TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; 20 OCT 1972. Other requests shall be referred to Department of the Air Force, ATTN: USAF/DPTTF, Washington, DC 20330.

AUTHORITY
AFHRL ltr dtd 28 Nov 1973
NAVIGATOR-OBSERVER UTILIZATION FIELD
FLYING SPECIALTIES STUDY
APPENDIX II. COMMON AND NON-COMMON
OPERATIONAL TASK REQUIREMENTS

By
Clarence A. Semple, Jr.
Raymond J. Heapy
Ernest J. Conway
Manned Systems Sciences, Inc.

FLYING TRAINING DIVISION
Williams Air Force Base, Arizona

April 1972

Distribution limited to U. S. Government agencies only; Test and Evaluation:
20 October 1972. Other requests for this document must be referred to HQ
USAF/DPPTF, Wash DC 20330.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Distribution limited to U. S. Government agencies only. Test and Evaluation: 20 October 1972. Other requests for this document must be referred to HQ USAF/DPTTF, Wash DC 20330.
NAVIGATOR-OBSERVER UTILIZATION FIELD FLYING SPECIALTIES STUDY
APPENDIX II. COMMON AND NON-COMMON OPERATIONAL TASK REQUIREMENTS

By
Clarence A. Semple, Jr.
Raymond J. Hnapy
Ernest J. Conway
Manned Systems Sciences, Inc.

Distribution limited to U. S. Government agencies only: Test and Evaluation:
20 October 1972. Other requests for this document must be referred to HQ
USAF/DPTTF, Wash DC 20330.

FLYING TRAINING DIVISION
AIR FORCE HUMAN RESOURCES LABORATORY
AIR FORCE SYSTEMS COMMAND
Williams Air Force Base, Arizona
FOREWORD

This appendix documents the results of work performed during Phase II of Contract No. F41609-71-C-0014 by MANNED SYSTEMS SCIENCES, INC., 8949 Reseda Blvd, Suite 206, Northridge, California.

The objective of Phase I (Appendix I) was to examine the present and future roles of the Air Force navigator. Phase II addressed describing, analyzing and determining commonality among requisite operational navigator tasks. Phase III (Appendix III) analyzes present and future navigator training requirements. Research requirements are documented in a separate unpublished Phase III report.

The study was initiated under Project 1123, Flying Training Development, Task 1123-06, Task Analysis and Inventory for Flying Training Program Development. Dr William V. Hagan was project scientist and Major Robert E. MacArgel was task scientist. This report covers the period between 1 May 1971 and 30 September 1971.

The authors wish to express their appreciation to the numerous Navigator-Observers who participated in interviews, simulator exercises and inflight observations associated with task data collection and validation activities.

This report was submitted by the authors in September 1971.

This technical report has been reviewed and is approved.

GEORGE K. PATTERSON, Colonel, USAF
Commander
ABSTRACT

Appendix II presents information developed during Phase II of a three-phase study designed to provide a technical basis for determining future (1975-1990) navigator training requirements. The term navigator is used generically to refer to Navigator (AFSC 1535), Radar Navigator (Navigator-Bomber) (AFSC 1525), Weapon Systems Officer (AFSC 1555), and Electronic Warfare Officer (AFSC 1575). This appendix addresses the methodology which was developed and used to determine common and non-common operational task requirements across all navigator flying specialties, as well as within each flying specialty. Task description and analysis methods are presented along with data collection and validation procedures. Computer software developed for determining common and non-common tasks is presented. Rationale for deriving task commonality criteria is addressed. Supplementary Phase II classified task analysis and commonality analysis information is presented in a separate section (Section IX) of the secret Appendix I, entitled, "Present and Future Roles of the Navigator" (U) in order to keep all classified information in a single document for control purposes.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
</tbody>
</table>

SECTION I
INTRODUCTION .. 1

SECTION II
TASK ANALYSIS REQUIREMENTS 5

- Introduction .. 5
- Definitions ... 5
- Requisite Methodological Constraints 6
 - Introduction 6
 - Subjective Procedure 6
 - Function/Task Description and Standardization 7
 - Functional vs. Timeline Orientation 7
 - Task Catalog Development 10
- Task Analysis Elements 11
 - Introduction 11
 - Descriptive Elements 15
 - Analysis Elements 17
 - Data Collection Methodology 22

SECTION III
COMMONALITY ANALYSIS REQUIREMENTS 25

- Definition and Background 25
- Commonality Analysis Concepts 27
 - Introduction 27
 - The First Concept 27
 - The Second Concept 27
 - The Third Concept 28
 - The Fourth Concept 28
- Development of Commonality Analysis Weighting Factors .. 28
 - Introduction 28
 - Basic Data and Basic Procedure 29
 - Procedure for All Inclusive Sorts 30
 - Procedure for Within Sorts 30
 - Hypothetical Computation Examples 30
- Implementing the Commonality Analysis 36
 - Basic Commonality Analysis Procedures 36
 - Reading the Commonality Analysis Output 37
- Using Commonality Analysis Data 42

SECTION IV
COMMONALITY DATA SUMMARY 45

- 1971-1985 Timeframe 45
TABLE OF CONTENTS — Continued

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986-1990 Time Frame</td>
<td>47</td>
</tr>
<tr>
<td>Anticipated Phase III Requirements</td>
<td>47</td>
</tr>
<tr>
<td>Commonality Criteria and Constraints</td>
<td>48</td>
</tr>
</tbody>
</table>

SECTION V
FUNCTION, TASK AND SUBTASK DESCRIPTION | 51 |

SECTION VI
COMMONALITY SORT COMPUTER PROGRAM DESCRIPTION | 71 |

SECTION VII
DEFINITIONS AND ABBREVIATIONS | 91 |

SECTION VIII
TASK ANALYSIS CARD DATA FIELDS | 97 |

SECTION IX
COMMONALITY ANALYSIS SUPPLEMENT | (In classified Appendix I) |

REFERENCES | 99 |
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total NOUFFSS Weapon System Sample</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Mission Phases Flown by Weapon Systems in NOUFFSS Sample</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Navigator Crew Positions in NOUFFSS Sample</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Mission Types</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>System Categories</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Criticality Scale</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Performance Difficulty Scale</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Learning Difficulty Scale</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>Mission Types</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>System Categories</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>Criticality Scale</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>Performance Difficulty Scale</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>Learning Difficulty Scale</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>Training Device Categories</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>Measurement Device Categories</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>Data Collection and Validation Trips</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>Commonality Weighting Criteria for "All Inclusive" Commonality Analyses</td>
<td>31</td>
</tr>
<tr>
<td>18</td>
<td>Commonality Weighting Criteria for "Within" Commonality Analyses</td>
<td>32</td>
</tr>
<tr>
<td>19</td>
<td>Fictitious Example of the Computations of Commonality Weighting Factors for the "All Inclusive" AFSC Sort</td>
<td>34</td>
</tr>
<tr>
<td>20</td>
<td>Fictitious Example of the Computations of Commonality Weighting Factors for Sorts Within AFSCs</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>Content of Commonality Analysis Computer Printout Sections</td>
<td>38</td>
</tr>
<tr>
<td>22</td>
<td>Percent of Navigators in NOUFFSS Sample Comprising Each AFSC</td>
<td>49</td>
</tr>
<tr>
<td>23</td>
<td>Percent of Navigators in NOUFFSS Sample According to Aircraft Type</td>
<td>49</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Task Analysis Data Collection Form for Function/Tasks</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Task Analysis Data Collection Form for Subtasks</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Example of a Task Analysis Computer Printout Sheet</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Example of a Commonality Analyses Computer Printout Sheet</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Commonality Trends</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>High Level Block Diagram of Commonality Sort Program Logic Flow</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Total Deck Setup for Fortran Compilation and Execution</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>Data Deck Setup for Commonality Sort Program</td>
<td>76</td>
</tr>
</tbody>
</table>
SECTION I

INTRODUCTION

Instructional System Development (ISD) (Ref. 1) is a deliberate and orderly process of planning and developing instructional programs to ensure that personnel are taught the knowledges and skills essential to successful job performance. Such planning requires decision making, and decision making requires information. The Navigator-Observer Utilization Field Flying Specialties Study (NOUFFSS) is designed to provide a solid foundation of information to assist in the development of navigator training philosophy, training program design, and identification of research. Both the near term (1971-1974) and the future (1975-1990) are addressed.

The Navigator-Observer Utilization Field (AFSC 15XX) has evolved into a complex set of job types including four flying specialties:

AFSC 1525 Radar Navigator
AFSC 1535 Navigator
AFSC 1555 Weapon System Officer
AFSC 1575 Electronic Warfare Officer

For simplicity, the term "navigator" is used in the generic sense in the remainder of this report to refer to the entire 15XX career field, unless otherwise specified.

The four flying specialties may appear to have cohesiveness and continuity because they are in the same flying field. Indeed, there is some degree of job similarity between the Navigator AFS and the Radar Navigator AFS. To some extent, the job similarity continues through the Weapon System Officer AFS. However, there presently is little continuity between job requirements of these specialties and the job of the Electronic Warfare Officer. These factors have complicated the navigator training process.

Rapid advances in technology also have complicated the navigator training process. Further advances promise to markedly alter the roles and tasks of at least some weapon system navigators. Accordingly, the navigator training system must prepare to teach the skills and knowledges required by changing missions, technologies and navigator roles.

Several very significant changes may be anticipated for navigator training in the very near future. Many of the changes will be related to the introduction of new and more sophisticated training devices. These will include: the T-43 Navigator Training Aircraft and the T-45 Undergraduate Navigator Training Simulator (UNTS), and the Simulator for Electronic Warfare Training (SEWT). Broad spectrum changes, however, will probably have their fullest collective impact in the post 1975 timeframe.
Between now and then, many training philosophy, policy, content and method questions must be answered. Representative questions are:

- In which operational, mission-imposed tasks must the navigator be proficient?

- Which operational tasks are common to the broad spectrum of navigators?

- Which operational tasks are highly unique to particular navigator AFSCs?

- What is the navigator AFSC structure apt to be in the future?

- Should total navigator training system organization be restructured to accomplish the necessary training?

- Should major modifications be made to course content or student performance standards?

- Would minor modifications to course content training methods and media be sufficient?

- Which methods and media would most effectively enhance the student's acquisition of necessary skills, knowledges and proficiencies?

- What objective, measurable performance standards should apply to the many different learning tasks?

- What are criterion objectives, and how should they be sequenced and interrelated in a modified training program?

- What are enabling objectives, how are they developed, and how should they be interrelated and sequenced in a modified training program?

- Are training program changes even required?

Historically, such questions could not be answered with assurance, primarily because information needed to make the necessary decisions was largely not available. These and other factors made it necessary to accomplish a systematic analysis of navigator training requirements. It has been the objective of the NOUFFSS study to perform the analysis and thereby provide much of the needed information.
The necessary analysis requires a highly structured and comprehensive procedure for determining training requirements. The NOUFFSS study is addressing this requirement through three distinct, but highly interrelated phases.

Phase I examined the present role of the Air Force navigator and projected his role into the future. The factors addressed during Phase I have been documented as Appendix I to AFHRL-TR-72-10.

Phase II, which is the subject of this appendix, provided an objective means of determining common and non-common navigator operational tasks. Phase II, therefore, consisted primarily of a task analysis activity. The task analysis was predicated upon the following principles: What should be taught should be based largely upon operational task requirements. How to train should be based, to a large extent, upon what must be taught. Task analysis data are useful for curriculum and syllabus development.

Phase II was accomplished by first identifying, describing and analyzing requisite navigator operational tasks for a selected, representative sample of weapon systems and missions. Techniques and criteria were then developed to computer sort the task data in order to identify tasks which are common to many navigator AFSs, missions and weapon systems, as well as those which are quite unique. Determination of common and non-common tasks was accomplished for four distinct time periods between 1971 and 1990. The underlying assumption was that resulting information may be generalized beyond the Phase II sample.

The Phase III objective was to develop information which will assist navigator training personnel in developing new training programs and furthering training program continuity. Accomplishment of this objective required the use of information from both Phases I and II. During Phase III, common and non-common operational tasks were compared with present navigator training requirements. The changing role of the navigator, as developed during Phase I, was used in projecting future training requirements. Based upon the comparisons, present training requirements were evaluated. New training requirements were developed where required. All training requirements were then stated in terms of criterion objectives. The Phase III effort is documented as Appendix III to AFHRL-TR-72-10. Research requirements also were developed during Phase III and are documented in a separate unpublished report.

Remaining sections of this appendix emphasize the methodology which was refined and used to accomplish the Phase II objectives. The implications, applications and computations which comprise the methodology are not overly complex, but do require a thorough understanding of several independent yet interlocked concepts and procedures. The NOUFFSS commonality analysis represents only the second program application of a commonality analysis methodology. Hence, the methodology is addressed in considerable detail in this report. This is done to provide the
reader with the fundamental information required to fully understand the component areas contributing to the final analysis and to establish the framework of logic which assembles and inter-relates the component areas. Particular attention has been given to the fundamental structure of the task analysis, the use of different aircraft/AFSC task data sorts, the development and use of commonality weighting factors, interpretation of the commonality analysis computer output, and the overall procedures and rationale used to address development of quantitative task commonality criteria. The concepts and problems associated with task commonality and commonality analysis findings will be meaningful only when the components and logic of this relatively new methodology are fully understood.
SECTION II

TASK ANALYSIS REQUIREMENTS

INTRODUCTION

Phase II of the NOUFFSS study was tasked with describing and analyzing the requisite operational tasks performed by Air Force weapon system navigators. Phase II also was tasked with determining the degree of commonality of the tasks within each navigator-observer flying specialty across weapon systems, and among all flying specialties across weapon systems. These requirements necessitated two fundamental system procedures: task analysis and commonality analysis. This section addresses task analysis requirements.

DEFINITIONS

What is a task analysis? Miller (Ref. 3) has defined a general systems task analysis as the enumeration of discriminations, decisions and action-responses which are necessary and sufficient to operate a mechanism within the tolerances required by the man-machine combination. In general, then, task analysis is a procedure which results in the organized presentation of the job elements which are carried out by the human operator during the use or maintenance of a man-machine system.

Generally, task analysis is performed during the design of complex systems to provide information for decision making during successive stages of system design. Task analysis information bears upon ramifications of human behavior in the operation or maintenance of the final system (Ref. 4). Task analysis, therefore, is a method for providing information regarding human components within a systems context.

Uses of task analysis data include: identification of job-elements which singly or in combination are incompatible with human abilities; specification of personnel requirements for manpower selection and planning; and development of training programs. In NOUFFSS Phase II, task analysis data were developed for use in training program design.

Regardless of the application, task analysis consists of two fundamental steps: description of job behaviors, and analysis of the behaviors for design content. Both the descriptive and analytic aspects of the task analysis are discussed in this section. Prior to presenting task descriptive and analytic elements, however, requisite methodological constraints and data collection methodology are presented to provide background for the conceptual and developmental characteristics of the NOUFFSS task analysis.
REQUISITE METHODOLOGICAL CONSTRAINTS

Introduction. The following constraints are needed to develop a task analysis technically suitable for a detailed commonality analysis. The constraints actually represent solutions to numerous problems which relate to careful task analysis preparation.

Subjective Procedure. At best, both the descriptive and analytic steps of a task analysis are subjective. Subjectivity means that several different task analysts are quite apt to describe the "same" task in somewhat different terms. Such occurrences are catastrophic to the successful determination of common and non-common tasks across a diverse spectrum of weapon systems, missions, and crew positions. Accordingly, a primary requirement in NOUFFSS Phase II was to develop a workable task analysis methodology. The methodology had to control, channel and standardize task analysis data developed by individual analysts, while not stifling the subjective and creative task analysis process.

The problem is placed in a more defined context by Tables 1, 2 and 3. Table 1 presents the total NOUFFSS weapon system sample. Table 2 shows the mission phases flown by the weapon system sample. Table 2 also shows the first step in solving the commonality problem through the development of a fixed set of mission phases broad enough to cover the operational requirements of the entire weapon system sample. Table 3 shows the navigator crew positions for the weapon system sample.

A basic requirement was to develop a methodology wherein operational task requirements could be consistently identified for 14 different crew positions in 11 different weapon systems flying a total of 14 different types of mission segments. Furthermore, the bulk of data to be handled in determining common and non-common tasks required the use of a computer. Computers cannot effectively "read between the lines" without extensive software utilization. Because extensive software was beyond the scope of Phase II, the methodology had to ensure that data input to the computer were totally unambiguous.

The solution to these problems was accomplished by highly structuring all task descriptions. In this manner, task analysts were required only to make yes-no decisions rather than more highly subjective task content decisions.
Table 1. Total NOUFFSS Weapon System Sample.

