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An anelysis of the errors inherent in tracking the radar-cross-section

3

LEGS

centroid of a chaff cloud shows the centroid to have a random motion in
addition to its long-term motion with the chaff cloud. This random motion
can lead to errors in cloud trajectory estimation. There is a further
error caused by the fact that the centroid does not exactly follow a

Keplerian orbit. The deviation is slight, however, and can be neglected.
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I. INTRODUCTION
In discussions of chaff cloud tracking it is often tacitly assumed

that the measured radar-cross-section (RCS) centroid follows a Keplerian

orbit. This is not entirely true for two reasons:

1. RCS fluctuations cause the instantaneous cross—section centroid
to move randomly about the long~term-average centrcid. This
means that between any two independent measurements there will
be random fluctuations in the centroid position, even with a

noiseless radar.

LR TV T T U
~no
.

For a large cloud there are various nonlinear gravity gradient
é: effects. For typical trajectories the long-term-average cen-
.; troid of a cloud will drift from a Kaplerian particle having
? the same initial velocity and position. This displacement

distance is quite small, however, being on the order of 0.1l%

of the cloud radius even for rather large clouds.

Each of these effects is discussed in subsequent subsections.




II. CENTRCID MOTION

A, ANALYSIS

Consider a cloud that is N range resolution cells long but small

in angular extent. The centroid is defined as

N

N
c=Zioi Zoi zy/z ¢B)

% i=1 i=1

where 9y is the RCS of the ith cell.

If all of the c¢(i) were equal and constant in time, then we would

have

o o NaWL)/2 ML
N 2

Thus if there were 25 resolution cells the centroid would be in the
center one; that is, (25+1)/2 = 13 .

Because of the nature of chaff responses, however, the RCS will not
be constant from cell to cell but will fluctuate because of interference
effects. If the number cf chaff pieces in any cell is sufficiently large
the probability density function pl(c) for the distribution of indepen~

dent measurements of one cell will be exponential; that is

-g/o

-1
pl(o) "'_e
[+

s

We shall for the time being consider the case in which the expected value

of o 1is the same for each cell.
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The centroid of the first N cells can be written

N N-1
; io, Moy + 2_: 1o,
c(N) = i=1 - i=1
) >
o o}
i=1 1 i=1 1
which can be rearranged to give
N N-1
c(N) Z o= NoN + c(N-1) Z‘ci
i=1 i=1

N
If we let gy = c(X) (Z ci) then we have the contiguity relationship
i=1

8y = 8y-1 * Noy

The probability of having a wvalue gy is

gy )
w) = [ L s =N Bl
Plgy W 8y-1)P1 n N BN-1

o]

Taking Laplace transforms we have

1

P (s) =P, .(s) —
N N-1 1 + Nso
where we have used the facc that

p (o) = ".l:‘ eo/c
g

“ t;;ﬂ&w”%‘}wﬁ'
W e
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Similarly
1
P ,(8) =P, ,(s) + —F——
N-1 N-2 1+ (N-1)so
and thus
N .
— -1
PN(s) = 77 (1 + is0)
i=1
and
N
fanN(s) = —‘__;‘ ¢n(l + iso)
i=1
But
N _
-2 3
- —_ o
Z n(l + isg) = [sc - (32) + (83) - e e ]
i=1
—. 2 -3
+ | (2s0) - (2s0) + (280)~ _ . s
2 3 .
sg > 3 . .
— ()2 2, .2, 2 2
= (sg){1+2+3 -+« N] - 2 [1° + 2°+ 3% - +» « N7]
(s> (3, .3, 3 3
+:3 17+ 27+ 3 ¢« ¢« +N]~-. ..
=A.=.z-i-Bsz+Cs3 . « . = H(s)
4
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where A = oN(N+1)/2

B = %— [N(N+l) @46«_1)_]

33

¢ =% maw/2)°

etc.

