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ABSTRACT

Experimental measurements of the stress-strain and fracture
properties of laboratory specimens of Nugget sandstone are described.
A servo-controlled triaxial compression testing apparatus was employed
which permitted simultaneous control of the lateral and axial stresses.
Results are given for a variety of stress path conditions including:
unconfined compression and tension, constant confining pressure,
proportional stress, constant mean stress, one-dimensional strain, and
proportional strain tests. In general, Nugget sandstone was found to
be reasonably isotropic and to exhibit considerable inelastic behavior
including hysteresis and dilatancy. A plasticity model was formulated
which is capable of representing the stress-strain characteristics of
the sandstone reasonably well over a variety of stress path conditions.

(Distribution Limitation Statement B)
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SECTION I

N INTRODUCTION

&Stress-stra1n properties of Nugget sandstone measured in triaxial
compression laboratory experiments are presented. From these data a
mathematical representation is formulated that is suitable for use in
computer codes used to calculate the motion of rock masses subjected
to stress wave loadings.

The calculation of the response of rock masses to applied stress
necessitates a knowledge of the stress-strain properties and fracture
characteristics of the rock media. The in-situ rock mass differs from
the usual laboratory specimens in that the in-situ rock may contain
Joints or faults that in some cases may strongly influence the rock
response. Thus, for some problems the results of laboratory tests
on intact rock specimens may not be directly applicable to the in-
situ rock mass. However, the in-situ response undoubtedly does depend
to some degree on the properties of the intact rock. Thus, laboratory
tests of the type described herein are essential and from an economic
viewpoint are the first logical step in the characterization of the
rock behavior.

Previous work on Westerly granite and Cedar City tonalite [1,2]
has shown the triaxial compression test to be a convenient experi-
mental tool for investigating rock stress-strain behavior if the test
apparatus is capable of applying loads along a number of different stress
loading paths. In the present study, a large number of test conditions
were employed to aenerate data, furnishing a detailed examination of
the stress-strain response of Nugget sandstone. These data are analyzed
in detail in this report and a mathematical representation of the model
is described.
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SECTION II

EXPERIMENTAL SECTION

The rock used in this study was Nugget sandstone, collected near
Salt Lake City, Utah. The intact rock is a strong, fine-grained, silica-
cemented, pure quartzitic sandstone, with a measured porosity of 4% by volume.
The composition, determined by thin section analysis, is predominantly
quartz with minor chert and hematite. This rock is very isotropic
without any discernible fabric. Failure undoubtedly occurs primarily
across grain boundaries. The density is 2.52 gm/cc and the porosity is
4% by volume. A photomicrograph of a thin section is shown in Figure 1.
The rock has a faint visual indication of layering. The sandstone has
also been used in dynamic tests and in prefractured compression tests [3].

The rock specimens used in this study were right circular cylinders
with a length to diameter ratio of two and diameters of either one or
3/4 inch. The specimens were all cored from a large block in a direction
transverse to the layering marks unless otherwise noted. The specimens
were ground on all surfaces and strain gages bonded to the axial center
of the specimens in axial and transverse directions. The specimens
were then covered with laboratory plastic tubing and sealed. A typical
instrumented specimen is shown in Figure 3.

An overall view of the test apparatus is shown in Figure 2. This
apparatus has been described in detail previously [1]; it consists of
a 7kb confining pressure vessel and intensifier actuated by two load
frames. These load frames are electro-hydraulic with closed loop servo-
control and are slaved together with a two-channel servo-controller.

In this way the confining pressure and the axial stress difference can
be controlled independently so as to produce various loading paths in
stress space. :

The specimen axial force and confining pressure are measured
internal to the pressure vessel, using a steel cylinder load cell
instrumented with bonded foil strain gages, and a Manganin pressure
coil, as described previously [1]. The force, pressure, and specimen
strain readings were all recorded continuously on a multichannel
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Offner pen type recorder. Tests were carried out at an axfal strain
rate of approximately 10'4/sec. A discussion of the loadinqg paths used
in this study will be given in the next section along with the test results.
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SECTION III
DISCUSSION OF RESULTS