<table>
<thead>
<tr>
<th>Weapon Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-130E</td>
</tr>
<tr>
<td>FB-111A</td>
</tr>
<tr>
<td>F-4E</td>
</tr>
<tr>
<td>C-141A</td>
</tr>
<tr>
<td>B-1A</td>
</tr>
<tr>
<td>RF-4C</td>
</tr>
<tr>
<td>C-5A</td>
</tr>
<tr>
<td>KC-135A</td>
</tr>
<tr>
<td>AWACS</td>
</tr>
<tr>
<td>B-52G</td>
</tr>
<tr>
<td>F-111A</td>
</tr>
</tbody>
</table>

Function/Task Description and Standardization. During Phase I (Ref. 2), mission descriptions and navigator functions were developed for all weapon systems in the NOUFFSS sample. The first step was to review the mission descriptions and develop the mission phase set shown in Table 2. Function-level data were then reviewed in order to begin solution of a primary problem in all task analyses - achievement of consistent levels of detail in function/task description. Functions were defined as broad system activities contributing to mission performance. Tasks were defined as units of work performed by the navigator in order to accomplish a functional-level requirement. Subtasks were defined as sub-goals associated with or required for the accomplishment of task-level behavioral requirements. The three levels of job description present progressively more detailed descriptions of navigator operational performance. A further discussion of the levels is presented in this section under Task Analysis Elements.

Development of a fixed set of functions was an iterative procedure which was pursued in conjunction with the development of fixed sets of tasks within each function. Similarly, fixed sets of subtasks were developed for each task. During the development of the three levels of operational job description, considerable attention was devoted to adjusting the information to achieve relative consistency (standardization) of descriptive detail within each level.

Functional vs. Timeline Orientation. The function, task, and subtask data developed for the standardized catalog all reflect a "functional orientation" to job description. It is important to differentiate between a timeline or time sequence orientation and a functional orientation.

A timeline orientation is based totally upon the sequences and time intervals during which events occur. This type of analysis is useful when dealing with equipment design or training requirements for a particular piece of equipment. Quite frequently, the sequence and time for performance of proceduralized steps is highly critical to task accomplishment or equipment safety. However, the NOUFFSS Phase II methodology had to be designed to be workable across a broad spectrum of
Table 2. Mission Phases Flown by Weapon Systems in NOUFFSS Sample.

<table>
<thead>
<tr>
<th>NOUFFSS MISSION PHASES</th>
<th>WEAPON SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>C130 C141 C5 B52 FB111 B1 KC135 F111 F4 RF4 AWACS</td>
</tr>
<tr>
<td>Preflight</td>
<td>C130 C141 C5 B52 FB111 B1 KC135 F111 F4 RF4 AWACS</td>
</tr>
<tr>
<td>Takeoff</td>
<td>C130 C141 C5 B52 FB111 B1 KC135 F111 F4 RF4 AWACS</td>
</tr>
<tr>
<td>Cruise</td>
<td>C130 C141 C5 B52 FB111 B1 KC135 F111 F4 RF4 AWACS</td>
</tr>
<tr>
<td>Refuel</td>
<td>B52 FB111 B1 KC135 F111 F4 RF4 AWACS</td>
</tr>
<tr>
<td>Cargo Drop*</td>
<td>C130 C141 C5 B52 FB111 B1 F111 F4 AWACS</td>
</tr>
<tr>
<td>Penetration</td>
<td>B52 FB111 B1 F111 F4 AWACS</td>
</tr>
<tr>
<td>Weapon Delivery</td>
<td>B52 FB111 B1 F111 F4 AWACS</td>
</tr>
<tr>
<td>Sector Patrol</td>
<td></td>
</tr>
<tr>
<td>Reconnaissance</td>
<td></td>
</tr>
<tr>
<td>Air superiority</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>C130 C141 C5 B52 FB111 B1 KC135 F111 F4 RF4 AWACS</td>
</tr>
<tr>
<td>Post Flight</td>
<td>C130 C141 C5 B52 FB111 B1 KC135 F111 F4 RF4 AWACS</td>
</tr>
<tr>
<td>Emergencies</td>
<td>C130 C141 C5 B52 FB111 B1 KC135 F111 F4 RF4 AWACS</td>
</tr>
</tbody>
</table>

*Air Drop
Table 3. Navigator Crew Positions in NOUFFSS Sample.

<table>
<thead>
<tr>
<th>Weapon System</th>
<th>Crew Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-130E</td>
<td>AFSC 1535 Navigator</td>
</tr>
<tr>
<td>C-141A</td>
<td>AFSC 1535 Navigator</td>
</tr>
<tr>
<td>C-5A</td>
<td>AFSC 1535 Navigator</td>
</tr>
<tr>
<td>B-52G</td>
<td>AFSC 1535 Navigator</td>
</tr>
<tr>
<td></td>
<td>AFSC 1525 Radar Navigator</td>
</tr>
<tr>
<td></td>
<td>AFSC 1575 Electronic Warfare Officer</td>
</tr>
<tr>
<td>FB-111A</td>
<td>AFSC 1525 Radar Navigator</td>
</tr>
<tr>
<td>B-1A</td>
<td>AFSC 1525 Radar Navigator</td>
</tr>
<tr>
<td></td>
<td>AFSC 1575 Electronic Warfare Officer</td>
</tr>
<tr>
<td>KC-135A</td>
<td>AFSC 1535 Navigator</td>
</tr>
<tr>
<td>F-111A</td>
<td>AFSC 1555 Weapon System Officer</td>
</tr>
<tr>
<td>F-4E</td>
<td>AFSC 1555 Weapon System Officer</td>
</tr>
<tr>
<td>RF-4C</td>
<td>AFSC 1535 Navigator</td>
</tr>
<tr>
<td>AWACS</td>
<td>AFSC 1535 Navigator</td>
</tr>
</tbody>
</table>
equipments and navigator operational requirements. A timeline orientation would have been far from optimum to satisfy this requirement. The timeline approach, however, frequently is more useful in the development of performance measurement and performance standards.

The functional orientation which was adopted stressed the types and kinds of activities which navigators are required to perform. The approach allowed for the factoring of behavioral events into more meaningful clusters. For example, the functional orientation provided a context for addressing pre-flight equipment checkout primarily at the subsystem level, rather than in the context of long series of checklist items. The approach, therefore, provided a context for addressing each of the types of subsystem checkout, rather than providing a task context which would simply have said, "Perform checkout procedures." Examination of the catalog in Section V will clarify this critical difference. The functional orientation provided a context for more informative task and subtask description. It also provided the methodological basis necessary for the development of the comprehensive and standardized catalog which was pivotal to the success of Phase II.

The methodological approach described above is fundamentally an expansion and refinement of a basic methodology developed by Semple and Majesty (Ref. 5). The modified methodology used during Phase II was designed to eliminate the numerous problems encountered in first implementing the basic methodology. The modified method, although laborious and time consuming, was demonstrated to be viable, and ultimately provided a sufficient degree of control over multiple analysts and diverse operational contexts and systems to allow for the identification of job commonality down to the subtask level of descriptive detail.

Task Catalog Development. Three primary sources of information were used to develop the standardized task analysis catalog. Personal knowledge of analysis team members was the starting point. This knowledge was supplemented by information obtained from numerous documents such as aircraft Technical Orders, checklists, MAC, SAC and TAC manuals, existing task analyses, R&D study documents, and future weapon system specifications. Additionally, two visitations were made to operational units to discuss and validate the task analysis data with navigators in each operational weapon system in the NOUFFSS sample. Because relevant information was being obtained over fully four of the five months allotted for Phase II, development of the catalog was evolutionary rather than revolutionary.

Five rules were adopted during the development of the catalog. First, any function could appear under only one mission phase. Second, any task could appear under any one function. Third, any subtask could appear only under one task. Fourth, each function, each task, and each subtask was assigned a unique numeric code. The fourth rule provided the latitude
necessary to take into account legitimate cases where the same
task might be required for the accomplishment of more than one
function, or where the same subtask might be required for the
accomplishment of more than one task. In these cases, unique
numeric codes were assigned (rather than re-using the same
numeric code). The fourth rule was used only a very limited
number of times. It was required, however, in order to make the
first three rules meaningful.

The fifth rule required that all changes to the evolving
catalog be accomplished in meetings at which the majority of the
analysis team were present. In this manner, newly gained
information relating to several weapon systems and crew positions
could be compared, and the analytic abilities of several individ-
uals focused upon the decision making requirement. After any
additions, deletions, or changes to the master catalog, all
analysis team members' catalogs were immediately brought up-to-
date. Periodically, all task descriptions and analyses which
had been partially or totally completed were reviewed and updated.

Revision of the catalog continued into the last month of
Phase II in order that it would validly and comprehensively
reflect all operational task requirements. When the catalog was
finally frozen, all functions, tasks, and subtasks were assigned
new, unique numeric codes. All task analysis sheets were updated
to incorporate the new codes. This was done to ensure that no
function, task, or subtask shared a common number and to simplify
computer software requirements.

The function, task, and subtask information developed for the
task analysis catalog is contained in Section V of this report.
Details of the data collection methodology are contained in the
following section.

TASK ANALYSIS ELEMENTS

Introduction. NOUFFSS task analysis data elements may be
divided into two fundamental data categories; descriptive
elements and analytical elements. Descriptive elements were of
several types as listed below, but all generally required the
specification of system-specific (unique) data entries. Analytic
elements consisted of both unique (such as skills and knowledges)
and standardized (tables or scales of criticality, difficulty,
etc.) data specification.

On the task analysis forms which were used, the data elements
were arranged in a manner which facilitated data collection, data
packing and keypunching. Examples of function/task and subtask
data collection forms are presented in Figures 1 and 2 respective-
ly. Figure 3 presents an example of the final task analysis
computer printout.
<table>
<thead>
<tr>
<th></th>
<th>FN</th>
<th>D</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>MN</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>03</td>
<td>FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>TASK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>TN</td>
<td>ENT</td>
<td>TIME</td>
</tr>
</tbody>
</table>

Figure 1. Task Analysis Data Collection Form for Function/Tasks.
Figure 2. Task Analysis Data Collection Form for Subtasks.
Figure 3. Example of a Task Analysis
Computer Printout Sheet.
DESCRIPTIVE ELEMENTS. Each data element which added descriptive information to function or task descriptions is defined separately below. Abbreviations in parentheses identify the element codes which were keypunched. They are presented to facilitate interpretation of the resulting card decks and computer printouts.

Date (D) A six digit entry was used to identify the month, day and year in which the task data were completed.

System (S) A maximum of seven characters was used to identify the specific weapon system to which the task data apply (e.g., FB-111A).

Mission Type (MN) This entry contained a textual description of the type of mission considered for the weapon system to which the task data apply. Mission types were selected from the set contained in table 4. The entry (P) showed mission phase (see table 2).

<table>
<thead>
<tr>
<th>Table 4. Mission Types.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combat Air Drop</td>
</tr>
<tr>
<td>Recon</td>
</tr>
<tr>
<td>Strategic Weapon</td>
</tr>
<tr>
<td>Air Superiority</td>
</tr>
<tr>
<td>Tactical Weapon</td>
</tr>
<tr>
<td>Perimeter Patrol</td>
</tr>
<tr>
<td>Refueling</td>
</tr>
</tbody>
</table>

Function Number (FN) This entry was a two-digit number derived from the standardized task catalog.

Function Description (FUNC) A function is a broadly defined system activity contributing to mission performance. This entry contained a textual description of the function associated with the function number identified above. This entry also was derived from the standardized task catalog.

Task Number (TN) Task numbers were three-digit entries derived from the standardized task catalog.

Entry Number (ENT) Entry number was a sequential three-digit number used for numbering tasks for each weapon system. It was primarily a data control entry.

Time (TIME) Task time was estimated in minutes and tenths of minutes.

Task (TASK) A task is a unit of work performed by the navigator in order to accomplish a function-level requirement. This entry contained a textual description of the task associated with the task number identified above. It was derived from the standardized task catalog and was designed to identify
a unit of work performed by the navigator within a function.

Information Source (SRCE) This entry contained a textual description of the basic sources of the task analysis information. Interviews, Technical Order documents, checklists, specifications, other task analyses and other applicable sources were identified.

Task Initiating Conditions (TICN) This entry contained a textual description of the general stimulus conditions which trigger the requirement for the navigator to perform the task.

Task Alternatives (TALT) This entry identified other tasks which could be substituted in case malfunction or environmental factors precluded accomplishment of the requisite task. Many such entries were addressed more exhaustively within the Emergencies mission phase. In this phase, typical emergency and contingency tasks were identified and analyzed for each weapon system.

Subtask Number (SN) This entry was a three-digit number derived from the standardized task catalog.

Subtask (ST) A subtask is a sub-goal associated with or required for the accomplishment of a task-level behavioral requirement. This entry contained a textual description of the subtask associated with the subtask number identified above. Subtasks are sub-goals associated with the achievement of a task objective. Subtask entries also were made for alternative yet primary means of accomplishing task-level objectives.

Subtask Time (T) The time required to accomplish each subtask was estimated in minutes and tenths of minutes. For continuously performed subtasks, such as monitoring communications, relatively short subtask times were used in conjunction with a coded entry (99) for frequency of occurrence. The coded entry identified continuous subtask performance.

Subtask AESC (SC) The appropriate four-digit navigator AFSC was entered to identify which of the four flying specialties was involved in accomplishing the subtask within the context of the weapon system being considered.

Frequency of Occurrence (FR) During data collection and validation interviews with operational navigators, estimates of the number of times a subtask was performed within each mission phase were obtained. These estimates were entered, with the maximum frequency being 99. Because both missions and mission phases can vary in both complexity and duration, this entry may be considered only an estimate.

System (SYS) This textual entry identified the general aircraft system which would be used to accomplish the subtask. System entries were selected from a standard set shown in Table 6. Multiple entries could be made.
Table 6. System Categories.

<table>
<thead>
<tr>
<th>Document</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Navigation</td>
</tr>
<tr>
<td>Life Support</td>
<td>Weapon</td>
</tr>
<tr>
<td>Electrical</td>
<td>Penetration</td>
</tr>
<tr>
<td>Reconnaissance</td>
<td>Flight Control</td>
</tr>
</tbody>
</table>

Hardware (HDW) This textual entry contained a more definitive description of the hardware type associated with the system entry identified above. For example, a system entry might be "navigation." A hardware entry might be "radar" or "INS computer."

Hardware Number (NO) When applicable, specific hardware designations were entered for the hardware item identified immediately above. Multiple entries could be made.

Microfunction (MFTN) Microfunctions were defined as functionally oriented clusters of procedural steps. The microfunction entry was created specifically for this analysis and was designed to be in keeping with the functional orientation applied to the task descriptive process.

ANALYSIS ELEMENTS. Analysis information added to the task descriptive information is identified below. Analysis, to a great extent, takes one of two extreme avenues. Either tasks are highly analyzed in experimental laboratories, or they are analyzed by means of "expert judgments." The latter approach was used in the present study. In order to ensure the best possible quality of the analysis information, instructor navigators were requested to assist in making many of the analysis decisions during visitations to operational units. Additionally, attempts were made to structure the content of microfunction data to provide a cueing function for the identification of knowledge and skill analysis items.

Criticality (CR) Each subtask was rated for criticality in keeping with the scale shown in table 7.

Difficulty to Perform (DP) Each subtask was rated for difficulty in keeping with the scale shown in table 8.

Difficulty to Learn (DL) The relative difficulty which a representative student navigator might experience in learning each subtask to proficiency was rated in keeping with table 9. It must be pointed out that this rating was made outside of any particular training context, and must be considered only as a crude approximation.
Table 7. Criticality Scale.

<table>
<thead>
<tr>
<th>Levels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Of no direct consequence to achieving mission objectives.</td>
</tr>
<tr>
<td>2</td>
<td>Of possible but small consequence to achieving mission objectives.</td>
</tr>
<tr>
<td>3</td>
<td>Would result in degraded mission performance, but would not result in loss of life or aircraft.</td>
</tr>
<tr>
<td>4</td>
<td>Of probable serious consequence and would result in an aborted mission.</td>
</tr>
<tr>
<td>5</td>
<td>Would result in aborted mission, but typically would not result in loss of life or aircraft.</td>
</tr>
<tr>
<td>6</td>
<td>Would result not only in aborted mission, but very probably in loss of life and aircraft.</td>
</tr>
</tbody>
</table>

Table 8. Performance Difficulty Scale.

<table>
<thead>
<tr>
<th>Levels</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Highly proceduralized chains of behavior. Require only identification of relevant work items and execution of proceduralized steps.</td>
<td>Activation or tuning of radio.</td>
</tr>
<tr>
<td>2</td>
<td>Proceduralized chains of behavior including defined alternative branches and the selection of appropriate branches. Involves identification of more complex cue patterns than Level I.</td>
<td>Checkout procedures where acceptable levels of operations must be determined.</td>
</tr>
<tr>
<td>3</td>
<td>Requires the use of concepts and abstractions of the immediate environment.</td>
<td>Interpreting a symbolic display such as radar or performing routine navigational tasks.</td>
</tr>
</tbody>
</table>
Table 8. (Continued).

<table>
<thead>
<tr>
<th>Levels</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Requires the use of principles and abstractions of the immediate environment for problem solving and decision making, implying multiple information sources and mental data processing.</td>
<td>Performing non-routine navigational tasks, stores analysis, store management.</td>
</tr>
</tbody>
</table>

Table 9. Learning Difficulty Scale.