Thus
p(gy) =,("1PN(s) =Lt e H(s)

N
Since gy = (cN) 2: oy
i-1
we can write
p(g) = / p(c)py(z = g/c) —1c-dc (2)
o

where we have suppressed the subscript on g and ¢ , and let
N

E g, £ 2
1

i=1

Before going on, it is worthwhile pointing out explicitly that in
Eq. 2 we have tacitly assumed that p{c) was independent of z . Consi-~
4 der two sets of o's, Oys GgseesOy a?i ‘Sl, Ops OgseesOy s each having
ﬁ § the same total ¢ (1.e.{_ 01+02...0N = ol+02...oN = z ). Each set has a
| & unique centroid (¢ and c¢) associated with it. The relative likeliness

of each set (point in N dimensional space) is

s

p(ol)p(oz)...p(cN) do1 doz...doN

XA

KB

- p(cl)p(oz)...p(oN, dcl doz...doN
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Now consider two other sets of points,

A AN

aol,acz,...aoN and
3 a;l,agz,...agN . These have the same centroids (c and Z) assgoclated

s

with them. If the relative likeliness of these two new sets of points

is the same as for the first two sets (a = 1), then the density dis-
tribution of c¢'s will be invariant with o .

S ST Y T

Since varying & varies
the total RCS (z), we will have proved that p(c) 1is independent of
z .

Thus we must show that

p(ol)...p(oN) dol...ch 2 p(acl)...p(uoN) daol...dacN

P (3-1) . .p(;N) d;l. . .dEN p (agl) N (OEN) d(a-c_r-l) . .d(agN)

Canceling the do's and the a's gives

ploq).. ~p(0N) 2 p(ao;)...plaoy)

P (El) - .p(;N) p(agl) - .p(agN)

For an exponential distribution this gives

-z -z
A e Z e
-Z -az
. e e
<4

a and the equality has been shown.

N
The expected distribution of Z oy s i.e., pN(z) , can be

E evaluated by noting that =1
* py(2) = f Py-1 (0 )pl(z - 907%) do
' (o}
The N dindicates a summation over N cells. )

Taking Laplace transforms
we obtain

ot 0l A NLAAND




Py(s) = [Py _;(8)]P,(s)

= [Py_,(8)P,(8)]P, (s)

= 21"

But P,(s) =a€——i—
o
1

Thus

-g/a
oo/

l+-c-x-s

-1
Py(2) = £

1

_ N ~ifo

a+ss)Y ST

If we multiply both sides of Eq. 2 by gq and integrate from zero
to infiuity, we have

[+]

f ¢ p(e) dq =

0

<]

IN ‘,” q
g* p(g) dg
ol T (N+q)

0

If we let q = 1 , then we have

f cp(e) de

0

o

——

No

0

=]

gp(g) dg

S LR N
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The integral on the left is < (the expected value of the centroid).
The integral on the right is the first moment of p(g) and this is

k
simply

3} _-H(s)
= (_ as) €

s=0 s=0

(’ %E) By(e)

Thus

N+1

c = A/Ng = >

Similarly, if we take q = 2 , we have

/ c?'p(c) dc = :,—FLID— f SZP(S) dg
0 oo (N+1) 0

*

Remember that if F(s) E‘/F e-sxf(x) dx , then differentiating both

0
sides N times with respect to s gives

N o
(g—s) F(s) = (-1)Nr [ £(x)x% e % dx

If we now set s = 0 , we have

f SE(x) dx = (<)Y (-g-s—) F(s)
0

s=0

Thus the Nth moment of a fuaction is (-l)N times the Nth derivation of

its transform at s =0 .
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c2 = '_-_7-]-'-— (A2 - 2B)
o" (N+1)N

The variance is

In order to verify this result a computer Monte Carlo experiment
was run. The quantity

>
ic
i !

