculation
are:

by
D ~ 1ip bluntness paramcter, ratio of “ip
radius to inlet lip hydraulic diaweter,
dimensionless.
\% - )
W e2 engine corrected airflow, lb/sec.
62 ,
AC ~ inlet capture area, in.
MO - local inlet Mach number, dimensionless
AT - inlet throat area, in.z

a3

b YRR P e =

e



i

A A = Geometric At = Actual
0 TGoom Throat Eft Effective
Area Throat
Area
(a) SHARP Lip
Ag

(b)  BLUNT LIp

Figure 11 NOMENCLATURE FOR LOW-SPEED INL ET LIP LOSSES
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Takeoff door throat area, in.2

subsonic diffuser duct loss coefficient,

€ = APT , dimensionless.

9

’ The basic calculation procedure is the same, regardless of

T the local Mach number; however, below M. = .20, inlet throat
Mach number is based on the calculated throat corrected
airflow parameter,

T T .

T GEOM

This parameter is calculatcd by the following equation:

\F— P
. W v—~ T, A ‘ (1)
B H TGEOM = Inlet throat
GEOM TO geometric area,
in.*“
After the throat corrected airflow parameter, W V6 , is
calculated, throat Mach number based on 5—-AT
geometrin throat area, MT , ls obtained GEOM
from. GEOM
w Ve M !
5 = 592 sy = 1.40 ,
A [(1 + M%) ] ,

This equation can be solved by computer or the input data
curve can be programmed for a table look-up procedure. This
curve is plotted in Figure 12,

Above Mo = .20, the throat Mach number based on geometric area, é
. . . A . !
MT » 1s obtained by calculating the throat sonic area ratio, z
GEOM
(A/A*)T . To accomplish this calculation, the inlet mass |
GEOM 5
‘ flow ratio is first calculated: fl
Vo P
2o _ M Y% [ a T2 ,
R 5. A. A% X p (2)
C 2 C 0 TO

L
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Next, (-%;)T is calculated as follows:

GEOM
A A

(%) (D) () (53 (3)
iy C 0] 0]
GEOM

MT is then obtained from the relation:
GEOM
2,3
A (1 + .2M%) -
AF T T I.726M y = 1.40 (4)

This relation is plotted in Figure 13, for convenient use in
performing hand calculations, if desired.

The effect of adding flow area by takeoff doors is accounted
for by adding the takeoff door geometric throat area to the
inlet geometric throat area and then calculating the throat
Mach number the same way as before.

After calculating the throat Mach number based o. geometric

area, MT , the effective throat Mach number, MT , is
GEOM EFF

obtained from plotted data (or table-look-up, in case of the

computer program) showing the variation of MT as a function of
EFF

MT and lip bluntness parameter, r/D. An example of this
GEOM

plotted data is shown in Figure 14.

-

The ratio of effective throat area to geometric throat area,

A

EFF , is next obtained from the following equation:
A

TeeoM
By &)
EFF _'A* EFF _ . (M, My o ()
Ay A EFF, ~GEOM
GEOM A* ' GEOM
AT PT
The simplifying assumption is made that "EfF = T.
Afl‘ P 'I\
GEOM 1

This assumption is based on the tollowing rationale:

If A = A, but there is a loss in total pressure between

point 1 and 2, then the Mach number at point 2 will be
higher than that at point 1, because of the effective
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reduction in area ratio, (A/A*)z, since (A*)2 has increased. The
present method assumes that the reduction in (A/A*)2 is equivalent
to that obtained by reducing A2 and keeping A* constant between

points 1 and 2. Thus, there is a direct relationship between

A2 and A1 which is related to the lip loss. This relationship
EFF

can be expressed as:

ifg - AZEFF

ik
and since AZ = Al’ and A2 = AT

Ty _ Merr

1 Mapou

Ay . s
Thus, the "EFF can be substituted for _"T.

M eeon o1y
After throat effective Mach number, MTEFF’ is obtained, the
subsonic diffuser duct loss coefficient, ¢ = APT/qu, is obtained
from input data showing the variation of € versus MTEFF.

-

¢ is then used in the following equation to calculatc the
total pressure recovery of the subsonic diffuser:

PT2 1
—2 -1-¢ |- (6)
2 75

T . (1 + .2M 2)
Tepp

For convenience in performing hand calculations this relation
is shown plotted in Figure 15,

Overall total pressure is next computed from the product of
throat recovery and diffuser recovery:

P P 2 (7)
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An assumption of P, /PT = .95 is used for this purpose. The
2 0

procedure operates by assuming a value of recovery, calculating
throat Mach number, calculating sharp lip losses, calculating
subsonic diffuser losses, sums the losses to obtain overall
total pressure recovery and compares the calculated value with
the assumed value. If the calculated and assumed values differ
by more than .001, a new value of PT /PT is assumed that is

2 0
equal to the average of the calculated and assumed recoveries
and the calculation procedure is repeated.

4.2.2 Subsonic and Transonic

In this speed range (.4 s M £ 1.10) the inlet total pressure
recovery is determined almost entirely by the efficiency of

the subsonic diffuser. Boundary layer bleed flow is usually

not required. If excess air is taken into the inlet, it is
discharged through a bypass system. At Mach numbers below

1.10, spillage is usuaily a better way to get rid of excess
inlet airflow because it has a lower drag penalty than bypassing
at thege Mach numbers. {

The total pressure recovery calculation procedure is shown in
the flow chart of Figure 61. .

The procedure involves an iterative solution for the diffuser
losses that matches the airflow through the inlet. Initially,
a recovery value of PT /PT = .95 is assumed to begin the

2 70
calculgtion. Using the assumed recovery, inlet mass flow ratio
(assuming no bypass or internal bleed is used) is calculated
by the following equation:

vVa PT
A W 0 A 2
AC 0
(AC) .343
Next, the throat area ratio based on geometric throat flow
area, (5?) is calculated from the following equation:
A
TeEOM

%qﬁ

)

) ) o
TGEOM AC AO AC
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From this area ratio, the throat Mach number, MT , is
obtained from the relation: GEOM

2.3
A (1 + .2M%)

ix - 197560 (This relation is illustrated

in Fiqure 13)

A correction is then applied to account for the fact that the
effective throat area is smaller than the geometric throat
area. This correction is presented in the form shown in
Figure 14, The correction is based on correlations of
experimental data with theory used as a guide in fairing

the curves where data points are not available. If the M,

is 1.00, then the assumed recovery is reduced by .05 EFF
and the process is reiterated, beginning with the calculation
of AO/AC until a value of M., is cobtained which is just at
or bélow M = 1.0, EFF

TEFF

The diffuser loss coefficient is then obtained from input data
tables as a function of MTEFF An example of this input data
is presented in Figure 16.

Using the diffuser loss coefficient obtained above, the
diffuser total pressure loss 1s calculated from:

—2 = 1 - ¢ L= 1 Yy = 1.4

P 3.5
TT 1l + .2 MT 2
EFF

If there is also a loss in total pressure from frece-stream
to inlet location, the two losses are combined to vyield
the final total pressure recovery:

P P

T, [T TT\

P “\P P

To o) \ To/
If the calculated recovery differs by more than .001 from the
assumed value, then the process is reiterated using a new value
of recovery which is the average of the calculated and assumed

values.