<table>
<thead>
<tr>
<th>Levels</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simple proceduralized behavior of proceduralized chains of behavior.</td>
<td>Sequentially link communication channels, checklists.</td>
</tr>
<tr>
<td>2</td>
<td>Multiple or singular stimuli, leading to multiple or singular response.</td>
<td>Collect wind, ground speed, fuel data, etc., and transmit position report.</td>
</tr>
<tr>
<td>3</td>
<td>Requires the use of concepts and abstraction intervening between a single stimulus and a single response.</td>
<td>Weather radar scope interpretation.</td>
</tr>
<tr>
<td>4</td>
<td>Requires the use of principles, abstraction, and calculations intervening between a multiple stimulus and a multiple response.</td>
<td>Air-to-Air radar intercept.</td>
</tr>
</tbody>
</table>

Training Device (TD) A primary means of training the skills and knowledges required to perform each subtask was determined using the scale shown in Table 10. The ratings were means to reflect a primary device for training, not the only device. It also must be pointed out that these ratings had to be made outside the context of any particular training program and for each subtask in isolation. They were only estimates.

Knowledge Level (KNOWL) This entry contained textual descriptions of knowledges required to accomplish subtasks.
Table 10. Training Device Categories.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Text</td>
</tr>
<tr>
<td>2</td>
<td>Instructor</td>
</tr>
<tr>
<td>3</td>
<td>Audio Visual</td>
</tr>
<tr>
<td>4</td>
<td>Procedures Trainer</td>
</tr>
<tr>
<td>5</td>
<td>Part-Task Simulator</td>
</tr>
<tr>
<td>6</td>
<td>Full-Task Simulator</td>
</tr>
<tr>
<td>7</td>
<td>Inflight</td>
</tr>
</tbody>
</table>

Measurement Parameter (MP) In this entry, recommendations were made for parameters to be measured to determine successful completion of subtask performance requirements.

Measurement Standard (MS) In this entry, standards for successful completion of subtask requirements were identified to the extent possible. In accomplishing both the MP and MS analyses, use was made of available documented information, content from interviews with instructor navigators, and analysis of performance requirements by members of the analysis team. The entire area of navigator (or other human) performance measurement, however, continues to remain a topic requiring much additional research.

Skill Level (SKILL) This entry contained textual descriptions of skills required to accomplish subtasks. A somewhat broader definition of skill was used in order that the entries would not be limited to the traditional psychomotor or motor skills.

Measurement Device (MD) Recommendations for the general type of device for measuring subtask-level performance were made in keeping with the gross scale shown in Table 11. These recommendations also were made outside the context of any particular training program and individually for subtasks in isolation.
Table 11. Measurement Device Categories.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discrete sampling of parameters at a point in time which will determine the accomplishment of necessary events.</td>
<td>Control positioning, decision making or identifying relevant information.</td>
</tr>
<tr>
<td>2</td>
<td>Discrete sampling of parameters at multiple points in time to determine the accomplishment of multiple or sequential events.</td>
<td>Cursor positioning, voice communication, operation of penetration aids.</td>
</tr>
<tr>
<td>3</td>
<td>Discrete sampling of system state variables at a point in time to determine accomplishment of total weapon system conditions.</td>
<td>ETA at checkpoints, position errors at weapon release, determine present position.</td>
</tr>
<tr>
<td>4</td>
<td>Continuous sampling of system state variables to measure continuing trends to remain within standard.</td>
<td>Monitor flight path. Monitor engine performance, direct air-to-air intercept.</td>
</tr>
</tbody>
</table>
DATA COLLECTION METHODOLOGY

The fundamental steps used to implement the requirements for the commonality analysis through the collection and validation of formatted task analysis data are as follows:

- Develop the preliminary task catalog, as discussed previously under the subsection titled Catalog Development.

- Complete preliminary task analysis forms in preparation for data collection visits.

- Interview instructor navigators for operational systems to discuss content of task analysis forms and collect additional information.

- Update task catalog and pursue completion of the task analysis forms.

- Interview instructor navigators for operational systems or with other personnel for R&D systems to complete and validate content of task analysis forms.

- Cleanup and keypunch task analysis data.

- Complete computer commonality analysis of task data.

Two series of trips were accomplished to ensure that all task description and analysis information comprehensively and validly reflected requisite navigator operational task requirements. The trips are summarized in Table 12.

The first series emphasized data collection, simulator observations and inflight observations when possible. In order to maximize the probability of collecting relevant information, preliminary task analysis sheets were prepared and taken on each data collection visit. This was done to provide structure to the interviews rather than approaching them in a loose, open-ended fashion.

A primary objective during data collection visits was to obtain information which could be used to further develop the task catalog. A second objective was to obtain information of relevance to other descriptive elements of the analysis. A third objective was initially to refine the many rating scales used and subsequently to make ratings using the scales.

Two systems in the NOUFFSS sample are not yet operational. Information dealing with AWACS navigator tasks was obtained through the AWACS SPO, L.G. Hanscom Field, Bedford, Mass. Information dealing with the B-1 was obtained from study documents received from the B-1 SPO, Wright-Patterson Air Force Base, Ohio and through interviews with personnel of the North American Rockwell Corp., Los Angeles, California.
Table 12. Data Collection and Validation Trips.

<table>
<thead>
<tr>
<th>System</th>
<th>Data Collection</th>
<th>Data Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135A</td>
<td>March AFB</td>
<td>March AFB</td>
</tr>
<tr>
<td></td>
<td>Riverside, CA</td>
<td>Riverside, CA</td>
</tr>
<tr>
<td>FB-111A</td>
<td>Mather AFB</td>
<td>Carswell AFB</td>
</tr>
<tr>
<td></td>
<td>Sacramento, CA</td>
<td>Pt. Worth, TX</td>
</tr>
<tr>
<td>B-52G</td>
<td>Mather AFB</td>
<td>Mather AFB</td>
</tr>
<tr>
<td></td>
<td>Sacramento, CA</td>
<td>Sacramento, CA</td>
</tr>
<tr>
<td>F-4E</td>
<td>George AFB</td>
<td>George AFB</td>
</tr>
<tr>
<td></td>
<td>Victorville, CA</td>
<td>Victorville, CA</td>
</tr>
<tr>
<td>F-111A</td>
<td>Nellis AFB</td>
<td>Nellis AFB</td>
</tr>
<tr>
<td></td>
<td>Las Vegas, Nev.</td>
<td>Las Vegas, Nev.</td>
</tr>
<tr>
<td>RF-4C</td>
<td>Bergstrom AFB</td>
<td>Bergstrom AFB</td>
</tr>
<tr>
<td></td>
<td>Austin, TX</td>
<td>Austin, TX</td>
</tr>
<tr>
<td>C-130E</td>
<td>Pope AFB</td>
<td>Pope AFB</td>
</tr>
<tr>
<td></td>
<td>Fayetteville, NC</td>
<td>Fayetteville, NC</td>
</tr>
<tr>
<td>C-141A</td>
<td>Norton AFB</td>
<td>Norton AFB</td>
</tr>
<tr>
<td></td>
<td>San Bernardino, CA</td>
<td>San Bernardino, CA</td>
</tr>
<tr>
<td>C-5A</td>
<td>Charleston AFB</td>
<td>Travis AFB</td>
</tr>
<tr>
<td></td>
<td>Charleston, SC</td>
<td>Fairfield, CA</td>
</tr>
<tr>
<td>B-1A</td>
<td>B-1A SPO</td>
<td>North American Rockwell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>AWACS</td>
<td>AWACS SPO</td>
<td>- - -</td>
</tr>
</tbody>
</table>
SECTION III
COMMONALITY ANALYSIS REQUIREMENTS

DEFINITION AND BACKGROUND

As used in the NOUFFSS study, commonality analysis is a methodology applied to task analysis data to indicate the relative number (percent) of individuals (navigators) within particular sets of individuals (all navigators, Radar Navigators only, Electronic Warfare Officers only, etc.) who perform various subtasks. The NOUFFSS commonality analysis, therefore, was simply a statistical treatment of task analysis data in order to determine the relative numbers of navigators who presently perform or will be required in the future to perform various subtasks.

To-date, the few commonality analyses which have been performed have dealt with the establishment of training requirements. Future Undergraduate Pilot Training Program studies (e.g., Ref. 6) performed commonality analyses for the purpose of identifying training course content and trainer aircraft requirements. A recent analysis of training requirements for the Air Force A-7 aircraft also employed commonality analysis concepts for the purpose of establishing common training method requirements (Ref. 7). Only one prior commonality analysis has involved computer treatment of task data (Ref. 6).

Methodological concepts and requirements for commonality analysis were first introduced by Semple and Majesty in 1969 (Ref. 5). Building upon the basic concepts, the Northrop Corp. in 1970 completed the first computer-based analysis of task commonalities across a diverse sample of aircraft missions and aircrew positions (Ref. 6). The analysis was accomplished in the context of a Future Undergraduate Pilot Training (FUPT) study.

The FUPT commonality analysis was based upon projected percents of pilots to be assigned to a preselected sample of aircraft. In the FUPT study, the sample of aircraft was subdivided into categories. Categories were defined as groups of aircraft estimated to be similar with respect to the tasks which the pilots would be required to perform. Task commonality weighting factors were then determined based upon projected pilot requirements for each category of aircraft during the 1979-1981 timeframe. The weighting factors were derived from projected average numbers of new pilots required per year during the 1979-1981 timeframe for aircraft in each of the separate categories, divided by projected average numbers of new pilots required per year in all categories, multiplied by 100 (i.e., a percent). Through a series of computer-based procedures, commonality weighting factors were combined and evaluated against preselected commonality criteria to segregate common from non-common tasks.
A similar, but not identical, procedure was developed for use in NOUFFSS Phase II. The NOUFFSS procedure is described in the following pages.

Prior to NOUFFSS data validation visits, task analysis sheets were brought up-to-date. Information and documentation obtained during the first visits were reviewed and numerous microfunction and analysis data added. Because of extensive catalog changes which were necessary during the early months of Phase II, data validation visits also doubled as data collection opportunities for significantly restructured tasks and sub-tasks.

Analysis elements were completed during and immediately following the second visits. In particular, attempts were made to identify relevant performance measurement parameters and standards. Rapidly paced interviewing historically has proved to be a poor source of measurement information. NOUFFSS Phase II proved to be no exception to this rule. In many cases, measurement parameter information simply does not exist. Every navigator cannot be expected to be an expert in sophisticated performance measurement. They cannot be expected to gain the necessary expertise during one to two day interviews. Nonetheless, valuable measurement-related information was obtained, thus better equipping the analysis team to make estimates of performance parameters and standards.

Following data validation visits, task data for each weapon system was subject to clerical review in order to eliminate errors and inconsistencies which inadvertently are incorporated into any large body of data. Renumbering of all functions, tasks and subtasks was accomplished during the last month of Phase II, and the remaining analysis elements were completed. All data were then submitted for keypunching and verification. Section VIII presents card formats used in keypunching the Task Analysis data.

One of the final activities was the preparation of the commonality software. Following software debugging, data decks were prepared and the program was exercised.
COMMONALITY ANALYSIS CONCEPTS

Introduction. The commonality analysis was built around four basic concepts. A fundamental understanding of the concepts is prerequisite for understanding the methodology. Each concept is addressed below.

The first concept deals with time intervals. The total 1971-1990 timeframe was subdivided into four intervals of five years each. Weapon system projections through 1990 were developed during Phase I of the NOUFFSS study (Ref. 2). Numbers of navigators for each crew position in each of the 11 weapon systems also were projected through 1990. Examination of these projections indicated that trends remained relatively stable over five-year blocks of time. Accordingly, the data were averaged over the five-year spans comprising the four intervals. The four blocks of time were: 1971-75, 1976-80, 1981-85, and 1986-90. Although the averaging did obscure some minor variations, examination showed that use of other time period increments produced essentially the same results.

Separate commonality analyses were performed within each of the four time intervals. No analysis was performed across all intervals (i.e., the full 1971-1990 period). Such an analysis would have required averaging over too many changes in force structure composition. Furthermore, it is possible to manually average commonality weighting factors across any of the intervals if one wishes to do so. Therefore, the basic data generated during the commonality analysis provides the flexibility for other, manually accomplished commonality analyses.

The second concept is that two types of commonality sorts were performed. The first type was an "all inclusive sort." In this sort, task data for all weapon systems and all navigator positions were used. Commonality analysis information derived from an "all inclusive sort" represented the complete study sample. With certain qualifications, this information may be generalized to the total navigator field.

The second type of sort addressed each of the four navigator AFSCs separately. This is referred to as a "within sort" because task data for crew positions within each AFSC were analyzed separately for each of the four AFSCs. For example, a "within sort" was performed just upon task data for all Radar Navigators (AFSC 1525). This analysis used task data for the B-52G RN, the B-1A RN and the FB-111A RN. All other task data were excluded from this analysis.
The third concept involves the coding of aircraft-crew position combinations. Of the 11 weapon systems in the NOUFFSS sample, two (B-52 and B-1) require more than one navigator in their crews. Within the weapon system sample, a total of 14 aircraft/AFSC crew position combinations exist. Task data were developed for each of the 14 positions. For the commonality analyses, each of the aircraft/AFSC position combinations was assigned a number code ranging from one through 14 inclusive. Classified Section IX of Phase II, located in Appendix I, identifies which crew position in which aircraft corresponds with each number code (Ref 9).

To facilitate interpretation of the commonality analysis methodology, the aircraft/AFSC position codes are clustered according to AFSC below.

<table>
<thead>
<tr>
<th>AFSC</th>
<th>Aircraft-Crew Position Code Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1575 (EWO)</td>
<td>1 and 2</td>
</tr>
<tr>
<td>1555 (WSO)</td>
<td>3 and 4</td>
</tr>
<tr>
<td>1525 (RN)</td>
<td>5, 6 and 7</td>
</tr>
<tr>
<td>1535 (NAV)</td>
<td>8 through 14</td>
</tr>
</tbody>
</table>

All commonality sorts were based upon aircraft/AFSC position codes. For the "all inclusive sorts", task data for all 14 aircraft/AFSC positions were analyzed. For "within sorts", only task data associated with the appropriate clusters of codes were analyzed. For example, a "within sort" to identify subtasks which are common or non-common just within the Weapon System Officer (AFSC 1555) category was accomplished by instructing the computer to analyze data only for aircraft/AFSC codes 3 and 4.

The fourth concept is that all commonality weighting factors are simply percents. Derivation of weighting factors is addressed fully in the next subsection.

DEVELOPMENT OF COMMONALITY ANALYSIS WEIGHTING FACTORS

Introduction. All commonality weighting factors were developed for application to subtask-level data. This was done for two reasons. First, subtasks are the most descriptive yet standardized level of job description. Second, if a subtask is common (or non-common), then it follows that the task under which it is performed also may be considered common (or non-common). Addressing commonality at the task level, on the other hand, would provide no information regarding the commonality of individual subtasks.

There are legitimate requirements for weighting subtasks. If subtask "A" is performed by a navigator in weapon system #1, and subtask "B" is performed by a navigator in system #2, but
there are two times as many systems #1 as systems #2, then this must be taken into account. Similarly, if the number of navigators required for system #2 is greater than the number required for system #1, this, too, must be taken into account. Commonality weighting factors developed for NOUFFSS Phase II considered both of these factors.

Commonality analysis weighting factors were developed separately for each of the four time intervals comprising the total 1971-1990 timeframe. The projected numbers of navigators required for each system were used as basic data for developing the weights.

Within each five-year time interval, separate sets of weighting factors were required for the "all inclusive sorts" and each of the four "within sorts."

The same basic data and the same basic procedure were used to develop all commonality weighting factors. The procedure was based upon the premise that training content and course structure should reflect not only operational job requirements, but also the relative numbers of navigators required to perform various job elements (subtasks).

Basic Data and Basic Procedure. The basic data from which all commonality weights were derived was a table showing the projected average number of individuals required for each of the 14 aircraft/AFSC position combinations during each five-year time interval. The projections were derived during NOUFFSS Phase I (Ref. 2). The data were developed from information on the projected weapon system inventory and requirements for navigators in each weapon system in the NOUFFSS sample. Projections were developed for each year through 1990. The data were then averaged over the five years within each of the four time intervals.

The basic procedure was to convert numbers of individuals projected for each of the 14 aircraft/AFSC combinations to percent values. Percentages, rather than counts of navigators, were used as weighting factors for several reasons. First, percentages are ratio scale data. As such, they can be legitimately added, subtracted, multiplied and divided without losing their inherent meaning. Second, the extremes of the percent scale (0% and 100%) are fixed values, thus providing a finite scale. Third, percentages may be used to make relative statements about commonality which may be applied to any size navigator force. Simply stating actual numbers of navigators as weighting factors would be meaningful only as long as the total navigator force size remained constant. Fourth, in the NOUFFSS study, only a sample of all weapon systems and navigator positions was used. It is desirable, however, to be able to generalize from the sample to the entire population. This can be far more effectively accomplished through the use of percentages. Finally, percentages
have inherent meaning, whereas counts of navigators do not have inherent meaning. Without inherent meaning, generalizing is not possible. For example, if it were known that 343 navigators performed a particular subtask, what would this mean in relationship to the total navigator force? On the other hand, if it were known that 343 out of a total force of 3,000 (11.4%) performed a subtask, then the information could be generalized beyond the sample. The only assumption underlying the percentage weighting factor approach is that the NOUFFSS sample is representative of the total navigator population. This, however, is a requirement for validly generalizing any sample data.