C=

%

M=

[y
L]
fuiy

was calculated after generating N random values of o

selected from a distribution of the form

1" The oi were

po) = e°

The process was then repeated W times to give a total of W
independent values of ¢

A total of W = 500 independent evaluations of c¢ , for a cloud

containing 121 cells, gave a value of ¢ = 61.1 ,_versus a theoretical

value of 61, i.e., (121 + 1)/2 . The quantity c2 - ‘cz had a value of

10.1 compared with the theoretical value of 10.0 (i.e., —————1211; 1y,

e O e
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B, INTERPRETATION
Since the variance is proportional to N (for large N ), the rms
fluctuation* (standard deviation) on any measurement is proportional to
YN . If the cloud has a total length L and a resolution cell width
§ = L/N , we see that on any measurerent the instantaneous 'true" centroid

is typically

L

[

standard deviation x cell size

S AN 7 S 7
V12 8 ¥ 128 Y12 (3)

from the long-term-average centroid.

This result is physically reasonable in that the fluctuation gets
smaller as

1. The cloud gets shorter

*%
2. The resolution gets better

The "square root of N" form for the deviation from center is exactly
what one would expect from a random walk configuration and could probably
have been predicted on a priori grounds; however, the coefficient of 1/12

could not have been similarly predicted.

*1t would be slightly misleading to refer to this term as "error" since
it is the true instantaneous RCS centroid. The point is that the RCS
centroid fluctuates. The most one can say is that there is some long-
term-average centroid which can be used as a reference point. This
point is not necessarily coincident with the center of mass. Strictly
speaking one can argue that even this long-term—average has a secular
variation because of changing asp: t angle of the radar line-of-sight

relative to the chaff spin axes. This effect is small.
%k
Remember we have assumed there are a number of chaff pieces in each cell

(to assume an exponential distribution of RCS values) and also that
L>>§ (N>>1) . These two assumptions impose limits on where the result
can be used.

10

el LR N
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This brings up the interesting point as to whether there might be
an alternate partitioning scheme which would have smaller fluctuations

assoclated with it. We have been looking for the centroid which is a

*
quantity defined by

<]

/ dx (x - ¢) o(x) dx = 0 (4)

-0

It is also possible to track relative to the median; one looks for

the point that has equal axounts of RCS on either side.

Mathematically we look for a point m such that

@

m
/ o(x) dx = [o(x) dx (5)

-0 m

or, put into the same format as Eq. 4

(6)

[ EEEr et ex-o

The difference between the two quantities is that the calculation
of ¢ places more weight on pieces of chaff far removed from the center
{(the weighting factor has a magnitude |x - c| ). The definition of
m places equal weight on all pieces of chaff since the weighting factor

in Eq. 6 always has unit magnitude.

The Appendix gives a derivation of the rms fluctuation when the

median is tracked and it is

- J¥ -1
v= N7 X 8=3 VLS

*
For generality we shall use an integration notation; it is, mutatis
mutandis, consistent with Lq. 1.

11
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Note that the form (/EE) is the same as for centroid tracking
although the coefficient is slightly larger.

C. GENERALIZATIONS TO OTHER GEOMETRIES

1. Non~Uniform Density

Throughout this entire discussion we have assumed that the expected
chaff distribution is uniform. If it is not uniform but (as is more

likely) peaked in the center, the variance is be less.

A chaff density distribution as is shown in Fig. 1 would have a
variance of approximately v1/12 VL/2 rather than /1/12 VL . (The

wings are assumed to be negligible compared to the center.)

<—L/2—’

AN-24711

Figure 1. Chaff Density Versus Range

12
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If the density distribution were as shown in Fig. 2, the centroid
variance could be considered as from two contributors, one of RCS poL2
and variance G(LZ) and the other RCS P,L; and variance G(Ll) .

G(L) 1is the Green function for the variance of a uniform density
distribution of length L and resolution length 6 . Thus G(L) = (1/12)6L
for centroid mapping and (3/12)6L for median mapping.

The resultant net variance for the two is

)
2 _ poLZG(LZ) + poLlG( R

o
poL2 + poL

1

AN-247128

20 1

E Figure 2. Chaff Density Versus Range

13
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This result can be generalized for a density distribution which is

E
E
%
¥
[
¢

symmetr.c and monotonic on each side (as shown in Fig. 3) to give
02 = 2 dx x do G(x) dx x 4 )
average dx dx
o ()

where we used the fact that the density distribution is symmetric to

place the lower limit at zero.