4.2.3 Supersonic

The major causes of inlet total pressure losses in the
supersonic speed regime (1,20 S M £ 4.5) are shock losses

and subsonic diffuser losses. Shock-boundary layer ianteractions
and the amount and distribution of boundary layer control

43
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bleed airflow also affect both shock losses and subsonic
diffuser efficiency. However, it is difficult to separate
out the contribution of boundary layer effects on either
shock losses or diffuser efficiency without extensive use
of experimental data, which in many cases does not exist.
The calculation method in the PITAP procedure uses estimated
inviscid shock losses and subsonic diffuser losses based as
much as possible on the results of experimental work. The
effects of boundary layer on shock losses are accounted for
by correcting the ideal shock losses to make them agrce
closer with experimental results. The effect of boundary
layer on subsonic diffuser losses is accounted for by using
realistic diffuser duct loss coefficients obtained from
experimental data.

4,2.3.1 Two-Dimensional Inlets

Inviscid total pressure recovery of an inlet supersonic
diffuser depends on the number and strength of shocks used

to decelerate the flow from supersonic to subsonic Mach numbers.
Figure 17 shows the trends in total pressure recovery as a
function of free-stream Mach number and the number of shocks,
including all obligue shocks and the normal shock. Also shown
in Figure 17 is a dashed line representing the approximate é
maximum obtainable recovery based on experimental data. When j
an inlet is operating at a free-stream Mach number which is !
at or below its design Mach number, and has variable ramps !
that can be positioned to provide nearly optimum ramp geometry,

the total pressure recovery can be obtained from the curves

of Figure 17. The maximum practical recovery (shown as a 1
dashed line in Figure 17) is used as an upper bound. For !
the case where an inlet is operating above its maximum design :
Mach number (except for a normal shock inlet, N = 1), flow

stability problems are commonly encountered due to shock

waves entering the inlet. Therefore, this condition is not ’
of much practical interest for most preliminary design studies, i

The ramp geometry required to provide the estimated total .
pressure recovery can be obtained from Figure 18, which shows !
the total deflection for ontimum shock systems having various ;
numbers of oblique shocks as a function of free-stream Mach ;
number., If all the compression were accomplished externally,

the summation of the deflection angles would be equal to the g
4 last ramp angle. If only a portion of the compression is ’
done externally, the last external ramp angle is correspondingly
less. In this way, depending on the specified external/internal
compression split, the last external ramp angle can be calculated
from the equation:
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z:‘SEXT

I8 pxr = £s ) (8)

where (?ifg—gi; is the specified external/total compression
split.

The inlet throat size is calculated from the following equation:

*
Ar/Pey _ (;_\_9 (A fr\) (g_*_ (9)
(AO7AC) A¥) o A‘O Aj
where AT = throat area, in.2
AC = 1inlet capture area, in.2
AO/AC = inlet mass flow ratio passing through
the throat
o 24 3
a/ay = UMy
1.728 MT
AX*/A* = 1
70 5-—7$—_'
T To

A flow chart showing the steps involved in the calculationr
procedure is presented in Figure 62.

4.2.3.2 Axisymmetric Inlets

The total pressure recovery of an axisymmetric inlet can be
obtained from the plotted data of Figures 19 and 20 in a
similar manner to that used for two-dimensional inlets., Figure
19 presents recovery plots for external compression inlets

and Figure 20 presents plots for inlets with external and
internal compression.

4.3 BOUNDARY LAYER BLEED DRAG

To calculate the drag of boundary layer bleed air, it is
necessary to know the geometry and location of the bleed

exit nozzle, the amount of bleed airflow, and the total
pressure recovery of the bleed air at the nozzle exit.

Methods for estimating the last two parameters and calculeting
the drag are described in this section.
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4.3.1 Airflow

) The amount of bleed air required is obtained from Figure 21.
~ These data were obtained from experimental data (References 2
) through 6), and represent a nearly optimum bleed configuration.

‘ 4.3.2 Recovery

The bleed plenum total pressure recovery is obtaincd from
Figure 22. These pressure recoveries represent average
values obtained from experimental data (References 3 through

5).
. A flow chart showing the steps in the procedure required to
k obtain bleed airflow and total pressure recovery is presented
|

in Figure 63.

4.3.3 Drag i

The output of the boundary layer bleed subroutine is used as

input to the momentum and flap drag subroutines which are

used for both bleed drag and bypass drag calculations. The

only difference is that the bleed air, A /E_., 1s used in
OBLC ¢

bleed calculations and bypass air is used in bypass drag

calculations.

Bleed (and bypass) drag is composed of two parts: momentum
drag and flap (or exit) drag. Momentum drag depends on the
exit angle of the discharged air, total pressure recovery of
the discharged air, type of nozzle thrcugh which the air is
exited, and free-stream Mach number. lap drag depends on
door angle, door aspect ratio, and frec-stream Mach number.

4.3.3.1 Momentum Drag

| The procedure for calculating momentum drag is presented in
: the flow chart of Figure 64. The input quantities required
for the calculation are:

MO ~ local Mach number, dimensionless.
6 - exit angle of air relative to free-stream,
degrees.
PT
_E N total pressure recovery of bypassed airflow,
PT dimensionless,
0]
A, t
BLC ~ boundary layer bleed mass flow ratio,
AC dimensionless.
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A

Opp ~ bypass mass flow ratio, dimensionless.
A

(o

AC ~ inlet capture area, in.2

Nozzle type must be specified as one of the following types:

(a) - Convergent nozzle
(b) - Convergent-divergent nozzle, fully expanded
() - Convergent-divergent nozzle with a specifier.

area ratio, AE/AT, dimensionless

. . 2
nozzle exit area, in.

>
i

. 2
nozzle throat area, in.

>
1t

(a) Convergent Exit

The first step in the calculation of momentum drag for the
convergent nozzle is a test to determine if the nozzle is

choked. This is accomplished by calculating M, according
to the following equation: min
My = | 6 __ s (10)
min TE .286
PT
Mo represents the lowest free-stream Mach number at
min

which the available pressure ratio will be sufficient to

choke the nozzle throat. 1If MO P MO , the nozzle throat is
mi

assumed choked, M, = 1.0, and PE/PO = i?o,

Next, the nozzle throat area is calculated by the equation:

. 2 AOBLC A
AT’ in. AC C (11)
A PT
Ii‘?o i‘a"F:
T
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Drag, as a fraction of the free-stream momentum of the bypassed

airflow, D , ic calculated by the following equation:
W)
ao
J (12)
D
WaVo -1 -Cos b/72+ .4 Méz L.715 - 715 Ty
M 2.4 T P 2+ .4 M *
5 0 Th E”EL
/ — 2.
PT
Converting the above drag to CD:
A
0
BLC D
Cc., = 2 — e (13)
D A. (WaVO)
g

If exit area, A_, and P, /P are specified instead of A /A

E TE TO OBLC C

and PT /PT » (as above) the following calculation procedure is
E 70

used to determine bleed drag:

The bleed airflow, AO /AC, is first computed (if it
BLC
is not specified) by the following equation:

AO P

B _  ‘Ar) &) T
An (A 0 PTo

After A /A~ is calculated, the drayg calculation proceeds in
OBLC ¢

the same way as before, using Egquation (12).