A large number of triaxia) tests were performed, utilizing a
variety of stress loading paths. The axial stress difference at
fracture is shown as a function of the confining pressure in Figure 4.
Brittle fracture was produced at all confining pressure levels used in
this study. The paths utilized to load the specimens are illustrated
in Figure 5. It can be seen that the failure locus 1s independent of
the loading path as observed nreviously for tonalite and granite [1,2,4].
The loading paths shown in Figure 5 are of two general types: stress
controlled and strain controlled. Included in the former are tests at
constant confining pressure, proportional loading, constant mean stress
(constant Jl)’ and a two-step loading consisting of proportional
loading followed by a decrease in confining pressure with the axial
stress difference held constant. The strain controlled tests include
the one-dimensional strain test and proportional straining tests.
Specimen fracture was not produced in any of the strain controlled
tests. These tests will be discussed later in more detail.

Typical plots of the principal stress-strain curves obtained from
these tests are shown in Figures 6 to 12 for constant confining pressure
tests and Figures 13 to 17 for proportional loading. These results
follow a trend previously observed for Cedar City tonalite and Westerly
granite [1,2], in that the lateral stress-strain curves are much more
nonlinear than the axial stress-strain curves.

The results of strain measurements in hydrostatic compression
tests are shown in Figures 18 to 20. The linear strains from two
typical specimens are shown in Figure 18. The difference in the strains
in the two principal material directions was seen to be not significant
and it is therefore concluded that Nuagget sandstone exhibits essentially
isotropic stress-strain response, even though the rock had faint visual
layering. The amount of scatter exhibited by tests of different specimens
is shown in Fiqure 19. The results of unloading and reloading in the
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hydrostatic test are shown in Figure 20. It appears as though a small
amount of permanent compaction takes place; but, in general, the
hysteresis is quite small and may not be experimentally significant.

The results of constant confining pressure tests are shown in
Figures 21 and 22. The stresses and strains have been decomposed into
shearing and volumetric components. The data are seen to form
consistent curves that point up the effects of confining pressure on
both the fracture and stress-strain behavior. The initial shear response
is seen in Figure 21 to be more dependent on the confining pressure
level than seen previously for tonalite and granite [1,2]. The volume-
tric curves shown in Fiqures 22 all exhibit dilatancy as observed
previously for other rocks [1,2, 5]. The results of the proportional
loading tests are plotted in a similar fashion in Figures 23 and 24
for different ratios of the principal stresses. The curves are quali-
tatively similar to the constant confining pressure test results.

The results of two constant J1 or mean stress tests are shown in
Figures 25 and 26 for the shearing and volumetric components,
respectively. This test condition is achieved by loading the specimen
hydrostatically to a given pressure level and then simultaneously
decreasing the pressure as the axial stress difference is increased
so as to keep the sum of the three principal stresses constant.

The one-dimensional strain test results are shown in Figures
27 to 29. The stress-loading path is determined by the condition of
the two lateral strains being zero. This has been shown before in
Figure 5, but it is repeated in Figure 27. The shearing and volumetric
stress-strain curves are shown in Figures 28 and 29, respectively. A
new type of strain-controlled test was developed in this program in
which the ratio of the axial and lateral strains was held constant.
The results from two specimens tested at a strain ratio of
e3/e1 = - 0.249 are shown in Figures 30 to 32. Actually the strain
ratio during the initial portion of the test is less than the stated
value. The specimen is loaded in unconfined compression during the
initial portion of the test. Once the principal strains do reach the
ratio of - 0.249 at the stress indicated in the figures, the confining
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pressure 1s servo-controlled to keep the strains in this ratio.

The stress loading path established during the test is shown in Figure
30. It can be seen that the loading path rises sharply at first and
then curves so as to stay just within the failure locus. Shearing and
volumetric strains from these tests are shown in Figures 31 and 32,
respectively. An interesting result also obtained from this test

is shown in a hydrostatic loading of a specimen before and after the
proportional strain test (Fig. 33). The behavior before the test is
nearly isotropic while after the proportional strain test the
anistropy is 'very evident. As suggested by Walsh [6] this anisotropy
could be produced by directional microcracking in the specimen during
the proportional strain test.

