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ABSTRACT

(Distribution Limitation Statement B)

The results of angular vibration measurements made at three stations in an NC-135
aircraft are described. The magnitude of the relative motions between stations
is calculated. The requirements for the range of corrections required for an
autocollimator to correct the relative motion between the three stations are
determined. The effects of the motions at the aircraft ceiling on the angular
stability of various types of pointing systems are calculated and discussed.
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SECTION I
INTRODUCTION
\\

The optical system considered here consists of a pointing system used to
direct a laser beam from an aircraft. The laser is located on the floor of the
aircraft, and its beam is relayed by a mirror to the ceiling, into the base of a
beam director, which is used to point the beam to a target. This type of system
has many applications for Air Force missions, including high-bandwidth, secure,
data links. The objective of this study was to determine the magnitude of the
angular vibrations at the three stations of interest in a C-135 aircraft where
the optical elements would be placed.

Angular vibrations deteriorate syzxgm-pointing capability in two ways. First,

given a stabilized pointing system, the beam will be diverted from the target if
the beam is misaligned coming into the beam director. Thus, any motion of the
relay mirror or source relative to a reference surface on the beam director is
important. If this motion is larger than the pointing requirements, then some
sort of active alignment system is needed, and one will need to know the dynamic

range required of the autocollimator. L

The second major effect of angular vibration is the destabilization of the
beam director. If the director has a telescope stabilized about three axes or
more, the effects are small. If a two-axis stabilized beam director is used,
then the aircraft motion will misdirect the beam due to kinematic coupling
effects.

The results of the vibration measurements made at three stations in a C-135
aircraft indicate that the largest relative motion in the optical path is 26 ur
mms from 5 Hz to 2000 Hz. The motion that an autocollimator would have to remove
would be twice that amount, or 52 ur. The motions at the aircraft ceiling, where
the beam director would be located, are at most 22 .y rms from 5 Hz to 2000 Hz.
Summaries of all vehicle data can be found in section II. The use of tracking
and stabilization systems with various bandwidths are discussed in section III
and the effects of using rotational vibration isolators is discussed as well.

The method of evaluating the misalignment effects when there are motions of all
three elements in the optical system is described in section IV. A description

- -
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of the equipment used to make the measurements and their installation in the
C-135 aircraft is given in section V.
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SECTION II
FLIGHT DATA SUMMARY

Angular velocity data were taken at three stations on an NC-135A aircraft
owned by the Atomic Energy Commission and was used by the Air Force Special
Weapons Center for test programs. The aircraft has a dome, on top of the forward
part of the fuselage, that is used to house several instrumentation packages. An
outline drawing of the aircraft is seen in figure 1. [t was felt that this air-
craft having a dome would be subjected to vibrations in the same way as any large
aircraft with large protuberances in the airstream. The dome on this aircraft is
a fairly compliant structure made from fiberglass and may not transmit windloads
to the structure as a metal structure would. The eight anguiar vibration trans-
ducers, were mounted at three stations: three at FS 409 WL 299 (top), three at
FS 409 WL 210 (floor), and two at FS 554 WL 217 (floor).

The two-sensor package measured only pitch and yaw information. Roll infor-
mation at this station is not needed for a beam transmitting system, although it
is quite important for a receiving imaging system.

Two flights were conducted in March and April 1972 to evaluate other inertial
navigation equipment on board the aircraft. The flights consisted of takeoffs,
straight and leve! portions, orbits of 2 g to test the navigato}, rapid descent
maneuvers, final approaches and landing. Four sections of flight data were
analyzed and consisted of 1 minute sequences. The data sections were:

Data set No. 1 -- After lift-off on takeoff of first flight.

Data set No. 2 -- After climb out on takeoff of first flight at an

altitude of approximately 20,000 feet.

Data set No. 3 -- During straight and level flight on the second flight

at approximately 20,000 feet.

Data set No. 4 -- During final approach with flaps down after the second

flight.