For an unchoked convergent nozzle, (MO « M ), the exit
min
static-to-total pressure ratio, PE/PT ,» 1s calculated Ly the
E

following steps:

PO L 35

— = . 14

P T (1 + .2M7) \14)

0 0

55




e e 4 S ML 45 e i s RN SN I

El

Next, the exit static-to- total pressure ratio is calculated:

= = 2 {15)
P P
Ty ( E>

Next, ME is obtained from PE using bquation (14).

P,
'

Then (%7 is obtained using Mg and the following equation:
E

A (1 + .2 M%)
('—*') -~ !
A E 107&8 ME

i

The throat area is then calculated by:

i
A {
Oprc ) 2¢| a
*
A Ac Mk (16)
T~ TA P
A% E !
O ——
B
0

Drag, as a fraction of free-stream momentum, is calculated
by:

(17)
WDV=1-cose\/ 22+1|’1- 21
a’o My 1+ .2m%) b, .286
g L ()
’l\
9]

CD is then calculated as before:
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(b) Convergent-Divergent Exit

‘ A test is first performed to determine whether the nozzle
throat is choked. Mg is calculated and compared with M5
min
as in the case of the convergent nozvle calculation. If the
calculation shows that the nozzle throat is not choked, the
C-D nozzle is not a good choice and the configuration should
be re-examined, since excessive drag would result from the
use of this configuration. If this happens, the computer
program terminates the case and goes to the next case.

[ i

If the test shows that the throat is choked, two calculation
procedures can be followed.

(c) C-D Exit Fully Expanded

If it is specified in the input ta that the C-D nozzle is
to be fully expanded, the exit st.tic pressure, PE, is assumed

to be equal to ambient pressure, P and the nozzle exit static-

~ Ol
to-total pressure ratio PE/PT is calculated from the following
E

equation:

Using the above ratio, exit Mach number is obtained from the '
relation: f

Next, the free-stream static-to-total pressure ratio is x
calculated:

“o
P

To (1+.2mM

1

2 3.5

o)

[T P S
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Then P is calculated from the relation:

E_
Po
P o
e (e
PE PTE PTO
5 = v (18)
O <:9;>
P
To
i Nozzle area ratio is calculated by:
A (L + .2 M 2)
ol ve i w v (19)
T ' E

Nozzle throat area size is calculated by:

i
2 . \ A (C) (20)

AT, in = X —
(F)"(FZ‘E)
0

TV i -

Nozzle exit area is calculated from:

Ags in? = (;%) (AT) (21) ,

Drag is then computed from the following relation:

D 2 1
o = l - cos 6\[ + 1]l -
aVO .4 M 2 P 286 !
( 3 ) 0 A l
2 ——
1+ .2 E)
My ) T,

i s ol B e e -
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(d) Convergent-~Divergent Exit with Specified Area Ratio

If the throat of the nozzle is choked, as will have been
determined from the test that was made using My 2 My , the
calculation proceeds as described below. min

The nozzle area AE/A* is set equal to the specified nozzle area
ratio AE/AT. Then the Ffree-stream (A/A*)O is obtained from

Figure 13. These data provide the necessary items to calculate
nozzle throat area according to the following equation:

Oprc A
o c

= C
T A
&), (e
O 1p

A

To

Then nozzle exit area is computed from:

Ap = (:'“:) (AT> "

: \
The nozzle exit Mach number, Mg, is obtained from Figure 13

as a function of the nozzle AE/A* ratio. Then the exit

pressure ratio, PE/PT + 1s calculated from the equation:
E
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Also, the free-stream pressure ratio is calculated from the
same equation.

Next, the exit pressure ratio, PE , is calculated from :

-

o)
P
(=) &
P P
Py P,
P
Ts
Drag is then computed from:
r 5 3.5 )
1 1+.2M,
1+.2M Y2 Pr /Py )- 1+.2M_ 2
D _, . Cos® M ‘o - E 0 "E
Wv, -~ " M. VE 2 - 3
a d) 0 1+.2M, (;2)(.808)[l+.2M02]
g E
P
- (22)

This is converted to drag coefficient by:

A
-, (.OBLé) D
D A WV

C ( ; o)

All the equations for bypass momentum drag and flap darag are
the same as those used for boundary layer control bleed airflow

drag calculations.

FlaE Drag

Flap drag is calculated by integrating the predicted pressure
coefficients acting on the exit doors in the flight direction.
To accomplish this, tables of average pressure coefficients for
doors of various aspect ratios (W/h) from .75 to 4.0 are used as
input data to obtain the pressure coefficients.

0

4.3.3.2
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A correction is also applied to account for the fact that the
doors are usually operating in a region of turbulent boundary
layer. The detailed steps used in the calculation procedure
are shown in Figure 64 and described in the sections which
follow.

W - door width, inches
h ¥ length of door, inches
n ~ number of doors, dimensionless
A, /AC h Bleed mass flow ratio
BLC
A. - capture area size, in?
MO - free-stream Mach number, dimensionless
PTE
- total pressure recovery of the airflow,
TO dimensionless
Cp vs MO,

AR 590 ppp - tables of average pressure coefficient vs

free-stream Mach number, door aspect ratio,
and door angle.

Door aspect ratio is computed from the input door dimensions:

AR = Wh (23)

The next step in the calculation procedure is to compute the
ratio of door exit area to capture area, AE/AC. Two possibilities

exist: convergent nozzle and convergent-divergent nozzle.

For a convergent exit, the exit area is calculated by the
following equation:

61
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(where AE/A*E = 1.0 for a choked
convergent nozzle)

Ry A
BLd) E)
Ag ( A (A—g
A, (n)ck B, (.95)
c Gﬁa Ty
oy

(24)

O (0.95 is the assumed flow
coefficient)

This equation assumes that the exit consists of n doors of equal
size.

The door flap angle is calculated from:

&
(eFLAP) = maN "1 (25)
ACTUAL (:FLAP)
C
_ Wh
Where AFLAP/AC = KE (26)
Using (6 FLAP) and free-stream Mach number, Moo the

ACTUAL

effective door angle is obtained from the plotted data of

Figure 23, which shows the effect that turbulent boundary

layer has on reducing flap angle. From the plotted data,

(OFLAP) + the effective door flap angle, is obtained as a
EFF

function of actual door angle and free~-stream Mach number,

assuming average turbulent boundary layer conditions.

