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ABSTRACT

This report is the first of a two-year effort for deter-
mining the dynamic and static aerodynamic stability derivatives
for volute stabilized cylindrical forebodies. The complete
analytical treatment of both rigid and flexible models is dealt
with and taese results compared to data obtained from the Eglin
low speed wind tunnel. The theory presents several methods that
give the designer necessary techniques for estimating Cpq and
(Cmq * Cmg) for a variety of different volute shapes and cylin-
drical forebodies. These techniques yield reasonable answers
for both rigid and flexible models operating at R, = 2 x 10°
and Me = 0.2 with volute tails sufficiently long so that the
potential flow theory used is valid. The complete data obtained
at both the Eglin facility and at Arnold Engineering Development
Center, Arnold Air Force Station, Tennessee, joined with the
analysis presented, served to show that the volute provides an
effective yet compact stabilizer for Rn = 2 x 10°% to 1 x 10°
for Mo = 0.2 to 0.5 for cylindrical forebodies.

Distribution limited to U. S. Government agencies only; this
report documents tests and evaluation of potential military
hardware; distribution limitation applied May 1971. Other
requests for this document must be referred to the Air Force
Armament Laboratory (DLRA), Eglin Air Force Base, Florida
32542.

iii
(The reverse of this page is blank)




TABLE OF CONTENTS

Section Title Page
3 I INTRODUCTION. « v v o o o o o o v o o o 1
II RIGID BGDY ANALYSIS . + « « v v v o o + & 4
i II1I FLEXIBLE BODY ANALYSIS. . + « « « « « « . 37
IV FINAL DESIGN .+ v v v o o o o o« o o o« o & 68
V CoNCLusION L ] [ [ [} - . » L] L] [} L] * L ] L] L] 73
Appendix
I ANALYSIS 1 ] » L] ] * L ] . L] . * » L[] L] L] L] 75
II DATA . . - . » . L] L] . » * L] . . L] L] » [} 97

REFERENCES . . . . . . .+ . .+ .+ .+ .+ .+ . 123




Figure

O o0 ~N OO0 N A~ N =

L T S N S O e O T T S U Sy U S Vi O S
N H O YW N W N P O

NN N
~N Oyt W

LIST OF FIGURES

Title

VOlute Stabilizer LI I IR B R R R I O I I T Y I I )

1y Versus Xt @ 6

0.0.00‘000.00!000!

ly Versus Xt @ 6
1y Versus h{ @ 8 = Ouvvenivnrnnnannss
1y Versus ﬁVt @0 = 0.iuveininnrnnnnnn
Versus SG/EZ.......................
Versus Cpg Model 3+1......000000nn.
Versus Cmg Model 3+2......... 000000
Versus Cpg Model 3+3.....0000000ans
Versus Cpg Model 3+5..............,
Versus Cpg Model 3+6......... ceenes
Versus Cp, Method 2 .....cccovivet
Versus Cp, Method 3 .c.civvvienennns

P D¢ P D PP @ @@ D

SV/StveI‘SUS Cnto L I I S S I I O R N N I R S S Y

Master Design Curve....ievvevnonenens

1VveI’SUS etrim LI I IR I R I I I S B I I I R I WY

1ly/dy Versus (Cmq +Cmg) ceerriiiiiena,

1y Versus (Cmq * Cng)eeveesnonniinnas
1y Versus Cmaf"°’"""""""““‘
8 Versus Cpg, Flexible Model 1......
6 Versus Cpg Flexible Model 2......

dz VeI‘SLlS d1 ooooo L I S O A B I S R N S

lvversuSBcnlo'c-oaooooolucoou .....

1VVersusB L IR I S N BN I I I N AN DN NN INN DR NEE RN NN N JNE I TN SN Y 3
1y Versus Frequency (Short Period)......

1y Versus Frequency (Long Period).....

lvveI‘SUS Cmaf oooooo L R I I R I A A A N Y

vi

0..0000!00.00-.0.0-

B T

¢ 8 s 008 00

. LI )
ooooo ¢ o0
¢ 00 L)

o0 8 s 0 e 00
. . L)
. LY

. L)
® 0 0 s .

vt o WNE SIS

Page




i 7 Ve

Figure
I1-1
I1-2
I1-3
I1I1-4
IT-5
11-6
11-7
I1-8
I1-9

II-10
I1-11
I1-12
I1-13
I11-14
I1-15
I11-16
11-17

I1-18

I1-19

I1-20

LIST OF FIGURES (Concluded)

Title
Rigid Volutes: 1, 2, 3 ivvvrieiiinnnininnnanns
Rigid Volutes: 4,5, 6 ..... Ceeereate e e
Cylinder Models ... vievvveinnnaens Cereae
Helical Coil Flexible Volutes ..... Ceeeaas
8 Verses Cn For Rigid Volutes .....ccvvvnns
8 Verses Cy For Rigid Volutes .............
0 Verses Cms For Rigid Volutes ......... cos
® Verses C, For Rigid Models .............

8 Verses Cy For Rigid Models ......ic0uves
8 Verses CmsFor Rigid Models ....civvuunns
6 Verses Cy For Flexible Models ..........
6 Verses CmsFor Flexible Models ..........
Accelerometer Stand .....iiiiiiieenn N
Accelerometer Output Filter ..............
Dynamic Shaker Stand ...... e Ceeeaaa
Dynamic Shaker Stand (Top View) ..........

Von Karman Data Sample. 0.75 Inch Cylinder
Withsmallvolute T8 0 6 6 0 2 B 6 8 B 0 0 N BB E NN

Von Karman Data Sample, 0.75 Inch Cylinder
With Small Volute .eeoceveeevenocvacncns coeesas

Von Karman Data Sample, 1.25 Inch Cylinder
Withsmallvolute 8 8 5 & 4 5 5 2 2 8 0 B 4P s e e *

Von Karman Data Sample, 1.25 Inch Cylinder With
Smail Volute ..... . ceeees Ceraeses ceveas

Volute Tails USed In Von Karman Test Program

Page
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115

116

117

118




Table

II
ITI
1V

VI
VII

VIII
IX

XI

I1-1
I11-2
I1-3

LIST OF TABLES

Title Page
Cng/Rad. +evervuenininaniiiananas e rereeeaean 17
he/1GMATRIX «vvvuvinnunnns et 26
(Cmq + Cpg)/Rad. (THEORETICAL) ....... Ceneas 33
(Cmq * Cmg)/Rad. «ooonnn R 35
Cmaf/Rad. Cereaa S ss ettt sassatnsens cens 40
BEST DESIGN LENGTH VOLUTE +¢¢eveveavenncsnnns 42
Cmaf/Rad. Ceeesetaerstrensenans Cetecenenan . 44
TRIM ANGLE .,........... ittt 47
(CmCl + Cm&)f/Rad (THEORETICAL) ......... 48
Aij et e resei it Ce i as e 56
Cma/Rad. et anans et esersenieaaens Cieen 70
Volute Model Measurements ......eeeeevee N 98
Cylinder Model Characteristics .,............ 119
Volute Stabilization Data ......e.eveenen . 120

viii




U g,

LIST OF ABBREVIATIONS AND SYMBOLS

Moment arm measured forward from the model cg to the

center of pressure of cylindrical portion forward of the
model cg.

Moment arm measured aft of the model cg to ae center of

piessure of the cylindrical portion of the model aft of
the cg.

Moment arm measured from the model cg to the center of
pressure of the volute stabilizer.

Moment arm measured aft of the model cg to the center of
pressure of aft portion of the model.

Moment arm measured from the volute hinge line to the
volute center of pressure.

Accounts for the rotary velocity field aft of the cg.

Accounts for the rotary velocity field forward of the
model cg.

Accounts for the rotary velocity field for the aft por-
tion of the cylinder rclative to the model cg.

Accounts for the rotary velocity about the volute mea-
sured from the model cg.

Accounts for-the rotary velocity field about the volute
measured from the volute hinge line.

The planform area of the cylindrical portiqn of the model
measured forward of the model cg.

The planform area of the cylindrical portion of the model
measured aft of the model cg.

Planform area of the volute.

St = Sp + Sy

Total planform area of the model.
Forebody length

Volute length

ix




Agidls s

D>

LIST

rh
[

B i o T

OF ABBREVIATIONS AND SYMBOLS (Continued)

Length of the cylinder aft of the model cg.

Model center of gravity measured relative to
model nose,

Variable running along the model longitudinal
axis.

Diameter of the cylinder.
Diameter of the volute.

Diameter of the truncated portion of the
volute.

Dynamic pressure.

Normal force coefficient of the area aft of
the model cg at 90 degrees.

Normal force coefficient of the cylindrical
portion of the model.

Normal force coefficient of the volute,.
Total pitching coefficient.

Static portion of Cp.

Pitching moment slope coefficient.
Damping coefficient.

Represents the static pitching contribution of
the volute.

Represents the amount of intrinsic damping
power of the volute.

Flexible pitching slope coefficient.
Flexible damping coefficient.

A number which proportions the effects of
flexible volutes as related to rigid ones.

Proportionality constant for flexible analysis.

Proportionality constant for rigid analysis.




R

Pij

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

Forebody contribution to the Cp, equations.
Forebody contribution to the (Cmq + Cpg) equation.
Represents the moment developed by the volute.
Lateral spring constant of the volute.

Coefficients of the two-degree angular freedom equa-
tions.

Mass moment of inertia of the cylinder about the model
pitch axis.

Total body moment of inertia

Mass moment of inertia term resulting from two-degree
angular freedom moment summation.

Mass moment of inertia of the volute measured about the
hinge line.

Mass of the volute.
Distance from the pitch axis to the hinge axis.

Distance from the volute hinge line to the volute mass
center.

Volute weight.

Relative velocity.

Coefficients on the characteristic equation for the
flexible models.

Angle subtended by the free stream velocity vector and
the model longitudinal axis.

Air density,
Characteristic equation variable.

Coefficients of the quadratic factors of the 4th degree
characteristic equations.

Elements in the Routh-Hurwitz stability scheme.

xi




Rk I i e e BT b i AL L 4 P = TR s TR R e ST e

S e

o st 1 S A

LIST OF ABBREVIATIONS AND SYMBOLS (Concluded)

F R L B £

R - Cylinder cavity radius.

t, - Volute spring material thickness.

t, - Volute spring material width.

n - Number of volute helical coils, v
3 8o - Volute half-angle.
; S - Deflection of volute relative to cylinder longitudinal

axis,




R bbb LA i et i S e At e i s dh et et Al e Sl s bbiai i S e i A s A L A A A . D |

e VO

SECTION 1
INTRODUCTION

This report documents the results of investigations of
the mechanical behavior of volute stabilized cylindrical fore-
bodies. The cylinder model flight characteristics were deter-
mined through experimental and analytical programs which yielded
v values for the stability derivatives and several predictive
schemes for evaluating Cma,(Cmq + Cmg) .

The volute stabilizer is essentially a tapered helical
spring which can be packaged conveniently in a small area at
the base of a forebody (Figure 1). Spring steel, which provides
strength and flexibility, is an ideal material for volute stabi-
lizer construction.
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v Figure 1. Volute Stabilizer
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The basic dimensionless ratios are: ly/dv, dv/dc, lv/lb-
The volute is considered to be fully characterized once ly,
dy, dv, kv (spring constant) wy, and Iy have been specified.

g For a given volute planform area and forebody, the volute
stabilizer is considered effective if Cpy, and (Cmg + Cmg)are
negative, The determination of these derivativeg as functions
of forebody-volute dimensions represents the core of the fol-
lowing sections. Once they are determined, the frequency equa-
tion can be solved for the characteristic roots of the model.
The determination of Cmqy and(Cmq + Cmg)is complicated by the
fact that volutes are flexible and are forced to operate in the
slipstream of the forebody. '

A Ve

TEEE T

Because of the success of linear aerodynamics in predict-
ing stability and motion for small coordinate perturbations of
many shapes, the first approach to the problem was to force the
nonlinear rigid body equation of motion Equation (5) into a
linear form. The basic moment summation required:

TR

E Constrained cg, pitch only, I8 = q.dSCp (1)

d
Where, Cm = Ctrim + Cmg © + (Cmq *+ Cmg) 67V (2)

TR

Cm was derived in terms of dimensions of the forebody-volute
combination and the normal force coefficient Cp. Nonlinear
effects were later entered into the basic form by allowing for
forebody interference and sin?8 variation of the normal force.
The results of the rigid body analysis are divided into tlkree
parts corresponding to three approaches used to solve for Cn.
The first is a linear theory, the second includes forebody

: interference, the third involves interference and sin2?g varia-
. tion of Cp.

Because the volute tail is flexible, serious questions
arise as to whether a volute equipped cylinder will be dynami-
cally stable. Insuring dynamic stability is a much more pro-
found problem than the simpler problem of guaranteeing static
stability, criteria for which are set up in the rigid body
analysis. Dynamic stability may be inferred from the following
set of equations which describe an elastic model having only

1 two degrees of angular treedom:

cg moment, a116+3126+8136+alu6+al56+a166 =0 (3)

Hinge moment, a218+3226+a236+a2b6+a256+a266 = 0 (4
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The entire flexible section deals with these equations. It is
shown in the analysis that, depending upon the mass and inertia
of the elastic tail, characteristic equations (frequency equa-
tions) may be second or fourth order polynominals. Stability
is investigated by invoking the Routh-Hurwitz criteria.