The data from the eight angular velocity transducers (ADAs) were digitized
and subjected to power and cross spectral analysis from 5 Hz to 2000 Hz. The
spectral bandwidth varied with frequency as:
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Frequency Range Bandwidth
5 to 20 Hz 1 Hz

20 to 100 Hz 5 Hz
100 to 200 Hz 20 Hz
200 to 2000 Hz 100 Hz

The data were reduced digitally using fast Fourier transform techniques (FFT) and
converted from angular velocity spectra to angle spectra by dividing each spectra
point by its frequency squared. The power and cross spectra (the real parts)
were combined to determine relative anqular motions, as defined in section IV.
The area under each curve was calculated and the rms value of each quantity was
determined. Table I shows a tabulation of each parameter for all data sets. The
angles are defined about the axes as shown in figure 2. The power spectral den-
sity (PSD) of the angles for data set No. 2 are shown in figures 3 through 10.
The PSDs for the remaining flights are shown in appendix B.
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SECTION III
POINTING SYSTEM EFFECTS

Several pointing system concepts could be used to collect incoming optical
information or to direct an outgoing beam. The three generic types usually con-
sidered are the gimballed telescope, the single mirror heliostat, and the two-
mirror coelostat. These are shown schematically in figure 11. The gimballed
telescope has several relay mirrors to bring the beam into the expanding tele-
scope when wide angular coverage is desired. The heliostat has simply the single
mirror with the telescope mounted to the aircraft and has limited coverage in
elevation. The coelostat has full coverage and the telescope mounted to the air-
frame, but is usually the largest installation.

The output optical elements of these systems are pointed in the desired direc-
tion using closed-loop control systems. The system configuration generally has a
stabilization loop, usually gyroscope controlled, which has as its main function
to keep the output optics following their commands in the face of disturbances
such as windloads, dynamic torques, or friction. A target tracker is then used
to form a closed tracking loop to keep the pointing system on target (figure 12).

Angular vibrations of the airframe can be directly coupled into the pointing
system when a two-gimbal pointing system is used. Figure 13 shows the gimballed
telescope system at a given elevation angle ELOS‘ The component of the vehicle
angular velocity wy, is seen to have a component along the perpendicular to the
1ine of sight. Thus, the vehicle motions would misdirect the beam. For the
gimballed telescope, the stabilization system gyroscope on the telescope would
sense this as a disturbance and try to remove it. For the heliostat system, the
azimuth channel has the gyroscope on the azimuth gimbal, not the mirror. The
mechanism for base motion coupling on the heliostat is the same as shown in
figure 14. The gyroscope, however, would not sense the motion, and the tracking
loop would have to remove the effect. The heliostat has another mechanism in
which vehicle motions about the elevation axis cause the beam to be misdirected.
Since the single mirror is stabilized about the elevation axis, one can see that
if the incoming beam rotates the outgoing beam will move in the opposite direction.

Thus, for vehicle motion w, , the beam moves -, . The control systems and the
z z
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Figure 14. Base Motion Effect on Azimuth Axis Heliostat
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mechanisms by which base motions enter as disturbances are shown in figure 15.
For the heliostat, it is seen that the rejection of base motions must be accom-
plished by the tracking loop; whereas, for the gimballed telescope, the stabiliza-
tion loop can be used to reject the base motion. The reason for this is that the
heliostat generally does not have the azimuth gyro on the mirror, but it is
usually placed on the azimuth gimbal. If it were placed on the mirror, the gain
of the stabilization loop would be attenuated for most useful elevation anqgles
and the ability to reject disturbances about the azimuth axis would be impaired.
The coelostat, of course, could put the stabilization sensors on the elevation
output mirror and retain the rejection capability of the stabilization loop.