The average pressure coefficient over the surface of the door
is obtained from the data of Figure 24 as a function of

(6 ) » M, and MR,
FLAP EFF 0

Using the pressure coefficients, the flap drag coefficient is
calculated from the following equation:

AFLAP) n ] (27)

( ) - lc [sxn TN L] (
D P FLAP' A
FLAP TOTAL ACTUA C
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If a convergent-divergent exit nozzle is used, the nozzle
throat area is first calculated by:

(Assumes (A/A*)T = 1.0

0BLC QKT for a choked throat)
— = (28)
AC (n) PT (.95)
°T,
The nozzle exit area is then obtained from input curves of
ig Vs AT which represent the geometric characteristics of
AT
the doors. Exit area is then calculated from the relation:
éﬂ - (22)(§§) (29)
A A A
C C T

The calculation then proceeds the same way as for a convergent
nozzle.

4.4 BYPASS DRAG

The calculation procedure for computing bypass drag is the
same as that for boundary layer bleed drag except that bypass
total pressure recovery is different (usually higher) than
that of the boundary layer bleed air. The recovery of the
bypass air may be assumed to be .85 x (PT /PT ) for preliminary
‘ 2 0
studies. If a more refined calculation 1s required, the bypass
recovery may be varied linearly from a value of 1.00 x (PT /PT )
0]

with the bypass doors closed to a value of .70 X /PT with

12

of capturea inlet airflow). The recommended bypass recovery
factors are 1llustrated in Figure 25,

The method described in previous sections for calculating exit
drag for bypass and boundary layer bleed air has covered only
the specific case where flap-type doors are used for exits.
The same methods can also be used for other types of exits

by use of the engineering assumptions shown in Table III.

the doors full open (which usually bypasses around foty per cent
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Table Ill. ENGINEERING ASSUMPTIONS FOR BOUNDARY
LAYER BLEED AND BYPASS EXITS

Type of Exit

Flap-Type Door

/k/?

I

Flush-Type Exits

- =

Al

Assumption

Use Method
Described
in Volume |

Assume Exit
Drag is Same

as for Flap
naa, - QFap
Because External
Pressure Field
Will be Created
Just as if a Door
Were Present

Omut Flap
Drag Term
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4.5

SPILLAGE DRAG

Spillage drag is calculated from the following equation:

C = K C
Psprin APP Papp
It is defined as the incremental change in total airplanc
drag due to spilling excess ailr ahead of the inlet. lowever,
it is usually measured as an increment (AC ) from the
b
SPILL
drag level obtained for the full airplane configuration with
the inlet operating at a baseline mass flow ratio. When the
inlet is operating at this baseline mass flow ratio, the
ACD is zero. The spillage drag at the baselinc mass
SPILL
flow ratio is included in the airplane acrodynamic drag. The
baseline mass flow ratio is specified for each inlet configuration
as a function of free-stream Mach number. It is normally
selected at mass flow ratios where spillage effects will be
a minimum, for realistic operating airflow conditions. This
baseline mass flow is normally taken to be the critical mass
flow ratio. At supersonic speeds, with the shock wave attached
to the first ramp, critical inlet operation means that the
normal shock is at or inside the cowl lip. For subsonic and
detached shock wave conditions, it means that inlet captured
free-stream tube area, AO’ is equal to the physical flow area

at the cowl. The establishment of the baseline mass flow

catio as described provides a basis for accounting of aero and
propulsion forces. The throttle-dependent drag is thus included
in the spillage drag (which is accounted for in installed net
thrust) and the drags that are independent of throttle setting
are included in the aerodynamic drag of the airplanc.

4.5.1 rheoretical Additive Drag

Cpy is the theoretical additive drag of the inlet. It is
ADD computed by several different methods, depending on
the configuration of the inlet, free-stream Mach number, and
shock geometry. This section describes the methods which are

used for each particular situation.

The additive drag of an open-nose inlet is calculated as
shown in Figure 26. This equation can be used for both
subsonic Mach numbers and supersonic Mach numbers where a
normal shock is standing ahead of the inlet.

For two-dimensional inlets at subsonic Mach numbers and for

supersonic Mach numbers with the terminal shock at or inside
the inlet lip, the method shown in Figure 27, is used.

71
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The last term on the right hand side of the equation (ramp
drag) represents the incremental change in ramp drag due to
reducing the mass flow ratio below the reference value. This
incremental drag is obtained by calculating the pressure drag
on the ramp, using the average pressure on the ramp, (Po+pl)/2

and the projected ramp area, AR' The reference ramp drag is

obtained from the plotted data of Figure 28, as a function of
ramp thickness ratio, t/c, and free-stream Mach number,

For two-dimensional inlets operating at supersonic Mach numbers
with the normal shock outside the inlet lip (subcritical),
the additive drag calculation method of Reference 7 is used.

This method has been programmed for the CDC 6600 computer as
a separate program and is not included in this report.

Theoretical additive drag for an axisymmetric inlet at subsonic
Mach numbers and for supersonic Mach number conditions where
the normal shock is at or inside the inlet lip, the method
shown in Figure 29 is used.

Incremental spike drag is calculated in much the same way as
ramp drag for the two-dimensional inlet. The average spike

pressure and projected spike area are used to calculate the

incremental drag. The spike reference drag is obtained from
pressure drag data on cones (Figure 20).

For axisymmetric inlets operating with the terminal shock
ahead of the inlet lip, the method documented in Reference 8
is used. This method has been programmed for the CDC 6600
computer as a separate program and is not documented in this
report.

4.5.2 KADD Factors

The theoretical additive drag is multiplied by a correction
factor, KADD’ based on experimental data, to account for the

configuration effects. These effects include the effect of
cowl lip shape, bluntness, and sideplate cutback. The KADD
factors are obtained by comparing experimentally
measured drag variation as a function of inlet mass flow ratio
with the theoretically calculated drag variation. A catalog

of K, factors to be used is presented in Volume 1IV.

4.6 ANGLE-OF-ATTACK EFFECTS

Correction proceduses are discussed here for the three most
frequently encountered types of inlet installations: free-

e e
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stream, underwing and fuselage mounted.

For free-stream installations, each angle of attack position
is calculated as a separate data point without applying a
correction for the presence of the wing or the forebody.

For all types of installations, it is assumed that the basic
inlet is installed in a location where it is free of adverse
boundary layer effects.

For the underwing inlet location, it is assumed that the
inlet is located within the flowfield of a two-dimensional
wing. As angle-of-attack is increased, the wing compression
field provides a local flowfield at the inlet that is
different from free-stream according to the relations plotted
in Figures 31 through 34.

Figure 31 presents a correction factor, K, used to compute
the local Mach number behind a wing shock. It is derived
from the linear portions of the M0 vs o data shown in Figure
32.

Figure 33 shows the effect of angle-of-attack on local stream
tube area for supersonic Mach numbers.

For preliminary design purposes, the performance calculations
for an inlet in the wing flow field are approximately equal
to those for an inlet in free-stream except that the effect
of wing compression on local inlet flowfield properties must
be accounted for before the inlet performance calculations
are made. Figures 31-34 are used for this purpose.