A uniform density distribution of total length L would give

&

%% = p [8(x + L/2) = 6(x - L/2)]
and
2
2 _ -(L/2)" _
0" = 28 Tip75) = 8LS :
2]
N
A
&
=
p(x) K
_L/2 0 L/2

Figure 3., Chaff Density Versus Range

14




where g = 1/12 for centroid mapping and 3/12 for median mapping. This

result is the same as that obtained before.

A triangular distribution would give

=0 (1-25l) -

o 2 - 32 _’:25 L3
EE
T 2

Similarly a quadratic distribution would give

<o, (- 5)°)

-% gLd$

©
!

Q
]

All of the preceding results can be summarized by saying that the

rms shift of any measurement from its long term average is

vee) /=

where g = 1/12 for centroid mapping and 3/12 for median mapping; £
is a form factor which is 1 for a uniform chaff distribution, 3/4
for a quadratic distribution and 2/3 for a triangular one. Thus for
example, the centroid of a chaff cloud of length L with a quadratic
distribution of chaff will fluctuate about its long~term position with
a typical deviation of /?I7I§T?§7ZY YIS = 0.25 /LS .

15
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2. Three~Dimensional Configurations

The discussion throughout this paper has been restricted solely to

finding the variance of the RCS centroid (or mediuan) of a cloud that was
long in one dimension but short in the other two. (We have considered

the long dimension to be range, but it could just as well have been one

of the angular dimensions.) ’

It is worthwhile generalizing our result to the case in which the

object could have subdivisions in angle as well as range.

Consider a rectangular cloud (Fig. 4) of dimensions Ll, L2 and L3,
which can be radar subdivided into cells of size Al’ A2, and A3 (Ll
could be the range extent of the cloud and Al the range resolution; L2

could be the width of the cloud in one dimension, and A2 the associated

angular resolution).

AN-26658

By

Ly

Figure 4. Graphic Representation of Chaff Cloud
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There are thus

o R
: A2 A3 1
% columns of length Ll , and each one has a centroid standard deviation
3 of
. n
g 17 Vi 4
]
§: If we average the centroids of each of the Nl columns, the stan-
i% dard deviation will be reduced by a factor 1//ﬁ; , to give a value
q

N
3 Vlzv N,

The standard deviatjon in the other dimensions can be written
similarly, i.e.,

L. i SR L3ty
1 z "V, 1z "Y T,

Ti The standard deviation of the net (three-dimensional) ‘erroxr" is
g the square root of the sum of the square of the standard deviation in
% each dimension. Thus we have a net standard deviation of

1 (M, B, ‘, vAlAzAs (L v12 s Lz)l/z
12 \'N Nz L,L,L, 27 43

17
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If we re-express the cloud in terms of two form factors o, H L2/Ll

and ay = L3/Ll , and one scale size Ll , then we have

T
1 l+a2 + a3
standard deviation = — v1/12 ‘JA1A2A3 T
/i'l' 2°3

Note that for a given shape cloud (az and %5 constant) the standard

deviation gets smaller as the cloud gets larger. This is contradistinction

to the case of a one-dimensional cloud where the standard deviation gets
larger as the cloud gets longer. The reason is that the variance in any

one dimension is proportioral to the length in that dimension divided by

the number of columns in that dimension, e.g.,

.El:=._L.:_L_.(AA)
1 L2L3 273

If all dimensions are doubled then the variance of one column is
doubled (because it is twice as long): but there are now four times
as many columns for a net improvement of a factor of two (a factor of

the square root of two in standard deviation).

This analysis has several limits which should be spelled out.
In the first place, we have tacitly assumed no errors introduced by
S/N considerations, i.e., the signal is so strong that this error is

negligible compared to variations in centroid caused by the RCS fluc-

tuations.