Strain-controlled tests, such as the one-dimensional strain and
proportional strain described above, differ in various fundamental
respects from the stress-controlled tests. Primarily, the strain-
controlled tests furnish a particular loading path in stress space,
determined by the strain conditions as well as stress-strain response.

The loading paths shown in Figures 27 and 30 reflect the basically
non-1inear response of this sandstone. A comparison of these two
figures indicates that changing the strain ratio csle] from 0 to ~-0.249
causes the loading path to tend toward the fracture locus. It is
believed that as long as the rock exhibits dilatancy before brittle
fracture, further decreases in the strain ratio will not produce fracture.
Rather the expected result would be to cause the stress loading path
to more closely approximate the fracture locus. While these ideas must
be regarded as conjectural at the present time, further tests at
various constant strain ratios could be employed to check this hypothesis.
It appears that the strain-controlled tests can provide significant
information about the rock behavior.

A number of unconfined tension tests were performed on the Nugget
sandstone and some typical results are shown in Figures 34 to 36. These
tests were run with three-inch long by one-inch diameter specimens. The
specimens were end-bonded to steel-end caps with epoxy and a small
epoxy fillet (approximately 1/16 inch) placed at the end to minimize end-

-
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bond failure. A special fixture with flexible alignment joints was
constructed for the tension tests. The specimen fractures appeared
to occur randomly throughout the central part of the specimen and were
always aligned normal to the specimen axis. Strain gages were placed
on the axial midpoint of the specimens and aligned in both axial and
transverse directions. The principal stress-strain curves are
shown in Figure 34. The fracture stress is approximately 1300 psi
This is about 1/28 of the unconfined compressive strength. It can
be seen in this figure that the response is nonlinear. The lateral
strain behavior has two interesting aspects. First, the magnitude
of the lateral strain is very small. Second, the lateral strain
is initially in compression, but changes direction during the test
and goes into tension. This result was confirmed on four different
specimens. It should be noted that this corresponds to a negative
Poisson effect. Clearly, the behavior in tension is as complex
as it is in compression and inelastic effects are marked. More
evidences of inelastic effects are seen in the tension load-unload
cycles shown in Figures 35 and 36. A significant amount of permanent
strain is observed in these tests unloaded before fracture. Previous
cycled tension tests have been reported by Wawersik [7] with results
similar to those given here. A comparison of unconfined tension and
compression stress-strain curves is shown in Figure 37. It can be
seen that the initial modulus in tension appears to be higher than in
compression. This result seems suspicious as a smooth curve passing
through the origin would be expected. A further check of these results
was not made, however.

A number of load cycling tests were run with proportional stresses
in compression. Some typical results are given in Figures 38 through 41.
Figqures 38 and 40 show the shearing stress-strain response for two
different specimens while Figures 39 and 41 show the dilatational response.
Permanent set is a characteristic feature in unloading. Also shown in
these figures are the stress-strain curves for specimens loaded to
fracture at the same stress ratio.



AFWL-TR-71-54

SECTION 1V O

MATHEMATICAL REPRESENTATION

In this section a mathematical representation of the stress-strain
behavior of Nugget sandstone will be developed. Despite recent
investigations of the mechanisms involved in rock deformation [6,8,9,10]
it is not presently possible to formulate a constitutive equation for
rock without recourse to experimental data. This latter procedure,
essentially an empirical one, will be followed here.

In previous work on stress-strain models for rock [2], it has been
shown that many features of rock behavior can be represented by the
use of a plasticity model with strain hardening. In particular, the
permanent set observed in unloading tests, the nonlinearity of the
shearing stress-strain curves, and the dilatancy effect seen in the
volume strain response can all be incorporated into a plasticity
constitutive relation. Previous to this the use of plasticity
equations for modelling rock behavior has been criticized [11] on the
grounds that the deformation mechanisms were not similar in nature to
the mechanisms controlling plastic deformation in metals. If one takes
the position that the plasticity model is only a conceptual means of
aiding the writing of constitutive equations, then the objection
appears to be unfounded. However, because of the presumed difference
in deformation mechanism, it may be important to carefully verify the
applicability of all of the features of plasticity models to the
deformation of rock.

