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INTRODUCTION

Continuum Mechanics as it was originally developed by Navier,
Cauchy, Poisson and Stokes among others, consisted of Elasticity Theory
and Hydrodynamics. In the former, one is interested in the response,
particularly the stresses, which will arise in a solid body which is
subjected to "external” forces--perhaps torques also. In the latter,
one analyzes principally the motion of fluids,

Relatively early, thermal stresses were included in the
Elasticity Theory by Duhamel and Neumann, However, these have always
retained a special position, as thesy were not subject to Kirchhoff's
Uniqueness Theorem of Elasticity Theory, which states that in the
domain of linear elasticity the stresses in a simple continuous body
due to externally applied forces are uniquely determined., Kirchhoff's
theorem is true under the assumption that St. Venant's Compatibility
Conditions are fulfilled for the elastic deformation of the whole body.

not
These conditions canAbe applied directly to the case of thermal stresses,

which explains their special position, )

In the second half of the 19th Centu;y, plastic phenomena in
continua were investigated by Tresca, St. Venant, Levy and others,
This "phenomenological” theory of plasticity, which was further developed
later by von Mises, Prandtl, Reuss, Prager, Her.cky, Nadai and others,

stands to some extent between Elasticity Theory and Hydrodynamics,

Thus the resulting deformatiun (we call it also total deformation eT)

 Np—
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of the piastic body contains an elastic part, e, which as in the usual
Elasticity Theory gives rise to stresses, and a secoud part, which we
call plastic deformation, ep, which changes the shape of the body but
develops no stresses, One has such deformations in pure form in fluids.
Therefore

€ =€+ ¢ (1)

Since at least a part of the internal stress remains without external
forces after plastic deformation, the elastic strain evidently cannot
fulfill the compatibility conditions, There one sees an analogy between
thermal stresses end internal stresses after plastic deformation.

In principle, it is possible to scribe a volume element (for
instance on the surface of the body) before carrying out the plastic
deformation, and to measure the deformation which it has suffered with
respect to the initial conditions. This gives the eT. When the volume
element is now cut out and allowed to relax, it takes on not its orig-
inal shape but retains the plastic strain ep. ANow this element is
found as at the beginning in its "natural" state, as it 1s used in
Zlasticity Theory by Cauchy, Green and others. The element has indeed

changed its shape, but not its state.1 A function that makes a statement

1This statement is rigorously true only when the plastic defor-

mation results without (plastic) volume change., cf, 82,

about a body will bhe called a "State Function" or "State Quantity" if

its values can be measured in an experiment at a certain time without
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knowing the previous history of the body. Accordingly, the portion ep
of the total strain is not a state function, whereas the elastic strain
€ is one, The distinction between state functions and functions not
changing the state is of great significanc. wnd will concern us more
often,

It became obvious only in recent years that continuum mechanics
with its three branches; Elasticity Theory, Plasticity Theory and Hydro-
dynamics, each in its existing range, is not sufficient to describe
all macroscopically measurable mechanical properties of a body.

A simplc example may explain this: a beam with its ends fixed in two
rigid walls be elastically or partly plastically hent as in Fig. 1.

Then let both the walls remain in this position and let the rod become
hot. As a result of heating the critical shear stress (defined as that
shear stress at which a noticeable flow of the material starts) of the
rod decreases, i.e., a flow in the interior of the rod can take place by
the gradual replacement of elastic by plastic deformation.; After hold-
ing the rod sufficiently long at the elevated temperature, the rod is
again cooled to room temperature and the restraint at the ends removed.
We then observe practically no bending back of the rod; the deformations
have become permanent. We can cut out the volume element and find that

no (macroscopic) internal stresses are present.1 Nevertheless, the rod

“The bending of atomic planes ment ned later is combined with
self stresses which change their sign in microscopic domains and hence
cannot be found by the above mentioned cutting experiment. Like the

macroscopic stresses, these self stresses lead Lo work hardening,

(See below,.

———




responds to subsequent deformation different from a rod which has the
same shape "without history,” If the critical shear stress of individ-
nal volume elements were now measured, it would be found that the body
was in o definite work hardened ceondition, The change of state that
has take, place can be characterized in another manner, which can be
described more easily by the continuum theory. If the same rod is
irradisted with X-rays, or if it is transparent to visible light, then
diffraction effects are found that have their origin in the bending of
the original atemic lattice planes of the rod. By this experiment

the macroscopic curvature can be measured explicitly as a function of
position. Therefore, this stress-free curvature o1 the atomic planes
is characteristic of the state of the rod. In the previous continuum
mechanics, such curvatures heve nowhere be . described,

In order to comprehend such geometric changes cf the body, one
must complete the three deformation tensors of eq. (1) by the addition of
rotation tensors ”T, Ly wp to form the general asymmetric second-order
tensors BT, 8, Bp which we shall denote throughout as '"'Distortion Tensors,"

Work hardening still cannot be correctly treated today in con-
tinuum mechanics., Investigations of the last 20 years have shown that
it has its origin in the seif stresses that develop during the plastic
deformation of the material. Hence, a detailed knowledge of the self
stresses should, in principle, allow a calculation of the hardening of
the material, Furthermore, it was shown that all the self stresses as
well as bending of atomic planes (therefore also the work hardening)
can be traced back to the same physical entity, the dislocation. .

However, this is not only responsible for the change of state of the




<]

body but also lor that portion ol its total deformation which does not
alter the state o1 the body. Accordingly, a continuum theory of dislo-
cations is evidently required in order to close the still wide gaps of
cont inuum rechanices, In addition to the above features, this continuum
theory of dislocations should include a theory cof self stresses as well
as a th. ry ol stress-free bending of atomic planes, as was first formu-
lated by Nye [113]. Also, it must descrike the relationship between
the dislocation motion and plastic defermation., In this way we are led
to phenomenological plasticity theory. Thus one obtains, interrelated
and overlapping, Elasicity Theory, Theory of Dislocations and Theory of
Plasticity as branches of the comprehensive continuum mechanics, which
treats all mechanicul phenomena occurring in a solid body.

It remains yet to be said how one has to include in this con-
tinuum mechanics thermal stresses and other stresses (we refer to
stresses due to magneto- and electrostriction) whick arise neither from
external forces nor from plastic “.formacion. On heating a body uni-
formly to a nigher temperature, its material points undergo displace-
ments, without introducing restoring forces., The samc ct is also
characteristic of plastic deformation. Since it is apparently natural
to consider the case of deformation by temperature fields as a kind of
plastic deformation, we will call it "quasi-plastic.”" One can then
trace the thermal stresses back to certain "quasi-dislocations'" and
thus according to Kroner [82] a theory of thermal stresse. is obtained,
which is to some extent a continuum theory of 'quasi-dislocations."
This agreement is not only formal but also physically reasonable, and
thus it appears quite natural to include thermal stresses (and the

other abovc-mentioned stresses) in the Continuum Theory of dislocations.

P
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The treatment of particularly interesting problems, for example, those
in which there exist simultaneously thermal stresses and self stresses
after plastic deformation, is made remarkably easy in this way,

The whole continuum mechanics of solid bodies is now contained

in a few eguations, For the stationary state these are the equations,

1

We consider that the boundary conditions are included in
these equations by allowing F and & to degenerate surfacewise (and
also linewise or pointwise). If one allows external twisting moments

also, further equations arec added,

divg + F = 0, curl g = (2)

where 3 and g are the stress tensor and the elastic distortion tensor;
F and 2,the density of external forces and of dislocations (including

quasi-dislocations) respectively. To this are added the equation for
the elastic energy density (= strain energy function or elastic

2
potential)

2
We use throughout the text the summation convention where we
sum from 1 to 3 over repeated indizes. The use of tensor notation is

explained in the appendix,

(3)

i
e==0C. ¢€..

2 ij i)
and the constitutive equZtions, for j.astance, Hooke's Law, in the case

of small deformations. Under these circumstances the uniqueness theorem
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of continuum mechanics of solid bodies can be proved: by specifying
the extern.l forces F and dislocations & the stresses and elastic dis-
tortions of the body are uniquely determined, From this it follows
immediately that all self stresses arise from dislocations, However,
in the case of larger deformations this is not true, as the example of
the invertible hemispherical shell shows [160].

In the beginning of the twenties, the interest of the solid
state physicist was concentrated on the crystalline structure which
most of our materials, particularly the metals exhibit., These are
composed of crystals (polycrystalline) in regions of an average
diameter of at least 10-3 cm ( corresponding to nearly 1015 atoms).
With methods which were developed then and subsequently greatly
improved, it is possible to grow a "single crystal" of almost any size
of many materials today. Although these are of great significance for
experimental and theoretical research, however, they have also found
important applications in industry, e.g., in transistors of communica-
tion engineering,

The concept of the dislocation was used first in 1928 by
Prandtl [108j--still in vague form--to explain anelastic phenomena
in metals, 1In 1929 Dehlinger [29] was able to show by studies of
recrystallization, i.,e., the formation of new grains which one
observes after heavy plastic deformation and.which has its origin in
the large self stresses developed thereby, that these self stresses
are to be traced back to certain defective zones of the otherwise fully

regular arrangement of atoms in the crystal, and that these regions

can be metastab’e, Dehlinger named his self stress sources 'interlocks"

o P e b




(Verhakungen) which are nothing but two dislocations of opposite sign
lying close together. It was thereby explained why self stresses are
gensrally possible at all in a crystalline medium. As 2 result of
these investigations, attention was particularly directed to distur-
bances of the reguiar atomic arrangement. One calls such disturbances
"lattice defects"; they play a decisive role in modern solid state
physics,

In 1934, the lattice defect which we illustrate with aid of
Figs. 2 and 3 was described independently by Orowan [114], Polanyi [118]
and Taylor [149]. Figure 2 shows a completely regular crystal, called
"Ideal Crystal." Figure 3 shows the same crystal after the invasion of
a disturbance from the x1 direction, The disturbance is characterized
by the fact that one of the lattice planes terminates in the interior
of the crystal, Today, the line of termination of such an extra lattice
plane is called an "edge dislocation line" or simply "edge dislocation,'
Figure 4 shows the same crystals after the disturbance is no longer in
the crystal, By the movement of one dislocation through the crystal,
the upper and lower halves of the crystal have been displaced relative
to each other by one interatomic distance. The vector which specifies
the relative displacement in the slip plane is called "the slip vector,"
g it is perpendicular to the edge dislocation line. 1If there was a
shear stress applied to the crystal, work was done by passing the dis-
lccation through the crystal. Consequently, such a shear stress con-
stitutes a driving force for dislocation motion. The above mentioned

authors now noticed that the movement of an edge dislocation must be




possibie under the influence of relatively small stresses. Figure 3
gives a certain optical impression that near the dislccation the
adjoining atoms should be more easily movable than the rest,
Already in 1926, Frenkel with the help of an atomic model
had computed that slip which produces the transition of the crystal
of Fig. 2 to tpat of Fig. 4 requires a shear stresc of the order of ]
magnitude of the shear modulus, i, if both of the moving lattice planes
slip rigidly by an interatomic distance, Experimentally, a critical b
shear stress kore than a thousandfold smaller is measured. The plés—
ticity mechanism proposed by Orowan, Polanyi and Taylo: should lead

to actually a smaller critical shear stress.1

1According to Dehlinger {[31], these purely mechanical consider-
ations are not sufficient to prove that the rigid glide of two adjacent
lattice planes cannot actually take place. Therefore, statiscvical
thermodyramic considerations, particularly the theorem that in a solid
body only processes of lowest order can take place, must be invoked.
Applied to our case it says: it is extremely unlikely that by temper-
ature fluctuations those atoms of a lattice plane simultaneously have
such an increased energy that they make a simultaneous slip step,
which would be equal to a rigid gliding of the lattice plane in question. ;
Such considerations are essential if we should want to calculate the
theoretical critical shear stress under the assumption of the dis-
location mechanism. Seeger [137] has shown that the critical shear
stress, neglecting temperature fluctuations, which one would calculate

purely mechanically, often comes out to more than 100 percent too large,




10
(Footnote cont'd,)
Because of its importance for such problems, we should mention
a new work of Donth [164], who has shown that in a statistical treatment
of dislocations one should prouceed from Kolmogoroff's equations for
statistical processes, since the assumptions for the application of an

Arrhenius equation are not satisfied in the case of dislocation,

Burgers [12] in 1939 has described an additional lattice defect
which causes the original lattice planes now connected in the manner of
a screw surface (Fig. 5). The screw axis is called a "screw dislocation
(line}." One sees that these screw dislocations also will be relatively
easily movabie, One can imagine that the screw dislocation in Fig. §
invaded from the X direction., Figs 6 and 7 show the crystal after the
movement of the screw dislocation of Fig. 5 in X, and Xq directions,
respectively. Here again certain crystal parts are displaced relative
to each other. But the slip vector here is parallel to the screw dis-
location line., Burgers has further shown that there are also disloca-
tions whose slip vector is inclined to the line direction of the dis-
location, Such dislocations are appropriately considered as the super-
position of one screw and one edge dislocation along the same line, so
that such dislocations are nct fundamentally new.

However, the possibilities of motion of the dislocation have
not yet beer ccmpletely discussed. There is still the important pos-
sibility to consider a motion of the dislocation of Fig. 3 in Xq direc-
tion, This means an enlargement of the extra lattice plane, which is

possible in practice only if atoms from the neighborhood of the dislo-

cation are added by diffusion, The migration of an atom in a crystal

e —————— s e o = e
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always nccurs over an energy barrier of the order of 1 ev (= 1,63 x

10-18 kg-m) which cannct be overcome by external applied stresses.

1Macroscopically 1 eV is a very small energy. However, this
. -24 3 .
mist be localized in a space of only some 10 cm , and this is

obviously not possible from externally applied stresses.

Rather the temperature fluctuations must make the necessary "activg-
tion energy" available. Consequently such a diffusion can take place
to a large extent only at elevated temperature. The dislocation motion
taking place ir this way is called "climb' in contrast to the "slip"
described above., Each atom which attaches itself to the extia lattice
plane leaves behind a so-called "vacancy." These vacancies are to be
counted in the volume we can measure macroscopically, i.e., by the
climb of dislocations the volume of the body changes; this kind of
motion, after Nabarro [108], is called, therefore, '"non-conservative'
(with respect to the volume), whereas the glide motion is called
"conservative,"

If the dislocation were to climb, for example, in the Xg
direction completely through the crystal of Fig. 2, this would require
that a new lattice plane be formed and causing the crystal to be
elongated in the x, direction. Accordingly, a pure tensile stress

3

(°11 > 0) should exercise on the dislocation a restraint to climb in

Xg direction., A compressive stress, however, may remove the extra

lattice plane; however, this is possible only until all the vacancies

in the neighborhood of the dislocation are filled up with the atoms
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of the extra lattice plane. We see that the volume of a body can even
become plastically changed, a possibility which will be included in the
theory developed in Chapter I,

The climb of the dislocation plays an important role in many
processes in a -olid body at temperatures just below the melting temper-
ature, e.g., recrystallization and the formation of casting stresses,

A look at Figs. 2 through 7 shows that we should expect self
stresses in the states of Figs. 3 and 5, whereas the crystals in the

1
remaining Iigures are in the natural state.

1Strictly speaking, for instance, the state in Figs. 2 and 6
differ from Fig. 3 by the fact that in consequence of the ledge
developed the crystal has a changed surface, It is not necessary
to consider this for our purpose, See, e.g., the discussion of

Nabarro [110], pg. 330.

We will show in 81 the close relaticnship of the states of
these self stresses with those of Volterra distortions. Based on
the works of Volterra in 1939 Burgers [13] developed an elasticity
theory for a single dislocation in a continuum, from which the self
stresses resulting from dislocations cor 1 be calculated. This
fundamental work was followed by numerous special elssticity thkeory
calculations on dislocations.

Hereafter the following picture of the process of plastic
deformation in a metal can be given: under the influence of the

externally applied stresses, large amounts of new dislocations arsz
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developed in addition to the dislocations always existing in the
crystal.l These move according to the forces exerted whereby they

produce the macroscopically observed deformations, However, the

1These originate during the growth of the crystals, which

makes them possible in general,

increasing number of other dislocations produce seli stresses in
increasing amounts, which oppose the motion of dislocations, as waé
first proposed by Taylor [149]., This effect leads to the work

hardening of materials.

g
§
!
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CHAPTER I
DISLOCATIONS IN CONTINUA: GEOMETRY
§1. Dislocation and Volterra Distortion

In the beginning of this chapter, the close relationship

between dislocation and Volterra distortion will be claril‘ed.
a

Let f be\)lane surface ending, at least partly, in the inter-
ior of a simply connected continuous medium with (dimensionless) unit
normal vector ﬁ(g) at position 5.1 Let f(g) be the unit tangent vector
of the edge lines of f which are oriented according to the right hand
screw rule, We imagine that the stress free initial state of the body
under consideration is cut along the surface f, then the positive cut
edge of f suffers the infinitesimal plastic displacement éé(g) relative
to the negative., The displacement 5§ will be carried out in two steps,
since the analysis will be in terms of the two components parallel

(ééll) and perpendicular (6&1_) to f. After the parallel displacement

GEII both the sides of the surface f are still in touch with each other,

1The restriction of a plane surface facilitates description, but
is not necessary. We see easily that the essential results of this
paragraph, particularly the definition of the dislocation are valid also

in the case of curved surfaces.

14
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For the latter displacement, 6g | , perpendicular to f, we have
two cases to distinguv‘sh: (1) Bcth the sides of f are pushed apart; for
this case, we decide chat the resulting void is filled with matter
identical to the rest of the body. (2) Cases in which SEJ_signifies a
displacement of both the cut edges toward one arother; just enough
material shall be removed from one of the two cut edges that this dis-
placement becomes possible, After the execution of the operations, we
imagine everything to have coalesced and the forces which produced the
displacements to have been removed, so that again a united simple coher-
ent body exists, in which, naturally, self stresses remain. Irrespec-
tive of the material and shape of the body, these are determined by the
position of the surface f, i,e., by 5, as well as by the resulting
"impressed' or "plastic' relative displacement §g.

We remark further after a well-known theorem of Colonnetti [18]
that the volume of the body in the final state differs from that in the
initial state by the volume of the added or removed material, thus by
6V = ﬁf n - 6g df. This theorem holds only in the domain of linear
elasticity theory and there also only for homogeneous bodies (thus, for
example, not for bodies which consist of two homogeneous parts with
different elastic constants). Along the surface f the elastic deforma-
tions and torsions of the volume element of the body are changing dis-
continuously, which was first investigated by Weingarten [157] and

1
later in detail by Somigliana [147]. However, if both cut edges of

1
The older results of the self stress theory have been reported
by Nemanyi [111]. This work contains also many selections valuable

even today.

3w
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a surface element, Af, of f have merely suffered a rigid displacement,
then the strains are continuous across Af; the rotation is also contin-
uous across Af, It is additionally necessary that 6§ = constant on Af,
At the end of the operation, the body shall be again simply
connected, with no cracks, thus the cut edges of the total surface £
cannot be rigidly displaced toward one another, Dislocations are formed
by the following process. Let éé be constant on nearly the total surface
f, except at the edge of f let it decrease very rapidly to zero.
Figure 8 shows the variation of Gé on a plane surface f assumed circular
for simplicity. We now define a dislocation line as the boundary of the
surface £, or more precisely, the dyadic product —féé = - (tiégj), where

by 6§ shall be meant the constant displacement on most of the surface,

1The minus sign is conventional, in conformity with the usually

employed sign convention of Frank [47].

To say it more precisely: there is no singular line -tég, but a
quasi-singular band of very small width 2{ (Fig. 8). Hence we complete
the above definition by adding that this shall be valid for the limit

g—0,

2 -
Then the function 8g assumes the character of a Heaviside step

function in the plane in which f lies,

A second prescription leads to Volterra distortions. It is

required that initially (or at the latest after the cutting along f) the
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boundary of f is surrounded by a hollow torus of radius > {. Then the
body is of course no longer simply connected, and the surface f is
bounded everywhere by the surface of the body. Due to this, a rigid
displacement of the cut edge of the total surface f is possible,

If we set éé = constent, then we obtain a so-called Volterra distorticn
state of the first kind, so at large distances we cannot distinguish
between the hollow torus and the state developed through a dislocaticn
(Principle of St, Venant), Burgers' investigations on the elasticity
theory of dislccations are based on this conclusion,

We shall talk in 87 about the Volterra distortion state of the
second kind, in which the rigid relative displacement is a rigid rota-
tion of the cut edge. From our standpoint this is not as important as
the state of 6g = constant,

From the definition of the dislocation it follows that:

1. The dislocation, as the boundary of a surface, can only
end on the surface of the body.

2. Since the strain and rotation remain continuous across the
surface f, it can no longer be found experimentally after the formation
of the dislocation iine, Thus all surfaces bounded by t could have
served as cut surfaces in order to produce the dislocation or the dis-
tortion state, i.,e., it is completely determined by the edge limne s,and
the relative displacement 6g.

Assume that a stress resulting from external forces was preseut
in the body during the operation of the relative displacement. Then
this stress could do work during the displacement. Consequently,

stresses exert forces in the body in the sense of the production and
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propagation of disleccations., In particular, if a shear stress acts
on a plane, then it creates a tendency for conservative formation and
propagation of the dislocation (i.e., 6g|| to the surface), whereas
2 normal stress perpendicular to the surface means a tendency for non-
conservative formation and propagation of the dislocation (6gl to the
surface). Whether such processes will actually be induced through the
application of external stresses alone oa the body will depend on the
cohiesion forces of the material, Especially then, for the nonconserva-
tive formation and propagation of a dislocation, diffusion of msatter
will be necessary. In the introduction it was pointed out that these
processes are the fundamental mechanisms of plastic deformation in
actual bodies. Therefore, we assume this also for our ideal continuum.
With reference to the explanations in the introdvction, we
denote the conservative propagation of a dislocation as glide and the
associated surface f as the slip plane. The nonconservative propaga-
tion we call climb, the associate surface f, the climb plane. In
general, we speak also of the motion of the dislocation along its
motion surface, We say further that a dislocation has an edge

character where t L 6g and screw character where t I' 6g. Where t

is inclined to Sg, it has mixed character. Figures 9 and 10 show the
formation of a pure edge and screw dislocation, Obviously the dislo-
cation formed purely nonconservatively is an edge dislocation. This
corresponds to the statement in the introduction that only edge dislo-
cations climb in the crystal, The conservatively formed dislocation
has, in gemneral, mixed character. This corresponds to the result that

not only screws but also edge dislocations glide in the crystal,
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These ideas clearly show that the dislocation concept employed here
is nothing but a transfer of the dislocation concepts from the

crystal to the continuum.

82, Plastic and Elastic Distortions

First of all, a remark on the ideal continuum, Let it be
assumed for simplicity that in the beginning it is in a homogeneous
state., On the other hand, it would be a limitation of fundamental:
impoir'tance if we assume isotropy also. Here we do not mean elastic
isotropy, this is completely unimportant for the geometric analysis of
this section. On the contrary, the ). ssibility that the medium is
geometrically anisotropic must be considered., This means that at every
point of the medium, three linearly independent, distinct directions
exist about which it is assumed that their angles with three normal
directions in space can somehcw be measured. This geometric structure
must therefore be demanded, since the real bodies to which the continuum
theory shall hereafter be applied, have this structure, We show it, for
example, by means of X-ray techniques,

We assume that this structure is a property of the individual
volume elements in the continuum, The stress free state of the medium,
in which the distinct directions of all volume elements are parallel
to one another, is defined as the initial state. In the final state,
we have then a certain orientation distribution which gives proof of
the rotations of the volume elements that have taken place (see below).
For simplicity, we assume that the distinct directions in the initial

state are orthogonal to one another., The reader used to think of crystals

L e m—
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may picture to himself the continuum somewhat like a primitive cubic
crystal with vanishingly small lattice constants,

We can now allow the operations described in the last para-
graph to take place at very many surfaces f, When these become infin-
itely dense and the proper relative displacements 6E are continuously
distributed, we can perform in this way continuously distributed pure
plastic or also mixed plastic-elastic deformations of the body. The
first process may be illustrated by Fig, 11. This shows an isolated
volume element dV in the initial state (a). This will be cut along
surfaces df at distances dx2 perpendicular to x2-direction and after-
wards a relative displacement ég imposed on every two neighboring
layers, We imagine the passage to the limit 6x2 -0, 6§ = 0 carried
out maintaining 65/6x2 constant, In the case of Fig. 11(b), the voids
shall be filled with matter of the same volume element in such a way
that the density distribution in it remains homogeneous. At the end
let all coalesce again. The volume element in Fig. 11(b) is then
completely homogeneously plastically stretched (and thereby 'thinned")
and in Fig. 11(c) and 11(d) homogeneously plastically sheared.

We generally denote by dg. the relative plastic displacement

J

of the boundary surface of the volume element on the +xi side with

respect to that one on the -x, side and define the asymmetric tensor

i
P P
of the plastic distortion B = (Bij) through the relation

P

dgj = Bij dxi (I.1)

where dxi shall be referred to the relative position of the mentioned

boundary surfaces and to the original state., The plastic distortions




21

which correspond to Fig., 11(b) to 11(d) are accordingly to be denoted
respectively.

by 5:2’ B;a and B:l,A The diagonal components of the plastic distortion
tensor B:J are thus plastic elongations, the remaining components

are plastic shears whereby the first index indicates the glide planes
and the second the glide direction.

It is now particularly important to remark that in the case of
plastic distortion, the orientation of the volume element is nrot changed,

We conclude this from the way the distortion in Fig. 11 comes about.1

1One may conceive the volume element of Fig. 11(a) somewhat like
an infinitely densely packed band of material lines, which lie parallel
to the x2-direction. The operations which Fig. 11(b) to 11(d) convey
obviously do not alter the direction of these lines, We can also simply

postulate the preservation of the orientation, because the real bodies

for which the theory is later applied, show this property.

Hence, the distinction between the shears Bgl and Biz is not a rigid
rotation but a "plastic rotation" of the volume element while prererving
its orientation (Fig. 12(a),(b)). This statement holds for small dis-
tortions, Then the symmetric part of Bij describes a pure plastic strain

P
€5

ing the orientation., Also for large distortions, the division of distor-

and the antisymmetric part a pure plastic rotation w?j both maintain-

2
tions into strain and rotation holds

2The additive combination of deformation and rotation holds in

the case of large distortions only if dxi in eq. (1.1) is referred to

the initial state. ct., 8§10,
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P P P

—4 I.z
513 ‘ij +w (1.2)
Here, however, we have to understand by w:j the well-known asymmetric
tensor for large rotations (Versor) [34].1 On the other hand, eij ° T

remains symmetric. See also 810,

1Volu-e 1, p. 78.

The deformations of the volume element considered hitherto took
place without stress. Now we come to the case of the elastic deforma-
tion, Let daj be the elastic relative displacement of the boundary sur-
faces as before. Then we define the asymmetric tensor of the elastic

distortion B = (Bij) by the equation

=R &
daj B dx, (1.3)
The Bij describe the same change of shape and position of the volume
P
element as the B however, an essential geometric difference exists:

ij’

in the case of the elastic shear, the original right angle beteeen the
indicated directions is changed by the shear angle. Consequently, the
difference between 321 and Bl2 in the case of smaller distortions is

now a rigid rotation of the volume element (Fig. 12(c), (d)). We split

Bij again into its symmetric and antisymmetric parts

Bi' =€ .+ (I.4)

J ij i3’

thus eij is the ordinary strain tensor of the elasticity theory and

wij the tensor which describes the rigid rotation of the volume element,
The same holds as before in the case of larger distortions.
There is no basic difficulty in measuring the elastic deformation

of a voluma e¢lement in {he final state when we cut it out and let it relax.
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Thereafter, its principal directions are again orthogonal to one another
and we can measure in addition the orientation of the elements with
respect to a normal orientation. If we carry this out for all the ele-
ments, we can specify the rotations that took place up tc a constant
rotation common to all of the elements. This means that the elastic
strain is a state function, whereas the same is not true for the rota-

tions but is true for their local derivatives. These describe clearly

-

a bending of the structure. Since the elastic deformations and struc-

ture curvatures follow uniquely from the elastic distortion tensor, this

characterizes the state of the medium after the deformation. But it is %
impossible to measure only from the final state the plLastic distortions,
strains and rotations that took place. This is due to the fact that by
a pure plastic distortion, as in Fig, 11, the state cf a volume element
is not changed. See also the introduction.
In the general case, a volume element will he simultaneously

plastically and elastically distorted. Let

T
dsJ = daJ + ng (1.5)

be the total relative displacement of the boundary surfaces of the

volume element a&s before. Then we define the tensor of the total
T T

distortion § = (Bij) by the equation

T T
dsiJ = sij dxi. (1.6)

To begin with, it is sufficiently characterized by the relation ;

P

14 (1.7)

=8

=Byt 8

By

Equation (I.7) is also correct for larger distortions when one refers

dx, always to the initial state (810).
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§3. The Geometric Principal Equation of the
Continuum Mechanics of Rigid Bodies

We describe in the following a thought experiment, which is taken
as a basic experiment in the continuum theory of dislocations.

If we apply a sufficiently large external stress to a plastic
medium, it is possible that dislocations are develop#d, move, and pro-
duce plastic distortions of the body's volume elements. It is possible,
for instance, that these dislocations leave the body or that disloca-
tions with opposite sign cancel each other in fthe interior of the body,
or that dislocations come to rest after moving in the matter and produce
a dislocation density. We assume that these dislocations come to rest
not in the interior but between the volume elements, As the size of the
volume elements is expected to become zero, we get at least a macroscop-
ically continuous distribution function of dislocations, if the exterior
stress is continuous. It is usually assumed in continuum mechanics that

essentially
the distortions are/\:omogeneous over many volume elements dV, which means
that the dislocations move ir straight lines in such a region.

As a result of the stresses which are applied to the body, each
volume element will experience a certain dislocation motion, and this
we will evaluate as a function of the position of the volume element,
for instance, relative to the initial conditions (84). Now we imagine
that the body in the initial condition is cut into its volume elements
and the dislocation motion associated with the element is carried out in
each element independently of the other elements. In other words, we
impress on each element a plastic distortion, ap(f). In any case the
elements are without stress afterwards and also their orientations are

preserved, Now there are two possibilities.

-
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1. The volume elements fit together completely after accom-
plishing the plastic distortion, and there are no cracks. Then we can
imagine that they can coalesce without restraint, and we get the body
in the shape that it would be if we had not cut it before the disloca-
tion motion. Especially, the body is without self stress and structure

curvature.1 So the state of the body is not changed but the shape is.,

1Experiments of this type in which only the strain (not the
rotation) considerea, are described often in the literature, See Fopp [44],

Reissner [122], von Laue [87].

2. The volume elements do not fit together after the deforma-
tion. Figur-> 10 shows an example in which the connecticn of the elements
is destroyed, since dislocation, which moved in from top left and whose
lines are perpendicular to the plane of the paper, came to rest between
the volume elements in such a way that the upper elements have been
traversed by more dislocations and therefore are more distorted than the
lower ones; meanwhile for the same reason, the elements to the left are
more strained than those to the right. If we then try to combine the
elements to a compact body, we have to distort them elastically in such
a way that they fit together completely. For this we have to use elastic

distortions and rotations in general. The former produce stresses, the

latter will rotate the orientation. Now we imagine that all is coalesced
again, and the forces which produced the elastic strain are removed.
- In general, then, a relaxation of the body will occur to the state of

lowest possible elastic energy. However, the stresses vanish completely

anan
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nrly if rigid rotations would be sufficient to restore the connection
which was disturbed by the plastic distortion. Finally, of course, we
have the same state that we would have if we did not cut the body belore .
the dislocation motion.
This thought experiment has to be evaluated quantitatively.
Both possibilities have in common that the body should be compact and
without cracks in the final state; i.e.,, however, that the total distor-
tion gT is a function of the position, such that the connection of the
volume elements is maintained. This requirement restricts the admissible
functions gT by which the function gp is also governed in the first case,

but not in the second case,

We will show now, that

¥Curl B =0 (I.8)

is a necessary condition in order that the connection between the volume
elements is not changed. Figurel4a shows two elements in the initial
state, The connection between the two is maintained if the right bound-
ary surface of the left and the left boundary surface of the right
suffers the same displacement. This means that the component sz and
ng have to ke the same in both elements, while the components ij

are allowed to change. Figure 14(b) and (c) shows an example of what

it looks like if the elements suffer a different distortion é;landsfz.

Hence, it is necessary to maintain the connection that

1
aazj/axl = aasj/axl = 9, From tais we conclude the necessary condition .

1It is also sufficient if we assume a continuous total displace-

ment, We will no longer be caucerned about this, A non-vanishing
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(Footnote contd.)
T
function Curl 8 could be called & crack demsity. Such things will

occur if we take too large & pass during rolling a metal.

T
J

ential, i.e., a function sT exists, which measures the total displace-~

{1.8) at once. Then obviously, ds, in eq. (1.6) is a complete differ-

nent (excer® for a rigid translation) of the points of the body. So it is

T

By

T _ T _
= asj/axi = (Grad s )ij (1.D)

P T
In the case (1) described ahove B = B for B = 0, so dgj in ea. (7.1)

~ ~

is a complete integral and

i

8° = Grad g = Grad s (1.10)

~

i In this case we get a pure plastic displacement sp of the points of
the continuum, by which its state is not changed. This case is of
great practical importance for plastic deformation. We will refer to
it later on.

Now we define concditionally the asymmetric tensor of the

dislocation density o = (Qij) by the expression

a=- Curl B (1.11)

and we will show in the next step, that this definition is the same
as that of the single dislccation.

Figure 15 shows a body into which a small number of dislocations
invaded, of which we assume that they are perpendicular to the plane of
the paper. The surfaces of motion of the dislocations are drawn in such

a way that they were drawn straight, if the dislocation, which is placed

PSR e i SR
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at the end of a surface of motion, cuts the plane F, which has an
arbitrary boundary C. Otherwise they are dotted. The motion surfaces
are oriented in such a way that they were cut in the positive direction
by C. Now we go along C and add at each motion surface the relative
displacement 65, resulting from the dislocation motion, considering
both the positive and negative side of the surfaces. For simplicity

we assume, that 6g is the same for all motion planes.1 As we can see

LThis does not mean a restriction of the generality of our

consideration, as will be shown in the following calculation,

at once, the dotted planes do not contribute anything to the sum, as

they give two opposite equal values, That is why

b=-%bg (1.12)
- C

is a direct measure for the number ard kind of the dislocations cut by
the plaune F, We call b the "Total Burgers Vector' of those disloca-

2
tions, In the case that the boundary C encloses only one dislocation

2In honor of J. M. Burgers, who introduced the circuit vector b

to specify a dislocation in a basic paper [12].

then b = - 6g is the Burgers Vector at this single dislocation.
We showed in 81 that the state of the matter with one disloca-
tion is completely determined by the specification of the curve t and

~

glide vector 6g. Now we will see that instead of the glide vector we

can use the Burgers vector. Note the important distinction between these

s —————— ————
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vectors: O0g states that due to a dislocation, which moves along a
plane, the positive side of the plane is displaced with respect to the
negative side by 8g. However, where no dislocation has moved along
6§ = 0, O0g is therefore a vector which is bound to the motion plane
and especially preserves its sense in the case that the dislocation has
moved out of the matter, i.,e., if it no longer exists. Whereas it is
only possible to define b in connection with the curve C and the bounded
surface F, respectively, and it tells us something about the distribu-
tion of the dislocations in the bodyj

When the distribution of the dislocations is sufficiently dense,

we are allowed to substitute the summation in eq. (I.12) by the integral

b=z - § bg (I.13)
& c ~

1
If we have infinitesimal areas, AF, we call the resulting Burgers

T

1
AF must be much larger than dF in order to define a disloca-
tion density through AF. If first dF goes to zero, then after this you

can take the limit for AF - O,

vector Ab., If we know this for every arbitrarily oriented surface
element at each position in the medium, then obviously we know how many
dislocations of each kind’ are at each point of the medium. That is

why the expression

aij = AbJ./éFi (1.14)

is defined to be the "tensor of the dislocation density" or (shorter)
the "dislocation tensor." As the dislocation density is a tensor field,

it is sufficient to know the Burgersvector of three plane elements,

Rt L L PO e




wvhich are oriented in the same manner as the cartesian coordinate axis.
I1f we measure, ©.g., the Burgers ve. .- r of the plane AF having only the
component AB, and we have no values for the planes AFz and AF3, then it
is obvious that the line direction and the Burgers vector are parallel;
accoarding to 81 thz diagonal components of ai) are screw dislocations

n the i (=zj) direction, Similarly, we will notice that the other

comzonents of 01 are edge dislocations in the i-direction with the

J

Burgers vecter in the j-direction. In short, the first index of aij
indicates the line direction, the second one the direction of the
Burgers vector. Ve call the total Burgers vector of all dislocrations
cutting an arkitrary plane F the dislocation flux through F. From

eq, (T 14) evidently it is defined as

b = H dF - « (1.15)
-~ F ~ Land

On the other hand, we can calculate it by eq. (I.13) to be

B='§5§='§df5=‘§d.’55p=-ffd20ur1gp (1.16)
C C C F

In this we use the fact that if we integrate f 6§ along dxi, qE
results of course (Fig. 11); this is replaced by eq. (I.1) and finally,
Stokes' theorem is used. Since the surface F was arbitrary, we conclude
eq. (I.11) directly by comparing with eq. (I.15).

Hence, from eq. (I1.7), (I.8) and (I1.11) follows immediately the
"geometrical basic equation of continuum mechanics."1

Curl B = o (1.17)

~

1
Equation (I.17) or equivalent formulations were independently

given by Xondo [73,74], Bilby, Bullough and Smith {3,4,5] and Kroner
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(Footnote contd.)

{81,82,84]. The first of the authors mentioned used from the beginning
formulations which hold for large distortions (826 to 828), whereas the
present author introduces those distortions iater on., The derivation
given here was carried out by Kroner and Rieder. Equation (1.17) reads
in cartesian coordinates i

8 - % = / = -
By xy - By, 0y = ), OBy, 0K, - BB, %y = A,

5633,5x2 - 6823/6x3 = 013, etc,

According to what we mentioned before, it is understood as follows.
If dislocation motion or a plastic distortion EP, respectively, occurs
in such a way that dislocations with density o come to rest in the
medium, then the distortion Ep, if it occurs alone, would destroy the
connection of the body. Since the cohesion forces of the medium oppose
this, elastic distortions develop simultaneously in such a way that the
body remains intact. Equation (1.17) holds also for large distortions,
if we refer < and g to the initial state and we also differentiate in
the initial state. See 8§10,

Hence, from eq. (1.17) follows the relation first mentioned by
Nye ([13]

(aai /axi) sdiva=0 (1.18)

~

i

As the first index of aij indicates the line direction of the dislo-
catior.,, obviously this equation means nothing more than the fact that
dislocation lines are not allowed to terminate in the interior of a

medium, This we emphasized in 81.




From eq. (1.5) follcws, since dsT is a complete differential,
the relation f da = - § dg for an arbitrary closed curve. Heuace, it

follows from eq. (1.13) also

b=fds=§ax-.8 (1.19)
C c

In this form Burgers had introducd the circuit vector E.