Procedure for All Inclusive Sorts. The derivation of weighting factor percentages for the "all inclusive sorts" was very straightforward. First, the total projected navigator force for the NOUFFSS sample was determined by totaling the number of navigators projected for each of the 14 aircraft/AFSC combinations. Separate totals were determined for each of the four time periods. The numbers of navigators for each of the 14 positions were then simply expressed as percentages of the totals within each of the four time periods. Resulting percentages weighting factors are shown in Table 13.

Procedure for Within Sorts. The same fundamental procedure was used for deriving the "within sort" commonality weighting percentages. Again, weighting factors were determined separately for each of the four time intervals.

Because each "within sort" addressed only one AFSC category at a time, it was first necessary to determine subtotals of navigator counts separately for each of the four AFSC subsets comprising the total sample. This was accomplished by subtotaling the projected number of AFSC 1525 Radar Navigators separately, subtotaling the projected number of AFSC 1535 Navigators separately, etc. The projected numbers of navigators for each of the aircraft/AFSC positions which contributed to each of the subtotals were then simply expressed as a percentage of that subtotal. This is the equivalent of saying that the total navigator sample was subdivided into four smaller samples. The "within sort" weights were then derived separately for each of the four smaller samples. Resulting percentage weighting factors are shown in Table 14.

Hypothetical Computation Examples. The following commonality weighting factor computation examples are presented to clarify the computation procedure. All computations are based upon hypothetical, fictitious data and information. Actual data and information could not be used due to security classification.

The first example addresses the computation of weighting factors for an "all inclusive sort" across all 14 aircraft/AFSC positions. This procedure was employed to develop commonality weights for each of the four time periods. For this example, however, the 1971-1975 period is assumed.
Table 13. Commonality Weighting Criteria for "All Inclusive" Commonality Analyses.

<table>
<thead>
<tr>
<th>Aircraft/AFSC Codes</th>
<th>TIME PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>08</td>
</tr>
<tr>
<td>02</td>
<td>00</td>
</tr>
<tr>
<td>03</td>
<td>20</td>
</tr>
<tr>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>05</td>
<td>08</td>
</tr>
<tr>
<td>06</td>
<td>01</td>
</tr>
<tr>
<td>07</td>
<td>00</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
</tr>
<tr>
<td>09</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>03</td>
</tr>
<tr>
<td>14</td>
<td>00</td>
</tr>
</tbody>
</table>
Table 14. Commonality Weighting Criteria for "Within" Commonality Analyses.

<table>
<thead>
<tr>
<th>Aircraft/ APSC Codes</th>
<th>TIME PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>99</td>
</tr>
<tr>
<td>02</td>
<td>00</td>
</tr>
<tr>
<td>03</td>
<td>80</td>
</tr>
<tr>
<td>04</td>
<td>20</td>
</tr>
<tr>
<td>05</td>
<td>86</td>
</tr>
<tr>
<td>06</td>
<td>14</td>
</tr>
<tr>
<td>07</td>
<td>00</td>
</tr>
<tr>
<td>08</td>
<td>13</td>
</tr>
<tr>
<td>09</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>08</td>
</tr>
<tr>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>05</td>
</tr>
<tr>
<td>14</td>
<td>00</td>
</tr>
</tbody>
</table>

32
The first requirement is to identify the meaning of the specific aircraft crew positions associated with each of the 14 aircraft/AFSC codes. This information is shown in Columns A and B of Table 15. In the table, aircraft/AFSC Code 01 is the F-4E Weapon System Officer (AFSC 1555). Assume that there are 1,000 F-4E aircraft in the projected 1971-1975 inventory. Further assume that an average of 3.5 Weapon System Officers are required for each F-4E. This means that a total of 3,500 F-4E Weapon System Officers are required. This figure is shown in Column C of Table 15. The remainder of Column C presents projected numbers of navigators required for the remaining 13 aircraft/AFSC positions. The sum of all numbers in Column C (53,000 navigators) is the total number of navigators in the force structure comprising the NOUFFSS weapon system sample. This number (53,000) is the denominator of the weighting factor ratio used to derive commonality weights for all 14 aircraft/AFSC positions.

Weighting factors are determined by the ratio of the number of navigators for each aircraft/AFSC position (numerator) to the total number of navigators in the sample force (denominator). Column D presents these ratios for each of the 14 aircraft/AFSC positions. When calculated as a decimal equivalent and multiplied by 100, the ratios are translated into percentages. Corresponding percentages for each of the 14 aircraft/AFSC positions are shown in Column E. Commonality weighting factors are shown in Column F. A comparison of Columns E and F reveals that the data entries are identical. This is because the commonality weighting factors are percentages.

The second example addresses the computation of weighting factors for a "within sort" commonality analysis. For a "within sort", separate groups of weighting factors were required for each of the four navigator AFSCs. For the purpose of this example, a "within sort" for AFSC 1525 (Radar Navigator) is assumed.

Proceeding in the same manner as in the previous example, it is first necessary to determine which of the 14 aircraft/AFSC positions are Radar Navigators. This information is shown in Columns A and B of Table 16. The same information is contained in Columns A and B of Table 15. The information is the same because aircraft/AFSC codes are always the same regardless of the type of commonality sort being accomplished. There are only three AFSC 1525 aircraft-crew position combinations in the NOUFFSS sample.

The next step is to identify the projected numbers of Radar Navigators required during the 1971-1975 time period for each of the three aircraft/AFSC positions which are filled by Radar Navigators. These data are shown in Column C of Table 16. Column C of Table 15 contains the same numeric information as Column C of Table 16 for the three aircraft/AFSC positions of interest. It should be noted that no radar navigators (a zero entry) has been made for aircraft/AFSC position 03. This position...
Table 15. Fictitious Example of the Computations of Commonality Weighting Factors for the "All Inclusive" AFSC Sort.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>F-4E WSO</td>
<td>3,500</td>
<td>3,500/53,000</td>
<td>07</td>
<td>07</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>F-111A WSO</td>
<td>1,000</td>
<td>1,000/53,000</td>
<td>02</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>B-1A RN</td>
<td>0</td>
<td>0/53,000</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>B-52G RN</td>
<td>5,000</td>
<td>5,000/53,000</td>
<td>09</td>
<td>09</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>FB-111 RN</td>
<td>3,000</td>
<td>3,000/53,000</td>
<td>06</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>C-5A NAV</td>
<td>2,000</td>
<td>2,000/53,000</td>
<td>04</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>C-141A NAV</td>
<td>4,000</td>
<td>4,000/53,000</td>
<td>07</td>
<td>07</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>RF-4C NAV</td>
<td>1,500</td>
<td>1,500/53,000</td>
<td>03</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>B-52G NAV</td>
<td>10,000</td>
<td>10,000/53,000</td>
<td>19</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AWACS NAV</td>
<td>1,000</td>
<td>1,000/53,000</td>
<td>02</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>KC-135 NAV</td>
<td>9,000</td>
<td>9,000/53,000</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C-130E NAV</td>
<td>3,000</td>
<td>3,000/53,000</td>
<td>06</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>B-52G EWO</td>
<td>5,000</td>
<td>5,000/53,000</td>
<td>09</td>
<td>09</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>B-1A EWO</td>
<td>5,000</td>
<td>5,000/53,000</td>
<td>09</td>
<td>09</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>53,000 Navs. (All AFSCs)</td>
<td></td>
<td></td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 16. Fictitious Example of the Computations of Commonality Weighting Factors for Sorts Within AFSCs.

<table>
<thead>
<tr>
<th>Aircraft/AFSC Codes</th>
<th>Col. B</th>
<th>Col. C</th>
<th>Col. D</th>
<th>Col. E</th>
<th>Col. F</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>B-1A</td>
<td>RN</td>
<td>0</td>
<td>0/8,000</td>
<td>00</td>
</tr>
<tr>
<td>04</td>
<td>B-52G</td>
<td>RN</td>
<td>5,000</td>
<td>5,000/8,000</td>
<td>62</td>
</tr>
<tr>
<td>05</td>
<td>FB-111</td>
<td>RN</td>
<td>3,000</td>
<td>3,000/8,000</td>
<td>38</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>8,000</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
is the B-1A Radar Navigator. The zero entry in the fictitious example reflects the fact that no B-1A weapon systems are projected for the force in the 1971-1975 time period. Hence, no B-1A Radar Navigators are shown for this period. The remainder of Column C in Table 16 presents the number of Radar Navigators required for the remaining two aircraft/AFSC positions. The sum of all numbers in Column C (8,000) is the total number of Radar Navigators in the force structure comprising the NOUFFS sample. This number (8,000) is the denominator of the weighting factor ratio used to derive commonality weights for the Radar Navigator (AFSC 1525) subset of total aircraft/AFSC sample.

Weighing factors are determined by the ratio of the number of Radar Navigators for each of the three aircraft/AFSC positions (numerator) to the total number of Radar Navigators in the AFSC 1525 subset. Column D of Table 16 presents these ratios. When calculated as a decimal equivalent and multiplied by 100, the ratios are translated into percentages. Corresponding percentages for each of the three Radar Navigator aircraft/AFSC positions are shown in Column E. Commonality weighting factors for the "within sort" for the AFSC 1525 subset are shown in Column F. A comparison of Columns E and F reveals that the data entries are identical. This, again, is because the commonality weighting factors are percentages.

IMPLEMENTING THE COMMONALITY ANALYSIS

Basic Commonality Analysis Procedures. All commonality analyses were performed by a computer. The computer-based commonality analysis procedures involved three primary elements: the sequencing and use of task analysis data; the identification and application of appropriate commonality weighting factors; and organization of the computer printout for 20 separate commonality analyses.

All commonality analysis data were input to the computer and output by the computer in numeric form. Function, task and subtask numbers identifying the functions, tasks and subtasks performed by each of the 14 aircraft/AFSC positions were input to the computer. The number equivalents for each function, task and subtask are shown in Section V. Tables of precomputed commonality weighting factors for the 20 separate commonality analyses also were input.

Using the numerically coded task analysis data, the computer arranged all function numbers in ascending order from smallest to largest. Then, task numbers within each function were arranged in ascending order from smallest to largest. Similarly, subtasks numbers within each task also were arranged in ascending order. In this manner, the computer sequenced the function, task and subtask numbers of the computer output to correspond with the sequence of functions, tasks and subtasks in the basic task catalog (Section V).
The computer first determined which of the 20 "within AFSC" or "all inclusive" commonality sorts it was to perform. It then used task analysis data and commonality weights appropriate only for the aircraft/AFSC positions and the time period of interest for the commonality sort. For example, for a "within AFSC" sort to be performed only on Weapon System Officer (AFSC 1555) tasks, the computer used task data only for aircraft/AFSC positions 3 and 4. Task data for all other positions were ignored. Next, the computer determined which of the four time periods correspond with the particular commonality sort and selected the appropriate table of commonality weighting factors to be used for the analysis.

All commonality analyses were performed on subtask data. Starting with the first subtask (e.g., number 001), the computer determined which of the aircraft/AFSC positions of interest performed the subtask. For those which performed the subtask, it applied the appropriate commonality weighting factors. It then totalled all weighting factors across all relevant aircraft/AFSC positions. Finally, it tested the total commonality weight against three preselected commonality criteria. When this had been accomplished, the procedure was repeated for the next subtask (e.g., number 002). Subsequent subtasks were addressed until all subtasks had been exhausted. At this point, the computer cycled into the next of the 20 commonality analyses, repeating the above procedure until all 20 analyses had been completed.

A computer printout was made for each of the subtask-level commonality tests in each of the 20 different commonality analyses. The next section deals with reading the commonality analysis output. Detailed information and flow charts of the computer procedure are presented in Section VI.

Reading the Commonality Analysis Output. The commonality analysis computer output was subdivided into 20 sections, with one section for each of the 20 different commonality analyses. Each section was titled, and pages were numbered consecutively within each section.

Each section presented commonality data for a particular commonality sort within one of the four time periods. Because there were five sorts and four time periods, there were 20 commonality analyses. For example, section 1 presented data for a "within sort" for AFSC 1575 (Electronic Warfare Officers). Only task data for aircraft/AFSC crew positions 1 and 2 were used for this commonality sort. Furthermore, the time period of interest was 1971-1975. Table 17 identifies the content and time periods for each of the 20 commonality analysis sections. The second and fourth lines of the title for each section of the printout identified the time period and aircraft/AFSC positions of interest for the analysis.
Table 17. Content of Commonality Analysis
Computer Printout Sections.

<table>
<thead>
<tr>
<th>Section</th>
<th>Sort Type</th>
<th>AFSC Codes</th>
<th>AFSCs of Interest</th>
<th>Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*W</td>
<td>1 & 2</td>
<td>1575</td>
<td>1971-75</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>3 & 4</td>
<td>1555</td>
<td>1971-75</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>5, 6 & 7</td>
<td>1525</td>
<td>1971-75</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>8-14</td>
<td>1535</td>
<td>1971-75</td>
</tr>
<tr>
<td>5</td>
<td>**AI</td>
<td>All 14</td>
<td>All</td>
<td>1971-75</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>1 & 2</td>
<td>1575</td>
<td>1976-80</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>3 & 4</td>
<td>1555</td>
<td>1976-80</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>5, 6 & 7</td>
<td>1525</td>
<td>1976-80</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>8-14</td>
<td>1535</td>
<td>1976-80</td>
</tr>
<tr>
<td>10</td>
<td>**AI</td>
<td>All 14</td>
<td>All</td>
<td>1976-80</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>1 & 2</td>
<td>1575</td>
<td>1981-85</td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>3 & 4</td>
<td>1555</td>
<td>1981-85</td>
</tr>
<tr>
<td>13</td>
<td>W</td>
<td>5, 6 & 7</td>
<td>1525</td>
<td>1981-85</td>
</tr>
<tr>
<td>14</td>
<td>W</td>
<td>8-14</td>
<td>1535</td>
<td>1981-85</td>
</tr>
<tr>
<td>15</td>
<td>**AI</td>
<td>All 14</td>
<td>All</td>
<td>1981-85</td>
</tr>
<tr>
<td>16</td>
<td>W</td>
<td>1 & 2</td>
<td>1575</td>
<td>1986-90</td>
</tr>
<tr>
<td>17</td>
<td>W</td>
<td>3 & 4</td>
<td>1555</td>
<td>1986-90</td>
</tr>
<tr>
<td>18</td>
<td>W</td>
<td>5, 6 & 7</td>
<td>1525</td>
<td>1986-90</td>
</tr>
<tr>
<td>19</td>
<td>W</td>
<td>8-14</td>
<td>1535</td>
<td>1986-90</td>
</tr>
<tr>
<td>20</td>
<td>**AI</td>
<td>All 14</td>
<td>All</td>
<td>1986-90</td>
</tr>
</tbody>
</table>

*W is "Within AFSC" commonality analysis.
**AI is "All Inclusive" commonality analysis.
Data columns were labeled at the top of each page of computer printout (see Figure 4). Reading from left to right, column titles were: function number; task number; subtask number; aircraft/AFSC code numbers (1 through 14); value sum; and criteria checks.

The first three columns identified the number codes of functions, tasks and subtasks which were considered in the various commonality analyses. A complete description of the titles associated with each number code may be obtained by cross indexing the function, task and subtask numbers with the content of the task catalog (Section V).

Not all function, task or subtask numbers appeared in each of the 20 commonality analyses. This was particularly true for "within AFSC" commonality analyses. If none of the aircraft/AFSC positions within a particular commonality analysis performed a particular subtask, then that subtask's number code was not included in the computer printout. Similarly, if none of the aircraft/AFSC positions performed any of the subtasks associated with a particular task, then the number code for the task also was deleted from the printout. If none of the tasks within an entire function was performed, then the number code of the function also was deleted.

For example, subtask number 395 did not appear in section 8. Section 8 was a "within AFSC" commonality analysis for Radar Navigators (AFSC 1525) only. The title for subtask number 395 is: "Prepare escape mechanism for ditching." It may be concluded, therefore, that none of the Radar Navigators in the NOUFFSS sample perform this particular subtask. Also, both functions 21 and 22 are missing from section 8. The title for function 21 is: "Execute air-to-air search and surveillance procedures." The title for function 22 is: "Execute intercept operations." Both of these functions apply only to the Weapon System Officer (AFSC 1555) and to the air intercept mission. These functions, therefore, legitimately were not included in section 8 because section 8 applied only to AFSC 1525.

Individual commonality weights were presented for each subtask. The commonality weights were presented directly under each aircraft/AFSC number code (01 through 14). Only two types of entries were made.