In a recent study [12] an assessment of certain features of
plasticity models and their application to the stress-strain behavior
of brittle rock has been carried out. Two features were studied in
particular: the lack of a clearly defined yield point and the effect
of the loading path on stress-strain behavior. It was shown that certain

changes in the use of conventional strain hardening plasticity models
could improve the accuracy of the material representation. For complete-
ness these two developments will be reviewed here.
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The lack of a definite yield point can be seen in the shearing
curves of Figures 21, 23, 38, and 40. Permanent set can be seen in the
unloading curves of Figures 38 and 40 but the effect appears to be a
gradual one and no noticable discontinuity occurs. Thus, a definite
elastic 1imit seems arbitrary and artificial. It was shown in Ref. [12]
that the objection could be circumvented by the use of a distributed
yield function which can be derived by analogy with some simple spring
and friction element models. This technique also appears to be
capable of modeling the unloading behavior more accurately than has
been done with the strain-hardening model although this has not been
carried out to date.

The second point studied in Ref. [12] is concerned with the effects
of load pathon the stress-strain response. It is difficult to ascertain
the effect of load path merely by looking at the stress-strain curves
from different tests as in most cases the state of stress is changed
as well by the change in the path. To separate the effects of stress
state from those of the loading path, per se, a number of parametric
plots were constructed so as to vary the loading path but keep the state
of stress constant. These were developed and shown previously [12], but
will be repeated here for clarity. Consider the loading paths shown in
Figure 5. At each intersection of two loading paths a point is reached
where the stress state is identical in two different tests but has been
reached by different paths. A comparison of the state of strain at
the point in question will then reveal whether loading path is an
important variable in the deformation. This comparison has been made
in Ref. [12] in three different ways. First, the strains along
different constant confining pressure loading paths were plotted. The
constant confining pressure tests themselves form a continuous curve
and at each intersection with another type of test a strain value from
that test is plotted. This procedure was repeated for constant J1

loading paths and the one-dimensional strain loading path. The results
from Ref. [12] are shown in Figures 42 through 47. As evidenced by
the agreement in the strain at a stress point reached by different load
paths, the path dependency of the strain response is minimal.

i
i
2
|
|
!
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If unloading as well as loading is considered, then path effects
can be observed in the stress-strain response. This can be seen in
Figures 38 through 41. Clearly the strain at a given stress point
depends on whether or not the point is reached by loading or unloading.

In Ref. [12] a plasticity mode! was developed that combines the
ideas of path independence of the strains for loading conditions and
permanent set and, therefore, path dependence if unloading is considered.
The model is based on the associated flow rule.

P 3G
de'lj = 304 dx (1)

where the scalar multipler d)x is given by

d\ =

dg
(M;F 26 ) if dG > 0

%€nn /\%n /

(2)
d = 0 if d6 < 0

The function G(°1j) is taken so that during monotonic loading states only
‘/]zp - G(Uij) (3)

where /Iz.p is the second invariant of the plastic deviator strain

given by
4

/1,0 = {—]6-[(01 - 02)2 + (o, - 03)2 + (og - 01)2‘” (4)

2!

If the associated flow rule (1) is applfed to monotonic loading states,
then the function (3) will be satisfied making the deviatoric strains
a function of the stress-state only. This can be simply shown by
differentiating (3) and then substituting in from (1) and (2). It
should be noted that the flow rule (1) makes only the deviatoric

strains path independent.

10
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The total strain increments are divided 1nto elastic and plastic
components in the usual fashion as

degy = de$J+de”" (5)

The application of this model to the specific Nugget sandstone data
given in this report requires the formulation of laws governing the
elastic response and identification of the function G. This involves
identifying specific functions for representation and curve-fitting to
obtain the necessary constants. The number of constants required
depends on how carefully the functions are selected and on how care-
fully the specific material is being modeled. Since the point of the
present work is to demonstrate a new model, an effort was made to
match the material behavior quite well. Consequently, the resulting
equations are fairly complex. It should be understood that in
application to calculations, these equations would be simplified if
necessary.