Finally, we will mention another analogy, which is related to
the theory for the magnetic field of a stationary current and which was
extremely useful in finding the geometrical basic equation [81]. The
quantities by analogy are: electrical intensity of current i, and
Burgers vector b; current density l and dislocation density @; magnetic
field H and distortion field E. For later on we add: magnetic induc-
tion B and stress g. The equations analogous to (L15), (L17) and

(1.,18) are: i =.ﬁf qg « j, curl 5 = 1, div 2 = 0.

§4. Dislocation Motion and Plastic Distortion

The geometrical basic equation (I,17) contains only state
variables, which is why it is useful to describe the state after the
plastic deformation is carried out. However, we need a relation which
describes quantitatively the .totion of the dislocation and the result-
ing plastic distortions. The equation which will govern this will not
contain state variables.

We can imagine that the distortions of Fig. 11 produced dislo-
cations whose line direction was the x3-direction and which moved in

the xl-direction. Then the direction of the related Burgers vector

was X,, Xz, X), in Fig. 1lb,c,d (we do not consider the sign at the
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moment). A complete investigation has to constider the nine indepen-
dent dislocation components and the three independent directions of
motion. Therefore, we have to investigate 27 different dislocation
motions,

We describe a dislocation motion in general by specifying at
every position, x, 27 quantities Nijk’ which mean the number of °3k
dislocations (per unit length measured perpendicular to the direction
of the line and of the motion) which moved past x in the i-direction.
For this we assume for simplicity that all dislocations have the same
value of b, the Burgers vector, however, it is not difficult to con-
sider also the case in which the Burgers vectors are different.

In the expression Nijk the

first index refers to the direction of motion

second index refers to the direction of the line

third index refers to the direction of burgers vector
of the dislocation; j = k are screw dislocation, j # k are edge disloca-
tions. As we concluded from the consideration at the end of #1, the
following correspondences hold:

i#j=k glide of a screw dislocation

k=1i#] glide of an edge dislocation

i1i#J#%k, k#1i climb of an edge dislocation,
i=j means a motion of the dislocation in the direction of its line
and causes no distortion. It is not necessary that we investigate
this motion.

So we recorded all 27 components of Nijk' From the vector prop-

erty describing the motion direction and the tensor prcperty of the dis-

location tensor, we conclude that Ni are the components of a third-

Jk
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order temsor, which we call "dislocation motion temsor.” Furtherwore,

we write 1 = -1 etc. Therefore, the N123 motion causes the same dis-

tortion as a N=- == and N motion. We arrange the choice of the

123’ %123 123
positive side of the motion planes in such a manner that they are +x,
sides. Then the motions which caused the plastic distortions in

Fig. 11b to d are the following:

b: N, z, &nd N=__ respectively or also N31 and N_-_ respectively

132 132 2 312
c: N1§3 and Jf33 respectively or also N313 and N3i3 respectively
d: N1§1 and “TSI respectively or also N311 and Nail respectively

The specification is complete and the reader is advised to check it by

considering the sign convention of §1.1 If we let the edge of the

1The line direction of the dislocation shall be parallel to
the boundary of the plane cf motion (after the motion) taken in the

right hand sense relative to the normnal plane,

volume element have the length £, then g has the same value as

Nk
the total glide vector of the dislocations which moved through the
volume element, therefore it has the same magnitude as the distortion

which caused the motion N This distortion we will temporarily

ijk’
P .
call Bijk' As we can see from our examples the same distortion results

from dislocation motions which are anti-symmetrical with respect to the

first two indices. As mentioned above, no distortion belongs to the

motion Nijk (i=j). We get now (Kroner and Rieder [84] (6g = -b)
B - - (n - N )b (1.20)
ijk ijk Jik ’

-
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23 an invariant relation between the dislocation
motion and the plastic distortion. As an antisymmetrical third-order

tensor, BP has nine independent components, and therefore it i3 vos~

ijk

sible to replace it in the usual way by a second-.rder tensor

P

P P P 1
Bi.ﬂ( = eiJ‘ sz ' Bkl = -2ﬂ ‘1Jk B1J‘ (I.21)

P
i)

eq. (I.21) by eq. (I.20) and then use the resulting equation

To verify these relations readily we replace B ) in the second of

P

Bu= - eijk Nijzb (1.22)

for the examples b to d.

Now we assume that the dislocation motion N changes because

ijk
dislocations come to rest with a constant density. The decrease in the
number of dislocatious which, for instance, moved a distance dx1 with
width dx2 in the xl-direction is, of course, equal to the number of
dislocations which cut the plane element dF = dx1 dx2 after the motion.

That means

aNijk '
b =S & ajk (1.23)

oN
and since -3%15 = 0 (i.e., also the moving dislocations do not termi-
i

nate in the interior of the body) it follows with respect to eq. (I.20)

that

aBijk _




In words: The plastic distortion is changed in the direction of motion
if dislocations from out of the moving group come to rest with a density

P

@ Figure 13 gives an example cf this. If we replace Bijk in

Jk’
eq. {1.24) by ij’ eq. (I.11) follows immediately.

The dislocation motion tensor is connected much more closely
with the real process of plastic deformation than the previously used
terms, This may be its main importance. We differentiate it with
respect to time and define by this a dislocation velocity tensor, which
can represent a suitable starting point for future dynamics of disloca-
tions, e.g., it is elementary to formulate a friction law for disloca-
tion motions, since the friction force (which finally balances the driv-

ing force, causing a constant dislocation velocity) is proportional to

the dislocation velocity tensor.

€5, The Invariant Elements of the Distortion Fields

In this chapter we assume an infinite medium, The distortions
are continuous and twice differentiable and may vanish at infinity.

Thus the following decomposition is unique:

p P
B = grad s + curl ¢P (1.25)

~ ~

B - grad s + curl { (1.26)

Cp EX (ij) and Q'E (g4j) are symmetrical tensor fields.

According to 83, a distortion, whether plastic or elastic,
trans:orms a compact body into a compact body again if we can derive
it from a displacement field by using the gradient. So a plastic dis-

p
tortion, grad s , does not require an elastic distortion to maintain
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the connection in the body, and so occurs without stress leaving the
orientation unchanged,
In principle, the total distortion BT =B + ﬁp has to be

a gradient temsor (eq. (1.9)), hence it follows
P
curl {:-curl § (1.27)

This means that the destruction of the connection caused by the plastic
distortions, curl gp, is just cancelled by the elastic distortion,

curl E- Therefore, it seems that fp is completely independent of the
functions gp, €, s. The reason, therefore, is that our consideration

is still incomplete. In reality, especially in a real body, and there-
fore we assume it is also for our continuum, there 1§ a coupling between
§? and gp in such a way that the number of the dislocations which came
to rest during the dislocation motion is a function of the number of
the dislocations which were moving, and may also depend on the position,
Such a relation would mean a restriction fur the allowed dislocation

motion as a function of position. Thus we are able to separate that

part of the total distortion

BT - grad (s + sp) (1.28)

which occurred without changing the state. The meaning of sP is

obviously the plastic displacement of the points of the medium which
P P
belong to the part grad s of B,
The tensors [ and QP have not been interpreted until now., They
are a sort of potential from which we can derive the distortions.

In spite of this, however, s is an elastic field of displacement, If

P
we cancel the plastic distortion, curl { , by the elastic distortion

~
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according to eq. (1.27), and we remove the forces which produced this,
a partial relaxetion takes place to a state of the lowest elastic
energy, cavsing ihe material points to suffer a displacement, 5.
So we can see how the total displacement ET is composed of the plast.c
and elastic displacements,

In the appendix we will show that, by further decomposition of

curl (, we will get for B

=V, 8! - ¢ € v 6
Bis = 7155 = €32 %gam Tk Ym lan * Oy o
where 53 = s:j + uJ and uj is a vector field with div u = 0;
1, is a symmetric, 911 an antisymmetric tensor field. 1In a
similar manner, we define by the equations
0 =¢ . 0, 8 =L¢c 0 (1.30)
ij ijk x’ k™ 2 "ijk 1j
a vector field
6 = v
k eijk Vi uJ + kl (1.31)

where A is a scalar field, Now we define in general the incompat-

ibility (inc) of a second-order tensor field by the identity

= (- € v =
inc‘g ( eik& i A Vm gzn) vV x 5 x V (1.32)
Its name is derived from the fact [77] that
ince=0 (1.33)

is the condition of compatibility of (small) elastic distortions ¢_
[86,34]. (The deformations are compatible if their incompatibility

we
vanishes.,) As/may easily calculate, the incompatibility of a
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symmetric temsocr produces a symmetric tensor, and the corresppnding
result holds for an asymmetric temsor.

Therefore, we can write eq. (I.29) in the form
B=grads' +inc i+ € (1.34)
P
We can write B in the same form
Bp = grad s'P 4 inc 1P, o° (1.35)

T
Since the total distortion B = B + BP is a gradient tensor, it must

~

be that

inci<- inci’, 8= -6 (1.36)

-~ ~

1f we compare this with eq. (I.27), we have to notice that

P
curl CP = inec i + ep + grad up (1.37)

~

P P
So it is sufficient to remove the part inc i + 8 of curl §

since the tensor grad uP is unimportant for the relations of connection.

1f we write ([52], vol. 1, pg. 97)

1
d =l ! !
eff 5 isj + Vjsi) (1.38)

v
(read def as "deformation of") then the symmetric part of eq. (I.34)

has the form1

€ =def (s + u) + inc i (1.39)

1This follows from the theorem that in infinite space it is
possible to separate a tensor field which vanishes at infinity uniquely

by equations like (I.39)

A AL A 4
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and the antisymmetric part

1
i S 2 -9 0 .40
J)ij = I.Vi(s+u):j J(s+u)i]+ i3 (1.40)
which we can write by using eq. (I.30,31)
1
Wy :.--2-[Vi(s-u):j -VJ(s -u)i] + ei;jk Vk)\ (1.41)
From the identical relations
div inc = 0
(1.42)
inc def = 0

which can easily be checked, it follows that eq. (I.39) shows the

decomposition of the elastic deformation field into its compatible

and incompatible par%, Similarly, eq, (I.41) is the decomposition
of the rotation field in its compatible and incompatible part.
We can easily prove that only the part with A remains if we substi-

1

J

e ARSI

e

1Every tensor of the form ei

jk Vk)\ can also be written as an

antisymmetric incompatibility (Appendix).

The incompatible rotation field therefore has the form w;nc =

2
grad )\)k. Especially, notice that the compatible strains and

w

2Another view point is: The rotation Wiy " eij in eq. (1.40)

are "incompatible" with the strains def (s + u) in eq. (I.39), so we

can also call eij the incompatible rotation [81].
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rotations are no longer coupled as they are in the classical thecu.y

of elasticity, Moreover, there are states possible in which u + s

-~

is equal to an arbitrary vector p and u - s is equal to an almost1

1
For div u = 0, we can not simul taneously prescribe the part
of P and g derived from the gradient operation. Anyway the part of

g due to the gradient operation does not contribute to w,

5

arbitrary vector g.

In no case are we allowed to interpret E as a displacement field
u is not easily interpreted, but is similar to A, a sort of a potential
from which we can derive the rotation, We also should notice that
in eq. (I.41) the rotation of single volume elements was not decom-
posed, but rather the rotation field, i.e,, eq. (I.41) indicates in
which way the rotation varies from element to element, wij at the
point X is a rigid rotation of the volume element dV(f) as we defined
in 82,

The special importance of eq. (1.34) is that here the distor-
tions which restore the connection, are shown separately in *he sym-

metric and antisymmetric part. If we substitute Bij from eq. (I1.34)

in eq. (1.17), we get by use of
curl (inc i + 0) = « (1.43)

the basic equation which the author first derived {81],

The phencmena which are connected with the distortion inc i
and S, we will consider in the next two sectioms., Here we will only
count the degrees of freedom which are contained in the plastic and

elastic distortions, There are twelve in all, namely, three per

e
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-~

p P 1
grad s and grad s and six per curl { and cur} (. Of the last
P
six, there are always three for the incompatible strains inc i and inc i

p
and three for the rotation © and 6,

1For we are allowed to specify three secondary conditions for

-P and 7, The same holds for ip and i (Appendix),.

143 &

86, The Gecmetric Origin of Thermal Stresses,
Magnetic Stresses and
Stress Concentrations
We will now summarize the important facts of plastic deforma-~
tion with respect to the macroscopic standpoint. We imagine that the
body is cut into its volume elements and we apply to each element by
dislocation motion, the desired plastic (stress free) distor-
tion BP. After this, in general, the volume elcments do not fit
together, and elastic distortions (inc 3 + 9) are necessary in order
that they be able to fit together again., After this we imagine that
all coalesce, and we remove all the forces whirh caused the elastic
deformation., Thereafter, a relaxation (grad f') into the state of the
lowest energy occurs, At the end we observe a dislocation density
a = - curl gp.
We can change the experiment in this way: We apply to the
volume element not plastic distortions by dislocation motion but =

quasi plastic distortion, e.g., by an increase in temperature, As we

know, for a vclume element at x [79]
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59 LT (1.44)
i) 1)

if 15 the thermal expansion coefficient and the reference temper-
ature 15 zero, loth r(f) and §Q(§) are continuous functions of
positiorn of the volume element, Moreover, EQ is naturally a spher-
ically symmetric tensor, so it is a pure strain, and we can write CQ

instead of SQ. We call SQ quasiplastic, for these distortions do not

cauce repulsive forces. Now the equation

5kl 7k Vl v A= T (1.43)

always has a solution. So we are able to write BQ by use of eq. (A.2)

also in the form

Q . L oo o oo
= . ) 3 v S v - € € v V ¢ .
Y 1 ke TR LT TN ikm jm x 4 (1. 46)
or by use of eq. (1.32) [I iij]
89 . def (grad ) + inc (¢ D) (1.47)

where 1t 15 pu-sible to substitute grad tor def. The second term

Q

causes the distortion 27 to occur accompanied by a disturbance of the
connection, after which the conncection can only he maintained by an

elastic distortion of the fors 1nc 1 = - inc (¥ 1). Now we can define

a quasi dislocation density by the equation

0 -
o] - curl :Q (I.48)

The state of elastic daistortien which belongs to OQ is then the same

as that which was produced by a dislocation motion during which dislocations
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of the density & = aQ came to rest. Therefore, in a continuum to
which a distribution of temperature 1s applied we can eliminate

elastic distortions if the dislocations of density
@=-0 = curl (T I} (1.49)

are introduced. Certainly this process is important when large thermal
stresses occur as they do during the cocling of cast iron. Since in
this case it is easy to calculate the necessary dislocation arrangement,
this is an impressive example of the practical use of the concept that
thermal stress is considered as being caused by dislocations,

If we bring a sample of a ferromagnetic metal, but which is non-
magnetic as a whole, into a sufficiently strong magnetic fizld, then all
elementary dipoles align themselves parallel to the direction of the
field. In many cases a quasiplastic elongation of the sample occurs in
the direction of the magnetic field, whereas the volume remains approx-
imately the same, I[f the magnetic direction changes in the body from
place to rlace, then we can perform again the thought experiment men-
tioned above, The quasiplastic distortion of the volume elements becomes
then a (symmetric) deviator, since the volume remains the same. Also, we
can define by the help of eq. (I.48) a quasidislocation density and indi-
cate in which way the dislocations will be arranged in the magneto-
strictivly strained body to keep the elastic energy as low as possible.
Such investigzations are very important in experiments, which are cur-
rently being carried out, designed to understand the curve of the magne-

tization of ferromagnetic metals. For this see [11l, 155, 124].

.
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ncroscopically Varying, We imagine the Pure Crystaj Cut jinge its

Volume ele-onts, then ye dissolye in eacp the quantity of the atomg

11=ng'3 (e v al.j) (1.5])

inc 3 _ H (1,517

e P
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inc e= " {1.52)

~

For ™ = 0 these are the compatibility conditions of de St. Venant,
In the case of temperature fields, we get, e.g., by use of eq. (I,.51)
and (1.49) (79]

M=y inc (TD (1.53)

-~

i.e., the incompatibility field 3 which belongs to a temperature field
is easy to cslculate., If B is known however, then the associated
stresses are relatively easy to determine (B13).

Perhaps we can illustrate the importance of eq. (1.52) in
elasticity theory as follows: Since it was developed from eq. (I1.17)
by taking the curl from the right and symmetrizing, it must contain
part of the meaning of the equation but the other part must be lost, From
the relation inc def : 0, we obtain the result that in the case of

-

= 0, the strain € can be derived from an elastic displacement field s,

if we assume, as was previously always done in the theory of elasticity,

that 8 of eq., (I.40) is zero.1 The elastic rotation %(Vs - s ) follows

lyith @ = 0, u = const by use of eq. (V73D (for div u = 0),

from the same displacement field, As we know then the displacements
are determined by the strain with exception of a rigid rotation of the
whole body. In this case the eq. (I1.52) are equivalent with curl E = 0,
The second automatically contains the statement 9~= const, as will be
shown in the next section. Exactly this statement is lost, if we

derive the equation inc € = 0 from the equation curl B = O,

~
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So the classical theory of elasticity is defined by the equation

curl B = O or which is equivalent, by inc ¢ = 0; @ = O,

If 1 £ 0 the plastic deformation field has the form
def fp + inc Ep. The second part always causes the plastic or quasi- ‘
plastic distortion not to maintain the connection of the body and
therefore gives rise to elastic strain and subsequently to self stressss,

The existence of an incompatibility field is therefore (in any case in ‘
a simply connected body) a presumption that self stresses can appear,

It is easy to show that in the region of the linear theory of elastic-

ity the totality of the stresses which are possible in a body are

uniquely determined by given external forces and the incompatibilities

(816).

57. The Curvature of the Structure without Stresses

The fact that the dislocation causes rotations during its motion,
was used for explaining important phenomena in the physics of metals,
So first Burgers (12] and Bragg [10] found that the grain boundary between
two crystallites (grains) with a small difference in their orientation
is built up by a two-dimensional arrangement of dislocations at the grain
boundary, I1 we study the volume shown in Fig., 16a, for instance, a
group of &

3

and should come to rest along the indicated plane with a constant density,

l-edge dislocations should run through it in the xl-direction
By cutting previously along this plane, the distortion of Fig. 16b is
produced. By rotating each layer through the angle & 9 we can restore

the destroyed connection, Between each two layers which were separated
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by a dislocation wall we have a difference in the orientation by the
angle 8 0. Figure 16c shows the same for a motion of a - (022 + 033)

screw dislccation in xl-direction it 022 = 033. The assignment now is
to find a reiation between the rotation and the density of the disloca-
tions which come to rest,

In the beginning we can restrict our considerations to the case
in which the dislocation density is homogeneous, By eq. (I.51), the
incompatibility tensor vanishes, and if also no external force is applied
to the volume, then this is free of elastic strain altogether., In 814
we will prove this exactly. This statement holds only for small distor-
tions and dislocation densities, respectively, to which we now restrict
our considerations, Therefore, in our case Bij = 913' where 913 are
the elastic (= rigid) rotations of the volume elements dV, by which the
connection, which was destroyed in Fig. 16b and c, was destroyed. For
the Burgers circuit, therefore, we get on the one hand |see eq. (I.l5)

and (1.19)]

g da, = ﬁ dx, Bij=.2! aF, (1.54)

9 dx B = ﬁ dx e =] § d s
x E l A ' X, ol (I. 55)

1
as § d(x,8,,) = 0.° If we substitute df = ¢, db , then we get

for the right-hand side of eq. (I.55)

1 .
As proof take 9i as a linear function of Xy

J
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(= § X, dek) = g X x deé, (1. 56)

€
1jk

where dﬁk is the angle of rotation between two neighboring volume
elements, Now we define with Nye [113] the (macroscopic) curvature

tensor K = (Kij) by the equation

dx (1.57)

dek =) Kkl )

The diagonal components of Kkt are twistings (screwings) of the
xi-plane, meanwhile the other components are bendings of the xi-plane
around the k-direction, ar we can easily see, e.g., in Fig. 16.

If we put eq. (I1.57) in(1.56), we get (Stokes' Theorem)

- ) dx, = - '
eijk‘g X5 Kt%%g €ijk mn fl-! aE S Va s Kep)

=7 €k Sami fi! o Er (1.58)

since for a constant dislocation density Kkl is constant and

an,1 = éni' After comparing with eq. (I.54) and with the decomposing
formula (A.2), the relation, which was first derived by Nye [113]
using another approach, between dislocation density and curvature of

structure follows

=6 -
aij i Kkk Kij’ (1.59)

while the inverse is

1
K, =38 (1.60)

o -a
ij ij kk ij
This equation also holds for small dislocation densities and curva-

tures, respectively, i.e., the change of the orientation dek must

be small relative to 1 over the distance dx‘.




For further discussion, we assume a variable dislocation
now
denisity, and weAcall the relative angle of rotetion between the volume
elements dék for a reason socon to be obvious.,

If we now perform, analogous to the Burgers circuit, a closed

circuit C, along which we add the rotations 661 and déi to obtain
= 6 =
D, =§ab =§ax K, (1.61)
Cc Cc
and by Stokes' Theorem

D= -[f ®xv).qF (1.62)
g = e

While we will not perform the calculation in detail here, it follows

from eq. (1.,60), (I1.18), and (I.51)

KxVs (eidk \7k KLJ) = -1] (1.63)
Therefore, we have for infinite planes
A =
D, Tlij AFJ., (1.64)

which we can regard csimilar to eq. (I.14) as defining equation for D 0
According to eq. (1.63), dei in eq. (I.57) is then only an
exact differential if E = 0, meanwhile for dgi, the analogous con-
clusion is @ = 0. Also, in the case of B = 0, a continuous vector
field 61 exists, which describes that part of the rotation of the

structure (the "part of the grain boundary") 1 which depends directly
?

on the dislocations, and it is identical with 8 of eq. (I.31)(for n=o0.

1For this relation also see 823,
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This we can see from our previous investigations of the problem: d91
wvere the rotations which would restore the connection which was dis-
turbed by the dislocation motion. The same holds for déin The curva-
tures of the structure related to this occur without stresses because
there are no external forces and incompatibilities (814),

The tensor 5 obviously does not contain the elastic rotations,
(\7is‘j - V,si)/z, wvhich depend on the curvatures, The curvatures of the
structure actually observed can be described with another curvature

tensor, which is defined instead of eq. (I.57) by

du, = H, . dx, (1.65)

However, with a continuously varying dislocation density g, also E and
w, are continuous functions of position (for E, at least in a simply
connected body, must be unique), therefore dwi is a total differential.
This, however, holds only for small rotations, see for this Bilby and
Smith [5]. If there are no elastic defcrmations Kij becone identical
with Hij (then, however, ViSJ - Vjsi = 0) .

Egquation (1. 64) states that the Burgers vector B has the same
relation to the dislocations as the ritation vector P has to the incom-
patibilities, Look again at Fig. 15. The original planes of motion
of the dislocations will now be dislocation walls with a constant dis-~-
location density in the plane in the manner of those of Fig. 16,
Taking a circuit along t;; boundary of the plane F, we cut dislocation
walls, and we always add the relative rotation of two volume elements,

Then, however, the dotted dislocation walls do not contributs anything,

since they were cut twice but in opposite directions: If we imagine

b3

3
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that we cut a single plane along the dislocation walls, then both of the
cut edges would be spread by the angle of rotation dbi. With this
approach we get directly a method of measuring the incompatibility of

a state of stress. We cut a thin as possible closed ring, which repre-
sents the boundary of a (macroscopic) plane element AFJ. Then we cut
this ring open and measure the relative rotation of the cut edge which
occurs during the relaxation. The rotation vector is ADi, from which

T., follows by eq. (1.64),

i
For the following reason the ring which is cut out should be so
thin as to define effectively only the related surface AFj. For thicker
rings there is an additional strain of the cut edge, which interferes
with the measurement. In practical cases we will never measure a body
in this way. However, we can get a qualitative impression of the
"average of the incompatibilities" and therefore of the state of the

self stresses (see Chapter II), if we carry out this measurement on

. 1
several macroscopic planes F,

1
The problem of measuring the internal stresses in the interior
of a body is presently unsolved. See for this Reimer's [175] work men-

tioning the magnetic method, which is applicable in some cases.

From these considerations we approach Volterra's distortions of
the second kind (81), Figure 17a shows a cylinder into which only one
dislocation wall penetrates as in Fig, 15, Arourd the boundary of this
wall a hollow torus may be removed. Then uiie hollow cylinder is in a

Volterra state of distortion of the second kind, If we cut open the

DRFY- *
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cylinder along the dislocation wall or also along another arbitrary
plane, both of the cut edges suffer the known discontinuity of rota-
tion, i.e., the state of Fig., 17a can be produced from that of Fig. 17b,
which is without stress, by bending together and welding. In contrast
to previous opinions, the singular plane of the rotation jump can be
found at any time afterwards by experiment. In the case that the body
in Fig. 17b is a single crystal, it is evident that we can find at once
the jump of the orientation in Fig. 17a by use of x-rays (in many cases

much easier). But this is not possible for polycrystals even with more

effort.1

1See for this also the discussion of Nabarro [110], p. 349.

Therefore, a complete description of the state of the Volterra
distortion of the second kind requires an indication of a singular
plane, which we may find in any way. The occasionally used nomenclature
"elementary distortion" belongs in our opinion only to the state of the
first kind, which is consistent with the fact that we can produce each

state of the second kind by a particular arrangement of dislocations, »3

e ve know, Volterra used the word "distortion"' in a slightly
different context. The above-mentioned statement would be read: The
elementary state is that which is caused by a dislocation.

srhe re;ults which are related to the incompatibilities were
found by the author, perhaps first by Moriguti [103] and also by

Eshelby [41].
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¥R, The Conditions of the Boundary Planes for the Distortions

Any boundary surfaces of the experimental body have no been
considered previously, This we wiil remedy now, We get ut once the
conditions as~snciated with the boundary surfaces if we take in eq, (1,11)
and (1.17) instead of the curl operation the two-dimersicnal curl and
instead of the three-dimensional dislocation density g the dislocation
density of the plane . If we call the boundary surfaces 1 and 11, and
if u - (ui) is the dimensionless unit vector of the boundary surface

~

1
in the direction of 1 to [I, then we get from eq. (I.11) and (0.17)

lEquation (1.67) was formulated first by Bilby, Bullough and
Swith [3]. In many cases these authors consider a two-dimensional
dislocation arrangement as an entity called a "surface dislocation"
in contrast tc the normal line dislocation. In other papers quoted on
page 113, these authors mention different applicatione of the theory

of surface dislocations.

nx Bl - x gl - -8 1.68)
nxgl -nxBgl =& (1.67)

where, if we want, we can take the first equation also as the defining

equation for a, However, in many cases it is useful to define the dis-

~

location density of the plane aij in the sense of Schwartz's distri-

bution calculus [131] by the equation

a §(n) (1.68)

= O
ij ij
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where the parameter n characterizes a group of nlanes in such a way

that n 0 is the boundary plune, .(n) is everywhere zeoro except
<

for n U, where it goes to infinity in such a way that “(n) dn = 1,

-l
&,j i+ independent of n,
1;
From eq. (I1.68) it follows that
€T o
6 . dn . & . f(n)dn= & . (1.69)
‘e 1] e 1J ij

Now we consider an infinite body in an initial state without
dislocations, By any external forces dislocations may be daveloped,
and they may move, Here we distinguish three cases:

The first group of dislocatons must vanish or be otherwise

1
annihilated at the conclusion of the (continuously distributed) motion.

1
This annihilation can be carried out in the infinite body by

combining dislocations with orposite sign.

The second group should come to rest with a continuous density 3 in the
body. The tiiird group should also come to rest, however as a two-
dimensional density §, by which the two regions I and II of the body
may be bounded.

At the end the connection of the body should also be r.in-
tained at the boundary surface. This is required by the boundary con-
dition

s -s =0 (1,70)
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~ arte total displacene ' s us in section 2, de can differentite this

vguation in e boundacy surface, and we only lose one irrelevant

constant, The equations

n X 7 oS - X 7 s 0 (1.7Y)

and therefore practically equivalent to eq. (I1.70). Instead of (I.71)

we write with ea (1.9)

T T
nxB 'II -unxB 'I = 0 (1.72)

e.g., we obtain for a location where n points in the xl—direction
T 4T
8

g9t Poq #nd 5;1, BT , B must be the same on both sides

that 3T 8 32’ 33

21’

1
of the boundary surface. Equation (I1.72) is the sum of eqs. (I.66)

and (1.67), Also it follows, formally, of course, from eq. (I.8),

1
The same idea led us previously to eq. (I.8).

Again we consider the three dislocation groups and assume that
they occarred consecutively. The first group, of course, produced
a plastic distortion grad fp' which is continuous in the whole body.
The second group causes a distortion grad fg + curl E:, which is also
continuous in the whole body (that this contains a part grad f;
follows from the fact that the distortions which were caused by the
2nd group also depend on the path of the dislocation).

The distortiors depending on group 3 are discontinuous on the

boundary u¢urface, but are continuous in the partial bodies I and II,

Which shape do they have? The dislocations are neither annihilated
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in the body nor come to rest, Then we will remember the well-known

fact that the decomposition of the tencor field

P p L I
graa s, curl [, (i.73)

o = 23

[
-

1% not unique in a hody wiith one or more boundary surfaces, bhut there
is a distortion which can be described either as vector gradient or

as a curl tensor, If we write it as grad s then since it is simul-

=3’
taneously a curl tensor, it follows that,
P P
i ad s, - dg, =0 3
div grad :3 4 5g (1.74)

In reverse, we can, of cou'se, describe every gradient of a harmonic

voector field as a curl tensor,

p . 1 :
From t..ese considerations we can assume that we can write the

boundary conditions in the form

L5 «rack proof can be derived in addition to §4,

P P -
- - -G
n x v AT v S5 . c (1.75)
or if we take
_ P P
£ = 530y - 5, (16

as the plastic displacement jump in the boundary surface, we also can

write it in the form

This equation tells us that dislocations must be on a surface and in

what arrangement on the surface which had a nonconstant displacement

i




ump g, For application this arrangement is very important, It
applies also for large diste.tions, as does eq, (1.,17), if we relate
all values to their initial condition {£10). The boundary conditions
(1.66) and (I1.,67) become very simpie, if one of the partial bodies
becomes infinitely soft (air) or infinitely rigid, In the first case
the boundary conditions are fuli..led identically, as we e¢asily can see

from (1.70). In th. secon. case, one term of the sum cancels in

eq. (I1.66) and (I1.67), since the distortion is zero in a rigid medium
(in a rigid medium it is obvious that no dislocation can move), In
reality there is no rigid nedium, but it often happens that, e.g.,

a soft metal contains an inclusion of hard metal, the deformation of
which we can neglect. In this case the boundary value problem which
must be solved is greatly simplified. Notice ithat the situation for
stresses in the case of known boundary conditions is just opposite
(they are fulfilled identically at a boundary surface with a rigid

body).

§9. The Boundary Surface Conditions for the Strain,
Two-Dimensional Incompatibility Distribution

In 88 we assumed that the spatial density 3 of the dislocations
which came to rest is a continuous function in the whole body. This
restriction we will drop now, by allowing an additional jump of S
in the boundary surface. We will easily understand that this leads
to a jump in the plastic displacement; e.8., it is possible that in I,
edge dislocations climb by enlarging the volume of 1. meanwhile in II

2 dislocation motion occurs without change in the volume, The related
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displacement jump similarly would be described by

P F‘,I

Eq -5

; 1.78
Ea o ( )

In 87 we emphasized the importance of the incompatibilities with
respect to the =elf r‘resses. We may expect that two-dimensional
distributions of incompatibilities also may play a role in determining

self stresses., Not only the surface dislocations contribute to them,

but also the jump in a. To study this, we take the case in which plastic

? and BP are continuously distributed in I and 1I, where

distortions B 5

~

the passage between I and II can be arbitrarily discontinuous. We assume

that the function of B? which is continuous and has two derivatives is
P
continued in II, as well as BII into I. We write the distortions, sum-

marizing for the whole regions I and I1

P P P P .,
87 =8 + (B -B) 8°(m) (1.79)

where 8°(n) is Heaviside's step function, i.e., 8°(n) = 0 in I and

1 in II. We will use the following rule for the calculation [131]

d i 1 d (1 2
= §°(n) = &' n, = 67 (n) = 6" (n)
1
where 6  is the Dirac Delta function and 62 is the distribution which

describes a doublet function (Dopplebelegung). As all & depend only

1

on n, it further holds that V56° = né" and V61 = n62. Finally, if f

is a continuous function c¢f{ n and eventually of two other coordinates,

we obtain, é% (f61) = f62. In the following, we derive the asymmetric

incompatibility,

H=-7VxB xV, (1.80)

k]
s
%
]
X
4
7
1
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Initialiy we hove

l l
X P ) P : P _ Pico P . P..1
= 3 - U x E - ¥ x g + 7 x (gll §I)6 + 10X (EII 21)6 (1.81)

In cases of doubt the arrow indicates which term was differ-

entiated,

The tirst two terms are the space density and the last is the surface
density of the dislocations according to 8. For further differentia-

tion of the last term, we will use a decomposition into parts which

allows differentiation perpendicular and parallel to the surfaces:

n
vV =

a n
‘7—.3$+V EX(BXV)' (1.82)

’

Then we get

H=a¢xV=-Vx ﬁ? xV -9x (BP -Bp) x V §°

~ ~I1 ~1
p ip y, P P B9
- [V x (EII- él) Xn+nx (aII-EI) x V] 6
P P 2
-nx (EII-QI) X n 6 (1.83)

The first two terms represent the space, i1'e ngxt two the ordinary
two-dimersional incompatibility density. Furthermore, the first part
of thiz is caused by the jump of the dislocation density S, and the
second follows from the surface density §. Finally, the last term
corresponds to a two-dimensional doublet of incompatibilities,

If we carried out the operat?.,n first from the left-hand side

instead of (I.8l1) so we would get a factor of 61 in eq. (I1.83), > B
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LR - (1.84;
- n x (EII-:I) XV -9 x (§II_~I) X n .84)

otherwise eq. (I1.83) would be the same, We can show that this expres-

1 .
sion is identicul to the coefficient of " in eq. (1,83), as it must be.
n
(For it is nx28xV-VxBx ﬁ, as we easily can show by writing

n
G = v 3dd 4+ w2 dw, where v and w are the principal curva“ure direc-

tions. Therefore on/dv ~ v and dn/0w ~ W),

For that part of H which lies in the boundary surface, we now

obtain
s ks (1.85)
with
- == P P T _ == P P
H= - inc (PII_EI)’ H = - inc (BII EI). (1.86)
—— e
where the operations inc and inc are defined by
— ! T S
incf=zVxpPpxn+nxBxvV (1.87)
———1]
incf=nxB xn (1.88)
Therefore it is obvious that (see eq. (I.51))
- - n = _
H=&xn 1 @ xn II +®xV, H=®xn, (1.88a)

Of course it holds that inc (le - B?) 0 and inc (B¥I - B?) = 0,

The conditions of the boundary surface can be written as

inc (8, -B) =H inc H

inc (~II -Bp) =41, inc (EII - EI) =H, (I.88b)
We can easily show that

— S — = ===

(inc B) " = inc B7, (inc B)S = inc BS. (1.88c)

BB o
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-5 S
With 3 -~ ¢ and M - 7, vou get then

2 (e s .= b ¢ - ¢ =5 ]
inc €.) A inc ( 11 I) | (1.89)

These are the boundary conditions for the strains, From eq. (I,.88a)

the important practical relations follow,
S - g = - S
)+ (@x V) ¢ T = (¥ xn) (1.99)

The eqs. (1.30) and (I,51) show, after a simple calculation, whether

a body has or has not self stresses under the given conditions (dislo-
cation density or applied distortions), We easily can show, that in
the region where the linear theory of elaéficity holds, with given
=

", T and T the self stresses are determined uniquely (§14). In par-

~ ~

?
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ticular the self stresses vanish with simultaneously vanishing j, and B
It may be possible to calculate relatively easily the self stresses,
which belong to the given incompatibilities T, ﬁ and T, (813-15). That
i; why it should be mentioned at this point that we easily can formulate
the First Boundary Value Problem (1BVP) of the theory of elasticity

(boundary displacement given) by "V, T given."

Then we imagine that
the edge dislocation is maintained by the fact that the body adheres to
a rigid surrounding, and then we can interpret the edge displacement f
as the displacement jump -g as in 88, From the assumed g the surface
dislocation density is given by -n x Vs, and from eq. (1.90) the asso-
ciated ﬁ ar ﬁ fc Jow in a simple way. For the solution of the problem
T ﬁ given" see 815,

As the only application we take the case (hat along a plane

boundary surface between two materials, the temperature, which is




constant in each, has a jump AT T2 - Tl' Then we have to substitute
only gQ according to eq. (I.11) into eq., (1,88), and after a simple
calculation we obtain (because of the symnetry of EQ) the surface incom-
patibility ﬁ, while ﬁ vanishes hecause of the (onstancy of 8. An

obvious explanation of the doublet of the incompatibilities T foliows

in $23,

§10. Some Problems of Large Distortions

As we mentioned during the derivation of the geometric basic
equation, it holds for arbitrarily large distortions it we refer aij
and Sij to the initial state, Perhaps we imagine some resistance which
initially prevented the body from distorting during the development of
the dislocation and its motion, respectively. The distortions which
the volume element suffers after removing the resistance obviously can
be related completely to the initial state., Only if we interpret it
in this way does the geometric basic equation have the simple form
(1.17). As we see at once, the distortions which are defined by

da, = B, dx, (1.91)
J ij i

referred to the initial state are additive (but not the strain and rota-
tion by themselves). If we sum over a number of sequential distortions

then we obtain

By

¥ \Y] Vv \Y)
= al = .. dx.)) = (T B,.) d .9
d AJ 5\.)‘. d 5 )\E(BlJ xl) (\, BiJ) x4 (1.92)

where the last equation only holds, if we always take for dxi the

(constant) distance of the respective point in the initial state,

oA e
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In this cose also the distortion is composed additively from the strain
and rotation, i.e.,

B . -¢ .+ (1.93)

where, as we know, . has the form (34] Vol. I, pg. 78, [86]

L., = (1 - cos q)(kik - ) + sin q ¢ (1.94)

A
ij 3 i ijk kk

if kx is 2 unit vector in the direction of the rotation axis and q the
magni tude of the rotation angle. A given distortion can easily be

decomposed according to eq. (1.93), since €, 6 is symmetric and w, k6 is

ij iJj
completely determined by its antisymmetric part. Then eq. (1.93) is

not a decompositioi. of the tensor Bi into its symmetric and anti-

J

symmetric part, So i. is understandalle that all equations in which

€., is assumed to be the symmetric part and w

ij ij
part of 313’ hold only for small distortions. The symmetric equations

to be the antisymmetric

of incompatibility are affected by this in particular through 1, T and 1,

while the asymmetric equations of incompatibility as eq. (I.51) also
hoid for large distortions. However, their importance ha:?;een clarified
sufficiently till now., If we relate all values to the final state, then
we get a complicated form for the geometrical bafic equation, which we
will derive in Chapter 1V, However, on the other hand, the statical
basic equation (condition of equilibrium of all forces) assumes its
known simple form only in the final state, while it becomes very compli-
cated for the initial state, This means that we cannot use a simple
form of the geometrical and statical basic equation simultaneously.