The effect of base motion on the tracking stability of the heliostat.control
systems is
JV']/S HV

© T T T ()

where e is the angular following error, GT is the forward loop gain of the track-
ing loop, and o, is the vehicle angular motion. The rms anqular error is

ff L 1/
€ms © f']+GT' ;'*v df 2)

0

where Y is the power spectral density of the vehicle anqular motion.
v

For the control systems of the gimballed telescope and coelostat, the effect
of vehicle motion on the tracking stability of the azimuth channel is

t9

& (3)
[1+GS] [1+GT] '

e

where GS is the forward loop gain of the stabilization loop. The rms error angle

is

f e
p L2 L lL]® .
€rms ~ [f 1+GT | !HGS[ "y df] (4)
0

The effect of stabilization loop and tracking loop bandwidth on rejection of
the measured base motion spectrum was investigated using a simple second order
transfer function for the loops. The type chosen was

o K
GS,GT = S(sva) (5)

20
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Figure 15. Control Systems for Pointing Systems
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which would lead to closed loop response functions

g & 1 (6)
1465’ 14GT S2/uy? + 26 S/uwy + 1

so that K = “NZ’ a = 2 Ly

The response of the gimballed telescope is determined primarily by the stabiliza-
tion loop characteristics since its bandwidth must be higher than the track loop.
The calculation, therefore, used only the rejection capability of the stabiliza-
tion loop.

The shape of the rejection functions

S
T+GS

s

for wy = 2710, 27200, and ¢ = 0.7 are shown in figures 16 and 17. At low fre-
quencies the transmission is seen to be less than unity. In the midrange, the
motion is amplified, and at high frequencies the motion is passed directly. The
rms error angle for various tracking or stabilization loop bandwidths were cal-
culated and are plotted in figure 18 using the angular power spectral density for
Y7 from data set No. 2. The rms of the input motion is shown also. It is seen
that even a bandwidth of 200 Hz does not appreciably lower the rms error angle.

The use of a more sophisticated tracking system and the use of a rotational
vibration isolation system were investigated also. The more complex control
system is shown in block diagram form in figure 19. This postulated systen has
a hydraulic drive and a gyroscope controlled stabilization system. The base
motion rejection curves for just the stabilization portion and the total tracking
Toops are shown in figures 20 and 21. The stabilization Toop is seen to arplify
the base motion up to seven times in the 100-Hz range. This is due to the narrow
gain margin of the stabilization loop. The tracking loop is seen to reject motion

only for a small frequency interval.

The use of a rotational vibration isolation system would reduce the rota-
tional environment seen by the pointing system. A second order isolator was
postulated whose transmission is

1
G = 3
ISOLATOR [(S/v)2 + 2515 S/v + 1] (7)

where . is the resonant frequency of the isolator. The rms error angle response
i4 then calculated from

22



AFWL-TR-72-202

5
1 2
4 ly+gs] vs. FREQUENCY
- o = 2n 10 R/S
r=0.7
2—
1
ﬂ
1
1+
o
3
2
0.1 —r—rTrTTrvrt ™7 rrvrrvt ™ AR S B 0 R I S |
1 10 100 1000

Figure 16.

FREQUENCY (HERTZ)

Rejection Function for Stabilization Loop - 10 Hz Bw

23




APWL-TR-72-202

—
-
-
=
-
1
-
-
-
14
-
E
ot
ﬁ
-
-
4
0.1 &
-
o
- 1 .
v ool vs. FREQUENCY
F U
oy * 20 200 R/
0.0 ¢ .
B 1A ).7
-
-
«f
e 4 1
0.00] | S | A SR IE B A T | ¥ 1§ ¢ g oo ey L Ll v LR R BRI
1 10 100 100(

Figure 17.

FREQUENCY (HERTZ)

Rejection Function for Stabilization Loop - 200 Hz Bw

24




AFWL-TR-72-202

RMS ERROR ANGLE
vVS.
STABILIZATION OR TRACKING

T LOOP BANDWIDTH
K
GS, GT - : 0.7
ERROR - yr STS+4)

—%\ [NPUT
10 4
0 { 171 4

10 50 100 200

Figure 18.

25

LOOP BANDWIDTH IN Hz

rms Error Angle for Various Loop Bandwidths

EVEL



431NI0do

we3sAg Buiyoed) pue uoLPZL|LQe}S 3IUILISIY

"6l 94nbLy

—lwn

d007 INDIDVYL

d007 NOILVZITIgVLS

Am

$
i

gy ™
RSy
S00€ S . ®. | (1+S€/S) .®. (1+S)(1+£991/S) =
e JUECH + | 900 + | Cisse/s)liv012/8) o 3w |
NOTLYSNIdW0D 0¥A9

10070

V01 “3AI¥0 J1INYSOAH

S
(1+61/5) 007

{
@ —

1399vL,

26



AFWL-TR-72-202

0.l P

0.0

Ao d 8 2

0.00' &

0.0001 ¢

vs. FREQUENLY

REFERENCE STARTEIZATION
HSYSTEM O ¢

—rrrrrrrrteeTr—r-rrreereerrerrrrrrerte— T T T T T T
1 10 100 1000
p FREQUENCY (HERTZ)

Figure 20.

