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I. INTRODUCTION 

The existence of flaws in solid propellant grains is a problem that 

has plagued the solid rocket motor industry for a considerable time/ * ' ' 

Flaws may exist in the grain due to unsteady  processes during casting, 

difficulties in curing, problems in humidity and temperature control, etc. 

The surveillance programs that have been under way for several years 

indicate that flaws may form due to "aging."*■ ' 

The Air Force Rocket Propulsion Laboratory at its own laboratory and 

through its contractors has carried out numerous investigations'- ' ' ' 

dealing with the problem of initiation of burning within flaws ir solid 

propellant grains. Similar studies have been carried out in Japan*- '  and 

the united Kingdom.* * The tests conducted by AFRPL and its contractors 

primarily dealt with ignition times and rates of propagation of the flames 

into "manufactured cracks" although tests were conducted at Thiokol's Utah 

Division in which the fracture was obtained by tearing the propellant. The 

tests conducted in Japan were also conducted with manufactured cracks. The 

United Kingdom tests conducted at the Explosive Research Development Estab- 

lishment were tests in small scale rocket motors with manufactured cracks 

and debonds. 

Tests have been conducted at Thiokol, Utah Division*- *  and at the 

Naval Weapons Center, China Lake*- *  dealing with debonds. These tests 

were all conducted utilizing a "half-motor." The "half-motors" were half 

of a solid propellant motor and a block of plexiglas joined together to 

allow visual observation of the burning processes. Similar unpublished 

tests have been conducted by H. R. Jacobs at the University of Utah. *■ * 

All of the above mentioned tests dealing with burning in cracks and 

debonds indicated overwhelming statistical evidence that burning would 

propagate into cracks and debonds and that the propagation rates increased 

with the external or chamber pressure. In some of the half-motor tests 

catastrophic failure occurred. (10) 



The present study, which was the result of an unsolicited proposal, 

had as its primary objective the determination of whether the pressures 

which develop in burning flaws, cracks and debonds are sufficient to 

cause the defect to propagate due to mechanical failure of the propellant. 

The University of Utah in its investigation was directed to assume 

that the defect surface was ignited. With this assumption, it was 

further assumed that the size, shape and nature of the initial defect 

were known. 

In order to carry out the proposed study a qualitative investigation 

of the governing parameters was first conducted. The critical parameters 

are, in addition to propellant characteristics, main chamber pressure and 

defect geometry, the main chamber gas velocity, the gas velocity within 

the defect, the burning rate of the wall, and the fracture propagation 

velocity. 

If the burring rate of the material is greater than the crack propa- 

gation velocity, the defect tip will be "burned out" before it can be 

propagated due to mechanical failure. If the surface burning of the defect 

area is large compared to its cross-sectional area at its exit plane, then 

the velocity of the burned gaseous effluent will in general be larger 

than tnat external to the defect and there will be no net flew imo the 

defect but only a flow-out. The most important flow is that of the 

effluent gases, for it is this velocity whicv determines the pressure 

field within the flaw. For most solid propellants the combustion rate is 

pressure dependent. The stress field around the defect is also dependent 

upon the pressure, and hence, the presence of "cracking" and its propagation 

speed. 

The pressure distribution in a burning defect will vary with time 

because the defect geometry is being continually changed by burning at 

the walls. In addition cracking, if it occurs, will alter the geometry 

and thus change thepressure distribution. Despite these facts, a true 

transient analysis is not necessary if the geometry change is slow 

compared to the velocity of the combustion products within the flaw. In 

general, the propellant burning rate is on the order of 10  fps while 

that of the gas velocity is on the order of 10 fpsj therefore, in regard 
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to the burning wall, a quasi-steady analysis is justifiable. The quasi- 

steady analysis as related to crack propagation speed is reasonable if the 

crack propagation velocity is either much slower than the gas velocity or 

if the defect remains stable for a length of time and then propagates to a 

new stable geometry which is instantaneously ignited. With these facts in 

mind, the current study has limited the gas phase study tc a quasi-steady 

analysis to determine the instantaneous pressure distribution in a burning 

defect in a solid propellant grain. 

Primarily, the analyses to determine pressure distributions have 

been limited to one dimensional analyses. These analyses are applicable 

primarily to flaws with large burning surface area compared to the exit 

flow area. 

A two-dimensional analysis was carried out to determine the effect of 

two dimensions on triangular cracks with small angles of divergence. The 

results of this analysis which have been included in Section II justifies 

the one-dimensional assumption. 

A parametric study was conducted to determire the effects of geometry 

and fuel characteristics on pressures within cracks and debonds (burning on 

one side of the crack only) and is reported in Section III. Also included 

in this section is a study indicating typical times required for the 

pressure at the crack tip to decrease by a factor of two and indications of 

crack geometry changes with time. 

Section IV of the report summarizes the work for cracks in pressurized 

cylinders conducted to determine criticality conditions by the use of time- 

dependent stress intensity factors. Methods of determining times to failure 

for a pressurized crack and means of determining initial crack propagation 

velocities through the use of a thermodynaniic power balance are also included. 

Section V compares crack propagation velocity estimates to the propellant 

burning rate for TPH-1011 and estimates of times to failure, while Section 

VI summarizes the conclusions of this program. 



II. DETERMINATION OF PRESSURE DISTRIBUTION 
IN BURNING FLAWS, CRACKS AND DEBONDS 

■KE-niMfiNSIflNAI, ANALYSIS TNfTÜDING FRICTION 

The relations governing the state of the flow are independent of « 

(.'etwictiy .'«id ;ire stated below: 

liquation of State      V   = PRT (1) 

Energy h* u2/2 = ho (2) 

Heat Capacity     h - hr = C T (3) 

In the energy equation it is assumed that the mass addition is accomplished 

at constant enthalpy and negligible kinetic energy. This a reasonable 

assumption for a burning surface if the combustion zone is assumed infinitely 

thin and at the surface. It is also assumed that the flow is adiabatic. 

The latter is a good assumption for solid propellant grains which release 

consideraille energy and are notably poor conductors. The specific heat and 

viscosity are assumed constant, implying that no chemical reaction takes 

pi nee after the gas is added to the stream. 

Ihe one-dimensional momentum equation is 

1 ., ds dy   d,.D.      % dSn _ <L_r- ,     rii 

The change of y with x, dy/dx, is assumed small to insure one-dimensionality 

and since normal burning is assumed the x component of momentum of the small 

mass, dm,   added over the length dx, is negligibly small. The variation 

of flow area, A, and differential surface area, dS, with x, is of the form 

A - y(x)x£ (5a) 

dS - x dx (5b) 

where the exponent t may nssun><c the values 0 or 1.0 dejHjnding on how the 

channel depth varies with x.    To elucidate this point consider the conical 

shaped duct  illustrated in Figure 1. 

-4- 



Top-View- Cross-sectional View 

Figure 1, Conical duct 

The area at any r, is given by- 

A = 2nyr 

where 

(6a) 

r = rQ-x (6b) 

and;therefore, this geometry corresponds to £ ■ 1. 

Three types of geometries, which appear frequently in application and 

to which Equation 4 applies are illustrated in Figure 2. 

The geometry labeled "crack" represents a one-dimensional model of a 

deep flaw within the propellant grain itself. The debond geometry is the 

one-dimensional model of a separation between the propellant grain and the 
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Crack in Propellant Grain 

^"/7///^///////////| 
Debond of Grain from Casing 

i 

Circular Debond at Grain Head End 

Figure 2. Three flaw types which appear frequently 
in application 
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cylindrical portion of the casing, while the circular debcnd is the model 

of a similar separation between the grain and the hemispherical bulkhead of 

the casing. 

Observation of Figure 2 yields the following specific forms for A and dS 

Crack 

dsn = o 

= 2dx 

Deband A = y 

^ 
dS_ n dx 

(7) 

Circular Debord A - 2Try(r0 - x) 

d^ = dS = 27r(ro -xjdx 

I. 
The fact that, surface area, dS, may be directly related to distance along the 

flaw, dx, follows from the assumption that dy/dx is small. 

The general momentum equation contains wall shear stress terms which 

must be related to more readily measurable quantities. Two types of wall 

shear stress are encountered; shear at a burning wall, T, , and shear at 

a non-burning wall, wn Both types of wall shear stress are assumed to 

be approximated by ? relation of the form 

w 
1 ,. 2 
Iipu m 

Ihe friction factor, f, fur the non-burning wall is solely a function of 

Reynold's number. The friction factor, £ , for the burning wall is dependent 

both on Reynoldcs number and the mass addition rate since this mass addition 

tends to "blow" the boundary layer away from the wall and thus reduce wall 

shear stress. Reference 12 has reported a correlation between friction factor 

for external flow with pressure gradient and non-dimensional blowing rate, 

B , where 



B = 2LJL     jfir 
r   p u    wx (9) 

■■   •! 

and Re is the Reynold's number based upon the distance, x, from the 

leading edge. In the problem at hand,which more closely resembles * 

pipe flow than boundary layer flow, it is more reasonable to base the 

Reynold's number on the local hydraulic diameter. 

For a parallel slot the characteristic length used is the crack 

(or debond) height, y. 

R  = A 
e    p (10) 

P Since the problem under consideration is one-dimensional PW 
S
 P = 

and the normal velocity at the wall, V , can be evaluated by considering a 

differential wall length dx, in which case one has 

, dm  I- p Vw dx (11} 

Utilizing the above relation in Equation 9 one obtains 

n  _ 1  dm 
r " ,7 "AT    «i ö« 

The correlation of Reference 12 may be approximated to obtain a 

friction factor with mass addition of the form 

fb - Hf (13a) 

where 

H " 7 [sr l l.ö 
+ ^7?] (13b) 

Equations 8, 13a, and 13b determine the wall shear stress on both burning 

and non-burning walls once the functional relationship between the friction 

-8- 
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factor, f, and the Reynolds number, R , is obtained  This functional relation 

is of two basic types depending on whether the flow is laminar or turbulent. 

For laminar flow the relation is 

f = 96 

*e" 
(14a) 

and for turbulent flow 

0.316 (14b) 

Substituting Equations 7, 8, and 13a into the general momentum 

equation, one obtains the specific momentum equations for the geometries of 

Figure 2 as 

Crack dP  r U2H= d.(mu) ) (15a) 

r?bond 

Circular 
Debond 

(15b) 

(15c) 

where f and H are determined by Equations 12, 13b, 14a and 14b. Notice 

that the momentum equation for the circular debond Equation 15c reduces to 

the same equation as that for the debond Equation 15b if one evaluates the 

limit as, r + <*>. 

One other equation determines the motion of the flow; this is the 

continuity equation 

m = puA (16) 

For any given geometry there are two equations of motion and three 

equations of energy and state. These equations are expressed in terms of 

seven variables h, T, y, u, P, p and m.   Since there are five equations 

and seven variables, it is possible to express any one parameter as a function 

of any other two. 

In general, experimental data are available to describe the burning rate 



of the material. Since all mass flow in the flaw is due to the burning 

rate which, in general, is dependent on the pressure, ana since the original 

geometry of the flaw is a known function of x, it is possible to express 

P as a function of m and y. The simultaneous solution of the governing 

equations is initiated by using the perfect gas relation Equation IV the 

property relation Equation 3 and the continuity relation Equation 16 to 

eliminate p, u, and h from the momentum and energy equation yielding 

W  CSn' ♦ V - yto - ^ T„2R(Sn' ♦ HS^) = ^Tn2R)  (17a) 

(Y - l)(Tn
2R)2 + (jf^y) (Tn

2R) - 2T F2
Y 1^=0 (17b) 

(the prime denotes differentiation with respect to x) 

where 

P" = P/Pr and n - m /PjA. 

P_ is a referenced pressure and may be picked at any desired value. 
2 

Equation (17b) is now solved for Tn R by the quadratic formula to obtain 

Tn2R . -P^y t 7y(?  + GW 
Y "I (18) 

where G = 2(Y - 1)T R/Y is a constant parameter of the propellant. Price 
(13) 

has shown that of the two alternate signs only the plus sign has physical 

meaning since the minus sign corresponds to removal of mass in an unmixing 

process which leads to a decrease in entropy. He further defined the radical 

as a new variable 

= <? ♦ A2)* 

Equation 18 is now combined with Equation 17a and rearranged to obtain 

dF 
3x {x^[,.HvV] 

U V   ff <V +HSb') + A'l + ^T^l 
■10- 

(19) 



To proceed further a mass addition mechanism must be postulated. 