There is an important exception: When the rotations wij (and

especially their grain boundary parts 91 ) are large, but the strain

J
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ciJ small, This case is of such great importance because the rotation
1
eiJ occurs without stresses, so there is no energy used and the

1This statement is only approximately true in the crystal (823)

in contrast to the continuum,

dislocations arrange themselves primarily in such a way that ‘ij is as

small as possible, whereas rij may be larger.

However, in the case of pure rotations eij' the total distor-

tion 9: + 8 -0 (see 85); i.e., all volume elements remain in their

J i

2
place, only the orientation of the lattice is rotated. If there are

2This case corresponds to Fig., 16c, but not to Fig. 16b, where
the layers 5x1 did not suffer a pure (plastic) rotation, but were simul-
taneously plastically strained, which is the reason for the total dis-
placement of the layer. If we reestablish the connection with elastic
rotations, then the body seems to be bent, whereas it is (in the case

of small plastic distortions) still without stresses.

simul taneously small strains eij’ then the volume elements only suffer
small displacements, and it is not necessary that we distinguish between
the initial and final state, e.g., the conditions of equilibrium remain

in their simple form if they were taken in the coordinates of the initial

state, In the next section we will show how we c:'n decompose the dis-

location density into a part which causes the rotation eij and one which




causes the strain eij by calculating the rotation of the lattice,
To determine the elastic strain and the self stresses, resnectively,

is only a problem of the linear theory of elasticity.

§11. Determination of the Distortions of
A Body Containing Dislocations

The main problem of the theory of dislocations is to calculate
the elastic distortions, salf stresses and rotations and curvature
of the lattice, respectively, corresponding to a certain distribution
of dislocations 3, §. o, § are not entirely arbitrary functions of
position since they must satisfy the condition that it is not possible
for dislocations to end in the interior of a body or at the boundary sur-
face. However, dislocations §, which are in the boundary surface, may
move out of this and contribute in this way to the space density @,

Equation (I.18)

V. @ =0 (1.95)

is a necessary and sufficient condition for the dislocatio.. @ not

to end. Additionally, we have for each boundary surface the equation1

n =
V. @ .+ n (@

113 7 143 ln - %3 '1) =0 CL305)

which says that where the dislocations @ have divergences, the dis-

locations & meet a boundary surface and join it.

1 n
For V see eq. (I.82).

If we substitute in this equation & = n x (BII - SI) and @ = V x B, then

it is satisfied identically, which we can take as a proof for eq. (I1.96).

o ———
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The given dislocation distribution must always satisfy the conditions
(1.95) and (1.96).

The simplest problem in which g and § are important is that
of a body which adheres tc a rigid surrounding. We wili restrict the
following considerations to this (at a free edge § = 0).

The above mentioned problem can be solved at present for small
distortions most simply by first calculating the stresses (and so also
the strains) and then the rotations. For this we have to calculate the
incompatibilities 3, ﬁ; ﬁ from g, ?, which is very simple according to
89, After calculating the stresses belonging to H, ﬂ; F we get the
strain € from Hooke's lLaw. If we now write the basic equation (I1.17)
in the form

curl @ = @ - curl ¢ (1.97)

then the right-hand side is now known. So after an easy calculatlon1
eq. (1.97) becomes

6kl Vm w, = V‘ w, = (g - curl f)kl (1.98)

(1.98) follows according to the decomposing formula (A2).

and by contracting

2 Vm Wy = (g - curl ‘)mm (1.99)

1f we substitute this in eq. (I1.98), we get

1
V‘ W =3 6kl(g - curl f)mm - (g - curl f)kt (1.100)




where the right-hand si!c is f: 111 a known function. By a simple inte-~
gration we obtain from this the rotation of the structure up to a
constant.

It is remarkable that the BVP which is to be solved for the
siresses contains the form "W ﬂ given' initially, see 89,

Now we will describe a method for calculating the rotation of
the structure before determining the stresses, which is presently
derived only for inf.nite bodies [81], however it may be possible to
extend it without much trouble for finite bodies, The starting point

is the basic equation in the form (I.43)

curl (inc 1 + 8) = o (1.1031)

It is easy to show that url inc 1)

i1 vanishes identically because

inc 1 is 1 symmetrical tensor. Thereafter it follows similar to before

(curl inc E)kl - VL q{ = a (1.102)

-la
k 2

)
mm k&
The left-hand side is {for small distortions) according to eq. (I.60)

equal to minus the curvature tensor K By taking the rotation from

kL’
the right formerly we obtained 7, see eq. (1.63). Now we take the

divergence from the right where the first term vanishes (since
inc 1 2V x1ix V):

5 1
S (5 6kl aﬁm

= o 3
K Vz kl) (1.103;
Here the right-hand side is known. 9k follows by integration, unde-
termined up to a harmonic vector. The lack of uniqueness arises from

the fact that the decomposition of B into grad s + curl { in a finite




I e

w-mprie

R

L e

I e

e A e

69

body is not unique; moreover, we can add an arbitrary part of the (is-
tortion which is related to the surface density E, in the form grud s
or curl (. On ‘he contrary in the infinite body Ok is determined
uniquely by eq. (1,103) (assuning g vanishes at infinity).

As mentioned in the discussion following eq. (1.96), a rota-
‘ion tensor is already determined by its antisymrwetric part., So the
integration of eq. (1,103) gives after a short calculation the rotation
tensor with g as antisymmetric part, which we will call E. This is the

grain boundary part of the rotation of the structure. So it is

inc i
€ =inci + 6 ~

I -1

(1.104)

where einc obviously is the incompatible part of the strain. The basic

equation assumes the form

curl einc = & - curl [ (1.105)

where the right-hand side is known. Then we can calculate the incom-
patibility tensor B which belongs to the elastic deformation f, by
taking a further curl from the right, which permits the calculation

of the stresses in a simple way if € is small. At least in the case
of infinite bodies, this method allows the determination of the strain
from the dislocation density if the rotations are large and the strains
small.1 During these investigations we no longer need to distinguish

between the initial and final state.

1

We didlnot consider the case where the component Q&s - VJsi)/Z

d

of w,, is large. This case is known from the ordinary theory of elastic-

iJ
ity. See e.g., Truesdell [153], who mentions the methods which we then

have to use, We will not add anything to that there,
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The case of large rotations and small strains cunnot be treated
according to the first metnod. The symmetric part of £ﬁe rotation
tensor, hownaver, contributes to the values II, H, F, which were deter-
mined from g E by the use >f the formulas of 89, and we are not
allowed to neglect this part relative to the strains for large defor-
maticnus. In eq. (1.105), however, the initially calculated part of
the rotation tensor is considered exact.

The particular case investigated above is at least as impor-
tant as the case of stresses in connection with large distortions,
which has not been treated. However, during metal manufacturing, we
often find plastic deformations of 10 and 100%, but these must be
mostly in the form of grad EP. Deformations of the type curl SP cause
simul taneous elastic distortions, curl S, the symmetric part of which
cause stresses, With the relatively weak forces with which we deform
plastically, we never can produce elastic deformations of 10 and 100%:
i.e., in most cases we can consider the strain part of curl { as small

~

and so also that (€) of B.




CHAPTER 11

DISLOCATIONS IN THE CONTINUUM: STATICS

Preface

Elastostatics is the theory of the forces which are applied to
a medium, and the problems which are investigated by this theory espe-~
cially consider the calculation of the internal forces (stresses) in
a body which result from any external sources. In our considerations
the sources are mostly dislocations, also quasi-~dislocations, accord-
ing to 8. 1In the previous literature we will find almost entirely
calculations which investigate singular lines of dislocation or at
most perhaps calculations about two-dimensional arrangements of dislo-

cations. We can treat these problems comprehensively with methods of

the classical theory of elasticity. The reason is that the elastic

ij = (Vis.j + Vjsi)/Z beyond the 4

dislocation as in the classical theory of elasticity. However, in the

strain field has the simple form ¢

case of dislocations which are distributed three-dimensionally in the
wvhole body it is not possible to derive the elastic strain from a field

of displacements, and in principle a new method is necessary, e.g.,

for calculating the self stresses g, which belong to a distribution

ij

of dislocations o, Of course, also in a body with dislocations, the

J'
conditions of equilibrium of elastostatics must be satisfied, which
can be written in the form

div g = 0 (11.1)

71
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when there are no body forces, The equation states that the tensor of

self stresses is a special tensor, for it is a tensor of incompatibility
g = inc ¥ (11.2)

which follows at once from eq. (1.42).1 The symmetrical tensor
X = (xij) is called "2nd order stress function tensor," since its

l)
components are the stress functions of Maxwell and Morera.  In

1Equation (11.2) was written first by Beltrami [161] but investi-
gated no further. See, for example, (II1.2), also Finzi [43].

%Ihe addition "2nd order" should remind us that in order to get
stresses, we have to differentiate the stress functions twice. We need
this addition sometimes to distinguish these stress functions from others

as we will see later,

contrast to previous opinions, stress functions are also useful aids

for three-~dimensional problems of the theory of elasticity. Moreover,
in the case of three-dimensionally distributed dislocations, where the
method based on the displacement field fails, stress functions are
necessary. But .e should not only consider them as a convenient aid

to calculation, for their role in the continuum theory of dislocations
is of profound importance. This can be clarified best by the remark
that the stress function tensor is the analogue of the often used vector
potential A in electrodynamics. By its use we satisfy the Maxwell
equation div §.é 0 identically; in a similar manner the conditions of

equilibrium (II.1l) are satisfied by the use of the stress function

tensor,
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812 The Stress Function Tensor
Usually we define the stress tensor g by the differential form

dpJ = ciJ d Fi' (I1.3)

where dp, is the force which is applied on the cut surface dFi if

J

no displacement with respect to the cut should occur.1

lln contrast to isotropic bodies, in a crystal asymmetric stress
tensors also play a certain role, which we will consider in #19. 1In
all the other sections we assume that the stress tensor is symmetrical
in order to avoid useless difficulties. However, it is useful even then
to maintain the order of the indices defined by eq. (I1I.3). (The 1lst

index shows the surface element, the 2nd the applied force.)

Time independent continuum mechanics of solids, as far as we

consider the state of the body, is governed by the equations

curl § = o (11.4)

div g = - F (I11.5)

~

and in addition we have the equation of energy density :

1
e = -2-0' € (11.6)

The plastic deformation grad E?, which does not change the state of
the body, is not contained in these equations. In addi..on to

eq. (11.4) to eq. (11.6), we have the constitutive equation, for which
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we always take Hooke's Law

ci,‘] = ciJkL Ck‘ (11.7)

As mentioned in 811, generally we can consider it co be satisfied
with metals even for large plastic deformations.

) is the Hooke's tensor of the elastic moduli with the
symmetry properties

Cignt = 31kt T C134k T ks ML)

In the case of elastic isotropy, we have1
= &

4yt A 6ij sz + u(ﬁik GJL + ﬁiz Jk) 5 (11.9)
where A\, u are the Lame's constants, The tenscr of the elastic
coefficients ’1sz' which is reciprocal to cijkl is def 1ed by

C.., 8., =S(5._ 6 468 6. (11.10)

ijk4 "kfmm T~ 2 Tim Jn in jm 3

1See, e.g., [34], Vol. III, pg. 60.

For isotropy it holds
1 1

sijkz = A 613 akl + E-(aik 632 + 611 6Jk) (11.11)
with

v (1/2)G '

Na == p'= (/96 (11.12)

where G = |, the shear modulus, m is the Poisson's ratio. Then the

Hooke's Law takes the form
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1 o = 2G(e

1
26 €5 =%y " T %k 1g0 iy i3 * w2 %k big’ Q)

We showed in 86 that it is easy to calculate the incompatibility tensor
which belongs to a distribution of dislocations. So we now consider

eq. (I.52) instead of eq. (II.4)

inc € = n (11.14)

In this the rotations of the structure are initially omitted accord-
ing to 86. Now the conditions of equilibrium are identically satis-
fied by the stress function (II.2) and it is unnecessary to consider

them further. In Cartesian coordinates, eq. (II.2) can be written

2 2 2
-~ 9%g3 9Xgg " 9 Xa3
11 ~ 2 2 ox,, ox
ax3 ax2 2 '3
2 (11.15)
o .2 (_ Nyg . a3 . ax31) . 9 X33
12 ax3 ax3 ax1 ax2 ax]‘ax2

in addition to these we have the four equations obtained by cyclic change

of the indices., If we take Xll = 0, we have the well-known

= Xgg = X33

equation of Morera [102]; with X1 9 = 0, we obtain Maxwell's

= Xg3 = X33

equation [99] if we assume a/ax3 =0, i.e., two-dimensional state of

stress, we will get from eq. (II.15)

32x a%x a%x
o,, = g3 .= - 9 g, = g (11.16)
1 - 2 ! 22 ~ 2 ! 12 - 3x, ox *
axz axl 1 2
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3 M3 Mgy 3 M3 Ny .
%23 © 3:1 (- le + sxz ) v 93 ¢ 532 ( le + 5:2 ) (DTGl .
3%y . a% %y .-
11 22 12 "
a = - - + 2 s (11.16")
33 2 2 ox_ ox
bxz axl 1 2

Equations (I11.16) exactly represent Airy's stress function for a two-
dimensional problem of stresses.1 If we set the terms in parentheses
in eqs. (I1.16') equal to the function §, we have the well-known stress

function of torsion.2 Notice that every stress function X

: 1 appears

1In most cases X = is called Airy's stress function.

X33

2See, e.g., Love [95] or Biezeno-Grammel [1].

only in one of the three lines (11.16), which means that the related
states of stress are independent of each other, at least with respect
to the equilibrium conditions.

Maxwell [99] and Morera [102] showed that it is possible to
describe with their functions every state of stress by div g = 0.
That the symmetric tensor X has only three degrees of freedom is caused
by the fact that according to eq. (I.42) l? = def q contributes nothing
to 0 . Therefore, a stress function tensor of the form def g is called
"tensor of the zero stress functions" [126]. So we can subject the
tensor ) to certain secondary conditions; those of Maxwell are

= 0; those of Morera, ¥ = 0; but in

X2 = Xg3 = Xa 11 = %92 = X33

all cases we first have to prove that these secondary conditions are

"permitted.” We say a secondary condition is permitted if it is
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possibie to describe every arbitrary state of stresses which satisfies
the equation div 0 = O by use of the totality of the stress function
which is restricted by the secondary conditions.

The conditions of the equilibrium are fulfilled by the stress
function. Further, the conditions cf compatibility place additional
restrictions on the stress function; we will obtain those if we substi-

tute 0 of eq. (II.2) into eq. (II.14) and use Hooke's Law (11,7)

inc [s (inc ) ) =1 (11.17)

ijkd

It is not worth while to write these equations in detail. Even in the
case of Maxwell and Morera they are very complicated; therefore, these
functions are never used.

For the following treatment of eq. (I1.17), we define--
restricted to elastic isotropy--the symmetrical tensors X;J' ﬂij by

the equations

4

' 1 1 2 1
' 2G xij —xi,j mxkk Gij’ xij = ZG(XiJ +ﬁxkk Gij) (I1.18)
1. = 26(1 s =N 6, ) 267N,.=" -Ln’ ) (11.18")
ij ij m-1 kk 1j°° ij ij m2 'kk ij *
é With the secondary condition
§
- I —-—
§ Vi xij =0 (11.19)
{
The equations (11.17) get the simpler form [77]
. . ’
LY Xg4 = TIU (11.20)
t
s or simultaneously
= g L
Mxi,j—ni,j (11.20')

as we will show now.

A e
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First, by use of the formulas of decomposition (A.l)

Myy=ne © o= =t € % " n
= A ¢1J (V1 Vk ‘kJ + VJ Vk ‘ki) + v V‘ ", ij
+ Vi VJ ‘kk -4 ‘kk 613 (11.21)

and by use of the Hooke's Law (1I.13) and the condition of equilibrium

Vi oij = 0, it follows easily
m
A oiJ * (Vi VJ Ty = A %k 613’ = 2G “13 (11.22)
These equations are known in the case of nij = 0 (from which it follows
that okk = 0) as the Beltrami's equation., Now we let oiJ = (inc Xij) and

assume that these equations are written in a form similar to eq. (II.21)

and substitute x according to eq. (11.18). Then we get, by use of

1
(11.19)

14
o J/2G =4 x J (V VJ xkk A ka Gij) (I1I.23)

This equation substituted in eq. (I11.22) gives us eq. (II.20) directly
as we easily can check. The secondary conditions of (II.19) are suffi-
cient but not necessary for us to get eq. (II.17) from eq. (II.20).

We get the necessary and sufficient conditions if we substitute OiJ
into eq. (11.22), which is calculated without the conditions (II.19),

Then we get

/ ' / !
88 X4y = A(V Vi Xy * Yy Tk %)t = 175 Y Ve %

— A [
+ =89 v, X, (11.24)

kL 13 = nij
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and the necessary and sufficient conditions are obviously

’ I m
SIS VJ g e s Y, VN Yy Xt

which is identical to

def [(m+l) Ap - mV¥p] - A © prl=0;p= vy

They are satisfied by the stronger conditions (11.19). For the proof
that the conditions (I11.19) are allowed, which naturally contains the
conditions (II1.25), we refer to the original paper [77] in which the

author initially presented the conditions (11.19). This was also found

independently by Marguerre [98].

8§13 Solution of the Superposition Problem
by Self Stresses

The first problems which were solved by three-dimensional stress
functions were related to an infinite body. 1Its volume is V. Then we
have only a superposition problem, but no boundary value problem.

The stress function tensor X of the related problem must satisfy
the necessary and sufficient conditions (II,17). Substituted these by
the sufficient conditions (I1.20) and (11.20'), respectively, and (I1.19).

1
The two first mentioned equations are satisfied by the expressions

xij (x)

- %f‘{,‘r ﬂ;J(.’E" [xx'| av’ (11.26)

x;J(;Q = - sLnIﬂ HU(E_') Ix-x"| av’ (11.26")
v




1lf we substitute eq. (11.26) iato (11.27), then we get the
stresses as a function of the distribution of the incompatibilities
after carrying sut the differentiation, These formulss were first
mentioned by Moriguti [102] (without the uQi of the stress function
tensor), who proved it by direct verification. I thank Dr. J. D,

Eshelby for calling my attention to the paper of Moriguti (March 1957).

as we know from the theory of the equations of the bipotentials,
From the identity vinij = 0, it easily follows that the secondary
equations are also fulfilled.

¥We have seen in the case of Maxwell's and Morera's functions
that the temsor inc X has only three, not six, degrees of freedom.
That holds for every tensor of incompatibility, so also for n,and nf.
So the six integrations can be reduced to three as follows.

As mentioned above, lfof eq. (I1.26) is a tensor of incompat-
ibility (div Xf: 0), since 7 is such a tensor. Also it is easy to

\

show that X in eq. (2.26) becomes a deformator if we substitute it
for n'. However, a deformator does not contribute to the stresses,
since 0 = inc X according to eq. (1.42). So obviously we get the same
stresses if we add an arbitrary deformator to the real Bfand we replace
nfin eq. (2.26) by the resulting tensor (H?). However, we can choose
n_” in such a way that, e.g., 'ﬂ’il = 'l'l'é2 = T]';3 =0 or ‘|']'£2 = 'ﬂ;s = T)gl =0,
Accordingly, it becomes x11 = x22 = x33 =0 or X12 = x23 = x31= 0.
So we get a form in Maxwell's or Morera's functions, respectively, which

is very useful for determining the states of self stresses.
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Now the calculation of 1’ is very emsy. If ve lot be
N =defas+ 7 (11.27)
= then, e.g., we have
/ = = 4 = = g J - - T"
aal'axlu nll , Bazfaxz ﬂzz, aaa,axa a3 (11.28)

from which we get useful functions a,, a,, a, after ordinary integration.

We obtain 7’ (= 11'; ), 1 # j, if we substitute this in (11.27). From this

J
follows that Morera's stress function of the self stresses is

1 " ’
Xy @ = - En'w ng, @) |x-x"| av’ 1 # 3 (11.29)

Then the simple formulas of Morera hcld for the stresses

2
oxX
(o =2 23 ete
11 axz 5x3 U -

G (=1 = 9 (- axza + 3X21 + axlz) (11.30)
23 S;I Bxl ax2 bxs
In a similarly easy way we can determine such values for a,, a,, ag
da da |
1 1 2) _ ’
) (Wz + 5—;{; = 1112 , etc. (11.31) 4

and from eq. (II.27) we get Maxwell's stress functions of the self

siresses to be

l /4 ’ A ’
e X @ = - 's?f.‘!;f nij(l) Ix-x | av 1= (11.32)
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The stresses follow from these

2 &
Xy 3733
[+ = - , etc,
L ax2 sz
3 2
2 (11.33)
97Xy
023 = g’ﬁ , etc,

With finite media, a boundary value problem always follows after the
problem of superposition. Before we treat this, we must first of all
investigate whether or not we are allowed to apply to fiaite media those
methods which we have derived for calculating the particular integral

of the differential equation (1I1.17) in the csse of infinite media.

We can easily show that in the finite medium the Lfof eq. (II.26')
does not generally satisfy the secondary condition div &f: 0. So it is
obviously not certain that this Zf represents a solution of egqgs. (II.17).
However, since div xf = 5 a permitted condition, there must be
a solution of AA Xf: Nl for which we have div &f: 0 and so fulfills

eqs. (11.17).

To get such a solution, we must look for a continuation of the
function nfin the volume external to the medium, which matches Bf at
i the boundary surface and is continuous and differentiable across it,
f and which vanishes very strongly at infinity. It is not difficult to
get such a continuation, We call the function which we find by this

method and which agrees with Bf at the surface of the body, n;. We sub-

stitute this function for 1’ into eq. (I1.26) and integrate over the
! infinite volume, So we get a field of stress functions which fulfills

the differential equation (II.20') and the secondary conditions (II1.19)
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in the whole body; thus it represents the desired particular solution
of eq. (11.17). Now we will add a deformator, def a, to ]; as above
so that we again obtain a Maxwell’s or Morera’s function. If this
method succeeds, the deformator does not contribute to the stresses,
It can easily be shown that this holds, but we dispense with the proof.

So it is possible to calculate a tensor B; = n; + def a even in a finite
medium, where only three components of n; are different from zero, Then

) , /instead of W
n{ and eqs. (I11.29) and (11.32) with nﬁ are par-

ticular integrals of these equations, which simultaneously satisfy the

it follows that AA X =

equation (11.17).

It should be mentioned that in the case of given distributions
of dislocations and incompatibilities, respectively, the methods which
are derived in this section are in practice the only ones available to

solve the superposition problem.1 In the case of quasi-dislocations (86)

1For this, see also, Eshelby [41], S. 91 ff,

where primarily the applied strains 2? are given, there still exists
the method which is known from the old theory of thermal stresses of

Duhamel (33] and Neumann [112]. By use of the expression

e _ R
Vi cijkl ekL = 35 (11,34)

the related "quasi forces" 3? and the displacement field associated
with these are calculated according to the well-known methods., From
this the total strain E? follows by taking the deformator. Then the

T Q

elastic strain is €= € - ¢  from which the stresses follow by use

B s ]

o7 o s s -reramerers SR =
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of Hooke's Law. This method might require the same effort as that of
the stress function,
Finally, we will mention a further method which is only appli-

cable to infinite media at this time. We take instead of (II.2)1

g =curl ¢ (11.35)

1Guonther [61] and Schaefer [126] use a stress function temnsor

Yijk = ‘131 ¢zk for other cases,

where ¢ = «plj) is the asymmetrical 1st order stress function tensor
(because it will be differentiated only once to get the stresses).

Then it is obvious that ¢ = X X V, from which it follows
¢11 =0 V,®,,=0 (11.36)

By taking the curl from the right hand side we get with help of (II.18)

for the secondary condition (II.19) which contains Y
V1 ¢1J =0 (11.37)

as we can easily check. Since X has three degrees of freedom by the
restriction (11,19}, ¢ also has three by the restrictions (II.36) and

(11.37)., With Hooke's Law, it follows from eq. (II. 35)

€ (11.38)

1 = skt Som “m Pns

and by taking the curl from the left hand side, we get

’

v o v vV o

h 13 % %3 " Sijkt Sghi Skam 'n 'm Pnt (11.39)

‘ghi
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which becomes in the case of isotropy, according to eq. (II.1l1),

1 I
agj =N\ egh:j ‘lmn vh Vm ¢nz

]
+ p' (e ) . (11.40) I

ghk €y mn vh vm cpn;j + egh!, ‘jmn vh vm cpnl

After multiplying with ¢, ., we obtain by use of eq. (A.2,3) and

1gj
(11.36)

1

’ 4
efg:j agj ==2(0" +u) e

i V:f Vm (pn!, : (I1.41)

This we substitute into eq. (II1.40) after replacing the indices f£,g,j by

hpq and finally, if we also use the decomposition formulas (A.2) and
consider (II.36,37)1 we get ¢

2G (md' ‘

By == oy MY, - ay). - (11.42)

1 z
For (11.36,37), eghz ejmm Vh Vm Py =" A ¢gj holds, rince

it follows from (A.1).

What does aij mean? We take the decomposition, which is unique in the g

infinite medium,
€ =def s + inc 1 (11.43)

and express the equation div g = 0 by use of Hooke's Law in terms of
1

S and i, With (1.42), we get
bs, + LV V.5, + ~> V. (inc i),, = 0 (11.44)
o © i i35 m=2 i ~3j3 " .

me2

1We restrict ourselves to small deformations and rotations.

R ST 5




and by taking the curl it follows that
dcurl s=0. (11.4%)

That is why curl s = const. in the infinite medium, From this is follows

that

curl def 3= % VXx (Vs + g_V) = %(curl g) v=20 (11.46)

and it holds that

o' = curl ¢ = curl inc i (11.47)
is
I.e., according to 83, gf|that part of the total dislocation density
which caused the stresses., In the case of quasi-dislocations g? of
Q

§6, o' is often directly . Furthermore, we have shown in 811 that we
can calculate gf when we determine the rotations (o' is equal to the
right hand side of eq. (I1.105))). So we are still allowed to consider
a' as a given function. From eq. (II.47) we can easioy see that o' -

is governed by the same conditions, (II.36) and (1i.37), as ¢, i.e.,

that also the particular integral of eq. (II.42) satisfied these conditions:
- G/2n ] <! - ! ] = I 1
93,0 = 25 w‘ ey (X) - o), xDV/|x - x| av', (11.48)

ij’

thus it gives the correct stress function tensor corresponding to o
from which the stresses follow according to eq. (II.35).

It is easy to reduce the nine integrations of eq. (II1.48) to
six, similar to the reduction of the six integrations of eq. (II.26)
to three, But we do not know if it is possible to get only three inte-
grations of (11148). In general the stress functions ¢1J have not been

explored previously, but we believe for other reasons that it is worth
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while to explore them. If we write, analogous to previous derivation,
nxes=- éf for a body which adjoins rigid surroundings, then the elastic

energy of the body takes the form, s.nce div ¢ = O,

E = %f{f Q’;J cpi.] dv + %J;\r &;-J CPiJ dF (I1.49)
or also
E = %f\!}r aij qoij dav + 12-";!‘ &ij CPiJ dF (11.50)

as we wil) show in the next section. E is expressed by the dislocations

which cause the self stresses,

E.g., if ¢1j and ¢fj are fields of stress functions caused by

two single dislocations al and 02 in the infinite medium,1 the

ij ij

energy can be written

E=%f£‘rqij cpij @+ 3 “f;fafj cpfJ dV+%f"JI‘Iaij cpfj av

1 p 2 1 '
+-2-j‘,£‘J o 9y 4 (I11.50')

1In this case we have to consider al and afj as distributiors.

ij

Obviously the third and fourth integral mean the potential energy of
one dislocation in the field of the other dislocation and vice versa,
In this way we obtain an interpretation of the stress function ¢1J'
This represents a dislocation potential. (The circumstances are
analogous to electrostatics, where we have the energy E = % I%J‘p U dv,
if p is the density of the charge. U is called the potential of the

chargae.)

.




The 2nd order stress functions xij’ are analogously the elastic

potential of the incompatibilities,

814, The Elastic Energy and the Variational Problem
in a Medium with Self Stresses

Now we will calculate the expression for the elastic energy of
a medium with self sStresses in terms of stress functions and incom-

patibilities. The starting point is the formula

E= %f“[;f 04y €4y AV (11.51)

which can be written with eq. (II.2)

E=-2¢ ¢ [[fe, v v x av (11.52)
‘213kz-.nnvvizjmx1m .

Partial integration yields

1
E= -~ 3 eijk ezmn LE! n.J eiz Vm X dr

il
va (Vjeil) Vm Xkn dv] (I1.53)

which is identical to eq. (II.49).1 Since in the initial equation

(I1.51) we can also write the distortion BiJ instead of the strains

(because of the symmetry of oy ), eq. (II,50) is proved.

J

1It holds that

Com "m Mn T 7 Pt Cigk V36E T %’ Sigk Py Sis T %
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After partial integration of the volume integral in (11.53),

we get
E-=-2¢. ¢ ([[n ¢,V dF
= 2ijkzml_,,1umxlm
1
‘f,,f (V€9 My Xy OF) + Ej‘{lf X Mg O (11.54)

where the relation (11.21) is used. Here we decompose Vm in the first

integral according to the formula

| 't
V =n ¥V n + ¢ € n Vn
m m p p mpq rsq s r p

(11.55)
which can easily be verified by the use of eq. (A.2), and where the
arrow indicates that in addition to the function which is influenced

by vm, np is also diiferentiated. The integral which is produced by
the second term of (I1.55) is integrated by parts again by the use of
Stokes' theorem, The related line integral vanishes since F is a

n

closed surface. With the abbreviation V = ¢ € n n V
m mpq rsq s p r

of eq. (I.82), the non-vanishing terms are
1 3
E= - s eiJk € ymn L&! nJ €4 M Vp(np xkn) dF
R n
_.Jg Y4en [nm Vj S P (nJ eil)}dF]
1
- EI{'I X Myp 9V (11.56)

The comparison with eqs. (1.87) and (1.90) gives in the case of the

body with a rigid surface

1 1
E=§f-£f X3 T g dv+'2-~[;~,rxij fyy &

1l »p 5
+ '2'.‘]; v, (n xiJ)Tl1J dF (11,57)

At P prns




In this equation n_ are the Cartesian components of the normal vector

k
n of the family of surfaces (88) of which one is the boundary surface F,
This interpretation of nk is necessary to carry out the differentia-
tion ank properly, for now n has also a meaning off of F (it is suf-
ficient to define n in an infinitesimal neighborhood of F).

Equation (II.57) states that the elastic emergy, hence the
self stresses, of a body which has a rigid surface vanishes if there
is no body force and the incompatibilities vanish,

Now we will treat a body with a free surface. According to
the well-known theorem of Colonnetti [17], the elastic energy of a
body to which external forces and self stresses are applied simultan-

eously i3 obtained gy adding the elastic energies of both parts; in

our nomenclature

vhere F represents the body and surface forces.1 The step from

lThis theorem also holds in the case of a body with a rigid

surface (then we can include the surface incompatibilities in 1]_).

If we let 0 = g_L + _q_s, €= L + _g_s where L indicates the stresses

[ ]

—

caused by the load and S the self stresses, then the E(g), which is

calculated according to eq. (II.51), differs from E(g_L) + E(gs) by

L

S y
the interaction energy, fﬂ‘ Gi.‘l eij dV (theorem of Betti), and since

V1 ofj = 0 this can be written in a similar form to (II.57)

ELS

n s L [ L N s =L
J£.r Xy 3 Tlu dav + J;,! Xs4 ﬂi.‘l dF + Jl:‘f Y xijmij dF
and T]L

=L e
Since T]I;J, 'ﬂu ' vanish, we have ELS = 0,

e e et
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eq. (I1.51) to (11.52) holds if there no body forces. However,

eq. (11.52) and following still contain terms due to the boundary
forces, However, as shown in 88 at a free surface the surface
incompatibilities are zero, We can show that the surface integral
in eq.(11.54) vanishes if there are no surface forces and n, 7, = O

i 'ij
so that only

zfaJ Xy Ny @ ifn N =0 (11.59)

rempins, This equation contains the theorem that in a simply con-
nected body and in the region of the linear theory of elasticity all
self stress can be derived from incompatibilities. Eq. (I11.57) eon-
tains the same theorem for a body with a rigid surface, .This holds

even if we create new houndary surfaces by allowing T to degenerate

ij
in the interior of the body to a plane (or even to a line). Accord-
ing to this it is obvious that generally in the region of the linear
theory of elasticity the theorem holds that all self stresses are
caused by incompatibilities, Furthermore, the reverse holds, that

all (symmetric) incompatibilities cause self stresses, which is

obvious from the meaning of incompatibilities as derivatives of the
elastic strains,

The question of the uniqueness of the solution is of great
importance., Thanks to the uniqueness theorem of Kirchhoff of the
classic theory of elasticity and to the theorem of Colonnettiit is suf=-
ficient to clarify that in the absence of external forces the self

stresses (which follow from the stress functions) are uniquely deter-

mined by given incompatibilities, It can readily be proved that for

2 5 T
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an infinite medium eq. (II,26) is a unique solution of (1I,.18) and
(11.20), since there is no iacompatibility at infinity. In a finite

medium, however, it must be shown thaz the additional boundary value

problem has 3 unique solution. We will show in the next section that
with self stresses we always get boith of the well-~kiown boundary
problems of the theory of elasticity, for which the proof of uniqueness
is given in literature, so it generally holds in the region of liﬁeﬁr
theory of elasticity that the stresses of a body are uniquely determined
by the external forces and the incompatibilities,

All the previously considered bodies were zimply connected
bodies even if we allow that the incompatibilities are out of the body.
(This procedure is known from hydrgodyrnamics., We calculate a flow
around a body as if there were sources and vortices in the body.)
However, in the region of the nonlinear theory of elasticity, we csunot
refer all stresses to external forces or incompatibilities, as the

example of the invertible hermisphere shows [160].

The variational problem of self stres:zes hns already been
formulated by Colonnetti [19]. In our nomenclature the expression of
the variation of the energy should vanish

1 P

j:\[}; (G €4 Oyy * €14 Oy (11.60)
where_e!;j is the imposed (plastic or quasi-plastic) strain, The second
, term of eq. (I1.60) Colonnetti called the "potential of the applied
]
4 strain."” 1f we substitute e? = eT - ¢, , according to rq., (I.1) of

i) i3 ij

page 1 into eq. (II,60), we obtain

- %f“f,‘f €y Oyy W (11.61)
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R T _
[ ey oqgav=o . (11.62)

as was first found by Rieder [125] for the case of the body with

a free surface. In this case

e o, av= (v sho, , v
Vot S CIE SRS IS
pe T . "
={"n s o dF - [[[s v. 0, . dv=0  (I1.63)
J}»_ 1§ i3 .,Vf j o174

since nicij and Vic1J vanish if there are no external forces. According

to Rieder [125], eq. (I1.17) are the Euler-Lagrange equations of the
problem of variation of eq. (II,6l) (if there are no external forces;
i.e,, the incompatibilities are given).

In the case of a rigid surface, it is possible to transform the

left-hand side of eq. (II1.62), multiplied by 1/2, to the expression

(11,57) where nij' nij' and i3

to ezj. These vanish according to the physical meaning of efj

T
a deformator, so nij = 0) furthermore, sI is zero on the rigid boundary
of the body. Also, nij = nij

are the incompatibilities which belong

(E? is

= 0 (see eqs, (I.87) to (1.89)). The

variational problem which refers to the energy expressions (II.61) and

(11.57), respectively, should include in addition to the differential

eq. (11.17) also the boundary condition (I1.89) which is in terms of

Xij' This has not been calculated previously.

5 5 For solving the variational problem of the body with a free
surface by direct methods, we must take account of the fact that there

are stress functions for which the related ﬂi vanishes, but not the

J
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relatea boundary forces nJ oij' Such stress functions do not con-
tribute to the integral (11.59) but do contribute to the integral
(I1.61)., In order to get the correct solution, therefore, the

integral (II.61) must become an extremum by constant n,l In the

case of the body with a rigid surface the integral (I1.57) is equiva-

lent to (11.61)., One of these must become an extremum by constant

T n,,, and "

i3’ 1

=11}

ij°

1Even Foppl [44] mentioned that (iI.61) should become an

extremum. The improvement is the addition "7 = const."

We will shortly consider both of the boundary value problems for
the body with a free surface (the superposition problem must be solved);
according to 88 the problem "boundary displacement given" is the same
as the problem "ﬁ , i given" for the body with a rigid surface (see
also the following section).

I1f we take the equation which was first mentioned by Schaefer

(1202
1
=w,, =wn,, & ) .
Xij ¢ij L 13 + G i (11.64)
i 2 .
! This wij is not the same as that formerly used.
where A x,, = 0, then in addition to the conditions of equilibrium,

l ij
eqs, (II.17) are also automatically satisfied by T = 0, if

m .- .
AQ = -y vi VJ wij. (11.65)

N |
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wij is similar to XiJ’ a 2nd order tensor. 1f we take as the solution
of (11.63)
- m'2 N ,
R VJ Lij tapg vV (11.66)
then we obtain
where
H=v + o] ‘x Eiil + X 6»22 + X 6933> (11.68)
- m=1 \"1 ox 2 3x 3 ax '
1 2 3
and Av = 0. We can show [77] that we are allowed to let v = L9 =
xijzwiJ‘FHéiJ i=3] (11.69)

the Maxwell's functions in the case of B'= 0 are reduced to three
harmonic functions, We can easily show that these relations fulfill
(I1.25) but not (I1.19). For the functions wij we take series of
harmonic functions and determine the coefficients by usual methods
to that the boundary conditions, which are expressed in terms of
Xij’ are matched very closely. If we add the stress functions derived
in such a way to the particular Maxwell's function, which were obtained

according to €13, then we obtain the resulting Maxwell's functions for

the associated state of stress.