Rejection Function for Reference Stabilization Loop

27



AL -TR-72-202

=
-
1
-
: i & FREQUENCY
4 |] Py GT‘ vS.
9 FOR REFERENCE TRACKING
< SYSTEM
-
-4
o
=

] o=
-
o
-
-

N 1 IYTIII= e vvrvvz T 1 —rrvrrrrt L oinl aiies | ande vvvtt{

] 10 100 1000 |

Figure 21.

FREQUENCY (HERTZ)

Rejection Function for Reference Tracking Loop

28



AFWL-TR-72-202

f

= 1|2 2
®rms f ll+GSI [81soL|* ¢, 9f (8)
0

The resulting pointing errors for the various tracking loops and for various
isolator bandwidths and LS = 0.7 are shown in figure 22. The data at 1000 Hz
show the effect of not using an isolation system. The reduction in the pointing
jitter using the isolator is quite apparent. The data shown here applies in total
for the elevation error on the heliostat. The effect on the azimuth channels of
the other pointing systems varies depending on the elevation or mirror angle. The
data shown here are the maximum.

There are other techniques that could be used to reduce these errors. For
the gimballed telescope, use of more gimbals would reduce the errors. For the
heliostat, the use of a platform slaved mechanically to the line of sight, on
which stabilization sensors would be mounted, could help to reduce the error
(ref, 1). Measurement of the vehicle motion and feed forward compensation for
the elevation and azimuth channels of the heliostat are also possibilities which
have been investigated (ref. 2). Depending on the particular mission require-
ments, the system designer can pick from no compensation, no isolator, and low-
bandwidth to the use of high-bandwidth Toops and low-frequency isolation.

Three important factors have been omitted from this analysis that should be
considered in the actual design of the pointing system, expecially for long-range,
high-accuracy missions. The first is other noise sources in the system, expe-
cially in the tracker itself. High-bandwidth tracking loops will respond to this
noise and result in pointing jitter. The second factor is the complex dynamic
torques which can rectify the line of sight (LOS) and vehicle motions to which
the telescope will respond. These are generally not a problem until accuracies
of fractions of an arc-second are considered. Treatment of these effects can be
found in references 2 and 3. Thirdly, the design of a rotational isolator is a
fairly sophisticated job, the efitical issues being (1) ensuring that the center
of mass and center of sugwrt are coincident, and (2) that the effective stiff-
ness and damping of the linear elements used to make the isolator are closely
matched. These are necessary so that the linear motions of the aircraft do not
induce angular motions of the pointing system.
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SECTION IV
MISALIGNMENT EFFECTS

The optical train under consideration consists of a collimated source, relay
mirror, and reference plane (figure 2). When this train is mounted in a moving
vehicle, it can be expected that each element will be angularly vibrating.
Expressions will be derived to determine the relative angular motion between the
ray coming from the source and the reference plane in terms of the absolute
motions of each element. The situation where an autocollimator is at the source
is also treated, so that the relative anqular motion between transmitted and

return ray can be determined.

There are four coordinate systems considered here. There are three that are
nominally aligned to the vehicle roll, pitch, and yaw axes, located at and fixed
to the source, relay mirror, and reference plane. A fourth coordinate system is
fixed to the face of the relay mirror (figure 2).

The motions of thel source have the components, with respect to an inertial
frame: o about x, & about y, v about z.