If errosive burning is neglected the combustion rate, r,, of a solid 

propellant way be assumed to follow the empirical relation 

rb = CP11 (20) 

where r, Aj the recession rate of the burning wall and C and n are 

constants to be determined empirically for a particular fuel. The 

local differential mass flux i? then dm ■ Dr.dS, where D is the density 

of the solid. The local mass flux may now be integrated to obtain 

* -J0   
DrbdS!, + *0 (21) 

The ifu indicates the presence of burning on the head end.   The value of ilL 
is 

*   =   K^-o (22) 

Combining Equations 21 and 22 with the definition of n, one obtains 

(23b) nQ   =   DCPj-1 

Determination of the pressure distribution, or equivalently P, as a 

function of x amounts to a simultaneous solution of the differential 

equation for P~ (Equation 19) and the integral equation for n, Equation 23a. 

For the three geometries of interest the equations to be solved are 

JE£ 
fc   - Y%  (     Cc " *> ! 

£H + y' 

Crack 
] -^tv-H) 

n   - >(2|  **<* *y0) 

(25) 

-11- 
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P"'   =  — is_Ja^[f^i)^]  »^fc/'tlj 
Debond (26) 

n   = 

p>   = 

>tf""'.) 

YC 

U - yP)y 

j,.R[|a*H)ty,^j 

Circular 
Debond l*'-» 

+   
G 

l^rdx   ♦   r0y0j 

In order to solve the governing equations, Equations 25, 26, or 27, it 

is necessary to establish the boundary condition. If the flow is subsonic 

at the exit plane of the flaw, then the pressure must equal the main 

chamber pressure, P , . If the flow chokes at the exit plane, the 

boundary condition is just Mach number equal to one. Although it is pos- 

sible for flow in a diverging duct with mass addition to reach supersonic 

velocities, it is not a normal situation. To ascertain whether the 

exit Mach number can become greater than one it is necessary to 

evaluate the derivative of the Mach number as it approaches one. 

Since the Mach number is of such prime importance, it should be 

introduced into the problem formulation. Because a perfect gas equation 

of state has been assumed as well as constant specific heats, the standard 

relationships developed in Reference 14 are applicable for Mach numbers. 

The term m/P A which was given the symbol n can be written in terms 

or temperature and velocity 

n " w (28) 

-12- 



The temperature may be eliminated in Equation 28 utilizing the adiahatic 

expansion relationship 

o 
"T" 1 1     r- (29) 

and the velocity u may be eliminated using the definition of Mach number 

and the perfect gas formulation for the speed of sound. 

After rearranging the terms there is obtained 

M2 i cw2 + cW - n 

Utilizing the previously introduced notation 

S = [P2 + cV]*  , 

Equation 30 simplifies to 

M2 = tLuM 
P~(Y - 1) (31> 

In reality, only the plus sign in Equation 31 has significance as has 

been pointed out by Price' * . 

The solution of the simultaneous governing equations (Equations 25, 

26, or 27) may now be determined with the restrictions placed on the 

boundary exit plane of either 

(a) Subsonic flow  P  = P. 
e   ch 

(b) Choked flow   Mg = 1.0 

of , 
. <frr i      ... 

(c) Supersonic    when lim -+- is positive. 

M+ 1 

The condition (c) may be evaluated utilizing a general relationship 

developed by Shapiro.^ ' Application of Shapiro's general formulation 

•13- 



  

to determine dM2 
for the present problems yields 

M = 1 

Um**2 linM + i jjfy H * I "    *   x  _ M2 (32) 

where 
G(x) • M^l'^M2  1 (J3) 

From Equation 33 it is clear that whether the local Mach number 

increases or decreases depends on whether the local Mach number is 

greater or less than unity and also whether the G(x) is positive or 

negative. Since in the case under consideration the Mach number increases 

from practically zero at the crack tip, the sign of G determines whether 

locai Mach number increases. The value of G is primarily dependent on 

the area and mass addition functions and, therefore, the sign of G is 

determined by the crack geometry and fuel-burning properties. For typical 

fuels and geometries, G is always positive. The Mach number, therefore, 

increases toward unity and unless G happens to decrease to zero precisely 

as M - 1 (which in general is not true), the flow will choke at this 

point. When choking occurs, there is a transient period of readjustment 

in which the tip pressure, PQ, is increased by an amount such that 

Mach 1 occurs at the exit plane, the pressure there is greater than the 

external pressure and expansion waves form at the flaw exit and extend 

into the rocket chamber. 

The complicated nature of the governing equations together with the 

pressure dependence of the empirical burning laws for solid propellants, 

in general, allow for only numerical solutions of the stated problem. 

Appendix A describes the numerical procedures which were used to 

generate solutions to the problem of mass addition with friction in 

variable area ducts. 

-14- 
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APPROXIMATE ANALYTICAI, SOLUTION WITHOUT FRICTION FOR SPECIAL MASS FLUX 
DISTRIBUTIONS 

An analytical solution may be obtained for the pressure distribution 

i:. a crack or debond if one neglects the effects of wall shear and the 
k-o 

mass flux, n, varies as x M where k and q are constants depending upon 

the geometry and fuel characteristics. 

Equation 19 with the friction factor, f, equal to zero reduces to 

for cases whe e the geometry is such that i * 0. 

The form of Equation 34 is such that the relationship between Gn. 

V and c corresponds to the sides of the triangle shown in Figure 3. 

Gn 

Figure 3. Relationship of Gn, V and c,. 

As can be seen from Figure 3, c, P" and P"1 can be expressed in terms 
Gn and an angle <f>. 

c.JSSL 
COS(|) 

F = Gn tan 

F' =EoW*' +tan*G' 

(35) 

(36) 

(37) 

Substituting Equations 35, 36 and 37 into Equation 34 and simplifying, 
there is obtained 

■15- 



*'-^^(^-"*)£Mv-sin*)f) (38) 

If y'/y -v nVn, from which it follows y'/y -v m'/m, and if y and m are 

known functions of x, the possibility exists for separation of variables. 
A particular form for which this is true *£ 

m 'v- xk (39} 

yuq (40) 

In reality, m is given by the integral equation, Equation 21. How- 
ever, under particular situations m can be approximately fitted by a power 
function such as Equation 39, 

Substituting Equations 39 and 40 into Equation 38 yields 

♦' • »a "TSM • [* - •* ■»+ k>H      (4i) 
Upon separation of variables there is obtained 

dx  (1 - Y sind») d* 
x" " B(k, q, f)  cos* (42) 

where 

B(k, q, ♦) - Y* - m -  1) + W sin* ^ 

Equation 42 falls into one of threra distinct types, depending on the re- 
lationship of k to q. The three types are as follows: 

1. k = q, therefore, B(k, q, *) ■ yk(l - sin*) 

2. k =-q -p-j-yf» therefore, B(k, q, *) ■ yk(l + sin*) 

3. k f m and k f  -q -p^4i 
CY 

+ 1J 

If the relation between k and q is of Type 1 or 2, then upon integration 
of Equation 42 one obtains 

1 l Y 
/. A  

tan 'Hi Tq «pf^v^] m 

■16- 



where +sin* corresponds to k ■ -q W^ .1 and - sin$ to k = q. If the 

relation between k and q is of Type 3, then Equation 43 integrates to 

IH^IM 
q/      \ (y  1)k"q ) [k(Y»D «qh'DJ (q-kj (45) 

In order to determine what values of 4>are relevant in Equation 44 and 45, 

one must consider the Mach number. Applying the transforms of Equations 

35, 36 and 37 to the Mach number relation. Equation 31, the following is 

obtained. 

M2 - l  " sin* 
" sin* CY - 1) (46) 

From Equation 46 it can be seen that values of $ less than sin' 1/y 

correspond to M > 1.0 and values of 4 greater than sin" 1/ Y to M < 1.0. 

Since the governing equation was derived assuming M < 1.0, it is apparent 

that $ must be greater than or equal to sin" 1/ y. 

Considering Figure 3, it can be seen that since both Gn and V are 

positive quantities, <J> must be less than or equal to ir/2. New again 

considering Equation 45, notice that the term on the far right may take 

on imaginary values if B(k, q, <|>) becomes negative. The possibility of 

B(k, q, <J>) taking on negative values depends upon the relationship of 

k to q and upon the values which <j> is allowed to assume. Setting <j> = TT/2 

and B(k, q, $) = 0 and solving for k in terms of q, one obtains k = q. 

therefore, if k is greater than q, the term B(k, q, <t>) does not become 

negative and the upper limit on f is TT/2. If k is less than q, the 

term B(k, q, (j>) may become negative and in this case the upper limit on 

<}> is that value of $ at which B(k, q, <j>) = 0. As was pointed out before, 

the smallest value which 4> may assume is sin" 1/yat which point M = 1.0; 

therefore, setting $ - sin" 1/yand E (k, qs $) ■ 0 and solving for k, 

one obtains k = q/(y + 1). This last result indicates that k must be 

greater than or equal to q/(y + 1) fi^r the equation to yield a realistic 

flow. It is apparent that the +sin<f> choice in Equation 44 has T\O physical 

neaning since it corresponds to a flow which is choked at * = 0. All of 

the above results are summarized in Figure 4. 

-17- 



* > ' sin"   - < i■ < ir/2 
Y -      ~ 

' 

k < q sin"   - < * < sin"   .  s 
Y5~ 

Y -     -            k + q(Y ■ ■i) 

1         - Y + 1 
flew choked 

Figure 4. Dependency of relevant $ range on the relationship of k to q. 

For the relevant range of f enumerated in Figure 4, one may consider 

the relationship between <f> and x. Notice in Equation 45 that if k > q, 

then [k(Y+ 1) + q(Y - l)](q - k) < 0 and, therefore, as # * ir/2, x ■* 0. 

When k<q, x = 0 at <j> = sin" */(k + q(Y - 1)). If k = q, Equation 44 

describes the relationship of x to f. Letting $ * TT/2 in Equation 44, 

note that tan(*/4 + $/2) * 2/(1 + cos<j> - rii^). Setting 1 - sin* = w and 

letting v * 0 is equivalent to letting $ * TT/2; therefore, making the above 

substitution in Equation 44, one has as f •* TT/2 

const 

1 + Y  1 - I 
;  TYT  2Yqw 

But the above limit is of the form 

x ♦ 
const - w 

w 
11 Y 
2Yq 

where 
1 - Y 

Expanding e^' into a series and noting that g < 0, one obtains as <f> 

x -*■ 0 in Equation 44. 

-13- 



From the definition of n and the assumed fonn of 
apparent that 

y and m it is 

n % 

Taking both sides of Equation 45 to the k - 
that if I ? q 

(47) 

q power, one can determine 

HH1%H) q-k(Y+l)i  ** + H ♦ qtY " 1) 
(43) 

If k = q, however, n is a constant. 

The parameter of greatest concern is P and tlie region of greatest 

concern is the tip region. Wien k > q, it has been shown that x ■+ 0 
corresponds to f * a/2« Equation 48 gives n as a function of $ and 

Equation 36 gives Fas a function of n and *. Therefore, substituting 

Equation 48 into Equation 36 gives Pas a function of * alone 

P - tan* |K-rh^,-**1,mrHrr'« 
Observing Equation 49 as * ^ ,/2, one may note the following 

B(k, q, *) •* (Y- l)(k - q) 

therefore, as * * TT/2 

F + Constant ü2*_ 
cos* 

J 5 » 1 
in* (     _i    rrti j\ q-k(Y+i) p^u+qh-i) 
os* j\l + cos* - sin*/     \cos*/ ) 

Simplifying and rearranging, one has 

P - Constant J 1* cos* : sin* 
f cos* 

\  k(v ♦ 1)Y2 q(Y TT 
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Applying L'Hospital's rule, the above relation yields P ■* constant. There- 

fore, if k > q as x + 0, the pressure approaches a constant. 

If k = q, x ■* 0 corresponds, again, to <j> * ir/2; however, since t\  is 
constant, P ■* °° as x ■+ 0. 

If k < q, then k - q < Ü and n -+ » as x * 0 since n * x  q. But 

x ■+ 0 corresponds to <fc ■» sin " (M/(k + q(y - 1)); therefore, F-*■ ». 

From Equation 34 one can see that the distribution of F with x as 

x -*■ 0 is determined to a great extent by the behavior of nn' as x + 0. 

Since n + x  q, then nn' * x '  *&        and, therefore, 

if k - q - 1/2, then nn' * 0 as x ■* 0; 

if k - q - 1/2, then nn' = constant; 

if k - q < 1/2, then nn' * " as x -*■ 0. 