The elastic response was separated into deviatoric and dilatational
components as follows:

e = 107%[1.950_ + 451[1 - exp(- 0./7)] (6)
v m m
where es is the elastic volume strain, equal to the sum of the three
linear strain components and O is the mean stress in ksi. The elastic
shearing strain was found to depend on the mean stress as well as the
shearing stress and also nonlinearly related to the stress. The
elastic shearing strains are given by

3
(o} )]
5:3 = Go;* G 'Eg' 143 (7)

1"
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where
o 0.01 ‘
1 18.5 + 40[1 - exp(- 0,/30)] (8)
C, = 0.006 [V - exp(- om/80)] (9)
C, = [0.66 o, + 27.8][1 - exp(- o /17)] | (10)

The plastic strain function G of Equation (3) was taken as

Jz.

G= C, f;- (M)

where C2 and C3 are given above. The fit of these equations to the
experimental data is shown in Figures 48 through 59. The shear and
volume stress-strain curves for constant confining pressure tests are
shown compared with experiment in Figures 48 and 49 respectively. A
similar éomparison for proportional stress loading is shown in Figures
50 and 51 and for constant J1 tests in Figures 52 and 53. It can be
seen from these figures that good agreement between model and
experiment is obtained.

A further comparison between model and experiment is shown in
Figures 54 through 56 for the one-dimensional strain test and Figures
57 through 59 for a proportional strain test. Comparisons between
model and experiment of the stress loading paths obtained in these
strain-controlled tests are shown in Figures 54 and 57. The stress-
strain comparisons are shown in Figures 55, 56, 58, and 59. In
general, there is more discrepancy between the data and the model for
the strain-controlled tests than the stress-controlled tests. This
is probably due to the large change in stress which occurs at the onset
of dilatancy for relatively small changes in strain. Therefore the
model is more sensitive to the strain controlled test. This point

deserves further study.

12

et o



AFWL-TR-71-54"

The problem of fitting a generalized model to experimental data
is, of course, complicated by having a large amount of data available,
particularly data from a variety of types of tests. Each type of test
imposes an additional constraint on the model. Clearly it is desirable
to test the model under as wide a variety of loading conditions as
possible, but it is not surprising that the model does not fit all of
the experimental results with the same degree of accuracy. Thus
considered, the agreement between the proposed model and the experi-
mental data is good.
As stated above, this model differs from the plasticity models
developed previously for Cedar City tonalite and Westerly granite [2]
in that in the present model the shearing strains are taken to be path
independent under loading conditions. It is difficult to assess whether
the present model is applicable to other rocks such as tonalite or
Westerly granite without actually going through the detailed curve-
fitting process, and this has not been done at the present time. The
apparent requirement for the present model resulted from the detailed
assessment of the stress-strain response of Nugget sandstone available
from the present study. Further insight into the modeling of the stress-
strain behavior of rocks could be obtained by applying the present model
to the data obtained previously for Cedar City tonalite [1] and
Westerly granite [2].
'* The particular constants appearing in Equations 6 through 11 are
uéignificant only in terms of the mathematical expressions chosen. They
depend on the choice of expressions used to fit non-linear functions.
It is the functions themselves that are significant and reflect the
rock behavior. For example, the non-linear hvdrostat of Equation 6 could
be expressed mathematically in a number of ways, and the resulting
constants reflect both the material behavior and the mathematical form.
This is in contrast to linear behavior, where a unique representation
would result. The underlying basis of the nonlinearity of the hydrostat
is attributed to the amount of porosity and void configuration of the
rock, but this is not necessarily reflected in the constants of Equation 6.

13
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SECTION V
SUMMARY AND CONCLUSIONS

A large amount of stress-strain data has been obtained from
controlled path loading triaxial tests of Nugget sandstone. The tests
employed in thisstudy included constant confining pressure, propor-
tional stress, constant J,. one dimensional strain, proportional strain,
unconfined compression, and unconfined tension. In general, these data
are consistent and display a number of interesting features. Nugget
sandstone is observed to fracture in a brittle manner over the entire
range of confining pressures employed, however, inelastic effects in
the stress-strain behavior were observed. These are evidenced by
permanent set in unloading tests and dilatancy in the volume strain
response.