8§15. Boundary Value Problems Which Arise '
with Self Stresses
and Their Treatment with Stress Functions

The particular integral (I1.29) and (I11.32) of the differential
equation (I1.17) which governs the self stresses does not fulfill in
general the boundary conditions in a body with a free surface, since the

tractions n c.1 # 0 on the boundary, whereas in the body with a rigid

i 4

surface it does not satisfy the strains (1.89), 1In the first case the

boundary value problem of the form

ni cij =) Aj ' (11.70)

remains, whereas in the second case, the form

(11.71)

e

n

[o%
=}
0

o
[}

=3
(=3
(¢}

€ =

must be solved, In both cases the stress functions used have to
satisfy eqs. (J1.17) with T = 0. We replace these according to 8§12

by the equations

/
ALy =0, Vi Xij =0 (11.72)

In practice problems occur where portions of a body separated
by a dislocation wall have different elastic moduli. In this case we
must consider the boundary conditions in terms of both the stresses
and strains, (II.70) and (I1.71) indicate the limiting cases
(modulus = 0 and @, respectively, in the partial volum;) of this
problem, to which it always can be reduced, This remark should explain

why we are conceined with the body with a rigid surface,

e i s £ bt i i et o 8




¥e wiil show now that we also can replace the boundary value

problem (I1.71) by the problem "boundary displacemeat given,”" 1

ij’
) nij’ and ﬁij may be prescribed, Then the elastic strain is composed
T
of two parts. The particular solution éD and a second part cH which

i3 i3

satisfies the homogeneous equations

inc € = 0 divg =0 o, (11.73)

3= Cijke ke

=3
=31

¢
)

We can formally associate surface incompatibilities ﬂ?,ﬁ? and

with both 5? and eH according to eqs. (II.71}. We have n? =

-~ -

{

=3
'
m qu

(=}

since E# € - €, etc. The problem is to determine a strain €
which satisfies eqs. (I1.72) and at the same t.me the boundary condi-
tions (II.71) which are written with the index H. For simplicity
we omit the index H in the'following. Because of the first equation
of (II.73) € has the form def s. We can easily show, but we will not

at this time, that in this case the boundary conditions can be integrated

* over the boundary surface and can be cast in the form
E=K (11.74)

where g is derived from n_and ﬁ: g is that displacement which will

E occur at the surface of the medium if the restraint of the rigid sur-
rounding suddenly vanished.

f_ So it is obvious that we can treat the self stresses with

the previously known boundary value problems. For these there exist
numerous solution methods, which is why we will discuss shortly the
application of three~dimensional stress functions to soive these

| problems.

e ST PR
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The stress function temsor doesz not represent a unique system

of functions, thus it represents a greater variety of physical situa-

tions than, e.g., the displacement vector, which is expressed by the
secondary conditions., So we have the possibility of adjusting our- '
selves to given problems by cahoosing the secondary conditions. Further-
more, Airy's stress functions are so convenient for two-dimensional
problems that we wili at least try to obtain a similar method for three-
dimensional problems.

The goal is not reached. However the simple form of the energy
equation (11,57) leads us to believe that the boundary value problem
defined by egs. (I1.71) and (I1.74), respectiveiy, can be successfully

ireated vy stress functions. 1If we take the approach of the cliassical

Green's method, then we have to start with the theorem of Betti, which
we can write in terms of stress functions after comparing with
eq. (II.57)
» .1 2 1 72 n 1 .72
d
JJ! X5 M5 9V + [f Xyy T oF + ff v (n, X304 9F
Vv F F
(11.75)
r .2 1 2" wl ' 2 .71
= av + dF + v, (n ., dF
L‘I;J Xi3 My j;-! Xi5 My J;;J kM X330T55 OF

Then we identify nij' ﬂij and ﬁij with the given incompatibilities,

1
xiJ with the desired stress function tensor, whereas we substitute for

2

xiJ the fundamental solution (main solution) of the differential

equations (I1,17)., Naturally we want to use the fact that these equa-
tions assume the form AAxij = 0 with the related secondary conditions,
because the fundamental integral of this equation is given by the form
'51- Ef,/SU. Then we hope to reduce the whole boundary value problem

t. the determination of a biharmonic Green's function for the region
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considered. Among other things, the difficulty is now that we do not
know how we can satisfy the secondary conditions which at least guar-
antee that the differential equation (II.17) is satisfied, Written in

terms of Xij the boundary conditions (II.70) are
eijk € "1V3mekn = Az (11.76)

which we have to fulfill simultaneously with egs. (II.17). If we

1

replace these by eqs. (II.72), then we must be sure that Vi Xij =0
is fulfilled. We can do this if we prescribe

v.x ., =0 O (v x'H=0 (11.77)

i X3 = n i X4y T .
on the boundary in addition to the boundary conditions. For with
(11.72) the following holds:
4
AA(Vi Xij) = 0, (11.78)

from which it is clear that with the boundary values (I11.77)

Vi Xéj vanishes simultaneously in the whole volume, The biharmonic
problem defined by the boundary conditions (I11.76) and (II.77) has
not been investigated until now.

On the other hand, it is very easy to find a field Xij which
sat%sfies the boundary conditions (I1.76) and the differential equa-
tions AAxij = 0. For this it is only necessary to set up the Green's
function, It is not impossible to find without great difficulfy the

field which must be addeé to Xij so that the secondary conditions are

satisfied, i.e,, also the differential equations (I11.17).

T —

b e

rho A A
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516 Extension for Elastic Anisotropy,
Double Forces

The crystals of metals, to which we will apply the theory of
distortions, are in many cases ver) elastically anisotropic, which can
not always be neglected. Therefore, even Burgers [13] applied the
anisotropic theory of elasticity to dislocations. Now we will gather
important formulas, which not conly allow us to treat the dislocation
by elastic anisctropy, but also give 2 basis for the treatment of other
important elasti ingularities.

First of all eij = % (Visj + Vjsi) in the region without singu-
larities, If we introduce this by use of the Hooke's Law into the equa-

tions of equilibrium (II.5), then we get

+ F, = 0, Dﬂ(V) zc (11.79)

ijke vivk

*®
Let f(V) be the determi: nt IDik' and Dij(v) be the symmetric tensor

*

of the subdeterminant of f, i.e., D, D = f6_ . With
jb ik ik
D, | 80
%1% Pke Nk (11.80)
equation (II.79) becomes
fh, +F =0, (I1.81)
J J

In the case of a point force PJ at the point 5} we can write
53(§) = Pjé(i-ff), 5(x-x") E\‘ixl-xi) 6(x2—xé) 6(x3—xé) (11.82)

then

f hj + Pj(gf) (x-x') =0 (11.83)
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By the equation
fU+38(x)=0 (11.84)
homogeneous
we define the fundamental solution U(x) of the linear differential
equation of order 6, fu = 0, in the infinite medium (so it is
unique except for a negligible function of the 5th power of X). If
we know U, then we also know the particular integral of (I1.81)
= f.1‘ % x')av' XE |IX - x'|.
h (0 fv V@ F (xDav, l l (1L.85)
Therefore, for the point force in the infinite medium it holds that
hj(§) = U(x) Pj(i') (11.86) !
The related displacement field is, according to eq. (II.80)
t 3
. ' . -
sj(g) = Sij(x) Pi(_:g) . Sij = Dij U. (11.87)

The symmetric tensor sij is the fundamental solution of the elastic

differential equations (I1.79) for the displacement., By use of it the

particular solution of eq. (11.79) becomes

AAN
s (x) = i+ 8,
- i

] L d‘-l
! i 8560 F )

The physical meaning of the components of sij can easily be shown from

eq. (I1.87) if we assume lPil = 1. Then sij is the j-component of the

related displacement.
We say,

5,0 = P_(x') v, Sy (x) (11.89)

J i

is the displacement at the point x, which is caused by a double force

, which i« not necessarily

Pij at the point x'. We call the tensor, Pij

.
Ittt e 5505 o
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symmetric, the force dipole. Tne second index shows the direction of
opposite and equal point forces. The first index shows the direction
of the connection of the points of application; this is also the

direction in which the two forces move together as we pass to the limit

P E 4 lim L P (11.90)
. £, -=0,p e = I

The diagonal components of P,, are double forces without moments; the

ij

other components have moments about an axis perpendicular to the i-
and j-direction. The entire torque is described by the antisymmetric

part of P For further information about double forces, see Love [95].

ij’
The displacement

sp00 = P (') 7, TS, (x) (11.91)

is caused by the quadrupole forces P,

ij

K’ and in a similar way we can
define poles of higher order.

In the case of elastic isotropy we can calculate with

eq. (1i.9)
Dij = (A+p) vivj + pd 6ij (i1.92)
n:j = L= WOWW .7, + pOw2w) 86,1 8 (11.93)
£ = u2Ow2p) B84, U = 1 x> (11.94)

96T u2( A+2p)

therefore with Ax3 =12 x

si =§?ﬁ X-12*_uvv +6 A) x (11.95)
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Here the components of S,  are elementary functions of x. The same

i)
remark holds only in the case of hexagonal symmetry ([76,180).
Now we will describe briefly the stress function method

for anisotropy [80]}, which again has the advantage that it can be

applied to continuously distributed dislocations. Let

i3 = Rigue e Yy ¥yy = O (11.96)

where X is a 2nd order differential operator which is known only

ijki
for the case of isotropy and cubic symmetry, It has the same symmetry

as the Hooke's tensor of the related crystal and can be written in the
case of isotropy

3

xijkl = u [2}7 61J ékl + (K+2u.)(51k 63! + 611 éjk)] A (I1,97)

The wij satisfy the differential equation

f ¢1J = T‘i_-; (11.98)
which is solved by

j = f My Uav (11,99)

For the stress function Xij we get

Yo = j‘f‘r My Xy VOO av? (11.100)

In the case of isotropy with (I1.97) and (II,94)

= 2\
L 6
5 ik + (I1.101)

=
- 6
Xkt U sn L%e2n 1 Sxe 1 gkl ¥
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by which eq. (11.100) can be tranaformed into {11.26), The treatment

+f the plane problem is of interest in order to apply it to straight
dislocation lines. We assume B/bxa = 0. The functions we will get

now should be signified by a bar. 1t can be shown that f, a function of
order 6, can be decomposed into a triple product of terms which are

of order 2 and homogeneous (for isotropic and hexagonal crystals this is
possible for the three-dimensional f)., Thus, the characteristic 6th
order equation related to f has elementary solutions and the related
(two-dimensional) fundamental solution U becomes an elementary function,
which can be derived very easily in all cases, Therefore we ~ssume them

to be known. [t holds that

Ui{x) =_]‘ U(x) dx, (11.102)

-l

as is well known from the theory of differential equations. Now we
have gathered the basic techniques to treat dislocations and other

singularities with sufficient completeness.

8§17, The Treatment of Singular Dislocations According
to the Theory of Elasticity

For applications, the single dislocation is an important factor.
In Fig. 9a,b the development of a single edge dislocation was shown.
We imagine that the cut cylinder of Fig. 9a is pressed together to
become the complete cylinder of Fig. 9b so that the relative displace-~
ment g of the plane A with respect to B has only an X component;
afterwards A and B coalesce to a plane f. Figure 10 shows the develop-

ment of a screw dislocation: We imagine that the cyinder of Fig. 10
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is produced by cutting a complete cylinder open and by a relative dis-

placement of the cut edges in the direction of the cylinder axis.

In general the dislocation will occur clong an arbitrary three-
dimensional curve L with the unit tangemt vector t which surrounds its
surface of development (of the dislocation) f with the unit norral vector
n. g is the unit vector n x t. We assume that ( is so small that we

can consider the "dislocation strip’ of width 2{ to be locally linear.

Then q is the shortest distance between the curve L and a point which
lies on f. |
According to eq. (I.77) the dislocation density in the strip is
- n x Vg, which is equal to t(dg/dg), because g changes only in the
q-direction. The distribution of g(q) is naturally unknown to us; in
Fig. 9, 10 it is shown linearly changing. More generally BIEJ/bq may be
an arbitrary curve, which we write - y(q)lg?,, where g? is the constant |
o

displacement along most of the surface f. According to 81,2, b = -g

is the Burgers vector of the dislocation. Thus we obtain the two-

dimensional dislocation density §

g = ti bZ v(Q) (11.103)

After this calculation the main calculation follows., The start-

ing point is eq. (II.26') in which we substitute nij according to

eq. (1.51)1

S
nij = - (ejkl Vk diz) (I11.104)

1S means 'symmetric part of"

o TR W 4 o
E VIR, g ke o
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After partial !ntegration we obtain, since the surface integral vanishes

v /Aw?
with Vk = 9 axk

. __2 :‘” t Yyt ns — -y .
xij(§) o (‘jkl J{y au(.{_)vk xdv') , x= |§_§_|- (11.105) .

Here we have evidently to substitute ay dav' = aiz dq' dL', where dL'
is the magnitude of the line element dLi of the curve L. With (I1.103)

we obtain

@, dv' = t b‘ v{(q')dq' dL' = b, dL'1 v(q'} dq' (11.106)

If we substitute this in eq. (I1.105) and y(q') by the delta function
8(q'), then we can carry out the integration with respect to q' and

we obtain for the singular dislocation line
v _L r ' ' ' 1S
Xy =~ w bb&{c v, x dL} 6(q')dq")

S (I1.106')

1 [ 1]
L) b, § g dEoY

If we take V& in front of the integral, where the sign will be reversed,

since we not differentiate with respect to x then we obtain the final

1,
formula, which was first mentioned by the author [78] ,

1

t -— t S '
X1y = am Cyke Po i §L X M)

(11.107)

By this technique the state of stress which is caused by a dislocation
along the curve L, is reduced to the relatively simple integral § x du’',
It will be shown that the stresses at the curve itself diverge, which
obviously arises from the limit y(q) — 6(q). Ii we are interested in

the state in the immediate surrounding »f the curve L, then we are not




Y T

e L

107

alloved to take this limit, but we have to integrate the equation with

v(@) of (11.106").}

1
At some distance from L the principle of de St. Venant becomes
effective: the result no longer depends on the exact distribution

function y(q).

If the dislocation line is a straight line and is along the Xq

We can easily check the formula

axis, then dLi becomes dxa.
L/2
x dx} = - 02 1n /L) + 1L%/4, %= xf ” xg (11.108)
-L/2

which holds everywhere, where p, X5 < L.2 In this expression L is the

2The exact expression (I1,108) is

2 L L 2 Il
C/2)In [(G+ %, + V& )G = %3 +/=)/7) + 55+ x) W4

1L 2 L 2
+§(§-x3)«/:,»./-I = b G Ex) .

length of the dislocation, whicﬁ now shall go to infinity. According to
eq. (11.,107) and (II.2) the expression (I1.108) is to be differentiated
three times in order to get the stresses. p2 In L does not contribute
to these and we vrite by substituting (I1.108) into (II.107)

RSV

' 2
)(3‘j = (ejkl + € Gaj)bz Vk p” 1np (11.109)

From the similarity of eq. (I1.26') to (II.99) we conclude the corre-

sponding formulas for anisotropy, hence, eq. (II.107) corresponds to
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4 = ’ §
biy = Cypg Oy VK{U(x) dL}) (11.110)
and eq. (11.109) to
1 = =
Vag = = 5 3s * Caq O3p70p T T (11.111)

from which we calculate the stress functionsx1J according to
eq. (I1.96).

The calculation of xijkl’ which is necessary oaly once for each
crystal, may be not very extensive in the two-dimensional case, but it
is in the three-dimensional case [80). We can see that in the case of
straight dislocation lines and anisotropy, the stresses are found to
be elementary functions (since U is an elementary function according to
816). Eshelby pointed out how we can obtain these also in the complex
plane, x1 + ix2, starting with a complex displacement field, s1 + isz.
Previously Burgers noticed [13] that the anisotropic formulas became
very simple inthe cubic crystals if the dislocations occur in a special
crystallographic direction. Especially, we obtain the same displacements
for a screw dislocation in the (001) direction as for isotropy.

Nov. we will distinguish two cases:

1. The straight edge dislocation in the x3-direction. Then
b, =V, =0 and in eq. (I1.109) j = 3, i.e., only xéa is different

3 3

from zero. If we choose, e.g., xlﬁbz (i.e., 4 = 1), then

1 3 2
' = —
X33 = 8 bl gg (@ 1lnp) (11.112)
According to eq. (II.16) and (I1.18), the relation between Airy's

1 2
stress function and xéa is given by = ;g% xéa = ¥X; with this we can

1
We can obtain also X,, and Xgp different from zero according to
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(Footnote Continued)
eq. (11,18). By use of eq. (I1.16) we can easily show that from this

the relation, mo,, = © follows which is known from the theory

33 = %1 * %2

and ¢ are determined

of two-dimensional state of strain [1]; 011' 012 22

alone by X, thus we need not consider Xll and Xzz‘

write eq. (11.112) .
SRR R A=b_1£G. (11.113)
X="3 3x, P )y A= on mm1 ;

This equation was obtained first by Koehler [111}. According to the

normal rules of tune theory of elasticity the stresses follow

X 3x2 + x2

2 2 2 1 2
0’11 = Bx/axz- -A—z-———z
p p
X x2 - X
2 11 2
O1g = - 3 x/axlax2 = A - 5 (11.114)
p p
2 _ x2
o —Bz/BxZ-Aix'l £
22 - O WX =4 H T
p p
1
and the displacements are
b X X x
_ 1 mo.om/2 71 2"’ _ 2
Sl = m[((P 2) + -1 —-p-z—_‘ y @ = arc tan q
(I1.115)

b X
e —2 | m- &4 m 2]
82 = " WD [(m 2) 1n z +m pz _'

1These equations were first derived in a different way by
Burgers (see below) [12], Taylor was the first who applied the theory

of elasticity to crystal dislocations and particularly he demonstrated
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(Footnote Continued)
their relation to Volterra's work, but he was not exact in his detailed

calculation.

For the calculation of the displacement a special consideration is

necessary since s_ diverges logarithmically with p {71].

2

2. Screw dislocations in the x3 direction. Then eq. (11.109)

becomes
1/2 d 2 1/2 d 2
(] S =4t e AL
X3 = sn"sb'x';(" 1n p),X3q Snbssq(p 10
(11.116)
After multiplication with 2G, these are simultaneously the Xij values.

According to eq. (I1.16) the stress function for torsion is then

Gb Gb

2 2
3/(29 ) ) 2 3
Q--jﬁ(—i-l-——z- (s 1np)=-F(1np+1) (11.117)
ox ox
1 2
the stresses are
Gb_x Gb,_x
oy = —2 , o, = 1 (11.118)
21 p 2n o
and the displacements
b3 x2
S) = 85 = 0, S3 = o ¢ ¢ = arc tan x—l- (11.119)

In this case it is extremely instructive to use the displacements,
since we can immediately see from eq. (I11.119) the transformation of

the x, plane into the screw surface.1

3

1Because of s1 = 52 = 0, it is very convenient to derive these

equations starting with the displacement Sqs as was originally done by

Burgers [12] and as can be read in all books concerning dislocations,
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Though the integral (11.107) looks very simple, its integration
is only possible in a closed form in the simplest cases. This happens
with dislocations which are piecewise straight lines; also with disloca-

tions which are plane quadratic curves. In the last case we get

elliptic integrals.

Originally, instead of the formula (II1.,107), the displacement
field of the general dislocation line was represented as a surface
integral (by Burgers [12]). By use of the Green's method in the case
ﬁ_: 0 we can express the displacements in a body in terms of the volume

and surfuce forces and the surface displacements, We obtain1 (for the

explicit calculatior, see, e.g., Seeger [134])

s, (X) = j’{j‘ s, (0 F (Dav + j;:‘]' §,, 0 F, (x")aF
(11.120)

+ c (x') (x) dF'
J;-!ijklij Elh

1This formula was first mentioned by Fredholm [57] and dis-

cuassed in Gebbia [58].

We can apply this formula, e.g., to the cut cylinder in Fig. 9a if we

bend it together without welding initially (Fig. 9b). However, 3i = 0,

B Ep—
et et

also the second integral of eq. (II.120) vanishes since the surface
forces which cause the planes A and B to be bent together are equal
and opposite at the same points on these planes, Thus if we call the

i s?,gi (88), we obtain from eq. (II.120)

displacement jump, sA
- 3 '
s = -g ks 48y . S (X df
(I1.121)
I e ey e o
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where f is the coa:eésced surface AB with A as the pusitive part and
F is the surface of the body after welding. If we neglect an exact
description of the very near neighborhood of the dislocation, which
means that we assume g on f is constant up to the curve L, and simul-

taneously 2e restrict ourselves to an infinite medium, then we obtain

e e 3 ' p
X = - b, . ¢kt ™ Kk- S,y (df’ (11.122)

According to Burgers this is the displacement field, to a good approx-
imation, caused by a displacement which occurred along an arbitrary
curve L. Similar to eq. (I11.107), this does not hold in the near
neighborhood of the curve. In eq. (I11.122), the glide vector is
replaced by the Burgers vector.

From the comparison with eq. (11.89) we conclude that -cijkl nibj
is the surface density of force dipoles, After welding, these dipoles
have obviously taken the place of the external forces which bent the
cylinder together. It is possible to imagine that the fields which
were caused by a dislocation are either produced by a dislocation line
(eq. (I1.110) or by a surface density of force dipoles, corresponding
exactly to the fact in the theory of magnetic fields that a line current
and a magnetic double layer are equivalent.1 However, the direct proof
of the equivalence of eq. (I1.110) and (I1.122) is very hard and is only
carried out for isotropy [83].

The integral ‘“11.122) contain:s the part

1ap (11.123)
X

b
h . S W
an 2 = gq J; ™ Vi

1
See also Nabarro for this [109].
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in the case of isotropy, as we can easily urify, e.g., by substituting
eq. (11.9) into (I1.95); Z(x) is the three-dimensional solid angie by

which the dislocation line is seen from the point X. This part causes

1
an ambiguity of the displacement. The remaining part was represented

1That the displacement field is not unique in the case of a

dislocation follows from the existence of the Burgers vector b, which
says that the displacement increases by b if we go once around the
dislocation. The surface of the diprles is the branch surface. The
corresponding behavior of the electric potential around a linear

electric current is weli known.

as a line integral by Burgers [12]. Peacbh and Koehler [115} also
describec¢ [ by a line integral and thus obtained the whole displacement
field as ¢ line integral, however, their formula does rot have the
simplicity of our line integral (I1.107). For anisotropy the displace-
ment field was first calculated as a line integral by Leibfried [90].
This method has a special importance, as the transformation of

eq. (11.122) into a line integral is the mathematical proof of the fact
that the position of the surface f, on which we imagine the force dipoles
are distributed, is arbitrary if the boundary is the dislocation line.
Naturally this proof can be also derived from eq. (II.107).

The second integral in eq. (I1.121) represents the displacement
which must be added to that of (il1.12Z2) to match the boundary conditious,
Moreover, eq. (II.121) holds also in the case that g is an arbitrary
function of the surface f. This is the case of the "Somigliana disloca-

tion.”" This has been investigated previously by Mann [97] and Bogdanoff

(9].
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We define the elastic (self) energy of a dislocation to be the
tnerease ot the potential energy which the medium, which was originally
in @ natural state, suffered during the invasion or develcopment of a
dislocation. 1f the dislocution invades from the exterior, then we
often have an edge on the surface (Fig. 10) through which the surface
stresses of the continuum are locally changed. This part of the change
of the potentiai energy can be neglected in most cases, and therefore
we will no longer be concerned with it, See Nabarro [110], p. 332,

We restrict our considerations to the infinite medium., In the
center of the saingular dislocation, the stresses become infinite
according to eq. (11.1141). Therefore the energy of the dislocation per
unit length {line energy) diverges. This is the big problem with all
problems concerning the energy of dislocations. The real dislocations
have all a certain finite "width” 2( and so finite self energy.
Fortunately [ 15 only contained logarithmically in the formula of the
energy, so that 1t 15 not necessary for practical use to have the exact
di=tribution of g}q) of the plastic relative displacement in the dis-
location strip 27,

In the following we will talk of the dislocation "line,” and
where a finite width is imporcant, we will emphasize this.

According to Cottrell [122] we imagine that a dislocation lies
along a curve LB in an infinite medium without external forces, and
a second¢ dislocation is developed by cutting along a surface f with

A
the boundary curve L , and both of the edges are plastically displaced

A

i The work done in this process is

A
by the glide vector gi =z = bh

-
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1
A B 1 A
v b J‘if (0, + 3 9,001y, (11.124)

1In the finite body we have, according to Bilby (2]

additional to eq. (11.124) a term ‘ﬁr si(o?J + % o: )d}‘J which has
F J

a meaning similar to the second integral of eq. (11.121), Another
starting point of the following investigation, which would bring the

same results, is eq. (II,59).

where O?J is the stress field caused by the dislocation LB, 0:3 is the
stress field which is developed during the procedure (therefore 1/2)
caused by the curve LA. By replacing the stresses by the stress function

according to eq. (II.2) and using Stokes' theorem, we get

A

B 1 A A
W= bi ‘fijk A VJ(Xkl. + Exk!.)dl“ (11,125)

or according to eq. (I1.96) expressed in terms of *11

A B 1 A A
= - 'f ~—
W=-b eijk g Vj Xeton Ve * 3 Wmn)dLL . (I11.126)
L
Here we substitute *:n of eq. (11.110) and get with
]
A o (11.127)
i q 1iq
§ the following
’ B A
) “éB =~ €3k “npq §A §B Yy Yp Yty V(X)L dL, (11.127")
L L
A B {
X = |X =-x

A e s B e g

Badis - LRl

A




This 15 the part of the work whish was caused by the presence of the
B A
dislocation 1. during the development of the dislocation line L. , and

A 3
we call it the interaction energy of the dislocation L. und Ll. It

AB
holds that E EBA. In the case of elastic isotropy with eq. (11.941)

and (11.97) for eq. (11.127'), we obtain

B G 2 B A
‘\ L m e—— @ rep—
r?q = ik “noq §A §B CAR )[m_l a? aL
1. L

. (11.128)
B , A B . A C
+ de dLn+ sz sz énk_] 3

The generally asymmetric tensor Miz is analogous to the well-known

mutual inductance in the theory of linear currents.1

1Blin [7] gave an equivalent formula to (II,128) and Stroh
{148] gave an additional cxpression for the case that the dislocations
are in a plane. Eq. (11.127') was first mentioned by the author [801],
The formula (11,128) in the same paper contains a calculation error.
For special arrangements of the dislocation the dislocation mutual
inductance can be equal to the magnetic inductance of the similar

arrangement of the current, as Hart [170] shows.

Here we cannot substitute *:n according to eq. (11.110), for
then we get a double line integral along the same line, which diverges.
Therefore, we do not get a simple formula such as (11,127') for the
seif energy of a dislocation starting with (I1,127'), We can approach
the problem as follows: We imagine that the dislocation strip of

width 2 consists of "dislocation filaments" infinitely close together,

— —

o e
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with the infinitesimal glide vector dg(q) = -2? v(g)dq (see 817) and

we calculate the interaction energy of all these filaments according

to eq. (11.127)., So we get (for isotropy)1

AL A A
N = b b nr;‘: (11.129)
¢ g -
G 1] [] § 2 1]
iq - " Ten “1jk “npq -[ Sl '[C da'y@ff (v 0 | 5 d
;
+dL dL_ + dLj dL, 6nKJ (11.129°)

1
The superscrivt A is left off on the left-hand side of
eq. (11.129). The integration §§ is taken along two dislocation

filaments.

Here the interaction energy of each line element with all elements of
all nther filaments is considered, however, not the interaction energy
with the elements of its own filament and not the self energy of the
element of the filament, However, we recognize, that with increasing
number of dislocation filaments the latter part loses importance with
respect to the former part, and it becomes infinitely small with respect
to the former part if the filaments are infinitely near together,
Therefore eq. (11.129) shows the correct value of the self energy of
the dislocation strip indeed, and the symmetric tensor M?: is the
analogy to the self inductance.

By use of the concepts of self and mutual inductance the energy

of an arrangement of many dislocations can be written in the form

E- = b pB W8 (11.130)
i q iq
A,B
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where A and B take the value of each dislocation line,
Now we show an application of the important equation (I11.128),
e.g., a straight dislocation line LB lies along the xa-direction.

B
Then the integration along L~ in eq. (I1.128) can be carried out in

an elementary fashion, We use eq. (11.108) and write

D oo pa L B 2 '
¢V x)dL Yo xdLT 2 - e 11.131
‘g JP s Jop ‘B s Y'jvp LI L is ¢ )
L L
Hence,
B G r 2 P 2 A A
M. - - € I v D) | —
cq 87 "ijk npq A Vj p(0 tn L) m-1 de in + dLn 1k
L
A 7
. | .
+ sz 12 6nKJ . (11.132)
We can easily check that the following relation holds
X X
vjvpu 1n T g-(ln Lo 2)63' + -_Eij y Jyp=1,2 . (I1.133)

A
Now we restrict ourselves to the case that the dislocation L is in

the x_, = 0 plane and we obtain for the right-hand side of eq. (11.133)

2
11 1 1
2[(1n17 + 5)6jp + on], where j,p = 1,2 and éjp =1for j=p-=1,

otherwise vanishes., This we substitu®e in eq. (11.132) and consider

simultaneously that there we have in = ik = iL = 13 and furthermore,

sz =0, For j=p-=1, we get the part
»
X
G [ 1 1 3
— —— € — -
g o_l-_m-l €ias a2 S & 2800 equ] IA(I“ L+ 39%
: L (11.134)

to be MAB and for j p = 2, the part
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X
Gl 4 ) )
& LaeT %2k ®32q * 2123 'kzq] IA““ Tt P
L

X

G 1 1
+ 47 Yok Skaq J A0 T+ Py (11.135)

From this it easily follows that:

X
G nm 1 1
G = - ) an T Peng
L
X
G m 1 1
Vo = - & ax LT P
L
X
G 1
i — IA(ln = + l)dx3
L
(11.136)
X
G 1 1 1
31 = 27 m-1 Au“ Tt P
L

X
G 1 1
u’:‘; - & [ and+ Dax

o
]
B
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n
e
|]

[ &)
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For the further treatment of the integration, we have to substitute in
the logarithm the equation, xl(xa), of the dislocation line LA where dx3
appears, If LA is also a straight line and parallel to LB we have

= = 0, since = 0, erefore, only the diagonal components
u;fufg01dxlo'rhf ly the diagonal t
of Miz remain, i.e,, parallel dislocation lines whose Burgers vector

are perpendicular do not have any influence on each other in isotropic

medium (this conclusion follows from eq. (II1.127). Now we write down

ARragt e A
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= d (= parallel dislocation lines with the

the components of H:i for xl

distance d)

G m . d 1
41--—2n—m_lb(lni+§) e
B G m . d 3
M;Z < plieay L' (1n i + -5) (11.137)

B__ G .\ . d
Mga = L' (1n T 1)

We carried out the second integration with the limits -L'/2 = L'/2
where L' << L is assumed, since the presumption of eqs. (II.138)
(validity of eq. (I11.108)) only holds then. However, we will show
later on that eqs. (I11,137) are only slightly changed for the exact
calculation L' = L, as long as L >> d,

The interaction energy of two straight parallel dislocations
separated by a distance, d, was investigated by various authors. By
differentiating it, the attractive (bA, bB antiparallel) or repulsive
(bA, bB parallel) force can be derived. Perhaps those authors got the
formulas for the interaction energy which can ve obtained by multiplying
eqs. (II,137) with bAbB, in an easier way than we did, for the simplifi-
cations of this special case can be used at the very beginning. However,
we used our derivation to get the equations (I11.136), which are rela-
tiveiy simple and govern a group of problems which are of some impor-

1
tance in practice. We will discuss an application of these equations

in 829,

lln eqs. (I1.136) we can immediately see an important part of ’

the result for dislocations whose lines are perpendicular to each other,

which were discussed by Nabarro {110], 8309. Trus LA has the direction ;
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(Footnote Continued)

X Then dx, = 0 in the equations (I1.136) and the interaction is only

1° 3
present in the case I:B (LA and LB are screw dislocations) and in the

case Igf (LA and LB are edge dislocations with parallel Burgers vector).

Our formulas (11.137) are distinguished from those of other
authors in two ways.1 Cottrell [22]), who starts from eq. (I1.,124), does
not change the surface integral into a line integral and so in his final

formula, instead of the dislocation length L, the dimension R of the

1Koehler was the first to calculate the energy of a straight

dislocation and the interaction energy of two dislocations.

medium which is perpendicular to the dislocation line and also goes to
infinity, appears in the logarithm. Eshelby (see [110], pp. 305-306),
who used different approaches to the problem, e.g., the use of bipolar
coordinates, obtained the same, In ;11 cases we get a logarithmic
diverg ace of theé interaction energy per unit length of parallel,
straight dislocation lines, thus we are forced in reality to calculate
in the finite body. We will show that the same is true for the self
energy of a straight dislocation line. Often this complication can
be avoided by taking for R or L the approximate value of the average
distance between dislocations with different sign (dislocation network
§29) (e.g., 10-'4 cm in undeformed metal). This procedure is not suffi-
cient. However, practical problems often occur in such a way (829) that
either L or R, respectively, cancels or is known from the beginning,

whereas, in many cases, the approximate value of this term is sufficient
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because of the logarithmic dependence of the energy on L and R, Second,
our formulas are distinguished from those of other authors by the term
in addition to ln(d/L). This is small with respect to 1ln(d/L)) accord-
ing to the assumption (d << L), The difference is caused by the differ-
ent treatment of dislocation center. Also, it plays a role if we have
R or L in the logarithm,

1
Next we apply eq. (I1,128) to two straight dislocations, which

1This will lead us to a method which abbreviates the calculation

of the self energy very much,

are parallel and separated by the distance p along the x3-direction
(both of them have the finite length L, Fig. 18) and especially p << L.
We carry out the differentiation V Vpx before integrating and neglect

J
A _B A _B2
then all terms of this expression which have the factor x1 -x1 or xé‘-xz.

2These terms are less by a factor p/L than the remaining terms,

as a more intensive investigation shows,

(2]
As we can easily see, only the differentiations az/axf and a“/axi will
give a contribution 1/x and all other terms vanish. Furthermore, we

assume that the Burgers vectors of the two dislocations are equal and
the dislocations lie in the
lplanex2 = 0, Thaeir angle with respect to the line direction is B,

thus the components of R_in the xl- and x,~direction are b sin B and

3

b cos B, respectively. So we easily calculate the interaction energy

EAB according to eq. (I1.127) and (I1.128) to be

. . et
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2 dx

AB = izr (ll T sin B + CO8 B)‘ﬁf 3 (11.138)

We calculate the integral more generally than necessary here, i.e.,

for the limits

X, ~€
L/2 A 3 L/2 B \
ol O B (11.139)
3 /
-L/2 -L/2 x3+c
and we get exactly
A B ——
dx, dx 2 2
[T 3x 3 _ oL gn L+ L ap?+L? . (11.140)
2 2
E+ap + ¢

With € = 0 we get, if we neglect pz in comparison to L2 and divide
by L

2
TAB = Gb (___ sin B + cos B)(ln Er -1) . (11.141)

This is the interaction energy per unit length of the dislocation
line. It differs only slightly from the results of eqs. (I1.137)
for large L, as we can see if we substitute In(2L/p)=4n(L/p) + In 2
into eq. (II.141).

Now we assume that both of the dislocations are filaments of
a dislocation line, whose self energy we will now determine. Then
we can use the results obtained above directly in eq. (11.129)

A2
AA  Cb
T =7r-(;—lsinﬁ+cosB)fdx ‘y(xl)fdxly(X)X

2L

X (£n -1 (I1.142)

t

lxl-xl

PP

i
i
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(it~ ~imple=-t Care 1s const ({3 which ts the sime as o Lineoar
1Merea-e ot the relative displacement 1n the strip 27 (Fig, 9).  Then
Leocarey out the antegretron an (11, 512 aonoan elementary fashion, and

e obtn

\ Gt ! 2. 2L T 1 .
e ) i sin 2 . cos 2)(Un l: v =) (11.113)
- mn=1 Y
or also
A 2
A it i o2 2 : 1,
) - (—(—;—_:)—— (#_—]— Sin"8 + cosT8) (in ? - D (11,111)

tor the energy of the dislocation line, This formula is exact for
Lo -l lleoke' s Low also holds in the strip 27, which is correct for
e A . . . o
~ufficiently small b . From the logarithmic dependence ol J we see
that the energy is not very sensitive to smull chunges of [ and -,-(.\'l).
We can obtuin exactly the same formula (11.1.1.1) if we subiti-

- &2
tute the integral (11.110) into eq. (11.138) with = Oande=" e

and multiply the result by 1 2, T,e,, if we substitute

A 1 i 8o =
M -—=g £ @0 - 2
i 2 < RN 7.7 x| =— dl' dl, I di,
iq ijk npg ""e (.)' p\}_m-l <ln(lk+ (lk(ln
+ dLYy ody L [ (11,115)
L L nk_! ‘

instead of (11.129’) into eq. (I1,129), where L; means that in the
integral considered, the piece x~¢ ,.. x+¢ 1is excluded from the
integration, we obtain, at least in the case of a straight dislocation
line, the exac!l self energy. We can justify that this is also true to

. . : , 1 .
a good approximation for a curved dislocation. However, the integrals

1'I‘he most important point is that the main contribution of a line
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(Foutnote Continued)

element is its long range stress field. However, in (11,145) all purts
of the interaction effects of an element with other than nearest neighbor
elements are exactly included., However, the part of the effect due to
nearest neighbors does not depend on the curvature of the dislocation
if the radius of curvature is sufficiently large with respect to €.

But (II,145) is exact for straight dislocations.

(11.145) can be evaluated in many cases where we cammot do the integra-
tions of (11.129') with a reasonable amount of work., This is the prac-
tical importance of the calculations shown here,

A remark to eq. (II.144), The energy TAA per unit length of
the dislocation depends only logarithmically on L. E,g., in many cases
we have to consider the bending of an initially straight dislocation
line during which the length of the dislocation is not greatly changed.
Then we can neglect the dependence of TAA on L and B to a good approx-
imation, and we find the energy proportional to its length, TAA is
often called the "line tension" of the dislocation by analogy with the
conditions of a stretched string. E.g., we can derive a differential
equation for the vibration of such a dislocation which has the exact
form of the equation for a vibrating string., For this see the papers
of Eshelby [35] and Koehler [72].

In the last two sections we considered dislocations in an infin-
ite medium, In practice we always have finite bodies, and in some cases
the results for the infinite medium does not represent a reasonable

approximation to reality, (This is especially true for problems with
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“t... .2t disloooations, ) Fhen we have additionally to solve the boundary
value problem, These problems were tieated very succes:fully by Dietze
(1631 and Leibfried anc. Dietze [171]. Seeger reported azbout this in the
appendix, see [131], 8§ 360, These are dislocations in bodies which are
bounded by plane or circular cylindric surfaces. In these cases, gener-
ally, solutions in closed form were found. Here the reflection proce-
dure used by Leibfried and Dietze [171] is of special interest. Further-

more, see also Eshelby and Stroh [167],

819, Forces on Dislocations and Other Elastic Singularities,
The Dislocation as an Elementary Source
of Self Stresses

The problem of the forces which a stress field exerts on elastic
singularities, especially dislocations, is completely unknown in the
classic theory of elasticity. However, it has its analogy in electro-
dynamics, where we have simple formulas for the forces on linear current
elements, magnetic dipoles, etc. The formulas which we will derive in
the following are almost as simple.

The great i portance cf such considerations is obvious for the
theory of dislocations: The motion of the dislocations, therefore the
plastic deformation of the material, occurs under the influence of
externally applied stresses. This influence must attain a certain
level first to develop dislocations and second to maintain their motion.

Af ter preparations of Moit and Nabarro {105] and Leibfried [88],
Peach and Koehler [115] succeeded in deriving the general expression
for the force which the line element of the dislocation experiences at

the point x in the stress field c(x). This often used formula is the
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fundamental equation of t.e dislocation theory, It is somehow similar
to the formula of the lLorentz force on an electric current line element
in the magnetic field.