Consider, first, k-q > 1/2 and examine the limit of F1 as x ■*■ 0. .Noting 

that 5 -> F one has 

* * TV [CC " ^ y7y] 
applying L'Hospital's rule 

F' + T^T ttf " F') but *' « **/« + (G2nn')/C 

air1, therefore, as x •* 0, 

5' -»• P* + (G2nn')/F and F' - y/(l -Y ) &m' * ° 

Next consider the limit of F' as x .•* 0 for k - q = i/2. One still has 

? ■* F as x ■+ 0 and, therefore, 

p* .> i 1     j"(C. - F) + ^jr-V Constant 

Finally consider the limit of F' for k - q < 1/2. As before c ■* P as 
x > 0; however, nn' •* °°, therefore, 

2 
p  -+ _—!  —-LI ► oo 

1 - Y   P 
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as x * 0. 

Equation 34 also indicates that no matter what the relation of k to 

q that F' ♦ <» as c * TF, or in other words, the slope of the curve for 

F as a function of x is infinite as the flaw exit for all choked flows. 

Figure 5 summarizes all of the above results. 

k > q + h 

k = q + h 

II 

q<k<q+*s 

III 

k = q 

IV 

k < q 

TT/2 

sin"1 1/Y 

iir/2 

sin"1 1/y 

JT/2    JJ 

sin"1 1/y 

Sin_1 Fqf^TT 

sin"1 1/Y 

*• x 

F fe 

F* 

\F»« 
•—x 

Figure 5.    <f> versus x and F versus x for various k and q relations 
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EFFECT OF FRICTION ON PRESSURES PREDICTION IN CRACKS AND DEBONDS 

Analysis of pressure distributions in burning flaws have been investi- 

gated previously at ERDE *• *  assuning that the combustion gases were in- 

compressible. They determined the pressure distribution assuming the 

standard pressure drop in a duct due to friction. Although the gases 

are both viscous and compressible, a degree of satisfaction was obtain- 

ed when the analysis was compared with limited experimental data from 

tests in which the cracks were not choked. This gives rise to a require- 

ment to evaluate the effects of both compressibility and friction to see 

whether either can generally be neglected. 

Figures 6 and 7 show the predicted pressure distributions from the 

analysis of the first portion of this chapter in both a crack and debond 

of similar geometry for a relatively high burning rate propellant. (The 

burning rate is higher than for TP H-1011.) The geometry was purposely 

chosen so that in neither case would the flow be choked to the extent 

that the exit plane pressure was higher than the chamber pressure. As 

can be seen, for both the crack and the debond, a considerable error 

would be introduced by neglecting the friction; however, the major reason 

for the large over pressures in each flaw was due to compressibility ef- 

fects. 

For the case of the debond with its lower over pressures and lower 

mass flow the effect of friction did not greatly jffteet the Mach number. 

For the crack with its higher mass flow and choked condition, the effects 

of friction cause a greater rate of change in the Mach number near the 

exit of the crack. 

The results illustrated definitely support the inclusion of both 

friction and compressibility in evaluating the fluid mechanics of burning 

in flaws in propellant grains. 
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EVALUATION OF TWO-DIMENSIONAL MODELS OF FLOW IN A FISSURE WITH COMBUSTION 

Presented in preceding sections was a one-dimensiona1 model for the 

flow and pressure distribution in a burning fissure. It i.   ^rtant to 

determine in what limits this one-dimensional representation yields a re- 

liable representation of the actual flow. The following analyses are in- 

tended to answer such questions. First, the limiting geometry is determined 

in which compressibility effects become ;mportant. Since flow from the 

transpiring burning surface is rotational, it is also appropriate as a 

second problem to determine the effects of vorticity on flow in the burning 

crack. 

Effects of Compressibility 

The following is a two-dimensional perturbation solution of the com- 

pressible flow field in a sharp crack with arbitrary mass addition at the 

wall. A basic assumption is that the Mach number of the flow at the tiins- 

piring wall is small; the wall Mach number thus serves as a convenient 

perturbation parameter. Another assumption is that the flow is irrotation- 

al and this severely affects the type of boundary conditions which can be 

satisfied in the solution. In a later section the effects of rotationality 

are assessed. In particular, the condition of normal effluxe at the wall 

must be relaxed to secure an irrotational solution. It is readily demon- 

strated that an irrotational flow in geometrical situations of the present 

type is only possible with normal mass injection for a special distribution 

of wall sources. If, for example, the burning is uniform, then the flow 

cannot be irrotational unless a velocity component parallel to the trans- 

piring wall is allowed. 

Figure 8 illustrates the assumed geometry. Angle 0 is the half angle 

of the triai^ular sharp crack. Assuming irrotational flow, the problem may 

conveniently be represented by. a velocity potential $ such that 

V$ = u ■ ue„ + ve. (50) 
r   o 

where ü is the flow velocity vector. The governing equation for steady 

flow is, therefore, 
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H ■ „ (**-i) + (w) ^ ^ 
(51) 

where all quantities are nondimensionalized by a characteristic length 

representative of the length of the crack and the stagnation speed of 

sound of the combustion gases a . The boundary condition is that the 
normal components of flow at the wall is 

v = + vf(r)  on 0 = - e (52) 

where visa Mach number representative of the flow at the wall and f(r) 

is the distribution of sources along the wall. 

In the plane polar coordinates, the full problem for compressible 
irrotational flow is 

BURNING SURFACE 

Figure 8.    Two-dimensional representation of a sharp crack 
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♦rr + r *r + 7 *89 

*r *rr ^T^ 

r     r 

•MH-^4^1 
♦e - J v[rf(r)] on e = +e( (S3) 

The form of the boundary condition suggests a perturbation approach with 

v as the small parameter. Put 

« = v*(1) + vV
2)*... 

and collect various orders of v: 
0(v): 

+ (D = ; rf (r)  on  8 - + 

(54) 

(55) 

0(v2): 

t 

rr + - r   rz ee 

C2) . ,Te = o on e * + eQ (56) 

0(v3): 

rr r * 

J2) =0  on 6 = + 
0 

,(1) h(D
2  24(D 4(1) 

*r b8  . 2*r  *e  ,(D 
r 
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and so on. Note that the correction for compressibility enters at the 

third-order term. The second-order solution is trivial. Thus, as long 

as v is sufficiently small, the solution will correspond closely to the 

incompressible case. 
Solution of the incompressible problem (Equation 55) is simple. 

The eigenfunctions corresponding to the Laplace equation in plane polar 

coordinates are 
J 

#C1) , (A^ sin K6 + B^ cos <e) (C|cr
K + VKT~

K
) (58) 

where tc is an integer. 

Solution to the present problem may be constructed as an infinite 

series of these eigenfunctions: 

00 

♦(1) -    £  (AK sin <Q + BK cos K6)  (CKr
K + DKr~K) (59) 

K = l • » 

The coefficients may be determined by matching the boundary conditions 

(Equation 55). Note by symmetry, A = 0, thus 
00 

*U)     = ; rf(r) = ; £ < sin <9Q (C/ + D r~
K) 

9 e = ♦ e «=1 ' W — o 

coefficients C , D are readily determined if f(r) can be expanded in a 

Taylor series. The simplest case is for uniform transpiration, f(r) = 1. 

Then all terms in the series must vanish except for K= 1 and D =0. 

Thus 

r = (sin G> ) C-,r v    0  1 

and 

cl iTiTe" o 

The velocity potential for this case is 

(61) 
.CD (cos e \ 

sinej 
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and f(r) a 1 which shows that the magnitude of the velocity is constant. 

->N 

and depends only on the wall Mach number and the crack half-angle 0 . 

There is a restriction on 8,   Note if e + 0(v), then the perturbation 

scheme breaks down and compressibility effects are likely to be important, 

For typical propellants, 

10"3 < v < 10"2 

so that the present solution is valid for cracks wrth 9 > 5°. For 

narrower cracks, compressibility effects must be represented obviously 

since the Mach number within the crack approaches unity. The solution 

implies that the flow may be choked for a sufficiently narrow creek, 

as already indicated in the one-dimensional solution. 

Effects of Vorticity 

It is appropriate to question the validity of the one-dimensiona] 

analysis in representing the rotational flow generated by burning of the 

walls of a long crack. As shown in the preceding analysis attempts to 

construct a two-dimensional solution with the assumption of irrotational 

flow do not properly satisfy the boundary conditions. Such solutions 

exhibit a component of velocity parallel to the surface of the burning 

propellant. The burning process requires that the velocity be normal to 

the surface. Thus vorticity is generated in the burning process and is 

transported along the streamlines; the flow is rotational. 

Assuming a sufficiently wide crack, the flow may be assumed incom- 

pressible as shown in the preceding analysis. Since the flow is rotation- 

al, it is convenient to work with the stream function ty such that 

—  3<1> —    3it    —  1 3ü»    —    3iJ) ,,,<. 

for cartesian and polar coordinates respectively. 

The governing equation is 

V2i|i = -<u(M (64) 

lere u is the vorticity. The vorticity vector is of course perpendicular 

to the flow since planar flow is assumed. 
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Solutions are readily determined for the rectangular geometry shown 

in Figure 9. The boundary value problem becomes 

2         2 
tt ♦ O» - - 
3  2      3  2 x         y 

«(*) 

% -* ««w on x = + a 

6-«  • on x = + a 

(65) 

(66) 

(67) 

where the flow is forced to be normal to the burning surface as required 

by the combustion process. Solutions may be determined for arbitrary 

burning rate as reflected by the function f(y). v is representative of 

the Mach number of combustion products near the origin at the crack tip. 

Solutions of the type required here may be found by assuming <u to be 

proportional to ty.    Put 

u = C2I> (68) 

where c = constant. 

This assumption is valid if dissipation within the flow field is 

neglected. For uniform burning, f(y) ■ 1, the appropriate solution is 
simply 

* -vy sin© (69) 

which assumes no burning at the crack tip. Streamlines for this solution 

are shown in Figure 9. 
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Figure 9. Rotational flow in rectangular crack with combust ion 

-31- 



III. PARAMETRIC STUDY OF THE PRESSURE DISTRIBUTIONS 

FOR BURNING CRACKS AND DEBONDS 

Presented herein is a parametric study of the influence of geomet- 

ric and propellant characteristics on the pressure distribution in cracks 

and debonds. The study is carried out primarily for TPH-1011 propellant; 

however, the effects of higher burning rates are indicated. 

EFFECT OF FLAW LENGTH AND EXIT AREA ON CRACK TIP PRESSURE 

Although the entire distribution of pressure along the length of a 

flaw is necessary to calculate the surface energy of the flaw, the pres- 

sure most characteristic of the loading is the tip pressure. This is 

the pressure at the location of propagation and the location of the maxi- 

mum burning rate as well. Therefore, to illustrate the effects of flaw 

geometry on the pressures within a burning flaw, the flaw tip pressure 

is presented as a function of flaw length. Assuming a triangular or 

uniformly diverging flaw for illustrative purposes, the exit crack width 

serves to illustrate the effects of exit area. 

Figures 10 and 11 indicate the effects of flaw length and exit width 

for a crack and a debond respectively. The propellant properties used 

are those of TPH-1011. It is assumed that the main chamber pressure is 

1000 psia and that the crack tip width is 0.01 inches. 

For both cases it is seen that the flaw tip pressure increases 

rapidly with increasing length and, further, that the pressure increases 

with decreasing angle of divergence (decreasing flaw width). 

EFFECT OF ASSUMED FLAW TIP DIMENSION? 
Njmerical solutions of the governing one-dimensional equations pre- 

sented in Section II-A for cracks and debonds cannot be obtained if the 

crack is assumed sharp. In addition, there is no such thing as a truly 

sharp crack. However, it would appear reasonable to evaluate the ef- 

fect of the assumed tip geometry numerically as it approaches zero to 

ascertain the form of the singularity at zero tip area. 

■32- 



rch 
Propellant 

Crack Tip Width 

1000 psi 

TPH-1011 
0.01 in 0.01 in 

4,000 

W 
P. 
<? 

P 

•H 
H 

2,000     ' 

1,500    " 

:rack Exit Width 

0.03 

0.07 

1,000 
12        3        4        5 

Crack Length *  Inches 

Figure 10 Crack tip pressure versus length for Several Crack geometries 

-33- 



4,000 - 

Propeliant 
Debond Tip Width 

= 1000 psi 

- TPH-1011 
- 0.01 in 

2,000 - 

1,500 - 

Crack Exit Width »0.01 in 

1,000 

12        3        4        5 

Debond Length ^ Inches 

Figure 11. Debond tip pressure versus length for several debond geometries 

-34- 



Figures 12 and 13 present typical results for both a triangular 

crack and a triangular debond of otherwise constant geometry. The 

geometry chosen was a length of two inches and an axit width of 0.05 inches. 