The primary type of entry was a number ranging from 0 through 99. These numbers were the commonality weights. The appearance of a commonality weight number indicated only two things. First, it indicated that the aircraft/AFSC position under which it appeared performs the particular subtask. Second, it showed the percent of the total number of all crew positions of interest which that particular aircraft/AFSC position comprised.
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>TASK NO.</th>
<th>SUGGESTED CODING</th>
<th>NUMBER</th>
<th>CODED AICREW NUMBER AND ASSOCIATED VALUE</th>
<th>VALUE</th>
<th>CRITERIA HUMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Example of a Commonality Analysis Computer Printout Sheet.
Weighting factors of 0 percent were a special case. A zero weight meant that zero percent of the total number of crew positions of interest were comprised by the particular aircraft/AFSC position under which the zero appeared. Zero weights typically occurred during the 1971-75 time period or during the 1986-90 time period. In the first time period, a zero weight indicated that the aircraft/AFSC position did not yet exist, and thus could only comprise zero percent of any total. The B-1 weapon system is a good example. No B-1 systems were projected for the 1971-75 time period; thus their crew positions during that time period would comprise zero percent of any total. Zero weights during the 1986-90 time period similarly indicated that associated aircraft/AFSC positions were not projected to exist. In this case, zero weights indicated that a particular weapon system and its crew position were projected to have been phased out of the inventory.

The second type of entry was a theta(-θ-). A theta entry indicated that the particular aircraft/AFSC position under which it appeared simply did not perform the particular subtask in the context of the commonality analysis which was being conducted. For example, commonality analysis printout section 1 dealt only with positions 1 and 2. Thetas were entered by the computer for each subtask under positions 3 through 14. This indicated that, in the context of the "within AFSC" commonality analysis presented in section 1, positions 3 through 14 do not perform any of the subtasks. Thetas appearing in commonality analyses across all 14 crew positions similarly indicated that certain aircraft/AFSC positions simply do not perform certain subtasks.

In reading the commonality analysis output, it could be noted that commonality weight entry numbers were always the same under each aircraft/AFSC position within any of the 20 different analyses. This was because the commonality weights represented percents of some total number of crew positions comprised by the positions associated with the particular aircraft/AFSC code. The percent composition factors, of course, were the same within each of the 20 analyses. Accordingly, the same weights appeared under each position within each sort.

Value sum column entries were totals of all commonality weights across all aircraft/AFSC positions of interest for each subtask. Numbers appearing in the value sum column represented the total percent of all crew positions of interest which performed each subtask. For example, a value sum of 25 meant that 25% of all aircraft/AFSC positions of interest for the particular commonality analysis performed the subtask. A value sum of 100 meant that 100% performed the subtask.

The commonality analysis printout also presented the results of commonality criterion checks. Three levels of commonality were arbitrarily selected. The levels were: 30%, 50% and 70%. Because of the lack of precedent and the subjectivity of task
analysis data, the three commonality criterion levels could not be based upon a firm technical foundation. However, it was desired to incorporate the commonality criteria check capability into the computer software for possible future utilization. Any three levels may be selected for use.

In the commonality criteria checks, the computer simply compared the value sum for each subtask against the three pre-selected commonality criteria. The presence of double asterisks (**') showed the criterion levels which the value sum equaled or exceeded. For example, commonality analysis section 10 (see Figure 4) presented results of an "all inclusive" commonality analysis across all 14 aircraft/AFSC positions for the 1976-1980 time period. Within this analysis, the criteria checks showed that at least 70% of all navigators will perform subtask number 121; at least 50% but less than 70% will perform subtask number 123; and at least 30% but less than 50% will perform subtask number 124. The exact percent values were shown in the value sum column. For example, 87% of all navigators will perform subtask number 121 during the 1976-1980 time period.

USING COMMONALITY ANALYSIS DATA

Commonality analysis data represent a relatively new type of information. Although the information is quantitative, it is based upon subjective task analysis data. There frequently is a tendency to view any new form of highly quantitative data as a means for solving more problems than history generally shows to have been practical. On the other hand, the availability of quantitative commonality data does hold the promise of providing insight into a number of problem areas which previously could be addressed only subjectively and argumentatively. Several such uses of commonality analysis data are presented below.

Commonality analysis data may provide a valuable basis for clustering job behaviors for the purpose of developing integrated and highly interrelated sets of training Criterion Objectives. This is the primary anticipated use of commonality analysis data for NOUFPSS Phase III.

It would also appear reasonable that commonality data may be useful in allocating various training requirements (Criterion Objectives) to particular training schools such as UNT, NBT, EWOT and even CCTs. Degrees of commonality could be used in conjunction with Criterion Objective content for this purpose.

It also appears reasonable to use degree of commonality to establish the degree to which selected behaviors should be trained. For example, training requirements based upon low commonality job behaviors might be trained in UNT, but only to a "familiarization level."
Commonality data also might provide one basis upon which total system structure and content might be based. For example, if all navigator training were to be conducted under Air Training Command auspices, commonality data might be useful in developing training program structure by establishing branching points from general skills through highly system specific skills.

Finally, commonality data might prove of value in restructuring flying specialty APSCs into groupings more representative of future as well as present timeframe job requirements.

The use of commonality analysis data to achieve the clustering of related job behaviors is addressed in the next section.
COMMONALITY DATA SUMMARY

The commonality analysis performed on the task analysis data produced a voluminous number of individual subtask-level commonality measures. It was necessary, therefore, to summarize the data in order to search for trends.

1971-1985 TIMEFRAME

As shown in Tables 13 and 14, commonality weighting factors are quite stable throughout the 1971 to 1985 timeframe. Accordingly, results of the commonality analyses for the 1971-75, 1976-80 and 1981-85 timeframes are highly similar. The first step in summarizing the commonality analyses, therefore, was to combine the data from each of the three time periods into one data pool. For the comparisons which follow, only total commonality measures resulting from sorts across all 14 crew positions were used.

A useful method for treating voluminous data of the type generated by the commonality analysis is to code the individual measures into groups or class intervals. The class interval data may then be used to construct frequency distribution histograms and cumulative frequency distribution curves (Ref. 8). Accordingly, the 0% to 100% commonality scale was divided into ten class intervals. Each interval contained 10% of the total scale (i.e., 1% through 10%, 11% through 20%, etc.). Combined commonality weights for each subtask were coded by assigning them to the appropriate class interval. For example, a 7% commonality weight would be assigned to the 1% through 10% interval. The percent of the total number of weights which constituted each interval was then determined. The resulting relative frequency distribution is shown in histogram form in the bottom half of Figure 5.

The relative frequency data also are expressed as a cumulative frequency curve in the top half of Figure 5. The cumulative curve was developed by successively combining the individual relative frequencies for each class interval and plotting the resulting cumulative values. The curve can be interpreted to show the total percent of subtasks falling at or below chosen commonality levels. For example, approximately 20% of the subtasks were 10% common or less; approximately 48% of the subtasks were 30% common or less.

Examination of the cumulative frequency curve for the 1971-1985 timeframe reveals that it is positively skewed, reflecting the fact that there was a relatively large percentage of unique, low commonality subtasks. The slope of the curve is most steep between the 1% and 20% commonality points. At the 20% commonality point, the slope becomes less pronounced, and a linear relationship is observed through the 50% commonality point. Above the 50% point, the slope becomes even less pronounced, and another linear relationship is observed through the 100% commonality point.
Figure 5. Commonality Trends.
Two points along the curve reflecting transitions in slope (20% and 50% commonality points) may be of potential value for application in NOUFFSS Phase III. The transition points identify notable changes in the commonality trend. Linearity of the three segments of the curve also indicates consistent trends within the three levels of commonality.

Consistency of trends within each level is further borne out by consistent trends in the histogram data. The two class intervals between 1% and 20% commonality average approximately 20% of the total number of commonality measures. The three intervals comprising the 30% through 50% range average approximately 12% of all measures. The intervals above 50% commonality average approximately 7% of all measures. Furthermore, variability among data within each of the three ranges is relatively small.

The above figures suggest that three levels of commonality may exist in the 1971 through 1985 commonality analyses: high commonality, but a low proportion of all subtasks; moderate commonality and a moderate proportion of all subtasks; and low commonality, but a high proportion of all subtasks. These trends, in turn, suggest that NOUFFSS Phase III should address the development of training requirements in a multilevel fashion.

1986 - 1990 TIMEFRAME

Figure 5 also presents cumulative commonality data for the 1986 - 1990 timeframe. The curve for the latter timeframe closely follows the combined 1971 - 1985 timeframe curve discussed above. The latter timeframe curve exhibits more variability, however. The variability may be due primarily to the smaller number of data available for generating the curve. Only one timeframe was used. An additional fact is that five of the 14 crew positions are not anticipated to exist during the 1986 - 1990 timeframe. Accordingly, the curve was developed from data for the remaining 9 positions only.

It is significant that general trends of the two curves are highly similar. Had the curves been markedly different, the multi-level commonality concept developed from 1971 - 1985 timeframe data might have been invalidated. As it is, basic application of the concept may have validity throughout the entire 1971 - 1990 timeframe.

ANTICIPATED PHASE III REQUIREMENTS

The presence of three distinct and consistent commonality levels suggests that more than simple statistical interpretation of task analysis data will be required during NOUFFSS Phase III. This follows from the fact that patterns in the commonality data do not appear to correlate with patterns in crew distribution data or weapon system distribution data.
Table 18 shows the percent of all navigators positions in the NOUFFSS sample which comprise each of the four flying specialties. Table 19 shows the percent of all navigator positions in the NOUFFSS sample broken out by aircraft type. Content of the tables was based upon NOUFFSS Phase I projections of the numbers of navigators required through 1990 (Ref. 2).

In developing content for both tables, the F-111 weapon system was assigned to the bomber category. Similarly, the F-111 WSO was categorized as a Radar Navigator. This was done for two reasons. First, the F-111 performs a bomber mission, not a fighter mission. Second, tasks performed by the F-111 navigator far more closely correspond with tasks performed by Radar Navigators in the F-111, B-1 and even the B-52 than they do with F-4 Weapon System Officer tasks. This results primarily from the fact that the F-111 does not fill an air intercept role.

Regardless of how one treats the F-111, patterns apparent in the tables are not meaningfully changed in relationship to patterns in Figure 5. Examination of the tables shows that relative distribution patterns apparent in the tabled data do not correspond with commonality patterns shown in Figure 5. This suggests that commonality measures and trends are the product of interactions among variables such as mission types, weapon system and equipment types, AFSCs, and probably task relatedness factors reflecting uniquenesses between weapon systems within each of the general categories. The full implications of such factors remain to be explored in NOUFFSS Phase III. It appears, however, that more than simple statistical interpretation of task analysis and commonality analysis data will be required.

COMMONALITY CRITERIA AND CONSTRAINTS

It must be noted that even under the most rigorous scientific and technical controls, the establishment of criteria involves an element of arbitrary decision. Criterion values are not inviolable. They are influenced by the amount of information available when the decision is made, the consideration of factors other than statistical summaries, and the technical backgrounds and viewpoints of those who make the decision. In answering the question "What is common?", one must first ask "Common to whom, for what particular application, and under what circumstances?"

Prior attempts to establish commonality criteria disregarded many questions with what appears to have been the arbitrary selection of a 40% commonality cutoff point (Ref. 6). Task data of less than 40% commonality were simply ignored. In the present study, all data are judged to be meaningful and, therefore, should not be ignored. Statistical support for a multi-level commonality concept provides a framework within which all task data may be considered for the development of training Criterion Objectives during Phase III.
Table 18. Percent of Navigators in NOUFFSS Sample Comprising Each AFSC.

<table>
<thead>
<tr>
<th>Air Force Specialty Codes</th>
<th>1525 (RN)</th>
<th>1535 (NAV)</th>
<th>1555 (WSO)</th>
<th>1575 (EWO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971-1985 Averages</td>
<td>14%</td>
<td>62%</td>
<td>18%</td>
<td>6%</td>
</tr>
<tr>
<td>1986-1990 Averages</td>
<td>29%</td>
<td>61%</td>
<td>--</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 19. Percent of Navigators in NOUFFSS Sample According to Aircraft Type.

<table>
<thead>
<tr>
<th>Aircraft Types</th>
<th>Transport</th>
<th>Bomber</th>
<th>Fighter</th>
<th>Refueler</th>
<th>Other*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971-1985 Averages</td>
<td>36%</td>
<td>25%</td>
<td>10%</td>
<td>15%</td>
<td>6%</td>
</tr>
<tr>
<td>1986-1990 Averages</td>
<td>41%</td>
<td>39%</td>
<td>--</td>
<td>17%</td>
<td>3%</td>
</tr>
</tbody>
</table>

* Reconnaissance and Perimeter Patrol.

NOTE - The reader may change the content of the tables to reflect presently existing mission and job categories of the F-111. For the 1971-1985 timeframe, subtract 6% from the RN category of Table 15, and add 6% to the WSO category. Similarly, subtract 6% from the bomber category of Table 16, and add 6% to the fighter category. For the 1986-1990 timeframe, perform the same steps, but use 18% instead of 6%.
SECTION V

FUNCTION, TASK AND SUBTASK DESCRIPTIONS

EXPLANATION

This section presents in catalog form all the functions, tasks and subtasks developed for all the aircraft in the NOUFFSS Phase II effort. The functions are listed together with their associated tasks and subtasks in a "shopping list" manner and consequently, do not necessarily represent any particular weapon system task requirement or operational sequence. Micro-functions are not presented because of their uniqueness to individual weapon systems or crew positions in the Phase II NOUFFSS sample.

Functions are shown in all capital letters and are numbered consecutively from 01 through 29. Tasks are shown as the first level of indenture and are numbered consecutively from 001 through 107. Subtasks are listed at the second level of indenture and are numbered consecutively from 001 through 446.

Titles for the following numbered subtasks are classified: 088, 127, 130, 166 and 167. Each of the subtasks applied only to the B-1 weapon system. The titles are contained in Section IX (Ref 9) of Phase II documentation which is included in Appendix I (Phase I)(Secret), in order to keep all classified material in one document. Section IX also presents classified names of subsystems anticipated for the B-1. Code equivalents of the names were used in Microfunction data developed for the B-1.
01 EXECUTE MISSION PLANNING PROCEDURES

001 Receive Mission Information
 001 Receive Mission Order
 002 Receive Mission Briefing
 003 Receive Target Study Briefing
 004 Receive Intelligence Briefing
 005 Receive Lead Navigator Enroute Briefing
 006 Receive Lead Navigator Drop Zone Briefing
 007 Receive Specialized Briefing

002 Analyze Flight Operations Order
 008 Analyze Navigation Portion of Operation Plan
 009 Conduct Briefing on Navigation Portion of Plan
 010 Verify Aircraft Performance Safety Margins
 011 Evaluate Effect of Ordinance on Mission Profile
 012 Analyze EW Portion of Mission
 013 Conduct Briefing on EW Portion of Operation Order

003 Analyze Documents on Terrain, Weather and Other Factors
 014 Check Documents for Flight Limiting Factors
 015 Obtain Enroute Wind and Weather Data
 016 Obtain Emergency Information for Mission

004 Prepare Flight Plan and Navigation Maps
 017 Receive Planned Route Information
 018 Prepare Mission Flight Plan
 019 Determine Fuel Consumption Data
 020 Verify Flight Plan Complies with Appropriate Regulations
 021 Assist Crewmembers in Preparing Mission Data
 022 Prepare Enroute Maps with Appropriate Data
 023 Review Prepared Map Data

005 Perform Tactical Operations Planning
 024 Check Communications and Security Documents
 025 Prepare Low Altitude Tactical Segment of Mission
 026 Prepare Weapon Delivery Segment of Mission
 027 Prepare Reconnaissance Segment of Mission
 028 Prepare Air Drop Segment of Mission
 029 Prepare Electronic Warfare Segment of Mission
 030 Perform Specialized Target Study for Terminal Guided Weapons
01 (Function Continued)

006 Check Adequacy and Currency of Mission Documents
 031 Check Adequacy and Currency of Navigation Documents
 032 Check Adequacy and Currency of Weapon Delivery Documents
 033 Check Adequacy and Currency of Emergency Documents
 034 Check Reconnaissance Equipment Data

007 Prepare Programming and Launching Data for Missiles
 035 Evaluate Missile Complement
 036 Program Launch of SRAM AGM-69 Missiles
 037 Program Launch of Houndog AGM-28 Missiles
 038 Program Launch of Quail ADM-20 and Agile Missiles
 039 Program Launch of Scud and Scud Missiles

02 SECURE FLIGHT AND LIFE SUPPORT EQUIPMENT

008 Don Life Support and Survival Equipment
 040 Don Flight Clothing
 041 Check Headgear Equipment
 042 Check Survival Equipment
 043 Inspect Personal Weapon

03 VERIFY AIRCRAFT EXTERIOR CONDITION

009 Inspect External Antennae or Antennae Covers
 044 Inspect Condition of Antennae
 045 Inspect Condition of Antennae Covers

010 Inspect Weapons Equipment
 046 Perform Preinspection Safety Checks
 047 Check Bomb Load
 048 Check Nuclear Weapons Safeing and Release System
 049 Inspect Bomb Release System
03 (Function Continued)

011 Inspect Missiles
 050 Inspect SRAM AGM-69 Missiles
 051 Inspect Houndog AGM-28 Missiles
 052 Inspect Sparrow AIM-7 Missiles
 053 Inspect Falcon AIM-4 Missiles
 054 Inspect Maverick AGM-65 Missiles
 055 Inspect Sidewinder AIM-9 Missiles
 056 Inspect Quail ADM-20 Missiles
 057 Inspect Bullpup AGM-12 Missiles
 058 Inspect Shrike AGM-45 Missiles
 059 Inspect Scad Missiles