We define the force d{ (dl(i) on ihe line element, dLi of a
dislocation of the Burgers vector b, as follows: - 1w is the work done

i

by the external forces during a displacement, dxi, o the dislocation
i
element; dW is the simultaneously occurring increase of the elastic

energy of the body. Then dK is defined by the equation

- (W + aW') = daK - dx (11.146)

Now we imagine that the displacement is carried out as follows:
The surface region along which dL will move is df = dx x dL. (Then
relative to the motion dL is a right-hand screw boundary of df,’ We
cut open along df and in order to avoid a displacement, apply the forces
df-g to the cut edge and - df-g on the other cut édge, respectively, Now
we consider both of the cut edges as part of the surface of the body.
(The remaining part is the initial surface, i.e,, now the body is
doubly connected, the internal forces become external through this
operation,)

Now let the relative displacement of the glide vector g = - b
of the cut edges, This means a motion of dL along dx, If we consider
this displacement to be virtually infinitesimal in the sense of the

principle of the virtual displacement, then, since the body is in equi-

librium, there is no net work done, i.e.,

aw® +aw' +df - g b=0 (11.147)

ity e e B ek

Jﬁ 'iwl o
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By comparison with eq, (11.116) if we consider that
vax -odr)e s dx - (dl, - &)Y, it follows that
dy dem 3« b (11,148)
oy
(11.148')

\ i r]
dhk eijk (l_1 b

£ 54
This is the formulu of Peach and Koehler, The only assumption we used
was that the displacement -b was virtually infinitesiiwl in the sense

of the principle of virtual displacement. This assumption is not

exactly satisfied for finite 'QJ; thus, we have to consider eq. (11.148)
as an approximation (however in most cases sufficient). oij 1s that stress
we will measure at the point x of the line element if we carry out the
known cut., This Oij includes besides the stresses caused by the exter-
nal forces and other sources of internal stresses, also those stresses
caused by all the other line elements of the dislocations at the point

X; furthermore, it includes the part of the stresses with which the line
element reacts, e.g., due to the free surface or other boundary surfaces
in the body to itself, Finally, eq. (II.148) holds for arbitrary inhomo-
geneity of the elastic constants in the body. By a method similar to
that of Eshelby (see below) Rieder [124] showed that eq. (1I1.148) also

is true for quasi displacements. The extensive applicability of

eq. (I1.148) is based on the fact that it is only a consequence of the
very general principle of virtual displacement, Equation (I1,148) is
sometimes mentioned in context with the theorem of Colonetti [134,108],

in 814, which reads for this case, that under certain conditions (Hooke's

Law; no other source of internal stresses than the considered dislocation;
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elastic homogeneity) dw1 = 0, But we should notice that the truth of the
theorem of Colonetti for the medium considered is no assumption of
eq, (I1,148).

‘the derivution of eq, (11,148) does not require the stress
tensor to be symmetric. We will show an important result of this fact,
We ask which stresses are able to bring a planar distribution of crossed

1
screw dislocations as in Fig. 16c¢, into motion as a whole perpendicular

1Such an arrangement of dislocations has a great stability in
practice for it completely cancels the long range stress fields of the

contributing dislocations (823),

to their plane (e.g., x1 = 0)? I n this case the dislocation tensor
dL, b, = ap in e (I1.148) has only the components ao = ao = @ = ao
104 = %y U y P g2 = g T AN K =

So we obtain

o]

o o
dK1 = 022 032 - Ugq 023 = o (o ) (11.149)

32 ~ 923

I.e., the dislocation motion similar to that of Fig. 16c can only
occur if the stress tensor is anti~symmetric. We will now mention
examples of the fact that asymmetric stress tensors really occur in
crystals,

In ferromagnetic crystals we have a spontaneous magnetization
in a favored crystallographic direction which minimizes the free energy
of the crystal. An external magnetic field can rotate this magnetiza-
tion into a more energetically unfavorable direction. One of the
magnetically favored directions of the crystal tries to rotate into

the new direction of magnetization, therefore the external magnetic
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tield ¢ "ex torqies on the volume elements, the result of which are
asymmetric » resses  According to & remark of Rieder [121], it would
be possible in the most favorable case for the force to develop to
start a motion of o grain boundary of the kind mentioned earlier.

We are also able to produce such torgues with currents, which
may be very small, in a crystal, in the cuse where strong anisotropy
of electrical conduction exists, However, we believe that large dif-
ferences beiween the free energy of two crystallites separated by a
grain boundary (e.g., such as during recrystallization, phase changes
and similar procedures) such strong asymmetric stresses can be pro-
duced that the grain boundary moves into the crystallite with the
higher free energy. Recently, Rieder [124] described bLriefly how we
can treat such asymmetric stresses in the theory of elasticity.
Hovever, we assume that Cosserat's strain torques, negzlected by Rieder,
have an importuant influence on the real circumstances. Investigations
of the above phenomena in crystals seem to be worthwhile problems.

Now we will describe another important application of the
Peach-Koehler formula. L is a small, plane dislocation loop, not
necessarily circular, with the Burgers vector bi' In the region'éon-

taining the loop there are no body forces, thus V 0,4 = 0. We obtain

J
by integrating

i

tlie total force on this loop in the stress field oi

J
eq. (I1,148) along L. Applying Stokes' theorem and expanding cij in a

Taylor series about the center x = 0, we easily obtain

K, = vkcjﬂ,o ('fj nb,df + vkvmci—‘,(,‘rf X n.bdf + ... (11.150)
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Let f < 0 oand simultaneously incresse bt so that the integrals in

(11.150) remair finite, Thus f becomes : point and njbzdf means
that both of the points on the positive and negative side of f suffer

the relative dispiacement -b, = g So we define the "displacement

10
dipole sz by
Q,, = lim f n_ g ,df (11.151)
34 £f-0 £ 34
and similarly the displacement quadrupole dez b&

Qg 1im [ %, g, df (I11.152)
£0 f

The sign in eq. (II.151) is so defined that a positive dipole

Ql1 causes the cut edges to be drawn apart. Symbolically <- - - = - >,

Previously we called a force dipole p11 positive if it was derived from
the 1imit of two point forces < = « = = =« « - >,
Now we will compare eq. (II.151) and eq. (II.122). There we

recognized that the expression -cijkl nibjdf is an infinitesimal force

dipole, An infinitesimal displacement dipole can be written according

to eq. (I1,.151) -hjbzdf. 1.e., for the force dipole and the displace-

ment dipole we have the relation1

Pis = Cigxt Yt (11.153)

and QiJ an "elastic dipo'e,"

1Summarizing, we call P

ij

However, it should be noticed that this is only true if the elastic
constunts of the body are homogeneous in the surroundings of the dipole

and also at its point of application. This is included in e. {II.122)

B i o
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rhe torm of this corston given in the author's ormiginal paper
4 {

820, K wrad Y Q]} E Qmji +..,) is noi versy convenient in

woogx

the tollowing respect, 1t must be indiecated that befo.. carrying out

e meltiphication an the parentheses the differentiation, grad :jz has
(o be dore,  Also the form of eq. (1.151) could lecd to erroncous con-

lusions chout the physical wmeaning of the terms in parentheses, (See

hedow )

in the Tollowing discussion we will no longer consider quadrupoles,

fbus the force on a displacement dipole itself becomes
K= Q.. VvV J. (11.135)

sucir a Torce also produces antisymmetric displacement dipoles. However,
e lso will not consider this further, as these are not as important as
symmetric displacement dipoles [82]., In the following, Qij is a sym=-
metric tensor, By substituting eij for Jij in eq. (II1.155) according

to Hooke's Law and considering (I1.153), we obtain for the foree on

a force dipole

hk = pij i eij (I1.156)

Also this equation only holds if the elastic constants are homogeneous

1
within the region of the dislocation loop, which is equivalent to the

dipole. An example should clarify this:

— .

—— cox—o o




(Footnote for preceding page)

1The homogeneity is violated if, as the limit of (II.181 says,
the relative displacement g goes to infinity, I.e., initially eq. (I1.156)
are only true for dipoles of infinitesimal magnitude, Also the Peach-
Koehler formula holds exactly only for this case, The conclusion as to
the truth of eq. (11.156) with a dipole of finite magnitude follows

below.

In a body II a small region I of another material is constrainco
so that we can relate the boundary surface f between I and II with its
normal vector n to the displacement jump g according to eq. (I.77).

In this case nigj is the related density of the displacement dipoles

on the boundary surface, and ﬁf nigjdf = Qij represents the total
displacement dipole, We let the volume of the inclusion decrease to
zero, while bj simultaneously increases so that Qij remains finite.

The related force dipole /we assume that the higher order pnles all
vanish) indicates the foices which the constrained region I exerts on
its surrounding., For a given displacement dipole, these will become
larger as the inclusion becomes harder. It is true that we can write
down an eq. (I1.153), but in this we are not allowed to identify cijk£
as the elastic moduli of I or II, but we have first of all to solve

a boundary value problem on the houndary surface f to get the right
value for °1sz'
For practical applications of these considerations (831) the

case in which elastic homogeneity is violated at the point of the

inclusion is of special interest, Then eq. (II1.156) but not eq. (II,155)
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holds, This can be clarified best in connection with a method with
which Eshelby determined the force on elastic singularitiez in an
elastic field.

A body with the surface 8o is stressed by surface forces

nic:J, which cause displacements s® and stresces ca in it, Further-

1 13

more, it contains a singularity1 at the point §f, which causes an

lThe term "singularity’ is used here in a general sense, e.g.,
it can be a number of singularities or an arbitrary distrubance which

is located in a partial region of the body.

additional displacement sf and stresses U:J, and another singularity
with the related values sf and cij. The force on the singularity is

defined by a relation equivalent to eq. (1I.146)

a8, ., i IR, bt
Kl » = (dW /de + dw /dxl) = KL + K‘+K‘ (11.157)

where dwi/dxk has two parts: -Kg = dwb/dxk is the so-called "image
force,” i.e., the force which the singularity puts on itself via the

surface; -K; = dwt/dxi is the force resulting from the change of the

interaction energy between both of the singularities. In addition, the
truth of the previously mentioned theorem of Colonetti is assumed for
the medium considered. First of all we have
ds®
i

a , a _ 1
aw® = dx) {j‘ % 5 % (11.158)
o

(11.159)

e e s . |
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Therefore it is important for this part to know which additional
displacement the surface of the body suffers during a displacement of
L
dxj
derived by Eshelby

due to the singularity, The related expression for K: was

o 5;: ds (11.160)

This force is interpreted as the action of the image force on the whole
surface. Since the expressions (11.159) and (I1.16)) are completely
independent of the existence of the second singularity, we can contract
the integration surfaces so without changing the value of the integral
to a closed surface s, which only surrounds the movable singularity.
After some calculation we obtain ( ,4 means differentiation with

respect to x‘)

a b _ a b, ® = b. ®
K, + K, = [[ [(s]+80)0,, , = (0, + oy )8, ,1ds, (I11.161)
S

@ - -]
where si, aiJ

an infinite medium, Eshelby succeeded in proving that the force K

are the displacement and stresses of a singularity of

t
i

can be represented in the similar form; thus the total force becomes
- -] - -]
K, = j;j‘ (5, 04y 5 = C44% 95, (I1.162)

where s, = s + sb + st and similarly o Equation (I1.162) can be

1 - 1T TR 13°

written after some caiculation in the form

E w -1-
x‘=j;f My dS;, M, =-0. 8 450,668, (I1.163)
By analogy to electrostatics, Eshelby calls the asymmetric tensor !Jt

the Maxwell tensor of elasticity.
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The eqs. (11.162) and (I11.163) are gemerally true. Their
application to point singularities are of special importance. However,
it does not cover the line element of the dislocation since we can not
have a closed surface sl which lies completely in a region without self
stress sources, For our use the importance of Eshelby's equations is
that the singularities used need not necessarily be defined at the point
o1 application but at some distance from it (by the displacements which

they cause there if it is an infinite medium), where clearer conditions i

are given than at the center of the singularity. E.g., it is of no

o

significance if the force dipole (this governs the displacement 8y

according to eq. (11.89)) is caused by a soft or a hard inclusion.
Only the magnitude of the displacment sT which it produces on the surface
S is important, However, this is proportional to the force dipole accord-
ing to eq. (I1.89). Hence, we can conclude at once that eq., (I1I1.156)
holds generally, for if it holds for one case (no inhomogeneity at the
location of the inclusion), then it also must hold for an arbitrary
inhomogeneity.
Furthermore, in eq. (11.162) we can expand cij and Ry in a :
Taylor series and obtain our formula (11.156) in the case of the dipole
after some calculation {83]. Simultaneously this is the proof that Y
eq. (I1.156) is also true for a finite dipole force. Eshelby [38]
carried out the calculation for the special case of the so-called
dilatation center (see Love [95]) PiJ = pii > 0, which is of special .

interest, since atoms of type B can be described as such centers in

the lattice of atoms of type A (831). .

-
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Now we can determine the work done by the force Kk in
oq. (11.156) during a change of position of the dipole from a point
where the strain is zero to a point where the strain is ‘11 and we
obtain

€y

ef Rt [ e 8 0x =P [ 96 0 =P e (11.164)

i
Obviously this work is independent of the path, Therefore the
expression,

U= (11.165)

- pij cij

can be taken to be the potential energy of the dipole pij in the

strain field ¢, .. In case P1 is the only self stress source,

13 3 Piy 4
is the change of the potential energy of the boundary forces plusthe
change of the self energy of the dipole caused by the changed inter-
action between it and the surface. The sign in eq., (11.165) reason-
ably indicates, that e.g., a compressed inclusion (P11 >0) in a
compressed part of the body (c11 < 0) causes a positive energy.
Furthermore, we can see that we will not get such simple formulas as
(11.156) in the case of volume forces, since such forces do not have
potentials in general, and so we will not get an integral f Kk dxk,
which is independent of the path.

From eq. (I1.165) it is simple to derive formulas for the

If we write, corresponding to
1

torque L on a symmetric dipole pij'

eq. (11.90), P, = 4P, because dL = df x 4 and dP = db x P,

lﬂoro we assumed that the salf energy of a dipole does not

change during the rotation.
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‘hen the change of P‘j for a rotation through an angle dﬁk is
-di P - idp, - ; ] :
dP‘J ‘ 4 £ 5 (eikl anJ + ch‘ liPl)d K
L€ ydé (11.166)

iki "1y " yke D1’k

On the other hand, the change of the potential energy of the dipole for

an infinitesimal rotation is

1':- d.::"d = - .‘. !.l
dt Lk K °ij Pij eij(eiklpij + ch‘Pil)d K (1 67)

Because of the symmetry of cij and P, at once we conclude

iJ

= 92¢ =
Lk = 2¢04 Pij ‘ij (I1.168)

“he conditions under vhich this formula is true are the same as for
eq. (I11.156).

In the case of an inhomogeneous inclusion {i.e,, the elastic
homogeneity is disturbed at the point of the inclusion) another effect
appears, which was first properly investigated by Eshelby [38] and

Crussard [27], the "polarization” of the singularity.l The simplest

1See also additional papers of Crussard [28], Eshelby (-10] and

Teltow [1511],

example is a stress free body with an inclusion of another material

which fits in without any restraint. If we now apply surface forces

ind
iy
for which we also can use eq, (II.1536), since Eshelby was able to show

to the body, then a force dipole P is induced in the inclusion,

that we again end up with an expression like (11.163).
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It is convenient to define the polarizability, R L by the equation

13k

P1nd - R

1) 13kt “kt (11.169)

for determination of which a boundary value n>oblem with respect to the
boundary surface must be solved, even for the smallest inclusions, For
the case of spherical inclusions and elastic isotropy, we get elementary

solutions according to Lshelby [38], [40].1 Now it is obvious that

1Eshelby was now able to show that the stress ficld induced by an
ellipsoidal inclusion is homogeneous if the induced stress field is
homogeneous at a large distance from the inclusion (holds also for elastic
anisotropy). The similar result for the polarization of an ellipsoidal

dielectric is well known,

we can represent the elastic displacement field of an arbitrary poinat

source of internal stresses in the infinite medium by equation

15 PV B v Py Yy T By e (11.170)

from which we can determine the internal stresses by the usual method,

A quadrupole is nothing other than two dipoles close together; a

similar analogy holds with poles of higher order, i.e., we can describe
every self stress source by a suitable combination of force dipoles.

But these are nothing other than infinitesimal dislocation loops.
Therefore, the theorem menticned in the preface holds: All self stresses
in the continuum are caused by dislocations, In 814 we stated all self
stresses are caused by incompatibilities. This holds evei. now and is

compatible with the theorem mentioned above, For according to
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eq. (I1.31) incompatibilities have their origin in dislocations. Thus
we can call either the dislocations or the incompatibilities the ele-
mentary self stress source. However, the statement identical to

eq. (I1.17) is more consequent: Dislocations are the vortexes of
elastic distortions as forces are the causes of stresses,

On the other hand we can also describe continuous distribu-
tions of self stress sources, dislocations, by a three-dimensional
distribution of such point sources. For the same reason we could
declare the force dipole to be the elementary component ii the theory
of self stresses. The circumstances are similar to (stationary)
Maxwell's theory. There infinitesimal current loops and magnetic
dipoles are equivalent, But normally the electric current is preferred,
and only this appears in Maxwell's equations. In this sense we also
preferred the dislocation, and thus, in our opinion, we get an

impressive representation of the continuum mechanics of solid bodies.

R e
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CHAPTER 111
DISLOCATIONS IN A CRYSTAL
20 General Statements

In this cherier we will discuss applications of the continuum
thery of dislocations to real bodies, the most important of which are
crystalline. Physical problems of this kind deal almost entirely with
single crystals, but when the results are transferred to polycrystals
as generally happens in the technique, there is almost no success.

So we will restrict ourselves to the investigation of single crystal
problems, however, we will emphasize that there are no difficulties in
principle in applying the continuum theory of dislocations to poly-
crystalline bodies, and we will return to this soon. .

The main difference between a continuum and a body composed
of single mass points, as, e.g., a crystal, is that in the latter a
volume element is defined, In the continuum the distortion of the
volume element is the determining geometrical quantity; displacements
were mentioned comparatively little. In a system of points we primar-
ily measure displacements, s0 we are tempted to relate all to this,
However, it is soon obvious that in general we will not succeed with
this approach, since we cannot get the required degree of freedom.
Instead of this we have to consider the relative displacement of two
neighboring atoms. From the considerations of 821 it can easily be

seen that the distribution of such relative displacements has three
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times as many degrees of freedom as the distribution of dislocnéions.
Then we can develop exactly the theory of dislocations in the crystal
(¥21), where, however, we do not obtain differential equations but dif-
ference equa‘*ions., However, since the number of points (atoms) in a
crystal is immensely large, in many cases we can replace these differ-
ence equations to a very good approximation bj differential equations,
and in general we have to do this as we will not succeed in solving the
problem numerically.

This approach is especially reasonable for many of the more
‘microscopic’ problems of the physics of crystals, in which we investi-
gate the behavior and the properties of . single dislocation. With
macroscopic problems, however, we are interested in the combined effect
of many dislocations, In this case it is obvious that we must consider
certain "physical” volume elements having properties which we will now
discuss,

The assumption for the application of continuum mechanics to
real bodies is that the deformation of the volume elements of the body
can be measured as a macroscopic ally continuous function of rposition.
For this the volume elements must be sufficiently small with respect to
the external size of the body, for otherwise we cannot formulate the
differential equation., On the other hand, the glide and climb planes
are discrete and microscopically considerably far apart, whereas the
distance between them and the magnitude of the glide or climb occurring
is subject to random fluctuations, If a distortion should change from
volume element to volume element, then it is only possible to speak of

an average distortion and, furthermore, this will change continuously

-y an-
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only if each volume element is hit by a sufficient number of disloca~
tions, E.g.,, if the distance between the glide plane is 10-5 mm and
if we consider 1,000 glide planes necessary for averaging the fluctua~
tions, then the physical volume element must have a linear size of at
least 10-2 mm, In general we can consider this to be sufficiently small
with respect to the dimensions of the body. However, with much bigger
distances between the glide plane in small experimental bodies as hap-
pens in special cases sometimes, it may occur that the volume element
calculated according to the rules above is no longer sufficiently small
with respect to the size of the body and then obv'ously the application
of continuum mechanics is no longer reasonable. We realize that the
dislocation theory in the crystal is in general "less exact" than the
continuum theory of the dislocation; however, it is sufficiently
exact to justify its application and even to require it. The inaccur-
acy of this calculation consists in the fact that we assume that the
physical volume elements are mathematically infinitesimal which means
that we can apply all formulas of the continuum theory to a real body.
This approach is very simple and corresponds to the concept of
this book., A:other viewpoint is that we derive the macroscopic equa-
tions obtained in continuum theory from the equations of the micro-
scopic problem by adding the interaction of many dislocations and tak-
ing an appropriate average. With this procedure we always remain in
the crystal. The solid state physicist is used to thinking of crys-
tals, and for him the crystal is an easy body to imagine., Therefore,
the transformation from wicroscopic quantities to macroscopic ones will

be presented shortly [22],
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In polycrystals, strains generally change discontinuously from
one crystal to another, first because of elastic anisotropy and second
because of the plastic anisotropy of the crystallites originating from
the fact that in each crystallite there are only a few discrete glide
systems (= group of glide planes and related glide directions), which
become effective at a certain shear stress.1 I1f we want to have a con-

tinuously changing strain from volume element to volume element, then

1This leads to the conclusion that generally not all crystallites
start to flow simultaneously. Among others Greenough successfully

investigated the problems arising from this.

it can only be an average strain, and we need a physical volume element
consisting of many crystallites.

It is more difficult to answer the question of the structure
curvature. It is true that we can define the rigid (elastic) rota-
tion of volume elements with reference to the initial condition of an
"ideal polycrystal," but the statement of the orientation in this poly-
crystal has no @eaﬁing. The problem now is whether the rigid rotation
of the volume element which occurred in the polycrystal (e.g., in the
absence of elastic strain) changes the state of the body. Then we must
be able to prove this experientially. In investigations of this ques-
tion, B23,lead to the result that indeed curvatures of the structure
can be shown in polycrystals. Accordingly, it is obviously possible to
apply the confinuum theory of dislocations in its previously developed

form to polycrystals.2

2Prof. U. Dehlinger pointed this out to me,
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821 The Geometrical Basic Equation in the Crystal.
The Microscopic Theory

We start with a definition of the dislocation in “he crystal,
which originated with Frank [47]. Figure 19a shows the lattice plane
of the ideal crystal of Fig. 2, Fig. 19b shows the same for the disturbed
or real crystal of Fig. 3. The difference of the position vector of two
neighboring atoms in Fig. 19a and 19b is §x and 6§f. Now we take the
sum E 6x’ along an arbitrary closed path E_in the real crystal. We
may proceed from atom to atom starting at the point P', guing 7 steps
in the x, direction, then 4 steps in the x

3 1
arbitrary path back to P’. Then we repeat the same procedure (i.e.,

direction, etc., and on an

7 steps in the X

3 direction, 4 steps in the X direction, etc.) starting

in the ideal crystal from the point P, corresponding to P’ (circuit B.
With the corresponding step with which we reach P’ in the circuit EY' we
do not reach P in L' if the circuit was then around a dislocation line

as the figure shows, We now state that the path should go around the
dislocation line in the right-hand screw-sense. Then the vector

65 = ég_from the en¢ point Q of the path corresponding to its starting
point is characteristic of the dislocation surrounded by the cyclefg.

1
So we can define the dislocation by use of the "Frank-Burgers circuit”;

1The Burgers vector of a single dislocation is indicated by b
in previous literature (also in Fig. 19a). From the standpoint of the
continuum the nomenclature 62‘19 more convenient (see below). Do not

look for a special secret behind this nomenclature,

v e
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*b is called the Burgers vector of the crystal dislocation. Further
considerations will show that it corresponds to the Burgers vector in
the continuum,

Imagine that the dislocation in Fig. 19b moved into the crystal
from the right., During this, two neighboring atoms between which the

1
dislocation moved suffer a plastic relative displacement 65_= - 69:

llt is necessary to mention that for all the other atom pairs
fg = 0 is required. The minus sign goes along with the convention that
on the one hand the direction of the dislocation line is chosen in such
a way that X and t', respectively, become right-hand screw circuits and
that on the other hand 65'15 the relative displacement of the atoms on

the positive side of K with respect to those on the negative side,

If we take the sum along E; z ég! then we obtain

z ég’= - &b . (I11.1)
I -

This equation corresponds to eq. (I.12) of 83. However, we have to
notice the following: from the way we defined the cycle, 69_1s | So-
called lattice vector from the very beginning, i.e., a vector which (in
the ideal crystal) points from one atom to another. This is a physical
requirement. The relative displacement of the atoms during the motion
of atoms must occur such that the regular arrangement of the atoms
remains except the center of the dislocation: An irregular arrangement
of the atoms over a surface or'ven more in a three-dimensional region
would cause a considerable increase in the internal energy of the crys-

tal and is therefore ''forbidden."
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On the other hand, we can not initially exclude a certain
three-dimensional extension of the disturbed region in the immediate
neighborhood of the dislocation., 1I.,e., we can assume that the atoms
displnced by a dislocation at a larger distance from the dislocation
center had suffered the whole relative displacement 553 but for the
atoms near the center this is not necessarily true; i.e., the trans-
fer to 65 from -65'(in Fig. 19b) on the right side of the dislocation
to zero (on the left side of the dislocation) need not occur abruptly
from one atom to the next, but, e.g., can appear over a region of two
or three atom distances. This coresponds to our concept of a disloca-
tion width 2{. To include this possibility, we imagine that the dis-
location is composed of filaments two-dimensionally arranged over the-
infinitesimal thickness db, where the dislocation should be:‘f 3b = bb.

Each filament gives them a relative displacement of -3b of the atoms

1
between which it moved,

1

According to Frank the circuit K’ must be carried out at a
sufficient distance from the dislocation center so that all disloca-
tion filaments are within the circuit. We will not require this in

our investigations.

We can consider a crystal in its ideal initial condition, its
atoms numbered and the relative position c¢f two neighboring atoms indi-
cated by éxl. We call BuJ initially the imagined relative displacement

of atoms on the positive side of éxi with respect to those of the nega-

tive side. So éuj(xi) is given in the whole crystal, where X is the
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position of that atom which lies on the negative side of Gxi in the

initial condition, We allow GuJ to be arbitrarily discontinuouc,

especially since the crystal is no longer necessarily connected after
carrying out the relative displacement, Only it is not allowe that
one or wore atoms occupy the same place.

Now the question arises: Is it possible at all to bring the
crystal into such a condition that two atoms always suffered the dis-

placement difference assigned by GuJ. The answer is: In general this

is not possible. The most important facts we can see on a "crystal” con-

sisting of only 4 atoms 1, 2, 3, 4. If we prescribe 6uJ for the pairs

of atoms 12, 23, 34, then the position relative to each other is com-
pletely determined, and the assignment for the lost pair of atoms is
no longer arbitrary but must be compatible with the first three state-

ments (Fig. 20).

The next question is: What are the restrictions on liu:j in

order to produce a state which can be described by 5uj? Immediately

we see that the sum of éuj along an arbitrary path from an atom (a) to

another (b) must be independent of the path, i.e.,

z 6uJ =0 (I11,2)

for an arbitrary closed path carried out in an ideal crystal. From

eq. (III.2) follows the existence of a function of 6uJ!xi) which can

be arbitrarily discontinuous till now. Obviously, uJ is the displace-

ment of the atom, unique up to a rigid displacement of the crystal.

By the equation

6\1J = Yij 6!1 (111,.3)
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the "microscopic” distortion temsor, y = (y, J)' is defined. We
explain it in the following way: A certain atom is at the position

x I1ts three neighboring atoms in the direction of the positive

1.
xi-uil have the position (in the perfact crystal) X+ 6:1. These

four atoms which are the basic triad of a lattice, are emough to

define and explain conveniently a distortion at the point x E.g.,

1.
according to eq. (I11.3) the distortion Y,y Mesns an extension of the
triad in the xl-direction (Fig. 21b). Siwmilarly, we notice that, e.g.,

Y21 is a shearing of the triad as shown in Fig. 21lc. 1In the case of

small distortions, the symmetric part of Yij is a pure strain; the
antisymmetric part is a pure rotation of the triad.
If we substitute eq. (III.3) into eq. (III.2), then by Stokes'

theorem it followll

(acurl ),,= ¢ ayk‘
Y18 " Cisx ij =0 (111.4)

1"ecurl" should indicate that it is a difference equation in

regions of atomic dimensions.

Only distortions which satisfy eq. (III.4), are indeed possible in the

Euclidean lpace.2

2How¢ver, there is a non-Euclidean space for every arbitrary

distribution GuJ: x,

a curved surface in the case of a two-dimensional crystal.

are then the coordinates of this space; e.g.,

The application of Stokes' theorem is also meaningful in the case

of discretely distributed points and arbitrarily discontinuous relative

HIRAERIR K




dr-placement s fuj, as we can show even in the example of four atoms

tn Fig, 20, Let all points remain in the plane x3 = 0, Then accord-

e to eq. (111.3), the following distortions are defimed. For point 1,
30 512, 521, 522, for point 2, 921, 522 for point 3, none, for point 4,
hl.ﬁz.lmmmnywehwe
58 68 68 58
21 11 | _ 22 12
(curl 2)31 = -Eﬁ -6_8-2- H (curl g&z_ -S;(T 3-;;- (111.5)

ire different from zero or written as difference equations

321(2) = 321(1) ) 311(4) - Bll(l)

(curi g), =
31 6x1 5x2
(111.6)
322(2) = 322(1) 312(4) = 512(1)
(curl 5)32 = = = 5
1 2

Thus only the distortion components mentioned above appear. After
multiplying with éxl 6x2, we get T Bxi Bij' Totally if we write 6Fk

instead of 6xi &x

N

BFk(curl B), . =L Bxi Bij (111.7)

kJ

i.e., Stokes' theorem,

The previous considerations were purely geometric in nature,
We have not discussed whether there are reaction forces associated with
the relative displacement between two atoms. Now we consider the proce-
dure of the invasion of a dislocation into the perfect crystal of
Fig. 2 through which this is transformed into the state of Figs. 3
and 5. If we make a circuit E_ in the ideal crystal and we add all the

above mentioned relative displacements 6gj between two atoms, we obtain

;:E bg, = - bb, (111.8)

VI - T e
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11X’ is the circuit in the crystal corresponding to X' after the

motion of the dislocation, otherwise we get L 6;1 = 0.l It follows

llnstud of the ideal and the real crystal we can consider only
an ideal crystal into which a dislocation invaded, however, due to a
restraint, initially there is no distortion. In this sense we can have
a dislocation in the ideal crystal, With this consideration, we get

simple equations also for arbitrary large distortions. See 810 beginning.

from eq. (111.8) that the plastic relative displacement GgJ in a crystal
with dislocations does not satisfy the con%}tion (111.2). However,
Figs. 3 and 5 show that the dislocation 1n:crysta1 is surrounded by an
elastic strain field. We call the relative displacement of two neigh-
boring atoms 8a,. The total relative displacement which we will now

J
call 62? is composed of the elastic and plastic displacement

68} = 6aJ + ng (111.9)

and it holds for every closed path that

z es}' = 0. (111.10)
From this the existence of a function sj(xi) follows indicating the
difference of the position of a certain atom in its ideal state and
its "dislocated' state except for a constant displacement common to
all atoms, The existence of this function, which need not necessarily
be continuous, is a consequence of the fact that the procedure which

transformed the crystal from its state of Fig. 2 into that of Figs. 3

and 5, is possible in Euclidean space.

w iy,

22
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Furthermore, ve define the general asymmetric temsors of the
(microscopic) total distortion g? = ('IJ)' of the elastic distortion
§_= (Bij) of the plastic distortion g? = (a:J) by the equations

T

T
63J = a Gxi, 6aj = ai

P
h bx,,  bgy = B, bx, (111,11)

J

Then first of all we have to investigate to what extent we can
connect a meaning to the elastic and plastic distortion, since these
represent procedures sirilar to éuj and ng, each of which is not pos-
sible independently in Euclidean space. Now we notice that each proce-
dure GuJ, defined only relative to a triad, can be carried out in the
Euclidean space, but if we have additional atoms, e.g., a cube of eight
atoms, the restriction (I1I.2) becomes effective., Obviously this is
related to the fact that a triad cannot have a distortion in its inter-
ior, while it is possible, e.g., for a cube (see below).

If we substitute the third eq. (III.11) into eq. (II1.8), then

with Stokes' theorem it follows that

6 P
§ 6F, Ceurl B, = - &b, (111,12)

where F 1s the surface bounded by K. This result_is then meaningful

even if the circuit touches only four atoms. Then we write eq. (111.12)

Ceur1 I;i_P)1 = - bb_/6F, (111.13)

J g

if we assume that all filaments of the dislocation cut the surface

element 6F1 bounded by the four atoms.1

1According to footnote 1 of Pg. 151,
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Apparently 6b1/6!-‘1 is the average surface density of disiocation fila-
ments in the region 6F1. This statement holds even then if a part of
the dislocation filaments are outside of 6F1 if we assume that 6bJ is

the total Burgers vector of the filaments which cut 6F1'1

1In 825 it is shown that we can approximately calculate the
distribution of the filaments of a dislocation. The result is that
most of the filaments of a dislocation are within the cross section of

magnitude léFl.

In order words, §b /6FJ is the (microscopic) dislocation density;

J
we call it aij and write for eq. (III.12)
6curl g? =-a (111.14)

If many dislocations cut the surface F of Eq. (111.12), then the right-
hand side of the equation is the total Burgers vector of all disloca-
tions cutting F.
Because of eq. (111.10) for the total distortion, it holds that
T P

B =8+8 (111.15)

Scur1 B = 0 (1II.16)

and thus we obtain the (microscopic) geometric basic equation of the
crystal to be

6curl §_= o (111.17)

This equation states that the existence of dislocations in crystal is

A s n 2

always connected with elastic distortions since plastic distortions,
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by definition appearing during the invasion or development of the

dislocation are not possible themselves in the Euclidean space.1

1l will thank Prof, E. Fues for his critical remarks to one of

my previous papers which leads me to the description given above.

§22 The Geometric Basic Eguation in the Crystal:
Transfer to the Macoscopic Theory

In this section we will carry out the iransfer of the micro-
scopic quant ties to the macroscopic ones, For this we define first
all the macroscopic (= physical) volume elements, AV, which should be
an ideal crystal of the minimum size required in 820 in its initial
state. By the term "element" we will imply that the experimental body
has a very large number of such volume elements,

After this we will consider the dislocation tensor. 1It is
obvious that we have no longer to consider the filament structure of
the single dislocation, but we describe it as formerly by its unit
tangent vector and‘its Burgers vector; i.e., by tiébi. Because of the
huge amount of dislocations appearing in all crystals, we no longer can
state the direction and the Burgers vector of each line.

Now we are concerned with how to describe as simply and as com-
pletely as possible a state with very many dislocations lying close
together. Apparently this is possible if we indicate at each point x

of the crystal how many (Nab) dislocations of direction E? and of

Burgers vector ébb pass the oriented suriace element AF at x, The

surface element should be of such a size that it is crossed by many
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dislocations so that an averaging is meaningful. In other words, the
number Nab only changes slightly from element to element. Then we can
say that dislocations cross the surface element with a certain density.

Now we call the total Burgers vector of all dislocations inter-
secting AF, Ag. 1t is

= T NP e, (111.18)

a,b
We notice that Ab does not change if we double the number Nab and |
divide the related Burgers vector by two. The limiting process to the
continuous distribution must be carried out so that we let the number
Nab increase and decrease the Burgers vector to zero simultantously

so that the total Burgers vector Ap_remains constant.1

1This limit was first derived by Nye [13].

In a macroscopic theory we can not handle a discrete distribu-
tion, since it is represented by the number Nab; i.e., we must restrict
ourselves to stating the total Burgers vector Ab. With crystals this
is a real loss; however, in general, this can be compensated for by
additional crystallographic considerations. This is a consequence of
the fact that in this case the Burgers vector can have only discrete

values and thus dislocations indeed appear as separate phenomena,

2W’ith only a few exceptions the theorem holds that the Burgers
vector not only must be a lattice vector (821), but also must be the

smallest possible lattice vector, thus the disturbance in the disloca- i

tion center does not require too much energy (which is proportional to
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(Footnote Continued)
b2 §18). Then in the primitive cubic lattice three Burgers vectors are

possible; in the face centered cubic lattice six are possible.

Therefore in many cases it is of special interest to know the character
and distribution of dislocation lines as they were described by
eq. (111.18).

1f we know the total Burgers vector of all dislocation lines
crossing AF for each surface element AF, then we are well informed about
the dislocation state with the above mentioned restriction, Now we can

define the macroscopic tensor of dislocation density o = (ai ) by use

J

of the equation

Ab, = o, , AF (111.19)

Since by assumption the dislocation curve must be quite continuous in
the neighborhood of the surface element, we can assume that the dislo-
cation is straight within the volume element AV. Furthermore, we assume
that the dislocations o

1]
dislocation lines do not do this in general, but we made the distribution

cut the surface AFi perpendicularly. Real

of the total Burgers vector of the single dislocation lines of differ-
ent types according to eq. (I111.18) to be a matter of crystallography.

Our macroscopic dislocation lines o are all directed in the i-direc-

iJ

tion and have all the Burgers vectors in the j-direction. Therefore,

the diagonal components of oy (x) at the position x represent, as

J

previously, screw dislocations while the other components represent

edge dislocations.
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The macroscopic dislocation density in the crystal is a very
well-known quantity; it represents directly a group of lines as in
Figs. 3 and 5, whose flux through an arbitrary surface F, i.e., ‘he
dislocation flux, is equal to tlie total Burgers vector of all disloca-
tion lines passing F and according to eq. (III.13)

b=[faF- @ (111.20)
F

Now we will investigate the relation between microscopic and
macroscopic distortions. For this purpose we imagine that each pair
of neighboring atoms in the crystal in its iaitial state suffers a
relative displacement éuJ similar to the cases mentioned above. Now
set GuJ be distributed continuously in the interior of a volume element,
dV (in contrast to AV we used before) which contains many atoms, howe;;r,
it may change discontinuously from element to element. Figure 22 shows
a simple example.,

We can describe the geometric position of all atoms of Fig. 2Ib
by the microscopic YiJ defined by eq. (III.3) as a function of the posi-
tion of the atoms in their initial state. Then we get Yo1 and Y11 dif-
ferent from zero, where Yo1 only depends on X whereas Y11 is only

different from zero for those atoms which bound the element dV on the

+x. side, and there it only depends on x

1 The condition (III.4), which

2‘

must be fulfilled everywhere, can be written

5'Y 6'Y
21 11
W - E =0 (11II.21)

From eq. (II1.3) we car derive the function u, from the known Yij

up to a rigid displacement of the whole crystal.

Bl b WA G N
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Another description of the state of Fig. 22b would be always
to give the distortion for the whole element where it is constant accord-
ing to the assumption., We can consider this as a definition of the
macroscopic distortion., The diagonal components are measured as
functions of position in the initial state by the ratio of the exten-
sion of the element to its initial length, the remaining components
are measured by the tangent of the shear angle, In the interior of
a homogeneously distorted volume element each atomic triad has the same
magnitude of (microscopic) distortion as the element (macroscopic).
For an element of Fig. 22b (macroscopic) only y21 is different from
zero. E.g., dxi =n 6xi is the distance of the center of mass of two
neighboring elements dV in the initial state. Then the magnitudes of
dV21 and 6y21 on the boundary surface are equal, so the magnitude of
dyzlfdxl is equal to the value 6y21/n6x1 = byll/nﬁxz on the boundary
surface. With a given macroscopic Yo1 we can determine the micro-

scopic Y11 on the boundary surface up to a constant. Simultaneously it

follows that the statement

(curl ), , = € aYkz £0 (111.22)
Y'i2 T “ijk SxJ )

is in general true for the macroscopic Yij’ in contrast to the micro-

scopic v The condition that curl y = 0, reads in the example above

ij’ 2L

obviously byllfﬁx = 0; in other words, a varying displacement jump on

2
the boundary surfaces of the volume elements is not allowed. We will
refer to this again soon.