The propellant was assumed to be TPH-1011 and the chamber pressure 1,000 psia. 

For both types of flaws there were small changes in tip pressure for a 

decrease in tip width from 0.01 inches to 0.001 inches. Further decreases 

in tip width down to 10" inches caused changes of only 400 psi for the 

case of the crack (Figure 13) and 200 psi for the debond (Figure 12). 

EFFECT OF BURNING RATE LAW 

Figures 14 and 15 indicate the effects of propellant burning rate 

coefficients, GDC, on the flaw tip pressure over a range of flaw lengths. 

The analysis assumed constant tip and exit plane widths and a constant 

chamber pressure. C * 0.0047 is equivalent to TPH-1011. As can be seen, 

the propellant burning rate has a strong effect on the resulting pressures. 

While the lower burning rate propellant, C = 0.00027 shows negligible 

increase in pressure, TPH-1011 and faster burning propellants rapidly 

reach high over pressures. Thus, all conclusions reached here for TPH-1011 

flaw tip pressure would be conservative estimates of what would occur in 

faster burning propellants such as the double base propellants utilized in 

some operational systems. 

Figures 16 and 17 present plots of exit plane Mach numbers for the 

propellants of Figures 14 and 15. The higher burning rate propellant 

reaches choked conditions for flaw lengths considerably less than those 

considered. 

TYPICAL INCREASE IN FLAW LENGTH WITH TIME. ASSUMING NO MECHANICAL PROPAGATION 

The computer program described in Appendix B will account for all 

changes in flaw geometry as a function of time, assuming that the flaw 

does not propagate mechanically. Typical results for cracks and debonds 

are presented in Figures 18 and 19 respectively. As can be seen, for the 

constant initial width flaws assuming TPH-1011 propellant with a chamber 

pressure of 1,000 psia, the rate of increase in length with time varies 

directly with initial crack length. This is as would be expected since 

it correlates directly with the pressure loadings. The crack growth 
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due to burning alone can safely be said to be sufficiently slow so that 

it offers no great problem. 

HALF-TIME FOR TIP PRESSURE VERSUS BURNING RATE COEFFICIENT 

A characteristic of all burning flaws is that the pressure decreases 

rapidly with time due to the geometrical changes occurring. To illustrate 

this effect, Figures 20 and 21 indicate the time required to reduce the 

flaw tip pressure by a factor of two as a function of the coefficient, 

C, in the burning rate law. The burning rate law is that for TPH-1011 with 

coefficient changed. As would be expected, the half life drops off at 

a faster rate for the crack than the debond due to the fact that it is 

burning on both surfaces. Although extremely high pressures may exist 

initially in a flaw, the defect geometry changes at a near constant rate 

due to the small exponent in the burning rate law as can be seen in 

Figures 18 and 19. 

EFFECT OF VARIABLE GEOMETRY. CIRCULAR DEBONDS 

Figures 22 and 23 represent the types of situations which might 

result in a head-end debond around a rocket motor igniter. As can be 

seen, the smaller the igniter diameter, the greater the difficulty for 

equally deep debonds. 
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IV. TIME HISTORY OF FRACTURE OR DEBONDING IN 

VTSCOELASTIC MATERIALS 

Stated in perhaps its simplest form, the problem to be solved from 

the solid mechanics point of view is the following: given the geometric 

configuration of the crack or debond in the rocket grain and the pressure 

distribution inside this crack or debond, both as known functions of 

time, determine the instant at which fracture is initiated and, at least 

for small times, the time-history of the fracture. Stated in such a 

manner, the problem may appear to be a relatively simple one. Such, 

unfortunately, is not the case due primarily to the difficulties en- 

countered in mathematically analyzing a body with a general cracked 

geometry. When the geometry changes with time as in this problem 

once fracture has been initiated, or the loads are applied to the grain 

dynamically, ine/via effects may become of sufficient importance so that 

they can no longer be neglected. Thus, a new dimension of difficulty is 

added to the problem. Finally, it should be noted that the materials 

one must work with >dien investigating crack propagation in solid yro- 

pellant rocket motors must be characterized, at best, as being linearly 

viscoelastic. llnlike elastic materials in which the stress is a 

function of strain alone, the rate dependency of viscoelastic materials 

means that the stress depends upon the entire time-history of the strain. 

This, of course, complicates the analysis still further. 

Fortunately, however, the continuum theory of fracture has received 

a great deal of attention in this century since its beginnings in the 

classical work of Griffith Ü-5J and much progress has been made due 

in large part to the improvement of mathematical techniques and the 

advent of the high speed comp'iter. This progress has been largely con- 

centrated in the areas of fracture of brittle elastic materials and 

more recently, of fracture of ductile elastic materials where the effects 

of plastic deformation in a region surrounding the crack tip are con- 

sidered.  However  with regard to the present study, it should be 

mentioned that a great deal of work has been done recently on developing 

methods of analysis for viscoelastic structures of uncracked geometries. 
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In addition, many of the concepts of fracture mechanics develojieu for 

use with elastic materials are still valid for use .vith viscoelastic 

materials. 

Because of the noted lack of information available specifically on visco- 

elastic fracture, an approach to the solid mechanics part of this program has 

been chosen which is based upon the development and analysis of relatively 

simple models capable of describing the important aspects of viscoelastic 

fracture and debonding at least insofar as the viscoelastic dependence 

is concerned. The information obtained in analyzing these models could 

then be used to provide qualitative results in the prediction of fracture. 

With these comments in mind, let us consider the progress that has been 

made, first, in the field of cohesive fracture and then in the closely 

related (from a continuum mechanics point of view) field of adhesive 

debonding. 

The first work to be mentioned is the investigation by Swanson1, * 

of fracture in a linearly viscoelastic tubular rocket propellant grain. 

In this study, the cylindrical grain was assumed to be of infinite 

length and to have a radial crack at its centerbore running the full 

length of the cylinder. Time-dependent critical stress intensity 

factors K „(t) were then used as criticaiity conditions for the cylinder 

subjected to a time-dependent internal pressure loading. 

The critical stress intensity factors K.p(t) to be used were 

obtained from laboritory tests on specimens of Hercules Incorporated 

designated EJC solid propellant. These specimens were in the form of 

solid right circular cylinders one inch in diameter by three inches 

long with a crack three-sixteenths of an inch deep machined circum- 

ferential ly around the specimen by knife blade on a lathe. Bonding 

these specimens to rigid end plates, they were then subjected to 

several constant rate tensile tests at various cross-head speeds. In 

addition, a series of tests was also conducted in which the crosshead speed 

was changed from one constant value to another during the course of the 

test. In each of these tests the time to failure and the failure load 

were recorded. From the load at failure, it was a simple matter to 

calculate the stress intensity factor at failure f^om the analysis 

given by Bueckner^-' for an clastic cracked cylindrical specimen. 

Bueckner's results can be summarized as 
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Kl = 6net(7rD)JS Ffd/D) ™ 

where 6 t  is the axial force divided by the net area of the notched 

section, D is the outside diameter of the specimen, d is the diameter 

of the notched section and F(d/D) is a numerical factor listed in 

Reference 17.  It is clear from Equation 70 and the elastic-visco- 

elastic correspondence principle that this stress intensity factor applies 

to the viscoelastic test specimens as well. Hence, plotting K at 

failure, i.e. K,c, versus the time to failure for the various tests 

performed, a plot of K-C(t) was obtained for the EJC propellant. This 

is shown in Figure 24. 

Now if a viscoelastic analysis of a particular cracked structure of 

EJC propellant can be performed so that the time-dependent stress 

intensity factor K.-(t) can be found, the time to fracture is given by 

the intersection of the KlC(t) and Kj(t) curves. The difficulty here 

lies in the fact that since Klf,(t) was plotted for constant loading 

rates, our predictions of time to fracture are necessarily restricted 

to structures undergoing at least an approximately constant loading 

rate. Fortunately, however, use of the spherical flaw model (to be 

discussed later in this section) and laboratory tests have shown the 

time-dependent critical stress intensity factor approach to be relatively 

insensitive to a wide range of fast-slow variable loading conditions. 

Using a finite-element stress analysis method, a plane-strain 

elastic analysis was made for a radial crack at the centerbore of a 

tabular rocket propellant grain. The analysis was made to calculate 

the strain energy in the propellant for a crack depth one-half panel 

greater and one-half panel less than the actual crack depth under 

consideration. Having calculated each of these strain energies, the 

strain energy release rate with respect to crack surface area G, is 

then calculated from a finite difference approximation to the formula 

Gi - If m> 
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where U is the strain energy and A is the crack surface area. Having 

calculated this expression, ore can finally obtain the stress intensity 

factor Kj as 

2   EG1 
Kl  = ~2 (72) 

where E is Young's modulus and v is Poisson's ratio. 

Once having obtained the stress intensity factor for the elastic 

problem, it is possible to solve for the time-dependent stress intensity 

factor K.(t) for the corresponding viscoelastic problem chrough the 

use of Schapery's quasi-elastic approximation *•  . In fact, this results 

in 

H W2) Kx
2(t) = IK/J  i-^i 1 \      (73) 

where E ,(t) is the stress relaxation modulus, if the internal pressure 

is applied as a step function in time. When the pressure does not 

vary with time in this manner but in some more general way, the fact 

that we are considering a linear viscoelastic material and that K is a 

linear function of the applied pressure loading, allows one to use 

Equation 73 with the Duhamel integral to obtain K.(t) for this more 

general time-varying pressure loading. Plotting the resulting K.(t) 

for a particular time-varying internal pressure on the same graph with 

the ^c(t) curve obtained from the laboratory tests on cracked specimens, 

the time to failure is predicted as the point of intersection of the 
two curves. 

To verify the analytical workj a high-rate hydrotest was conducted 

on a structural test vehicle (STV) containing a radial crack. Crack 

propagation was produced during the test and the time of its initiation 

was obtained from instrumentation recordings of grain deflections and the 

pressure rate. The measured pressure-time curve was then used in the 

previously mentioned finite-element analysis of a viscoelastic grain 

to obtain the time-dependent stress-intensity factor for the STV. This 

calculated K (t) curve was plotted in Figure 25 along with the 
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experimentally obtained KjC(t) curve. The irregi'lsrity in the K.(t) 

curve was believed to be caused by entrapped air in the hydraulic 

system. The intersection of the two curves in Figure 25 is the predicted 

time to failure and is seen to be within five per cent of the obser/ed 

time to failure. 

Although in the one test conducted the stress intensity factor 

approach outlined above was quite successful in predicting the time to 

failure, two limitations of this method do arise. The first is that a 

uniform pressure distribution was assumed to act within the crack whereas 

the analysis of Section III shows that the actual pressure distribution 

in a burning crack is non-uniform. The effects of such a non-uniform 

pressure distribution on crack instability can be estimated, however, 

by the results of Appendix C, thus causing no substantial difficulties. 

A more serious objection is that the critical stress intensity factor 

appioach is not applicable to the second part of our problem; that is, 

the prediction of initial velocities of propagation. Hence, we have 

considered a more.general approach to the problem based on the thermo- 

dynamic power balance. This balance can be written as 

I = F+-2D+SE + K (74) 

stiere I is the power input of the applied loading at the boundaries of 

the system, r is the rate of increase of the free (strain) energy, 

2D is the dissipation, SE is the rate of increase of the surface energy 

and K is the rate of increase of the kinetic energy. In principle, 

this power balance can be applied directly to any crack configuration, 

loading and material of interest. In practice, however, computational 

difficulties are encountered in the application of the power balance 

to realistic geometries and materials. This has led us to consider 

William's model ^   of a spherical flaw which incorporates a simplified 

crack geometry and the power balance Equation 74 to predict both the 
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Figure 25. Comparison of predicted and observed crack 
propagation in pressure test of STV. 
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time to fracture and its initial velocity of propagation Aside from 

the relative ease with which one can calculate the various terms of the 

power balance (Equation 74) for this geometry, further motivation for 

studying the spherical flaw was provided by the fact that the criticality 

condition for the elastic case is extremely similar to that found for 

the more realistic crack geometries of Griffith^™  or Sneddon.  . 

Since this model has been extensively investigated in the literature, 

it is sufficient here only to outline its important features as regards 

this study. 