One of the interesting results from this program was the dilatancy
observed in the uniaxial stress tension tests. Repeated tests indicated
that as the load was applied the diameter of the specimen first decreased
slightly, as would be expected due to the Poisson effect, but that it
then began to increase. Since the specimen was simultaneously increasing
in length, the increase in diameter resulted in a volumetric increase.

It is surmised that micro-cracking may be a possible explanation of
this phenomena just as is suspected with the dilatancy associated with
compressive states of stress.

The increase in diameter as the specimen is elongated obviously
indicates that the "apparent" Poisson's ratio is negative for some states
of stress. On the other extreme, the radial strain increases more rapidly
than the axial strain just prior to fracture in the triaxial compressive
loading experiments. The "apparent” Poisson's ratio for this condition
yields values greater than unity. Poisson's ratio for this material
therefore varies from a negative value to a value greater than unity
depending on the stress conditions employed. This points up the great
need to provide more sophisticated models for rocks than the simple
elastic models, or variations thereof, that are often utilized in designing

structures in rock.

e B
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The nature of path dependency of the stress-strain response for
Nugget sandstone was reviewed. A plasticity model developed in another
study that considers the deviatoric strains in monotonic loading to
be independent of the stress path was considered useful. This mode!
was fitted to the experimental results. In general, a good comparison
between model and experiment was achieved for all of the experimental
tests which included a wide variety of loading paths.
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FIGURE 1. Photom1cro?rlphs of Nugget Sandstone, Thin Sections

at 36 and 120 magnification.




NOT REPRODUCIBLE

FIGURE 2. Typical instrumented rock specimens
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Axial Stress Difference, 9y = O3s ks
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Proportional Loading
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Constant J1 Loading
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Figure 4. Fracture stress for Nugget sandstone in triaxial
compression, '
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Axial Stress Difference, 17 T3 ksi

320 b constant confining pressure
proportional loading
constant J‘
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240 }
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Confining Pressure, a5 ksi

Figure 5. Loading paths for triaxial tests of in-
tact Nugget sandstone
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Figure 8, Principal stress-strain curves for Nugget sand-
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Figure 9. Principal stress-strain curves for Nugget sandstone
specimen No. 3, constant confining pressure, P = 5 ksi
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Principal stress-strain curves for Nugget
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Figure 11 . Principal stress-strain curves for Nugget sandstone
specimen No. 5, constant confining pressure, P = 60

ksi.
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Principal stress-strain curves for Nugget sandstone
specimen No. 41, constant confining pressure, P = 80
ksf.
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Figure 13. Principal stress-strain curves for Nugget

sandstone specimen No. 6 in proportional
loading, 03/01 = 0,056.
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Figure 14 Principal stress-strain curves for Nugget

sandstone specimen No. 7 in proportional
loading, 03/01 = 0,084
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Figure 15. Principal stress-strain curves for Nugget

sandstone specimen No. 34 in proportional
loading, g,/c, = 0.142
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Principal stress-strain curves for Nugget sand-
stone specimen No. 9 in proportional loading,
ds/d] - 0.1 77
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Figure 17. Principal stress-strain curves for Nugget sandstone
specimen No. 40 {n proportional loading, d3/d1' = 0,190

42




pressure, ks

Specimen #1, Run 1
. Specimen #31, Run 2
Ep axial strain

€q latera) strain

L T [
B 10
i (1
4 6

3).

strain €, (x 10

FIGURE 18. Comparison of axial and lateral strains in hydrostatic pres-
sure loading of Nugget sands tone
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FIGURE 19. Pressure-volume strain curves in hydrostatic pres-
sure loading of five Nugget sandstone specimens
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Shear Stress 1, 1/2 (01-03)
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Shear Strain, (c] - e3)

Figure 21. Shear stress-strain curves of Nugget sandstone
in constant confining pressure tests
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Figure 22. Dilatation stress-strain curves for Nugget sandstone in
constant confining pressure tests
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Figure 23. Shear stress-strain curves of Nugget sand-

stone in proportional loading tests
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Figure 25, Shear stress-strain curves for Nugget
sandstone in constant J] tests
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Nugget sandstone in constant J] tests