The previously assumed homogeneity of the distortion within

a volume element consisting of very many atoms does not occur in the
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real process of plastic ceformation. However, we can assume for
a sufficiently large volume element dV that at least an average homo-
geneity exists, which can be shown by the fact that the surface of a
marked volume element does not change very much during deformation or
during relaxation after cutting the volume element (otherwise the
assumption mentioned in 820 for the application of the continuum theory
is not satisfied).

eonseéﬁently we can identify the physical volume element dV with
the mathematical voiume element dV used in B3, which is the cause of
the uncertainty we discussed in 820. At this element we define, as
previously done in 821, the tensors of macroscopic total distortion,
plastic and elastic distortion BIJ. ij, BiJ' We found above that
the equation

curl 87 = 0 (111.23)

is necessary, in order that the body not have cracks after the deforma-
tion.1 We see that the macroscopic equhtion states something quite
different than the microscopic eq. (11I1.16)

6curl QT =0 (I11.24)

L 4

1T};e function E? restricted by eq. (III.23) is so defined that
it never requires two material points to occupy the same position.
If we call a region in which parts of two volume elements exist simul-
taneously (which is only possible in the imagination) such that they
overlap each other, a "negative crack,” then we need not discuss this

case extensively in addition to the normal "positive crack.”
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This makes the operation possible in Euclidean space. There the develop-
ment of cracks is not mentioned, for indeed the expression "crack" is

not defined in a system of discrete points. In contrast the way in

which the distortions are defined in the macroscopic theory ensures

from the very beginning that the procedure is possible in Euclidean
space,l and this not only holds for the total distortion but also for

the elastic and plastic distortions. Additionally, we have the restric-

tion (II1.23) which prevents the development of cracks.

1
In other words, a deformation which can be described by a
macroscopic distortion tensor field can generally be carried out in

the Ewlidean space,

We will notice that also the macroscopic plastic distortion is
a procedure which can be carried out by itself in the Euclidean space,
however, then in general the connection of the body is destroyed, since
curl'gP # 0. From the remarks following eq. (II11.22) it follows that
where curl Q? # 0, a linearly varying plastic displacement jump occurs
between the volume elements, and according to B8 this is always the case
if dislocations come to rest with constant density, If in the initial
state we carry out a circuit around the surface element AF, which is
composed of many elements dF, then we obtain similar to 83 the total

Burgers vector of the dislocations.which came to rest

P P P
tb, = —}ﬁ ax, By, = {{ dF, (curl B7), , = - AF, (curl B, (1I1.25)

if we assume a homogeneous distribution of curl E? in the region AF.

By comparison with (I1I1.19), we obtain again
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curl E? = -0 (111.28)

-~

and after combination with eq. (111.23) the macroscopic basic equation
curl § = a (111.27)
Here wve made the assumption that the dislocations would come
to rest between the volume elements. In reality they came to rest in a
three-dimensional manner rather than two-dimensionally, By taking the
limit dvV < 0, the two-dimensional arrangement between the volume elements
becomes a three-dimensional arrangement.
We discussed the case of linearly varying plastic displacement
Jumps, but not the case of constant displacement jumps. With such jumps
the volume elements are displaced macroscopically relative to each other;
i.e., the displacement of the point of the medium becomes macroscopically
discontinuous. This case may not be of any significance so we will not

consider it any longer.

823 Plane Dislocation Arrangements in Crystals

This section will consider the application of the boundary equa-
tion of #8 and 9 to a crystalline body. The boundary between two crys-
tallites of different orientations is called a "'grain boundary." Such
grain boundaries are developed, e.g., during the growth of crystallites
in the melt., The growth is initiated from randomly developed nuclei.

If two neighboring nuclei with different orientations grow, then they
will finally touch each other with different orientations, and along
the boundary a region of atomic disturbance is created, 1f the dif-
ference in the orientation is less than 20°, then we can distinguish

single dislocations, which make the transition from one orientation to
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the other. Figure 23 shows a simple example. The related dislocation

arrangesent is schmatically shown beside 1t.l Here it is a wall of

1Often an edge dislocation perpendicular to the paper plane
is designated by the sylbol_l_. The bars imlicate the glide plane and
the extra half plane introduced by the dislocation in an obvious manner.

Therefore ihe dislocation in Fig, 19b would be indicated by.l_.

edge dislocations whose Burgers vector is perpendicular to the wall plane.
However, a wall of edge dislocations with the Burgers vector in the plane
of the wall does not give a difference in orientation (Fig. 24). Such
dislocation walls occur in phase boundaries (832) and with variable
density as a barrier in the glide plane2 if a resistance blocks the

further motion of the dislocations.

2This we call a "pileup.” The calculation of the dislocation
distribution in the pileup is an interesting ﬁnthematical problem which
was solved with different assumptions by Eshelby, Frank and Nabarro
[(166] and by Leibfried [189]. Besides others Leibfried showed that
we can take instead of a discrete dislocation distribution a contin-
uous one to a good approximation even if the pileup contains only a
few dislocations., Then we get the equilibrium-dislocation distribution
with respect to the externally applied stresses from a linear integral
equation. The problem following from this, to calculate the self stresses
related to this equilibrium distribution, was generally solved by Haasen

and Leibfried [169] by integrating in the complex plane., The stresses

can be obtained essentially by differentiating the dislocation distribution.
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(Footnote Continued)
Leibfried [172] furthermore investigated pileups of circuliar disloca-
tions in the glide plane. The applications of all these calculations

deal with the hardening of metals.

First we will consider grain boundaries. From 87 we know that
wal's of intersecting screw dislocations can also be used as grain
boundaries. Unfortunately, these are very hard to draw. Practically
two problems occur:

1. Given the difference in the orientation, find the disloca~

tion arrangement which is developed along the grain boundary.

2. Given a dislocation wall, find the difference in the

orientation of two neighboring grains.1

1The general sclution of this problem is due to Frank [46].

We decompose this problem into a continuum theoretical part and
a crystallographic part. In the former we determine the macroscopic
dislocation density a; in the latter by use of this and the crystallo-
graphic circumstances we calculate the microscopic dislocation arrange-
ment,

We can at once write down the solution of the continuum theo-
retical part. A grain boundary is only defined by the difference of
the orientation of the grains according to the facts mentioned above.
No macroscopic deformaiions are implied by this. (Microscopic elastic
deformations caused by the finite magnitude of the Burgers vectors in

the crystal need not be considered in the continuum part of the problem.)
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In our case the elastic distortion 91J is simply a rigid rotation wij

of the volume elements and eq. (I1.67) becomes

o n, wjl - - gijk n1 wjl ! =0, (I11.28)

In the case of large differences in the orientation, we use for le
a rotation tensor according to eq. (1.94)., 1Its symmetric part is
negligible for small orientation differences, and we can use instead

the rotation vector related to its antisymmetric part

1
w =3 eijk ka' wij = ‘1:]1: o (I11.29)
Equation (III,28) thenr becomes
€13k S3am Ps “’mi “ €k Syam Py “’n' = Oy (111.30)

II I
and with the decomposition formula (A.2)1

(Opp P Oy = Ty “’k),H R ) “’k)ll =a, (IL3D

1This is obviously the boundary surface form of eq. (I.59).

In Fig. 23 only the components n, and w, were different from zero,

therefore the related dislocation density o, , has only the component

13

(n1 = 1)

(111.32)

which are exactly the dislocations formed if the rotation between two
crystallites is about an axis perpendicular to the boundary surface

(twist boundary in contrast to the above mentioned tilt boundary),
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then we get intersecting screw dislocations. E.g., if the rotation

axis is parallel to the xl-direction (only n, and w, are different from

zero), then we obtain from eq. (1I11.31) only

Oy = Ugg = wl' = wlll (111.33)

different from zero.

We will show now that indeed these grain boundaries do not
cat e macroscopic stresses. For this it is necessary and sufficient
1t,at the surface incompatibilities vanish. From eq. (1.87) at once
follows that because of the constant surface density of the disloca-
tions in the boundary surface i: 0. For iwe have from eq. (I.90)

E= - s
N1=(xn . If i are the cartesian unit vectors, then we have for,

i

the grain boundary of Fig. 23 with n = 31 and o = o3y 3_3 _31

( xi)¥ =0 (111.34)

a5, 133,

i.e., 'ﬂ_ = 0, no stresses. For the intersecting screw dislocations it is

a = 022}_232 + 0133 33 33 thus for 0122 = a33 = ao

S s
la Gy iy + 151 X417 =a (-1, 45+ 1, 4,) =0 (II1.35)

again T} = 0,

However, for the dislocation wall of Fig. 24, we find

@ = 0z, 15 1, and calculate from this

- ag, 13 13 (I11.36)

3 s
(a3 131, x4y =

i.e., 1133 =fi= 652. Therefore in this case we have macroscopic elastic

deformations and stresses.

PN o ey v g
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We can mrke the doublet ﬁ33 understandable by taking the cir-
cuit g‘xij de dF {87), which gives the incompatibilities, For this
we imagine that the wall of Fig. 24 is produced hy taking the limit of
a group of grain boundaries of infinitesimal width (Fig. 25). The
circuit L apparently is zero but not the circuits X’ and L”; these
contribute an opposite and equa) rotation angle 2: This indicates
that the dislocation wall of Fig. 24 is nothing more than a doublet of
surface incompatibilities,

We can change the sign of one group of intersecting screw dis-
locations in the grain boundary and then obtain a surface incompat-
ibility '7123 with eq. (III.35).

However, a single group of parallel screw dislocations con-
tributes only as one part to i_, since the other causes a difference of
orientation., So all dislocation walls of constant density have been
discussed,

We summarize the results of the dislocation walls of constant

density: There are mainly four different arrangements:

1. Edge dislocations l-—l-— l-— l— l-—. W

No far-
Grain boundary of the 1lst kind (tilt) | reaching
> self
2. Intersecting screw dislocations. Burgers vector stresses
and line direction in both groups parallel or }
antiparallel
Grain boundary of the 2nd ki .ist)
\
Sources
3. Edge dislocations | | | | | | of far-
reaching
4, Intersecting screw dislocations. Burgers vector ? self
stresses,
and line direction in one group parallel and in no differ-
ence of

other antiparallel / orientation,
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For non-conatant dersity of the dislocations in a wall there
is always a surface incospatibility T which is always connected with

stresses, v

1Furthernore, the papers of Read and Shockley {174] and van der

Merwe [100] should be mentioned, in which the energy of a small angle
grain boundary is calculated according to the theory of elasticity
(as sum of the self energy and interaction energy of the dislocations
developed in the grain boundary) as a function of the difference in
the orientation. Concerning interesting applications of the theory of
two-dimensional arrangements of dislocations see Bilby (2], Bilby and
Christian [6], Bullough and Bilby [14]. The latter two papers contain’
applications to the important phase change of the martensitic type.
Furthermore, Bullough [162] explained by use of the theory

mentioned the observed twin structure in lattices of the diamond type.

Finally we will consider the problem of the curvature of the
structure in pol&crystals, mentioned previously in 820. Let the body
of Fig. 14 be an ideal polycrystal which suffers dislocation motions
transforming it into the shape of Fig. 14b, if the boundary between
the two parts is not initially connected. In reality it remains con-
tinuous and ohtains the stete of Fig. 1. The question arises whether

the crystal of Fig. 1 is still an ideal polycrystal. If not we have

to show it hy x-rays.2

2See for this also Seeger [139].
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We saw that we can consider grain boundaries to be walls of
dislocations, This holds only for small differences in the orien-
tation, since only these have the special property that we can dis-
tinguish single dislocations., However, we can imagine that more and
more dislocations approach and join the grain boundary, thus we get
any arbitrarily large difference in the orientation. If we use the
theorem that a grain boundary is always a two-dimensional dislocation
arrangement,1 then the statement "ideal polycrystal’ in its stress-

free state implies a certain requirement for the dislocations of the

1
In crystal physics this theorem is generally not used, as the
"rough grain boundary" often can be described more simply. However,
sometimes its description as a two-dimensional dislocation array is

more convenient (p. 40, Bullough [162]).

becdy. It can only be the following requirement: The Burgers circuit
around an arbitrary surface element AF, which intersects very many

crystallites has to be zero.2 By this prescription we can define an

2We imagine the volume element AV to be an ideal crystal in its

initial state, which becomes the state of a polycrystal by dislocation
motions., Then the Burgers circuit should be carried out in the ideal

crystal,

} ideal polycrystal. Hence, it follows that the body of Fig. 1 is no
longer an ideal polycrystal, and it must be possible to show this

with x-rays.
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{Footnote #3 for psge 168)

3This conclusion also holds for amorphous bodies, which there-

fore can be included in the continuum theory of dislocations.

For large curvature the distance between the dislocation walls
in Fig. 1 is smaller than the average linear dimension of a crystallite.
Then there are a rnumber of such dislocation walls in most of the crys-
tallites, which results in an average curvature of the lattice planes.
This can be seen as asterism in x-ray pictures. Thus it is sufficiently
i explained why we also can show macroscopic curvatures in the structure

) of polycrystals.

8§24 The T wes of Dislocations of the
Face Centered Cubic Crystal
Previously we always considered the simple cubic crystal since
by this we get a simplified view of the real circumstances, which is

sufficient in man& cases. Indeed, there is no metal which crystallizes

in the simple cubic lattice. However, it is typical for metals to

aspire to a high spatial density, thus it never happens that neighbor-

; ing lattice planes are in opposition as in the simple cubic lattice,
but they are arranged to fill the space between the atoms as the example
of the face centered cubic lattice showrs in Fig. 26. So it occurs that

- . most of the metals only crystsllize in three different kinds of lattice,
the hexsagonal close packed, the face centered cubic and the body centered

cubic lattice of which the second is most common, In all these crystals
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we do not have such simple relations as in the simple cubic lattice; we
will shortly take account of this at least in the case of the face cen-

1
tered cubic lattice, for some important problems follow from this.

1The important cubic frce centered metals are gold, silver,
copper, aluminum, brass, nickel, and certain iron alloys. However

iron is body centered cubic at room temperature.

lo describe the crystal lattice, we introduce three cartesian

unit vectors a , which as in the example of Fig. 26 are directed from

1

the left, lower, front corner atoms to the right low.r (31) and the

3 =a xgz. To indi-

left, upper, front atom ggz) and it should be a 1

cate a group of parallel lattice planes, we write in parentheses the
components of its normal vector simplified by multiplying by a common
factor, so that they have the smallest whole numbers that are pos-

2
sible.” So (100) are the planes | to a, (020) | a,, (001) | a,.
These groups of lattice planes are equivalent crystallographically, if

we wish to indicate them all together, then we use {100} for all plane

crystallographically equivalent to the plane (100).

2This simplified representation holds orly for cubic crystals,
where it is not necessary to distinguish covariance and contravariance.
For the rather complicated relations in the general case see, e.g.,

Jagodiziuski (68].

To indicate a direction, we write in brackets the least integer

components of one vector in the same cirection. Therefore, [100] is the
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direction of a ., ete. All directions such as (01G), (00i}, further-

1
more, {100}, (010}, (001}, where 1 - -1 are indicated by (100",

The most important planes of the face centered cubic lattice
are the planes 111!, since these are the only possible glide and climb
planes under normal conditions. The :111: plane is the densest plune,
one of which 1s shown in Fig. 27. A scecond plane now can be located
in B or C. A stacking sequence ABABAB ... ("two loyer sequence’) results
the hexagonal close packed packing, a sequence ABC ABC ABC ... ('three
layer sequence’) is the face centered cubic lattice.

For the internal energy of a crystal the forces between neigh-~
horing atoms are most important. 1I1f now the stacking sequence contains
an error, in such a way, that we have ABC AB ABC ... so that each atom
is surrounded in the same way by 12 nearest neighbor atoms as before,
but the arrangement with the farther neighbors is no longer the same,

The increase of energy caused by this is very smnll because of the short
range of atomic forces, therefore such stacking faults occur relatively
often,

As noticed in 822 the Burgers vector of a dislocation should be
the smallest possible lattice vector, therefore as we can easily verify,
it is directed always along a {110} direction in the face centered cubic
lattice. Simultaneously it is always the glide direction. Now the (110)
plane is perpendicular to the [110) direction. However, an edge dislo-
cation with the Burgers vector in the [110]) direction is not the edge of
one inserted in the (110) plane but two, as the "thickness” of one (110)
plane is the half of the interatomic distance as can be seen, e.g., from

Fig. 26. This is represented schematically in Fig. 28a,
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Now we have in practice the important procedure of the splitting
of such a "complete” dislocation into two so-culled "Shockley partial

" l
d¢i1slocations,” Fig. 28, The nomenclature should indicate, that tha

1

The stacking fault and the split dislocation were described
fivst by lcidenreich and Shockley { 64). For comprehensive discussions
ol this, see beside others, Frank [45], Frank and Nicholas [50], Read

1121}, thompson [152], Seeger [134], [136], 7140].

Burgers vectors of both half dislocations are no longer whole lattice
vectors. Usually the procedure of splitting is written as a "'reaction
equation’

1

37110] = Z211] + %[wi], (I11.37)

L
6
where [110] 2 stands for Lhe Burgers vector of the total dislocation,
the other expressions on the right hand side of eq. (I1I11.37) stand for
the Burger vectors of the partial dislocations. tq. (II1.37) is simply
an addition equation for these vectors. As we easily see, a stacking
fault remains in the plane between the partial dislocations, which now
increases the internal energy by the "stacking fault energy,” thus, we
obtain an equilibrium distance 2] between the partial dislocations.

The Burgers vector (211]1/6 shows (Fig. 27), e.g., an atom
is moved from the B position to the C position, if a partial dislocation
moved between it and neighboring lattice plane A, If both partial dislo-~
cations moved through, then it is again the B position. Then we can no
longer determine if the dislocation which caused the relative displace-
ment was split or not. In many cases, especially for macroscopic prob-

lems, we can neglect the splitting of the dislocation.
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In general the theorem holds that each stacking fault
terminating in the interior of a crystal is bounded by a partial dis-
location., It is not necessary that complete dislocations and partial
dislocations be straight; they can also produce closed loops in the
{111} plane. Therefore, portions cin be in the screw orientation,
where by tn such cases the width 2 is a little bit smaller.

We will state without proof the following results for disloca-
tions in face centered cubic metals in a simplified representation:

1. Complete dislocations. They are almost exclusively in the
111} plane and there thzy are always split into Shockley partial dis-
locations, Where they go e.g., from a {111} plane to a neighboring
plane the splitting must become zero again. Such a location is called
a "jog." The complete dislocation can only glide in its stacking fault
plane and cannot climb at all. A pure screw dislocation always lies
along the (110) direction, since its line is parallel to the Burgers
vector. This direction is the line of intersection of two {111} planes.
The screw dislocation can split in both planes, Under appropriate
forces it can go from one glide plane to another, therefore it has more
possibilities for motion than an edge dislocation, which is always
bound to its glide plane.

2, Frank's partial dislocation [45] is the edge line of an
inserted (or an extracted) {111} lattice plane; its Burgers vector is
{111)/3. 1t also bounds a stacking fault., This dislocation, in con-
trast to Shockley partial dislocations which normally occur in pairs is
stable alone. It can climb in its {111} plane, but it has no other
possibility for motion., It is almost complementary to those of point 1

above.
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3. The compound Lomer-Cottrell dislocation [(94], [24]). 1f
along an intersection line of two {111} planes, two split dislocations
meet ceach other, then both of the partial dislocations next to each
other can 'react,’ thus we obtain a compound dislocation of great
stability. Then we have a stacking fault which turns from one (111}
plane into another. Such a Lomer-Cottrell dislocation can neither
glide nor climb ard is therefore completely immovable., Therefore, it
is a very efficient barrier against motion of further dislocations in
the related glide planes and plays an important role in the theory of

1
hardening,

1
Sce for this, popers of Mott [104), Leibfried and Haasen [92],
Cottrell and Stokes {26]), Friedel [56]), Seeger, Diehl, Mader and

Rebstock f143].

Other dislocations which may be possible in cubic face centered

crystals are of less importance relative to those described in 1 to 3.

8§25 The Nonlinear Treatment of Singular Dislocations
According to Peierls

A look at the dislocation of Figs. 3 and 5 shows that in the
center of the dislocation the elastic deformation is certainly far too

2
large to be calculated according to a linear theory. Indeed these

2The same holds also in the case of the split dislocations,
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deformations have not been calculated exactly up to now, I[mnitially there
was no theory of the extension 2{ of the disloc.atior center, which is

the governing value in the equation of the emeryy «f the dislocation
(818). Peierls succeeded in an approximate calcul:ticn of the exten-
sion of the dislocation center by a very interesting combination of
microscopic and macroscopic methods.

The basic idea of Peierls [116]1 is to accommodate himself to
the nonlinearity of the circumstances at least in glide plane., We
imagine that the crystal is divided into two parts by a cut in the

-glide plane, FEach part will then be treated as a half spaceﬂﬁ:x2 > a/2
and_p:x2 < = a/2 (Fig. 29); additionally, a nonlinear theorem of

elasticity is used, which adjusts both half spaces.

1
Especially Nabarro [106] developed the very short paper of
Peierls further. Therefore some authors refer to the Peierls-Nabarro

model.

The half spaces are bounded by the lattice planes A ond B,
During this tho special atomic arrangements in the glide plane are
taken into account. The simplest circumstances are obtained for the
simple cubic lattice with {100} glide planes, which was investigated
by Peierls. However, Leibfried and Dietze [91] succeeded also with

the face centered cubic crystal.2

2Nabarro f106) investigated the interaction of two dislocations
in the simple cubic crystal and van der Merwe [100] treated plane

arrangements of many dislocations, Seeger and Schock [141] were
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(I'ootnote Continued)
able to determine, among other things, the energy recovered when a
dislocation dissociates into partial dislocations, according to Peierls,

A comprehensive summary of all results can be found in Seeger [134],

The nomenclature is explained in Fig, 29. Initially we have
the (simple cubic) ideal crystal. The tangential displacements of two
A
atoms lying opposite in the lattice planes A and B are called u and

B - . . .
u . respectively, and their relative displacement is

AB A B
u (xl) = u (xl) - u (xl) (111,38)

where x1 indicates the initial position, let the crystal be infinite

in all directions; therefore, éfbxs = 0, The calculation according to

the theory of elasticity shows, if it is right at all, that for the

edge dislocation in the glide plane, x_, = 0, at least up to the very

2

near neighborhood of the dislocation center, only the stress 021 is
different from zero (eq. (I11.114)). Also, in the dislocation center

all the other stresses may be smaller than o Therefore, they rre

21°
assumed to be zero in the whole glide plane, We call this th: Peierls
assumption, in which we also will include the theorem of elasticity
used by Peieris to adjust the planes A and B, We obtain it by the
following consideration:

1f we displace the upper half space with respect to the lower
tangentially by the interatomic distance a, then the whole crystal is

in equilibrium again, i.e., there are no repulsive forces, Hence, it

follows that the reaction to a relative displacement uAB, i.e., the
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stress O is a periodic function of uAB with period a. The simplest

21’
assumption is that used by Peierls

G 2n uAB(xl)
021 S sin ~ (111.39)

vhere the constants are chosen in such a way that we get Hooke’'s law for
small displacements.
plane
For cutting along a glide in a state with dislocations, we have
to apply the two-dimensional force density 021 at A and of - 021 on B,
in order that no displacements of the atoms in A and B occur. The state
of strain in the interior of the half space due to these "surface forces"

on the half space A is known in the theory of elasticity from Boussinesq

and others, For the plane A it holds (see Leibfried and Lucke {[93],

eq. (12))
A ’
du (x.) ® g __(x,)
—_E;_l- . E_% .f 2t 1 dxi (II1.40)
1 -0 x1 - x;

A similar equation with changed signs on one side holds for B, i.e.,

AB g
du (x,) > 05y (%))
1” _ 2(m-1) f 21 1 4 (II1.41)
ax; ™mg . _x 1
1~ %

1Therefore, d(uA + uB)/dx = 0, we take the free integration

A
constants to be zero, i.e., u = - uB.

1

On the right hand side we substitute eq. (III.39)

Y ehdd
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AB © AB
P , / ’
du _m 1 J sin (2T u  ‘a) dix (111. 42)
dx 2 ¢ 1
1 mTm - xl - x1

and we obtain according to the integral theorem of Hilbertl the
1
This is
1~ g(x) 1o £(E)
< — - -“ g X LT - - b £
1) = 50 Fop axutn = o F2-d r128]
= ]
so-called Peierls' integral equation
r duAB(xi)’dx' a1 2n uAB(xl)
dx. = = == sin (111.43)
- m a
X, - X

A B
with which we can determine the displacements u and u of the plane
A and B.
As Eshelby f37] showed, we can obtain a similar integral equa-

tion with an equivalent assumption for a screw dislocation in the

x3-d1rection and with x2 = 0 as its glide plane

o deB(xi)/dxi mw(x))
i e dx = - sin (III,44)
-0 -
xl b
where w is the relative displacement of the atoms as above, only in

the x3—direction instead of in the xl-direction.

Equation (III.43) has the exact solution

X
A a 1 ’
U B=isie @ne tan — G =

C

=

a (I11.45)

-

m
m-1 "

(1T
e
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according to Peierls, as we can check easily (see footnote 1), corre-
sponding to a static edge dislocation with Burgers vector of magni-
tude b = a in the xl-direction (see below)., With uA and uB given
according to eq. (III.39), immediately 021 is known for the atomic
plane, i.e., the surface forces on the half spaces. The following

classic problem, to find the correspoming Airy's stress functions in

the whole half spaces has the solution

G’ a 2 /2
X:—F(X -E) 2n[x1+ (X2'3/2+ g ) ] (111.46)

2

according to Leibfried and Lucke [93] for the half space A.
This equation contains in contrast to the previous solution (I1I1.113) the
additional term - a‘2 and - a/2 + g’ ~ a/4 and therefore shows that at
a distance of a few atoms from the dislocation center Peierls' solution
practically does not differ from that of (II.113).

As Eshelby [37] emphasized and as it follows from our eq. (I.77)

we can consider

-——iL—-—— (I11.47)

to be the two-dimensional dislocation distribution in the glide plane,

where

Joax ¢76d v ¢’ - a (111.48)
=00

=]

i.e., apparently the total Burgers vector of the surface dislocation is
equal in magnitude to a. The calculation of Peierls obtains, therefore,
the following results: The edge dislocation in the simple cubic crystal

has a two-dimensional extension. We can consider it as previously to be
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composed out of filaments of magnitude duAB. The distribution function

ot B o et me——.

of the filaments is a Gaussian distribution (III.47).1 2§' is its half-width.2 .

1That we get the extension of the dislocation in two but not
three dimensions is caused by the initial assumptions of the calcula-
tion. Whether the dislocation has a three-~dimensional extenc<ion in
reality can not be said with certainty. However, even the two-dimen-
sional extension .eads to a finite self energy.

2
In the literature {’ is called the dislocation width in most

According to Eshelby [37] the solution of eq. (III.44) which
describes the static screw dislocation in the simple cubic lattice,
is exactly the same as that according to the theory of elasticity.
Apparently in this case Peierls' method is less efficient than with the
edge dislocation, so we get no finite self energy of the dislocation
line,

Now we will report briefly the most important result of
Leibfried and Dietze [91] for dislocationé in the most densely packed
plane of the cubic face centered and hexagonal crystals. Here the
simple assumption (II11.39) is no longer sufficient. We need a theorem
of elasticity which contains 021 and 023 as a periodic function of
uAB and wAB. With this we get two simultaneous integral equations of the
Peierls type, which we will not write down. These equations do not have
elementary solutions. According to Leibfried and Dietze, we obtain

simple and useful approximate solutions if we let the total elastic

energy per unit length
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T = TA + TB + TAB (I111.49)

be a minimum, where TA and TB are related to both half spaces and TAB
is the interaction energy per unit length in the strained state.
Leibfried and Dietze succeeded in proving that those displacements

A
u and wA, which cause the energy to be a minimum, satisfy the Peierls'

integral equation, thus the variational method mentioned represents a

proper approximation method, Leibfried and Dietze gave solutions for

some special dislocation types, particularly for the important partial
iislocation.

We now give the most general (approximate) solution for the
partial dislocation in the most densely packed planes [83]. The glide
plane is x2 = 0. The Burgers vector also lies in this plane (824).

¢ is its angle with the line direction, We find by assumption corre-

sponding to (III.45)

x x
uA = - 2, sin B arc tan 2 , wA = - b cos B arc tan =
21 ’ 21 ’
¢ ¢
(III.50)

where C' is a free parameter, the minimum energy per unit length is

2
T = g%; (E¥T sin28 + coszﬁ)(ln R + 1) (III.51)
2¢’
with
g E%%— b(;?— sin28 + cosza) (II1.52)
3/3

There 2R is the linear dimension of the medium going to infinity in
the xl-direction. The formula for the partial dislocation given by

= Leibfried and Dietze follows from this for a particular angle B.
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Eq. (111.31) ¢an not be compared with the previously found
eq. (11.111%, since there is no relation between the I of the latter
and R of the former. However, we can ecasily calculuate a two-dimen-
~tonal dislocation dastribution 1n the glide plane corresponding to

. A .
va (111.47).  1f we 1dentify 2u and 2w with the components g, und

- of the displocenent jump in eq. (1.77), then we easily (btain the

dislocation density

: _ dll'.\ : . :l\i_'\ 1 )
3 d\l i dxl 3
z b -
1;‘(.~‘-m S il . Cos S '13) '..’_T‘»._é—_—;—/'—l (111.53)
.\(l + ¢

Here i? indicates the line direction, the term in parentheses the
directiun of the Burgers vector of the half dislocation. Then we

consider the density (111,38) to he an arrangement of dislocation

frtaments with infinitesimal magnitude

b,(xl) dx, (111.51)

Thus, we obtain from eg. (I1.112)

2,./,2 = dx x dx
G m 2 2., b ~ 1 . 1
2 S < S I3 g
l = (m-l sin"2 + cos 3) o 23 . > ~3 {I11.395)
™ - X + iy, - X 1 h [ty

Now wo approximate these integrals by taking instead of (1{l.31)

for db
- 7
db - L dxl for - —e)— Xt % : otherwise = 0 (111, 56)
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which satisfies the condition : db - b as does (111.54),

-
(111.54) means a constant distribution of dislocation filaments in the
given region. (b f):' is the magnitude of the maximum of the Gaussian

distribution b,(xl). The resulting integral we calculated in 8518 if

we substitute [ by f' 2. Then we get for the energy per unit lencth
£
Gb m 2 2 2L
T - = (m-l sin“8 + cos B)(In - 1) 111.57)

4
e

This formula follovs from eq. (11.145) for which we noticed that it

holds even for curved dislocation lines, as long as we take the right
32

core radius €, For € we calculated the value ¢ = 7 € in 218,
With [ = ":' 2 and eq. (II1.52), we obtain
¢b - — (2= sin8 + cos?3) (111.58)
= 32 m-l
\51 [ o

wvhere the factor in {front of the parentheses is exactly 0.3. Thus
it is possible for us to calculatce the energy of curved partial dis-
‘ocations in the most densely paclzed plane of the face centered cubic

and hexagonal crystals in certainly not too bad an approximatlon.1

lThe calculation contains some approximations (i.e., Peierls'’
assumption) on the other hand the energy is not very sensitive to small
changes of €, since the energy depends logarithmically on €. We can
improve the calculation by determining the integral (111.55) exactly,
even further if we also consider the elastic anisotropy in the hal{
spaces A and B. In the case of straight dislocations, such calcula-

tions were carried out by Seeger and Schock [141].
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We restricted ourselves in these calculations to Shockley
pertial dislocation, These play the principal roles in face centered
cubie and hexagonal crystals at room temperature. In other crystals,
e.., the body centered cubic, we have other types of dislocations and
we have to carry out for evach type a single Peirels calculation.

Summarizing, we can say the following about Peierls' method:

The dislocation width f' gives a measure of the extension of the
dislocation center about whose magnitude it happens that the calcula-
tion according to the theory of elasticity gives negligible results at
distinces ot a few interatomic spacings. Peicrls' calculation gives

an idea of in which cases the treatment of dislocations according to

the theory of elasticity will lead to meaningtul results, and it gives
even then an indication of when that treatment cannot be applied because
of large complications., For the investigation of the dislocation

center itself {e.g., calculation of its energy) the Peierls' calculation

gives a first approximation.
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CHAPTER IV

NON~RIEMANNTAN GEOMETRY OF DISLOCATIONSl

Kondo, also Bilby, Bullough and Smith, realized independently
the close relation between the geometrical problems of plasticity and
those of the non-Euclidean geometry. Accordingly, we can use the highly
developed methods of differential geometry to treat such problems,
especially the concept of torsion. This is due to Cartan, whose papers
are a very nice application to real bodies. The relation between the
dislocation tensor ahu and the torsion tensor Ln[uv] is given by the
equation

L FTAVE ]

R ,
a = € L[uV] (Iv.1)

The difference between the theories of Kondo and Bilby, Bullough and
Smith is similar to that between our Chapters I and 1i!: The theory of
Kondo is a continuum theory, whereas Bilby, Bullough and Smith developed
their theory in the crystal, We will discuss in more detail differences

between those theories in section 28,

1I am very grateful to Prof. K, Kondo and Dr, B, A, Bilby for
the discussion about this point, I thank Dr, J, D, Eshelby very much
for giving me Kondo's book [76] from which I first learned about the

efforts of Kondo, (Dec, 1956.)
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826 The theory of Kondo and Collaborators
First we reviev familiar concepts using the nomenclature of
Kondo 171), Ina the ordinary theory of elasticity we are not partice b

ulzrly interested in rotations, as long as they do not cause elastic
forces, The important quantity is then the elastic deformation, By the
natural state of ¢ volume element we mean the stress-free state which
occurs if it suffers restraint neither due to external forces nor due

to neighboring elements, I[f self-stresses are present, then the volume
vlenents can acquire their natural state only after cutting, since the
elements are bound to Euclidean space. llowever, we can imagine having
non-kuclidean space, in which the volume elements can relax without
being cut, if the restraints causing them to remain in a Fuclidean space
were suddenly to vanish., Such an imagined stress-free state in the non-
Fuclidean space can also be called a natural state. We can consider

the cut elements in their natural state as the (material) FEuclidean
space, which is tangent to the non-Euclidean space at the related points,
Finally we have to define the final state to be tne (Euclidean) state of

the body with the stresses which we wont to investigate,

1The results mentioned here are all summarized in the book [74].
Most of them were reported first at the 2nd Nat. Congress of Appl.

Mech., Japan 1952, by Kondo [73].

In sections 26 to 28 we distinguish between co- and contra- .

2
variance. If ds; is the square of the distance between two arbitrary
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2
points of a volume element in its firal state, and ds“ the square of

the distance between some points in their natural state, then we have

as2 - dsZ = (& . - ) dxt dx? (1v.2)
Fo% 7 Ty TR '

i .
where X are the space fixed orthogonal Cartesian coordinates of the

i, .
points in the final state. g ij(xi) GE g,ji(x ) is the metric tensor
N N

of the natural state. The metric of the final state is obviously con-
pletely defined by the quantity

e .=  -g. )2 (1v. 3)
wvhere we omit the subscript F and N, since we are not afraid of

confusion. From the theory of large deformations we know that in

the case of small compatible deformations, the sij of eq. (I1V.3) have

the form
gy 2k
= (—% " -—f-\/z (1v.4)
. axdl,

therefore €, ., is identical with the previously used deformation tensor,

ij

The vonishing of the Riemann-Christoffel curvature tensor R;RZ'
which is derived from the Christoffel symbol related to gij

og 8,. O,
{ j =38 = ( ﬁ: + ﬁg - {:) (1V,5)
ox ox ox

is apparently equivalent to satisfying the conditions of compatibility

»

for the deformation. B

b S0 U O e e

3x

- e 4 O AR
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the classic theory of elasticity is distinguished from the theory of

selfestresses, This stutement also holds for large deformations,

«hm

shereas the form of the compatibility conditions, - 0, only holds

tor small deformotions, The total covariant curviture tensor

h

ih Rjkl (.7

Hnlki E

15 antisymmetric in both 1ts first and last indices and symmetric
in the pairs 1j and k. tor small deformation the following holds

(see McConnell (L171}])

. . .hm ~hm  _hij kim
“ijkl bhiJ “in ’ F = 4€ € Rijkl (1v,8)
as we can easily verify if we introduce eij of eq. (IV.,4) into
eq. (1V.7). Then we get
;2€
¥ hij k 5
phm - hij dm . th (1v.9)
ox  0x
: i hm
and with (IV.6) it follows that T, = O,

In a theory of elasticity which also considers self-stresses

i
ki

Riemannian geometry. Since problems solved by such a theory are mostly

R # 0, the description of the deformations is then a problem of
geometric in nature, we can state as Kondo and his collaborators did:
"The theory of elasticity is a Riemannian geometry and vice versa.”
However, in previous considerations we succeeded in treating
sufficiently the geometric problem--at least for small distortions--
without Riemannian geometry, so we will not consider the above-mentioned
theorem as a rule for theorists in elasticity but as a helpful hint for

readers who are especially familiar with geometry, There is no doubt

S
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that the study of Riemannian and, as we will see later on, the non-
Riemannian geometry, will give us further understanding of the geometry
of the deformation of the solid body.

Kondo associates with each (Euclidean) volume element in its
natural state its own local Cartesian coordinate system with unit

vectors_gx (A = 1,2,3), which have no restrictions. Then it follows

ax - e do” (1V.10)

@’ = A} ax?, i = Ai do® (1v.11)
= - At

R 1, =4 e, (1V.12)

de, = e, I &¥ (IV.13)
) N T Y1) *

Ior 30 A

RS AAL =6y (I1V.14)

i
wvhere dx = dx -Ei is the difference of the position of two material
"
points in the final state, and dov are the components of the correspond-

ing vectors related to the same material points) in its natural state.