In his original work on the spherical flaw, Williams*- *  neglected 

inertia effects and considered the surface of the flaw to be stress 

free while subjecting the outer boundary of the hollow sphere to four 

typical inputs, namely, constant stress or displacement arid constant 

stress or displacement rate. For each of these four loadings he was 

able to arrive at an exptession from which to calculate the time to 

fracture. However, for this simple model difficulties were encountered 

in solving the nonlinear integral equation for the time history of the 

flaw growth. For example, an initial velocity of propagation was found 

for the ca;. where the outer sphere boundary was subjected to a constant 

displacement rate, but in the limiting case of instantaneous propagation, 

that is, time to fracture tf = 0, this initial velocity was discovered 

to be infinite. Tins rather unrealistic result was attributed to the 

fact that inertia effects were neglected in the analysis. Although this 

omission may cause little error in a highly viscous material subjected 

to slow loading rates, this will not be the case in more elastic materials 

or when the applied loading rates become appreciable. This was, in fact, 

borne out by a subsequent analysis1- *  of the spherical flaw in which the 

kinetic energy contribution to the power balance was included. Here it 

was shown that, for the case of a constant displacement rate loading 

at the sphere's outer boundary, the power balance fracture criterion 

predicted a zero initial velocity of propagation of the flaw when 

fracture was initiated instantaneously. Thus, the effect of including 

the kinetic energy in this particular example was to exhibit a smooth 

transition during the acceleration from zero initial flaw velocity. 
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Because of its wide applicability and its ability to predict the time- 

history of fracture, the energy balance will be applied as the criterion 

for fracture in our further studies. Thus, the spherical flaw has 

served several useful purposes toward this end. Namely, it has provided 

us with a better understanding of the subtleties of applying the power 

balance; it has given us some qualitative insight into the behavior of 

crack propagation in linearly viscoelastic materials; it has also provided 

(see Section V) several useful estimates regarding times to failure and 

the magnitudes of initial crack propagation velocities in burning rocket 

grains, All of these will be of benefit as more sophisticated 

models are developed and solved in the process of obtaining the final 

desired quantitative results. 

unlike the field of cohesive fracture, little work has been done 

in the field of adhesive fracture (debonding) from a continuum mechanics 

approach, even for the case of bonded elastic materials. In fact, it 

was only recently pointed out that since real adhesive interfaces, like 
1 

real materials, contain small cracks (debonds) which give rise to 

stress concentrations, the Griffith approach to cohesive fracture 

could then be extended to the study of adhesive debonding. Williams^- ■ . 

for example, showed that when using the power balance as a criterion 

for crack propagation, the only difference mathematically between the 

phenomena of cohesive fracture and adhesive debonding is in the 

interpretation of the energy required to create new free (cohesive or 

adhesive) surface area. 

To this date, continuum mechanics studies of adhesive failure have 

centered almost entirely on studies of the mathematical singularities 

which occur at the tip of cracks along an interface of two dissimilar 

media * " ' or on methods for the experimental determination of the 

energy required to create new free adhesive surface area, Y„  "  • 

These two points are worthy of further discussion. 

As for the case of cracks in a homogeneous solid, the stress 

singularities at the tip of a crack >ilong the interface of two 

dissimilar media can be found by the linear theory of elasticity. 

However, in the general case of arbitrary material constants the 

singularities are not solely of the square root type as they are for 
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cracks in homogeneous media, but are found to collate rapidly near the 

crack tip. For example, the stresses are of th<; fornr ' 

I |A0 cos(e toj-lr) " ßosin(p *nrrrH  + 0(1)      <75a) y -* 
6
xy 

=    ° ~ k sin& £nFTT) + Bo COsCli *Vh^     + ü^) (75h) 

for the case of a oond line subjected to both tension and in-plane shear. 

In Equation    75,    3 is defined by 

6   =   £   *n 
Hj + u2(3 - 4vj,) 

M2 + 1^(3 -4 v.) (76) 

Ag and BQ are stress intensity factors, r is the distance from the 

crack tip along the interface, a is the crack half length, u and u are 

the shear modulus and Poisson's ratio, respectively, and the subscripts 

one and two refer to the different materials on either side of the debond. 

Note that for the special case where the debond occurs at the interface 

between a rigid material and an incompressible one, that is u = « and 

v, = 0.5, no oscillations occur. Because of the trig-log behavior of the 

stresses in the general material C3se, one cannot rigorously compute 

the strain energy directly. However, as a practical matter, the 

oscillating singularity is disregarded *    '. 

The experimental determination of the energy required to create 

new free adhesive surface area, y , has been the subject of much 

discussion and several methods have been proposed. Perhaps the best 

of these methods, however, from the combined viewpoint of experimental 

convenience and ease of mathematical modeling, is Williams'1 ; modifica- 

tion of a method originally proposed by Dannenberg *    K   In this 

"pressurized blister test " a thin disk layer of soft material is cast 

and cured upon a relatively rigid base plate except for a central 
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circular portion which is prevented from bonding. Pressure is then 

introduced into this unbonded region causing the thin disk layer to 

lift up off the base plate in a fashion similar to a blister. The 

radius of the unbonded region remains constant as the pressure is 

slowly increased until a certain critical pressure level is reached. 

At this time the radius enlarges, signifying an adhesive failure 

(debonding) along the interface of the disk and base plate. Modeling 

the system mathematically and applying the energy balance results 

in a relationship between the material properties of the disk, the 

critical pressure and y ,   This result, combined with the experimental 

data, riows one to arrive at a value for Y„. a 
Since the experimentally determined values of y   are critical to 

a 

the successful use of the power balance in predicting adhesive debonding, 

it is imperative that these values be as accurate as possible. This 

accuracy, however, aside from laboratory techniques, is heavily dependent 

upon how well the mathematical model of the blister test can be made 

to conform to the actual experimental setup. Thus, some effort 

lias been expended in developing more sophisticated mathematical 

models of the blister test to replace the original analysis. In this 

first analysis *■' ' the thin, flexible disk layer was modeled by linear 

elastic plate theory while the base plate was considered to be rigid. 

Since then two more sophisticated models have been made. The first*- ' 

used non-linear, large deflection plate theory to evaluate the effects 

of large deflections of the disk layer while the second-' ' was 

concerned with the case of two materials bonded together by a third 

rather than one being cast directly upon the othar. Let us investigate 

each of these models further. 

It can easily be shown using linear elastic plate theory and the 

power balance equation (again neglecting inertia effects) that the 

energy required to create ne^ free adhesive surface area in a blister 

test is given by (29) 

Pcrw0 2Y, (77) 
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where p  is the pressure needed to initiate the debonding and w„ 

is the center deflection of the blister at the time debonding starts. 

Thus, values of y   can be obtained from laboratory blister tests by 
simply recording the pressure and central deflection of the disk at the 

time the debond begins propagating. A plot of p  versus wQ is shown 

in Figure 26 for a test run on polyurethane cast and cured onto a 

polished glass plate. It is noted in this plot that for small center 

deflections the fracture initiation points fall quite closely along 

a hyperbola of parametric value Zy .    However, for larger deflections 
a 

this is no longer the case dus to the inability of linear plate theory 

to account for the midplane stretching in the polyurethane specimen. 

Performing a membrane analysis and again using the power balance, we find 

that if the membrane stresses are such that they overshadow the bending 

stresses, >„ is given as 
3. 

■       Pcrw0 = 2'4'a ™ 

Thus for larger center deflections, the plot of fracture initiation 

points in Figure 26 should fall on a hyperbola of parametric value 2.4y . 

This is seen to be the case. In the transition between linear plate 
(31) theory and membrane theory, an approximate solution by Berger*- '  can 

be used to include the effects of both plate bending and stretching. 

In this case, the us*» of the power balance results in a complicated 

expression from which to find Y . This expression must be solved 

nunerically. 

The effects on the experimentally determined values of Y_.due to 
3. 

the thickness of two materials being bonded together by a third have 
r 32") 

been investigated^ '  by approximating the interlayer as a Winkler-type 
elastic foundation. U?ing for the analysis the standard blister test 

configuration with the addition of the interlayer, an application of 

the power balaace results in an expression for y   which can be written 
in the form 

P2 a4 

Ya ■ -far-11 + f<V> ™ 
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Figure 26. Plot of critical pressure versus center deflection 
from a blister test of polyurethane cast and cured 
on a glass plate. 
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Figure 27. Configuration of end loaded rocket propellant grain 
debonding axisymmetrically from rigid casing. 
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where p  is the pressure at the instant of fracture initiation, a is 

the radius of the dehond hefore fracture, D is the flexural rigidity of 

the plate and 

(1 2V1)(1 + v1) 4DhJ 
(80) 

In Equation 80» v and £ are Poisson's ratio and Young's modulus, 

respectively, for the interlayer and h  is the thickness of the inter- 

layer. It is clear that in the limiting case of a vanishing interlayer, 

°°. Values of the function f (A ) are given Li i.e. h -*• 0, we have A ■+ ° 

Table I, An inspection of these values (in particular A *>) shows 

that f(A ) is the correction to yn due to the infli nee of the interlayer 

thickness. 

It should be mentioned here that both y   and y  , that is, the energy 
c    a 

necessary to create new cohesive or adhesive fracture surface, respectively, 

have usually been assumed to be time-independent. This assumption was 

imposed primarily as a matter of analytic convenience although it has been 

widely recognized that this is not the case *•    . The time dependence 

of y     and the slow growth of adhesive fracture observed in the blister 

tests that have so far been made, suggest that time-dependent dissipative 

mechanisms take place dur^.ig fracture. Thus, a further refinement in 

the mathematical model of *■.'.; blister test is still necessary in that 

the thin, flexible disk layer must be modeled as being viscoelastic. 

Work is proceeding in this direction. 

Assuming the same materials and surface preparation as were used in 

the experimental determination of y ,  one can use this now known value 

of y    to predict adhesive debonding in a specimen of different geometry 

under different loading conditions if one can solve this problem for 

the potential energy release rate with further debonding. For example, 

a rather idealized problem of adhesive debonding in a case-bondtd solid 

nropellant rocket motor has been investigated ^ ^ as an illustration of 

the approach, to be used. The idealization considered is that of a 

finite length, elastic solid propellant grain debonding in an axially 
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symmetric manner from one end of its enclosing rigid case. The end 

opposite the finite length debond is considered to be fixed and the grain 

is assumed to be solid (100 per cent web fraction grain). The end of the 

grain where the debond takes place is subjected to a normal pressure which 

also acts in the debonds and the dimensions and material properties are as 

shown in Figure 27. If we further assume that the kinetic energy of the 

system cai be regarded as being negligible, the power balance relation 

can be written using Clapeyron's theorem *■ ^ as 

»7C 'a (81) 

where U is the strain energy of the system and A is the surface area of 

the debond. Thus, the problem becomes one of finding the variation of 

the strain energy with respect to changes in the debond area. For the 

geometry shown, this has been accomplished using the finite element 

method for each of several debond lengths. The results of the analysis 

are shown in Figure 28 where the strain energy is plotted against the 

debond area. The inverse square root of the slope of this curve was 

then used with Equation 81 to produce the parametric design curve 

shown in Figure 29. This curve represents the debonding failure 

criterion for end pressure loadings on an axisymmetric elastic rocket 

grain bonded to a rigid casing. 

Since it is well-known that most solid rocket fuels are at best 

linearly viscoelastic, the above analysis would be improved considerably 

by assuming the grain to be a linear viscoelastic material. Although 

it is again theoretically possible to calculate the quantities necessary 

for use with the power balance, the viscoelastic nature of the grain 

causes the stress and strain fields to be time-dependent, thereby 

complicating the analysis considerably. In this case Equation 81 

is no longer applicable. Rather we must employ the more general version 

of the power balance as given by Equation 74.  If the various terms of 

this equation could then be calculated, the use of the power balance as 

a criticality condition would result in an expression from which one 

could obtain the entire time-history of the debond. 
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Figure 28. Plot of strain energy versus debond area for end loaded 
rocket propellant grain debonding axisyrametrically from 
rigid casing. 
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Figure 30. Configuration for simplified debond model. 

Table 1. Interlayer correction functions. 
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Whereas the application of the power balance in predicting the 

fracture threshold is reasonably straightforward, the calculations 

necessary for its use are often prohibitive for the general debond 

geometry. As indicated in the preceding paragraph, this is especially 

true when the problem is further complicated by including the effects 

of viscous dissipation as one should when considering viscoelastic 

materials. Thus, as in the case of the spherical flow model developed 

to study cohesive fracture in viscoelastic materials, a simple model 

has been devised which, it is felt, leads to at least representative 

results for the debonding proces. insofar as viscoelastic dependence 

is concerned. Since *he anaiy:' " this model demonstrates clearly 

many of the principles that lw    A discussed in this section, it 

is appropriate to include the analysis at the present time. 