The motions of thé frame at the location of the 45-degree mirror are: oy

/
B.is 'Y1'-

The motions of the reference plane at the top are: tps By Yy
The small anqular motions of the frame in the 45-deqree mirror surface are:
Unr Epr e
The motions of a propagated ray with respect to the reference plane consist
of small misalignments, By and Oy about the z and x axes of the reference plane.
The angular power spectra of these relative motions in terms of the spectra of the
absolute (inertial) angular motions of the source, 45-degree mirror and the refer-

ence plane are:

b, = g t ¢ +0 + ¢
6,  TBR O TRyBy  Tyivy o Tvevg
= - + 4
Rewesi RewBYi RefBYt
+ 24 ) (9)
+RewB -RewB - Rey_ .
i'e i¥i Yi't
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bg, =0t 4¢a +9¢
X i% 0 %t
+ Re¥ - 4Rey - 4Rev ' (10)
030 {0 %o 3% () W]
t i it
where

¢y = power spectrum of angle i
Y = Cross spectrum between angle m and angle n

For the autocollimating situation, the angular misalignment of the incoming

ray with respect to the transmitted ray consists of small angles ¢y and by about

the x and y axes in the source plane. The power spectra of the relative angular
motions ¢y and ' in terms of the absolute (inertial) angular motion of the
source, 45-degree mirror and the reference mirror plane are

o, = do, (11)
by »

4% (12)

x "x

The misalignment errors are seen to be a function of the motions of each
element in the chain, as well as the correlation of the motions between elements.
If the motions of each element are the same magnitude and correlated in phase,
then the relative motions 2 and 6.0 and thus ¢y and Sy will be zero. For the
data measured on the C-135, the rms values of the angles were determined using
equations 9 and 10 and the results are summarized in table II. The rms angle is
calculated from

£

[} = ¢ { p)
*rms / %x ¢ B
0

The spectra of these angles are shown in figures 23 to 26 which are from data set
No. 2. The same data for the remaining flights are in appendix B.

1. RAY MOTION CAUSED BY VIBRATION

We start by referring motions to a fixed coordinate frame a. The ray source
is angularly vibrating, and we wish to determine its motion with respect to the
reference frame a. The b coordinate system is fixed in the source, and we have a
vector v representing the emitting ray along the zy axis (figure 27). The vector

has components in the b frame:

32
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TABLE II
RELATIVE ANGULAR MOTIONS OF THE THREE OPTICAL ELEMENTS

Mvéilie Data Set 1 Data Set 2 Data Set 3 Data Set 4
9 After Lift Off During Climb Qut Straight & Level Final Approach

plr Ur ;ir ur

0, 14.3 8.2 4.6 6

ez 26.1 13.6 6 7.8

N 28.6 16.4 9.3 11

¢ 52 27 12 18:5

Y
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a '
Xo

Figure 27. Orientation of the Source in the b Frame

Its components in the reference plane are determined from

BT, B (15)

where Tab is the transformation matrix from the b frame to the a frame. Appendix
A shows the derivation of the transformations used.

1 -y 28
Tap = Toer11= | v 1 - (16)
-8 a 1
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The vector v, now hits the relay mirror face, which contains the coordinate

frame m. The general, the frame m is rotated with respect to the a frame by e
8y and v, (figure 28). The vector v; in the m frame is:
' -m _ -3
Vi = Tma Vi i (]7)
r - - - —
. - "
Cosy, Cos8 | cosy, sing. sina cosy, cosu, Sing
. [] O : )
i + siny, COSamJ § + siny, S‘"‘mj
- 1. ax - ' - F .. : -
Tma = siny, cosg  |-siny sing sino siny sing  cosa (18)
| + COSym STnamJ + COS“{m S‘ln::tm
3 E
. s : ) !
i sing, cosg, sina, cos8 . cosu . |
3 = (]
Nominally o * 45° + Ay G Bus Y AT small. Therefore,
. (] + Otm) . (] - J.m)
sina = = COSam 5y
" V2 \ 2
Cosg, = coSy, = 1 sing. = 8 siny, = v,
- ) -
(n* &) (%)
] ) =
\2 Ve
(w) () ”
T = |- = ,
ma V2 V2
{1 + a - o
B ( m) ( m)
L V2 V2 ]
The vector leaving the mirror is v,. The mirror has the property
1 0 0
welo 1 ofW=mi] (20)
0 0 -
~-a =
g &1 ¥} (21)
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(22)

Im
Figure 28. Coordinate Frame m on the Relay Mirror Face
- ! -y,
) (o) ()
Tam =| 777 ;i vz
(m-t) (*) (o)
V2 V2

The vector 92 is incident on the reference plane with a frame t fixed in it. For
the situation where autocollimating is to be done (figure 29), this reference

plane could also be a mirror.