Basic supporting data was obtained from both static and
dynamic test stands. Dynamic tests utilize two special stands
developed under the contract: The first utilized a piezoelec-
tric-equipped model to drive an oscillograph which gave accel-
eration versus time data and the second forced the test model
into resonance (forced oscillation testing). Free-flight data
was also gathered and reduced.
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SECTION II
RIGID BODY ANALYSIS

The rigid model equation of motion is obtained from a
simple moment summation about the forebody-volute mass center.
As shown in Appendix I, the relative velocity is the vector
sum of the free stream velocity and a rotary velocity field
which coexists with any rotational motion. The entire stabi-
lizing aerodynamic moment is equated to the normal pressure
force multiplied by an effective moment arm. The resulting
equation is nonlinear:

=18 = % .Cr. hy (V.6 + %40)|V 6 + R461S
%pCny _ht (Vg £8) |V, 8|St 5)

“%,Cnp hb (Ved - xp8) | Va6 - Xpd|Sp

It is shown that Equation (5) reduces to a linear form if a
rumber of assumptions are made. When this is done:

) ZCnbOXthtSt CnbOthbSb N d; .
-18 = qd¢ > 1+ 5 8 6
dC S Cntoxthtst 2V
(6)
+ |CngohtSt 1 - CnpyXbSh 8o
Linear aerodynamics require:
18 = quS(Cmq + Cmg .Z%s § + Cmyb (7)
where, =
‘mipim = O .

By identification of the common terms in Equations (6) and (7):
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Ty,

h C hy S
2Cn¢ ithtsé] Cnb.XbhpSh | ~
(Cmq + Cm. = . 02 + boAb bob 5 (9)
dc*S J CntoXthtSt

The stability derivatives are in terms of 8, Cnvo’ Cnbo,
Cnto = f(CnVo, Cnp,) and the geometrical properties of the

cylinder and volute. ® is a proportionality constant which
is evaluated from 0 to 40 degrees. It is defined to be:

X 40° (10)
8 = 1.432 |sined6 = 0,335

Cnyo and Cnp, are the normal force coefficients of the volute

and cylinder evaluated at 90°., Cny, decreases with an increase
of the ratio ly/dy (Appendix II). %he final results have
justified approximating Cny, and Crnp, with average values for

volutes having 1ly/dy ranging from 0.78 to 4.79 and cylinders

with 1c/dc ranging from 1.48 to 2.36. Cpy, and Cnbo will be
replaced by: °

Cny, = 1.100 (11)

Cnby = 0.833 (12)

The remaining variables are:

St - Planform area of the cylinder forward of the cg.

Sp!

Planform area of the cylinder aft of the cg.

Sy - Planform area of the volute,

St
S

Equal to Sp'+ Sy .

Equal to the total model planform area.
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Cnb0 - Equal to 0.833.
Cnty - The effective normal force coefficient of the tail
area aft of the cg. Sy
C = 0.267 7+ 0.833.
Nty St
hy - Moment arm used to account for the adverse moment
set up by that portion of the cylinder forward of
the cg. hy = %xcg
ht - Moment arm used to account for the stabilizing

moment set up by that portion of the cylinder aft
of the cg plus the entire volute., h¢ is:

-}-l—t— = —L— - S—V- 0.416 «
1C Cnto St

S S
1.1 §1 + 1.33 Sv/Se ] (13)
St 1-Sy/S¢

Xp - Linear dimension used to proportion the magnitude
of the rotary velocity field. It accounts for
the field forward of the cyllgder cg giving an
approximate value to (x)8 . Xp = “Xcg.

Xt Serves the same purpose as Xp. X¢ is complicated

because it deals with two different planforms,

i.e., rectangular and trlangular. For all ana]ytl-

cal work to follow it is defined to be Xy = 4l

21V

3

The evaluation of ht and Xt is actually more involved than

is indicated by their simple definitions. The assigned values
followed a detailed apalysis intg the behavior of each with
variations of 1ly/lp, 6, and 6. Xt was found by evaluating the
following integral equated to an average expression:

[[(vme + x8)ds = (Vg0 + R4b)?s (14)

S
The integgation gives a complex equation revealing the depen-

dence of xt on 6 and é . The primary interest, however, is in
the range over which Kt can var% This was found by setting
first 6 = 0 and then 6 = 0 in the results of Equation (14).

When this was done xt was found to obey:

A 2 [ ]
Re = 1o + Lylg + 1%, 6 = 0 (15)
21, + 1,




AR

T1o? + T1ol2 + 1ylp? + Tl
%e2 = 2o T Fon iyl viol T2 g - g
21, + 1, (16)

These equations represent the upper and lower bounds over
which Xt may vary. The value for xt, defined earlier and used
in deriving other expressions, differs from Equation (15) or
Equation (16) (i.e., %lo + %1v)- xt, as defined, represents a
compromise between the two extremes at 6 = 0 and 6 = 0. How-
ever, it may be necessary for some design problems to have a
better value for Xt, and for this purpose Equation (15) and
Equation (16) are graphed (Figures 2 and 3). For a given l,,
x¢may be fqQund as the volute changes length (1ly varies) for
| 8 = 0and 6 = 0, The same argument shows that h¢ likewise

N varies with 6 and 6. The integral to be evaluated does not
follow directly because of the way in which ht was originally
derived. h¢ was found after a moment summation about the model
: cg which took into account only the normal force acting aft of
the cg. The equation is:

s

t 1] t
Cntohtst = Cnbohb Sp + Cny ht Sv (17)

Eyidently ht is a function of two other moment arms hﬂ and h{.
hp offers no problem since to good accuracy it can be approxi-
mated by 3lo.

hb = 310 (18)

However, hé does vary with 6 and 6. ht varies with h{ and
hy is found by integrating over the volute. The result is:

n! =_1 3 1 2 (19)
= 2 2 3 3 -
t 5 Za <—5101V + = Lol, *+ 15 + 1y ) .8=0

hi = 1o + 31y,0 = 0 (20)

1
h, is graphed (Figure 4) for values of lo and 1ly. Equation (17)
wEth the corrected hty should be used in lieu of Equation (13),
if the extra accuracy is deemed necessary. Some guidelines on
this point will be provided in the discussion on stability.




’ »
N RN
N N TN
SR =
71 [¥p]
N
N X
N
™ o
N L 0. "
R
N <t D
N NN
N SIS,
- <
N L
N 3 ¢
N HEIR QNN A
// )
X, ] h qud %
1 N Ny ~ ) 173
N o I
N NG i ! 1 2 e
b N N N | .m =
N B
N I\ N 5 ~— =
A H
N N N , - S e
H A NJ N i 4 -
N ™ > P 4 - -
3 . N N . . +—ilo -
| H | N, NEAY i . — . o~
! B NEEANEANA NN s .
N N, b S 4 “ ‘ Q
N N N AN iy ~
3 N % /! N v 1 i ] u
J A " : 1 50
\ N NEEELUBEA ] i, o
N N “ 0 S a—t i (A
I ANL L H i ..% i 14
N il L . i bl
TN 1 NN N\ vlwf A., | N |0w f'w nw
i N . 3 { i PR P ]
/H* ] e [
i N | RIS L o]
X i AN N -
; B \ N D i R
H 1 4 ' A,
r \ . I \ N ]
— h 4 4 hN t {
i i i1 i N\ N i 4L i N
! t : ! ] 1 [ 1 pn
(=] (e ] o o
<t [vp] o3
3
(seydui) 0 = 9 8 3X
- — = PVINHEINT - W ikl bl o il i =




R e I i bt

R TV AR, S SR TR T T O A T T JI T ATV TR AT AT R TR e AR T R T T T T - e

4.0

AL 4 H4 A4 / 5
an7andabrgrsvsr
/ ARP4 V. yay
/i 4 y
A 4 / / B
4 )4 /] 4 A (5 T
/ 401 A .
/ 1
A /i . /, Vi
/] 4 P4 P d ARV.Gvay 48
y.d 4 yd IERENS
-+ // { " - b
np A Vi iV aV.av.ens [ .
T T AT T
/ L 4% 74 N WS S o4
Jd 4 ’Z~ i /__/_ W S o
y P, A Avavansnuni
4 4 4ARv4 1 _
/ /
3.0 A VA A B
1/ Vs /, / ( IR
y4 Y117 Ll AL,
4 /o T
7 A1 14
/] y, )4 4
4RES% apapis
4 /j T
yd P4 V1 1A /
v p / a4vavi
pd A 4
pd pd P4 y. 1
d pd /, VITXIALY
-~ pd y 4 4 | .
) pd vd D ) y | B¢
o r 4 A1 1/ f _
= LA 4 )Y 4
9]
Y 2.0 3 :
— A / A1/
- /’ 1’ 4
V. // / —
o Y 4 y X |-
D4 4 AL A
I d Ve
A / R B
o » P4 / L
) / P -
+ (1/ l’ .
<% A // y .
.4 / A —
i pd 4 74
d 4 4 -
4 A 1Y R RENEENN
. 4
1.0
- l( - 4—
Vi y, J1t )
A 4
¥ /f /7
// y. B e e .
VARV, -
: VI 1Y ENERNEREENA)
3 |
> 1
] - BEEEN il
7 R
7 ] 1 ] 11
- l( i T Y T W O
r i dd
0 1.0 2.0 3.0 4.0 5.0
1, (Inches)
N
s n -
Figure 3. 1y Versus xy ¢ 6 = 0
9




TR N RN Ty

s MR TR TN

T R Ly X S e Y R

TR TR NRR{ VRV STIRETETY TV ST, T T TR ¢ v,

il R

7

0 =6 d ...E snsiop AT -y sandtg
(sayour) At
- - - -~ -
08 0°L 0°9 0°S 0' v 0°¢ 0°2 0°T
m -
\\\
P!
0
JT F -3 A
[XnsididIN 3.0, ]
1y o
7 A
\\ P
\\
» 1AL A
A
A P i
A d
P!
P D4R
- AP 4Nranrde = -
. :
w . L e \\ \Kv\
T yARV.4 -
-+ g2uradra d M
H I
\\\ pd o i !
/ y4Ry.d ! 3
\\\ i P S i '
/1 A [ | m7.
\\ pARyd L, ol L ; LN
i e raw. ] : S i L ]
\\w \\\\\ yd » ! bl ~— il
AL IA A LA H At ! i —~ !
| A A &y - AL L : } .- _J/L.
yd 7 A NP% i N BB Ll
P [P HENE= : ! Ll S
ATV A T m : N
L\\ PARY.EV A A : i) i i NG
1 A A A L L Z1 1 Pad B NI AT
L1 D4 D% S el T IO A
. ] } AP AV AWl pd NN i IR ISR
H pd p AV 4 .\m\ pai LT DR i L
m pd \\_\m ‘\\\\m\ .4 \l“_ ARRP J : ._..M..L_ [
¥ 1 ¥ H 1 T Ty
+ P \w\\F A : \L\“\ * l__ “m bt ””_
i PARN f P AV.ER i1 1 : BN RN B
A ZAN av pd . i [ I I RN BERES
ABD AP AV 4 H 3 ; , ] : 1 i ]
1 : PARD AP AV, P L Lo ad R
' i Y pARPAVAV.e 4V ARY.4Ry.4 : i . MERN RN RSN NN R
1 ! A ‘A A pAV.4 f . . i 1] . 1. i et
: A e AV PR [ ; ] N N BN RN
: 1 ; y.d LA IR : ] ol A IR Ll
i mhm | (DL V.A%RY, & R 1] ] R | I NS
i i Pd PAl N 7A 0 IR T T i NN EE RN RN RN REE ! H

A

ct -
(]
0o
"

o o

—
~
—
3
L0
0°"¢o
o
)
~—t

0" v

Ry N ST T S S

]

B




oo

oy T

Althoygh it is not used in the linear expressions presented
thus far, th serves a similar purpose in future work as X¢. It
deals with the rotary velocity field over the volute only
(whereas xt dealt with the whole tail portion aft of the cg).
Values for th are (Figure 5):

~ Y

XZVt = ]_02 + ;1:>1v + lv2/2,6 =0 (21)
~ 2 A
Xyy = 1o ¥ 31y,0 = 0 (22)

Detailed work concerning derivation of all the above forms for
xt, ht, and th are included in Appendix I.

The first thing that is apparent from Equation (8) is a
convenient stability criteria. For static stability it is re-
quired that Cpy, < 0 or that: '

Cnb hpSp > 0

e hs 23
Cog PeSt (23)

1~

which is, neSt > 2202 nysy,
Ntg

The largest that 0. 833/Cnt can be is 1.00 so that Equation (22)
may also be written as:

htSt > hpSp (24)

It is required by Equation (24) that the tail planform area

and ht multiplied must be greater than the analogous parameters
hpSp measured forward of the cg. For many combinations of
cylinders and volutes it is possible to have St = Sp in which
case stability depends upon:

ht > hp (25)

The importance of hy is evident. Normally the cylinder-volute
combination will be designed to insure that St >Sp, otherwise
stability may be compromised by variations of ht with 6 or 8
Large St relieves the necessity of having precise values for ht.
For determining the angular frequency and damping exponent

(e - Bt ), use the best obtainable value for ht. Equation (17)
will serve this purpose.
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Because of the method in which Equation (5) was derived,
it is impossible for the rigid model to be dynamically
unstable. This is evident from Equation (9) which can never
be greater than zero. The equatign is nearly the same as
E%uation (8) but includes xt and Xp. Accurate determination
of these variables will be manifest in B8, the damping constant.
Dynamic or static stability of the rigid model does not depend
ondxt. As will be shown, this is not the case for the flexible
model.