For side-mounted inlet installations, the available experi-
mental data (Volume IV) indieates there is relatively little
effect of angle-of-attack on local inlet Mach number and
total pressure recovery up to 20 degrees angle-of-attack.
Therefore, for preliminary studies, it is assumed that the
inlet local flowfield properties are the same as free-stream.

For under-fuselage mounted inlets, the fuselage provides
increasing compression as angle-of-attack increases. This
compression field reduces the local Mach number ahead of the
inlet and can also reduce the total pressure recovery ahead
of the inlet.

Although this compression field is dependent on the shape of
the forebody ahead of the inlet and the location of the inlet,
aft of the forebody nose, the experimental data have preva.ling
trends that indicate the flowfield effects are generally
somewhere between those produced by a conical forebody and a
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two-dimensional surface. The correction curves to be used
for the under-fuselage inlets are presented in Fiqures 35
They are based on experimental data from Reference 9.

and 36.
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SECTION V

NOZZLE/AFTERBODY PERFORMANCE

5.1 NOZZLE INTERNAL PERFORMANCE

Figure 37 presents a diagram showing how the nozzle/
afterbody calculation procedures relate to the installed
propulsion system performance procedures. Each of the
nozzle/afterbody procedures is discussed in detail

in the following sections.

5.1.1 Convergant

Test data are available in Volume IV, Section T1II that
show the measured velocity coefficients (C,,) for & series
of convergent nozzles as a function of entrance to exit
diameter ratio, pressure ratio, and nozzle convergence
angle, The velocity coefficients are defined as follows:

(Fe) MEASURED

(h) (V)

CV =

ACTUAL ISENTROPIC, FULLY EXPANDED
These measured C,,8 are used with the ideal, fully
expanded gross tgrust calculated by methods described

in Section III to obtain the predicted nozzle grouss
thrust for a given mass flow. Convergent nozzle dis-
charge coefficients were also measured during the tests.
These coefficients,presented in Reference 29,are used to
relate the effective to actual throat areas for purposes
of sizing the nozzle throat to pass a given mass flow or,
conversely, for determining the effective throat area for
a given throat geometric area.

The experimental C,s are accurate to within + ,25%, and
should be adequate for most preliminary design purposes.

If it 18 desired to calculate the internal perfoimance of
a convergent nozzle by theoretical buildup, it is

recommended that Cv be calculated as follows:
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_ Wg 4+ Ag (Pg= P
C, =1. - AC - 1, - ——
\Y VS g _
F
93
where A8 = actual throat area = A§/CD : A§ = thermodynamic J
throgt area,
in .7,
CD = experimental throat discharge coefficient,
dimensionless (Ref. 43)
P8 = static pressure at the throat, lb/in.2 J
V8 = jet velocity at the throat, ft/sec
Fg = ideal gross thrust for fully expanded flow )
i
ACv = internal loss due to skin friction (cal-
8 culated by methods of Ref. 44)

Theoretical methods are also contained in keference 44 for
calculating the effect of boundary layer growth on nozzle
discharge coefficient.

5.1.2 Converygent-Divergent

The performance of a convergent-divergent nozzle is determined
from the stream thrust coefficient discussed in Volume 1V,
Section III.

The procedures for calculating the thrust of a convergent-
divergent nozzle are given in Section III. By these procedures,
the gross thrust is:

- w
Fg = Cg (§ Vo * PoRg) - PampPy |
where Cg4 = stream thrust coefficient (1-4Cg) = £ (Ag,ay,6)
from Figure
38. Dimen-
Ag = nozzle exit area, in2 sionless

J :

5.1.3 Ejector

Therg is not sufficient test pzrformance data in Volume IV,
Sectlop 5 to calculate ejector nozzle performance fecr all
operating conditions. The discussion in Reference 10 indicates

nozzle divergence angle, degrees
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that for certain conditions ejector nozzle performance
o calculated by compound flow theory and experimental results
f/ show excellent agreement. Therefore, this method was selected
« for use in calculating ejector performance where no test
data are available. Using this method, the nozzle thrust for
an ejector nozzle with dual flow can be calculated as follows:

wPV9P WSVQS
Fg = C4 + PgAgp + 3 + PgAgs = PoobPg
where Cy = divergence loss eoefficient = 1/2 (1+Cos 0),

dimensionless
secondary flow rate, lb/sec

=
i

=
i

primary flow rate, lb/Sec

[ %)

Ag = nozzle exit area for the primary stream, 1n.
. .2
Ay = nozzle exit area for secondary stream, in.

Ay = nozzle exit area, in.2

V9 = nozzle exit velocity of secondary airflow, ft/sec

Vg = nozzle exit velocity of primary airflow, ft/s2c

The nozzle geometry and secondary inlet flow conditions must

he specified to calculate the secondary flow (W,). If compound
choking does not occur (see Reference 10) taen 7 the secondary
flow is calculated at the exit plane by iterating until the
static pressures of bcth stmamsare matched (See Section 3.2.3.3).

A = A~ A
g = Po T Aoy
|
AwSPQVs
W = 55307 T,
5

The same procedure is repeated for the nozzle throat and if
the calculated secondary flow is less than the exit flow, it
is assumed that this exit area can be reduced to match the flow.

A e o et sat e Wt ierm st
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An iteration on A, to obtain maximum secondary is required
for the S compound-choked flow condition.

5.1.4 Plug

There is not sufficient test performance data in Volume 1V,
Section III to calculate plug nozzle performance for all
operating conditions. A good estimate of plug nozzle
performance can be made by subtracting tne added skin
friction drag due to the external plug surface from the
calculated gross thrust of a concentric nozzle:

Fg = ng (CVMAX) = Dayrn
where CV = 1 [lﬂ;ﬁlﬁ!]
MAX -
Nl

It is assumed the velocity at the end of the plug is equal
to fully expanded isentropic flow. The average dynamic
pressure, q, over the plug is used to calculate skin friction
drag.

2

i ce Y P+ b (M8 + Mq) ((; )
SKIN F 2 2 2 CWET
where Cp = average skin friction coefficient, dimensionless.
DSKIN = gkin friction drag, 1b
(47 A )1/2

D = ___,_ll____ dimensionle

hg Perimeter ! : ess
CV = maximum thrust coefficient for a concentric

MAX nozzle (Reference 28) dimensionless

5.2 NOZZLE/AFTERBODY DRAG

Nozzle/afterbody drag includes all drag elements associated
with the exhaust system installation that are affected by

the engine power setting. TLrag associated with skin friction
is included in the airplane drag polars. Drag elements
identified as contributors to the nozzle/afterbody drag
include:
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1. Nozzle/afterbody boattail drag

2. Interference effects for multi engine installations
3. Afterbndy base drag

4. Scrubbing drag

Nozzle/afterbody drag is computed using maps which represent
the afterbody drag characteristice (Figure 39), external input ;
geometric data, and fundamental engine data obtained internally
from the engine subprogram. The external inputs are required
constants that describe the nozzle and afterbody geometry:
Maximum nacelle diameter, boattail length, lateral nozzle
Spacing, base area, etc. Fundamental engine data obtained
internally from the engine subprograr include nozzle thrust
area, nozzle pressure ratio, free-strzam conditions and ideal
gross thrust. An essential geometry input is the nozzle

exit area, A_,, which is required for boattail draq computation.
This paramet&r is obtained in either of two ways:

l, From the engine subprogram when the existing nozzle
data are used.