012 Check External Equipment Stores
 060 Check External Reconnaissance Equipment Stores
 061 Check External EW Equipment and Stores
 062 Check External Reconnaissance Equipment

013 Inspect External Aircraft General Conditions
 063 Inspect General Aircraft Exterior

04 VERIFY AIRCRAFT INTERIOR CONDITION

014 Inspect Aircraft Canopy
 064 Check Canopy Serviceability

015 Inspect Escape Survival Equipment
 065 Check Ejection Seat or Capsule
 066 Inspect Parachutes
 067 Check Onboard Oxygen Equipment
 068 Check Survival Equipment

016 Inspect Weapons Control and Weapons Monitoring Equipment
 069 Verify Weapons are Safe and Inactive
 070 Perform Nuclear Weapons Safety Check Procedures

017 Inspect Documents Records and Publications
 071 Check Navigation Documents
 072 Check Maintenance Documents
 073 Check Weapon Delivery Tables
 074 Check Crypto Materials and Special Mission Instructions

018 Check Circuit Breaker Panels
 075 Check Circuit Breaker Panels Properly Set
05 EXECUTE POWER OFF EQUIPMENT CHECKOUT

<table>
<thead>
<tr>
<th>019</th>
<th>Perform Power Off Checks of Navigation Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>076</td>
<td>Check Radar Equipment</td>
</tr>
<tr>
<td>077</td>
<td>Check Doppler Equipment</td>
</tr>
<tr>
<td>078</td>
<td>Check Inertial Equipment</td>
</tr>
<tr>
<td>079</td>
<td>Check Loran Equipment</td>
</tr>
<tr>
<td>080</td>
<td>Check Sextant</td>
</tr>
<tr>
<td>081</td>
<td>Check ADF Radio</td>
</tr>
<tr>
<td>082</td>
<td>Check Radio or Radar Altimeter</td>
</tr>
<tr>
<td>083</td>
<td>Check Navigation Computer</td>
</tr>
<tr>
<td>084</td>
<td>Check Compass Equipment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>020</th>
<th>Perform Power Off Checks of Other Navigation Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>085</td>
<td>Check Astrotracker</td>
</tr>
<tr>
<td>086</td>
<td>Check Omega Equipment</td>
</tr>
<tr>
<td>087</td>
<td>Check Satellite Navigation System</td>
</tr>
<tr>
<td>088</td>
<td>Check System Eleven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>021</th>
<th>Perform Power Off Checks of Communication Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>089</td>
<td>Perform Radio Equipment Checks</td>
</tr>
<tr>
<td>090</td>
<td>Perform Rendezvous Equipment Checks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>022</th>
<th>Perform Power Off Checks of EW Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>091</td>
<td>Check EW Transmitter Equipment</td>
</tr>
<tr>
<td>092</td>
<td>Check EW Receiver Equipment</td>
</tr>
<tr>
<td>093</td>
<td>Check EW Signal Analysis Equipment</td>
</tr>
<tr>
<td>094</td>
<td>Check Expendable Stores Equipment</td>
</tr>
<tr>
<td>095</td>
<td>Check Other EW Equipment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>023</th>
<th>Perform Power Off Checks of Other Required Subsystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>096</td>
<td>Check Side Looking Radar Equipment</td>
</tr>
<tr>
<td>097</td>
<td>Check Avionics Environmental Control Equipment</td>
</tr>
<tr>
<td>098</td>
<td>Check LLLLTV Equipment</td>
</tr>
<tr>
<td>099</td>
<td>Check Photographic Equipment</td>
</tr>
<tr>
<td>100</td>
<td>Check Electrical Test Receptacle</td>
</tr>
<tr>
<td>101</td>
<td>Check Throttle Interconnect</td>
</tr>
<tr>
<td>102</td>
<td>Check Infrared Detection Equipment</td>
</tr>
<tr>
<td>103</td>
<td>Check Forward Looking Radar Equipment</td>
</tr>
<tr>
<td>104</td>
<td>Read Checklists for Pilot</td>
</tr>
</tbody>
</table>
EXECUTE POWER ON EQUIPMENT CHECKS

024 Monitor Engine Start
 105 Monitor Engine Start
 106 Assist Pilot with Fuel Checks

025 Activate Required Electrical Circuits
 107 Check Voltage and Frequency Levels

026 Perform Operational Checks of Navigation Radios
 108 Perform Loran Equipment Operational Checks
 109 Perform Navigation Radios Operational Checks
 110 Perform Tacan Equipment Operational Checks
 111 Perform Omega Operational Checks

027 Perform Operational Checks of Navigation Computers
 112 Verify Mission Tape Data Stored in GNC and WDC Computers
 113 Perform Navigation Computer Operational Checks
 114 Perform Operational Check of EMAC Equipment
 115 Perform BNS Operational Checks
 116 Enter Present Position Data into Computer
 117 Enter Enroute Navigation Data into Computer
 118 Enter Vertical Navigation Data into Computer
 119 Enter Data Into Energy Management Computer
 120 Enter Drop Zone Information into AWADS Computer

028 Perform Operational Checks of Other Navigation Equipment
 121 Perform Search Radar Operational Checks
 122 Perform Terrain Following Radar Operational Checks
 123 Perform Doppler Equipment Operational Checks
 124 Perform Inertial Equipment Operational Checks
 125 Perform Compass System Checks
 126 Perform Astrotracker Operational Checks
 127 Perform System Eleven Checks

029 Perform Communication Equipment Checks
 128 Perform Radio Operational Checks
 129 Perform Identification Equipment Operational Checks
 130 Perform System Fourteen Checks
 131 Participate in Authenticator Check
 132 Request Copy and Authenticate Training Launch Message

030 Perform EW Equipment Operational Checks
 133 Perform Transmitter Equipment Checks
 134 Perform Receiver Equipment Checks
 135 Perform Signal Analysis Equipment Checks
06 (Function Continued)

031 Perform Reconnaissance Equipment Power On Checks
 136 Perform Side Looking Radar Checks
 137 Perform LLLTV Checks
 138 Perform Photo Equipment Checks
 139 Perform Infrared System Checks
 140 Perform Photo Flash Cartridge Checks
 141 Check Other Sensor Systems

032 Perform Operational Checks of Bombing Equipment
 142 Perform Bombing Equipment Calibration and Functional Checks

033 Perform Fire Control Operational Checks
 143 Perform Fire Control Equipment Calibration
 144 Deactivate Fire Control Equipment

034 Perform Operational Checks of Missile Equipment
 145 Perform Missile Equipment Calibration Checks
 146 Perform Missile Equipment Functional Checks

035 Perform General Aircraft Subsystem Checks
 147 Set Flight Instruments
 148 Check Flap and Gear Indicators
 149 Adjust Cockpit Lighting
 150 Check Warning and Caution Indicator Lights
 151 Check General Aircraft Subsystems
 152 Check Autopilot Release Procedure
 153 Monitor Flight Control Functional Checks
 154 Monitor Electrical Changeover
 155 Monitor Propulsion Subsystem Functional Checks

036 Prepare Life Support Subsystems
 156 Secure Restraint System
 157 Activate Oxygen Subsystem
 158 Perform G-Suit Check
 159 Arm Ejection Seat
 160 Arm Ejection Capsule
 161 Stow Miscellaneous Equipment
07 EXECUTE TAXI PROCEDURES

037 Monitor Required Communication Links
 162 Monitor Interphone
 163 Monitor External Communications
 164 Communicate with Ground Control
 165 Check HF Radio
 166 Monitor System Eleven
 167 Monitor System Fourteen

038 Assist in Taxi Operations
 168 Read Required Checklists
 169 Configure Subsystem as Required During Taxi
 170 Assist Pilot in Taxi Operations
 171 Assist Other Crewmembers in Taxi Operations

08 EXECUTE TAXI AND PRETAKEOFF SUBSYSTEM CHECKS

039 Check Status of Subsystems Prior to Takeoff
 172 Read Required Checklists
 173 Check Navigation Equipment
 174 Check Communication Equipment
 175 Check Readiness of EW Equipment
 176 Check Bomb-Navigation Equipment
 177 Check External Stores and Other Sensors
 178 Check All Warning and Malfunction Indicators
 179 Perform General Aircraft Checks
 180 Check Status of Nuclear Weapons Monitoring Equipment

040 Initiate Navigation System Sequencing
 181 Initiate Navigation System Sequencing

09 EXECUTE TAKEOFF CLimb AND DEPARTURE PROCEDURES

041 Monitor Aircraft Takeoff Performance
 182 Check Aircraft Acceleration Rate
 183 Monitor Aircraft Rate of Climb
 184 Monitor Wingman Configuration and Position

042 Monitor Adherence to Departure Clearance
 185 Monitor Adherence to Required Departure Procedure
09 (Function Continued)

043 Assist Pilot in Takeoff and Climb
 186 Read Required Checklist
 187 Configure Flight Subsystems as Required

044 Configure Required Subsystems for Climb
 188 Activate EW Equipment
 189 Configure Navigation Subsystems for Climb
 190 Configure Communications Equipment for Climb
 191 Configure Reconnaissance Subsystems for Climb
 192 Perform Authenticator Check
 193 Setup AGM-28 Missile
 194 Configure EMAC for Climb and Cruise

045 Perform Airborne Calibration Checks
 195 Calibrate EW Receivers
 196 Calibrate Radar Warning System
 197 Calibrate EW Transmitters
 198 Calibrate Receiver-Transmitter
 199 Check Programmers
 200 Check Rocket Launchers
 201 Perform Defensive Exercise
 202 Check Other EW Systems

10 DIRECT AIRCRAFT ALONG REQUIRED ROUTE

046 Configure Subsystems for Cruise
 203 Read Required Checklists
 204 Configure Radar for Enroute Operation
 205 Setup Life Support System for Cruise
 206 Perform TAS Calibration Check
 207 Determine Best Heading Input
 208 Setup Navigation Radios
 209 Setup Navigation Computer as Required
 210 Setup EW Equipment for Cruise
 211 Perform Weapons Systems Monitoring Checks
 212 Perform Bombing System Checks

047 Monitor Flight Performance
 213 Monitor Flight Control and Propulsion
 214 Monitor Communications
 215 Assist Pilot with Controllability Checks
 216 Perform Visual Search
 217 Update Antenna Tilt Setting
10 (Function Continued)

048 Identify Landmark
 218 Determine Landmark Update Point Identification
 219 Identify Landmark Location Visually
 220 Identify Landmark Location Using Radar
 221 Identify Landmark Using Other Sensors

049 Determine Aircraft Position
 222 Utilize Pilotage Data
 223 Utilize Tacan to Determine Position
 224 Utilize Manual Celestial Data
 225 Utilize Automatic Celestial Procedure
 226 Utilize Loran Data
 227 Utilize Omega Data
 228 Integrate Position Information from Multiple Sources
 229 Update Navigation Computer as Required
 230 Monitor Automatic Navigation System

050 Compute Changes Required to Maintain Track Altitude and Airspeed
 231 Compute New Heading Manually
 232 Compute New Heading Automatically
 233 Compute Required Altitude Changes
 234 Perform Timing Point Computations

051 Compute Allowances for Enroute Weather and Wind
 235 Monitor Weather Situation
 236 Determine Wind Velocity and Direction Manually
 237 Read Wind Data Displays
 238 Utilize Radar Timing Techniques to Determine Winds
 239 Determine Wind Using Fix to Fix
 240 Utilize Memory Point Wind Run
 241 Project Future Wind Conditions Along Route
 242 Direct Aircraft Along Penetration Route
 243 Coordinate with Controlling Agency

052 Compute Track and Groundspeed
 244 Utilize Chart Plotter and Manual Computer
 245 Obtain Groundspeed Using Radar Target Timing Techniques
 246 Read Data on Appropriate Display
10 (Function Continued)

053 Prepare Inflight Position Report
247 Prepare Position Report
248 Transmit Position Report
249 Monitor Data Link Position Reporting

054 Perform Inflight Fuel Management Procedures
250 Plot Actual Fuel Data on Appropriate Forms
251 Use Energy Management Computer to Determine Fuel Data
252 Alter Vertical Navigation Based on Calculations
253 Determine if Fuel is Adequate for Mission Completion

11 EXECUTE LOW LEVEL OPERATIONS

055 Configure Aircraft for Descent and Low Level Attack
254 Perform TFR Operational Check
255 Perform Terrain Avoidance Radar Checks
256 Update Low Level Bombing Data
257 Jettison Fuel Tanks
258 Perform Predescent and Descent Checks
259 Deactivate Nonessential Equipment

056 Monitor Flight Performance
260 Monitor Flight Control and Propulsion
261 Monitor Communications
262 Assist Pilot with Controllability Checks
263 Perform Visual Search
264 Monitor Terrain Following System

12 EXECUTE PENETRATION DEFENSIVE PROCEDURES

057 Perform Penetration Procedures
265 Preset EW Equipment for Briefed Electronic Environment
266 Monitor Threat and Countermeasure Indications
267 Perform Appropriate Countermeasure
268 Perform Flight Radar Jamming
13 DIRECT AIRCRAFT TO CARP

058 Configure Required Subsystems for Low Level Cargo Drop
 269 Read Required Checklists
 270 Setup Life Support System for Low Level
 271 Configure Radar for Low Level
 272 Set Flight Instruments
 273 Coordinate with Pilot as Required

059 Compute CARP
 274 Determine CARP Using AWADS System
 275 Determine CARP Manually
 276 Determine CARP Using IDNE Equipment

060 Direct Aircraft to CARP
 277 Identify Timing Landmark Visually
 278 Identify Timing Landmark Using Radar
 279 Direct CARP Approach
 280 Advise Cargo to be Released
 281 Perform Post Drop Procedures
 282 Compute Joinup Data

14 EXECUTE RECONNAISSANCE PROCEDURES

061 Configure Aircraft for Reconnaissance Run
 283 Read Required Checklists
 284 Configure Equipment for Mission

062 Perform Reconnaissance Mission
 285 Identify Initial Point
 286 Activate Reconnaissance Sensors
 287 Maintain Required Track

063 Perform Escape Procedures
 288 Deactivate Nonessential Sensors
 289 Monitor Escape Procedures
 290 Perform Reconnaissance Reports
 291 Determine if Fuel is Adequate for Mission Completion
15 EXECUTE SECTOR PATROL NAVIGATION

064 Perform Navigation System Setup
 292 Setup Computer for Sector Patrol
 293 Check Subsystem Operation

065 Determine Aircraft Position
 294 Utilize Pilotage Data
 295 Request Ground Radar Fix
 296 Utilize Omega to Determine Position
 297 Utilize Loran Data
 298 Monitor Automatic Navigation System
 299 Integrate Position Information from Multiple Sources

066 Update Navigation System
 300 Update Navigation Computer as Required
 301 Determine Landmark Update Point Identification
 302 Identify Landmark Location Using Radar

067 Compute Changes Required to Maintain Track and Airspeed
 303 Compute New Heading Automatically
 304 Perform Timing Point Computations

068 Prepare Inflight Position Report
 305 Prepare Position Report
 306 Transmit Position Report
 307 Monitor Communications

16 EXECUTE RENDEZVOUS OPERATIONS

069 Configure Aircraft Subsystems for Rendezvous Operations
 308 Configure Radar Beacon for Rendezvous
 309 Activate Rendezvous Beacon
 310 Configure IFF-SIF for Rendezvous
 311 Configure Inertial Equipment for Rendezvous
 312 Deactivate Nonessential Equipment

070 Identify Rendezvous Aircraft
 313 Perform Rendezvous Communications
 314 Estimate Receiver Aircraft Position
 315 Compute Position of Tanker Relative to Receiver
 316 Identify Tanker or Receiver Aircraft
17 EXECUTE REFUELING JOINUP

071 Compute Refueling Position for Receiver or Tanker
 317 Compute Offset Range and Bearing
 318 Direct Tanker Aircraft to Required Turning Point

072 Perform Refueling Safety Procedures
 319 Perform Prerrefueling Procedures
 320 Monitor Refueling Operation
 321 Activate Required Subsystems After Fueling
 322 Perform Post Refueling Operations

18 EXECUTE WEAPON RELEASE PROCEDURES

073 Perform Strike Verification Procedure
 323 Authenticate Strike Order

074 Configure Required Subsystems for Low Level Weapon Delivery
 324 Read Required Checklists
 325 Configure Radar for Weapon Delivery
 326 Set Flight Instruments
 327 Configure Weapon Computer for Weapon Delivery
 328 Configure LABS for Weapon Delivery
 329 Coordinate General Aircraft Subsystems for Low Level Delivery

075 Perform Nuclear Weapons Prerelease Procedures
 330 Activate Nuclear Weapon Lock and Release Equipment
 331 Perform Prearming of Nuclear Weapons

076 Perform High Explosive Weapons Prerelease Procedure
 332 Prepare Weapons for Release

077 Direct Aircraft to Weapons Release Point
 333 Direct Aircraft to Horizontal Release Point
 334 Direct Aircraft to Dive Bombing Release Point
 335 Analyze Target Damage for Restrike Requirement
 336 Perform Weapons Release Procedures
 337 Monitor Post Release Recovery
 338 Configure Equipment for High Altitude Mission
19 EXECUTE MISSILE LAUNCH PROCEDURES