Before discussing the numerical results of the preceding
analysis, two additional methods for computing Cmy and sub-
sequently Cpg will be presented. Although the linear analysis
gives good answers, it fails to indicate the interference
effects from the forebody and nonlinear variation of the normal
force coefficient. Returning to Equation (5), it is evident
that there exists a 8% term which approximates sin?e., Writing
the exact expression for the static pitching moment:

- Cma \ .
Cng = ~g—|s1ne|51ne,-90 <e< 90 (26)

The pitching moment coefficient in linear form follows directly
from Equation (26) and is again:

c A
CmS :(&)96 (27)
9
The pitching moment slope coefficient is:

3C
325 = Cp, i.e.,[Equation (8)] (28)

To account for forebody blanking of the volute, the area Sy
must be altered to reflect a reductior in the tail surface
which can act to stabilize the forebody. The detailed deriva-
tion is in Appendix I. The results are:

Sy _1ly al

Sv 1y { = (29)
a? 2 81 {[tan® + 4 ]?
[ ZI;]
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Figure 6 dnd Equation (29) represent the variation of Sy = Sy
with 6, if the area planform is a triangle (dy = 0). Most
volutes end at the forebody blunted and, therefore, the planform
is trapezoidal., This can be accounted for by adding to

Equation (29):

"= dyf (L, - x0 (30)
(dc hd dv’)
here
W XI = —;- tane + g\! - dvl (31)
21,

the total area acting in the wind stream for a given angle of
attack is:

Sy = Sy’ * S,” (32)

SV will be good enough to approximate the area if dv is not

large or not more than about 1/10 dy. Sy is plotted for dif-
ferent values of 1V/H To use the new area in the Cp, expres-
sion, an alternate form of Equation (8) has to be used and is:

Cp. = - 921%&3?1 1 + CrpohESh’ cnb PbSb 8 (33)
o deS cnthtsv cnthtpv

This expression for Cpy is not new since Equatiou (8) was derived
directly from it. The new variables are:

ot

Xp - Serves the came purpose as did xb but is equal to
_10
hy - Moment arm for the normal force which actg on, that

portion of the cylinder aft of the cg. hp = —10
Sé - Planform area of the cylinder aft of the model cg.

The new stability criteria is:

~

at 6 £ 0 the criteria reduces to:

Cnbohb/sb/ > Cnbohbsb (35)

14
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If Equation (35) is not satisfied, the inference is that the
model will tend towards static instability. This is partially
correct. As soon as the model tends to overturn, Equation (34)
becomes valid., Since Sy rises rapidly with 8, 1ncrease in 6
immediately tends to restore stable motion. The length of the
volute is the critical parameter since short volutes do not
have the sharp rise in Svexhlblted by long volutes (Figure 6).
With the new values for Sy, Cmg becomes a function of 6. With
this new form for Cpg, two nonlinear theories are evident.
Equatlon (26) ig the most nonlinear form investigated. Replac-
ing sin?@ with 6sin6® yields a third form which is a compromise
between the linear theory and the sin?e theory. The three
theories are listed below for reference and hereafter referred
to as Methods 1, 2, and 3.

C ~
Cmg = 22 660 Method 1 (36)
5

Cmg <929> 8Siné  Method 2 (37)
b

0

Cmg = (C’fu> sin?6 Method 3 (38)
° b

Equation (37) represents the pitching moment coefficient for
large angles (40°) and is an extension of the linear form with
tail blank1ng Equatlon (38) is included because it accounts
for the sin?6 variation of the normal force coefficient Cp which
has been substantiated for cylindrical shapes for large angles,
The pitching moment slope coefficient follows directly by dif-
ferentiating Equations (36),(37) and (38) giving:

Cms/ag = Cma (39)

3Cmsg/30 ~ %G(Cma)bsine + (Cmg ) cos (40)

9Cm = 3 (ma) sin%¢ + 2(Cma) sinécose (41)
5/ 36\ 6/ 6 /p

Equatlons (37), (38), and (41) contain the expression (Cma/e)b»
which is the nonlinear variation of Cp, with 6 discussed earl-
ier.
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Cmg was determined experimentally for five models. Refer-
ring to the experimental section of the report (Appendix II),
the Models were 3+1, 3+2, 3+3, 3+5, and 3+6. The cylinder had
lc/de = 2.36 and the volute 1/dy ranged from 0.78 to 4.79,.
Cmg for each model along with the theoretical values obtained
from Equations (36),(37) and (38) were plotted for each model
(Figures 7 through 11). 3+1 shows the widest variation from
the predicted values of the three methods. This is so because
the greatest portion of volute 1 (ly/dy = 0.79) is forced to
act in the turbulent slipstream curling around the cylinder edge.
For this reason, short volutes should be avoided. Cpy varies
from a positive to negative number throughout the first portion
of the plot straightening out at around 30 to 40 degrees. The
erratic behavior is undesirable and should be expected if 1ly/dy
is less than about 1.5 for dy = dc. The tendency toward a more
stable and predictable Cmg with increasing 1y/dy is evident from
the plots. The linear theory is surprisingly accurate and can
be used to predict Cpg. Method 2 is more accurate and tends to
follow the contour of the data points for the larger volutes
(Figure 11). Method 3 tends to follow the data points for 0
larger than 30 degrees up to the maximum range plotted. For
initial design it is recommended that the linear theory be used.
If the volute 1ly/dy is less than one, only wind tunnel testing
should be trusted.

Equations (40) and (41) are plotted (Figures 12 and 13).

The Cmg data was not smoothed and numerical differentiation was
unproductive because the somewhat erratic behavior of most data
points was greatly exaggerated. However, the Cpg plots for the
five models show that the general slope of the data points comes
very close to the slopes of Methods 1 and 2, The closest agree-
ment corresponds to the middle volute (3). The tabulated values
for Cma/radlan are as follows:

TABLE I. Cpy/Rad

Model Method 1 *Method 2 *Method 3 Data
3+1 -0.126 -0.087 -0.065 -0.053
3+2 ~0.196 -0,155 -0,114 -0.181
3+3 -0.275 ~0.225 -2.172 -0.212
3+5 -0.470 -0.399 -0,301 -0.447
3+6 -0.927 -0.816 -0.626 -0.762

40°
1 3Cm5
C = = | --—d#6
Y
0
17
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Since the linear form is accurate enough for at least
preliminary design work, it is possible to generate design
curves for Cp, that are simple to use. The design curves pro-
vided depend upon Sy/St, Cneg» ht, hpSpCpp, (designated B).
Recalling the definition of Cnty, it is possible to plot Cntg

as a function of Sy/St. This is the first design curve. Once
the forebody cylinder has been selected and volute stabilizer
chosen, Cnty can be found. (ht/1lp) is tabulated as a function

of Sy/St and Cnt, in Table II. Since Sy/St and Cnt, are now

known, (ht/1lp) is fixed and found by interpolating between the
two variables Sy/St and Cnto: lo is known since the cg loca-
tion was fixed for the selected forebody-volute combination.
The tail parameters, CntohtSt are all known and the forebody

parameters, B = Cnbohbsb, are fixed once the cg location is

specified. Equation (8) can now be solved for Cm,, remembering
that 6 = 0.335. Equation (8) can be used directly or the
master design curve for Cpy may be used.

(1) Example: Find Cp, for Model 3+6, using Equation (8)

Selection of volute 6 and specifying the cylinder
pitch axis fixes the following variables:
Sp = 2.357in%; hy = 0.81 in; Cnp, = 0.833;

lo = 1.820 in; St = 9.027 in?; Sy = 6.370 in
For Sy/S¢- 0.7056, Figure 14 gives Cnto =1.020
The ht/ly matrix shows:

Cnto 1.008 1.033

0.700 | 3.264 | 3.185
0.800 5.619 5.483

Sy/S¢ -

Interpolating between the values gives h¢/lg = 3.226
Thus, ht = (1.820)(3.226) = 5.871 in

The parameter B = thnboSb = (0.81) (0.833)(2.357) =
1.590 in®. The quantity dS in Equation (8) is
(1.47)(11.392) = 16.746 in?®

Inserting the numbers into Equation (8):

Cmg =-0:335 ((1.02)(5.871)(9.027) - 1.59) =-1.049/rad
@ 16.746( )
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Comparing this answer with Method 1 in Table I shows a differ-
ence of about 8 percent. This follows from the earlier comments
regarding approximating the volute planform area as a triangle,
which was done in the above calculation. Table II requires the
planform to be triangular since this approximation was used to
get hy/l, in the nondimensional form. Method 1 answers in
Table I were obtained from Equation (33), using the more ,
Zorgect trapezoidal planform area. Note for volute 6, dy/dy =
.56,

(2) Example: Find Cp, for Model 3+3, using the design
chart (Figure 15).

The following variables are fixed once again:

Sp = 2.357 in%; hp = 0.810 in; Cnpp = 0.833;

lo = 1.820 in; St = 4.946 in® ; S, = 2.289 in?,
Sy/St¢ = 0.463

For Sy/St = 0.460, Figure 14 gives Cp¢, = 0.955

Find ht using Table II: ht = 2,523 in,

The quantity B is the same as example 1, B = 1,590 in?
The quantity dS is: 1.46(7.679) = 11,21 in?

Find the vertical axis labeled St and enter there
with the value for Sy = 4.946. Project a line

and find the line labeled ht = 2.520. Project a line
perpendicular to the first through the point defined
by the first projection and the line hy = 2.520. In
a similar manner, locate the line labeled 0.958 and
project a third line perpendicular to the second,

and through the point defined by Cn¢, = 0.958 and

the second preojection. Proceed around the graph,
choosing next the proper line for B = 1.59 and,
finally, the value for dS = 11.21. Read the answeg
on the left side of the vertical axis labeled cma/e

Cmy/8 = 0.900

i

Cmg ¥ 0.302/rad

Comparison with the answer in Table I indicates that the pre-
ceding method is high. This is due to the volute planform area
used in developing the graph being triangular. One advantage
to using Figure 15 instead of Equation (8) or Equation (33) is
that it enables the designer to pick different values for the
many variables and see directly what the effect upon Cp, will
be. For accurate determination of Cmy» use Equation (3%).

(3) Example: Use Equation (33) to find Cp, for model
illustrated below and investigate its stability.
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2.000 1.437

Sp= 2.920 in®*; S{ = 2.0981 in?; Sy = 1.568 in?;
hp= 1.000 in; hy = 0.719 in; h{ = 2.652 in
which gives:

Cny = _(3.38;].%?).335): - 0.118/rad

The low value indicates possible static stability
problems. Invoking the stability criteria of
Equation (23):

heSt > 0.883/CntOEAbS1g

6.64 > 2.560

According to Equation (23) the forebody-volute combi-
nation is stable; however, the volute is masked by
the forebody for the early portion of the oscillatory
motion. If the volute 1,/dy is less than 1.5, the
nonlinear stability criteria stated by Equation (34)
should be used. In the above case, 1y/dy = 1.313.
Equation (35) for the above model gives:

Cnbohgst') > CnbohbSb, @9 =0

and cnboh{)s{) = 1.508 < 2.920 = Cp hbSb

This is equivalent to stating that the model will have
a trim angle different from zero. The model will tend
to pitch over until the volute balances the adverse
moment set up by the large area in front of the cg.
That the model will stabilize out at all was verified
by satisfying Equation (23). The trim angle can be
found by using the following procedure:
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choh{sV = Cnp hbSh - cnbohgsg, i.e., Cp =0

t

therefore, Sy ® Sy = 0.4046

1
(tang + 0.3808)2

Sy £1.268 - 0.1839

tan6é = 0.0806
B = 4°36
To find the trim coefficient note,

Cn = + Cngd = 0

Cmerim

Cmtrim = ~Cmg® = 0.118(0.0785) = 0.0093/rad

The model was placed in the wind tunnel operating at a dynamic
pressure of about 60 1bs/ft?. It immediately diverged and
oscillated weakly about the 10 degree radial with an amplitude
ranging over approximately 8 to 15 degrees. A trim angle will
always be present if Equation (35) is not satisfied. If this
is the case, the magnitude of the angle will depend upon the
length of the volute, small angles corresponding to long vol-
utes, and large angles corresponding to short volutes. Since
it may be necessary that the forebody being stabilized not
amemm a certain trim angle after transients have damped out,
it is'important to check any design for steady state trim
angle. In this respect, the above model was analyzed for
different trim angles by varying the volute length. The results
are shown in Figure’ 16.

Another point which demands consideration deals with the
ratio dy/d. assumed to be close to one. Actual fabrication of
the forebody does not allow this since the volute must fit in-
side the cylinder rim (Figure 1) and thus dy < d.. This is
undesirable for stability since the volute must now be rotated
a small angle before being impinged upon by the free stream.
This is distinct from the previous cases which assume that the
volute starts producing a stabilizing moment for the slightest
pitch of the forebody. The diameter of the cylinder and volute
must be kept as close as possible, consistent with structural
requirements. Test work on a special rigid model shows that
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limit cycle vibrations persist for dy < 0.8d.. For larger
variations, wind tunnel testing should be conducted to deter-
mine if the limit cycles are severe cnough to warrant rede-
sign of the volute. If the diamete.. cannot be brougiit close
enough, a longer volute can be used. This has the effect of
forcing the volute into the windstream early, reducing the
amplitude of the limit cycle.

The damping derivative can be obtained from Equation (9)
or Equation (42)

A ~ ! ~
CnyontSvxy+ 1+Cnb03bhbxb+cnbosbﬁﬁxg

“(Cng * Cmg) = 6 (42)

! A A
a2s CnVoSvhtXVtCnVoSvh%Xv

Using Equation (9) is less accurate because of the triangular
area assumption but is quicker to use than Equation (42).
Equation (9) yields the following results:

TABLE III. (Cpq *+ Cpg)/Rad (THEORETICAL)

1+1 -0.298 2+1 -0.348 3+1 -0.5006
1+2 -0.590 2+2 -0.654 3+2 -0.844
1+3 -1.124 2+3 -1.210 3+3 -1.434
1+4 -1.666 2+4 -1.688 3+4 -1.950
1+5 -2.476 2+5 -2.528 3+5 -2.862
1+6 -8.048 2+6 -8.234 3+6 -8.714

These are plotted in Figure 17.

As indicated by Table III, the daaping coefficient increases
dramatically with increase in tail length. Some experimental
data was obtained for Models 3+1, 3+2, 3+3, 3+5 and 3+6.
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TABLE IV (Cmq + Cmg)/Rad.