2., From a table of A /A8 that is developec when new
nozzle data are uged.

The logic used to connect the input drag data aud the engine
subprogram is illustrated in Figure 40.

The nozzle/afterbody subprogram requires muvch less external
input data than the inlet subprogram., This is due to the

fact that the maps used to obtain nozzle/afterbody drags have
been generalized to cover a wide range of possible configur-
ations, and are built into the program. Thus, it is necessary
to supply as external in _ut data only the geometric parameters
used to specify the afterbody geometry.

5.2.1 Boattail Drag

The generalized maps which are now in the program are shown
in Fiqures 41, 42, 43 and 44. Figure 41 shows the variation
of boattail drag as a function of boattail angle and Mach
number for free-stream Mach numbhers up to .95. From Mach
1.0 to 3.0, the equation shown in Figure 41 is used. These
drag data are based on islated wind tunnel data for circular
arc boattails at nozzle pressure ratios, P, /P_ of 2,5. For
nozzle pressure ratios greater than 2.5, ak additional
correction is applied to the basic boattail drag coefficient |
obtained from Fiqure 42. This added correction shown in ’
Figure 42 is a function of nozzle pressure ratio and boattail
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Internal Inputs

External Inputs
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Figure 40: NOZZLE/AFTERBODY DRAG SUBPROGRAM
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angle. This added correction procedure is included in existing
nozzle/afterbody subprogram.

For supersonic Mach numbers greater than Mach 1.0, PITAP uses
the expression given in Figure 4l1. This represents an
empirical correlation of data from several sources, as

shown on Figure 43. The correlation was biased at the lower
Mach numbers toward data obtained with blown jet simulation.
The form of the correlation was suggested by supersonic wave
drag considerations (Reference 1ll) and, as shown in the
Figure 43, it does a reasonably good job of collapsing the
data.

The option is available in the computer prongram to calculate
complete afterbody drag as a functlon of the ratio of nozzle
exit area to maximum fuselage cross-sectional area, A /A 0
The drag maps built into the program for this calculatioh
are shown in Figure 44,

The drag of a plug nozzle subjected to subsonic external

flow may be estimated by considering the cowl and the external
boundary of the jet to define an equivalent boattail as shown
in Figure 45, The jet diameter at the end of the plug shownld
be computed assuming full expansion to ambient static pressure.
The drag of this equivalent boattail may then be estimated

from the data of Figure 41. Reference 30 contains experimental
data comparing measured plug nozzle drag with C-D nozzle drags.
This data substantiates that the equivalent nozzle concept is
suitably accurate for preliminary design analyses.

The drag of a plug nozzle at supersonic speeds and high
nozzle pressure ratios is simply the drag of the solid
boattail created by the nozzle shrouud. This drag can be
estimated from the data of Figure 4..

The installed thrust-minus-drag of a plug nozzle may be
estimated by summing all the internal and external losses
for the noz:tle and subtracting these losses from one. Thus,

F-D _ _« AF _ D
F. =1 XF. F.
1 1 1
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The losses in internal thrust which are accounted for in the
velocity coefficient term, LAC,,, include skin friction, non-
ideal expansion, and convergence losses. C accounts

for boattail drag. DAMAX

5.2.2 Interference Drag

PITAP is programmed to accept an input drag increment table
giving "interference" drag. Potentially this slot could be
used to account for any discrepancies between the calculated
isolated nacelle drag and the actuel drag of the nac~lle
installed in an airplane configuration.

At the present time this table is being used solely to account
for the twinning penalties assocviated with putting two nacelles
side by side with a clean, sharp-edged interfairing in between.
The independent variables are Mach number and spacing ratio,
i.e., center line spacing over nozzle exit diameter. (The
present version of PITAP, however, can handle any number of
side-by-side nozzles in a row, adding n-1 twinning penalties
for n nozzles.)

The interference drag coefficients used in the table (Figure
46) at spacing ratios greater than those tor which CD is a
maximum are based on data from References 12 and 13,71 which
are in generally good agreement with recent data reported in
Reference 14. At lower spacing ratios, the curves correspond
to completely separated flow on the inside half of the nozzles
and on the entire interfairing and base drag has been computed
for this region.

Figure 46 has been shown to work quite well when applied to
plug nozzles as well as convergent or converdent-divergen*:
nozzles. In this case the equivalent nozzle concept is

first used to estimate isolated nozzle drag, and then

Figure 46 is used, with spacing ratio defined to be center-
line spacing over fully expanded exit diameters. Ficure 47
(from Refarence 18) shows a comparison of twin-nacelle
thrust-minus-drag predicted performance and measured
performance for both plug and convergent-divergent nozzles,
Although the agreement is better for the convergent-divergent
nozzles, in both cases the prediction is within about one per
cent of gross thrust.

For nozzle interfairings that differ from clean sharp-edged
fairings, a considerable amount of data (References 12, 14,
15, 16 and 17) is available, but reliable correlations of the
interference effects as such do not exist.
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In principle the interference table now in PITAP could be
replaced by an additional table that would account for the
interference between a strut-mounted engine and a wing, or
perhaps an aft fuselage. A generalized table, however,
applicable to a wide range of configurations would be extremely
difficult to produce.

In a recent program at NASA Lewis (References 19, 20 and 21),
interference effects between an underwing engine nacelle

and an F1l06B wing were evaluated both in a wind tunnel test

and in actual flight. A ,similar test with a simulated wing

is alsu reported in Reference 22. These reports give pressure-
integrated boattail drags, as well as some wing pressure data.
Integrated forces on the wing must also be computed before
total installation loss effects and interference effects can

be extracted from the data. These tests also have limited
applicability to the present present program because the
emphasis was on the interference effects for a limited range

of nozzle geometric variations (e.g., only a 15 degree boattail
angle was used) rather than the installation losses for a

range of simulated power settings.

The pressure ratio correction used in PITAP is shown in

Figure 42, The effect of increasing jet pressure ratio is
two-fold. Increasing the size of the exhaust plume tends

to force higher pressures on the nozzle surfaces, decreasing
drag. Jet entrainment effects tend to pump down the pressure
on nczzle surfaces, particularly where separated regions exist,
increasing drag. Over a moderate range of pressure ratiosg
these effects tend to cancel cut. Reference 23 provides an
example where thege two opposing effects were isolated. 3ctween
jet-off conditions and a particular jet pressure ratio no net
effect was observed. Using a solid plume simulator, thus

eliminating entrainment effects, it was determined : . .. rhe
jet plume produced a favorable increase in isolated o .:ttail
drag coefficient of 0.02, while entrainment had «ocounted
for ~-0.02.