-t _
v’ = Tta

ta
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Figure 29. Coordinate Frame t in the Reference Plane

The motion of the vector v, at the mirror frame in terms of the vector Q? is
T T MT TP (24)
We thus start with a vector

P=loly (25a)

]

and transform through each transformation matrix.

After the first coordinate system the vector is

{-a )V (25b)

and through the 45-degree mirror

4
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1 q' (25¢)

and at the top mirror

< | >V (25d)

(-a + 2am - at)

N 7

Since we expect only the y component, the other two can be thought of as
arising from misalignments about the x and y axes

o 'JZ - (B = ZBmJ? + 'rt)

D= =+ Zum - uy (26)

The angular vibration measurements at the 45-deqree mirror are not made in
the m frame but in the i frame (figure 2). The quantities in the mirror frame,

s Bm’ and Yy 2re related to the measured quantities (assumed small), as
Cm %4
(Bm ) = Tmi {5 ) (27)
Ym Y5
where
( 1 0 0 ]
_ 1
Tm"-To_l— 0 ¢2— \/é‘l
~ -1
’ 2 \/§J'
Thus
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Gm=0.1
g = — (8, +
N m 2 \"i Yi
:._.]_ B+
w B U T
and
ez=B'B-Yi+Yt
Y 6x=-a+2ai-at

2. ERROR USING AUTOCOLLIMATOR

If we reflect back at the mirror t, we get a new vector v,

[ 1 0 0 ]
95 =0 -1 0] G§ =M
o 0 o]

-a -t -
Vi = Tae V3 T ¥ | vy
-Bt
This vector in the m frame is
-m -a
V3 = Tma V3

This leaves the 45-degree mirror as vector v,

- -M
VT =M v,
and in the a frame
-m

am

43
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Comparing to the b frame from which the vector originated

[ y =8

b4

B o ] J

? to VE:

We now examine the transmission from v

'b_ D-t
Vg = Tba (Tam M Tma) TatM v,

The vector 9§ was shown in 25d. The new vector GB becomes

- N

2 .
(-5
V2

L J
~ ~
28
V2
% Tat, <i " >
L~-a + 20m - 2o

44
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(35b)

(35¢)

(35d)
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X Tba' J -2u - Zat + 4am (> (35e)

At the autocollimator the angles due to frame motions are

(2 o 2 ) (36)
b, = "R B = — * gy 36
y NG t

b = (-Zat + 4am - 2a> (37)

In terms of the i-frame measurements:

¢)y E = (28 = 231 = 2Y.i + 2Yt> = ZHZ (38)
N (-ZG + o - 2at) = 20 (38)

3. POWER SPECTRA

We wish to determine the power spectrum of the quantities 6,0 6,5 0

X , and Sy
We determine first the autocorrelation function: ;

y

BT < € [((8 - 85 vy # ) (B00) = 5(0) = 4] + (0]

-

=B | eae) g ayle) fyg e vg(n) +yy e gle)]

=

+E| -8 8y(e) -8y 8le) -8 e vyle) -y e alo)]

-

+E [ B e yvelr) + vy - pleh ® By * wole) * 44 ¢ Bi(r)]

+E [ -85 0 ve(T) = v e Byr) = vy e ven) -y Yi(T)] (39)
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s
(1

-{R, (1) +R _ (1) - (R _(r)+R _ (1) (40)
Bivy Yebi Yi% el

where

Rii = autocorrelation functien

Rij = cross correlation function
Transforming each correlation function into a spectral density, we obtain
equations 9 and 10: '

> [ X) s ® ‘o 9 -0 6 @ i@ m- @ [ T Y v @ e o ° @
®, =, .+ + 9 + ¢
ez BB B.iB.' Y.iY.i Yth

+ 2| -Rey - Rey + Rey + Revy - Rey - Rey
[ 881 Bvi BYt BiYi Bth Yth]

b = o i a * s * ZRe‘ya'u ) 4RE'¥1._J v,
. U.i i t t \t ( i .L_ilt

where

¢ = power spectral density
y = cross spectral density

From equation 38, we obtain equations 11 and 12.