As the cloud gets larger this assumption will become poorer for

two reasons:

1. For a constant amount of chaff (constant total average RCS)
the signal in each cell becomes smaller as the chaff is

diluted, and thus the signal noise error increases
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2. The centroid fluctuation "error" decreases (v1/VL).
Thus at some size S/N considerations will dominate.

There is a further limit. If we consider the chaff cloud to be
compressed to a point (still maintaining a constant total RCS) then very

accurate range measurements are possible because of the large S/N ratio.
The error will be proportional to

resolution length

/S/N

and will not have a centroid RCS fluctuation term.

The competing effects can be illustrated as shown in Fig. 5, where
we have considered a cubical cloud of side L . For small L {much less
than a resolution length and even less than resolution 1ength/(S/N)l/2
the centroid standard deviation comes solely from S/N and radar consider-

ations and not from true motion of the centroid (Region I).

As L gets larger (Region II) centroid motion comes into dominance

and the standard deviation becomes larger. After 1 becomes larger
then a resolution cell and the radar has multiple cells, the centroid

motion error becomes smaller (at a rate proportional 1//1) (Region I1I).

Finally (Region IV) the standa:rd deviation caused by the centroid
motion becomes less than the increasing noise error (because of decreased
S/N in each cell). D. Hunt has shown* that in this region the standerd
deviation of the centroid error is independent of cloud size, as long

as the S/N ratio is large enough to permit detection.

*
D. Hunt, Chaff Cloud Centroid Measurements with the MSR and ALOR Radar
Systems, General Research Corporation IMR-1377, August 21, 1970.
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Figure 5. Representative Curve Showing Centroid Error as a Function of
Cloud Size
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III. GRAVITY GRADIENT EFFECTS

In discussions of chaff tracking it is usually assumed that the
(long-term-average) centroid follows a Keplerian orbit, although it is
known that this is not rigorously true. To quantify the magnitude of
the error in such an assumption, several machine runs were performed.
The first was a 4500 n mi reference trajectory 30 deg reentry angle.
Then the trajectories of two particles ejected 53 s after launch and in
opposite directions to each other, were calculated. The center point
of the two ejected particles can be considered as the centroid of a
rather degenerate (2 piece) chaff cloud.* The deviation of this cen-
troid from the reference trajectory is a measure of its deviation from
the Kepler orbit since both trajectories had the same position and
velocity at ejection. (One point in position-velocity space is suffi-

cient to define a Keplerian trajectory.)

Figure 6 shows the separation between the centroid and the true
Keplerian position for four ejection velocities (10, 50, 100, and 150 ft/s)
as a function of time after ejection; the particles are ejected at
right angles to the velocity vector and in the plane of the orbit. Note
that the slope of the curve is approximately proportional to t3 and
thus the centroid has a velocity away from the reference trajectory at
a rate proportional to t2 . The curves can be very closely approximated
by

D=5 x 10 L2 vz 3 £t

Figure 7 shows the fractional displacement of the centroid, that
is, the displacement divided by the cloud diameter, as a function of
diameter at impact. The fractional rms 1s quite small and even for a
cloud as large as 100 n mi at reentry is less than 0.2%. This deviation

is usually negligible for most applicatiocns.

*
We are assuming here that each piece has the same RCS.
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Figure 6. Centroid Displacement from the True Keplerian Position as a
Function of Time after Ejection
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Figure 7. Fractional Displacement of Centroid as Function of Cloud
Diameter at Impact: 30-deg reentry; 4500 n mi Trajectory

If the particles are ejected along different axes, the same general
conclusions hold, although numerical values are slightly different
(Fig. 8). The largest fractional shlft of the centroid occurs when the
particles are ejected perpendicular to the plane of the trajectory. Even
in this case the fractional deviaticn is less than 1% even for a 100 n mi
diameter cloud. This 1s the deviation for the special case in which all
of the particles are at the edge of the cloud; any other weighting would
reduce the values still further. A uniform distribution reduces the
fractional error by a factor of 3. As an example, chaff ejected perpen-
dicular to the plane of the trajectory (worst case) so that at reentry
it formed a uniform line 40 n mi long would have a deviation of less
than 0.1% of 40 n mi,

And finally a realistic case in which particles were ejected in
several azimuths would give a further cancellation because of offsets

in different directions.