078 Program Missiles for Targets
 339 Verify Target Coordinates
 340 Verify Missile Flight Profile and Flight Path
 341 Verify Fuzing Data
 342 Program SRAM AGM-69 Missiles
 343 Monitor Missile Launch

079 Prepare Missiles and or Sensor for Launch
 344 Configure Radar in Search Mode
 345 Identify Launch Landmark
 346 Update Missile Guidance Relative to Landmark
 347 Perform Launch Procedures
 348 Configure Fire Control System for Missile Launch

20 EXECUTE POST RELEASE PROCEDURES

080 Perform Post Release Procedures
 349 Perform Nuclear Weapons Safeing Procedures
 350 Perform Conventional Weapon Safeing Procedure
 351 Perform Missile Post Launch Procedures

081 Perform Initial Bomb Damage Assessment Procedures
 352 Evaluate Target Damage
 353 Prepare Strike Report

21 EXECUTE AIR-TO-AIR SEARCH AND SURVEILLANCE PROCEDURE

082 Configure Sensor Subsystems for Search Operation
 354 Configure Fire Control Radar
 355 Configure Other Sensor Equipment
 356 Perform Visual Search

083 Perform Air-to-Air Search and detection Operations
 357 Perform Surveillance of Required Area
 358 Detect Unknown Target

084 Perform Target Identification Procedures
 359 Utilize Visual Recognition
 360 Utilize Available Sensors
 361 Verify Unknown is Enemy
22 EXECUTE INTERCEPT OPERATIONS

085 Perform Intercept Procedures
 362 Determine Probable Track of Target
 363 Determine Intercept Route
 364 Direct Aircraft to Intercept Track

086 Configure Weapons Subsystem for Ordinance Delivery
 365 Prepare Missiles for Launch
 366 Prepare Guns
 367 Verify Mode and Status of Weapon Control Equipment
 368 Perform Post Missile Launch Procedures

23 EXECUTE CONTINGENCY OPERATIONS

087 Perform Inflight Mission Replanning
 369 Replan to avoid Adverse Weather
 370 Receive Change in Mission Objective
 371 Plan Route to Alternate Target Using Automatic Method
 372 Plan Route to Alternate Target Using Manual Method

088 Perform Equipment Malfunction Analysis
 373 Isolate Malfunction
 374 Replace Malfunctioning Unit
 375 Configure Subsystem for Alternate Modes of Operation
 376 Utilize Appropriate Manual Procedures

24 EXECUTE EMERGENCY PROCEDURES

089 Perform Emergency Inflight Replanning
 377 Determine Aircraft Position
 378 Determine Position of Nearest Usable Emergency Field
 379 Compute New Fuel Requirements
(Function Continued)

090 Perform Appropriate Action for Equipment Fires
- 380 Identify Source of Fire
- 381 Deactivate Required Subsystem
- 382 Request Assistance
- 383 Perform Fire Fighting Functions
- 384 Advise Aircraft Commander of Subsystem Status
- 385 Transmit Emergency Message
- 386 Assist Pilot with Aircraft Emergencies

091 Perform Aircraft Airborne Evacuation Procedures
- 387 Perform Pre-evacuation Procedures
- 388 Perform Bailout Procedures
- 389 Perform Ejection Procedures

092 Prepare for Ditch or Crash Landing
- 390 Prepare Emergency and Survival Equipment
- 391 Assume Ditching or Crash Landing Position
- 392 Evacuate Ditched Aircraft
- 393 Secure Loose Gear
- 394 Prepare Emergency Message
- 395 Prepare Escape Mechanism for Ditching
- 396 Evacuate Crashed Aircraft

25 EXECUTE DESCENT AND APPROACH PROCEDURES

093 Configure Navigation Subsystems for Approach and Landing
- 397 Setup Navigation Radios
- 398 Insert Vertical Navigation Data into Computer
- 399 Insert Horizontal Navigation Data into Computer
- 400 Update Computer with Present Position Data Using Radar
- 401 Secure Sextant

094 Configure EW Equipment for Descent and Approach
- 402 Perform Prelanding EW Equipment Checks

095 Monitor Approach and Letdown Procedures
- 403 Monitor Navigation Subsystems
- 404 Monitor ATC Communications
- 405 Monitor Aircraft Performance
- 406 Perform Routine Safety Procedures
25 (Function Continued)

096 Perform Onboard Landing Approach
 407 Configure Radar for Airborne Directed Approach
 408 Direct Aircraft Along Approach
 409 Update Computer with Present Position Data Using Radar
 410 Configure IDNE Computer for ADA

26 EXECUTE POST MISSION TAXI PROCEDURES

097 Assist Pilot in Taxi Operations
 411 Read Appropriate Checklist
 412 Monitor Ground Control Communications
 413 Assist Pilot in Taxi Operations
 414 Assist in Post Flight External Weapon Safety Inspection
 415 Open Canopy
 416 Complete Reconnaissance Forms

098 Perform Hot Refueling Procedures
 417 Read Required Checklist
 418 Monitor Interphone and UHF Communications
 419 Monitor Refueling Supervisor
 420 Record Quantity of Fuel Serviced

27 EXECUTE POST OPERATION CHECK AND SHUTDOWN PROCEDURES

099 Perform Ejection Equipment Safety Check
 421 Safety Ejection Seat
 422 Safety Canopy
 423 Safety Ejection Capsule

100 Perform Post Flight Electrical Checks
 424 Perform Voltage and Frequency Checks
27 (Function Continued)

101 Perform Subsystem Equipment Shutdown Procedures
 425 Deactivate Navigation Equipment
 426 Deactivate Communication Subsystems
 427 Deactivate EW Equipment
 428 Deactivate Reconnaissance Equipment
 429 Deactivate Bomb-Navigation System
 430 Deactivate Fire Control Subsystem
 431 Disconnect Helmet and Oxygen Equipment
 432 Deactivate Other Subsystems
 433 Coordinate Engine Shutdown with Pilot
 434 Exit Aircraft

28 EXECUTE AIRCRAFT POST FLIGHT EXTERIOR INSPECTION

102 Inspect External Antennae or Antenna Covers
 435 Inspect Condition of Antennae
 436 Inspect Condition of Antenna Covers

103 Inspect External Weapons and Missile Equipment
 437 Inspect Bomb Release System

104 Check External Equipment Stores
 438 Check External Reconnaissance Equipment Stores
 439 Check External EW Equipment and Stores

105 Inspect External Aircraft General Condition
 440 Inspect General Aircraft Exterior

29 EXECUTE MISSION DEBRIEFING

106 Record Data in Logs Records Forms and Booklets
 441 Complete Maintenance Forms
 442 Complete Intelligence Debriefing
 443 Complete Flight Weather Debriefing
 444 Complete Other Forms
 445 Assist Photo Interpreters in Film Analysis

107 Secure Personal Equipment
 446 Secure Equipment
DISCUSSION

The COMMONALITY SORT computer program was designed to identify the commonality of subtask-level data. Fundamentally, the program was designed to provide an output in which functions were ordered sequentially, tasks were ordered sequentially within functions, and subtasks were ordered sequentially within tasks. In this manner, the output of the commonality program would correspond with the task catalog contained in Section V. A high level block diagram of the COMMONALITY SORT program logic flow is shown in Figure 6. Detailed flows are presented at the end of this section.

For each subtask, the program identified whether each of the 14 crew positions performed the task, selected the appropriate subtask weighting factor for each crew position, and totaled the weights across all relevant crew positions. The totaled weighting factor was then compared against three pre-selected criteria, and results of the comparison established.

All data were input and output in numeric form. The output presented function numbers, task numbers, subtask numbers, appropriate weighting factors for each of the 14 crew positions, total weighting, and results of tests against the three pre-selected criteria.

Data entry card format is described below:

<table>
<thead>
<tr>
<th>Columns</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td>Two digit crew position code (01 through 14)</td>
</tr>
<tr>
<td>4 and 5</td>
<td>Two digit function number</td>
</tr>
<tr>
<td>7, 8, & 9</td>
<td>Three digit task number</td>
</tr>
<tr>
<td>11 - 13</td>
<td>Three digit subtask number</td>
</tr>
<tr>
<td>15 - 17</td>
<td>Three digit subtask number</td>
</tr>
<tr>
<td>19 - 21</td>
<td>Etcetera subtask numbers, to a maximum of ten subtasks</td>
</tr>
</tbody>
</table>

The COMMONALITY SORT program sorts a maximum of 1300 individual cards of data, each one containing no more than 13 specific fields, on the predetermined parameters for a predetermined number of repetitions. This task is handled by splitting the job into nine separate subprograms, each one of which is briefly described in the paragraphs to follow.

I. DRIVER

PROGRAM DRIVER is the main segment of the task. PROGRAM DRIVER first reads all data cards into core. This done, SUBROUTINE DPRINT prints this data, while SUBROUTINES SORT and SORT1 sort it on a predetermined key. PROGRAM DRIVER then begins to read the first set of two sort control cards, calls SUBROUTINE DOTASK to perform the commonality sort and eventually determines when the entire task has been completed.
Figure 6. High Level Block Diagram of COMMONALITY SORT Program Logic Flow.
II. DPRINT SUBROUTINE DPRINT, when called by PROGRAM DRIVER, simply dumps that portion of core storage containing the job's data.

III. SORT SUBROUTINE SORT is called by PROGRAM DRIVER to sort the data array on a predetermined key value. When called by SUBROUTINE SORT1, SUBROUTINE SORT sorts only a specific portion of this data array, again on a predetermined sorting key.

IV. SORT1 SUBROUTINE SORT1 is able to calculate the beginning and ending points in the data array of a set of identical fields. SUBROUTINE SORT is then called to sort the data array within these calculated points.

V. DOTASK SUBROUTINE DOTASK is the longest and most involved of the subprograms in the COMMONALITY SORT program. Very basically, SUBROUTINE DOTASK selects a specific segment of the data array based upon which AFSC/Crew Member number is significant to the particular section being processed. SUBROUTINE DOTASK, in performing this sorting and selecting process, calls upon the remaining subprograms in the task: SUBROUTINES CKAFC, DOL, PRINT, and HEADING. For this reason, DOTASK consumes both the most code and the greatest amount of CPU time.

VI. CKAFC SUBROUTINE CKAFC determines whether or not a particular data array segment contains a significant AFSC/Crew Member number.

VII. DOL SUBROUTINE DOL looks at a selected data array segment supplied to it by SUBROUTINE DOTASK and flags a special word. This word is later used by SUBROUTINE PRINT to find the correct value for that data array segment.

VIII. HEADING SUBROUTINE HEADING keeps track of the number of lines printed per page. When necessary, SUBROUTINE HEADING generates and prints either a new section or page heading for a new page of output.

Computer processing in the COMMONALITY SORT program proceeds in the following way:

1. Source language (in this case, FORTRAN) cards are read and translated by the source compiler (again, in this case FORTRAN) into machine language or "object" code. This code is stored, along with the source language listing, on magnetic tape.

2. At program execution time, the object code is read into the computer's central processing unit (CPU or "main frame") and control is turned over to it.

3. The program first commands that all data cards, up to a maximum of 1300, be read into core memory.
4. All raw data read into memory via the preceding step are then printed, exactly as read, onto the printed page, fifty lines per sheet. This raw data table may later be checked to verify that all data cards have been read without alteration.

5. Raw data stored in core are then sorted in two steps. The first step sorts data in ascending order on function number; the second step sorts equal function numbers on ascending task numbers.

6. Sorted data are printed, as before, fifty lines to a page. This catalog of sorted information provides a redundant checking of future output against initial values.

7. Now, the first set of AFSC/VALUE cards is read. These sets of cards are "cues" to the program telling it which AFSC combinations to search for and what weighting factors to use in value computations.

8. Each individual sorted data element is tested against the AFSC numbers read in the previous step. If a match is found, a sort is made on subtask numbers within equal task and function numbers that all have AFSC's of interest.

9. Once the sort described in the previous step is completed for a particular AFSC of interest, a printout is initiated in a prescribed tabular format.

10. Steps 9 and 10 are repeated until all data elements have been tested, at which time a new AFSC/VALUE card set is read and the process just described is again carried out.

11. When the last AFSC/VALUE card set has been read and its associated commonality sort has been completed, program execution terminates and processing comes to a halt.

The COMMONALITY SORT program is written in Control Data Corporation (CDC) modified American National Standards Institute (ANSI) FORTRAN. It was compiled, tested and production run on CDC 3000 Series hardware under control of CDC's MASTER operating system.

The program deck is composed of two major sections, as is common with most all FORTRAN programs. The first section (Figure 7) contains the punched card FORTRAN source language program, while the second section (Figure 8) contains both the raw data cards and the AFSC/VALUE card sets.

Modern automated data processing is conducted under the direction of a special computer program called the operating system (OS). The OS program acts as a master overseer that partitions CPU time and assigns computer control to the various individual programs waiting to be processed. Special instructions
Figure 7. Total Deck Set-Up for Fortran Compilation and Execution.

Note: For FORTRAN Compilation and Execution on Control Data Corporation Hardware Operating Under the MASTER Operating System.
Figure 8. Data Deck Set-Up for the COMMONALITY SORT Program.
must be supplied the OS by the programmer using a special OS-specific job control language (JCL). These instructions tell the OS (not the computer) about the various parameters of the job to be run that are necessary for efficient use of the computer. These parameters include estimates of the amount of total CPU time necessary for the job, the number of lines of output expected, how much core storage the program will require, etcetera.

JCL is supplied via specialized input cards called "control cards". An example of a control card for the MASTER operating system would be the $JOB card which appears as the very first card in the program deck. Following the format $JOB,nnnnnn, uuuuuu,tttttt,1111,ppppp,ssssss,cccc...., this particular card (for the MASTER operating system) supplies the OS with first the account number (n) to charge CPU time to, the user's name (u), the user's estimate of CPU time (t), the user's estimate of the number of lines of output (l), his estimate of the number of punched cards to be produced (p) and the sequence (s) of the particular job in the user's job flow. The c field is then reserved for any comments the user may desire to include on his $JOB card. Other control cards used with MASTER that appear in the COMMONALITY SORT program deck include the $SCHED card (which schedules CPU storage and scratch file area, among other possible parameters), the FINIS card (which tells the OS that there are no further source language (in the COMMONALITY SORT program, FORTRAN) cards to compile (or translate), the $OBJ,LGO card (which instructs MASTER to load the translated source language or "object" (OBJ) code into the CPU and pass control over to the object program (LGO)), and the $EOJ card (which, as the very last card in the entire program deck, tells the OS that the end of the job (EOJ) has been accessed).

The COMMONALITY SORT program was designed to run, unaltered, on all CDU 3000 Series computers operated under the DCD MASTER OS. Operation on CDC 3000 Series computers under OSs other than MASTER (MSOS, for example) will require a change in JCL control cards and, in some cases, minor changes to FORTRAN source language cards. For operation on other CDC computers using the CDC-modified ANSI FORTRAN compiler, the user must first determine if (1) MASTER OS control cards are usable and (2) whether or not FORTRAN source language cards will have to be altered. A precautionary message of this type is necessary because no two computers are the same and no program will run, normally, in the correct manner on two different computers even if they are of the same manufacture and model. Each installation has its own individual peculiarities and, therefore, each program must be tailored to the computer upon which it is to be run.
FLOWCHART SYMBOLS

= DECISION

= ACTION

= READ A CARD

= PRINT ON LINE PRINTER

= TRANSFER TO SUBROUTINE

START or ENTER = LOGICAL START POINT

STOP or EXIT = LOGICAL STOP POINT
Set: \(SE=1 \); \(CH=0 \); \(K_{1}=2 \); \(K_{2}=3 \); \(I=1 \); \(J=1 \)

START

1

I = \(I+1 \)

2

STOP

Print:

1. Print error
2. Print "CH: 0?"
3. Print "AFSC(k) + CH = CH"

Sort:

1. \(I = I-1 \)
2. \(J = J+1 \)
3. \(K = K+1 \)
4. \(CH = CH \)

Print end of AFSC set:

1. Print "CH: 105?"
2. Print end of section

Program driver:
TABLE (I, K) <\rightarrow\) TABLE (I+1, K) \\
1 \rightarrow J \\
TABLE (I, J) <\rightarrow\) TABLE (I+1, J) \\
J: 13? \\
\neq \\
J+1 \rightarrow J \\
CH = 1+CH \\
CH: 1? \\
\neq \\
RETURN

ENTER WITH: Array TABLE; words UP, LO & K.

EXIT WITH: Sorted Array TABLE; words UP, LO & K unchanged.
SUBROUTINE SORT 1

ENTER WITH: Array TABLE; words MAXI & k.
EXIT WITH: Array TABLE; words MAXI & k, array TABLE having been resorted.
SUBROUTINE CKA FSC

ENTER WITH: Arrays TABLE & AFSC; words I & CH.

EXIT WITH: Arrays TABLE & AFSC unchanged. Word I is unchanged, while word CH contains either the integer 1 or 2.
SUBROUTINE DOL

ENTER WITH: Arrays TABLE & ACREW; words I, N & L.