Model 1y/dy (Cmq + Cmg ) (Cmq + Cpg) data
3+1 0.785 -0.506 -2.370
3+2 0,313 -0.844 -2.518
3+3 1.871 -1.434 -3.410
3+5 2.637 -2.863 -4.876
3+6 4.795 -8.714 -10.215

The theory consistently predicts low values for (Cpg + Cpg). As
the volute becomes longer, agreement is better. sflort vBlutes
are the greatest problem because forebody turbulence is a prom-
inent factor in determining the flow vpattern about the majority
of the volute length. Longer volutes operate at greater dis-
tances and consequently are able to act in a more uniform flow
field of the type the theory is based upon. A second reason
for the large difference in nredicted versus actual data deals
with X¢., 1In the calculation of Cp,, ht had to be averaged and
represented the only parameter that had to be approximated

with average values.(Cp, + Cpg) depends upon nt and xt so that
averaging errors in botft are amplified when they are multiplied.
(Cmq + Cmg) will have about twice the error as that in Cpg.
(Cmq + Cpg) were obtained only for Models 3+1, 3+2, 3+3, 3+5,
and '3+6. These data points are plotted along with the theoret-
ical values for cylinder 3 models in Figure 18.
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SECTION III
FLEXIBLE BODY ANALYSIS

The various important geometrical parameters which affect
dynamic and static stability discussed in Section II provided
answers sufficient for preliminary design work and, in some
cases (long volutes), good enough for final design.

Flexible volutes are not as efficient in stabilizing
forebodies since they tend to bend out of the windstream. In
addition, some configurations may be dynamically unstable de-
pending upon the cg and the center of pressure location.

Static stability is easily examined with slight modification

to the rigid body analysis. Dynamic stability requires examin-
ing the characteristic equation of the model. If the model is
idealized and allowed to have only two degrees of angular free-
dom, a fourth degree equation results which can be investigated
with che Routh Hurwitz criteria. One simple approximation can
be made to the two equations of motion which effectively un-
couple the system and allow a single equation to be solved.
This case will be dealt with presently.

Most volutes will be light in relation to the forebody.
This fact can be put to use in simplifying the complex equations
of motion. If it is also assumed that damping provided by
volute motion relative to the forebody is small compared to the
normal force set up by the freestream velocity, the following
relation must hold:

qCny . 0.661ySy®
§ = - ; o 8 = -J8
ky + anV00.661VSV¢

(43)

The method using Equation (43) will be referred to as the "J"
method. With Equation (43), 8 can be replaced and the equation
of motion reduced to one variable, 6, and the associated deriva-
tives. The solution is not quite straightforward, however,
because of the proportionality constant ¢. ¢ is found by in-
serting Equation(43) into the ¢ equation. Thi. gives:

for, 6= (6 + 8) average
$=0(1-J) (44)
37
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J, however, is a function of ¢ so that the above can be written:
V‘pz +kv® - 6kv= 0 (45)

where V = qcnv00-661v5v

Note that V can be a function of 6 depending on whether tail
interference is taken into consideration. If it is not,
Equation (45) can be solved directly for a given V and k

With this value, J is known and the problem is nearly szved.
Since there are no inertia effects, the aerodynamic coefficients
are changed by a constant value, the new form for each being
approximately:

Cmg.. = Cmy /s s %-Cmﬁ/"d‘] , (46)
Og /rigid])e rigl

- . ¢ .
<Cmq + Cm(;f—(kmq + Cm%/rlgld)’e" Cm}:’rigid J (47)

The two forms above indicate that for flexible volutes, the
overall static and dynamic stability decrease with increases in
Cmé and Cp} This assumes that the lateral spring constant re-
mains consgant Note that for a given spring constant, in-
creases in the volute size cause an increase in J along with Cmg»

md changing the overall stability quickly. The conditions
fo% dynamic and static stability are:

AB * hSyCny (1 - J) > 0 (48)
8B' + hXy, SyCp, (1 - J) > 0 (49)
Vo

The stabilizing effectiveness of many cylinders is small so that
in some cases stability can be 1nferred by requiring that J < 1.
If the cylinder has positive AB and AB, then the combination
will never be dynamically or statlcally unstable, since J <1
for k, > 0.

Thus far, the flexible analysis has not considered fore-

.body blanking. The first flexible forms are analogous to the

first forms derived under the linear rigid body analysis. As
was shown, forebody interference is important and gives rise
to a trim angle. Returning to Equation (45),V is a function
of 6 because S, is. Sy was derived earlier and plotted as a
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function of 6. To use the results of this work for flexible
models, it is necessary to enter the S, curves with the angle
(6 - 8). The effective area is a function of the angle of
attack measured relative to the volute axis which moves rela-
tive to the forebody for'flexible volutes. To find the result-
ing pitching moment and 1its slope, it is first necessary to
find J as before. For a given 6, the deflection angle ¢ of
the volute is unknown since this is the problem. However, it

. is not possible to specify Sy without knowing §. The calcula-
tion must be an iterative process. Choose 6 and assume § to
be zero. Solve Equation (45) for 6 to give the second approx-
imation for Sy, and the procedure repeats until & approaches its
limit value and a second angle chosen, An alternate method is
to assume what the angle of attack (6 - §) is, solve the equa-
tions directly and compute what cylinder pitch angie will cause
the specified deflection. Several examples will illustrate the
linear and nonlinear flexible calculations.

(4) Example: Find the pitching moment slope coefficient
and damping coefficient for Model (3 + 6)', using the
linear method. Model (3 + 6) was characterized in
Example 1. The rigid Cpy is from Table I:

Cmy = -0.926/rad
A small leaf spring was inserted between the cylinder
and volute, thus converting the rigid Model (3 + 6)
to a flexible Model (3 + 6)'. The lateral spring
constant was found to be ky = 0.27 1lbs/rad. With
this new value, V can be found:

V =1.124 ft-1bs

This form of V assumes no interference effects. With V, ¢ can
be found, using Equation (45).

o
i

0.188

J can now he found

J 0.439

\ i Cmg and Cpg are defined to be (Appendix I):
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-Cng = |BvoSvit'l (50)
d.S
e chOSvht‘ch (51)
") T azs
(o]
Which compute:
Cmg = -0.510/rad.
Cmg = -1.614/rad.

The aerodynamic coefficients follow from Equations (46)and (47):

Cmaf= -0. 296/rad.

<Cmq + Cm6>f = -4,183/rad.

(5) Example: Suppose that the volute changes in length
in Example 4, what is the effect on Cmaf' Table V
lists the problem variables for 1 = 0,71,118, 1,825,
2.62, 3.89, 7 and .
TABLE V., Cmaf/Rad
1y \Y ) J Cmg, Cmg Cmaf
0 0 6 0 -0.0558 0 -0.0558
1.118 0.0281 0.324 0.0326 -0.126 -0.103 -0.119
1.825 0.0721 0.309 0.0763 -0.196 -0.167 -0.168
2.62 0.1512 0.288 0.1403 -0.275 -0.230 -0.2024
3.89 0.343 0.253 | 0.245 -0.470 -0.344 -0.2707
7.00 1.124 0.188 0.439 -0.926 -0.510 | -0.2958
o 0 1 - 0 ~0
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As indicated by Table V, there is a limit to the effectiveness
of a flexible volute beyond which little is gained with fur-
ther increase because of the tendency to bend out of the wind-

stream.

This is distinct from the rigid case where increase

in volute length is manifest in greater Cp, without limit.
Larger flexible volutes provide greater righting moments than
smaller volutes; however, their efficiency decreases as indi-
cated by a falling off of Cmy. beyond a certain best length ly.
If nothing else mattered, Equation (46) would be maximized and
that value of 1y used. As ly = 5.5 inches, Cp, reaches about
-0.290 and an increase of 1y by 1.5 to 7 inches increases Cp,
by 1.8 percent., In the 1limit, ly » «, J goes to 1, ¢ to 0 an
Cmaf to approximately 0. To find the best design length, the

following example furnishes complete calculations.

(6)

Example: Show the effect of increasing ly for a
cylinder with 1./dc = 2 where xcg = 1.46 inches and

de = 1.46 inches. Table VI shows the problem values.
A plot of Table VI gives Cpmys 2 maximum value of Cmaf=
-0.3007 at 1y = 7.5 inches. Beyond this, a larger
volute would reduce in effectiveness. The curve
approaches its maximum value rapidly and this value

is nearly attained with smaller volutes. If the

best design value is defined to be 90 percent (X)lvpax
(maximum), a more reasonable length volute can be
used. In this case, the best design value is -0.2764,
which occurs at about 1y = 4.5 inches and represents

a 77 percent reduction over the maximum value volute
length (Figure 19).

All of the foregoing deal with the linear form of the
flexible equations; no account was made for forebody inter-

ference,

Thus, the area Sy used for all calculations was the

entire volute planform area. To account for interference and
find the value of 6¢pim, it is necessary to invoke the results
of Equation (29). As suggested earlier, the procedure is itera-

tive.

(7)

Example: Find Cp, for Flexible Model 1, using
iteration, The calculation will he carried out for
8 = 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35° and 40°.
Assume 8§ = 0 and 6 = 5°.

For the ratio 1,/d. = 2.915, Equation (29) gives
Sy/d@%/ = 0.868 and Sy = 1.1487 in.2? With this
number, the problem can be solved as in Example 4,
This gives J = 0.1012. Thus, § was not zero but is:

§ = -J6 = -(0.1012)5° = 0.506°
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The net angle of attack is:

Ovolute = Ocyl.~ & = 5° -0.506° = 4,494°
Enter Equation (29) with this new angle and find

Sy = 1.081 in.? Repeat the procedure. The following
table of values results:

TABLE VII. Cmaf/Rad.

0 Sy o J § Cng Cig Cmey ¢
0° 0o |0.335 0 0 0 0 0

5° 11,0889 | 0.3026 | 0.0968 !-0.4413]-0.1642 |-0.1799 | -0.1466

10° [1.484 | 0.2938 10.1238 |-1.102 |-0.2172 | -0.2492 | -0.1917

15° | 1.677 | 0.2894 | 0.1361 |-1.797 | -0.2418 |-0.2856 | -0.2" 39

20° [1.786 | 0.2871 | 0.1430 |-2.502 | -0.2555 | -0.3055 | -0.2236

25° | 1.855 | 0.2857 [ 0.1475 |[-3.204 [-0.2640 [-0.3195 | -0.2336

30° (1,903 | 0.2848 [ 0.1498 |-3.890 | -0.2700 | -0.3266 | -0.2372

35° [1.936 | 0.2844 |0.1517 |-4.592 [-0,2743 |-0.3363 | -0.2439

. 40° | 1,959 | 0.2837 [ 0.1531 |[-5.308 |-0.3048 [-0.3397 | -0.2410

The results of the flexible test work for flexible Models 1

and 2 are plotted and the predicted values are plotted (Figures
20 and 21). As was done in the rigid analysis, Cp. was

chosen to represent the pitching moment data and the three
analytical curves represent the same three theories outlined in
the rigid work. The first is the most linear flexible theory
fj.e., Equation (46) - no forebody blanking) and the second

and third take into account ®sin (6 + §) and sin? (8 + §)
variations of pitching moment plus forebody blanking.

As previously stated, the flexible volute operating be-
hind the cylindrical forebody will have a trim angle different
from zero if the cg of the model is located aft of the cg of
the cylinder. Returning to Example 4, if the volute is imag-
ined to have elasticity with ky = 0.27, the following example
can be solved for the trim angle:

(8) Example: For this a trapezoidal area will be used.
The rigid body analysis provided two equations
which can be used for this purpose. The total area
into the windstream at a given angle of attack is
the sum of the following two expressions:
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Thus Sy = Sy' + &

The condition for finding the trim angle is found by setting
Equation (48) to zero.

AB + htSyCn, (1 - J) = 0

Recalling the values of the constant terms from Example 4, the
above can be written as:

0.186 - 0.0818
tan6 +0,291

=0.4046
(tan® +0,2907)%2 1 - J

1.568 -

An iterative procedure may be used. The following table gives
intermediate answers and the firal value for the trim angle.

TABLE VIII. TRIM ANGLE
Left Right
Otrim Sy v S J Side Side
0 0 0 0 0 -0.039 | 0.4046
30! 0.057 | 0.005 | 0.333 | 0.006 0.037 0.4070
1° 0.109 | 0.009 | 0.332 | 0.009 0.108 | 0.4083
2° 0.197 | 0.017 | 0.328 | 0.020 0.226 | 0.4129
4° 0.336 | 0.029 | 0.324 | 0.034 0.419 | 0.419

It remains to look into the damping derivatives, using

the J method.
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These calculations are quite simple and can be
carried out quickly, using Equations (47) and (51).
done for the models listed in Example 5 and are tabulated
below:

This was
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TABLE IX. (Cmq + Cmg)¢/Rad. (THEORETICAL)

Model Iy | (Cmq * Cmg)| /¢ Cm§  |(Cmg * Cmgdg
3+1 1.118 -0.506 0.967 -0.169 -0.484
3+4 1.805 -0.844 0.922 -0, 315 -0.754
3+3 2.62 -1.434 0.859 -0.519 ~1.159
345 3.89 -2.862 0.755 -0.891 -1.904
3+6 7.00 -8.714 0.561 -1.871 -4.067

The J method represented a good first approximation for
determining the effects o volute flexing upon the basic
stability derivatives. The g1‘atest shortcoming deals in the
area of dynamic stability; such instability cannot be predicted
since the volute is assumed massless. Wind tunnel testing
shows, however, that even for light volutes of the type which
would probably be used, dynamic instability is a serious problem.

A coning motion which persists after the initial tran-
sients have damped out is apparently czused by turbulence and
coupling between the pitching, yawing and stretching motions of
the volute. The three motions seem to enhance each other, per-
iodically damping out only to be revived to the same or greater
amplitude motion. For speeds lower than Mach 0.19, the motion
was less violent. The following theory deals only with two di-
mensional motion and allows for only two-degree angular freedom
motion in one plane.