51

Wmm B TR Nt 2 : RIS M



{n,l - 63). ksi

200 |

240

200

160

Fracture locus /I

Figure 27, Loading path of one-dimensional strain test of
Nugget sandstone specimen No, 42
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* Figure 29. - Dilatation stress-strain curve of Nugget sandstone
specimen No. 42 in one-dimensional strain test
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Figure 30. Loadinn path of Nugget sandstone specimen No. 31

under constant strain ratio loading e3/e] = -,249
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Figure 31, Shear stress-strain curves of Nugget sandstone

in proportional strain, e3/c-| = 0,249
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Figure 32. Dilatation stress-strain curves of

Nugget sandstone in proportional strain,
c3/e.' = -0.249
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Figure 33. Stress-strain curves in hydrostatic pressure loading

of Nugget sandstone specimen No. 31, before and after
proportional strain test.
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Figuré 34. Principal stress-strain curve for tension test of Nugget

sandstone specimens.
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Figure 37. Comparison of principal stress-strain curves of Nugget sandstone

in unconfined tension.and compression.
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Figure 38. Shear stress-strain curves for constant stress

ratio tests of Nugget sandstone specimen No. 11
(cycled) and specimen No. 7
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Figure 39. Dilatation stress-strain curves for constant

stress ratio tests of Nugget sandstone specimen
No. 11 (cycled) and specimen No. 7.
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Figure 40. Shear stress-strain curves for constant stress
ratio tests of Nugget sandstone specimen No. 13
(cycled) and specimen No. 7.
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Figure 41. Dilatation stress-strain curves for constant

stress ratio test of Nugget sandstone specimen
No. 13 (cycled) and specimen No. 7.
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Figure 42. Effect of loading path on shear stress-strain response

for Nugget sandstone.
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Figure 44. Effect of loading path on shear stress-strain response
for Nugget sandstone.
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Figure 45. Effect of loading path on dilatational stress-strain
response for Nugget sandstone.
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Figure 46. Effect of loading path on shear stress-strain
response for Nugget sandstone.

71

TR,



120
[ © constant confining pressure
Eg proportional loading
constant Jy
— 1 dimensional strain

100

80 =
2
~ 60 L
(o]
©
+
N
©
+
5 40 ur—
~™
e
0
£
w 20 L
jg |

0 = 1 1 | 1 1
0 .005 .010 .015 .020 .025

Volume strain, (s] eyt e3)

Figure 47. Effect of loading path on dilatational stress-strain response
for Nugget sandstone.
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Figure 48. Comparison of model and experiment; constant confining pressure
tests of Nugget sandstone.
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Figure 49. Comparison of model and experiment; constant confining pressure
tests of Nugget sandstone.
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Figure 50. Cemparison of model and experiment; proportional stress
loading of Nugget sandstone.
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Figure 51. Comparison of model and experiment; proportional stress
loading of Nugget sandstone.

76



Shear stress, 1/2 (c] - 03) ksi

100 .

—— mode]
- experiment

20

AL i |

0 .010 .020 .030 .040

Shear strain, (e] - e3) in/in

Figure 52. Comparison of model and experiment; constant
J1 loading of Nugget sandstone.
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Figure 53. Comparison of model and experiment; constant
J1 loading of Nugget sandstone.
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Figure 54. Comparison of model and experiment; one-dimensional strain

loading of Nugget sandstone.
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Figure 55. Comparison of model and experiment; one-dimensional strain
loading of Nugget sandstone.
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Figure 56. Comparison of model and experiment; one-dimensional
strain loading of Nugget sandstone.
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Figure 57. Comparison of model and experiment; proportional strain
(c3/c~| = -0.249) loading of Nugget sandstone.
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Figure 58. Comparison of model and experiment; proportional

strain (53/e] = -0.249) loading of Nugget sandstone.
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Figure 59. Comparison of model and experiment; proportional
strain (e3/e] = -0.249) 1loading of Nugget sandstone.
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