EXIT WITH: Array TABLE, & words I, N & L unchanged. Significant elements of array ACREW contain the integer 1.
SUBROUTINE PRINT

Set: AS=**, DA=____
Array BL=(3 blanks)
Array C=0

ENTER

VA(I-1) + BL+ID(I-1)

AC(I-1) = 0?

DA+ID(I-1)

I:15?

I+1-I

2+I

SU-C(I)

TE:1?

2-TE, 30+E
50+Z, 70+G
SUBROUTINE PRINT

(page 2 of 2)

ENTER WITH: Arrays TABLE, AC, AF & VA; words SU & TE.

EXIT WITH: All arrays and words unchanged.
1

LINES: 0?

≠

LINES - 1 → LINES

RETURN

EJECT PAGE

PRINT (text); Y; Y1; DATE; SE; PAGE

PRINT (text); NUM

PAGE: 1?

≠

45 + LINES

SUBROUTINE HEADING

ENTER WITH: Arrays TABLE, ACREW, AFSC, VALUE, DATE & C; words Y, Y1, PAGE & SE.

EXIT WITH: Arrays unchanged. Words Y, Y1 & SE unchanged. Word PAGE varied to coincide with the page number being printed.

(page 2 of 2)
SECTION VII

DEFINITIONS AND ABBREVIATIONS

EXPLANATION

Part A of Section VII lists and defines abbreviations used in the task analysis portion of Phase II of the NOUFFSS study. The abbreviations are listed in alphabetical order.

Part B of Section VII lists and defines technical terms used in Phase II of the NOUFFSS study. Terms are presented in alphabetical order and are defined as used and discussed in the NOUFFSS study.

PART A. TASK ANALYSIS DATA ABBREVIATIONS

A/C Aircraft
ADF Automatic Direction Finder
ADIZ Area Defense Interrogation Zone
ADS Air Defense System
AF Air Force
AFSC Air Force Specialty Code
AHRU Attitude Heading Reference Unit
ALT Altitude
ARA Airborne Radar Approach
ARCP Air Refueling Control Point
ARIP Air Refueling Initial Point
ARR Additional Research Required
ATC Air Traffic Control
ATC Air Training Command
AWACS Airborne Warning and Control System
BDHI Bearing Distance Heading Indicator
BDM Bomber Defense Missile
BIT Build in Test
CARP Computed Air Release Point
CBS Circuit Breakers
CCT Combat Crew Training
CCW Counter Clockwise
COMM Communication
CEP Circular Error Probable
DEG Degree
DME Distance Measuring Equipment
DR Dead Reckoning
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZ</td>
<td>Drop Zone</td>
</tr>
<tr>
<td>ECM</td>
<td>Electronic Countermeasure</td>
</tr>
<tr>
<td>ECCM</td>
<td>Electronic Counter-Countermeasures</td>
</tr>
<tr>
<td>ELINT</td>
<td>Electromagnetic Intelligence</td>
</tr>
<tr>
<td>EMAC</td>
<td>Energy Management Computer</td>
</tr>
<tr>
<td>BOB</td>
<td>Electronic Order of Battle</td>
</tr>
<tr>
<td>ETA</td>
<td>Estimated Time of Arrival</td>
</tr>
<tr>
<td>ETP</td>
<td>Emergency Timing Point</td>
</tr>
<tr>
<td>EWO</td>
<td>Electronic Warfare Officer (AFSC 1575)</td>
</tr>
<tr>
<td>EWOT</td>
<td>Electronic Warfare Officer Training</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FLR</td>
<td>Forward Looking Radar</td>
</tr>
<tr>
<td>FUPP</td>
<td>Future Undergraduate Pilot Training</td>
</tr>
<tr>
<td>GCA</td>
<td>Ground Control Approach</td>
</tr>
<tr>
<td>GCI</td>
<td>Ground Control Intercept</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>GPI</td>
<td>Ground Position Indicator</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>HSI</td>
<td>Horizontal Situation Indicator</td>
</tr>
<tr>
<td>IDNE</td>
<td>Inertial Doppler Navigation Equipment</td>
</tr>
<tr>
<td>IFF</td>
<td>Identification Friend or Foe</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>INS</td>
<td>Inertial Navigation System</td>
</tr>
<tr>
<td>IP</td>
<td>Initial Point</td>
</tr>
<tr>
<td>ISD</td>
<td>Instructional System Development</td>
</tr>
<tr>
<td>KT</td>
<td>Knot</td>
</tr>
<tr>
<td>LAT</td>
<td>Latitude</td>
</tr>
<tr>
<td>LF</td>
<td>Low Frequency</td>
</tr>
<tr>
<td>LLLTV</td>
<td>Low-Light-Level Television</td>
</tr>
<tr>
<td>LONG</td>
<td>Longitude</td>
</tr>
<tr>
<td>LORAN</td>
<td>Long Range Radio Navigation</td>
</tr>
<tr>
<td>MAC</td>
<td>Military Airlift Command</td>
</tr>
<tr>
<td>MIN</td>
<td>Minute or Minimum</td>
</tr>
<tr>
<td>MMR</td>
<td>Multimode Radar</td>
</tr>
<tr>
<td>MSG</td>
<td>Message</td>
</tr>
<tr>
<td>MWA</td>
<td>Military Weather Advisory</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NAV</td>
<td>Navigation</td>
</tr>
<tr>
<td>NBT</td>
<td>Navigator-Bombardier Training</td>
</tr>
<tr>
<td>NM</td>
<td>Nautical Miles</td>
</tr>
<tr>
<td>NOTAMS</td>
<td>Notice to Airmen</td>
</tr>
<tr>
<td>OB</td>
<td>Order of Battle</td>
</tr>
<tr>
<td>OMEGA</td>
<td>Recently Developed Radio Nav-Aid</td>
</tr>
<tr>
<td>O-P</td>
<td>Operational Procedure</td>
</tr>
<tr>
<td>OXY</td>
<td>Oxygen</td>
</tr>
<tr>
<td>PAN SCOPE</td>
<td>Electronic Warfare Display</td>
</tr>
<tr>
<td>PCT</td>
<td>Percent</td>
</tr>
<tr>
<td>PERF CRIT</td>
<td>Performance Criteria</td>
</tr>
<tr>
<td>PIP</td>
<td>Pre-Initial Point</td>
</tr>
<tr>
<td>PM</td>
<td>Plus or Minus</td>
</tr>
<tr>
<td>POS</td>
<td>Position</td>
</tr>
<tr>
<td>REGS</td>
<td>Regulations</td>
</tr>
<tr>
<td>SAC</td>
<td>Strategic Air Command</td>
</tr>
<tr>
<td>SAMOB</td>
<td>Surface to Air Missile Order of Battle</td>
</tr>
<tr>
<td>SEC</td>
<td>Second (Time)</td>
</tr>
<tr>
<td>SEWT</td>
<td>Simulator for Electronic Warfare Training</td>
</tr>
<tr>
<td>SID</td>
<td>Stellar-Inertial-Doppler Nav System</td>
</tr>
<tr>
<td>SID</td>
<td>Standard Instrument Departure</td>
</tr>
<tr>
<td>SIF</td>
<td>Secure Identification Feature</td>
</tr>
<tr>
<td>SIGMETS</td>
<td>Significant Meteorological Reports</td>
</tr>
<tr>
<td>SLR</td>
<td>Side-Looking Radar</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operational Procedure</td>
</tr>
<tr>
<td>SPD</td>
<td>Speed</td>
</tr>
<tr>
<td>SRAM</td>
<td>Short Range Attack Missile</td>
</tr>
<tr>
<td>SYS</td>
<td>System</td>
</tr>
<tr>
<td>TAC</td>
<td>Tactical Air Command</td>
</tr>
<tr>
<td>TACAN</td>
<td>Tactical Air Navigation System</td>
</tr>
<tr>
<td>TAR</td>
<td>Terrain Avoidance Radar</td>
</tr>
<tr>
<td>TAS</td>
<td>True Airspeed</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>TFR</td>
<td>Terrain Following Radar</td>
</tr>
<tr>
<td>TO</td>
<td>Technical Order</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>TTG</td>
<td>Time To Go</td>
</tr>
<tr>
<td>TV</td>
<td>Television</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultra High Frequency</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VLF</td>
<td>Very Low Frequency</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omni-Directional Range</td>
</tr>
<tr>
<td>WSO</td>
<td>Weapon System Officer (AFSC 1555)</td>
</tr>
</tbody>
</table>
PART B. DEFINITION OF TECHNICAL TERMS USED IN PHASE II

All-Inclusive Sort - A commonality analysis (commonality sort) addressing all 14 of the aircraft/crew position combinations found in the NOUFFSS sample. In this case, all four of the AFSCs in the NOUFFSS sample are addressed. (This is the same as "across all AFSCs" and "across all weapon systems").

Common/Non-Common - A statistical decision based on criteria selected for a given population in a particular application which determines if a given attribute, parameter, task, or measurement is applicable (or "common") to the subject population. Such criteria vary with the subject population, the treatment applied to the data, and the purpose or expected application of the data.

Commonality Analysis - A methodology applied to task analysis data to indicate the relative numbers (percents) of individuals in the sample population who perform various subtasks.

Crew Position Code - A numerical code (1 through 14) assigned to each of the 14 aircraft/crew position combinations found in the NOUFFSS sample.

Function - A broad system activity contributing to mission performance.

Functional Orientation - An approach to task analysis stressing types and kinds of job-related activity clusters rather than specific sequence in which job activities are performed.

Microfunctions - Functionally-oriented clusters of procedural steps.

Navigator - A generic term used to collectively refer to Navigators (AFSC 1535), Radar Navigators (AFSC 1525), Weapon System Officers (AFSC 1555) and Electronic Warfare Officers (AFSC 1575).

Sort - A computer based commonality analysis using blocks of task data for determination of the commonality of task data at sub-task level in relation to the sample (or subsets of the sample) population.

Subjective - Individual interpretation or analysis usually involving "reading between the lines" of the data presented.

Subtask - Subgoals associated with or required for the accomplishment of task level behavioral requirements.

Task - Unit of work performed by the operator in order to accomplish mission level requirements.
Task Analysis - A procedure used to identify, organize and present job elements which are carried out by the human operator during the use or maintenance of man-machine systems. A method for providing information regarding human components within a systems context, describing job behaviors, and analyzing behaviors for design content.

Timeline Orientation - An approach to job or task description based upon the sequences in which tasks occur and the time intervals separating the performance of various tasks.

Value Sum - A commonality analysis term. For any given subtask, the computer-generated total of all individual commonality weighting factors.

Weighting Factor - A numerical factor designed to weight subtasks in proportion to the number of people who perform them. Two classes of weighting factors were used in the NOUFFSS study.

One class was used for the "all inclusive" commonality analyses. For "all inclusive" analyses, weighting factors represented the relative numbers (percents) of navigators in each of the 14 aircraft/AFSC position combinations compared to the total number of navigators in all 14 positions. For example, if aircraft/AFSC position 10 had a weighting factor of 13, this meant that the number of navigators required for crew position 10 comprised 13% of all of the navigators required for all 14 different aircraft/AFSC positions. If only aircraft/AFSC position 10 performed a given subtask, then that subtask's total commonality weight (value sum) would have been 13. If, on the other hand, all 14 crew positions performed the subtasks, then the total commonality weight (value sum) would have been 100.

The second class of weighting factors was used for "within AFSC" commonality analyses. For "within AFSC" analyses, weighting factors represented the relative numbers (percents) of navigators in each aircraft/AFSC position of the same AFSC compared to the total number of all navigators in that AFSC. If, for example, aircraft/AFSC positions 3, 5, 9 and 10 all were AFSC 1535 and there were no more AFSC 1535s, then the weighting factors for aircraft/AFSC position 10 would have been the relative number (percent) of people filling position 10 in relation to the total number of all people filling positions 3, 5, 9 and 10.

Within (AFSC) Sort - A commonality analysis (Commonality Sort) addressing only one of the four AFSCs found in the NOUFFSS sample. (This is the same as "within weapons system" sort.)
SECTION VIII

TASK ANALYSIS CARD DATA FIELDS

EXPLANATION

All NOUFFSS Phase II task analysis data were keypunched for computer data base use. Fifteen different types of data cards were keypunched, each card with unique data fields. This section describes information contained on each card, and the data fields allocated for each information item.

In the listing below, data fields are identified separately for each card type. The column "abbreviation" contains the acronym which was used to identify each data field for visual examination. The numbers shown in parentheses to the immediate right of each abbreviation are the card columns used to keypunch the acronyms. The column to the right of "abbreviation" presents the full title or meaning of the abbreviation. The far right-hand column presents data card columns (fields) which were dedicated to data entry for each abbreviated data item.

<table>
<thead>
<tr>
<th>Card Type</th>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Data Field Card Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>FN (10, 11)</td>
<td>Function Number</td>
<td>13 - 14</td>
</tr>
<tr>
<td></td>
<td>D (20)</td>
<td>Data Collection Date</td>
<td>22 - 27</td>
</tr>
<tr>
<td></td>
<td>S (30)</td>
<td>System</td>
<td>32 - 38</td>
</tr>
<tr>
<td>02</td>
<td>MN (10, 11)</td>
<td>Mission Type</td>
<td>13 - 33</td>
</tr>
<tr>
<td></td>
<td>P (37)</td>
<td>Mission Phase</td>
<td>39 - 51</td>
</tr>
<tr>
<td>03</td>
<td>FUNC (5-8)</td>
<td>Function Title</td>
<td>10 - 73</td>
</tr>
<tr>
<td>04</td>
<td>TASK (5-8)</td>
<td>Task Title</td>
<td>10 - 73</td>
</tr>
<tr>
<td>05</td>
<td>TN (10, 11)</td>
<td>Task Number</td>
<td>13 - 15</td>
</tr>
<tr>
<td></td>
<td>ENT (20-22)</td>
<td>Entry Number</td>
<td>24 - 26</td>
</tr>
<tr>
<td></td>
<td>TIME (30-33)</td>
<td>Task Time</td>
<td>35 - 39</td>
</tr>
<tr>
<td>06</td>
<td>SRCE (5-8)</td>
<td>Information Source</td>
<td>10 - 73</td>
</tr>
<tr>
<td>07</td>
<td>TICN (5-8)</td>
<td>Task Initiating Conditions</td>
<td>10 - 73</td>
</tr>
<tr>
<td>08</td>
<td>TALT (5-8)</td>
<td>Task Alternatives</td>
<td>10 - 73</td>
</tr>
<tr>
<td>09</td>
<td>SN (10, 11)</td>
<td>Subtask Number</td>
<td>13 - 15</td>
</tr>
<tr>
<td></td>
<td>SC (20, 21)</td>
<td>AFSC</td>
<td>23 - 26</td>
</tr>
<tr>
<td></td>
<td>FR (30, 31)</td>
<td>Subtask Frequency</td>
<td>33 - 34</td>
</tr>
<tr>
<td></td>
<td>CR (37, 38)</td>
<td>Subtask Criticality</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>DP (43, 44)</td>
<td>Subtask Performance Difficulty</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>DL (49, 50)</td>
<td>Subtask Learning Difficulty</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>TD (55, 56)</td>
<td>Training Device Recommendation</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>MD (61, 62)</td>
<td>Measurement Device</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>T (67)</td>
<td>Subtask Time</td>
<td>69 - 72</td>
</tr>
</tbody>
</table>
Multiple cards were used, as required, for certain types of entries. For example, card type 06 contains textual descriptions of the sources of the task analysis information. More than one type 06 card was used, as required, if the sources of information simply would not fit into the data field spaces allocated for a single type 06 card. Accordingly, card type numbers could appear as follows: 01, 02, 03, 04, 05, 06, 06, 07, etc.

Similarly, multiple entries were used, as required, for the following card types: 06, 07, 08, 10, 11, 12, 13, and 15.

Two rules applied to all card types. First, column one of each card was not used. Second, columns 75 and 76 were used to enter a system number. Columns 77 - 80 contain card accession numbers. The system and accession number entries were included to provide a means for correctly re-ordering the cards in the event that one or more decks might be dropped or in some other fashion become disarranged.
REFERENCES

Appendix II presents information developed during Phase II of a three-phase study designed to provide a technical basis for determining future (1975-1990) navigator training requirements. The term navigator is used generically to refer to navigator (AFSC 1535), Radar Navigator (Navigator-Bombardier) (AFSC 1525), Weapon Systems Officer (AFSC 1555), and Electronic Warfare Officer (AFSC 1575). This appendix addresses the methodology which was developed and used to determine common and non-common operational task requirements across all navigator flying specialties, as well as within each flying specialty. Task description and analysis methods are presented along with data collection and validation procedures. Computer software developed for determining common and non-common tasks is presented. Rationale for deriving task commonality criteria is addressed. Supplementary Phase II classified task analysis and commonality analysis information is presented in a separate section (Section IX) of the secret Appendix I, entitled Present and Future Roles of the Navigator (U), in order to keep all classified information in a single document for control purposes.
Key Words

| Navigator-Observer | Navigator training | Navigator task descriptions | Navigator task analysis | Navigator commonality analysis | Non-common navigator tasks |

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>