In short, this gravity gradient effect is--for typical trajectories--

negligible,
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IV.  CONCLUSIONS

The major "error" in centroid tracking (over and above vadar bias
and S/N errors) arises from the fact that the centroid is not a steady
quantity but rather fluctuates in space. The rms fluctuation from mea~

surement to measurement is on the order of 0.3/L§ in range.

The error caused by the drift of the centroid (or median) from a
Kepleiian orbit is small in comparison with this effect. (A 0.1%7 frac-
tional shift in the centroid would be comparable to the centroid jitter
effect only if VN were on the order of 10_3, and this would demand a
resolution cell width one-millionth of the cloud length.)
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APPENDIX A

In this appendix we shall estimate the variance of the median RCS
position. The cloud is N = L/8 resolution cells long, where L is
the cloud length and & is resolution cell width. Each cell has the
same average RCS E., and independent values are distributed exponen-

tially.

If one sums the RCS values in the first v cells the probability

distribution for the sum is

0 /D | -ofs
pl(cl’v) = T(v) g e (7N

while the probability distribution for the sum of the remaininr N-v
is
@, /O s
p,(0,,v) = —2 Lo ? )
272 I'(N-v) p

then

p(z,v) = / pl(o,v) pz(c-Z.v) do

27

5

SR




For z =0 (equal RCS on each side), we have

]

p(0,v) = / pp(o,v) pz(o,v) do

o]

This gives the distribution of the cell number (v) at which the
RCS sums on each side are equal; we shall name the v value which

partitions the cloud into two equal parts m and write

oo

p(0,v) = p(m) = / L (o™t —L— (o/y¥ L 20/ do

ol (m) ol (N-m)

1 r(N-1)

ZN—l I'(m) T(N-m)

For large N we can make the transition from a summation to an integral

N N
= / dm m p(m) / p(m) dm
o (0

and write

=

N/2 N/2
- f dm(mHN/2) p (mHN/2) f dm p (wH/2)
-N/2 -N/2
N/2
dm (m+N/2) T(m+N/2) T(N/2 -~ m)
-N/2
N/2
dm I'(mN/2) T(N/2 - m)
-N/2
N/2 1
N _{/2 do o T2 F ) T(N/2 = o)
==+
2 N/2 dm
Ly2 TO/Z+m) T2 - m)
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The upper integral is 0 since the integrand is odd, and thus

m = % (N >> 1)

We can evaluate the second moment by writing

_ N N
m2 f m2 dm p{(m) / dm p(m)
0 0

N/2 9
f m~ p(m + N/2) dm
-N/2

N/2

f p(m + N/2) dm
-N/2

1

/2% +

N/2 N/2

(N/z)2 + / n? p(m + N/2) dm / p(m + N/2) dm
-N/2 -N/2

N/2 N/2

2
2 m~ dm dm
(N/2)" + f T(N/2 - m) T(R/2 +m T(N/2 ~ m) T(N/2 + m)
~N/2 -N/2

Using Sterling's approximation this becomes

N/2 2
m__dm m
(N/2)2 + ON/2 1 -m"/(N/2)

/ 7 dm (1 - l;m/N)m
(N-1)/2
0 [1 - m2/(N/2)2]
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By making approximations

2
@ - bWy = 7H /N

( _4m_2> _ —2u?/N
- 2‘ - e
N

and extending the limits of integration to infinity, we have

/ 2 —2m?/N
- . m e
) 0 N

n’ = /2)? + 2 = a2+l
/ e—2m2/N
0

and

4

The variance is

w? - @2 = W/2)% + N4 - /2)2 = N/4

and the RMS shift in the median of any measurement from its long-term
average is V1/4N = % N
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