Consider a linear viscoelastic beam of infinite length which is bonded 

to a rigid substrate along its entire length with the exception of a 

portion of length 2a« which has debonded. A stationary, rectangular 

Cartesian coordinate system x, y, z is oriented as shown in Figure 30 so 

that the origin is at the center of the debond and the x-axis coincides 

with the axis of the beam. At time t - 0, a pressure q(t), where 

q(t) 2 0 for t < 0, is applied within the debond causing it to propagate 

symmetrically at some time tf a 0 so that the edges of the debond are 

at jx| = a(t) for all times. Clearly for t * tf the relationship 

a(t) = a is satisfied. Neglecting inertia effects and using beam 

theory, it is a simple matter to solve for the beam deflection w and 

the stress 6 and strain e within the beam. Because of the viscoelastic 
J\ A. 

nature of the beam material, these quantities are functions of time and 

are given by 

w(x, t) -[^H   M (82a) 

6x(x,t) 

ex(x, t) 

= -q(t) 1 
TT [3x' 

■\ 

a2(t)] 

-*[3x2 -ta
2(t)J j H 

(82b) 

(82c) 
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where 

Lht)    - L-1[q(S) SUcrD(8)3 - q(t)Dg + F   - 0^ q(T)dT   (83) crp*- 'J   nvv-' g 

and I is the moment of inertia of the beam cross-section about the y-axis 

and i  denotes the inverse Laplace transform. In equation (83), the bar 

over a function denotes the Laplace transform of that function, S is the 

transform parameter, D  (t) is the creep compliance of the material and 

D is defined as D„=DfO+). g g crp'- 
As a criterion for debonding of the beam, an application is made of 

the thermodynamic power balance which, neglecting the kinetic energy, 

can be written as 

I = F + 2D + SE (84) 

where, for the present problem, 

I • :• ,^§ f% dx £   q(t) *KX> Ü  dr (85a) 

F + 2D = 2-£ /        dz /   dx  /  6 fx, T) ~ di 
m   A/2    J0 J«     X        3x 

(85b) 

C85c) 

In Equations 85  h is the depth of the beam, the dot denotes differen- 
tiation with respect to time and y   is considered to be constant with 
respect to time. Also it should be noted in Equations 85a and 85b that it 
is necessary to integrate with respect to time and debond area or beam 
volume first and then differentiate with respect to time to take into 
account the change in debond area and beam volume with time. Substi- 
tuting from Equation 82a '^nto Equation 85a results in the following 
expression for the power input at the boundaries 
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I  = 
1    d ^ & | q(T)j_       {[x2 - a2(x)]2 L^x)} dx 

3 l,.2M      „2, ,,2  ,-1, = fa  »wjT *<i ^ li<co-- ^wf t"fw * 
y 

1 

(86) 

l(t) 
a(t) 

2 ||   |[x2 - a2(t)]2   rtflj dx 

|-   q(t) a4(t) a(t) I"1« ♦ fa  q(t) a5(t) 9T at 

J     Bill [a2(t) - a2(x)]2   L"1« dr 

Similarly, substituting Equations (82b, c) into equation(85b) results in 

F + 2D = fa     *_ J-'dxl q(x)[3x2-a2(x)]|T{[3x2-a2(x)]L-1(t)}dx' 

> 

- TgJ-iCt)  >" q(x)[3a2(t) - a2(x)] ^ |[3a2(t) - a2^)]^)} dx 

«; 
i        ¥$ 

(87) 

2  „2^.1(-1( [3x2 - a2(t)] ±   {[3x2 - ^Ct)ir^Ct)| dx 

.  2  q(t) a
4(t) i(t) r^t) * jr W *5^ ^V^ 

y 

2,^,    -2, .  1 i(t) £ f_{q(x)[3a2(t) - a'(x)]} [3 "(t) - a'(x)]l *(x) dx 

It is now a simple matter to substitute the appropriate expressions into 

the power balance equation (84) to obtain 
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a(t) /  [3a2(t) - ÄtMt"1« jf |q(T)[3a2(t) - a2(T)] j dr 

2(t) - a2(T)]2L_1(T) dr - 721 Y_ 
7  ■ 

= 0    (88) 

where l" (t) is given by equation (83). Equation (88) is obviously 
satisfied if the crack does not run, i.e., if a(t) ■ 0. However, setting 
the bracketed term equal to zero results in an integral relation for a(t) 
which yields yet another solution. This solution is the time history of 
the debond growth. 

The time required to initiate debonding of the beam for a particular 
loading q(t) c&_i be obtained from equation (88) by noting that at the 
time of initiation a(t) ■ aQ. Setting the bracketed term in equation (88) 
equal to zero and a(t) and a(x) in the integrals equal to aQ, results 
in the expression 

I i._1(T) Mi) 3T 
dt 

91 Y yTa 
a. (89) 

where again I   (T) is given by equation (83). Solving equation (89) for 
t yields the time to initiation of debonding as a function of the load q(t) 
the initial debond length aQ, the material properties and beam geometry, 
and the energy necessary to create new adhesive fracture surface Y„» 

It is of interest to evaluate equations (88) and (89) for two 
particular loadings, namely a pressure applied as a step-function in time 
and a pressure applied linearly with time* 

Step-Applied Pressure» gjtö g <*(fl(.t): 
The substitution of q(t) ■ qJH(t) into equation (83) results in 

t_1(t) VapW (90) 

-69- 



Substitution of this expression into equation (89) then gives 

%2   /   Dcrp^ <W   ^T (91) 

where 6(T) is the Dirac delta function. The sifting property of the delta 

function and the fac 

of equation (91) to 

function and the fact that D  (T) =   0 for T < 0 results in the reduction crpv 

,    181 Y - 2 _    y'a 
^ " —TT' (92) 

H Ylg 

for all t > 0. Thus, one deduces that debonding is initiated instantly, 

that is, at t s 0, if q. is greater than or equal to the qQ defined by 

equation (92). If this is the case, then the time-history of the debond 

for t > 0 can be found from equation (88). Substituting the appropriate 

expressions into this equation and setting the bracketed term equal to 

zero yields, after a series of manipulations, an integral equation from 

which one can solve for a(t) for t > 0. This integral equation is given 

by 

ngJ 2[3a 
2(t) - a 2]2 - 3[a2(t) - a 2]2} 

J ° ) (93) 

t ; 1441 Y 
-8 / D  (T)[3a

2(t) - a2(r)]a(T)a(T)dT =    \   a 

yo   v qQ 

Since what is of primary interest is the initial velocity of propagation of 

the debond, equation (93) is differentiated twice with respect to time to 

arrive at 

i 

v ' g    crp 

where it has been assumed that a(t) and a(t) are both nonzero quantities 

for t > 0.  Thus, since debonding is initiated at t ■ 0, the 
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initial velocity of propagation is given by 

l(£l 
05) 

Thus, it is seen that the simple beam model proposed does not predict a 
smooth transition during the acceleration from zero debond velocity at 
t ■ 0" to the initial debond velocity at t ■ 0 . Also it is noted that 
Equation 94 is not entirely satisfactory since for larger times the 
velocity of propagation of the debond could become negative for certain 
materials. 

Constant Pressure Rate, q(t) ■ qptH(t) 

Substituting q(t) = qQtH(t) into Equation 83 leads to the 
result 

L"1(t> ' %Dcrp(1)W ™ 

where 

D,rpCl)W ■ I  DcrpCT)dT C97) 

Using Equation 96 with Equation 89, the time to the initiation of 
debondiiig can be found by solving the equation 

D   W fti 
crp  <• - 

91 Y 

qoao 
(98) 

where 

D  (2) 
crp (t) 

Jo Jo  DcrP 
(C)dc dt (99) 

Letting the solution of Equation 98 be given by t = t*,  the time-history 
of the debond for t > t^ can be found from Equation 88.  Substitution 
of q(t) = qQtH(t) and Equation 96 into Equation 88 and subsequent 
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man ipulations leads to the following integral equation for a(t): 

/Wet) - a2(T)]
2 - 3[a2(t) - a2(x)]2 \ Dcrp

(1)Wd* 
(100) 

m      72Iy Y* 
. 4 (   [3a2(t) - a2(T)]Ta(T)a(T) Dcrp

UJ(x) dt ■ —*f 
0 

In arriving at Equation 100 which is true for t > tf, the brackets in 
Equation (88) were set equal to zero since for t > tf, a(t) + 0. Differen- 

tiating Equation 100 with respect to time and dividing through by 

a(t) results in the equation 

2D_(1)(t) a2(t)[a(t) - ta(t)] 
crp 

iCtl/ J6[3a2(t) - a2Cx)] - 3[a2(t) - a^xJ^W 

a   \ 
(101) 

- 6a(t) J   TUcrp
(1)(T) a(x)a(t)dT * 0 

0 

which upon taking the limit t ♦ tf yields 

0      tj)  UJ(trl - 6D K J(tc) f crp  v f-    crp  *• £' 

Again, it is seen that the simple beam model does not predict a smooth 

transition during the acceleration from zero debond velocity at t ■ tj to 
the initial debond velocity at t ■ tr . Also, if times to failure are 
short, Equation 102 may predict negative initial debond velocities whereas 
it is clear that these values must be positive. For example, taking the 

material, the time to the initiation of debonding 

* (103) 
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while the initial velocity of propagation of the debond becomes 

a(tf) 

art 

Vo V^ (104) 

The rather unsatisfactory nature of the results obtained for the modsl 

of a simple beam in which inertia effects have been neglected, has led 

to the consideration of a model which includes the rate of change of the 

kinetic energy in the power balance. The analysis of this model is now 

proceeding. It is thought this will lead to more satisfactory results 

as it has in the case of the spherical flaw model. 
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V. ESTIMATES OF TIME TO FAILURE AND INITIAL 

PROPAGATION VELOCITIES IN BURNING FLAWS 

In order to obtain first order estimates of the time to failure and 

initial crack velocity for a burning flaw in a propellant grain, it has 

been necessary to depend en existing models for spherical flaws with 

slight modifications. For the case of the time to failure, it was assumed 

that the increase in radius of a spherical flaw due to burning was linear 

in time. This essentially limited ths analysis to problems in which the 

average pressure in the spherical flaw remains constant. A constant 

pressure, as discussed in Section III, is not realistic unless the time 

to failure is quite small since the burning out of a flaw decreases the 

pressure an order of magnitude in less than 500 milliseconds for typical 

flaw geometries and propellonts. Ihe analysis to determine initial pro- 

pagation velocities are also subject to the assumption of constant pressure. 

Discussion of the time to failure and initial velocity are given in 

the following sections. 

FAILURE TIME FOR BURNING SFHERICAL FLAWS IN PROPELLANT GRAINS 

The criticality of a burning spherical flaw is considered. A solu- 

tion is obtained by use of Griffith's ^crack criterion modified for 

a linearly increasing radius. The increase in radios is assumed to be 

due to burning of the material. The analysis considers the Lime to failure 

assuming that the pressure in the flaw remains constant. This analysis 

results from a modification of Griffith's crack criteria by Williams ^37^ 

to include the effects of different geometries and viscoelasticity. 

Stated mathematically this modified criteria is 

,2 
Vi 

p 

K Wt) *cct) 
~i— 
c 
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where 

a 

i 
£rel^ 

Yc(t) 

P. 

■ size of critical flaw, i.e., radius for spherical flaw 

* geometry factor, i.e., K ■ 1.27 for spherical flaw 

* relaxation ffrdulus, which for a viscoelastic material 
is a fuictif i of time. 

= surface compliance energy, which is also a function 
of time. 

* internal rressure 

The variaticn of both E^Ct) and yc(t) with time can be approximated 

by relations of the form 

E«i(t) * BtY wrel 

Yc(t) '   «♦ 

where B, 6, y, and 4> are constants to be determined empirically. 

If erosive burning is neglected, the combustion rate, r, of a 

solid propellant may be assumed to follow the empirical relation 

(106) 

(107) 

r - CP (108) 

where r is the recession rate of the burning wall and C and a are constants 

to be determined empirically for a particular fuel. From Equation 108 

it can be seen that the assumption of constant burning rate is equivalent 

to assuming the pressure, P , is also constant. 

From Equation 308 one can also determine the radius, a, of a flaw 

at time t, assuming linear burning, as 

a = aQ ♦ CPcat (109) 

vhere aQ is the initial flaw size at time t ■ 0. 

The flaw size, a, can now be eliminated between Equations 105 and 108 

to obtain the final result 

■75- 



an + CPjt = o   c 

K2 Wt} \M 
c 

Equation 110 may be solved interatively for t by use of Equations 106 

and 107 at a given pressure P and initial flaw size a . Figure 31 is 

a plot of time to failure versus initial flaw size at various pressures 

for TP-H1011 propellant. 

As can be seen from the attached figure, for all pressures ionresti- 

gated, there occurs rapid propagation to fracture. 