Equations (1) and (2) represent the backbone of this theory.
To fully grasp the meaning of each leading coefficient, the two
equations will be broken down to the individual parts and dis-
cussed separately. The basic equations for reference are again:

a 8 +a &= - 5 - - i - 52
11 12 al3e alke 3.156 alS6 ( )
a 6+a 8§=-a 6-a 6-a §-a & (53)
&l 22 23 24 25 26
a - The inertia of the forebody and volute are accounted for
' with a This term is the same as that which would

appear with § for a rigid model.

d = J§ T 2= 54
a = Ipr Iy + 2 MyRyTy + MyRy?= 1 (54)
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a,, - Allowing the volute to oscillate and giving it mass and,
hence, inertia, gives rise to an inertia force which is
transmitted to the forebody through the elastic coupl-
ing. This inertia force must be included on_ the inertia
side of the moment summation equation, For ¢ = 0. The

a inertia term drops out of the equatior and the left

side of Equation (52) reduces to the rigid form.

a = Iy +My Ry Ty = K (55)
a,, - lhis term represents the damping moment set up by a rigid
body model having the same tail and forebody as the flexi-
ble or¢. The term is relatively large and represents a
major contribution to the overall damping of the model.
The term has an order of magnitude of about 103, It can
be written as:
2Cqy, SbXphp  2Cpy Sy’ Xp’ hi 2Cp, SyXy,.ht | dco
. \ np,°bXbfb . "M b Xb hp . ThygSvRVe t (56)
?pvw Sdc 2 2 2
| de®S  apr de?s dc?s 2V,
or, using linear aerodynamic notation:
d de
"adeS Cng * Cng) 3y (57)

(Cmg * Cpms) is the same as that defined for the rigid
models, An important fact yet to be shown is that a,,
must be large in relation to a;s [its complimentary term
in Equation (52)]to aid in insuring dynamic stability.
The terms in Equation (56) indicate how to make a,; large.
This can be accomplished without increasing a,, by in-
creasing the forgbody size or by moving the cg forward
which increases xy¢. This latter point will be examined
more thoroughly since the same adjustment will provide
better static stability. Xxy+ plays a critical role in
determining whether the model will have tendencies toward
dynamic instability.

a,, - This is simply the rigid expressioun for static pitching
moment, It is one of the largest terms in Equation (52),
having an order of magnitude of about 10-!. The term
must be positive if the model is to be statically stable.
It can be written two ways as:
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v —LnbOSbhb ) CnbOSH hb’+ Cny Svht
2= deS d¢S dcS

¢ (58)

or ~qdcS Cmg (59)

a,, - This tcrm does net show up favorably since it causes
trouble in the characteristic equation of the model.
A sign reversal on one coefficient of the characteristic
equation will occur if a,, is too large which, according
to the Routh-Hurwitz criteria, guarantees dynamic in-
stability. Unfortunately, a, .  cannot be indiscriminately
reduced since several of the constituent terms are re-
quired to be large for large a,, and a,, which are con-
sideréd to be favorable quantities (i.e., the larger,

the better). a,. is written two ways as:

- 2chOsv£Vht’] deo (60)
?pvw SdC 12
azes | 2v,

and, by using linear aerodynamic notation, as:

) d
-qdeS {Cm ) =< 61
qd¢ ( 8 v (61)

[+

It would be difficult to have large a , and small a
if not for the subtle difference between Xy and Xy
pecause the forebody AB' is usually small. Xyt can be
written as a function of the volute length and the cg
location. For a given volute, Xyt is controlled by

the cg location. Movement forward will be manifest in
greater Xvt¢ which helps to insure dynamic stability.

Xy is not affected by cg location and, hence, does not
change. If the cg were to shift backwards and longer
volutes were added to the same forebody, a,; would in-
crease at a faster rate than a,, which is undesirable.
Xy and Xy¢ are both related to center of pressure and
tiieir definition carefully takes into account the volute
planform shape. Thus, the above indicates how the center
of pressure and the cg location need to be related.

a,¢ - This term is analogous to a and represents the static
moment set up by deflection of the volute into the wind.
Note that this deflection is measured relative to the
forebody. Depending on whether the volute bends into
the wind or away from it, a _ can add or detract from
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static stability. Like a 5» &, does not show up favor-
ably in the dynamic stabiilty criteria. If the forebody
has the cg location in its geometrical center, then a,,
is equal to a,,. This is evident from the defining
equation:

C S,hy’/
Ly *sd. | MoVt (62)
P dcS
or as: =qdcS Cpg (63)

Thus a,s has the same order of magnitude as a,,. There
is no way to increase a,, without also increasing AB if
h{ is measured from the model cg and is the same for
both coefficients.

- The second equation of motion was found through a moment

summation about the tail hinge point., Because of this,
it was necessary to alter the normal expression for the
inertia terms and include the effects of a linearly
accelerating coordinate system. When the inertia side
of the moment summation is written out, a,, appears as
the lead coefficient. In terms of the physical con-
straints:

Iy + MyRyTy (64)

This is the second portion of the inertia expression.
It is defined to be:

I, (65)

When a,, has been determined, a,, can be found by sub-
tracting the forebody contribution to a,, and multi-
plying by 0.661y/h;. a,, represents a éamping moment set
up by forebody pitching. Note here that the moment arm
is only 0.661,, since the moment summation center was
located at the hinge line. a,,; can be defined in several

alternate ways, as follows:

1 V,?Sdc

(66)
P dc?S

zchostVto.éslj d o
2V

o0
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0.661, ivt de

-qd.S (Cm — (67)
S (ng) he xy 2V,
0.661
<a13 - (forebody contribution)> v v (68)
t

a,, has a destabilizing effect on the dynamics of the
mo&el. The same conclusion previously reached concerning
cg versus center of pressure location can be arrived at
here by examining the moment arm 0.661y,., Note that a,,,
which serves the same variable in Equation (52) as does
a,, in Equation (53), depends upon h¢ which itself relies
on cg location for a fixed volute. Increasing rearward
location of the cg must be done with some care if dy-
namic stability is to be maintained.

This term is the static pitching contribution due to
excursions of 6 in Equation (53). It has a similar form,
as does a,,,and can be written in several ways:

2

Cnh.. Sy 3l

Sor,tsde | Yo T Ve (69)
deS

-qch(CmG) 0.661V/h{ (70)

a - (forebody contribution) 0.661y 71

'y - (71)

Dynamic stability is aided if a,y is large. One finds
here that a compromise must be made among the variables
since the previous findings concerning cg location
versus large 1, are not manifest in a,s. That is, a,;
can be made large regardless of cg location. By increas-
ing 1y, however, to enlarge a,,;, destabilizing elements
are at work through a,s and a,;, both of which are grow-
ing with increases in ly. a;; also increases with ly.
The relation between these coefficients to determine
whether such changes in the model geometry cause insta-
bility is the subject of the Routh Hurwitz criteria.

a,s may be written as:

zch05V£vo.661V ded

ToVe?Sde (72)

d?.S 2V
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. A\0.661y d¢
-ades (Cnd) 7y v (73)
X,0.661 74
(a - forebody contribution) RX——7-—Y (74)
13 Xvh'

a,, - This is a unique coefficient and includes the effects of
the elastic coupling. It is the only coefficient that
includes the spring constant ky. It has already been
shown that the value of the spring constant is important
in determining the value of pitching and damping moments
set up by the model's motion. The dynamic criteria shows
that large k, helps to provide a dynamically stable model.
a,, is a function of a,, which can be typified as an
uafavorable value if t4o large. For a,, to be large
without compromising stability through a,,, ky must be
large, This stands to reason since, in the limit as ky
approaches infinity, the system reduces to its rigid
body form. a,, is easiest to use defined as below:

6

a,, tk (75)

All of the preceding comments regarding dynamic stability
result from the Routh Hurwitz criteria. An absolute stability
criteria involving the model constraints was not obtained be-
cause of the great amount of algebraic work and the practically
impossible task of using the results. Thus, the volute equipped
body has not been proven to be unstable for a given type of con-
figuration. To prove that volute equipped models cannot be un-
stable requires writing the coefficients of the characteristic
equation in the stability criteria scheme and insuring that the
proper terms will not change sign by relating the constraints
back to the original ajjrs.

It was found by computing many examples for a variety of
different volute and forebody combinations that a good indi-
cator of impending dynamic instability was the coefficient C,,
of the s® term of the fourth degree characteristic polynomiai.
This term will be the first one to change sign, thus indicating
dynamic instability. That is not to say that no change is
reason not to invoke the remainder of the stability criteria.
If the mentioned coefficient is much smaller than the other
coefficients but does not change sign (all coefficients would
then have the same sign), there is a good chance the model will
still have two unstable roots and two stable roots. The Routh
Hurwitz criteria is discussed more fully in Appendix I. From
that discussion the following observations are made which tie
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the preceding to the a;;ig. The fourth degree characteris-
tic equation can be writtén as:

C,ys* +C,,s8 +C,,s2+Cs +Cs=0 (76)

The coefficient of interest is C,,. C,, can be written in terms
of the ajj's as follows:

C,, = (a2, ¢ azzala) - (a

(77)

a + a
21 15 alZ 23)

Since C,, may be the first of the C;;'s to go negative, a

. c. a1 - 2.0
necessary but not sufficient condltlo% for dynamic stability
is:

a +a a > a_ a +a a
11 25 22 13 21 15 12 23 (78)

This inequality constraint is a relation between the inertia

of the cylinder and volute and the damping properties of the
cylinder and volute combination. Note that the spring con-
stant does not appear in Equation (78). The small mass assump-
tion used in the J method will reduce Equation (78) to:

a a > 0, a >0,a >0 (always) (79)

Thus massless vclutes will probably be stable. Giving the
volute mass requires matching the aj;'s so that C , cannot
change sign. Note that C, will usu%lly be positive which re-
quires that C,, be greater than zero.

Equation (78) is useful in finding out if a given confi-
guration will have an obvious dynamic stability problem. Sub-
stituting for the volute and cylinder geometrical and inertia
properties for the aij's, the following equation results:

[—Kv " 0'66%V Srve D) <1,
rigid he Xy
=

Note that Ky, h{ Iv, ﬁVt, 1y are all interdependent and
changing any one changes the others. Increasing ly causes

the remaining parameters to increase. I, however, can be
changed without affecting the other variables by increasing Sty

(80)

Cmg

4 *| rigid
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This is a favorable trend, since Equation (80) shows that I re-
duces the left side and enhances the inequality. Having a
large cylinder in relation to the volute tends to produce
greater dynamic stability, holding all other parameters the
same. Equation (80) can be used to examine the stability of
several cylinder volute combinations.

Table X lists the ajjs for several models. These values
were calculated using X, = 0,661, and Xyp = 1g + 0.5001y
Note that here an approximation was made since the earller
rigid work indicated that these variables hy and hV will be
functions of 6 and 6. hy was set equal to I, + 21y and hy =
0.661y,. The al%s were multiplied by 1000 whlch gave the

follow1ng set of equations:
Model (3+1)'

0.2048 + 0. 036§ + 0. 0436 + 386 + 0.00928 + 338 = 0
0.0366 + 0.0118 + 0.0096 + 9.606 + 0.00278 + 279.66 = 0

Model (3+2)!
0.3438 + 0.1128 + 0.0776 + 666 + 0.0288 + 616 = 0

0.1128 + 0.0588 + 0.0256 + 24.46 + 0.0118 + 294.46 = 0
Model (3+3)°
0.6058 + 0.272§ + 0.1244 + 1036 + 0.0648 + 98§ = 0
0.2728 + 0.1568 + 0.0616 + S1.56 + 0.0348 + 321.586 = 0
Model (3+5)'
1.2968 + 0.7378§ + 0.2914 + 2036 + 0.193§ + 1986 = 0
0.7356 + 0.4608 + 0.1666 + 116.46 + 0.115§ + 386.45 = 0
Model (3+6)'
5.7608 + 4.2228 + 1.0784 + 5350 + 0.9298 + 5306 = 0
4.2226 + 3.1838 + 0.7696 + 381.46 + 0.6758 + 651.46 = 0

From these equations, the characteristic equation can be derived
by noting that the initial values for 6 and § will not be zero.
Substituting for the variables according to the scheme in
Appendix I, the following set of equations can be written:

Model (3+1)'

s* + 0,295s% + 25,850s2 + 5,400s + 4,746,000 = 0
Model (3+2)'
s* + 0.313s® + 12,960s% + 2,800s + 2,440,000 = 0
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Model (3+3)'
s* + 0.289s% + 8,330s% + 1600s + 1,376,000 = 0
Model (3+5)'

s* + 0.335s + 6,200s2 + 1400s + 947,000 = 0
Model (3+6)'
s* + 0.278s® + 3,050s% + 570s + 278,000 = 0

TR T

To find the roots of these equations, it is necessary to use the
results of Appendix I which outline a graphical scheme. It is
helpful and also time saving if the characteristic equations are
examined with the Routh Hurwitz criteria before attempting to
factor them. The values of the criteria terms are:

Model (3+1)'

1 25,850 4,746,000
0.6 95 5,400
: 0.011 6.607
; 0.125
Model (3+2)'
1 12,960 2,440,000
0.313 2,800
0.067 41,32
1.295

Model (3+3)'

1 8,330 1,376,000
0.289 1600

0.335 165.991
10.026

Model (3+5)'

1 6,200 947,000
0.335 1400
7.038 2,443.452
458,451

Model (3+6)'

; 1 3050 278,000
bl - 0.278 570
; 65.074 12,392,047

18,542,087
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Since the first column of each scheme does not change sign, all
given models are dynamically stable. Thus, the quadratic fac-
tors of the fourth degree polynomials will all have positive
coefficients and will factor into negative real and * imaginary
parts. Thus each polynomial will appear as:

(s? +d;s +d,) (s? rd,s +d,) (81)

The graphical technique requires solution of two simultaneous
equations: (Reference 1)

C C C L
1 - Cia . 12 \? _ 13 4,(12_.___‘15 2 (52)
o2 2C C c,,d
11 11 11 11 2

Ciu/Cyi(d2) - €12/C11(d3)
Cls/cn' d,?

d, =

1

(83)

Either equation is rather complicated to solve by plugging in
arbitrary numbers. For stable motion it is known that values
for d, must be positive. d, and d; will be much smaller than
d, and d,. The latter two are related to the oscillating
frequency of the model. The above type of characteristic
equation is similar to the linearized equation frequently en-
countered in studying pitching motion of low speed aircraft.
In these equations the important angular quantities are pitch
angle and angle of attack. The angle of attack differs from
the aircraft pitch angle in a similar manner that the volute
angle of attack differs from the cylinder pitch angle. The
mechanics of the two systems are different since the volute
angle of attack is the result of aeroelasticity, whereas, the
aircraft wing angle of attack is purely an aerodynamic phe-
nomenon (excluding aeroelasticity). These comparisons mean
that the volute model will probably have a short period mode
and a long period mode, as do aircraft. The frequencies of the
two modes should be quite different, one being high, the other
being low, analogous to an aircraft's short period and phygoid
mode of vibrations. d, was chosen as the parameter easiest to
estimate since i% represents a frequency quantity. If the low
frequency vibration is estimated to be about 2 cycles/second,
d, = 157.75. This is a good approximation to begin with in
solving Equation (82). The following illustrates the technique:
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(9) Example: Solve for the roots of Model (3+3)

(832) (82)

d, d, d, d,
0.193 168 174 165
0.195 169 28.49 168

4.69 168.5
1.846 168.56
1.372 168,57
0.898 168.58
0.796 168.59
0.577 168,595

neg 169.000

The right-hand side shows that increasing d, causes
d, to drop in value and to continue dropping until

it becomes negative. Inserting 168 into Equation
(83) gives 0.193, which compares to 28.49, indica-
ting that the solution is still off a goocd bit.

At 169, d, computes to be 0.195, a minor change

from 168; however, the right columns show d, pass-
ing through zero which would indicate that the solu-
tion must lie between 168 and 169, Both of the above
sets of columns plot out as straight lines and no
further points are needed. Figure 22 is a plot of
the above, the intersection being the value of d; and
d,. Direct division yields d; and d,. The factors
are:

d1 =0,194 d3 =0.095

d, = 168.582 d, = 8,161.4

With these values for the factcrs, the quadratic
roots follow directly.
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-0.097 + 2,067i, i = /-1

s, = -0.097 - 2.067i
s, = -0.048 + 14,411
s, = -0.048 - 14.41i

The particular solution for the two equations of
motion is:

-0.097t -0.048t

6= A e (sin 2.067t + ¢,) + A,e (sin 14.41t+y,)

§= Aje "0-097t (sin 2,067t + v,) + A,e “0-048% (sin 14.41t+y,)

At first glance it would appear that there are eight arbi-
trary constants. There actually are only four, however, since
the Aj and yji are functions of four independent constants found
from the initial conditions 6, 6 and §,6. The technique for
finding the Aj and Y; terms whereby the complete expressions
can be written is outlined in Reference 2. Since stability is
the prime concern of this program, the technique is not included
in this report. The equation is composed of two angular quan-
tities damped at different rates. The mass of the volute dras-
tically changes the motion of the forebody. This is manifest
through the additional high frequency term in the 6 equation.

If the mass of the volute was sufficiently small, this term
would have negligible effect on 6 . The motion would be deter-
mined primarily by the leading term. At t = 10 seconds the

long period mode has damped to 38 percent of its initial value
and the short period mode has damped to 62 percent of its ini-
tial value. Wind tunnel testing showed that the model did in-
deed have the kind of motion indicated by the solution equation.
The short period mode was easiest to follow with the eye and
damped out first. The remaining high speed motion wzs then
evident, Unfortunately, this high speed vibration only damped
out partially and continued to vibrate, This limit cycle can-
not be predicted by the simple linear theory. At this point

in the two-year effort it is safe to say that the residual
motion results from interaction among the pitch, yaw and stretch
motion of the spring. It was somewhat surprising to see large
amplitude second harmonics appearing in the bending of flexible
helix volute., These waves in the spring were quite evident.

The spring motion was unsteady and appeared very complex. An
approximate analytical method will have to include two dimen-
sional oscillations (coning) and possible second harmonic ef-
fects (three degrees of angular freedom). This type of analysis

61




TR,

s B s

is beyond the scope of the first year study but may be the sub-
ject of the second year study.

The remaining roots of the flexible models were solved for
the method of the preceding example. The roots of these models
are:

Model (3+2)'

s, = -0.104 + 2.164i
s, = -0.104 - 2.164i
s; = -0.043 + 25,5491
s, = -0.043 - 25,5491 .
|
Model (3+3)° ‘
s, = -0.109 + 2.201i
s, = -0.109 - 2.201i
s; = -0,048 + 17.998i
s, = -0.048 - 17.998i i
Model (3+5)'
s, = -0.115 + 2.040i
s, = -0,115 - 2.040i
s, = -0.053 + 12.380i
s, = -0.053 - 12.380i
Model (3+6)'
s, = -0.095 + 1.550i
s, = -0.095 - 1,5501
s, = -0.044 + 8.6601
sy = -0.044 - 8.6601
With this analyvtical information it is possible to construct a
curve relating the damping power of the tail along with its

stability power to the volute length 1,. (TFigure 23 through 26) T
These can be used with caution to predict the frequency and
damping characteristics of volute cylinder combinations dif-
ferent from the samples. Caution must be exercised because of
the vast number of assumntions used to derive the analytical
expressions. Also, the forebody in a particular problem must
have about the same AB as the plotted values, which was about
0.440. It is best to refer back to the theory and begin with
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the basic expressions for the aj:'s and derive the stability
margins for each case. Even wheﬂ this is done, thc answers
represent only a first indication of the model stability cha-
racteristics and should be interpreted as necessary but not
sufficient conditions for dynamic stability.
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SECTION IV

FINAL DESIGN

The preceding sections served to outline two methods for
finding the static and dynamic stability of volute equipped
cylinders, The first method for rigid volutes only showed
which of the volute parameters entered into the stability cri-
teria and provided a base for the more complex flexible analy-
sis which followed. Because of the anticipated complexity of
: the flexible analysis, the first approach there assumed a
3 small mass volute but allowed bending. This method took into
k account bending by altering the rigid expression for Cp, and

1 (Caw *+ Cpme) by a constant factor dependent upon the geometrical
: anddstructural constraints of the volute tail. The final analy-
' sis examined the dynamic stability of several models through
characteristic equations extracted from the two angular equa-
tions of motion. It remains now to tie the preceding work to-
gether so that a systematic method can be used for a given pro-
blem. One more piece of information must be provided along
with the aerodynamic analysis to allow this.

——

All aerodynamic work derived points to a best design
length volute for a given cylinder; however, it may not be
feasible to fit the optimum length into the cylinder cavity
(Section I). The maximum length of the volute here is deter-
mined by the spring thickness and the cavity diameter. In some
cases the design length obtained in the J method may be larger
than the maximum length capable of being stored in the cylinder.
To make matters more complicated, the spring constant ky ap-
pears to be inversly proportional to the volute length for a
given cross sectional inertia which changes the optimum 1y.
This latter fact represents one of the most difficult para-
meters to estimate. That is, for a given material wound in a
spiral to a length 1,, what is ky?

During the study program it was discovered that k, varies
inversely with 1ly. Only a limited number of volutes were
tested, but these followed Equation (84):

ky = (Constant)/ 13 (84)

The spring used on Model (3+4)' was taken as the center point
to evaluate (Constant). If z = L the proportionality con-
stant was found to be 0.501. 1If a given spring is close to the
mentioned spring (Appendix II) in cross section material and
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length, Equation (84) will give good answers. Large excursions
must be dealt with separately.

For a volute to have maximum cofficiency, it must be wound
as lightly as possible. That is, viewed from the side, there
should be no space between successive coils. To determine
whether such a spring will fit into a given cylinder cavity,
Equation (85) can be used.

nt, <R (85)

To find the length of uncoiled wire needed to construct a
volute with given 1,, use Equation (86):

1,= 21 (R - (n - 1) t,) (86)

The volute length 1, is approximately,

1V = nt2 (87)

Spring steel is recommended as the volute structural material;
specifying the cross section would be at the discretion of the
designer. The key flexible volute [(3 + 4)'] test model mat-
erial, cross section was 0.020 x 0.200. For this material,
Equation (84) can be used to find ky. Using the J method to
maximize Cp, with respect to volute length 1y, variable ky =
£f(1y) should be used if Equation (84) can be used or an alter-
nate derived, based on different material than 0.020 x 0.200
spring steel. Variable ky has a profound effect upon Cpgy.

Cm., falls off with 1y faster for ky = f(ly) than ky = constant.
This fact adjusts the design ly to a smaller value. Example 6
was carried out for ky = constant. If Equation (84) is used
instead, Table XI results:
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TABLE XI. Cpgg/Rad.
0.501
Let ky = ;7?3
ky ¢ J Cmog
.708 | 0.3343 | ©¢.0021 | -0.03485
.4090 | 0.3237 | 0.0337 | -0.11798
.3543 1 0.3145 | 0.0612} -0,15786
.3168 | 0.3019 | 0.0988 | -0.19142
.2892 |1 0.2876 | 0.1415| -C.21744
.2678 | 0.2725 | 0.1866 | -0.23600
.2505 | 0.2572 | 0.2322|-0.24695
.2362 [ 0.2423 | 0.2767 | -0.25180
.2241 10.2281 | 0.3191|-0.25162
.2136 | 0.2148 | 0.3588 ; -0.,24740
.2045 | 0.2023 | 0.3959 |{-0.24000
.1965 | 0.1906 | 0.4310 | -0.,22929
.1890 | 0.1802 | 0.4621 | -0.21855
.1829 1 0.1705 | 0.4910 | -0,20599
.1771|10.1614 | 0.5182 | -0,18911
.1718 {0.1533 | 0.5424 | -0.,17919

TR
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These values were plotted in Figure 27 and compared to the re-
sults of Example 6. If ky cannot be found as a function of 1y,
use the best constant value (from elastic testing if possible).

It is likely that the first step in designing a volute
stabilizer will be to insure rigid static stability. The
approximate dimensions of the best design volute are obtain-
able from the simple rigid analysis if the spring constant
is very large ( 2 pounds/radian), or if the volute is short.
Generally, the volute stabilizer will not have k, as large as
2 pounds/radian, probably closer to 0.300 or 0.480 pounds/
radian. In these cases, the J method should be used to follow
up the first order approximate rigid analysis and the tail
length altered according to the results. Dynamic stability can
be checked for this configuration best in a wind tunnel. llow-
ever, the two-dimensional angular freedom analysis will provide
at least a first approximation to what the dynamic stability
characteristics will be like. Since the observed limit cycle
motion referréd to in the text appeared to result from pitch-
yaw coupling, a more precise analysis will have to wait until
completion of the second year study.
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SECTION V
CONCLUSIONS

The preceding analysis,together with data collected at
the Eglin Air Force Base low speed wind tunnel and free flight
data collected at the Von Karman Gas Dynamic Facility, proved
that the volute stabilizer is a feasible and practical approach
to providing a compact stabilizer for cylindrical forebodies.
The rigid and flexible body analysis yielded a convenient
method of estimating the effects on both static and dynamic
stability when the various geometrical constraints of the volute
shape are altered. For each case, the analysis provides the
necessary and sufficient conditions to insure static stability
and thereby proved that properly designed and matched volute
tails insure absolute static stability.

The extensive amount of wind tunnel testing conducted at
the two facilities clearly indicated that all test volutes con-
structed of coiled spring steel operating at M = 0.2 to 0.6
and Rp = 1 x 10°to 1 x 10° suffer a certain amount of residual
vibrations which apparently never damp out. This, as shown in
the analysis, can be offset through proper volute design; how-
ever, it appears that these limit cycles can never be removed
entirely. The effect on stability can be reduced to a point
where the forebody wanders through t 5 degrees arc. The ampli-
tude of the limit cycle motion is sensitive to the lateral
spring constant of a given spring tail and under some condi-
tions will produce (Cy, * Cpe) > 0 causing divergence up to
a certain maximum ampl%tude,athe largest observed to be about
+ 30 degrees.

Under nearly steady state conditions, the cylinder equip-
ped with a volute stabilizer will trim out at a trim angle
which is controlled by the volute length and the cg location.
This trim angle can be reduced to nearly zero if the cylinder-
volute combination is carefully matched. If this is not done,
the combination can be expected to trim out at an angle dif-
ferent from 0.
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APPENDIX 1
ANALYSIS

The 1-d rigid volute model is analyzed in detail below.
Because this particular model is more amenable to analytical
treatment than the remaining flexible models, this section
identifies and treats the basic volute parameters which affect
aerodynamic damping and pitching moment., The effects of cg
movement and forebody induced tail blanking are included
separately.

At the outset of the analysis, the following assumptions
are made:

(1) The volute is attached rigidly to the forebody
(2) The volute is a complete cone

(3) All area behind the cg acts as a tail, all area
in front of the cg acts against the tail

(4) Normal force coefficients are based upon cone-
cylinder combinations and strictly cones or cylinders

Volute and forebody geometry will be identified according
to the following diagram:

Z (Aero)¢
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A stabilizing pitching moment is set up primarily because
of a normal component of velocity relative to the volute fore-
body axis. By finding this component of velocity and an appro-
priate normal force coefficient evaluated at w/,, the normal
force can be calculated.