The relative importance of entrainment and plume cfiects is

a strong function of how much of the flow is separated or

in a base region, and thus sensitive to entrainment effects.
The Boeing data of Figure 48 clearly illustrates this
phenomenon. The upper three bands of data represent twin
nozzle configurations for which oil flow photographs revealed
significant geparated regions. Between a pressure ratio of
two (barely more than ram pressure ratio) and four there is
little apparent effect of pressure ratio on drag. The dashed
line is a single nozzle reference configuration which had no
separated flow. For this nozzle, plume effects cause a
continuous reduction in drag with increasing pressure ratio.
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Similarly, in Figure 48, the highest angle nozzle does not
benefit as much from high pressure ratio as the intermediate
angle nozzles. (The low-angled nozzles are almost zero drag
at the outset.)

Considerations such as these suggest that the pressure ratio
effects might correlate well with the initial drag level at
a reference pressure ratio. If the drag coefficient were
normalized by the projected nozzle/afterbody external surface
area, it represents a measure of how much separation existed
at the reference nozzle pressure ratio.

5.2.3 Base Drag

The PITAP method is currently set up to receive an input
table of base pressure coefficient versus Mach number for a
specified afterbody geometry. 1t can use the base pressure
coefficient from the input table and a specified base area

to compute base drag as a function only of free-stream Mach
number. However, to be throttle-gensitive, the base area
must be located where it is also affected by the propulsive
jet effects which vary with nozzle pressure ratio. In addition,
the base pressure is known to be gensitive to approaching
boundary layer conditions. Therefore, methods to account

for these effects should be incorporated into the calculation
procedure to obtain an improved base pressure prediction.

Subgonically, tihe effects of the propulsive jet may be
accounted for by using correlations obtained by McPonald
and Hughes (Reference 24).

The McDonald and Hughes correlation gives the increment in
base pressure coefficient between a base with no jet effects
and one with a jet of a given nozzle pressure ratio and a
given temperature. The correlation is presented in Reference
24 for a free-gtream Mach number of 0.9 and jet total pressure
ratios of 2.0 and 3.0. The correlation is seen to> work for
approach boatta.l angles from 8 to 24 degrees, and specifically
treats the case of an annular base around the jet. The key
correlating parameter is the jet diameter squared divided by
the product of the base diameter and the maximum diameter.
Figure 49 presents this correlation for a jet pressure ratio
of 2.0. The success of this parameter in correlating the

data at Mach 0.9 suggests that it be tried at other subsonic
Mach numbers. The method of McDonald and Hughes for Mach 0.90
is now programmed into PITAP,

For supersonic Mach numbers, from 1.0 to 2.2, an excellent
base pressure correlation has been reported in Reference 25.
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Using correlation parameters called B and C which involve
a reference base pressure level and known information about
nozzle geometry and pressure ratio, a remarkable collapsing
of the available data is obtained, as shown in Figure 50.

The parameters B and C are defined below:

P P
_ -1 b b
B =M1ln (.815 - 1.15 1nK) (§:) (5:)
M K
P
where (5—) = model base pressure ratio
® M
b
(=) = base pressure ratio at K from Figure 50
” K
o ) MmP% + MRS
e
M, = Mach number corresponding to nozzle pressure
J rvatio
Py = base perimeter exposed to free-stream
Pj = jet perimeter
P, = perimeter of circle of area equal to the
nase area
p
2(Db/Dj) - 1.5 AJ o
C= (.37M_+ 0.62) M, M.
® design 10 Jdesign Aj tAg P,
where Dy = base diameter
Dj = jet exit diameter
M. = nozzle design exit Mach numbeyr
Jdesign
Aj = jet exit area
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AB = base area
P. = nozzle exit static pressure (just inside
le the nozzle)

The parameter (Pb/Pw)K is plotted as a function of K in
Figure 51. B is plotted as a function of C in Figure 50,
The procedure for determining base drag is then:

l. Compute C

2. Find the corresponding B from Fiqure 49.

3. Compute K

4, Find (Pb) from Figure 50.

P

o K
. C f d
5 Compute (;E) rom B an (;E)
M K
6. CD = 2 AB ( - (EE )

A method to account for upstream boundary layer effects has
been developed by Nash (Reference 26). Nash proposed a
curve of the limiting value of the base pressure coefficient
for zero boundary layer thickness as a function of Mach number.
Then he obtained an impressive correlation (Figqure 52) for
the increment in base pressure coefficient due to a finite
momentum thickness 6 approaching a base of effective height
h. Thus the base pressure coefficient in the absence of

jet effects can be estimated. The momentum thickness, 6, to
make use of the correlation can be obtained from experimental
data, detailed theoretical calculations, or engineering
procedures, as time permits.

5.2.4 Scrubbing Drag

Provisions for scrubbing drag calculatiors follow the method
of Reference 27, which has been used to correct the 747 JT9D
engine uninstalled performance for the scrubbing drag due to
the fan nozzle flow impinging on the nacelle afterbody.
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The method divides the calculation of viscous scrubbing drag
into two parts: The portion of the flow from the nozzle exit
to the end of the core flow, and the portion from the end of
the core flow to the end of the afterbody. The flows differ
in that the core region has a constant velocity scrubbing the
surface, and the latter portion is in a region of velocity
decay (Figure 53). For the region of the core the viscous
drag is expressed as

—-— l2 108 .8
DC - 0.036bDV VJ XC
whera b = width
p = density
v = kinematic viscosity
VJ = exhaust flow velocity
XC = core length

For the region beyond the core, the drag is expressed as

X, X
.20
2 Xe
D = 0.0288b Vy 1 a, + dy
X, X, Ty -25 3%
X Vs

Where Vx is the local velocity at station K.
The core length (X,) and velocity decay (v, = f(X-X.))at any
point downstream o? the core are determined using the method
of Lawrence (Reference 27). The maximum velocity downstrean
cf the core was correlated as

Vuax " Ve o oax, B
T ov— k()
J %
Where
VMAX = maximum velocity downstream of XCORE
vy = fully expanded ijet velocity

free-stream velocity
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velocity decay constant

¢ B = velocity decay exponent
AX = local station downstream of XCORE
h = flow height
. The constants K and B were developed from wind tunnel data,
and are presented in Figure 54. Intermediate values for
other Mach numbers are assumed proporticnal to free«st;eam
ram pressure ratio. Core length is calculated by setting
Vj = VMAX and solving directly for Xeo

The above method exists now in subroutine foxm (see Volume II),

5.3 ANGLE-OF-ATTACK EFFECTS

Angle-of~attack effects on nozzle internal performance and
nozzle/afterbody drag are difficult to predict using techniques
suitable for preliminary studies because the existing body of
experimental data to show these effects is very limited. In
addition, the data available are for specific configurations

and cannot readily be generalized. Reference 31 contains
experimental nozzle/afterbody data at angle-of-attack for a
twin-engine fighter at Mach 0.9. Thes: data show that there

is negligible effect of angles-of-attack from -2 to + 10

degrees on nozzle/afterbody drag for the tails-off configuration.
When the tails are on, however, there is a large increase in
drag due to angle-of-attack. There is not enough data, however,
to determine how much the angle-of-attack drag increase depends
on the particular configuration used.