INITIAL PROPAGATION VELOCITIES FOR BURNING SPHERICAL FLAWS IN PROPELLANT 

GRAINS 

In the preceding section, we considered the time to the initiation 

of fracture of a burning spherical flaw. This time, t , was plotted 

versus the initial flow radius, a , for several different pressures in 

the flaw. Again using Williams' (2,19) model of a spherical flaw, the frac- 

ture propagation velocity at the instant fracture takes place can be given 

as a function of the time to failure. This result is 

a'v Ji\ki'M
mi\ 

V" ' N cU^(t. rel I 
where 

ErelC1)^    -X'W^ C1U-) 

Erel(2)W °£fj Erel  ^ de dT TO 

Thus, picking the time to failure, tQ,  for a particular initial flaw radius, 

aQ, from the graph in Figure 31 „ this value of t may be used in Equation 

111 to obtain the initial fracture velocity a(t ). The results are shown 

in Figure 32, where a graph of the initial fracture velocity versus the 

initial flaw size is plotted for two different internal pressures. In 

Figure 32 are also shown the initial flaw sizes for the two pressures at 

which the initial fracture velocity exceeds the burning rates. For initial 

flaw radii greater than these values, fracture is predicted. 
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VI. CONCLUSIONS 

The results of this study have indicated that extremely high pres- 

sures will occur in burning flaws in solid propellant grains. The smaller 

the ratio of exit flow area to burning surface area, the larger the pres- 

sure. Thus, cracks and debonds not detectable by casual visual observation 

are most likely to propagate and lead to rocket motor failure. The flaws 

detectable by visual observation will be of equal concern only if they 

are deep. Debonds such as those occurring in the Polaris A-3 *■ -1 head- 

end offer some experimental verification of these conclusions. Debonds 

easily detectable by ultrasonics did not cause motor failure; however, on 

some motors without detectable flaws failure occurred. The experimental 

data showed both case burn through and increased specific impulse which 

could be correlated with the additional burning surface and increased 

burning rare that would occur in a burning debond. 

Typically the critical time for crack propagation is 500 milli- 

seconds. By this time the flaw lias burned out sufficiently that the 

overpressure has dropped by an order of magnitude. Thus, if the crack 

has not propagated in the first 500 milliseconds, it is doubtful that 

it ever will. 

Limited work was accomplished to determine crack propagat km ve- 

locities. However, utilization of a spherical flaw model provided an 

estimate of the initial propagation velocity. This estimate indicated 

that situations could clearly develop where the propagation velocity 

exceeded the burning rate in a flaw. 
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APPENDIX A 

NUMERICAL SOLUTION 

The simultaneous solution of Equation 19 and Equation 23 can be 

approximated numerically. Equation 19 is of the form 

f*   - F(F, Hi y) 

and is amenable to approximation by the simple marching method which 

assumes that the derivative is constant for small changes of the 

independent variable. With this approximation one can write: 

(A-l) 

% +   *-%■-*«* 

*i* 4« & (A-2) 

where äX equals «the step size. F can be determined at each step by 

using values determined at the previous step. The only variable which 

is unknown is n and it can be approximated by numerical integration if 

F is considered to be approximately a constant equal to its average value 

over the short interval Ax in which case one has for each of the three n 
integral equations 

i-1 

£ 2Wn +yo)   . (A-3a) 

m
■   ■ '     ^n * CA-3b) 

ni   * 

n^    * 

^0 /AX 
yi  \2

n 

i (? § •» ♦ «w * *) 
i-l 

AX-> (r   - AX ♦ £& ♦ r y 
o'o I 

Computation is initiated by computing F, from Equation A-l with f.  determined 

from Equation 25,  26, or 27 for the geometry under consideration with 
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F, » 1, vtj- » n« * DCPQ
n" and yj - yQ (a function of the given geometry). n2 

is thai computed from Equation A-3a,  A-3b, or A-3c for the appropriate 

geometry using F. and the newly computed F_. With n2 now determined, F_ is 

confuted and so on. With F. and r^ known at each step and y. given, other 

significant parameters of the flow may be determined such as the Mach 

number and the; burning rate. 

In a given situation the material properties, flaw geometry and chamber 

pressure will be known. From these known parameters an initial guess at 

P„ is made and the resulting PÄ and M are determined. If the flow is o e    e 
choked, P„ is increased and MÄ recalculated, this iteration is continued o e 
until M = 1.0. e If the flow is not choked, P is corrected and P. is re-      ' o e 

iteration continued until P = P ,. 
e  en. 

calculated;  this 

The difficult portion of the numerical solution lies then in determining 

an iterative scheme that converges rapidly to the correct PQ. That the iter- 

ations converge rapidly is paramount since each guess at PQ requires that at 

each step P., n. and M. be recalculated until Pa and/or Ma satisfy the 
XXX 6 6 

required boundary condition. In a typical application the number of steps 

will vary from 100 to 1,000 depending upon the depth of the flaw and the 

accuracy required. Appendix B contains a complete listing of the computer 

program and a description of the iterative scheme used. 

Because the solution is expressed in terms of.the pressure at small 

discrete steps, it is an easy matter to allow for change in geometry due 

to burning. This is accomplished as follows: 

1. 

2. 

A pressure distribution is determined for the given 
initial geometry and matched to the boundary conditions 
as described above. 

A smaJl-time interval At is determined such that the 
pressure distribution may be considered approximately 
constant over At. A reasonable At is the time that it 
takes y to increase by the step size Ax. 

At = Ax/r, bo AX/CP 
n 

4. 

For the geometries considered the new y dimension as a 
function of x is calculated by 

A new pressure distribution is calculated for the new 
geometry and matched to the same boundary conditions 
as before. 

(A-4) 
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It should be noted that as burning occurs, the assumption that y'«l 

is no longer valid in the region of the tip, since this region assumes the 

shape shown in Figure A-l (if no cracking occurs). It is anticipated, 

however, that the geometry of Figure A-l can be approximated by the dotted 

line. 
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Figure A-l Tip geometry after burning gas occurred 
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APPENDIX B 

A complete listing of the computer program and a table relating the 

notation used in the analysis to that used in the program is located at 

the end of this appendix. Figure 1-B illustrates a simplified flow chart 

of the program. Notice that there are three main do-loops labeled 1, 2, 

and 3. Loop 3 serves to determine the number of time iterations under- 

taken. 

Loops 1 and 2 both determine the values of the relevant parameters 

(i,e. PCI), V(I), etc.) at each S(I) for a given PO. Both loops contain 

a series of IF statements which direct control out of the loops to a stats 

ment which determines a new PO if: 

1. P(I) falls below PC before S(I) = L. 

2. V(I) rises above 1.0 before S(I) = L. 

3. Z(I +1) becomes negative. 

Both loops 1 and 2 are followed by a series of IF statements which deter- 

mine if a correct boundary condition has been met (i.e. P(N) = PC and 

V(N) £ 1 or P(N) > PC and V(N) = 1) and if so directs control to a PRINT 

statement and if not to a statement which determines a new PO. Both 

loops are preceded by an IF statement which determines if the maximum num- 

ber of allowable iterations has been achieved and if so directs control 

to a PRINT statement which declares that the iteration is not converging 

rapidly enough. 

The object of having two DO loops which are so similar is that loop 1, 

in general, differentiates the choked from the non-choked flows, or in 

other words, loop 1 attempts to match the boundary condition that POO = PC 

and V(N) < 1. If the flow is either choked or marginal (i.e. "just about" 

choked) then loop 1 gives a "rough" approximation to PO and control then 

moves down to loop 2 for final adjustment. 

Both the loop 1 and loop 2 PO correction statements are based on the 

assumption of direct proportioning, or in other words, it is assumed that 

if a change in PO of APO. produces a change in P(N) or V(N) of AF(N), then 

AP02  AP(N)2  AV(N)2 
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where AP(N)2 or AVQJ)? can be calculated by the boundary condition one 

is attempting to match. Jn reality direct proportioning of this kind is 

not observed and one must reduce the amount of correction AF02 by dividing 

it by an abritrary constant which is determined by the boundary condition 

being met and the size of the correction. For instance exit Mach number, 

V(N), is more sensitive to FO change than exit pressure, POO» smä 

therefore if one is attempting to match Mach number the direct proportion 

correction PO may be divided by 10.0, whereas if pressure is the attempted 

match the division constant may be as small as 2.0 or 3.0. 

The necessary read-in for the program involves three sets of parameters; 

propellant, geometry, and computer. The propellant and computer parameters 

are listed at the beginning of the program. The geometry parameters are 

Y(I), YP(I) and S(I). They may be read-in by either assigning a value of 

Y(I) and YP(I) to each value of S(I) or by defining a functional relation- 

slip between Y(I), YP(I) and S(I). In either case one must keep in mind 

that the program was developed assuming that YP(I) is small. 
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Figure 1-B  Simplified flow chart of numerical 
analysis computer program 
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TABLE B-l 

Nomenclature and Units Used in Computer Program 

Analysis Computer 

Br BR(I) 

C C 

D D 

f FC 

G2 F 

H HBR 

M V(I) 

n XP 

P P(I) 

Po PO 

Pch PC 

P Z(I) 

W- ZP 

k R 

Re RE(D 

n 
To 

none 

To TO °R 

At FT sec 

x SCD in 

Ax H in 

Y Y(I) in 

r' YP(I) none 

, GM none 

C X(I) none 

U lbf-sec/ft2 

T(I) none 

THO none 

. 

none 
j-^n+l.       iijrn ft       /sec-lbf 

lbm/£t3 

none 
(sec-lbf/lbm)2 

' 

none ■  H 
none 

none 

psi 

psi 

psi 

none i 

1/in 

£t-lb£/lbm°R •< 
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C INITIALIZE Tlr.E ST 
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C INITIAL PO G^ESS 
P0»PC*l, 

■ PC 
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CONTINUE 
SR«S<t> 
PORS*PO 
lFtNI«*)5*,M|53 
SDIV'2.5 
GO TO 57 
SOS rf»I. 
CONTINUf 
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B ■ U. 
THO ■ U»C« 
Tin ■ o«c 
Z (1) *  i. 
F» (2.*<GM 

UPGRADE ITtrtAT 
NI « N I ♦ 1 

CHECK It MAX ] 
IF(Nl-KAX) 

58 CONTINUE 
THIS LOOP DETE 

00 3^  I ■ 
»»( 1 ) • PO 
»F(I-N>SO, 

50 CONTINUE 
EXIT LOOP IF p 

IFCP(I|«ER 
22 CONTINUE 

XI II«S0NT1 
VI] )»<XU) 
It U~N)bt , 

51 CONTINUE 
EXIT LOOP IF V 

IF(V(I}-! • 
23 CONTINUE 

KE11>» < y«i 
CHECK IF FLO* 

IF («EU) 
20 FC = 9*. / 

GO TO 27 
21 FC • eai6/ 
27 CONTINUE 

BR(Il»THO« 
52 CONTINUE 

IF»N-I NOO 
|05 CONllNUE 

H0R*I./I2. 
02 " F • T 
BH ■ <r,n» 

USE THIS a I CA 
B1"IMI l-Z 

USE   THIS   31    CA 
B1«<MI>*2 

USE THIS al CA 
B1-1XUI-Z 

«POMHt. >«a(XP-l«) 
•(PO^kff*) ««(XP-I.J. 