Relative Velocity

N~

Velocity field due to rotation

Moving out to a point on the forebody, the relative velocity
there can be found with the aid of the vector diagram below.

by T~

Vg = (v, - 0xpsine)? + (6xpcosd)?

The angle between the free stream velocity and the relative
velocity obtained from the diagram is:

b = tan éxbcose
b V- 8Xpsiné
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Tail quantities are obtained in a similar manner. The rotation
induced field adds to the free stream field to give:

L

Vi | (Vs +6X;sin@)? + (6xycos0)?

<1 éxtcose
V, + 6Xxsind

¢t= tan

Assumptions:

(5) Approximate Xxp and x¢ with the average values ib and £t°

(6) V., >>6x so that ¢, ¥ 6%b/Ve, 0t ¥ 6Xt/Ve

To find the normal component of velocity, the angle of attack a
must be found. This is done with the following diagram:

Vo
[~
VI‘ “ at =0 + ¢t X
t t
\\\ Xb
ap= 0 - ¢p
ag= 8 + ¢4
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With the angle of attack for both the ''b" and "t" sections
known, the normal component of velocity is expressed as:

n .
Vb = V€51nab
n .
Vt = V€51nat
Vg = Veosing - é§b
n _ ] .n
Vt = Vosind + ext

Moment Balance

To find the
moments are

total aerodynamic moment acting on the total body,
summed about the center of gravity.

Assumptions:

(7)
(8)

(s
(10)

Then,

Use average moment arms hp and hg

Use Cnto based on cone-cylinder values evaluated
for n/, radians.

Sinjy # ¢

There is no tail forebody interference

. 1 ~ . ~ .
18 = Tplng Bt (Veod + X£8)[V8 + Xt (St

1 A e ~ e
- 20Cnp b (Vb - Xp8) [Vad - xp0Sp
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Assumption:

(11) The ratio |6 - 1B§|/|e +

t ¥ )
Ve Ve
Then,
A T
~ Cp. hpSpx

“ 1 "N [ x . nb b b b

-16 = 'Eant htxtstvzm ele + _.f;el 1 + 9

° Vm CntohtStXt

Xt s CnphbS
+ %pﬁnt heStV2e(0]0 + —6|||1 - “nbgbSb
° Ve, CnghtSt

Let

Vh = hbsb/htst , 6 =08 + xt/Vmé

Assumption:

(12) ~ Cnb ;b - .
C ntéltxtst 1 + o Vh I 6 I =

Cntoxt

hokes |1+ Py 6|
Cny DeXtSt ~Vh
°c CntoXt

w

and Cntl(')ltst [1 - CPCOVh:lIGI
+LO

Cn, heSt |1 - Cnb°vh lo]
ntO Cnto




sy

Ta)

(13) Let Cnto!elE Cne ®- Static normal force coefficients
can be expressed as Cnt = Cnty o * Csin?a, Thus Cnty =
Cngg(m/2) + C. This assunption averages Cntol0] over 8,

and requires that Cné be small.

S¢Cps N¢R Chhy X

v 1 . 2tintylittt nbh*b d.n

- 18 = ;pvzmdcs-lde °2 1+ O vy | <6 +
ch CntoXt Voo

D>

des Cntq

Cnt  htSt Cn
6 St 7 hh bth

From linear aerodynamics:

d
v 1 . a
18 = ;pvzwds [ezvm (Cmq + Cmg) + Cmy6

By identification of common terms:

25tCntohtXt CnboXb, | 4
(Cmq + Cm&)-— - 325 1+ mv )
c (o]
c Stcntoht ) Cnbth 5
Mg = ~ — 5 o -
a.s Cntg
If, Vy = htst/dcs
(Cmg * Cn&) = - CntoVh 1+ O Vnh | ®
q o to H; Cntoxt
Cnp A
Cma = - CntgVh [ - Cnt°vh:] 8
0
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The effects of cg movement can best be determined by
relating the movement to pitching and damping derivatives
through the above equations. Taking the pitching moment slope
coefficient first:

- ! CnphbSb 4
Cmor. - Cntth [1 - -——"—'CntohtTt— 6

CQbohbSb

for, —_—
Cntohtst

<1, Cmg < O

This constraint can be related to the cg location by expres-
sing the individual terms as functions of Xcg- When this is
done:

_ 1 1~
“Cmy = ECS<'2'Cnb0(Sf - dexeg) (Ib - Xcg) +

EnVOSV(lb - Xcg + alv) - Cnbofggixcgdci>
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The individual terms as functions of Xcg are:

Enbo = Cnbo 8

Sp = deXcg

Cnty = %E (Cnbosb + Cnv§v> 8

\

1
Xcg )7 * anfv(lb " Xecg  *oaly)

Cng,Stht = CnpySb (1

t

Sp

Sg - dcXeg

Note, that because Cpt, is made up of normal force coeffi-
cicnts of both the cylinder and cone portions aft of the rota-
tional axis, it is a function of c¢g location.

After some reduction:
“Cmy = Xcg (gf(enbo * anvc} - EHWJ +
Cnyfl - 5¢) (aiv + Tb) + %Cnbosfib
Where

~

= x¢g /dc, Sg = Sg/S, 1y = 1y/dc, Ip = 1p/dc

taXi

cg

A more convenient form of the above was obtained from Reference
3 wherein a method is derived which allows prediction of Cm,

» . 1 - . .
about any axis, if Cp, is known about any other axis in the

forebody. The transfér equation is:
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Cm = Cm& + _.E..& Cna

Cn, has to be determined for each volute-fovebody configura-
tidn. Cp! can be obtained by setting xcg to zero in the cg
equation or, directly, from the definition of Cmy. When this

is done:

eV v Ly St 1p
' A = —~ . 211 A — 2
- Cma = Cnvo 6 Q - S >(a dC + dc >’ 2 Cnbo 8 S dc

(Cnbo Cnp o Sv CnVOSV>

————

2 28 S

S

The damping derivative turns out to be a quadratic function of
the cg location, The equation is too unwieldy for general
usage but is duplicated below for completeness:

-
1 3 1 ~ ~
Cmq + Cpg = d—cg{xz cg (,, Cnbolb + F1y CnVo/z + a Cnbo])

b

r

3~ ~

3z 2 P
* Xc.g. (‘u Cnpolb® - wCnyg2lv® - Lylp CnVo/2 - a Cnb4)
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The derivation follows that wused for Cp, as a function of cg.
Xtis defined to be:

ﬁt = (lb - Xcg)/z + alv

~

Xp = xcg/z

Since Cp, was found, it is possible to use parallel axis trans-
fer equations to find the effect of cg movement of the damping
derivative. This equation is extracted from Reference 3 and
appears as:

(Cng * Cng) = (Cng * Cng)'+ "B (chq)

() -

It is much easier to use than the one derived directly from

the definition. If the primed parameters are measured from the
nose of the forebody (consistent with the definition of X gz)
and Cp, is small, the damping derivative as a function of Cg
location is:

heC
for, Cm' = - tTMto 5
My 3
c
and C - x? ‘ng,
* X g dz 2]+ (Cng * Cn )
c xeg = 0
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c heCp, heC
- Do)y, (Ftog). PMto g g
C C d(’

The cg location for maximum damping will occur at:

Lhe Bto §
Tng

ng =

In the derivation of the above foramulas, an average moment arm
and average value for the rotary velocity field was assumed.
The average value was introduced with the constant multiplied
by 1y(i.e., aly)."a'" was used both in the expression for aver-
age moment arm and average rotary velocity. The value will be
taken as %. The expressions for xt, ht, and later th are
complex and depend upon 6 and 6. The following analysis is
devoted to this subject:

Xt
Vv3d § = v? S
ave
Sg + Sy

Plugging in the necessary values and reducing,

1o

(V2,5in%e + 2Voxsinee + 6 2x 2)d.dx

1o + 1y
(V2,sin20 + 2V xsingf + 8 2x?) dy (x - 1g) dx =
1

1, Y
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1 [ ~ . ~
= (7 dyly* dely) (V2esin?6 + 2V,singd x¢ + 8 2x¢?)

2 3 b4 2 2 1
Xt = ,9=0
215 + 1y

2 2

A g+ Lyl + 3 1y .

Xt= ”—,6=0
215 + 1y

is found from the following identity:
ly
dy
V27" )x dx = V2 ave S
Ly
)

Inserting the necessary values and reducing,

ly

rztz U s 2 A2(v2 2?_‘1’_

r oSin“e + 2V, sinb(x + 15)6+ 8°(x° + 2x1g + 1o 1
v

© = % dvlv(Vzwﬁinze + ZszineéQVt + éZQVtz)
Xve?= vf, + Myl g * 15%56 = 0
}?Vt = 1g + -z-lv,é =0
h¢

ht is found with the following identity:

JJszdS = VZave h%Sy

Sv
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Inserting the necessary values and reducing,
ly

. . d
(x + 1g) {(V2sin?6 + 2V,sin86(x + 1g) + 62(x + 15)2 IK x dx =
v
0

1 * A s A
7 dvly(Vi.sin®e + 2V,sineéxy, + 6°x%y, )h¢

2
h¢ = Xy (2 1oly? + 215%1, + T 1, + 1,%), 6 = 0

2 .
hy = 15 + 3 1,,6 = 0

The above forms are gotten by carrying out the integrations and
alternately setting 6 then 6 equal to zero. The three variables
span a range of values which can be considered to be the upper
and lower bounds of each durlng one cycle of oscillation. It
was found that using Xy = 15/2 + 3lv gives reasonable answers
and is easier to use than the derlved .expressions which them-
selves are only approx1mate. ht and th glve good answers de-
fined as ht = (1o + 21y) and th = (1o *+ 3ly). Note that in
the expression for hy at 6 = 0, ht is 1nverse1y proportional to
the square of xvt. R plot of ht shows that for certain values
of 1y, ht actually decreases for increase in 1, up to a point
and then increases.

The preceding forms do not consider forebody interference.
Because the forebody interrupts the air flow over the volute
tail, the effectiveness of any volute is lowered. To find what
Dercentage of the tail is blanked out by the forebody, the fol-
lowing approximate analysis is offered. Note that here a trape-
zoidal area for the volute is used instead of the typical tri-
angular planform. This is done because at low angles of attack
this additional area has a significant effect on the volute

performance if dj is large or about d;5. The following diagram
1s useful:

ly

-
r—\eigo
ME: N
TN 1

//

-
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1
- dua
_(l____V'Z)’ ()’ - d
X

tan60=

~ |
~—
"

v X tanGo

ly
Sy (two trapezoidal pieces) ]Zx tanddx

xl

dy - dy' dy
2(tand + tan§,) 2(tan® + tandg)

Sy’ = tan 6,(1y% - x'?), x' =

-_ 2

-dv

|

Sy = tan §g
4 (tanb + tanQQ

2
2> + tanéolv

sy ly &y 1

dy2  2dy 1y8 (tan® + d?
21,

Sy" (shaded portion) = dé (1, - X))

S (total area) = Sy' + S"

Overshadowing the previous analysis is the obvious fact
that the volute is not rigid, but flexible. This fact alters
the previous expressions for damping and pitching derivatives.
To make the analysis as teuable as possible, the first flex-
itble volutes considered will have small masses and moments of
inertia.

Using the following diagram, basic flexible volute for-
mulas can be derived.

(Aero)é (Aero)
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The stability equation for the flexible combination can be
written as was the rigid form if the volute contribution con-
tains the pitch angle and the volute angle in the aerodynamic
force expression. Symbolically this us:

X o1
GEM cg 2 - (aero)y --923-- + (aero)y -2—9 + (aero), h;

3 The inertia torque of the masses can be shown (Reference 4)
3 to be:

1 I§ + K8
] R _
where, I= Ry + 2MyRyry + Iy+In

Ky = MR T, + I,

Written out the whole expression is:

t 1 !
-CnbOSbhb CnbOSbhb CnVoSVht
+ +
a.S a.S d.s

6 ¢

. . 1
L I8 + K 8 =-7pV2_Sd,

; 2Cn,. ShXnh 2Cn,  SHXLh  2Cph.. SyXy.ht d
. np,°b*bMb . " b bXblb i P t 3 __i o
¢ 2S dc2s d¢2S 2V o

! Nt
Cny . Svh 2Cny . Svxvht) . d
+<n"°Vta¢+<n"°vv 5—i¢>,¢>=|e+5]
deS dcZs Ve average

To take a closer look at the tail reaction, a free body diagram
is drawn and moments summed relative to a nonrotating but line-
arly accelerating observer. To account for this, the inertia
term is written according to:

d - >
Mexternal = J(:J R x (axR)‘§>+ Mv(ﬁc.m.xgo)
m
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Which yields in terms of problem variables:
IE + MR,T6 , £ =0+

I, £ + MyRyTy B = (Aero)y

(aero)yaly + My

Vr

\\
\\\\<::\ §

_,/// Inertial Frame

If the volute is idealized to have negligible mass and moment

of inertia, the above reduces to:

1
- ky8 = (aero), a 1y = ?szanvo o (8 +8) a 1Sy

-~

This is a constraint on § expressible as:

1
7pVZ Cny, ¢ @ 1vSv
§ = - 8
1
ky + 1oV2.Cny ¢ @ LSy

& = - J6

Note that the damping force was assumed small compared to CnVOViS.
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The inclusion of this expression into the basic flexible form
equation reduges the expression to the familiar rigid form with
varlables §, 6, 8. The coefficients of 6 and 6 respectively
are:

[ '
CnbOSbhb . CnbOSVht
dcS dcs

<:cnb oSbhb  JCny Syht
deS
t At
. 'bVZ 4:<52Cnb SpXbhp 2Cnb Sbthb
de

ZCnVOSVXVth{ ZJCnVOSV;(V h;: éd
- o) =

o v 1
16 + Ky8 = 5pV2_Sd. <

i <>

For J = 1 the volute is totally ineffective and its contribu-
tion in both damping and stability are nullified. For J = 0
the equation reduces to its rigid body form. The effects on
the values of Cp, + Cpgland Cpy can be inferred by reducing
the effectiveness’of the volute by (1-J) and including this
value instead of the full value into the rigid body equations.
By doing this, the tail effectiveness will be reduced and the
overall stability of the combination will be reduced. Simi-
larly, the damping effectiveness of the volute suffers by the
same factor. Note that since the whole tail (as defined in
the rigid analysis) is not affected by the volute flexing,

the aft portion of the forebcdy which helps in stability is not
affected. In terms of J, the new flexible body damping and
stability coefficients are:

1]
Cm - Cma[ ¢ } JCnV htSV q)
*/¢lexible| 6 irigid .S
| C
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<C + Cpe) = nq * “mg) 9 _Wlny heSvry
" MY T frigid 4os 0
C

If the volute is not light or has negligible inertia, the
derived forms will not be accurate. A complete dynamic analy-
sis is somewhat frustrating since the results are so compli-
cated as to be almost useless for general design purposes un-
less a convenient means of interpreting the equations is pro-
vided. Here, an attempt will be made to present the com-

plete equations so that useful design information can be ob-
tained.