Variations in angle-of-attack can affect the nozzle thrust
coefficient by changing the local pressure field at the nozzle
exit, and by introducing asymmetries and interactions into

the nozzle exit flow field due to thinning, thickcning, or
separating the boundary layer ahead of the nozzle. The extent
to which these effects alter the nozzle thrust depend on many
variables, including nozzle geometry, pressure ratio, afterbody
shape, fin location, and angle-of-attack range. No generalized
data were located to predict these effects. It can be expected
however, that for a choked, underexpanded nozzle at reasonably
low area ratio, the effects of moderate changes in angle-of- !
attack on nozzle thrust coefficient, CF + can be neglected for

purposes of preliminary studies. g ‘

For most preliminary design studies, steady state cruise
performance is emphasized, therefore, the effect of changes
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in angle-of-attack on afterbody drag is not of primary
interest and can also be neglected.

¢ If angle-of-attack performance is considered critical to
the design, a more extensive study should be made of the
particular configuration of interest to determine whether
the effect is likely to be large or small.

C 5.4 INSTALLATION EFFECTS OF THRUST

VECTOR CONTROL AND THRUST REVERSERS

The installation of thrust vector control and thrust reverser
equipment (in the stowed »osition) can create losses in
internal thrust coefficient, increases in nozzle/afterbody

C drag, and increases in airplane weight.

To determine the magnitude of these losses and weight increases

it is necessary to compare the performance and weight of

; various airplane design concepts which use thrust/vectoring
and reversing installations with similar airplanes that do not

e have TR/TV installations. Only a limited amount of data are
available from studies of this type, and the configurations
are mostly of the V/STOL type. The results from recently
completed Air Force Contract F33615-71-C-1850, (Reference 29)
are used to illustrate the magnitude of the effects involved.
The results, presented in Table IV, were obtained using a

‘ subsonic STOL transport as a basepoint. Various thrust
vectoring and reversing installztions were designed for the
transport and the final performance and weights were compared
with the basepoint to obtain the incrcments shown in Table IV.
For a full description of the configuration, see Reterence 29.
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Based on the data presented in Table IV, it appears that

the installation of thrust vectoring and reversing equipment
can change the nozzle internal thrust coefficient by as much
as -0.024 to +0.024 and increase the weight from 620 to

2680 1lb. for a typical subsonic STOL airplane. Since the
weight effect appears to be the most significant effect, it

is expected that the effect of these installations in
supersonic aircraft would result in somewhat more severe
penalties to the mission range due to the decreased L/D ratios
as design Mach number is increased.
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* T ables indicated by arabic numbers (in Figures 55 - 59) such as
Table 7, refer to the tables sketched in Figures 9 and 10.
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Figure 55. FLOW CHART FOR INLET PERFORMANCE
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AREA FUNCTION F4 (M, 7):
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(o )™
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MYy
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Figure 56: INLET FUNCTIONS
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Figure 58: FLOW CHART FOR SCHEDULED-BYPASS MODE
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Figure 59: FLOW CHART FOR SCHEDULED-SPILLAGE MODE ;
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Figure 60: FLOW CHART FOR LOW SPEED INLET PERFORMANCE CALCULATION
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Figure 61: FLOW CHART FOR SUBSONIC AND TRMNSONIC INLET
INTERNAL PERFORMANCE CALCULATION
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{CAN BE USED FOR BOUNDARY LAYER BLEED OR BYPASS)

INPUT QUANTITIES:

v

M, (MACH NUMSER)

8 (EXIT ANGLE - RELATIVE TEST TO SeE

tF NOZZLE
TO FREE-STREAM DIRECTIONI THROAT 1S

g K Rosrc CHOKED BY
CALCULATING

A M, BY EQON(10

NOZZLE TYPE: MIN

1) CONV,

(2 CONV-DIV, FULLY-
EXPANDED

I3 CONV-DIV, SPECIFIED
AREA RATIO

Ag/hy

(4)  NOZZLE THROAT ARFA,
Ap SPECIFIED 1 i
SETA, A

A =
NO
OBTAIN (A/A%)
[':_" Yes FROM EQN {4)

. CALLULATE - CALCULATE :
SETP P =10 M AL AANEA ATIO, Py/Py. FROM CALCUL‘AI;E
MIN _EON (10) /AT €N 110 * THROAT AREA, Ay

YES

% t FROM EQN (1)
CALC P.,/Py° OBTAIN M, |
EON 114) : FROM EON (4 CALCULATE A
| I 12 EON (20) CALCULATE Ag
: {21} P
AL PPy A N — |
. P /by FAOM .
£ON (18) o OETAIN

T .mu.mr___ My FROM
OBTAIN M NO g v CALCULATE 3 \
EON (1) o 2 Moy ! = A PP, FROM ‘
PP " 1.0 CALCULATE PPy
' FROM EQN (16 ] .

LC PPy FROM
EQN (14

o

SPECIFIED

YES

CALC Ay CALCULATE PP g
EQN (18} FROM EON (18) !
CALCULATE /2. ; Do
(w.vo CALCULATE e u)
\' 7 —
BYEQN(17) " ® avean iy 9
j z
1 ;
CALCULATE Cy
BYEON (13)
PRINT OUT RESULTS PRINT OUT MESSAGE
C Ay Ag, M_, \
Dyon M1 A6 Mo “TOTAL PRESSURE !
9.Py Py NOZZLE TOO LOW TO CHOKE
E 'O yype, NOZZLE THROAT."
PP My ETC TERMINATE CASE]

Figure 64: FLOW CHART FOR MOMENTUM DRAG CALCULATION
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’ T i o TR e - W oem A s

INPUT QUANTITIES (CAN ALSO BE USED

FOR BOUNDARY LAYER

BYPASS DOOR BLEED IF A FLAP TYPE
DIMENSIONS: W, h EXIT IS USED)
n, NUMBER OF DOORS
Aogp'Ac
Ao Mo, Py

P

TO

TABLES OF C, VS

Mov m: AND oEFF

OBTAIN (A/A') .
FROM EQN (4)

¥

CALCULATE AR l
EQN (23) N

CALCULATE |
CONVERGENT Ar/Ac FROM
oz EQN (28) f
' ,

CALCULATE A /A¢ CALCULATE

EQN (24 Ag/Ac FROM

| __' = EQN (29)
CALCULATE A, Ap/Ac ,
EON (26)

CALCULATE (6 ¢y op) !
EON (25) ACTUAL ,

osnm(o FL")EFF FROM

FIG 23 AS f [uo, (O kL AP)ACTUAL]

1. f

OBTAIN Cp FROM TABLE 15
Ast[m, (6 R
[ o (O rLAP) gep ]

CALCULATE C FROM
DeLap
EQN (27)

f Figure 65: FLOW CHART FOR BYPASS FLAP DRAG CALCULATION
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