¢, = 4%
¢ ez

. = 4¢ {
°x 0x

i k
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SECTION V
EQUIPMENT DESCRIPTION

The basic device used to make the angular velocity measurement is called an
angular differencing integrating accelerometer (ADA) and is manufactured by the
General Electric Corp. Its original task was to help stabilize inertial guidance
platforms. The device is a floated torsional pendulum with a velocity pickoff.
Above the natural frequency of the torsional pendulum, which is approximately 1
Hz, the pendulum tends to remain fixed in inertial space. The angular motion of
the case about the pendulum axis above 1 Hz thus generates a voltage proportional
to the angular velocity with respect to an inertial coordinate system. A complete
description of the device can be found in reference 4.

The ADAs were mounted on blocks, attached to plates and mounted to the air-

eraftr The blocks wlre nefted to®approxiMalely 55%° ™ fioatRion temperature "

of the device. The rear installation of the two ADAs is shown in figure 30. The
second floor installation at station 409 is shown in figure 31. The installation
at the top of the fuselage is shown in figure 32. The mounting plate here fills
the opening of a dome that normally has a plexiglass plate.

The ADA mounted on their blocks were calibrated at the General Electric
Company, Schenectady Instrumentation Service. The ADAs were mounted at the
pivot of a 24-inch fulcrum driven at one end with an electrodynamic shaker. The
amplitude of the motion was measured with a calibrated microscope. The calibra-
tion was conducted from 1 Hz to 1000 Hz, which represented the limitation of the
shaker. The results of the calibrations are shown in figures 33 to 40. The
units are in mV rms/rad/sec peak-to-peak. The response is seen to be fairiy flat
to 1000 Hz. Previous experience has shown that the devices are flat to 2000 Hz,
limited only by the mechanical resonances of the mounting blocks or bty the ability
to generate the motion (ref 5).

The ADAs outputs were amplified using a simple operational amplifier and
recorded on an FM tape recorder. The performance was checked in flight using
an oscillograph. A calibration source was switched in to calibrate the record-
ing system before each flight. The polarity of each sensor was determined by
physically rotating the block about each axis.
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50

Ceiling Installation of Sensors at FS.409

Figure 32.
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APPENDIX A
DERIVATION OF GENERAL TRANSFORMATION

The general transformation from one coordinate frame to another, using a
sequence of rotations about three body axes, is derived. The axes chosen are
shown in figure 41.

Rotation about x:

i . F 1

1 0 0 1 0 0
v=10 cos o -sin a |V’ vi=1]0 cos « sin alv
0 sin « coS a 0 -sin «a coS uJ
L o L

Rotation about y':

F cos 8 0 sin B8 coS B 0 -sin 8
V' o= 0 1 0 v" V' = 0 ] 0 v’
-sin 8 0 cos B sin B 0 cos B

Rotation about z":

o - = -~
cos vy -sin v 0 cos v sin y 0

v' = [|siny cos Y o |v" v'' = |-siny cos ¥ 0fv"
0 0 1 0 0 1
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Vit = Tieg

Ti11-0 =

V="To111 V

To-111 =

0L

v

cos vy
- sin vy

sin B

cos

cos
+ sin

( sin
- coS

Figure 41.

cos 8 ( cos vy sin B8 sina - coS Y
+ sin y cos o + sin vy

cos B (- sin y sin 8 sin a) sin v
+ COS Yy €OS a + €0S Y
- cos B sin a cos 8

B €COS Y - cos B sin y

a sin y co0S o COS Y

a Sin B cos vy - sin o sin B sin v

a sin y > ( sin o cos y

o COS y sin B + COS a Sin B sin vy

Three Step Rotation Sequence
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