L n

a .
'gu, Au, Ai, qu are functions of xl. For the natural system we use

Greek, for the (Cartesian) final system we use Latin indices. For

abbreviation we use

- = o
9, = d/0x, 3, = A, 9/0x,. (1V.15)

Then apparently the first condition of integrability must be satisfied

¢ ai - aia

; )X = 0 (1V.16)

A

!
it
i
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”

”>
since ~ X = ¢ A_, 0o X = e A,
1 S 1

A ] ¥ o LK
"tXx - Aoe +eo0A =e ([ AAY + 8.A))
J 19 % » ji Y AR 1 i

i J J
(IV.17)
AR - e,(F? A%Au + B.Aﬁ)
i S AL g 1 ij
and
-~ oS O LM r
(AAT -AA) + 0 A, -0A =0 (1v.18)
g i i Ji i
from which
1 i, F) . ¢
i - N T - Y (1v.19)
foand 2 L i 1]

follows by multiplication with A}Ai and eq. (iVv,14). We always indi-
cate with brackets that we take the antisymmetric part of the enclosed
indices, The antisymmetric part of an affine connection is called

torsion according to Carton [15). Where it does not vanish in the

region, we have a non-Riemannian geometry. Apparently r?ku] is
a third order tensor, whose Cartesian componenis are
Chimy = AN (1v. 20)
and with the relation (IV.14) it follows ([174] pg. 461)
P = SALG AT -3 A (1v. 21)

The eqs. (IV.10) and (IV,11), which define the coordinate system

e, are generally Pfaffian differential forms, i.e.,

A

(1v, 22)

2

1
w

)
A4
o
H
(=]

“’i"j J i
After a simple calculation, the left~hand side of this equation gives

the Riemann-Christoffel curvature tensor related to the natural state,
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corresponding to F;u, which we will not write down explicitly, as

n
Rkuv 2 0 (1v,23)

Now we can displace parallel (w.r. to the connection F;u)
a vector cx around an infinitesimal surface element AFuv = euNp Afb

according to the rules of the differential geometry,1 so we take the

1See, e.g. . Schouten [130],

integral
-t at (1V.24)
Al
and we obtain in this manner (see Kondo) for the change of cx
U 1 _u A n [TAY
C = (=R cC"+T b Iv.25
6 = G Rypy () OF (1v.25)

Kondo compared the above circuit with the Frank-Burgers circuit (821).

[

The torsion I is the reason for a translation

fuv]
JY S A L (1V. 26)
(uv] p
where T?uv] is expressed by the corresponding 2nd order tensor.
By comparing with eq. (I.14), we see that T?uv] is connected with our

previous dislocation tensor ¢ according to

n _1 g
2

fuvl ~

. P, oM = MW r’[‘m (1v. 27)

Y
H
if Ab is really the Burgers vector. This problem will be discussed

in section 28.

PRI —
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It is difficult to discuss the second part of eq. (1V,25).
For this see Kondo [74], pg. 466 et seq. First we will mention the

"
9 d =]
following additional fact: The tensor Rkuv corresponding to Rlluv

H
gluRAuv (glK =e, -Sn) is antisymmetric only with respect to its last

two indices since Fu no longer has the from {;L} . But we can split

A
a part of the above-:entioned symmetry of Rlluv and obtain
ac = 3 R[] ct arHY | (1v. 28)
With R[IA][uV] substituted according to eq. (IV.8) we get
ac, = e, NP ct oF, (1v. 29)
or written as vectors
AC=Cx1T - AF ' (1v. 30)

Accordingly, AE_L C, i.e., the vector suffers (in the case of small

distortions) a pure rotation

AD = - T - AF (1v.31)

This result shows (see eq. (1.64)) that we obtain by the use of non-
Riemannian geometry not only our previous results concerning the dis-
locations (see below) but also the results related to the incompat-

ibilities.1

1The difference in the sign is purely conventional.

Beside Cartan's torsion and Riemann's curvature, there is

another quantity of importance in this context, which we will discuss
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now., We can see the important properties very easily on a two-
dimensional material, e.g., a bent membrane. Generally we can restrain
it by two rigid plane walls and so force it into a two-dimensional
Euclidean space, in which it exhibits "self stresses.” But if the
membrane makes a thin circle hollow cylinder, then this is no longer
possible without making a cut first, For this membrane, although it is
bent, the Riemannian curvature is zero. Its curvature, whicn is evi-
dent in the three-dimensional Euclidean space in which it is inserted,
is described by 62§/axi dxi, if for a moment X is the position in the
three-dimensional space and xi are the coordinates on the surface.

Now we can imagine that our three-dimensional body in its
natural state is represented by a '"three-dimensional membrane” of

six-dimensional Euclidean space. XA (Ah=1,...,6) are its Cartesian

coordinates. Then the "Euler-Schouton's curvature tensor" is defined by1

2
HA = é—ﬁﬁ—v (1v,32)
1 axlaxQ

i : .
where x° has the previous meaning.

1For this nomenclature see [130], p. 256,

The relation between Rijkz and Hﬁj is given by

6
R r @ v W ) 1v.33)
ik " j4

ijkd ~ . il ik

(f741, p. 468) from which we find that when HA =0, R, always
ij ijkd
vanishes, but the reverse does not hold., Also the last case can be

included in the complete theory.

T - NVRL
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Moo bondo classifres Tattiee defects wPach ocecur in the cry: taol
an tollons:

. Lattice defects wrth mmecompatible metrice, indicated by o
non=tanishing hiemannian curvature tensor in the naturas}l stute

Ceurvature defects),

2, "Non-Riemonnian” lattice defeets, indicated by o non-vanishing

tor<1on tensor in the natural state ¢ torsion defects™),
d. Tattice defects connected with @ non-vanishing Fuler-
schotten tensor,

According to Rondo, 1t is possible that of the three quantities

i N i o - . . . . g
SETRL Rnikl’ “i)' only ik 15 different from zero but also it may be
d. -1
the s I, is cere, and it may be that | = .
hat only “'] IS . 1y a rik| 0, but Rijkl z 0

Kondo concludes from the Fact thaot ;(-'1, vhich is the same as the curva-
turce tensor according to eq. (1V,25), is proportional to the vector ch,
that the curvature tensor describes defects which are spread over a
larger volume, vhereas the ‘orsion tensor corresponds to dislocation in
small (almost microscopic) region, As defects which can be described

by the use of the curvature tensor, we should especially mention pileups
of dislocations in a slip plane, interstitial atoms distributed in a
volume, and lattice distortions caused by changes of temperature,
According to eq. (IV,3), all curvature defects can be described with
the Euler-Schouten tensor,

1f we compare these statements with our previous discussions,

then we notice that twe points need further explanation.
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() The Riemannian curvature should also be finite 1 no torsion

I M : ‘ ol
is present, We ¢ .o show that this 1s not compatible with the condition

I, . . L
Ihe two following sentences are in anticipation of section 27,

(IV,16) o1 BB3, which reads that L has the form (1V.37). lndeed,

X
B
Kondo allows a more generalised form of the connection, The case con-
sidered here extends the theory of BBS a:d our theory, in which all

cruld be reduced to dislocations, 1t will be the duty of future research
to clarifv which phenomena are governed by such a curvature tensor with
vanishing torsion,

(b) R vanishes, then if no external forces are present, at

ijkd
least in the case of smal! distortions, we have no elastic deformations
and the crystal is free of solf stresses, Additionally, it should be

i . . 3 .
that T 0. Then, according to our previous considerations, the

rikl -
only possible distortion is that by which the body remains intact, the
P
plastic distortion grad s , through which dislocations deform the body,
but at the end of the procedure they are no longer in the interior of
'
the body. It is obvious to connect the distortion with the tensor H?j
i L}
s = ) = O . ]. q -
in the case Rijkl o, ‘rjk] , especially (analogous to the above
mentioned example of the cylinder) two-dimensional cuts are necessary
to transform the body which is in the Euler-Schouten state of curva-

ture into the three-dimensional Euclidean state., Each cut corresponds

to a motion of a disiocation through the body.

1
A two-dime..;ional membrane only can have two-dimensional stresses.

Therefore it can bend without stresses to the mentioned cylinder.
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¢rocanly the tinal explanation ol these tao ponts will complete
the preture developed here, Thus 1t s coupletely compatible with our
previous results, tven now the contormity s very impressive,  Finally,
eormention that eg. PV LIT) is nothing other than our g -ometrie basic
ennttron noyv only wratten mn (space ixed) Cartesian coordinates of the

tinal state, Bee 111 prove this in the nexo section,

827  The heory of Bilby, Bullough and Smith {3,4,5]

The states considered in the theory of Biiby and collaborators
are the ideal crystal as the reference state described by a Cartesian
coordinate system with unit vectors i, which should be lattice vectors
(#21), and the finxzl state, called the dislocated state by the authors,
To describe this we choose a2t ecach point three independent unit vectors

. : 15,2
eq(P), which are everywhere the same lattice vectors. '’

1During the real plastic deformation, small regions bounded by
the glide and climb planes are only elastically deformed. In these
regions neighboring atoms remain neighboring during this procedure,
Since these "clementary regions’' are very small with respect to the
physical volume elements (820) their elastic distortions can be con-
sidered to be homogeneous., Then we can imagine that ea is the atomic
trind {(perhaps in the center of mass of the elementary region). Thus
e describes directly the lattice in its dislocated state,

ol

2
We use now Greek indices corresponding to the Cartesian

reference system,




It

wWe can tuegine that these are derived trom the umt vector ol the

reference system by o distortion

P S T U (IV.31)

i) I . e . 5 NI
where 1) i1~ the related tensor of the affine transformation and b
- -

S

1y 1ts recaprocal tensor, thus

e e L (1V. 33)
i e a [0} o O

BBS now define a new theorem of parallel transport i Enclidean space
by stating that vectors which have the same conponents i1n the e system
should be parallel. The actual difference of two puarallel vectors ¢

at two neighboring points P and Q is expressed us a vector originating

at the poinrt P. After simple calculation, the authors obtain

-'.D“'
o0 a ) Q)
d¢” = F, — C" dx’ (IV.36)
Y
X
Then they ccnsider o Euclidean space with the lineor connection
o a ~ Z (% aE;
L - -k, - =D — (1v.37)
5“/ g1 1 v a. v
X ox

and the related theorem of parallel transport (IV.36). The torsion

tensor follows

Y ) a,esa aE“>
T Llp¥ B _x) (1v.38)
{8v] 2 a\ax\/ axs

which corresponds to eq. (IV.21) of Kondo. Now the Fraiak-Burgers'

circuit is carried out. The typical element of the circuit in the
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Aistocored erystal s

dx 1 dx B e (1V. 39)

1 . . . )

In the sensce ol leotnote (2 of page 132) we imagine that we
do not go from atom to stom but [rom elementary region to elementary
region.  This correspends to the fact that in the case of a macro-

. , .

scopically continuous dislocation distribution the dislocations are
arrangod between the elementary regions., For a comprehensive discussion
of the generalization of the Burgers circuit of %21 to continuous dis-

location distributions see the papers of BBS [3,4]§.

The corresponding step in the reference lattice has numerically the same

component in the_}a system, according to 821, the step (IV.39) in the

e_ system which is

«

dx" E; i for o= a. (1V.40)
The circuit wound a surface F with boundary curve C gives the related
Burgers vector (= dislocation flux) according to 821

n .
B = -ﬁdxk E'i1 for o= a. (1V.41)
L) .

n
For the symbol = see below. The application of Stokes' theorem and

the use of infinitesimal surfaces leads to

@ ..a
. sEY 3E
dB” o . % <-—% = —-i> deu for o = a. (1V.42)
ox axt
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In eq. (IV.:11) dxx means the difference of two points in their final
state, also E? is taken in the final state. Therefore, also the right-
hand side of eq. (IV.12) is related to the final state. Therefore,

eq. (1V.12) (also the equation before) is no simple vector equation,
the sign gzmeans that the components on both sides of eq. (1V,42)

are numerically the same for o = a. Because of (IV.34) then the right-
hand side of eq. (IV.12) is equal to the final state, which we obtain

if we map dBa to the final state.

ar? - dz ap? (1V.43)
or
] ES  2E?
ar? - % ¥ <-§-- -%) aFy (1V. 44)
2’ ax

dLY is called the "local Burgers vector' according to BBS whereas

dB® is the "true Burgers vector.” Notice: from the point of view of
an invariant representation, there exists only one Burgers vector,
dBa and di% are only different characterizations of this vector. For
small distortions DZ in eq. (IV.44) can be replaced by 6Z and it is
not necessary to distinguish local and true Burgers vectors. By com-

parison with eq. (I.12), we find the relation between the torsion

tensor and the dislocation density to be

8

A A AV M V.4
L[uN] . L . (IV.45)

1
=z , o =€ [uv]

KV

BBE are talking of local dislocation density.

Th2 Reimann-Christoffel curvature tensor

o o

adL 3L
o Bé %y o LA o A
L = - + L L - L L (1V.46)
Byé dxY ox My BS A8 By g

S ausn
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wril tire connection (1V,37) vaniches wdenticolly.  According to BBS
this is the condition that we can define the local basis e, every-
where untquely, and it means parallelism at infinity. This¢ corresponds
to the foet that the reference und l'inal state are in the Euclidean
snace.  However, Kondo took the, curvature tensor (IV.23) 1. the non-

. i ; 1
Riemarnian (natural) state aad therelore it did not vanish. We

1 . .
fhe two important curviture tensors are defined according to

Q S
AFT" = R AFT
8.8 = Bops

our previous point of view by A . = L a
s Q’B-\{ Y]

where A has the same meaning as in eq. (IV.31).

obtain t. same result if we take the curvature tensor according to the
e e .ric (called by BBS the "local metric'). Thus this is not

the same curvature tensor as (IV.46). The vanishing of the curvature
tensor taken with the local metric means that the crystal is free of
self stresses.

It was shown that the theoiy 1cjorted above is very useful to
investigate the pure rotation states of Nye (87), which are similar
to states of the classic theory of elasticity characterized by the
vanisning ~»f the incompatibilities (87). We cannot discuss in detail
calculations of great interest ac applications of non-Riemannian geo-
metry to real bodies, but we have to restrict ourselves to the most
important point, the relation between the torsion tensor and Nye's
curvature tensor.

The starting point is the theorem of parallel translation =

(1V.36) which we write in the form
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e - - L. . (1V.47)
0 abe

We split L into its symmetric part L and the antisymmetric
a

be (ab)c

& .
part L[ab]c'

b c o
dCa = - (L(ab)c + L[ab]c)c d» . (1V.48)

It we assume tn be taken in sequence the lattice vector eb instead of
b

C . then dCa is the change as we go to a neighboring point. As we see

immediately, L means a pure deformation; L a pure rotation

{ab)c [ablc’

of the lattice (putting sequentialiy the vector_fl, e2 instead of Cb).

In case L is dE,.L9¢ the angle between e remains unchanged,

[ab)c 1’ S

wvhereas for L(ab)c generally the length and the angle will be changed.

if we take

" d d 1 abd
L[ab]c = Cd Mot e T2 € Labe (LYY
then the rotation part of dg.becomes
Rot d b c
dCa. = - eabd nc C” dx (1V.50)
. Rot :
or written using vectors as dC = - C xn -+ dXx from which we
obtain for the step from one point to another
-
d@—= E:di . 1V.51)

By definition then u !s Nye's curvature tensor and (IV.49) is the
relation between this and the torsion. ﬁ_is associated with the first
two indices of the torsion and the dislocation tensor with the last two

indices. In the case of a pure state of rotation we can easily obtain

ETCTE SR SO
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Nyvel o relation C1009) by comparison with ego IV 10) [0 In this

9
Cose olso the tensors oo and K ol section 7 becore itdentical.

|
For this arite eqg. (IV.19) with Yreck indices,

“9
For o discussion of the various curvature tensors, sce also

bshievhy [ 1L,

Furthermore, BBS show that the equation
n X V=0 (1V. 32)

mentioned first by Nye holds only for small rotations. These equations
are the conditions that dg_of eq. (IV.51) is an exact diflerential.

However, this only can hold for small angles of rototion.

§28 Discussion

In the last two sections we reported applications of non-
Riemannian geometry to continuous dislocation distributions. The authérs
mentioned moreover discussed, some very comprehensively, the relation to
known problems of differential geometry--it should be mentioned, for
instance, Cartan's holonomic groups and structural equations, or Ricci's
rotation coefficients; so they improved understanding of the non-Riemannian
concept of dislocations. In the book of Kondo [74] is described the very
interesting possibility of treating the same problems by the use of a pure
Riemannian geometry in six diﬁénsions, where the holonomic coordinates
xi are no longer sufficient, but we have to use the anholonomic coordinates

of Riemann space. In the opinioa of this author the related method is




especially useful for treating prolLliems in plasticity, On this buasis

he developed a new mathematical theory of plasticity, Unfortunately the
papers of Kondo and his collaborators came to the knowledge of the
author a short time before finishing this report. Hence the lost
mentioned paper couid not he reviewed.

In the opinion of the auhor the Riemannian and the nen-
Riemannian geometry will play an important rcle for lorge distortions,

First there geometries, which were higily developed in another connec-

tion, are formulated from the beginning for arbitrarily iarge distor-
tione. Second, the incompatibility tensor, nij' governs the self
stresses uniquely only for small distortions, while the Riemann curva-
ture tensor is unique for large distortion also. Jn ithe other hand, in
these thecries we usually have to calculate with tensors of 3rd and

4th rank; however these car be replaced by tensors of lower rank at
least in the case of small distortions. ([See eq. (IV.9) and 1V.27)].
Therefore, it seems Lhat the theory described in the first sections of
this book is especially useful in the case of small distortions; more-
over, it is more closely connected with the physical procedures of

plastic deformation than the other theories.

In the preface of this chapter we pointed out the difference

of the points of view of Kondo and 8BS. Now we will discuss another

difference between the two theories, which exists independently from
the first.

o

For a given reference and final state of the body, the Da and

a

E

8

eq. (1V,12), however, are not. Here we have a free choice of the

in eq. (IV.34) are uniquely determined,’ the Ai and A’; in |
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voordinate system.  Frirst we will determine the orientation of the
viementary regions in their natural state, which was determined by
Konde, 1n such & way that they have the same direction everywhere.
Furthermore, we imagine that a virtual ideal point lattice most use-
fully having the same shape as the real atomic lattice in its perfect
stite, 1s ampressed on the final state, thus, e.g., }j are the unit
vectors of this lattice, similar to the ia which are the unit vectors
of the reference lattice of BBS. If it would be possible to show this
virtual lattice also in the natural state, then il would have suffered
exactly the inverse strains and rotations as the real atomic lattice
during the transition from the natural state to the final state. The
virtual lattice can be completel y described in its natural state (in
which it is deformed) by a system of unit vectors_gk. If we now choose
according to Kondo the basis system_gk. then our considerations lead to
the conclusion that eq. V.12) has the same meaning for the virtual

lattice as eq. (IV.34) for the real lattice. I.e., that A;, which

(Footnote for preceding page)

1 .
With a convention according to footnote 2 pg. 132.

transforms the virtual lattice from the natural to the final state, is of
the same magnitude as ﬂZ’ which transforms the atomic lattice from its
natural state or, in other words, from the reference state to the final
state. The last holds becanuse of the convention about the orientation

in the natural state,
i

[km] in eq. (IV.21)

From this it follows that the components of [

and L%, _ in eq. (IV.38), which are both related to the Cartesian coor-

{Bv]

dinates of the final state, are not necessarily numerically equal.

L ot i3 i il b e 5 Lo L T 3t Bt ol s oan e 3 s
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Therefore, also dislocation densities o calculated according to
eq. (IV.27) and (1V.415) are generally different. We could call the
dislocation density according to Kondo "virtual.” It should not be
difficult to convert the real and virtual dislocation density.
Finally the difference in the results of the two theories is
a matter of convention, which should have no more importance than the
sign convention. In the case of small distortions the¢ difference
between virtual, local and true dislocation density vanishes, then
eq. (IvV.2') and (1V.38) become directly the form of (1.17) of the
geometric basic equation as will now be chown.

o

As mentioned above, Kondo'r A; and BBS' Da are numerically

equal. Their meaning can be interpreted as a distortion of the
lattice from the reference state to the final state. This distortion
has the form L + g, where iiis identical with our previous distortion
tensor (I = 2nd rank unit tensor). Then for small distortions the

reciprocal distortions represented by Ai and Ea are equal to l’- B

8 8.
i
If we substitute this into eq. (IV.21) and (IV.38) and we neglect An

and D: évstanding before the parentheses with respect to {A then we

get
I‘:km'l = = % (am Bli( - ak B;) (Iv.53)
and
sy o8
a 1 B
L oo 2 el (1V.54)
(By] 2 (BXY g:%)

These equations are identical (the use of Latin and Greek indices, and

the difference of signs is caused by the different conventions used by
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Kondo and BBS). Also, we see that eq. (IV.54) is identical with our
geometric basic eq. (1.17) in the case of smsll distortions if we also
consider eq. (IV,15). Furthermore, eq. (IV.42) can become a real

vector equation if we relate all quantities on the right-hand side to
the reference state as in section 10. After comparison with (I.14),

we get the geometric hasic equation with the interpretation for the
large distortions. In the general case of large distortions we need
the basic equation related to the coordinate of the final state, since
the equilibrium conditions are also related to these coordinates.

Then we have to use the basic equation< in the form (IV,21) and (1V. 38),

respectively.
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CHAPTER V

APPLICATIONS

Problems treated from the point of view of continuum mechanics,
as they are nco ly formulated in the classic theory of elasticity,
have not previ -!v been investigated using the continuum theory of
dislocations o .cause there had been too little time since its develop-
ment. The problem previously treated by continuum theoretical methods
were mostly of the physical kind and normally dealt with single dislo-
cations and atom<. It is a principal feature of modern plasticity
researci to understand from first principles basic phenomena from the
microscopic point of view. So with this method it is possible in prin-
ciple to succeed in the investigation of work hardening of metals.

In section 29 we will discuss to some extent work hardening, since we

assume a certain interest in this by our reader. On the other hand,

we will show how mathematical problems appear during such considerations.

The phenomena of work hardening is not purely mechanical, but oi com-
plex physical nature, and at best we can only give a rough impression
of how such problems are solved nowadays. For a represeniation of the
current level of work hardening theory, we refer the reader to the
new encyclopedia section of Seeger [135].

According to our opinion the description of point lattice
defects (interstitial atoms, vacancies, etc.) as elastic dipoles or

centers of polarization has a fundamental sigrnificance; therefore we

207
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will discuss four problems in section 31, which will show in a very
impressive way which far-reaching problems of such elastic singulari-
ties we ~an solve with the simple formulas of section 19. Surely it
would be a very advantageous task for experimental research to meas~
ure s much as possible the strength of a dipole and the polarizabil-
ity for inclusions of atoms B in the solvent A and to put it down in
tables. as has been done long ago for electric and magnetic dipoles
ond the polarizability.

Finally, in section 32 we will show examples of the practical
use of the stress function tensor. We think that the complete explor-
ation of this tensor will give some results of practical importance
for which we believe that investigation of the three-dimensional and
also the rotationally symmetric boundary value problem is very neces-
sary. Now these are problems mainly of mathematical nature, and
section 32 should be regarded as a stimulation in this sense for mathe-
matical groups. Beside this, section 32 includes the important results
for circular dislocations, which cannot be found in the previous

literature.
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829 The Work Hardening of Face Centered Cubic Metals

One of the most interesting problems, but simul taneously most
difficult, of modern solid state physics is the work hardening of
metals. Fig. 30 shows the typical work hardening curve of a face
centered cubic single crystal as we observe it during a tensile test.
It is not possible to deduce the curve from the basic equation of
continuum mechanics or any theorems of solid state physics, but it
is mostly due to empiricism. We have a certain model of the procedure
which occurs in the interior of the body during plastic deformation
and we investigate under which conditions this leads to work hardening.
Then we carry out the corresponding experiments and examine how far
they agree with the theoretical considerations. By this method it was
possible to understand the three distinct regions of work hardening I,
II and III in Fig. 30.

In the year 1934, Taylor [149] first had the idea that self
stress fields are produced by dislocation motion and concentrations
during plastic deformation, and these stress fields try to hinder the
motion of dislocations. This qualitative concept still holds.

The stress field in the crystal caused by external loads can be
decomposed into its components with respect to the slip plane and slip
direction. In one of the slip systems the shear stress will be the
greatest; we will call it 7. This so-called primary slip system will
act first, If the crystal is orientated favorably with respect to the
tensile axis, then this slip system remains mostly responsible for the
plastic deformation up to large deformations. Fig. 3la,b show how 1

elongation of the tensile sample occirs by slip on one slip system alone.




o

210

For theoretical investigations generally we plot the external shear
stress in the primary slip system versus the slip. This quantity is
defined to be the ratio of the plastic relative displacement of two
lattice planes, separated by the distance d, to d, so that the plastic
distortion is BTJ when i is the normal to the slip plane and j the
slip direction at the related point of the work hardening curve.
Furthermore, we call this slip . Simultaneously T has the meaning of
a flow stress, for Fig. 30 is a plot of the stress which is necessary
to obtain further flow of a crystal which has suffered a strain ..

The flow stress of a pure metal can be decomposed according to

Seeger [137] into two parts

where Ts is that part which dislocations in the primary slip plane

need to cut dislocations which are in other slip planes and which
intersect the primary slip plane (c¢f{ten called the dislocation forest).
TG is necessary to overcome the long range stress fields of other
dislocations in the primary slip system. In many cases TS is of no

importance relative to T therefore, we will only discuss T

G’ G’

Frank and Read [51] mentioned a2 mechanism by which closed
dislocation loops can be developed by applying a shear stress on
associated slip system. For this we need a sufficiently long piece of
dislocation AB (Fig. 32a’ wnich is fastened in some manner at its ends,
perhaps so that it makes so-called dislocation nodes, which are often

immobile, with other dislocations (this is not shown in the figure).

Under an appropriate shear stress, the dislocation first bows out
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(Fig. 32b). According to eq. (II.148) the force on the dislocation
in the stress field is always perpendicular to the dislocation line;
therefore this bows out successively to the form of Fig. 32c,d.

The curved pieces at C have the same Burgers vector but opposite line
direction, so they are dislocations with opposite sign, therefore,
they attract each other according to section 18 till they have anni-
hilated, thus the newly developed loop (e), and the original line AB
remain. Afterwards this procedure can happen again. This develop-
ment of dislocation lcops is analogous to the development of soap
bubbles, the line tension of the dislocation plays the part of the
surface tension of the soap bubble. The necessary initial line AB is
also present in undeformed crystals in sufficient numbers, since even
during growth of the crystal a "network”" of dislocations is developed

1
in the crystal. The number of dislocations cutting an area of 1 cm2

1
In theories of the growth of crystals, dislocations play the

principal role See Frank [49], Verma [154), Dekeyser and Amelinckx [321.

is of the order of 107 for many metals and it increases with deformation
by several orders of magnitude.

In Stage I of work hardening, usually called the "easy glide"
region, the so-called work hardening coefficient, dT/dy, is relatively
small. Dislocations can form and move without great hindrance. From
the length of slip lines on the surface of the crystals (which were
polished before the deformation) as seen by the electron microscope,
we can conclude (Mader [196]) that here the dislocations tresvel distances

similar to the cross-sectional dimension of the crystal (mm).
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The much larger work hardening coefficient in the Stage 11 work
hardening is caused by the presence of Lomer-Cottrell dislocations (824)
which greiitly restrict the slip distance of dislocations. A dislocation
due to a Frank-Reaa source may meet another dislocation which moves in
a second slip system, thus a Lomer-Cottrell dislocation reaction may occur.

All the other dislocations of the source mentioned then caniot
pass this obstacle; as a result they develop dislocation walls according
to Fig. 24 (however, with variable distance between the dislocations)
Seeger, Diehl, Mader and Rebstock [143] investigated theoretically and
experimentally the procedure of work hardening starting from this assump-
tion and succeeded in explaining more or less quantitatively the linear
increase of the work hardening curve in Stage 11.

In Stage 111 of the work hardening curve, the work hardening
coefficient is smaller again. Nowadays it is explained by the assumption
that with greater external shear stress the possibility arises that the
dislocation can move around the obstacle. For this to occur in every
case the dislocation line (824) dissociated in the slip plane must be
cdonstricted over a length of several interatomic distances. This is not
possible under the action of stresses which act at the dislocation alone,
because this requires an increase of free energy of the order of eV at
the place considered (sec footnote 1 pg. I. ). Thus the distance
between the two partial dislocations is reduced only by the resulting
external and internal stress at the dislocation; the rest of the energy
which 1is necessary to constrict the dissociated segment (the so-called
activation energy, Q) must be contributcd by thermal fluctuations.

Evidently O depends on the stress, and only if the stress is large
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enough; i.e., @ is sufficiently small, can the activation energy be
contributed by thermal fluctuations.

Accordingly edge dislocations do not have more slip opportun-
ities, since there exists only one slip plane orientation for them,
according to B24. However, according to 824, it is possible that screw

Jplanes, can disscciate into another {111}
dislocations lying along (110) directions the intersection of two {111} 4

plane which becomes the so-called "cross slip plane,” after removing
the previous dissociation. Fig. 33 shows this procedure. The newly
obtained freedom of motion of the screw dislocation leads to the
expected decrease of the work hardening rate.

Seeger, Diehl, Mader and Rebstock [143] convincingly proved
the truth of these representatinns by electron microscopic photographs
of polished crystal surfaces. For a complete concept of work hardening
in Stage III, there is the investigation of a problem which we have
waited to discuss until now because its mathematical difficulties have

not been sufficiently solved till now.1

1This problem is inve.‘tigated presently.

Initially we will follow the discussion of Schoeck and Seeger
[133] and Seeger [134] (pp. 61lp et seq.). If the length, 24, along
which the dissociated dislocation is to constrict is very large with
respect to the dissociated width, 27T (Fig. 34), then the dislocation is
almost in unstable equilibrium, because .he probability that the dislo-
cation will disscciate in a primary slip plane is much larger than that

for it to dissociate into a cross slip plane. The shorter the distance

VAR 3 A Ut e T 0 S
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28 is. the more the primary slip plane is preferred. However, if a shear

stress T, is present on the cross slip plane, then this plane is pre-

Q

ferred because the dislocation bows out into this plane and slips.

Thus, the shear stress 7. can do work.1 Hence, we conclude that an

Q

1
Notice: The resulting force on the blocked dislocations in the

primary slip plane is approximately zero; otherwise they would move.

equilibrium length 2£ is related to each such shear stress, and for this
length dissociation in the primary and cross slip plane have Lhe same
probability. At least along these lengths slip of the blocked disloca-
tions in the primary slip plane must be obstructed if the detour into
the cross slip plane is to occur. The activation energy Q for this
procecdure is that energy which thermal fluctuations have to contribute
to produce the configuration of Fig. 34 from two parallel partial dis-
locations separated by the distance 21].

From experiments we can find a value for the so-called specific
stacking fault energy, the energy necessary to produce a stacking fault
which is spread over the whole crystal measured per cm2 of the stacking
fault area. The activation energy Q contains the following parts:

The (positive) energy E12 necessary to bring the partial dislocations
into the position of Fig. 34 (in which they are longer than before) and
the (negative) stacking fault energy Est’ which we can recover if we
reduce the stacking fault area.

The exact calculation of the activation energy is rather dif-

ficult, since the shape of the dislocation line is not known, but has
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to be determined by a variational calculation. For this we apparently
can use only direct methods. Since there is no physical reason for the
symmetry of Fig. 34, we will describe the procedure by the simpler
arrangement of Fig. 35. We take for free parameters the cross slip
length 24, the dissociated width 21 and the tangent to the dislocation
line at the nodal points K and K'. The calculation of the part Est is
trivial. The part E12’ which presented great difficulties previously,
follows very simply from formula (11.136). The main part of the work

is caused by the energy E The line 2 consists of three parts a,b,c.

22’

We write E22 = Eaa + Ebb + Ecc + Eab + Eac + Ebc' Ebb can be obtained

vary easily by eq. (I11.144), similarly Eab’ Ebc’ for then one of the
two line integrals of eq. (I1.128) can be obtained in an elementary

fashion. Since Ea the calculation of Eaa and Eac is the hardest

a = Epp’
problem. However, the branches a and c are relatively far from each
other, thus Eac certainly will give a small value, which is not so
important, with respect to E22, and we can obtain this quantity by a
simplified approximation. Accordingly, the important part is energy
Eaa used to force the branch a from its straight shape into the curved
shape of Fig. 35. We will solve the problem of the self energy of a
curved dislocation in the following section, and we will see that we
can succeed if the shape is not too complicated.

So nowadays we are in a position to treat successfully with
method of continuum theory problems of the activation energy of the
kind described above which appear very often in solid state physics,

and we can confirm or disprove conclusions drawn from experiments

dealing with elementary phenomena in the solid body.

& Wide

e B




216

Tha stacking fault energy is relatively large in aluminum in
contrast to copper, therefore the dissociation and the activation energy
is very small, and we would expect that Stage IIl work hardening begins
at lower stresses than in copper. This is confirmed very well by exper-
ments. It is very satisfying that we can nowadays understand almost
quantitatively the differences in work hardening properties of face
centered cubic metals, which were very puzzling some yecars ago. We

understand far less the work hardening of body-centered cubic metals.

830 An Approximation for the Calculation of the
Self Energy of Singular Dislocations

The self energy of a bent dislocation is important for many
problems of solid state physics. In contrast to older methods, where
we had to calculate at least one line integral of a function given as
a surface integral to get the self energy of the dislocation, the
reduction of the problem to the double line integral (II.145) is a
great advance. However, this also can only be solved exactly in the
simple cases. According to Kroner [83], we will succeed in complicated
cases with help of the approximation we will describe now.

The starting point is eq. (III1.145) in which we assume the
cut length € to be given. We will take € according to eq. (III.58)
for the p.rtial dislocation mentioned in the last section. The

integrals in eq. (I11.145) will have the form

{ { (V.1)
lx - x l
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or forms, which we get if we use the expression (x, - x;)-(x3 - xé)/

(x - §f)2 or (x3

The calculation of the latter integrals does not differ much from

- xé)zf(§_- §f)2 as a factor with the integrand.

that of eq. (V.1l), thus we can restrict ourselves to the treatment of

(V.1) to get

db = dx; 1, + dxp 1., dL' = dx i+ dxgig (v.2)
thus we have to calculate integrals of the form

|x - x| = v&xl-xi)z + (x3-xé)2 (v.3)

For this we have to substitute one of the terms xl,x3 or xi,xé,

respectively, by the other in the curve equation X, = xl(xs). If
the dislocation is piecewise straight, then the integrals can be
determined in an elementary fashion. For second order curves we get
elliptic integrals. In other cases the integral can only be deter-
mined numerically. In the case of section 29, where the curve equa-
tion consists of free parameters, this procedure would be much too

complicated. The following method will often lead to results in

many cases. Let

A%
, 7 7 _ xl - xl 2
X-x , = ,x3 - x3| V1 + 8, s = <———-——7> (V.5)
Xy = Xy :

end we expand the roots w(s) in the interval 0 < s < S by Legendre
polynomials of s. If w(s) is a parabola, we can expect a guod conver-
gence if we do not take S much larger than 3. The estimation of the
error is not very hsrd because of the simple form of w(s). E.g., if

the dislocation never makes an angle < 30° with the * xl-direction,
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then apparently O < s = 3, and the expansion convsrges well along the
whole dislocation. 1f, however, the dislocation has nearly vertical

pieces in addition to nearly horizontal pieces, we will use in addition

to (V.5)
x, - x' .2
[x - x'| = |x, - =] ATTT8T, 8= (22) (V.6)
83 - X3

and w(l/s) will be represented hy Legendre polynomials. However, it
would be worthwhile to investigate whether we can avoid the complica-
tions connected with this if we use in addition higher order terms of
the expansion of w(s) by which we can enlarge the region 0 < s £ 8, so
it may be possible that it is not necessary to use w(l/s). This proce-
dure may be recommended for the calculation of the energy Eaa'
The amount of calculation is mainly determined by the shape of
the dislocation. 1If xl(xa) is a polynomial, then the integrations are

elementary. The same holds for hyperbolas x % a = c/(x3 4+ b) and this

1
statement holds also for finite pieces of hyperbolas. Apparently we can
describe the line elements a,c in Fig. 35 with such a hyperbola and now
we can calculate the energy in an elementary fashion. The amount of
the calculation is tolerable.

Evidently we can use the same method to calculate the inter-
action energy of two bent dislocations according to eq. (I11.128).
Then we can also determine the activation energy related to the arrange-
ment of Fig. 34.

The component T_, of the yield stress is due to the mutual inter-

S
section of two dislocations. According to Heidenreich and Shockley [64]

the dissociation of the dislocation has to be removed at the point of
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intersection. Then accerding to Figs. 34 and 35 we get a so-called
constriction (Stroh [148]) by letting £ = 0. Schoek and Schoek and
Seeger [133] were able to caiculate the activation energy for the cutting
of dislocations in some cases, which agreed sufficiently with experimen-

tally measured activation energies. (See also Seeger [136]).

8§31 Foreign Atoms as Elastic Dipoles and
Centers of Polarization

We speak of loreign atoms if there are some atoms of type B in
a lattice of atoms of type A. They can be at a regular lattice position
of an atom A (substitutional) or they can be in a so-called interstice.
This especinlly lLappens if atom B is small in comparison to atom A.

Even very small numbers of such foreign atoms can influence the "struc-
tural sensitive' properties of the medium (Smekal [145]). The changes
of the properties of iron in which carbon (C) is dissolved in small
concentrations is well kn-wn. The C-atoms are in an interstitial posi-
tion here. According to Cottrell [23] and Cottrell and Bilby [25], the
interaction of the (-atom with dislocations in iron governs, e.g., the
familiar yield point phenomenon of steel.

Fig. 36a shows how such a C-atom is placed in the body-centered
cubic lattice of rion. In order to have enough space it has to push the
neighboring atoms. Obviously we get the same state of distortion of
the lattice in the surroundings if instead of the C-atom we apply forces
of magnitude P w'ich press one atom up and the other down. 1If a is the
interatomic disti:nce in the normal state, then we have here a force

dipole with P22 =  the only component different from zero.




The model mentioned above is a little bit too simple. For an

exact discussion we have to investigate the forces which keep the atoms

together. This is determined by the particular distribution of the elec-

trons. We can imagine that the C-atom not only changes the forces

between the neighboring atoms, but £'so that other atoms of the neigh~
Then we must realize that,
borhood will bhe affected. /'C-atoms act not as a single dipole p22' but

that also other dipole components and higher components will play a part.

According to experience the direct interaction between atoms decreases
rapidly after one interatomic distance to such an extent that we can
describe the C-atom in the position of Fig. 36a to a good approxima-
tion by its dipole components P22 as well as P11 and P33.

Fig. 37, an example of a substitutional atom, shows that the
foreign atom is replaced by a number of force dipoles which are oriented
at an angle of 60° to each other. It can be shown that the displace-
ment field which results from such a dipole arrangement is that of a
center of dilatation P .1 In the continuum a center of dilatation

22

represents a small compressed sphere.

lThis statement holds in the case of the face-centered cubic

lattice, but not necessarily for the hexagonal lattice, since in the
latter the elastic stiffness with respect to dipoles depends on their
direction, thus we need different dipole magnitudes to displace oppo-

sitely placed atoms the same amount.

For many problems it is important to know the emergy with which

a foreign atom is bound to a dislocation. In general, a dislocation

-—
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exerts a force on a foreign atom due to its elastic deformation field
according to eq. (11.156). 1f we move a foreign atom from a position
with zero strain to a position with strain ‘ij in the neighborhood of
the dislocation then we may release energy, following from eq. (1I.165).
The motion of such an atom always becomes possible by thermal fluctua-
tions. If we apply a shear stress then (at least at room temperature)
the dislocation may move with a much larger velocity than the inter-
stitial atom which tries to keep up with the dislocation. Therefore
there is a tendency for the dislocation and interstitial atom to become
separated due to the applied shear stress. However for this to occur

an energy of the magnitude of the "binding energy” between the foreign
atom and the dislocation must be supplied. Aczcording to Cottrell the
‘lislocation in the normal state is surrounded by a whole cloud of C-atoms,
thus a rather big energy supply is necessary to separate the dislocation

from the cloud and make it able to move. This leads to the familiar

yield point effect.1

1
According to the latest considerations of Seeger [135] this

argument should be modified.