-I.I • TO • R»/tGH • 32.2» 
ION COUNTER 

TERATIONS HAVE BEEN REACHED 
58,58i29 

RHINES V(I) AND P(I) AT EACH STEP 
I. U 

•   ZII) 
22,22 

(I) FALLS BELO* Pc 
R0R-PCI2H,22,22 

ZU>«ZU>*F«T!ll»TU» ) 
-Z( I ) )/(Z(l}*(GH-1.)) 
23,23 

ill   RISES   ABOVE   1.0 
>?3,2S,21 

•TCI)«P0«2S.>/|U02»2; 
IS TURBULENT OF LAH!*AR 
-   2200«)   20»   20,   21 

RE   III 
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ZU >*«XP*S9RT(RE( ID/Til » 

,106,105 
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RO   FOR   A   0E80ND 
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RD   FOR   A   CRACK 
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(1 ) J«ltC»Ut*H)/2.*yPU J-YU)/INO-SII )) > 
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C USE 

C USE 

C USE 

C USE 

C USE 

C USE 

C USE 

THIS B3 CA*D FOR A OEüONO 
B3«THO*Z(I)*»XP-VP(I l»T(|| 
THIS B3 CARD FOR A CRACK 
B3*2«» THO»Z{l)*«XP-YPIII»T|!) 
THIS B3 CARD FOR A CIRCULAR DEBOND 
B3«ThO«ZU)*«XP-VP(|l*TIII*r(;»*T(l)/ffiO-S(|>) 
THIS BS CARD FOR A CIRCULAR 0«SOND 
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ZP • B4 
THIS ZP 
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THIS ZP 

•HI 
CARD 
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25 CONTINUE 
C USE THIS B  CARD FOR A DEBOVji) 

B " (Z(|*I»♦ ZII I )■• XP * « 
C USE THIS H  CARD FOR A CRACK 

B«2tMZt 1 Uz< Ul) U*XP *ö 
C USE THIS B  CARD FOR A CIRCULAR DE&OND 

B«(Z<I)*Z(t«l))«*xP»CR0«H»I«H/2, >*B 
C USE THIS Y(l*ll CARD FOR A DEBOND 
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C USE THIS T(I*l» CARD FOR A CRACK 
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T.I1M )"TH0/CY( 1*1 )»IR0-Sf I ♦111 )»(H»B/l2»»*Xp)*Y(j)«Ro) 

108 CONTINUE 
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36 CONTINUE 
C THE FOLLOWING «I IF STATEMENTS DETERMINE IF A CORRECT 
C      BOUNDARY 
CONDITION HAS BEEN SATISFIED 

1F(V(N)-DIF-I.)6Ut6U,59 
40 IF<P<N)*ERR0R-PC>90»5A,9I 
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92 IF(ABSlV(N)-|.)-0lF)b6|S6,9j 

C THIS IF STATEMENT DETERMINES WHICH BOUNDARY CONolTlOf| TO 
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C* TO MATCH 

93 1F(A0S«P(N)-PC)/PC-ABS(1*-V<N)>)90,90f8B 
S9 DP0»P0/IU3. 

60 TO 89 
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00 TO 09 
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8? CONTINUE 

COKRECTCÜ PO GUESS 
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EX0P»0P0/J0. 
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55 CONTINUE 
VR»V(I) 
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86 CONTINUE 
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THO ■ D*C*(Po*l<i4*)*>*<XP-l«) 
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F» <2«*(GH«1.) • TO ♦ «)/CGM • 

THIS LOOP OETER«INLS V(I) AND P(I) 
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32.2) 
AT EACH STEP 

fC 

DO J7 
PJI ) ■ PO i Kii 
IF« 1 -N)61,62,62 

6! CONTINUE 
EXIT ».OOP JF P(I) FALLS BELOW 

IF(P<I)+ERR0K-PC)2H,62,62 
62 CONTINUE 

Xm=SQRT(Z< I)«2(I)*F»T(I)»T(I) J 
V!l>«(X(I)-Z(I))/j2(I»*(6M-1 • ) ) 
IF« I-N »63 , 6** ,6H 

63 CONTINUE 
EXIT LOOP IF VU) RISES ABOVE 1.0 

1FC V( I)-I.)6M,6St24* 
6H CONTINUE 

REU»a{r«I»*T(I)«P0«2*».)/(U«32»2) 
CHECK IF FLO« IS TURBULENT OF LAMINAR 

IFUE( I )'2200* 165,Ab,66 
65 FC-*VA,/RE< I ) 

60 TO 67 
66 FC»»il6/Rf(I)«».25 
67 CONTINUE 

8R(I )«TH0«Z(IJ#»XP*SQP (RE(I))/T(I) 

B-8 



I 

• 

107 
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C USE 
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69 
c USE 
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c USE 
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HBR«*«/<2o»<BR(i l*l«H«it/i2**S«»»fgg||l/<|,!J 
IF<N-|ll06elO*il07 
CONTINUE 
B2 ■ F • HI» / XU) 
B1 • |GM» XU)) / (<X(!) - SH • Z|IM • T|I>) 
THIS. 8l CARD FOR A DEBONQ 
BI"IX(!)-ZtI))»(FC*(i.*HßR)/2.*VP( i)) 
THIS Bt CARD FOR A CRACK 
B|«|Xf!2-Z(I))«(FC«HBR*YPll ,) 
THIS Bl CARD TOR A CIRCULAR DEBOND 
OI"C A| I )-ZJI))«(FC»<l.*H)/2,*YP(i)-rU)/CK0-S(I Jj) 
THIS B3 CARD FOR A 0£BOND 
B3*TH0«zU>**Xp-YP(I)*T(l) 
THIS 03 CARD FOR A CRACK 
B3«2t» TH0»ZJI)**AP-YP(I)«T(I) 
THIS B3 CARD FOR A CIRCULAR DEBOND 
B3»TH0»Z<II*»Xp-rP(I)»TCII+Y(I).T(I)/(R0-S(in 
THIS 8S CARD FOR A CIRCULAR DEdOND 
B5«Z< ! ) .Y(I)/(RO-SU J )»(Grt-i. I/GM 
THIS ZP CARD FOR A DEBONO 
ZP ■ BH «(Bl ♦ BZ ♦ B3) 
THIS ZP CARD FOR A CRACK 
ZP * Bt *(B1 * B2 • B3J 
THIS ZP CARo FOR A CIRCULAR DEBOND 
ZP»<üj*p5*B2*B3)«B'« 
Zf!*H m   2(1) ♦ H»ZP 
IF ( Z < I ♦! »*Z(l ) )2««,69,69 
CONTINUE 
THIS B  CARD FOR A DEBOND 
B « |Zf|*|»* Z(I) )♦• XP ♦ B 
THIS B  CARD FOR A CRACK 
B*2««(Z< I)+Z(1 + 1>)««XP *B 
THIS B  CARD FOR A CIRCULAR DE&OND 
B«(Z(Il+Zl 1*1 I )««X<**(R0-H*UH/2. J*B 
THIS T(I*IJ CARD FOR A DEBOND 
T t I * i )"(TH0/YI 1*11 »•(H»B/2»»*XP-»Y0> 
THIS TC1*11 CARD FOR A CRACK 
TCI*I)"(TH0/YI!♦!))«<H«B/2.»»XP*yO) 
THIS Tl|*|| CARD FOR A CIRCULAR DEBOhO 
T(t«l)«THO/(Y(l*n«(RO-S(I*m)*(H*B/(2**«Xp)«Y(i)*Ro) 
CONTINUE 
VU)-SO«T(V(I » ) 
CONTINUE 
DP"P<NJ-PR 
DV«V<N)-VR 
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DRC«AßS(P<N)-PC)/PC-ABS U.-V(N) ) 

C THE FOLLO.KING «I IF STATE/IENTS DETERMINE IF A CORRECT 
C      BOUNDARY 
CONDITION HAS BEEN SATISFIED 

IF <P(N)+ERROR-PC $80^1^81 

81 IF(V<N)-D!F-1t)82,56,83 

82 !FlAbS(P(N>-PC)-£KR0R)5A|R&,87 

87 IFUbSJVlNJ-J.J-OIFJSfa, S6,8<| 
C THIS IF STATEMENT DETERMINES WHICH BOUNDARY CONDITION TO 
C ATTEHPT 
C TO MATCH 

BH    IFIABSP«N)-PC)/P(NJ-ABS(I.-V(N|1)80,80,83 
80 CONTINUE 

NP-NP+I 
CNP»A8S(0p/EXDP > 

IFINP-2)9S|?5»9H 
95 PDIV»3. 

60 TO 99 
9H PDIV»CNP 
99 C0N1lMUE 

POR»PO-( JP(N)-PC>/P0IV)»0P0/1JP • 
EXDP»(P(N|-PC)/PDIV 
60 TO 6S 

83 CONTINUE 
NV«NV*| 
IF«NV-2|97,97»96 

96 IF(AäS(V(Nl-I*)-*3)10H,103(103 

10«« V0IV«2. 
60 TO 98 

97 lF(ABS(V(N)-l*l-*3)102fl03tl03 
102 VDlV"3* 

60 TO 98 
103 VDlV'lOtO 

98 CONTINUE 
POR»PO-(<V(N|-1.»/VDIV)«OPO/DV 

85 CONTINUE 
OPO*POR-PO 
PO-POR 
60 TO 55 

56 CONTINUE 
DR»OR*OT 

C PRINT DESIRED PARAMETERS WHICH IDENTIFY INITIAL 6E0METRYf 
C TIME  , 
C PROPELLA^T, AND PC 
C PRINT DESIRED VARIABLES AL0N6 LENGTH OF FLAW IE Vi I I , 

B-10 



c p<n» vii», s(U 
29 CONTINUE 

DR»0K«DT 
C PRINT OtSlREO PARAMETERS «HUH IDENTIFY INITIAL G£OMETKY 
C TIHE  , 
C PROPELLARTt ANO PC 

PRINT 72 
72 FORMAT!» »IMTERATION UNSTABLE*» 
28 CONTINUE 

DT"H/CC«(POM«l«U»«»XPM2») 
C COMPUTE NE« GEOMETRY 

DO 3b  I ■ 1,N 
YCI»"YU»*H»ZI11»»XP 
YfI>"YJ|)*H*ZfI)**XP«2« 

35 CONTINUE 
00 1* I ■ It* 
YPUJ m   (YIUI)-Y(I))/  H 

38 CONTINUE 
34 CONTINUE 

STOP 

1 6 
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APPENDIX C 

Consider the plane problem of a Griffith crack of length 2a in 
a thin elastic sheet. If a uniform pressure p acts within the 

crack, the symmetric stress distribution in the vicinity of the crack 
tip is given by v * 

r 

ae = 

4/2TTT 

K 

=r[5c°s|- cos|ij (C-ia) 

*-r [3 cos § ♦ cos |ij (C-ib) 

Ki      r  .    6  :     .    381 ,r ,  . 

where r and 9 are polar coordinates with origin at the crack tip as 
shown in Figure C-l, and Kx is the mode I stress intensity factor 
which for this problem can be written as 

K, - % &£ (C-2) 

Applying the energy balance as a fracture criterion leads to the 
criticality condition 

K,  =pQ &* (C-3) 
er   cr 

This condition can be put into the more familiar but equivalent form 

o„^  w ira v ' cr  w 

where y is the cohesive fracture energy, by recognizing that the 
potential energy release rate with crack extension is directly related 

(17) to the stress intensity factor Kj   *. 

If the pressure inside the crack were now to be distributed non- 
uniformly along the length of the crack, it becomes important to assess 
the effect of this non-uniformity upon crack instability. A convenient 
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way of doing so is to compare the fracture threshold for the non- 

uniform pressure distribution to that which would result if its total 

(integrated) pressure were distributed along the crack length uni- 

formly.   Ihis comparison entails solving for the stress intensity 

factor for the non-uniform pressure which will be accomplished by 
(39") using the Green's function obtained by the method of Muskhelishvili v '. 

If two oppositely directed concentrated forces each of magnitude P 

act within and normal to a crack at some distance b from its center, as 
fl71 shown in Figure C-l, the stress intensity factor is given by l J 

Ks - 
«P M (C-5) 

Recognizing that Equation (C-5) is a Green's function for the problem 

of a non-uniform pressure p(x) applied within the crack, the stress 

intensity factor for this problem is easily obtained in the integral 
form 

Ki = 
(wa) J: >«m (C-6) 

Approximating the pressure within the crack by 

P(0 - P0[l -A(l-C
2)m] (C-7) 

where § ■ x/a and X and m are parameters chosen to ifeast fit the 

actual pressure distribution, one obtains the stress intensity factor 

for this distribution from Equation (C-6) as 

K,=&t[1-A(1-5rj(^)'di 

" Po0ra) [i-f»c-M>] (C-8) 
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In Equation (C-8), B(a,B) is the complete Beta function. Upon 

expressing Equation (C-8) in terms of the average of the applied 

pressure p, one finally obtains 

Kj = p(ira) [: 
(A/TT) B(m + \, \) 

(A/2) B(m + 1, h 
(C-9) 

where 

= \ j  p(OdC = P0 [l " 7 BCm+1,^1      (C-10) 

Note in Equation (C-9) that if X = 0, the uniform pressure result is 

recovered. Hence the term in brackets in Equation (C-9), which is 

graphed in Figure C-2, expresses the deviation in the stress intensity 

factor due to deviations of the assumed pressure (C-7) from uniformity. 

This deviation is expected to be typical of non-uniform pressure distri- 

butions in cracks of rather arbitrary geometry. 
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Figure C-l. Finite length crack with self-equilibrating concentrated 
load system applied normal to crack plane. 

K-ZF/^ä i 
m=l/2^ 

l\ 

m-1 -^ 

—ms ? 

-j L.O C ! 1 .0 

Figure C-2. Stress intensity factors for a finite crack c.   length 2a 
subjected to a non-uniform pressure along its length. 
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