The analysis begins with the general equation derived
for the forebody volute combination, and the equation derived
for just the volute without the small mass assumption. The
two equations have the general forms shown below:

.

a 6 - a 6
15

6 - a

Ie + Kts = - 3.13 14

0-

(Iy + MyR,T\)6 + 1,8 = - a,,6 - a,,6 -a, 8 -a, 8

The coefficients are:

2Cny. SpXph 2Cpy. ShXphy’  2Cp.. SyXy.ht | ded
1 n bXbNp n bXphp n vXy it c
a,; = ;DVZdeC bo * bo * Yo ‘
dc?S d.?S d.?s 2V,
Cn, Skh Cn, Shhy  Cp Syhst
a,, = %szdeC M, b *np SbTDb L Dy ovit 6
d¢S deS dcS
a5 = ?oVZdeC<: - v 8, = 7PV2,Sd, Yo ¢
de S 2V, dcS

92

R il S ML I S ¥ i A |




)
1]

\ 2Cq. SyXy,aly \doo Cn. Syal
- v tov ¢ i .°n vVerv
23 20V *=Sd¢ < 0 » a,, = 20V2.Sd. Yo ___}o

d.28 v, d.s
oty 2Cnvo3\2,2?va1v dco - -;—pvzdeCC“V_OSfﬁ .
d¢' S 2V, d¢S
The two equations for which a solution is sought are:
a;l +a126+a13é+a1%e+a15(§+a166 =0
a,,o a,,s azaé a,,n a25$ a,.,6 =20
To find a solution assume that:
6 =5 eSt, 5 =35 5t
Insertion into the equations of motion yields:
S(a,,8 + a,,8) + S(a,,0 + a,,8) + (a,,8 + aIGS) = 0
S*(a,,0 + a,,8) + 5(a,,0 + 4, ,8) + (a,,8 + a,,8) =0

These equations for the assumed 6 and 6 will give solutions

different from zero only if:

2 2
(3113 *a; S o+ alu)(alzs a8+ a )

=10] for § § 6 # 0

2 2
(a,,8° + a,3S + a,,)(a,,5" + a,;5 + a,,)

This requires that:

y 3 2 -
C11S +Clzs +C138 +CxuS+C15_0
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Solutions to the characteristic equation are:

n

S, = -n, *+1ip,, 8, = -n; - ip,

S3 = -n, + ip2 Su -n, - ip2

In terms of trigonometric functions:

0 e’nlt(Alcos pt+ Azsin plt) + e‘n2t(A3cos pt+Asinpt)
: 2 4 2

o
]

-n,t i + e Nt (B ¢ t +Bsinpt
e (Blcos plt + stln plt) e M2t ( ,C08 P, " p, )

Before delving deeper into the solution equation, it is
useful to examine the characteristic equaticn further since
stability of the system can be found by examining its co-
efficients and factors. Static stability can be inferred
immediately by examining the values of the constant portion
(Cis) of the characteristic equation. ([t should be positive.
If it is positive for one configuration and a single design
parameter is varied so that C;s changes sign, then one diver-
gence (static instability) appears in the solution (Reference
1 ). To find out what effect this change has on dynamic
stability, the characteristic equation needs to be analyzed
further. Routh's Criteria is a convenient means for finding
whether the system is dynamically unstable. This method is
outlined in Reference 1. Briefly, the technique is as follows:

The quartic is:

C,ys* + C,,s* + C”s2 +C,,s+C,=0

11 18

Form two rows as follows:

13 15

Ci2 Ciy 0
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Construct additional rows:

Pal P32 0
Phl 0 0
where:
Par = €10y - CiChus Pyp = €005
Pyy = PyyCpy - PGy

For the system to be dynamically stable, each element in the
first column must be positive. If the mentioned change in a
single design parameter results in an element in the first
column changing to a negative value, then the system will have
one divergent oscillation.

Once the volute-forebody characteristic equation has been
obtained, any of several root extraction methods can be applied
to determine the degree of damping and the two free vibrations
of the system., It is intuitive that the system will vibrate in
both modes and will be lightly damped so that the solution roots
will have negative real parts and imaginary parts. Since the
equation is fourth degree, there must be two quadratic factors
obtainable by the following method:

Rewrite the quartic,as:
(s +d;s +d,)(s®> +d,;s +d,) =0

Expand this equation and equate coefficients to the original
quartic:

Ci2 Cis
c.. dx ¥ da’ c. dz ¥ d1d3 ¥ du
11 11
C C
__.l_l’.=d3+d2,_i§__d2 d“
€y Ci
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These equations can be solved to yield:

) Clu/cll(dz) il Clz/cllcdzz)

- 2
CIS/CII dz

A plot of these two equations will reveal the common points at
one or two intersections. These are then the factors of one
quadratic, the other two following directly. The equations are
analyzed below:

_ 2
? Cl“/cll(dz) Clz/cx1d2
" d, = Ciyr Cypsr Cigs Cpys Gy 2 0

1
CIS/CII d22

d, » =, d, ~ C12/C11

d, » ©,d, - Cis
Cia
‘ d, < 0,d, ->C1“/C12
§ Looking at the second,
C C 2 C L
a, - 12 R < ‘12 LERPIN Cis z
2Cyy 2Cyy Ciy 2Chyd,
bd, _ 1 Cyp ’ Cis Cis 2 Cis 32
' bl " 2 ———- - + d,+ 1 - —d
E 2 2Cy, Cia Ci.d, Ch, *
Maximizing:
Cis2 Cis
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APPENDIX 11
DATA

The data portion of the program was conducted in two parts.
The first consisted of free flight data obtained from the Von
Karman Gas Dynamics Facility. Static and dynamic data was
obtained at the Eglin Air Force Base low speed facility at
Mach 0.19 for Rn = 5x10°., The free flight data is contained
in the report '"Volute Stabilization'" project VA0086.

Since the volute is a coiled flexible spring, it was
necessary to approximate the rigid model of a volute with a
solid body grooved in a staircase fashion to represent the
volute coils, Five aluminum and one epoxy models were construc-
ted. Three cylinder forebodies were made to mate these volutes.
The test bodies with complete geometrical and physical proper-
ties are shown in Figures II-1 through II-3. These models
formed the core of the rigid body data bank. Several attempts
were made to construct flexible models from these by inserting
a leaf spring between the forebody and the volute, giving a
two-degree angular freedom model. Unfortunately, the models
generally failed structurally because the aluminum volute was
too heavy. Some flexible data was obtained at Eglin Air Force
Base for each flexible model. The coiled spring tails on
models (1-2) are shown in Figure II-4.

Static data for the rigid models is plotted in Figures
H II-5 to II-10. Flexible data for flexible models is shown in
Figures II-11 and II-12,

Two specialized pieces of equipment, an accelerometer
stand and a dynamic shaker stand, were developed for the test
program at Eglin to obtain dynamic derivatives. Neither of
these items were fully tested during the program because of
time constraints and may be used extensively during the second
year's work, The operation of each is described below:

Accelerometer Stand

The accelerometer stand was developed for mounting in

the Eglin low speed tunnel. Inside the strut are assor-

ted electronics for transferring a voltage signal from an
accelerometer model to a special discriminator. The out-
put from the discriminator drives an oscillograph, giving

a trace of the acceleration of the volute versus time.
Diagrams of the strut and electric package are provided

in Figures 11-13 and 11-14, respectively. With the various filter modi-
fications, the strut may be used in flexible test work
during the second year's work.
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Dynamic Stand

The dynamic stand enables extraction of the basic aero-
dynamic derivatives of a given model by forcing it into
resonance. Data is obtained with a high speed camera and
reduced according to a scheme outlined in Reference 4 .
The stand is illustrated is Figures II-15 and II-16.

A sample of the free flight data obtained from the Von
Karman Gas Dynamic Facility is included as Figures II-17 through
I[I-20. Reduced data for the aerodynamic coefficients has been
extracted from '"Volute Stabilization" report and included for
completeness and comparison with the planar oscilatory data
obtained at Eglin Air Force Base.

Models are formed bty combining the cylinders with the
volute tails. Their designation is provided by identifying
each model by the cylinder forebody number and the volute tail
number, such as 3+2, which is a model having cylinder 3 as its
forebody and volute 2 as the tail. Some flexible tests were
conducted by inserting a leaf spring between the cylinder and
volute. These models are identified as above except that they
are primed thus: (3+2)'. The physical properties used to ob-
tain the basic inertia terms are shown in Table II-1.

TABLE II-1. VOLUTE MODEL MEASUREMENTS

Model Ty Ry Ky I

3+ 1 0.05533 0.1516 0.00003636 0.0002044
30+ 2 0.10033 0.1516 0.00011210 0.0003428
3+3 0.14408 0.1516 0.00027150 0.0006050
3+5 0.21592 0.1516 0.00073500 0.0015090
3+6 0.38850 0.1516 0.00422200 0.0057600

The reduced data from the Von Karman test program can be
used for design purposes as well as providing an extensive data
bank. Various aerodynamic coefficients were reduced from the
raw data for a number of models, distinct from the ones used at

Eglin. Table II-3 lists the data from the Von Karman Gas

Pynamic Facility, To assist in correlating that data with pre-

vious model configurations, Table II-2 is provided.
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1.424

{ 0.060

- f

|0.360

VOLUTE 1

Weight (Pounds) Iy (Slugs-Ft?)

. L—0‘061 0.0744 0.0000169¢
1.118
L0.062 VOLUTE 2
} 0.329
o
(@)
™
r—{ |
Weight (Pounds) I Siugs-Ft?)
1 _| 1.361 g ( ) Iy ( g
0.124 0.114 0.00005823
e e
1.825
"4
i ——___ $0.081 VOLUTE 3
[0.348
O
2 - -
o 1.814 Neight (Pounds)
0.171
—f l—0.192
Iy (Slugs-Ft?d
2.620 0.0001555

Figure II-1. Rigid Volutes : 1, 2, and 3
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= VOLUTE 4
2.370
—~  —0.257
3.448
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VOLUTE §
2.671
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0.269 \
—o bk— 0.192 Iy (Slugs-Ft?)
0.0004621
3.890
0.027 ,
_— l0.360
d -7
- z >‘é'
L] VOLUTE 6
‘ Weight (Pound
— 4.581 sighs o °)
9.332 I, (Slugs-Ft?)
. 2
7 000 0.00318

Fieyre [I1-2. Rigid Volutes : 4, 5, and 6
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a i

1
F— CYLINDER 1
. )
b o
-
) .
L 1.108 [ 1.080 |
2.188
CYLTNDER 2
[N]
2 4,
—
| 2
~ 1.411 1.340
2.751 -
r— CYLINDER 3
Weight (Pounds)
0.434
3 e I (Slugs-Ft?)
= 0.00009558
~
. -
1.620 _L 1.820 .
bl
3.440

Jote: Model Pitch center locations are the same as the cylinders.

Figure IT-3., Cylinder Models
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Figure I11-13. Accelerometer Stand
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Figure II-15.
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TABLE II-2. CYLINDER MODEL CHARACTERISTICS

- - -.

Cylinder Length Weight Moment of Inertia Xeg
(Inches) (Pounds) (Slugs-Ft?) i (Inches)

0.75 0.059 2.2 x 10°° 0.4,

1.00 0.079 3.4 x 10°° 0.55

1.25 0.088 4.3 x 10°° 0.72

2.08 0.3890 1.36 x 10-3 1.25

2.78 0.500 2.05 x 10°° 1.65

3.48 0.610 2.95 x 10-* 1.96

Table II-2 lists only the cylinder forebody without the volute tail.
Only two different type tails were used for the Von Karman tests. Thesc
two types are shown in Figure I1-21. The smaller of the two was used on
cylinder l..agths 0.75, 1,00, and 1.25 inches. The larger volute was used
on the remaining larger cylinders. Both volutes were constructed of epoxy
or silicon rubber corresponding to rigid and flexible volutes. 1In both
cases, the volute tail was hollow to give a more realistic value for I,.
This is especially important in order to have meaningful free flight data.

During the tests with the above mentioned volutes, it was decided to
use a number of coiled spring tails since these were available in one size
(Figure II-4,Flexible Volute 2). These small spring tail volutes stabilized
the smaller cylinder forebodies as previously mentioned. Data listed in
Table II-3 pertains to this particular tail for configurations 075-1, 100-1,
and 125-1.

]:/ 580
\

1,32
0.34 I:: 1.19

\
\

——
3.80 |

Figure II-21. Volute Tails Used In Von Karman Test Program
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