Now we will investigate the interaction of the C-atoms with
a screw dislocation, where we will methodically follow the representa-

tion of Cochardt, Schoek and Wiedersich [1(5].2

2Cottrell and Bilby described the C-atoms mainly as centers of
dilatation, therefore they did not obtain an interaction with a screw

dislocation according to eq. (I11.118). As this author mentioned and
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(Footnote 2 continued)
especially Crussard (27] and Nabarro (107) emphasized, wu should obtain
an interaction of a C-atom and a screw dislocation because of the tetra-
gonality of the distortion. Cochardt, Schoeh and Wiedersich first
investigated this quantitatively. However they do not use force

dipoles explicitly, but their method is very similar to ours.

In iron the screw dislocation is directed along the (111) direc-

tion. The starting point is the two equations

K, = v.7)

k= P1y Yk €1y

= - pij eiJ (v.8)

from section 19. In polar coordinates o ,p,z with the z-direction = (111]
and ¢ = 0 in the [211] direction, the deformation field follows from the

stress field (17.118) of a screw dislocation and has only the component

EI S (v.9)

Bl
zp gz 4p

According to eq. (V.8) a force is only then exerted on a dipole in the
field of a screw dislocation if the dipole has a zp- or a gz-component.
The force dipole can be transformed as a tensor into the p,p,z system.

According to common rules it is

PTKP = P¢z = (“j:(pil) QZ."!:I)PII : (v.10)

Let i =1 cos p + 1 sin then i is the unit vector perpen-
Lo B P, 1y

~¢ o 90 o

dicular to the vectors

1z=[/§.~/’§../§] and _3%0:[/? '/%' _/';:]_1
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(Footnote for preceding page)

1
We see at once that these i and i are unit vectors in the 7
~z - ~%90

{111]) and [2ii] direction, respectively.

=1 x1_  has no component in the x -direction, as we may check;

1
~@o ~Z ~r90 i
thus we finally obtain for eq. (V.10)

_WZ
PRP = P;z = = P11 sin Q. (v.11)

Since €., depends only on p, according to eq. (V.7) the dipole suffers
\ra

a force
B o b ___251“2 P (V.12)
p 3.2n o

This is an attractive force in the region 0°% ¢ < 180°, a repulsive
force otherwise. 1f we employ the same procedure for P22 and P33,
we obtain {ormulas which follow from eq. (V.12) by substituting for
@ by & + 120° and & + 240°, respectively. Apparently this is a result
of the fact that the [111] direction makes the same angle with the
xi-axis.

From eq. (V.8) with (V.9) and (V.11), we immediately get the

energy of the dipole P11 in the elastic field of the dislocation to be

bP
U= - —il BN (V.13)
3f2n P
The application of these formulas is prevented initially for
the case of the C-atom, since we do not know its dipole magnitude.
Today it is only possible to obtain this experimentally by using a

theory which allows us to connect the dipole magnitude with experi-

mentally measured quantities. There is no procedure which we can apply

in every case. 1
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Eshelby [39) described the following method for measuring the
magnitude of the dipoles composing a center of dilatation: Dissolve
a number of atoms of type B in a metal A (e.g.. Al in Cu) and measure
the change of the lattice parameter which occurs. This depends on the
corresponding concentration of B atoms in A and on i{he strength of the
center of dilatation. Eshelby gave the necessary equations for calcu-
lating Pii from the change of the lattice parameter.

We will show now that this method can be extended to the case
of arbitrary force dipoles. If we distribute a numbi¢~ of force dipoles
statistically unifurmly in an initially homogeneous body A, then it
generally changes shape and volume. If we considered certain physical
volume elements, each of which includes many such dipoles, but which
are on the other hand small vith respect to the external dimensions of
the body, then we can state that an average (macroscopic) deformation
e?J is impressed on each volume element by the dipole distribution (86).
If we assume that the concentration is constant with respect to the
volume elements, which is generally possible in experiments, then the
connection of the body is not disturbed by this imprecsed deformation,
i.e., there are no (macroscopic) elastic deformations necessary to keep
the body compact. Accordingly, the impressed deformation is the observed
total deformation E?' The macroscopic stresses vanish.

However it is obvious that we cannot distinguish macroscopically

if we have 106 dipoles at the strength Ai or 107 dipoles of the

J
strength Aij/lo, with other words, we imagine the N dipoles c¢f the
strength PiJ substituted by a constant dipole density pij’ which can

be determined by the condition
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'5£f Py av = Py V= NPij . (V.14)

Rieder [122] called such a dipole density, taken negative, an extra
stress; the nomenclature "impressed stress” is also meaningful. This

is connected with the impressed deformation by the equation ([123], [122]

_ Q
p1J = CiJkZ ekl . (v.15)

48 we easily see.1 Since pi is known, we have simultaneously the

J

1We imagine that surface forces are applied simultaneously with
the dipole density such that initially no deformation occurs. After-
wards we can cut the volume elements and can measure the forces pij dFi
which we have to apply in order that no displacement occurs. The
following deformation during the relaxation is connected with the
stresses by !boke's Law. Also we realize that we have to deal with

small piJ' i.e., small concentrations, for otherwise eq. (V.15) will

not hold.

total deformation of the body eIJ = egj. Conversely we obtain the

dipole strength to be

P, = (VN C D V.16

13 13k4 k4

T
where the concentration, N/V, and the total deformation ciJ is known.
This method holds only for small deformations because we assume

Hooke's Law (V.15). Such deformations can be measured easily.2

?As the sample must generally be melted to put the dipoles in

it, the dimensions with and without dipoles can hardly be compared.
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However, more difficult considerarions are necessary to assure that the
change in the lattice parameter determined by x-ray techniques is

really the macroscopic deformation. Microscopically we do have stresses
and elastic deformation fields which change cheir sign over distances

of the order of the average distance between the dipoles. However, the
corresponding investigations of Miller and Russel [101], Huang [66],

Tetlow [150] and Eshelby [39] seem to solve this problem.1

1
See the discussion of Eshelby [39].

The C-atoms are statistically distributed over the three possible
positions in the body centered cubic iron-carbon--we will call them the
1l-, 2- and 3-position. 1In this case we can only rotice a continuous
1 dilatation of the lattice and so we obtain only an average statement
& about Pij' However in Martensite the C-atoms are arranged tetragonally

(e.g., all in the l-position) then we expect a strong dipole P11 and two

weak dipoles P22 and P33.

Kurdjumov and Kaminski [85] gave an increase of the lattice
o )

parameter C in the l-direction from 2.86 to 2.96 A for 1 weight % C
=22

in Fe (corresponds to V/N = 2,58 - 10 cm3), while simultaneously

the c¢/a ratio increases from 1. to 1.04. (a = lattice parameter in

2- and 3-direction). This means a strain eIl = 0.035,

T T 12 2

622 = 633 = = 0.0048. With C1111 = 2.37 10 dyne/cm

3
01122 =1.4. - 1012 cyne/cmz, it follows2 from eq. (V.1 6) easily

2 _ - c & o
Cy111 = Ca222 = 3333 = €11°Cr122 = Co21y’ €tC = €y Cyy 2nd

C are from Zener ([158], page 17.

12

31 ev=1.6" 10712 o,
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pll = 11.2 eV, P22 = P33 = 4.6 eVv. (v.17)

From eq. (V.13) and the corresponding equations for P22 and P33,
we get the energy of the total dipole represented by the C-atom at
a distance b from the screw dislocation and for ¢ = 90° (where ,Ul

has its maximum) to be 0.5 ev.1

1The difference between this and the value of 0.75 of Cochardt
and collaborators is caused by the fact that these authors used the
isotropic Young's modulus. This is an important and useful example
of how large the difference can be if we do not consider the elastic

anisotropy of the crystals.

We will briefly discuss the application to the important Snoek

effect [146].2 If we apply a stress o,, to the crystal of Fig. 36a

11

2The snoek effect is often used to determine the smallest C-
concentration in Fe [75]. Zener [158] treated this effect theoret-
ically very sufficiently and in parts we follow his representation.

The reduction of the relaxation of the elastic coefficient s, due to

ijk4

the force dipole represented by the C-atom is new and very impressive.

so it is strained in the xl-direction, then the C-atoms prefer to
switch over into the l-position (Fig. 36b) since they have more room
there. The total displacement is composed now of the elastic part

= d d i £
eiJ sijkl okl and an additional quasilinear deformation

AT R
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Q _
ij - ®ijk

density due to the motion of n dipoles from the 2- or 3-position to

€ 1 Py (eq. (V.15)), where L is the change of the dipole

the l-position. Therefore the total strain is

T

eij = Sijkz(okz + pkl)' (v.18)

In this pk should be expressed in terms of known quantities.

2

pij' pij' P?J are the dipoles in the three different positions.

Then because of the similarity of P2

. and P? it follows from
ij i

J ]
eq. (V.14)

n, 1 2
Prs = ¥ ks = Pt (v-19)

According to Zener [158], we can easily find n from Boltzman statistics

to be
U -U [u, - v,

2
=1 1=l = — ———— <
n 3 N , for o 1 (V.20)

where U, is the elastic energy of the dipole in the l-position,

similariy U2. From eq. (V.8) it follows that
U -V, = - (pilJ - pfj)eiJ (v.21)
with which we obtain
Pes = 5 T Prs - Pop Piy - Pape, (v.22)
In this we substitute eiJ = Sijmn O and pkz into eq. (V.18) so

we get

T

eiJ = (Sijkl + Asijkz)okz (v.23)
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with

1 2

(P -P" ). (v.24)

Q = mn-

2 N
TR L T Tk ij 7 Sijmn

The quantities s are called the "relaxed’ elastic coef-

ijke * %1y
ficients, and they are measured statically by the ratio of total

strain to applied stress. In spite of this we can measure the
"unrelaxed’ elastic coefficients sijkz with vibrating rods, where the
period is so small that a rearranging of the dipoles {the '"'relaxation"),
which always requires a finite time, cannot occur. Zener, whose results
are quantitatively the same as ours, furthermore describes the way in

which As is a measure of the magnitude of the damping. For this and

ijki
the comparison with experimental results, which are very satisfactory,
see Zener [158].

Finally, we will discuss briefly the polarizability (819). We
assume the sample does not contain dipoles but rather centers which

can be polarized. Important examples are lattice vacancies in many face

centered cubic crystals.1 Analogous to the circumstances in electro-

1Seeger and Bross [142] previously calculated from electron
theory that the dipole strength of a lattice vacancy is approximately

Zero.

dynamics, we can eall such a medium "dielastic” in contrast to a body

with dipoles, which is called "parelastic.” Parelastic bodies always

have a certain amount of dielasticity.
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For instance, if we apply a homogeneous stress ¢ to a

iJ
dielastic rod, then dipoles P;;d of density pi;d are ianduced. We

obtain
ind ’
= (V.25
95 * Piy = Cijke ks NIZS
instead of the normal Hooke's Law
(v.26)

935 = Cijke ke

which we would obtain if no dielasticity were present. The combination

of both equations becomes

pi;d = (C;sz T TTALY) he 273
and

Tigke = Cigke ~ Cigkg (V.28)
is the "elastic susceptibility” of the sample. Because pi;d = Pi;d(N/V).
the elastic polarizability of eq. (I11.169) is given by

Rijkz = (V/N)rijkz' (v.29)
In many cases °13kz and C;sz can be accurately measured as elastic

moduli of samples with and without centers of polarization; thus the

polarizability of defects is relatively easy to obtain.1 The interaction

1

The effective modulus, 2 of a sample with centers of

7
Cijk
polarization appears smaller or larger with respect to the modulus
without centers depending on the sign of p:;d/ekz. According to Zener
[159], all self stress sources have additional effects which reduce

the modulus. This effect is reduced to the determination of the increase

of the oscillation entropy of the body by increasing elastic deformation,
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(Footnote continued)
80 in contrast to our effect it depends very much on temperature.
Therefore it should be possible to separate these two effects

experimentally.

of dielastic lattice defects is mainly determined by the polarizability.
This is an interaction with a very small region of influence (force is

proportional to the -6 power of the distance), while the force of dipoles

goes with the -4 power.

832 Applications of the Stress Function Tensor X to
Rotationally Symmetric and Three-dimensional
Problems

Let cylindrical coordinates p, ¢, z have io"3¢"32 as the
corresponding unit vectors (length £). The components of the stress
function tensor lfmay not depend on ¢. Then as can be easily checked

we can write the secondary conditions VixiJ = 0 of section 12

x> .,
;t e =0 (V. 30)

@ _ [

p2 5 + ot (1] (v.30')
3px’ )

1 ,on S ZEN Tt (v.30")
PP oz

1f they are satisfied, then the stresses follow most simply from

eq. (11.23)

' m ’
g = 2G[AY + —y (VVY - A{)XI]

with Xi

’ ’ ’ ’ r ’ ’ -’ ’
Xbp + x¢¢ + Xgp It is with Xbp + X¢¢ = x?, xpp wi = X_

that
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2
m d )
(Ooo+ow)/2ﬁ = A - — (A + a—i)xl
4 ’ m 62 1 a /
(Opp-dw)/ZG = (& - —)X_ m-l(-—z- Y s) X
P e
, m 52 )
Og2 26 = By ~ oy 47 PXp
oz
2
SA =Ly R 8y
opz/ZG = (4 pz)xpz Y (apaz))(I
) 4, «
g /26 = (A - =% _; 0 /26 = (A - — .
Pz 2%z o z)xpcp
P P
The Cartesian components of xij satisfy the eq. (II.20)
!
aa Xig = T]U. (v.31)

From this immediately follows

' r
1LY, X, = ﬂ+. LY.} Koz = nzz' (V. 32)

More etfort is necessary to obtain the other equations

4 4. ¢ 4 4.
B-=-0-=)x =1 , (A-=)(A-—) =1 (v.32')
2 2 - - 2 2 ’
) : ; ;2% " Yoo
1 1 } 1 1 ' v
(A-;E)(A -p—i'))&)z = Tlpz , (B -p—i)(A-p-E)X(Pz = .ﬂzpz' (v.32")

Since Vinij =0, 1 is restiricted by the conditions corresponding to

i

(V.30). We notice that the components of Zf are initially coupled in

the differential equation. however the condition (V.30) always connects
7 / / / / / /

(Xbp’x¢¢"zz)’ (xp¢.x¢z) and (xzz,xbz). Often it is possible to say

that . = 0_ = O, then we can neglect x'_ and X' . Furthermore,
%z ™ o Xpz #2 Xp
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if Tl:z = lez = 0. then we only need L and D to obtain a particular
integral. Although we still did not find a rigorous proof, it is very

likely that all states of stress in which div g. 1 co@ vanish can

c¢zl
be expressed by xf. and )‘.;c alone. We generglly use Love's displacement
function for the calculation of these states of stress. In the following
h .4 » s‘ = 2 = = .
we will only consider the case x_;z \x sz Xzz 0

It is remarkable that x';,; can be expressed now according to

eq. (V.30) by v .. We can also write the condition (V.30) in terms of

- -
- -

x . and x' and ¥ . respectively. Similarly it holds for T that

9
S ) 3 3(azﬂ ) M
ML 28 ! oo _ES. S S B W -]} -
M= 0 SoE R ﬂ+-a 5 N == 3 (v.33)

Now the stresses can be written

2
~ -~ 2G = A - l A ca—- »
(~:c+v:x) 2G Ax+ n-1 (..J + N 2)X !
Az
2
4 m 2 1 3
Cofe—C =] 2G = () = = — - — .
(..:: .._x) 2G = ( 2)x —~—) ( 773 30)X+
s X
U= 2% -, . (V.34)
(2% 5 ‘
m 32 ’
T2 207 T pxle AN
§2
m 2 g
“az 2eE m-l 3z X,

/,

By adding eqs. (V.32) and (V.32') related to "+ and '.";_, we obtain

with (V,33)
’ - 7 2 5
S TERL IR e = A+ = : (V. 35)
ol Sle & $




234

1f now \_ . O. then it follows from eq. (V.33) that pz)&;p can only
have the form f(z). 1f we have 7] = 0, then f(z) only can be a third
order polynomial (otherwise eq. (V.35) will not be satisfied). The
stresses corresponding to f(z) follow from eq. (V.34) very simply

=~ = == ((‘n + Clz) 02: all other components vanish. If this rela-

3 by
. - 1
tively trivial state of stress does not occur in the body considered

‘Otherwise we can subtract it anyhow from the total state.
Most results of this section for the case 7 = 0 can be found in

Marguerre [98].

(wvhich is the case for every convex body loaded with surface forces) the
function x; (and so x') has the same value as xép. Then we can calcu-

late x:. and from this and by use of eq. (V.33) follows the formula

. =K ,
X, = p—z-fpx+ d; (V.36)

for calculating x;p' from which we get the stresses by differentiating
twice according to eq. (V.34). If we initially calculate x;p, we must
differentiate three times to get the stresses. We will not write down
eqs. (V.34) in terms of x;o.

The presently unsolved problem is how to express most usefully
the boundary conditions in x;p or x:. Every biharmonic function xgp or
X; represents a possible state of stress, thus the boundary value problem
is twice harmonic. From this we may conclude that the actual family of
the states of stress which are governed by the Love functions (for
div g = 0) can also be represented by x;p or x;, respectively. Since

these functions are more closely related to the stresses, the solution
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of the boundary value problem with these functions may be of practical
importance,

These considerations showed the variety of the possibilities
which the stress function tensor offers, thus we can adjust them very
well to actual problems. This is of apecial importance for using compo-
nents of the stress function tensor which correspond to curvilinear
coordinates. We chose right from the beginning the secondary condition
Vix;J = 0, but there are many other possibilities which are presently
almost unknown.

Now we will treat an application to circular dislocations.
Such a dislocation may lie in the plane z = 0 with the center in the
origin, and radius R.

The stress function field of this dislocation is mainly given
by the integral

§ x dL; (V.37)

according to eq. (I1.107) it can easily be shown that (V.37) has the

form
F(p,2)i . (v.38)
Fo .21,
according to Franz and Kroner [53]
83 2
F = [2k'K - (2 - kK)E] (v.39)

where K = Eﬁk) and E= Eﬁk) are the complete elliptic integrals of
the first and second kind. Furthermore,

A R (V. 40)

k:ﬂ 82=22+(R+p)2, k
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From E_the stress functions of eq. (II.107) follow, as we can easily
check:
’ b ‘ JL

F
o "W X T 7

the other components of x' vanish. The equation only holds for the

=3

= (v.41)
% '’ '

3

case that the Burgers vector (magnitude b) of.the dislocation is
directed in the z-direction, because only then is the problem rotation-~
ally symmetric.

Starting from (V.41) the author investigated an arrangement of
parellel equidistant circular dislocations with the same radius [72].
This arrangement is very similar to the familiar current coil in
technical electronics. If we assume that the coil is very long with
respect to the radius R, then we can use the same approximations as

with the current coil, then we get in the interior of the coil

=G =2Gm
opp = ocpcp =~ vb, %, = o3 vb (v.42)
and in the exterior
2
= =g =—‘-—G—\)b5—, (V,42')
pp P m=-1 2

(Vv = the number of windings). All the other components vanish with
this approximation. The external state is exactly the state described
above with xi = 0., The erergy per unit coii volume is found to be

e L G2 (V.43)
m=-1

There is no difficulty in principle to solve this probleu exactly by the

1
use of elliptic integrals.

1The stress which occurs during shrinking a hollow cylinder onto

8 rigid cylinder with a slightly larger radius can be reduced to a

e
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(Footnote Continued)
dislocation arrangement in the boundary surface. But these disloca-
tions are directed in the z-direction according to eq. (1.77) and they
have their Burgers vector in the ¢-direction. Our problem corresponds
to a welding of two cylinders like the above, however, the interior is

elongated elastically with respect to the external one the z-direction.

Calculations of this nature are of interest for certain problems
in metal physics. The important facts we can see in the following
problem: During the cold working of the important aluminum-copper
alloys (Duraluminum) there are the following two states among others.

We have the two-dimensional clustering of Cu-atoms in the {100} plane

of the Al-lattice, and most likely a one-atom thick layer of copper.
These are distributed statistically in one case (called "Guinier-Preston
zone I); in another a number of them are arranged in complexes {(Guinier-

Preston zone II).1

1See, e.g., Gerold [59] or Hardy and Heal [63].

We can describe the rearrangement of the Cu concentration thus:
a partial lattice plane of atoms in the Al-lattice is replaced by
Cu-atoms. Since the Cu layer is "thinner'" there is a missing layer
having a thickness equal to the difference between the lattice épacing
of Al(dAl) and Cu\dcu). However, the connection is maintained by the
atomic cohesion forces and we get elastic reactions. The Cu-layer acts
Al Cu

like a dislocation line with the Burgers vector b=d - d in the

z-direction, if this is taken perpendicular to the layer. We will treat

N 2 T v

e st a
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this "quasidislocation” (it is not a complete edge dislocation since
the lattice plane does not terminate) as approximately circular. In
experiments it was noticed that (at least in certain temperature regions)
they prefer to arrange themselves on top of each other like a "coil."
Since the Burgers vectors are parsllel we would expect tiie contrary to
be more likely, for similar dislocations with parallel Burgers vectors
repel according to section 18.

According to Franz and Kroner [53], the opposite effect can
be explained as follows. One of the middle Cu-layers of the complex
is bounded by a complete dislocation with Burgers vector opposite to
the quasidislocations, i.e., this layer is not continued as an Al-plane
externally. Since the Burgers vector of this dislocation is much
larger than those of the quasidislocations, it can attract such a large
number of quasidislocations the sum of all Burgers vectors of the
complex is zero. By this also the long range stress field which requires
energy 1s removed. The following is assumed today for the most probable
arrangement of the layers in the Guinier-Preston zone II.

Every fourth lattice plane contains copper.1 For the number of

11f only every second atom in a layer is a Cu-atom, then the
vertical size is about double. Experimentally this has not been proved

at present.

layers in one complex we obtain six [53]. The vertical arrangement of

such a zone is 21 lattice planes which corresponds to slightly more than
o

40A and which agrees sufficiently with experiments which are very diffi-

cult to explain otherwise.




ARG S NI A K. S G

P55 R ORI APy S AN Srsd PO, 3R, s

et e mbmem e e e cmrsimms s MR s e o ks PRevS . e e e SR,

239

We can treat the phase boundary between two pure metals A and
B analogously. For simplicity we assume that the lattice parameter of
A and B is only different in the z-direction and that the phase B is
a circular cylinder in A with the axis in the z-direction. If the
lattice parameter dB of B is smaller than that of A, then now and then
a lattice plane of B must terminate, otherwise ve would have the large
energy of (V.43). Now we can represent each lattice plane of E as
a quasidislocation with Burgers vector dA - dB. If, e.g., dA - dB = dB/S,
than after 5 lattice planes of B we must have a complete dislocation.
Accordingly, we can describe a phase becundary by an arrangement of
dislocations and quasidislocations, as shown in Fig. 38. While the
dislocations and the aquasidislocations are, considered by themselves,
strong self stress sources (H23) together they act mainly as a surface
cover of "dislocation dipoles” (or "incompatibility quadrupoles (823))
so that their elastic effect and therefore its elastic vnergy is small.
If we want to calculate it, then we would have to solve a boundary
value problem with respect to the boundary surface and have to consider
the different elastic constants in the interior and exterior.

Eqs. (V.43) are no longer sufficient to calculate the surplus
energy during the transfer from the Guinier-Preston zone I to zone II,
therefore Kroner and Franz [53] calculated exactly the intoraction
energy of two coaxial circular dislocations with Burgers vectors per-
pendicular to the dislocation-plane by using elliptic integrals accord-
ing to eq. (I1.128). Pfleiderer [11 7 obtained the interaction of

circular dislocations more generally, also starting from eq. (II.128).

—~—




In the following we will summarize the results, some of which are

surprisingly simple.

Let
2 .
' Q 1 9 1
Flo - (4 22 0 yy
2 2 2’ ~.
X P X p
2 = f 2
.- {2(9“+R2)K - [(th)2 + (—R:E—)—]EJ (vV.44)
s = 12 -
2.0k k
2 2 2 2
o O F 2,.,.2 kz .
Fo= -3-2-2- = 2,(Rp) f[;u:—z-) kIK - [-(1+s ) + R ——5IE}.  (V.44")

For two dislocations AB in the arrangement of Fig. 39, according to

Pfleiderer, it holds that

AB
B = Hy o+ Hyp + Hyg, (v.45)
where
_ G B 3m-1, ., AB .
“11‘81’?’1"[ GEDE+ E'l By = grrry ObgbpE

H22 follows from H11 by substituting bﬁb? by bgbB, p indicates the
radius of the dislocation B, b‘: and b? are the Cartesian components
of the Burgers vectors of the lines A and B.

The equations simplify greatly if both loops are in the plane

z(= x3) = 0 or if both have the same radius. We have then

Gbl:b?R 2 2

Hulp-n = DR {[(1-4m)k” + 2(3m-1)]|i -[-mk +2(3m-1)]§}.
mnG B

H33‘ - T baPgReIK - E1,

p=R

2m 1 B 2

H . > Gbbo(Rap) [(1- 5K - B,

11, 2(m-1)
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2
n B k
533 k== Gb:bi(ﬁ'bp Q- ?)E - E). (v.47)

2=0

From eqs. (V.45,46) it follows that dislocations with perpen-

dicular Burgers vectors do not interact. We obtained this result

earlier in £18. For the problem discussed above, the energy of two

dislocations with p = R and Burgers vector (magnitude b) in the z-

direction is important. We find it to be

n 2
— Gh Rk(l_s_ = E_) (v.48)

For other uses a case of special interest is when both dislocations

have their Burgers vector in the x -direction and are in the plane

1
z = 0 (this is then slip plane, the corresponding equations can be used
for calculating the energy of piled up dislocations). We also have

then the very simple expression

2
2m-1 2 k
mﬁb (Rip)(Q1 "-E')li"g]. (V.49)

If we choose to make the distance between the dislocations very small,

about twice the cut length ¢ in eq. (11.145), then we obtain the self

: energy in the approximation described in B18 and 825. The self energy
H of the dislocation in (V.49) was first obtained by Nabarro [110] in
another way (starting with eq. (11.122). In this case k ~ 1 (if
€ << R), then we have the approximation Ex 1, k ~ 4n (4/k’) [69]
and we obtain for the self energy of this dislocation

' - 2n-1

2(m-1)

4R

GbZR(4n T-2 (V. 50)

in agreement with Nabarro.
All these calculations were carried out with the assumption of

an infinite medium. At large distances such a dislocation loop acts

T
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like a force dipole, i.e., the long-range displacement field of the
dislocation varies as l,r2 (r = distance to the origin), the stress

field with 1 r3 and the energy density ‘1 /2 with l/rs. The part

3 %13
of the energy in the infinite medium external to a sphere of radius ro
varies as l‘ri. If the dimensions of the body are sufficiently large
with respect to R, which is true in almost all applications, then the
surface need not be considered, i.e., the above equations give the
energy to practically the same approximation for the finite body alsc.
For these calculations the stress function tensor tock part
only indirectly (eq. (11.128) was derived with its help). Finally, we
give equations derived from the stress function field lf for a dislo-

cation with the Burgers vector in the plane of the loop (slip plane)

(Keller, [70]). Let (x,y,z) = (xl,x ,xa). Then it holds that (see

2
(V.40))
= o - (3B - 2C + Dx2)xz
%91 T Y@
- af2C + ™ (B - 2C + Dy2)]xz
T2 = ¢ m-1 ¥
m 2 |
Ogg = @ =} (C + Fz')xz
\
1 (v.51)
0un = al-C + =2~ (B + Dx2)1yz
12 i m-1 |
|
- m 2 }
Oyg = @[-B + — (B + E27)]xy
2 m 2 2, 2
Ty = afA + By + —p [A+ Cz" + (B+ Ez)x 1} )
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A= —5 (28 -240)K); B s - —xa’C 4 )
p sk L J
C= -3 F, D!-1(4B+C+Fz2)
6 /2 ~ 2
ps kk P
Y (V.51')
_ 1,2 N 1 /2 2
E= - 2(IF+5C), r-.“—s,j(plk A-2k§_).
% p8 k
o = -RbG/m, a® = 2% 4 R% -2 )

Notice: The stresses are not rotationally symmetric, therefore the
problem solved by Keller with use of the stress function tensor is
really three-dimensional.

At the origin the only remaining stress is

o o Gb 2m-l
T 4 m-l

31 (v.52)

=
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APPENDIX

DECOMPOSITION OF THE 2nd RANK TENSOR FIELD

Partially we will use vector symbols according to Gibbs.1 but

normally we caleulate with normal indices, including the Einstein

9
summat ton ¢convention, i.e.,

lThis was recommended previously by the International Union
for Pure and Appl. Phys. [67].

9

“This nomenclature is especially emphasized in the books of

Duschiek and Hochrainer.

ab or aibj is the dyadic !
' { products of two

EjE or aibi is the scalar + vectors g_and E
2}9' or eijk ank is the vectorial
where €103 = 6231 = 6312 = 1 6132 = 9321 = 9213 = =1, while

all the other components of the totally antisymmetric e-tensor vanish.

The following equations will be used very frequently

L m n
8y & &
£mn 2 m n
= 8 .
eijk € 6J p GJ (A.1)
- m n
6k 6k 6k
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From this it follows for n = k
T o T L L (A.2)
iJk —-\‘sj s‘ J .
and if additionally m = j, we have
adk _ o
eijk € = 287 (A.3)
Lct1

lwe will write the first letter with a capital to indicate

; that we are dealing with a tensor field.

Grad a=svVas (V‘aJ)

m
-~
<
-
~

Div T = V-7 (A.4)

Curl 7 =V x T = )

(eiJk VJ Tu

g : (Read “gradient of a', "divergence of 7", "curl of 1".)
In an infinite medium each tensor field I_that vanishes at

infinity can be uniquely decomposed according to the equation
k T=Va+Vxo (A.5)

where a = (a, ).

i

Also for an arbitrary temsor g the unique decomposition holds

a=bv+8xV (A.6)

—

jun

with B = (913" This substituted into (A.5) with Vv x b = ¢
(i.e., div ¢ = 0) yields
T=Va+ cV+ T x BxV (A.7)

where

(A.8)
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Symbolically we write for this also1

1The name should remind us that Inc € = 0 are the incompstibil-

ity conditions of de St. Venant. These are satisfied if "the incompat-

ibility of &' vanishes.

(Inc B)u (A.9)

(read "incompatibility of f"). If § is symmetric, then we can inter-
change i and £ in (A.8), thus

S
vV xB

S
xV=(VxB8 xV) (A.10)
where S indicates that only the symmetric part is considered. If g
is an.1symmetric, then we can interchange i and £ in (A.8) by changing

the sign, thus
A A
VxB xV=("xBxV) (A.11)

i where A means 'the antisymmetric part of."
] Accordingly, if we write a+c=g, a-¢c= EJ the symmetric
part of eq. (A.7) reads

s 1

S
1 =-2?(V£+ E'V)'P'VXE_ X V (A.12)

and its antisymmetric part
IA = %(v_rl- hv) + V x g“ x V. (A.13)

Symbolically we can also write eq. (A.12)2

2For Def read "deformation of'. The name should remind us that

€ = Def E}is the relation between the deformation E'and the displace-

ment field s ([52], Vol. I, pg. 97).
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I? = Def g + Inc g?. (A.14)

Since (A.5) and (A.6) are unique decompositions, then (A.14) is also
a unique decomposition of a symmetric tensor field. The following

relation can be easily verified

Inc Def 0

(A.15)

Div Inc = 0

This says that a temsor I? which satisfies the condition div I? =0,
is an incompatibility temsor, while it is a deformator (which can be
derived from a vector field) if Inc I? = 0. The importance of the
operations Inc and Def for the theory of elasticity is that the state
of a body loaded only on the boundary is completely determined elas-
tically by the equations

Inc ¢ = 0, Divg=0 (A.16)
where we additionally use Hooke's Law and the equation of the elastic
energy density.

In eq. (A.13), we can replace Qf (as for each antisymmetric
tensor [34]) by the equivalent vector according to

A A A

1
Biy = €k P By =3 €yqi Byy S
Accordingly after simple calculations, it follows that
TA = i€ (e vV, h +9 1) A==V BA (A.18)
ij = “ijk kim L m k = i*y :
or corresponding to eq. (A.1l7)
A -
'rk = eklm Vt hm + Vk A = (Curl h + Grad x)k. (A.19)
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I.e., the decomposition of tlhie antisymmetric tensor field corresponds
to the familiar decomposition of the related tenscr field into a source
and vortex field.

In eq. (A.5) we can add a gradient temsor to g without changing

I:l Similarly we can add a deformator to Fs in eq. (A.14)

1Evidently the identities Cuil Grad = 0, Div Curl = C hold.

S
without changing T . Therefore we can restrict o in eq. (A.5) and

A

E?in eq. (A.14), respectively by certain seccndary conditions. E£.g.,
Div o = O and Div QF =0 are always allowed conditions;i.e., we can
still represent every arbitrary T and IF by eq. (A.5) or eq. (A.14),
respectively, if o and g? are governed by the restrictions mentioned
(771. 12 y and q are the incompatibilities or sources of IF' respec-

tively, then as we can easily check, we obtain from eq. (A.14) in tre

case Div EF =0
Inc IF = Inc Inc EF = AAQF = y. (A. 20)
Hence it follows that EF is determined by
S 1 7 4 ’ ’
B = -5 [[fy &) |5 -x[av (A.21)
[+ -]

uniquely, apart from an unimportant linear function of X.

ZWe recall that IF should vanish at infinity. We can easily

check that (A.21) satisfies this secondary condition.




Ll

On the other hand, it follows from eq. (A.14)

Div 10 = (0g + W-g)/ 2 = q. (A.22)

By taking the divergence again, we obtain

A div g = div q (A.23)

from which we obtain div g, apart from a constant. Afterwards we can

easily get g from eq. (A.22) up to an arbitrary constant. Thus we

have showed how the decomposition (A.14) is carried out in reality in

an infinite body.

ADDITION

We will add some theorems concerning media only containing

self stresses.

1.

It holds for arbitrary elastic homogeneity and anisotropy

that

J:‘,rfcid dv = 0

integrated over the whole volume (in the state of self
stress).

The total volume change of the medium is
= d
Av tijkt'ﬁﬁr cij ckl V + higher order terms .
for a nonlirear elasticity law with the material constants

. _1__ 3%
ikt = 2 acijaau

o=0
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Theorem 1 follow3 from equilibrium considerations [179]. Theorem 2
Zollows with theorem 1 if we expand the differential volume change

® in powers of ¢ Theorew 2 was found and examined by Zener [178] for

id’
elastic isotropy in a slightly different form more adaptable for com-
parison with existing experiments. Seeger [176] oxpanded it to cubic
crystal systems and applied it to dislocations. The tensor tijkz has
the same symmetry and number of components as the elasticity tensor
°1sz ol the related medium.

The "volume theorem" of Colonnetti mentioned in section 1

follows from theorem 1 by applying Hooke's Law.




ILLUSTRATIONS

Fig. 1.

The symbol T represents edge dislocation.
It appears the first time in §23,

Fig. 2.

Ideal crystal, cubic primitive lattice.
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Fig. 3. The crystal in Fig. 2 after an invasion
of edge dislocation from the xl-direction.

Fig. 4. The edge dislocation in Fig. 3 has moved
outside the crystal in the xl-direction.
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Fig. 5. The top lattice plane of the crystal in Fig. 2
after an invasion of a screw dislocation from the

xl-direction.

Fig. 6. The screw dislocation in
Fig. 5 has moved ocutside
the crystal in the xl-
direction.

Fig. 7.

The screw dislocation in
Fig. 5 has moved outside
the crystal in the x -
direction, 3
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Fig. 8. The formation of a dislocation in a continuum.
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Fig. 9. The formation of a straight edge dislocation in a continuum,
One visualizes that the slit in () is formed by the
removal of material from a complete cylinder,

Fig. 10. The formation of a
screw dislocation in
a continuum,
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The definition of macroscopic tensors of plastic distortions.




Fig.
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Fig. 12. (a,b) Plastic distortion preserves the
original orientation. (c¢,d) Elastic
distortion will in general twist the
original orientation.
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A plastic distortion, which is
accomplished without simultaneous
elastic distortion, destroys in
general the continuity of the
body .
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/

Fig. 14. Coordinate system as in
Fig. 13.
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Fig. 16, Between each two layers of §x
a dislocation wall of constantlintensity. The dislocation

moves from the right.
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The formation of a Volterra's
distortion of the 2nd kind.
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The illustration of Frank-Burger's circuit.
The letter P belongs to the further right atom,

Fig. 19.
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Plane crystal formed by 4 atoms,
The atom pairs 1,3 and 2,4 are

20,

Fig.
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not neighboring atoms,

Xy

b

The definition of microscopic distortion tensors.

Fig. 21.
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Iy

Fig. 23. Grain boundary of the 1st kind. The
oricentation variation between the adjacent
grains 1s |g|-d, where d :1s the distance
between dislocation lines., This follows
from Ey. (I111.32).
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Fig. 25. Dislocation wall as plape-clamped incompatibility dipole,
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Fig 26 Face~centered cubie crystal, Fig. 27 The most dense lattice
from Jagodzinshi [65] . plane, from Seeger [134]

Fig. 28, (a) Schooatice representation of an edge dislocation in
the race-ciontered cubic lattice (b)Y This splits under the
formation of a stacking fault into two partial dislocations,
With the mark ababab ., it is indicated that the sketched
Q16> -planes represent a double layer. From Seeger [134].
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Fig. 29. The illustration of Peierls' model, The lattice

planes A and B (perpendicular to the paper) seperate
the two half-spaces and

/

Fig. 30. Typical work hardening of a
face-centered cubic metal
(e.g.Cu). In the elastic range
the curve practically coincides
with the t-axis on our scale.

Fig. 31. Model for plastic elongation
of a rod. From Schmidt-Boas[129].
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Fig. 32. The construction of a dislocation ring
with the help of Frank-Read-Mechani:m.

263

Fig. 33. Cross split of a screw dislocation. Stacking

fault is shown by hatched area. Here z = x3.

From Seeger [134] !
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Fig. dd The calculation of activation energy for the
tros=s split 1n a screw dislocation, The distance
of extension is exactly 2 z . From Sceger [134]
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Fig, 35, A simpler model for the calculation of activation
encergy for the cross split,
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Figx. 36. (a) Interlattice atom in the body-centered cubic crystal,
along with model for carbon in irun. Only the front atoms
are sketched clearly in whole size. For d = a 3/2 each
atom contacis its eight closest neighbors. (b) The same as
(a) after changing the position of interlattice atom.

Here y = x, and 2 = x

—

N




Fig. 37.

Substitutional foreign atom
in the most dense plane,.

atomic array is distorted a
little.

Fig. 38.

The
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Phase boundary as plane-clamped dislocation
array. Dashed line is lattice plane of
longitudinal section.

The calculation of interaction
energy between circular dislocations.

Fig. 39.
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